WorldWideScience

Sample records for reactor neutron spectrum-averaged

  1. Measurement of 235U fission spectrum-averaged cross sections and neutron spectrum adjusted with the activation data

    International Nuclear Information System (INIS)

    Kobayashi, Katsuhei; Kobayashi, Tooru

    1992-01-01

    The 235 U fission spectrum-averaged cross sections for 13 threshold reactions were measured with the fission plate (27 cm in diameter and 1.1 cm thick) at the heavy water thermal neutron facility of the Kyoto University Reactor. The Monte Carlo code MCNP was applied to check the deviation from the 235 U fission neutron spectrum due to the room-scattered neutrons, and it was found that the resultant spectrum was close to that of 235 U fission neutrons. Supplementally, the relations to derive the absorbed dose rates with the fission plate were also given using the calculated neutron spectra and the neutron Kerma factors. Finally, the present values of the fission spectrum-averaged cross sections were employed to adjust the 235 U fission neutron spectrum with the NEUPAC code. The adjusted spectrum showed a good agreement with the Watt-type fission neutron spectrum. (author)

  2. Updated neutron spectrum characterization of SNL baseline reactor environments

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.; Vehar, D.W.

    1994-04-01

    This document provides SAND-II and MANIPULATE output listings from calculations used to derive the new spectrum-averaged integral parameters that were reported in volume 1. When used in conjunction with volume 1, this document provides an audit trail for the neutron radiation field characterization and supports current quality assurance initiatives. This document provides detailed information on the neutron spectrum characteristics of the primary Sandia National Laboratories' (SNL) reactor environments. The information in this volume is not intended for the casual user of the SNL reactor facilities. This detailed characterization of the neutron and gamma environments at the Sandia Pulsed Reactor (SPR) and the Annular Core Research Reactor (ACRR) is provided to aid the users who wish to convert the information given in the Radiation Metrology Laboratory (RML) dosimetry reports into other (non-silicon) measures of neutron damage. The spectra provided in these appendices can be used as a source term for Monte Carlo radiation transport calculations to study the impact of experimenter's test package on the neutron environment

  3. Average cross sections calculated in various neutron fields

    International Nuclear Information System (INIS)

    Shibata, Keiichi

    2002-01-01

    Average cross sections have been calculated for the reactions contained in the dosimetry files, JENDL/D-99, IRDF-90V2, and RRDF-98 in order to select the best data for the new library IRDF-2002. The neutron spectra used in the calculations are as follows: 1) 252 Cf spontaneous fission spectrum (NBS evaluation), 2) 235 U thermal fission spectrum (NBS evaluation), 3) Intermediate-energy Standard Neutron Field (ISNF), 4) Coupled Fast Reactivity Measurement Facility (CFRMF), 5) Coupled thermal/fast uranium and boron carbide spherical assembly (ΣΣ), 6) Fast neutron source reactor (YAYOI), 7) Experimental fast reactor (JOYO), 8) Japan Material Testing Reactor (JMTR), 9) d-Li neutron spectrum with a 2-MeV deuteron beam. The items 3)-7) represent fast neutron spectra, while JMTR is a light water reactor. The Q-value for the d-Li reaction mentioned above is 15.02 MeV. Therefore, neutrons with energies up to 17 MeV can be produced in the d-Li reaction. The calculated average cross sections were compared with the measurements. Figures 1-9 show the ratios of the calculations to the experimental data which are given. It is found from these figures that the 58 Fe(n, γ) cross section in JENDL/D-99 reproduces the measurements in the thermal and fast reactor spectra better than that in IRDF-90V2. (author)

  4. Average cross section measurements in U-235 fission neutron spectrum for some threshold reactions

    International Nuclear Information System (INIS)

    Maidana, N.L.

    1993-01-01

    The average cross section in the 235 U fission spectrum has been measured by the activation technique, for the following thresholds reactions: 115 In(n,n') 115m In, 232 Th(n,f) P.F., 46 , 47 , 48 Ti(n,p) 46,47 , 48 Sc, 55 Mn(n,2 n) 54 Mn, 51 V(n,α) 48 Sc, 90 Zr(n,2 n) 89 Zr, 93 Nb(n,2 n) 92m Nb, 58 Ni(n,2 n) 57 Ni, 24 Mg(n,p) 24 Na, 56 Fe(n,p) 56 Mn, 59 Co(n,α) 56 Mn and 63 Cu(n,α) 60 Co. The activation foils were irradiated close (∼ 4 mm) to the core of the IEA-R1 research reactor in the IPEN-CNEN/SP. The reactor was operated at 2 MW yielding a fast neutron flux around 5 x 10 12 n.cm -2 . s -1 . The neutron flux density was monitored by activation reactions with well known averaged cross sections and with effective thresholds above 1 MeV. The foil activities were measured in a calibrated HPGe spectrometer. The neutron spectrum has been calculated using the SAIPS unfolding system applied to the activation data. A detailed error analysis was performed using the covariance matrix methodology. The results were compared with those from other authors. (author)

  5. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Science.gov (United States)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  6. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Directory of Open Access Journals (Sweden)

    Wagemans Jan

    2016-01-01

    Full Text Available The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  7. Study of U235 neutron fission spectrum by the knowledge of cross sections average over that spectrum

    International Nuclear Information System (INIS)

    Suarez, P.M.

    1997-01-01

    A literature search of cross sections averaged over the fission neutron spectrum confirms inconsistencies between calculated and experimental values for high threshold reactions. Since, in this case, calculated averaged cross sections are systematically lower than measured values, it is concluded that the representations used to carry out these calculations underestimate the number of neutrons in the high energy region of the spectrum. A careful measurement of the averaged cross section for the 45 Sc(n,2n) 44g Sc and 45 Sc(n,2n) 44m Sc high threshold reactions had been performed in the RA-6 Neutron Activation Analysis Laboratory after carefully checking that the neutron flux at the core position where the samples were being irradiated was indeed an undisturbed fission spectrum. The experimental values are greater than those calculated with either, Watt type representations or the one based on the Madland and Nix model for the prompt fission spectrum. In many areas of nuclear engineering, like validation of nuclear data, reactor calculations, applied nuclear physics, shielding design, etc., it is of great practical importance to have a representation for the neutron flux that can be expressed in a closed analytical form and that agrees with experimental results, specially for the most widely fissile nuclide, 235 U. The results of the calculations mentioned above lead us to propose an analytical form for the 235 U fission neutron spectrum that better agrees with experimental results in the whole energy spectrum. We propose two different forms; both are a modification of the Watt-type form that has been adopted within the ENDF/B-V files. One of the new analytical representations is defined in two regions: below 9.5 MeV it is exactly the same formula as that used within the ENDF/B-V files, above this energy the parameters of this formula are changed. The other proposed analytical representation is expressed by a single formula in the whole energy range. These two new

  8. The determination of neutron energy spectrum in reactor core C1 of reactor VR-1 Sparrow

    Energy Technology Data Exchange (ETDEWEB)

    Vins, M. [Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic)], E-mail: vinsmiro@seznam.cz

    2008-07-15

    This contribution overviews neutron spectrum measurement, which was done on training reactor VR-1 Sparrow with a new nuclear fuel. Former nuclear fuel IRT-3M was changed for current nuclear fuel IRT-4M with lower enrichment of 235U (enrichment was reduced from former 36% to 20%) in terms of Reduced Enrichment for Research and Test Reactors (RERTR) Program. Neutron spectrum measurement was obtained by irradiation of activation foils at the end of pipe of rabit system and consecutive deconvolution of obtained saturated activities. Deconvolution was performed by computer iterative code SAND-II with 620 groups' structure. All gamma measurements were performed on Canberra HPGe. Activation foils were chosen according physical and nuclear parameters from the set of certificated foils. The Resulting differential flux at the end of pipe of rabit system agreed well with typical spectrum of light water reactor. Measurement of neutron spectrum has brought better knowledge about new reactor core C1 and improved methodology of activation measurement. (author)

  9. Fission neutron spectrum averaged cross sections for threshold reactions on arsenic

    International Nuclear Information System (INIS)

    Dorval, E.L.; Arribere, M.A.; Kestelman, A.J.; Comision Nacional de Energia Atomica, Cuyo Nacional Univ., Bariloche; Ribeiro Guevara, S.; Cohen, I.M.; Ohaco, R.A.; Segovia, M.S.; Yunes, A.N.; Arrondo, M.; Comision Nacional de Energia Atomica, Buenos Aires

    2006-01-01

    We have measured the cross sections, averaged over a 235 U fission neutron spectrum, for the two high threshold reactions: 75 As(n,p) 75 mGe and 75 As(n,2n) 74 As. The measured averaged cross sections are 0.292±0.022 mb, referred to the 3.95±0.20 mb standard for the 27 Al(n,p) 27 Mg averaged cross section, and 0.371±0.032 mb referred to the 111±3 mb standard for the 58 Ni(n,p) 58m+g Co averaged cross section, respectively. The measured averaged cross sections were also evaluated semi-empirically by numerically integrating experimental differential cross section data extracted for both reactions from the current literature. The calculations were performed for four different representations of the thermal-neutron-induced 235 U fission neutron spectrum. The calculated cross sections, though depending on analytical representation of the flux, agree with the measured values within the estimated uncertainties. (author)

  10. Determining of the intermediate neutron spectrum in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-01-01

    The activation method for intermediate neutron spectrum determination is given in this paper. The intermediate neutron spectrum in experimental fuel channel (EFC) at the RB reactor is determined om the basis of this method. The results of measurements are treated with PRAG code and will be treated with KRIFIT and TENET codes that are also developed. (author)

  11. Measurement of 89Y(n,2n) spectral averaged cross section in LR-0 special core reactor spectrum

    Science.gov (United States)

    Košťál, Michal; Losa, Evžen; Baroň, Petr; Šolc, Jaroslav; Švadlenková, Marie; Koleška, Michal; Mareček, Martin; Uhlíř, Jan

    2017-12-01

    The present paper describes reaction rate measurement of 89Y(n,2n)88Y in a well-defined reactor spectrum of a special core assembled in the LR-0 reactor and compares this value with results of simulation. The reaction rate is derived from the measurement of activity of 88Y using gamma-ray spectrometry of irradiated Y2O3 sample. The resulting cross section value averaged in spectrum is 43.9 ± 1.5 μb, averaged in the 235U spectrum is 0.172 ± 0.006 mb. This cross-section is important as it is used as high energy neutron monitor and is therefore included in the International Reactor Dosimetry and Fusion File. Calculations of reaction rates were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010, CENDL-3.1 and IRDFF nuclear data libraries. The agreement with uranium description by CIELO library is very good, while in ENDF/B-VII.0 description of uranium, underprediction about 10% in average can be observed.

  12. Characterization of a fast to thermal neutron spectrum converter on PROSPERO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, X.; Authier, N.; Casoli, P.; Combacon, S. [CEA, Valduc Center, 21120 Is sur Tille (France); Calzavarra, Y. [ILL, Institut Laue Langevin, 38000 Grenoble (France)

    2009-07-01

    The PROSPERO reactor is located at CEA Valduc Center in France. The reactor is composed of an internal core made of High Enriched Uranium metal alloy surrounded by a reflector of depleted uranium. The reactor is used as a fast neutron spectrum source and is operated in delayed critical state with a continuous and steady power for several hours, which can vary from 3 mW to 3 kW, which is the nominal power. The flux at nominal power varies from 5.10{sup +10} n.cm{sup -2}/s at the reflector surface to 10{sup +7} n.cm{sup -2}/s at 5 meters from reactor axis. It has been decided to build a neutron energy converter allowing the production of a neutron thermal spectrum. As the core produces fast neutrons spectrum, we built a hollow cubic box of 50 cm x 50 cm x 50 cm with 10-cm-thick polyethylene bricks and placed one meter away from central reactor axis to moderate as much as possible neutrons to lower energies (E<0.6 eV). Analysis of the moderated flux inside the converter was performed using different activation foils such as indium or gold. We have developed a model of the experiment in the Monte Carlo neutron transport code TRIPOLI-4. A non-analogous transport calculation scheme was necessary to reproduce properly the experimental activities. The results of the calculated activations are within 4% of the experimental measurements given with 10% uncertainty (2 sigma). We show that the converter realizes thermalization of 80 % of the PROSPERO reactor fast neutrons below the cadmium threshold of 0.6 eV. Epithermal neutrons represent 15% of the spectrum and only 5% are in the fast neutron range above 1 MeV. The total flux at the center of the converter is 1.4 10{sup +9} n.cm{sup -2}/s at 3000 W

  13. Neutron spectrum measurements from a neutron guide tube facility at the ETRR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maayouf, R M.A.; El-Sayed, L A.A.; El-Kady, A S.I. [Reactor and Neutron Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The present work deals with measurements of the neutron spectrum emitted from a neutron guide tube (NGT) recently installed at one of the ETRR-1 reactor horizontal channels designed to deliver thermal neutrons, free from fast neutrons and gamma ray background, to a fourier reverse-time-of-flight (RTOF) diffractometer. The measurements were performed using a {sup 6} Li glass scintillation detector combined with a multichannel analyzer set at channel width 4 M sec and installed at 3.4 m from a disc Fermi chopper. Also a theoretical model was specially developed for the neutron spectrum calculations. According to the model developed, the spectrum calculated was found to be in good agreement with the measured one. It was found, both from measurements and calculations, that the spectrum emitted from the NGT covers, after transmission through a fourier chopper, neutron wavelengths from 1-4 A adequate for neutron diffraction measurements at D values between 0.71-2.9 A respectively. 6 FIGS.

  14. Neutron spectrum determination by activation method in fast neutron fields at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (author)

  15. Neutron spectrum perturbations due to scattering materials and their effect on the average neutron energy, the spectral index, and the hardness parameter

    International Nuclear Information System (INIS)

    Wright, H.L.; Meason, J.L.; Wolf, M.; Harvey, J.T.

    1976-01-01

    Measurements have been performed on the perturbing effect of a number of scattering materials by the 'free-field' neutron leakage spectrum from a Godiva Type Critical Assembly (White Sands Missile Range Fast Burst Reactor). The results of these measurements are interpreted in relation to some of the general parameters characterizing a neutron environment, namely, the average neutron energy >10 KeV, the spectral index and the hardness parameter. Three neutron spectrum measurements have been performed, each under different experimental configurations of scattering materials. Results from these measurements show the following with relation to the spectral index: (1) The neutron environment on the core surface and at 12-inches from the core surface (free-field) yield a spectral index of 6.8, (2) The neutron environment behind a 4.75-inch Plexiglas plate yield 4.6 for the spectral index and (3) The neutron environment behind a 2-inch aluminum plate yield 6.7 for the spectral index. It is concluded that the core surface and the 12-inch from core surface neutron environment are identical with the 'free-field' neutron environment at 20-inches when considering only those neutrons with energy >10 KeV. On the other hand, it appears that the 4.75 inches of Plexiglas severely perturbs the 'free-field' neutron environment, i.e., a much harder neutron spectrum >10 KeV. In the situation where 2-inches of aluminum is used as the perturbing medium, essentially no change in the neutron spectrum >10 KeV is noted

  16. Neutron spectrum determination by activation method in fast neutron fields at the RB reactors

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.S.; Pesic, M.P.; Antic, D.P.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (authors). 7 refs., 3 tabs

  17. Determination of the fission-neutron averaged cross sections of some high-energy threshold reactions of interest for reactor dosimetry

    International Nuclear Information System (INIS)

    Arribere, M.A.; Kestelman, A.J.; Korochinsky, S.; Blostein, J.J.

    2003-01-01

    For three high threshold reactions, we have measured the cross sections averaged over a 235 U fission neutron spectrum. The measured reactions, and corresponding averaged cross sections found, are: 127 I(n,2n) 126 I, (1.36±0.12) mb; 90 Zr(n,2n) 89m Zr, (13.86±0.83) μb; and 58 Ni(n,d+np+pn) 57 Co, (274±15) μb; all referred to the well known standard of (111±3) mb for the 58 Ni(n,p) 58m+g Co averaged cross section. The measured cross sections are of interest in nuclear engineering for the characterization of the fast neutron component in the energy distribution of reactor neutrons. (author)

  18. Energy-averaged neutron cross sections of fast-reactor structural materials

    International Nuclear Information System (INIS)

    Smith, A.; McKnight, R.; Smith, D.

    1978-02-01

    The status of energy-averaged cross sections of fast-reactor structural materials is outlined with emphasis on U.S. data programs in the neutron-energy range 1-10 MeV. Areas of outstanding accomplishment and significant uncertainty are noted with recommendations for future efforts. Attention is primarily given to the main constituents of stainless steel (e.g., Fe, Ni, and Cr) and, secondarily, to alternate structural materials (e.g., V, Ti, Nb, Mo, Zr). Generally, the mass regions of interest are A approximately 50 to 60 and A approximately 90 to 100. Neutron total and elastic-scattering cross sections are discussed with the implication on the non-elastic-cross sections. Cross sections governing discrete-inelastic-neutron-energy transfers are examined in detail. Cross sections for the reactions (n;p), (n;n',p), (n;α), (n;n',α) and (n;2n') are reviewed in the context of fast-reactor performance and/or diagnostics. The primary orientation of the discussion is experimental with some additional attention to the applications of theory, the problems of evaluation and the data sensitivity of representative fast-reactor systems

  19. Reactor neutron dosimetry

    International Nuclear Information System (INIS)

    Najzer, M.; Pauko, M.; Glumac, B.; Acquah, I.N.; Moskon, F.

    1977-01-01

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  20. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    International Nuclear Information System (INIS)

    Cartier, J.; Casoli, P.; Chappert, F.

    2013-01-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  1. Average cross-sections for /n, p/ reactions on calcium in a fission-type reactor spectrum

    International Nuclear Information System (INIS)

    Bruggeman, A.; Maenhaut, W.; Hoste, J.

    1974-01-01

    The average cross-section in a fission-type reactor spectrum sigmasub(F) was experimentally determined for the reactions 42 Ca/n,p/ 42 K, 43 Ca/n,p/ 43 K and 44 Ca/n,p/ 44 K. Calcium carbonate samples and fast neutron flux monitors were irradiated with and without cadmium shielding in the Thetis reactor (Institute for Nuclear Sciences, Rijksuniversiteit Gent). The potassium activities induced in the calcium carbonate samples were separated and purified by tetraphenylborate precipitation, after which they were measured with a Ge/Li/-detector of calibrated detection efficiency. On the basis of sigmasub(F)=0.64 mb for the reaction 27 Al/n,α/ 24 Na, the average cross-sections were as follows: 42 Ca/n,p/ 42 K: 2.82+-0.07 mb; 43 Ca/n,p/ 43 K: 1.89+-0.05 mb; 44 Ca/n,p/ 44 K: 0.065+-0.003 mb. (T.G.)

  2. Bayesian statistics applied to neutron activation data for reactor flux spectrum analysis

    International Nuclear Information System (INIS)

    Chiesa, Davide; Previtali, Ezio; Sisti, Monica

    2014-01-01

    Highlights: • Bayesian statistics to analyze the neutron flux spectrum from activation data. • Rigorous statistical approach for accurate evaluation of the neutron flux groups. • Cross section and activation data uncertainties included for the problem solution. • Flexible methodology applied to analyze different nuclear reactor flux spectra. • The results are in good agreement with the MCNP simulations of neutron fluxes. - Abstract: In this paper, we present a statistical method, based on Bayesian statistics, to analyze the neutron flux spectrum from the activation data of different isotopes. The experimental data were acquired during a neutron activation experiment performed at the TRIGA Mark II reactor of Pavia University (Italy) in four irradiation positions characterized by different neutron spectra. In order to evaluate the neutron flux spectrum, subdivided in energy groups, a system of linear equations, containing the group effective cross sections and the activation rate data, has to be solved. However, since the system’s coefficients are experimental data affected by uncertainties, a rigorous statistical approach is fundamental for an accurate evaluation of the neutron flux groups. For this purpose, we applied the Bayesian statistical analysis, that allows to include the uncertainties of the coefficients and the a priori information about the neutron flux. A program for the analysis of Bayesian hierarchical models, based on Markov Chain Monte Carlo (MCMC) simulations, was used to define the problem statistical model and solve it. The first analysis involved the determination of the thermal, resonance-intermediate and fast flux components and the dependence of the results on the Prior distribution choice was investigated to confirm the reliability of the Bayesian analysis. After that, the main resonances of the activation cross sections were analyzed to implement multi-group models with finer energy subdivisions that would allow to determine the

  3. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France); Casoli, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, Valduc, F-21120 Is sur Tille (France); Chappert, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  4. Using activation method to measure neutron spectrum in an irradiation chamber of a research reactor

    International Nuclear Information System (INIS)

    Zhou Xuemei; Liu Guimin; Wang Xiaohe; Li Da; Meng Lingjie

    2014-01-01

    Neutron spectrum should be measured before test samples are irradiated. Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation under 2 MW. Sixteen kinds of non-fission foils (19 reaction channels) were selected, of which 10 were sensitive to thermal and intermediate energy regions, while the others were of different threshold energy and sensitive to fast energy regions. By measuring the foil radioactivity, the neutron spectrum was unfolded with the iterative methods SAND-II and MSIT. Finally, shielding corrections of group cross-section and main factors affecting the calculation accuracy were studied and the uncertainty of solution was analyzed using the Monte Carlo method in the process of SAND-II. (authors)

  5. Measurement of the energy spectrum of the neutrons inside the neutron flux trap assembled in the center of the reactor core IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Santos, Diogo Feliciano dos; Jerez, Rogerio; Mura, Luis Felipe Liamos, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This paper presents the neutron energy spectrum in the central position of a neutron flux trap assembled in the core center of the research nuclear reactor IPEN/MB-01 obtained by an unfolding method. To this end, have been used several different types of activation foils (Au, Sc, Ti, Ni, and plates) which have been irradiated in the central position of the reactor core (setting number 203) at a reactor power level of 64.57 ±2.91 watts . The activation foils were counted by solid-state detector HPGe (gamma spectrometry). The experimental data of nuclear reaction rates (saturated activity per target nucleus) and a neutron spectrum estimated by a reactor physics computer code are the main input data to get the most suitable neutron spectrum in the irradiation position obtained through SANDBP code: a neutron spectra unfolding code that use an iterative adjustment method. The adjustment resulted in 3.85 ± 0.14 10{sup 9} n cm{sup -2} s{sup -1} for the integral neutron flux, 2.41 ± 0.01 10{sup 9} n cm{sup -2} s{sup -1} for the thermal neutron flux, 1.09 ± 0.02 10{sup 9} n cm{sup -2} s{sup -1} for intermediate neutron flux and 3.41± 0.02 10{sup 8} n cm{sup -2} s{sup -1} for the fast neutrons flux. These results can be used to verify and validate the nuclear reactor codes and its associated nuclear data libraries, besides show how much is effective the use of a neutron flux trap in the nuclear reactor core to increase the thermal neutron flux without increase the operation reactor power level. The thermal neutral flux increased 4.04 ± 0.21 times compared with the standard configuration of the reactor core. (author)

  6. Neutron energy spectrum flux profile of Ghana's miniature neutron source reactor core

    International Nuclear Information System (INIS)

    Sogbadji, R.B.M.; Abrefah, R.G.; Ampomah-Amoako, E.; Agbemava, S.E.; Nyarko, B.J.B.

    2011-01-01

    Highlights: → The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was studied. → Using 20,484 energy grids, the thermal, slowing down and fast neutron energy regions were studied. - Abstract: The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was understudied using the Monte Carlo method. To create small energy groups, 20,484 energy grids were used for the three neutron energy regions: thermal, slowing down and fast. The moderator, the inner irradiation channels, the annulus beryllium reflector and the outer irradiation channels were the region monitored. The thermal neutrons recorded their highest flux in the inner irradiation channel with a peak flux of (1.2068 ± 0.0008) x 10 12 n/cm 2 s, followed by the outer irradiation channel with a peak flux of (7.9166 ± 0.0055) x 10 11 n/cm 2 s. The beryllium reflector recorded the lowest flux in the thermal region with a peak flux of (2.3288 ± 0.0004) x 10 11 n/cm 2 s. The peak values of the thermal energy range occurred in the energy range (1.8939-3.7880) x 10 -08 MeV. The inner channel again recorded the highest flux of (1.8745 ± 0.0306) x 10 09 n/cm 2 s at the lower energy end of the slowing down region between 8.2491 x 10 -01 MeV and 8.2680 x 10 -01 MeV, but was over taken by the moderator as the neutron energies increased to 2.0465 MeV. The outer irradiation channel recorded the lowest flux in this region. In the fast region, the core, where the moderator is found, the highest flux was recorded as expected, at a peak flux of (2.9110 ± 0.0198) x 10 08 n/cm 2 s at 6.961 MeV. The inner channel recorded the second highest while the outer channel and annulus beryllium recorded very low flux in this region. The flux values in this region reduce asymptotically to 20 MeV.

  7. New Measurements and Calculations to Characterize the Caliban Pulsed Reactor Cavity Neutron Spectrum by the Foil Activation Method

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, X.; Casoli, P.; Authier, N.; Rousseau, G. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Barsu, C. [Pl. de la fontaine, 25410 Corcelles-Ferrieres (France)

    2011-07-01

    Caliban is a cylindrical metallic core reactor mainly composed of uranium 235. It is operated by the Criticality and Neutron Science Research Laboratory located at the French Atomic Energy Commission research center in Valduc. As with other fast burst reactors, Caliban is used extensively for determining the responses of electronic parts or other objects and materials to neutron-induced displacements. Therefore, Caliban's irradiation characteristics, and especially its central cavity neutron spectrum, have to be very accurately evaluated. The foil activation method has been used in the past by the Criticality and Neutron Science Research Laboratory to evaluate the neutron spectrum of the different facilities it operated, and in particular to characterize the Caliban cavity spectrum. In order to strengthen and to improve our knowledge of the Caliban cavity neutron spectrum and to reduce the uncertainties associated with the available evaluations, new measurements have been performed on the reactor and interpreted by the foil activation method. A sensor set has been selected to sample adequately the studied spectrum. Experimental measured reaction rates have been compared to the results from UMG spectrum unfolding software and to values obtained with the activation code Fispact. Experimental and simulation results are overall in good agreement, although gaps exist for some sensors. UMG software has also been used to rebuild the Caliban cavity neutron spectrum from activation measurements. For this purpose, a default spectrum is needed, and one has been calculated with the Monte-Carlo transport code Tripoli 4 using the benchmarked Caliban description. (authors)

  8. Neutron spectrum unfolding: Pt. 2

    International Nuclear Information System (INIS)

    Matiullah; Wiyaja, D.S.; Berzonis, M.A.; Bondars, H.; Lapenas, A.A.; Kudo, K.; Majeed, A.; Durrani, S.A.

    1991-01-01

    In Part I of this paper, we described the use of the computer code SAIPS in neutron spectrum unfolding. Here in Part II, we present our experimental work carried out to study the shape of the neutron spectrum in different experimental channels of a 5 MW light-water cooled and moderated research reactor. The spectral neutron flux was determined using various fission foils (placed in close contact with mica track detectors) and activation detectors. From the measured activities, the neutron spectrum was unfolded by SAIPS. (author)

  9. Neutron fluence rate and energy spectrum in SPRR-300 reactor thermal column

    International Nuclear Information System (INIS)

    Dou Haifeng; Dai Junlong

    2006-01-01

    In order to modify the simple one-dimension model, the neutron fluence rate distribution calculated with ANISN code ws checked with that calculated with MCNP code. To modify the error caused by ignoring the neutron landscape orientation leaking, the reflector that can't be modeled in a simple one-dimension model was dealt by extending landscape orientation scale. On this condition the neutron fluence rate distribution and the energy spectrum in the thermal column of SPRR-300 reactor were calculated with one-dimensional code ANISN, and the results of Cd ratio are well accorded with the experimental results. The deviation between them is less than 5% and it isn't above 10% in one or two special positions. It indicates that neutron fluence rate distribution and energy spectrum in the thermal column can be well calculated with one-dimensional code ANISN. (authors)

  10. Study on neutron spectrum for effective transmutation of minor actinides in thermal reactors

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yokoyama, Kenji

    1997-01-01

    The transmutation of minor actinides (MAs) has been investigated in thermal reactor cells using mixed oxide fuel with MAs. The effect of neutron spectra on transmutation is studied by changing the neutron spectra. Five transmutation rates are compared: direct fission incineration rate, capture transmutation rate, consumption rate, overall fission incineration rate and inventory difference transmutation rate. The relations between these transmutation rates and their dependence on the neutron spectrum were investigated. To effectively incinerate MAs it is necessary to maximize the overall fission incineration rate and the inventory difference transmutation rate. These transmutation rates become maximum when the fraction of neutrons below 1 eV is about 8% for the case where the MA addition is 1-3%. When the MA addition is over 5%, the transmutation rates become maximum for very hard neutron spectrum. (Author)

  11. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  12. Prompt neutron fission spectrum mean energies for the fissile nuclides and 252Cf

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of 252 Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, 233 U, 235 U, 239 Pu, and 241 Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs

  13. Consolidation of the neutron spectrum in the RA-6 reactor

    International Nuclear Information System (INIS)

    Bazzana, S.; Chiaraviglio, N.

    2013-01-01

    Unfolding procedures can be used to determine the neutron or gamma spectrum in a multigroup structure from experimental and calculation results. In this way, it is possible to adjust with high reliability magnitudes that cannot be directly measured. For neutron unfolding it is necessary the use of a set of detectors with different energetic response. In this work we describe two unfolding experiences in different positions of the RA-6 reactor of the Bariloche Atomic Centre. One of them consisted in the unfolding in an incore position and the other one in the BNCT facility beam.Experimental techniques and neutron detectors for each experience are described along with the correction factors that must be taken into account for each experience. In both cases there is good agreement between measured and adjusted quantities. (author) [es

  14. Burnup influence on the VVER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of the Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of VVER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in 1/4 depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (authors)

  15. Burnup influence on the WWER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of WWER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in ? depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (Authors)

  16. Determination of the energy spectrum of the neutrons in the central thimble of the reactor core TRIGA Mark III

    International Nuclear Information System (INIS)

    Parra M, M. A.

    2014-01-01

    This thesis presents the neutron spectrum measurements inside the core of the TRIGA Mark III reactor at 1 MW power in steady-state, with the bridge placed in the center of the swimming pool, using several metallic threshold foils. The activation detectors are inserted in the Central Thimble of the reactor core, all the foils are irradiated in the same position and irradiation conditions (one by one). The threshold detectors are made of different materials such as: Au 197 , Ni 58 , In 115 , Mg 24 , Al 27 , Fe 58 , Co 59 and Cu 63 , they were selected to cover the full range the energies (10 -10 to 20 MeV) of the neutron spectrum in the reactor core. After the irradiation, the activation detectors were measured by means of spectrometry gamma, using a high resolution counting system with a hyper pure Germanium crystal, in order to obtain the saturation activity per target nuclide. The saturation activity is one of the main input data together with the initial spectrum, for the computational code SANDBP (hungarian version of the code SAND-II), which through an iterative adjustment, gives the calculated spectrum. The different saturation activities are necessary for the unfolding method, used by the computational code SANDBP. This research work is very important, since the knowledge of the energetic and spatial distribution of the neutron flux in the irradiation facilities, allows to characterize properly the irradiation facilities, just like, to estimate with a good precision various physics parameters of the reactor such as: neutron fluxes (thermal, intermediate and fast), neutronic dose, neutron activation analysis (NAA), spectral indices (cadmium ratio), buckling, fuel burnup, safety parameters (reactivity, temperature distribution, peak factors). In addition, the knowledge of the already mentioned parameters can give a best use of reactor, optimizing the irradiations requested by the users for their production process or research projects. (Author)

  17. Neutron converter at reactor RB; Konvertor neutrona na reaktoru RB

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P; Sotic, P; Ninkovic, M; Pesic, M [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1977-07-01

    A neutron converter at Reactor RB in the 'Boris Kidric' Institute of Nuclear Sciences - Vinca has been constructed. Preliminary measurements have been shown that the converted neutron spectrum is very similar to the fission neutron spectrum. For the same integral reactor power, the measured neutron radiation dose has been for about ten times larger with the neutron converter. The neutron converter offers wide possibilities, as in investigations in the reactor physics, where the fission neutron spectra have been required, as well as in the field of neutron dosimetry and biological irradiations (author)

  18. Development Of A Method For Measurement Of Total Neutron Cross Sections Based On The Neutron Transmission Method Using A He-3 Counter On Filtered Neutron Beams At Dalat Research Reactor

    International Nuclear Information System (INIS)

    Tran Tuan Anh; Dang Lanh; Nguyen Canh Hai; Nguyen Xuan Hai; Pham Kien; Nguyen Thuy Nham; Pham Ngoc Son; Ho Huu Thang

    2007-01-01

    Determination of total neutron cross sections and average resonance parameters in the energy range from tens keV to hundreds keV is important for fast reactors calculations and designs because this energy range gives the most output of all neutron induced reactions in the spectrum of fast reactors. Besides, the total neutron cross section measurement is also one of the methods for determination of s, p and d-wave neutron strength functions. The purpose of this project is to develop a method for measurement of total neutron cross sections based on the neutron transmission technique using a He-3 counter. The average total neutron cross sections of 238 U were obtained from neutron transmission measurements on filtered neutron beams of 55 keV and 144 keV at the horizontal channel No.4 of the Dalat research reactor. The present results have been compared with the previous measurements, and the evaluated data from ENDF/B-6.8 library. (author)

  19. Fast neutron spectrum in the exposure room of the TRIGA Mark II reactor in Ljubljana

    International Nuclear Information System (INIS)

    Kristof, E.S.

    2003-01-01

    In this paper a description of the high energy neutrons at a usual position in the dry cell of our reactor is given. Neutrons emerging from the graphite reflector enter the exposure room through the horizontal shaft. At the irradiation position samples of detection materials were irradiated. After irradiation γ-ray spectra were measured and from the saturation activities the spectrum was calculated. (author)

  20. FPGA based computation of average neutron flux and e-folding period for start-up range of reactors

    International Nuclear Information System (INIS)

    Ram, Rajit; Borkar, S.P.; Dixit, M.Y.; Das, Debashis

    2013-01-01

    Pulse processing instrumentation channels used for reactor applications, play a vital role to ensure nuclear safety in startup range of reactor operation and also during fuel loading and first approach to criticality. These channels are intended for continuous run time computation of equivalent reactor core neutron flux and e-folding period. This paper focuses only the computational part of these instrumentation channels which is implemented in single FPGA using 32-bit floating point arithmetic engine. The computations of average count rate, log of average count rate, log rate and reactor period are done in VHDL using digital circuit realization approach. The computation of average count rate is done using fully adaptive window size moving average method, while Taylor series expansion for logarithms is implemented in FPGA to compute log of count rate, log rate and reactor e-folding period. This paper describes the block diagrams of digital logic realization in FPGA and advantage of fully adaptive window size moving average technique over conventional fixed size moving average technique for pulse processing of reactor instrumentations. (author)

  1. Study of U{sup 235} neutron fission spectrum by the knowledge of cross sections average over that spectrum; Estudio del espectro de neutrones de fision del {sup 235}U a traves del conocimiento de secciones eficaces promediadas sobre dicho espectro

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, P M [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1998-12-31

    A literature search of cross sections averaged over the fission neutron spectrum confirms inconsistencies between calculated and experimental values for high threshold reactions. Since, in this case, calculated averaged cross sections are systematically lower than measured values, it is concluded that the representations used to carry out these calculations underestimate the number of neutrons in the high energy region of the spectrum. A careful measurement of the averaged cross section for the {sup 45}Sc(n,2n) {sup 44g}Sc and {sup 45}Sc(n,2n) {sup 44m}Sc high threshold reactions had been performed in the RA-6 Neutron Activation Analysis Laboratory after carefully checking that the neutron flux at the core position where the samples were being irradiated was indeed an undisturbed fission spectrum. The experimental values are greater than those calculated with either, Watt type representations or the one based on the Madland and Nix model for the prompt fission spectrum. In many areas of nuclear engineering, like validation of nuclear data, reactor calculations, applied nuclear physics, shielding design, etc., it is of great practical importance to have a representation for the neutron flux that can be expressed in a closed analytical form and that agrees with experimental results, specially for the most widely fissile nuclide, {sup 235}U. The results of the calculations mentioned above lead us to propose an analytical form for the {sup 235}U fission neutron spectrum that better agrees with experimental results in the whole energy spectrum. We propose two different forms; both are a modification of the Watt-type form that has been adopted within the ENDF/B-V files. One of the new analytical representations is defined in two regions: below 9.5 MeV it is exactly the same formula as that used within the ENDF/B-V files, above this energy the parameters of this formula are changed. The other proposed analytical representation is expressed by a single formula in the whole

  2. Determination of the neutrons energy spectrum in the central thimble of the reactor core TRIGA Mark III

    International Nuclear Information System (INIS)

    Parra M, M. A.; Luis L, M. A.; Raya A, R.; Cruz G, H. S.

    2013-10-01

    This work presents the measurement of the neutrons spectrum in energies in the central thimble of the reactor TRIGA Mark III to a power of 1 MW in stationary state, with the core in the center of the pool. To achieve this objective, several thin sheets were irradiated (one at the time) in the same position of the core. The activation probes were selected in such a way that covered the energy range (1 x 10 -10 to 20 MeV) of the neutrons spectrum in the reactor core, for this purpose thin sheets were used of 197 Au, 58 Ni, 115 In, 24 Mg, 27 Al, 58 Fe, 59 Co and 63 Cu. After the irradiation, the high energy gamma emissions of the activated thin sheets were measured by means of gamma spectrometry, in a counting system of high resolution, with a Hyper pure Germanium detector, obtaining this way the activity induced in the thin sheets whose magnitude is proportional to the intensity of the neutrons flow, this activity together to a theoretical initial spectrum are the main entrance data of the computational code SANDBP (Hungarian version of the code Sand-II) that uses the unfolding method for the calculation of the spectrum. (Author)

  3. Neutron Spectrum Parameters In Inner Irradiation Channel Of The Nigeria Research Reactor-1 (NIRR-1) For Use In Absolute And KO-NAA Methods

    International Nuclear Information System (INIS)

    Jonah, S.A; Balogun, G.I; Mayaki, M.C.

    2004-01-01

    In Nigeria, the first Nuclear Reactor achieved critically on February 03, 2004 at about 11:35 GMT and has been commissioned or training and research. It is a Miniature Neutron Source Reactor (MNSR), code-named Nigeria Research Reactor-1 (NIRR-1). NIRR-1 has a tan-in-pool structural configuration and a nominal thermal power rating of 30 Kw. With a built-in clean old core excess reactivity of 3.77 mk determined during the on-site zero and critically experimental, the reactor can operate for a n.cm-2 .s-1 in the inner irradiation channels). Under these conditions, the reactor can operate with the same fuel loading for over ten years with a burn-up of <1%. A detailed description of operating characteristics for NIRR-1, measured during the on-site zero-power and criticality experiments has been given elsewhere. In order to extend its utilization to include absolute and ko-NAA methods, the neutron spectrum parameters in the irradiation channels: power and critically experiments has been given elsewhere. In order to extend it's the irradiation channels: thermal-to-epithermal flux ration, F; and epithermal flux shape factor, a in both the inner and outer irradiation channels must be determined experimentally. In this work, we have developed and experimental procedure for monitoring the neutron spectrum parameters in an inner irradiation channel based on irradiation and gamma-ray counting of detector foils via (n,y), (n,p) and (n,a) dosimetry reactions. Results obtained indicate that a thermal neutron flux of (5.14+-0.02) x 1011 n/c m2.s determined by foil activation method in the inner irradiation channel, B2, at a power level of 15.5 kw corresponds to the flux indicators on the control console and the micro-computer control system respectively. Other parameters of the neutron spectrum determined for inner irradiation channel B2, are: a -0.0502+0.003; 18.92+-0.14; F = 3.87=0.23. The method was validated through the comparison of our result with published neutron spectrum

  4. Determination of the neutron spectrum at different locations in the Argentine RA-1 Reactor

    International Nuclear Information System (INIS)

    Lerner, A.M.; Madariaga, M.R.

    1998-01-01

    Full text: It is well known that the RA-1 reactor is used to irradiate different types of materials with neutrons. The Radio dosimetry Group (which belongs to the Nuclear Regulatory Authority) uses its fast column for the design, calibration and set up of criticality dosimeters as well as for a quick assessment of the dose to workers in case of an accident. With such purpose, Au(1), Au under Cd and In(2) foils were irradiated to estimate absolute thermal, epithermal and fast neutron fluxes at the irradiation location. The accuracy of this estimation is higher when the response to the present neutron spectrum of the different materials constituting the detectors is better known. This, in turn, requires the previous knowledge of such spectrum (a detailed energy dependence of neutron flux) at the analysed location. In this work a neutronic calculation is presented at the fast irradiation location. The whole calculation was carried out following two different methodologies, and considering a power of 40 kW. The reactor and its surroundings were represented by a simplified one-dimensional model, as a concentric cylindrical set of regions. Figures are drawn representing fast and thermal fluxes (with the cut at 0.4 eV) as a function of the distance to the core centre. The neutron flux (in n/cm 2 sec.eV) as a function of energy is also shown at the fast irradiation location. Values of flux (in n/cm 2 .sec.eV) are also provided as a function of energy in other typical locations, as well as the equivalent integrated flux values (in n/cm 2 .sec). ((1) According to the reaction Au 197 (n,γ)Au 198 , having a cross section of σ 0 =98.8b for thermal neutrons. (2) According to the reaction In 115 (n,n')In 115m , with a cross section of some 70 mb for neutrons with energies above 1.2MeV). (author) [es

  5. Spectrum-averaged cross-section measurement of /sup 103/Rh(n,n)/sup 103m/Rh in the /sup 252/Cf fission neutron spectrum

    International Nuclear Information System (INIS)

    Lamaze, G.P.; Schima, F.J.; Eisenhauer, C.M.; Spiegel, V.

    1988-01-01

    Because of the similarity in energy dependence of the /sup 103/Rh(n,n') differential cross section to the kerma muscle response function for neutrons, rhodium may be useful as a neutron kerma monitor. In support of its use as a neutron monitor, the spectrum-averaged cross section σ-bar has been measured for a /sup 252/Cf fission neutron spectrum. Pairs of thin rhodium samples were irradiated on opposite sides of a thinly encapsulated /sup 252/Cf neutron source. The neutron emission rate of the /sup 252/Cf source was determined by the manganous sulfate (MnSO/sub 4/) bath technique. In this method, the californium source emission rate is determined by comparison to the known emission rate of NBS-I, a standard radium-beryllium neutron source. The neutron fluence incident on the rhodium samples is determined from the californium source strength, average sample-to-source distance, and the duration of the irradiation. Corrections are made for neutron scattering saturation of activity, and attenuation of the X rays by the sample during counting. The X rays were detected with an intrinsic germanium detector designed specifically for low-energy X-ray detection. The activity was not determined by absolute counting so that the final results depend on the value of P/sub Κx/, to total Κ X-ray emission probability. The results of five separate irradiations yield a value of σ-bar . P/sub Κx/ = 62.3 +- 1.9 mb. Using the most recently published value of P/sub Κx/ gives a value of σ-bar = 739 +- 22 mb. A discussion of systematic uncertainties is given

  6. Neutron flux measuring system for nuclear reactor

    International Nuclear Information System (INIS)

    Aoki, Kazuo.

    1977-01-01

    Purpose: To avoid the generation of an undesired scram signal due to abrupt changes in the neutron level given to the detectors disposed near the boundary between the moderator and the atmosphere. Constitution: In a nuclear reactor adapted to conduct power control by the change of the level in the moderator such as heavy water, the outputs from the neutron detectors disposed vertically are averaged and the nuclear reactor is scramed corresponding to the averaged value. In this system, moderator level detectors are additionally provided to the nuclear reactor and their outputs, moderator level signal, are sent to a power averaging device where the output signals of the neutron detectors are judged if they are delivered from neutrons in the moderator or not depending on the magnitude of the level signal and the outputs of the detectors out of the moderator are substantially excluded. The reactor interlock signal from the device is utilized as a scram signal. (Seki, T.)

  7. Measurements of neutron spectrum from uranium converter

    International Nuclear Information System (INIS)

    Ninkovic, M.; Sotic, O.; Marinkovic, S.

    1978-01-01

    The procedure for determination of energetic distribution of neutrons by the multisphere technique is given. The theoretical basis and features of the method are explained. The spectral distribution of neutrons emerging from the neutron converter constructed at the bare reactor assembly RB, has been determined applying the existing computer programme and literature data for the energetic dependence functions of spheres of various diameters. The obtained spectral distribution has a specific maximum in the domain of fast neutrons, justifying thus the reacton for the construction of the converter. The neutron spectrum data obtained and given in this report are very important for the use of the converter in neutron dosimetry and radiation protection, as well as in the radiobiology, shielding, reactor physics etc. (author)

  8. Effect of Fast Neutron to MA/PU Burning/Transmutation Characteristic Using a Fast Reactor

    International Nuclear Information System (INIS)

    Marsodi; Lasman, As Natio; Kimamoto, A.; Marsongkohadi; Zaki, S.

    2003-01-01

    MA/Pu burning/transmutation has been studied and evaluated using fast neutrons. Generally, neutron density at this fast burner reactor and transmutation has spectrum energy level around 0.2 MeV with wide enough variation, i.e. from low neutron spectrum to its peak is 0.2 MeV. This neutron spectrum energy level depends on the kind of cooler material or fuel used. Neutron spectrum higher than fast power reactor neutron spectrum is found by means of changing oxide fuel by metallic fuel and changing natrium cooler material by metallic or gas cooler material. This evaluation is conducted by various variations in accordance with the kind of fuel or cooler, MA/Pu fractions and fuel comparison fraction with respect to its cooler in order to get better neutron usage and MA/Pu burning speed. Reactor calculation evaluation in this paper was conducted with 26-group nuclear data cross section energy spectrum. The main purpose of the discussion is to know the effect of fast neutrons to burning/transmutation MA/Pu using fast neutrons

  9. Determination of the energy spectrum of the neutrons in the central thimble of the reactor core TRIGA Mark III; Determinacion del espectro de energia de los neutrones en el dedal central del nucleo del reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Parra M, M. A.

    2014-07-01

    This thesis presents the neutron spectrum measurements inside the core of the TRIGA Mark III reactor at 1 MW power in steady-state, with the bridge placed in the center of the swimming pool, using several metallic threshold foils. The activation detectors are inserted in the Central Thimble of the reactor core, all the foils are irradiated in the same position and irradiation conditions (one by one). The threshold detectors are made of different materials such as: Au{sup 197}, Ni{sup 58}, In{sup 115}, Mg{sup 24}, Al{sup 27}, Fe{sup 58}, Co{sup 59} and Cu{sup 63}, they were selected to cover the full range the energies (10{sup -10} to 20 MeV) of the neutron spectrum in the reactor core. After the irradiation, the activation detectors were measured by means of spectrometry gamma, using a high resolution counting system with a hyper pure Germanium crystal, in order to obtain the saturation activity per target nuclide. The saturation activity is one of the main input data together with the initial spectrum, for the computational code SANDBP (hungarian version of the code SAND-II), which through an iterative adjustment, gives the calculated spectrum. The different saturation activities are necessary for the unfolding method, used by the computational code SANDBP. This research work is very important, since the knowledge of the energetic and spatial distribution of the neutron flux in the irradiation facilities, allows to characterize properly the irradiation facilities, just like, to estimate with a good precision various physics parameters of the reactor such as: neutron fluxes (thermal, intermediate and fast), neutronic dose, neutron activation analysis (NAA), spectral indices (cadmium ratio), buckling, fuel burnup, safety parameters (reactivity, temperature distribution, peak factors). In addition, the knowledge of the already mentioned parameters can give a best use of reactor, optimizing the irradiations requested by the users for their production process or

  10. Multicomponent activation detector measurements of reactor neutron spectra

    International Nuclear Information System (INIS)

    Sandberg, J.; Aarnio, P. A.; Routti, J. T.

    1984-01-01

    Information on the neutron flux is required in many applications of research reactors, such as activation analysis or radiation damage measurements. Flux spectrum measurements are commonly carried out with activation foils. The reaction types used are threshold reactions in the fast energy region, resonance reactions in the intermediate region and neutron capture reactions with l/v-cross section in the thermal region. It has been shown that it is possible to combine several detector elements into homogeneous multicomponent detectors. The activities of all detector reaction products can be determined with a single gamma spectrum measurement. The multicomponent principle sets some restrictions on the choice of detector reactions, for example, each product nuclide may be produced in one reaction only. Separate multicomponent threshold and resonance detectors were designed for the fast and intermediate regions, respectively. The detectors were fabricated in polyethylene irradiation capsules or quartz glass ampoules, and they were irradiated in a cadmium cover. The detectors were succesfully used in the irradiation ring and in the core of a Triga reactor. The intermediate and fast neutron spectrum was unfolded with the least-squares unfolding program LOUHI. According to the preliminary results multicomponent activation detectors might constitute a convenient means for carrying out routine neutron spectrum measurements in research reactors. (orig.)

  11. Calculations on neutron irradiation damage in reactor materials

    International Nuclear Information System (INIS)

    Sone, Kazuho; Shiraishi, Kensuke

    1976-01-01

    Neutron irradiation damage calculations were made for Mo, Nb, V, Fe, Ni and Cr. Firstly, damage functions were calculated as a function of neutron energy with neutron cross sections of elastic and inelastic scatterings, and (n,2n) and (n,γ) reactions filed in ENDF/B-III. Secondly, displacement damage expressed in displacements per atom (DPA) was estimated for neutron environments such as fission spectrum, thermal neutron reactor (JMTR), fast breeder reactor (MONJU) and two fusion reactors (The Conceptual Design of Fusion Reactor in JAERI and ORNL-Benchmark). then, damage cross section in units of dpa. barn was defined as a factor to convert a given neutron fluence to the DPA value, and was calculated for the materials in the above neutron environments. Finally, production rates of helium and hydrogen atoms were calculated with (n,α) and (n,p) cross sections in ENDF/B-III for the materials irradiated in the above reactors. (auth.)

  12. Reactor-moderated intermediate-energy neutron beams for neutron-capture therapy

    International Nuclear Information System (INIS)

    Less, T.J.

    1987-01-01

    One approach to producing an intermediate energy beam is moderating fission neutrons escaping from a reactor core. The objective of this research is to evaluate materials that might produce an intermediate beam for NCT via moderation of fission neutrons. A second objective is to use the more promising moderator material in a preliminary design of an NCT facility at a research reactor. The evaluations showed that several materials or combinations of materials could produce a moderator source for an intermediate beam for NCT. The best neutron spectrum for use in NCT is produced by Al 2 O 3 , but mixtures of Al metal and D 2 O are also attractive. Using the best moderator materials, results were applied to the design of an NCT moderator at the Georgia Institute of Technology Research Reactor's bio-medical facility. The amount of photon shielding and thermal neutron absorber were optimized with respect to the desired photon dose rate and intermediate neutron flux at the patient position

  13. Fission neutron spectrum averaged cross sections of some threshold reactions on cadmium: production feasibility of no-carrier-added 103Pd in a nuclear reactor

    International Nuclear Information System (INIS)

    Abbasi, I.A.; Subhani, M.S.; Zaidi, J.H.; Arif, M.

    2006-01-01

    Systematic studies on fission neutron spectrum averaged cross sections of some threshold reactions like (n, p) and (n, α) on cadmium were carried out using the activation technique in combination with radiochemical separations and high-resolution γ-ray spectroscopy. Special attention was paid to the formation of 103 Pd via the 106 Cd(n,a α) 103 Pd reaction since it is an important therapeutic radionuclide. At a fast flux neutron density of 7.5 x 10 13 cm 2 s -1 and an irradiation time of 120 h, using 100% enriched 106 Cd target 340 MBq of no-carrier-added 103 Pd per batch could be produced. The method is thus suitable for medium-scale production of this radionuclide. (orig.)

  14. Theoretical methods for neutronics calculations of core-blanket and core-reflector systems in fast reactors

    International Nuclear Information System (INIS)

    Corcuera, Roberto.

    1975-12-01

    The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr

  15. The fast neutron facility at the research reactor Munich. Determination of the beam quality and medical applications

    International Nuclear Information System (INIS)

    Wagner, F. M.; Koester, L.

    1990-01-01

    At the research reactor FRM, fast and epithermal neutron beams are generated by a thermal-to-fast neutron converter and/or near core scatterers. The dosimetry and spectroscopy of the resulting intense mixed beams of neutron and gamma radiation with a wide range of energies set spetial tasks for neutron dosimetry and spectroscopy. The twin chamber method and some others are briefly described. Neutron spectroscopy is performed by a Li-6 sandwich spectrometer covering the full neutron spectrum of a well-collimated mixed beam from about 20 keV to 8 MeV. The data registration is assisted by a microcomputer which generates sum and triton spectra on-line. Sum analysis is applied to neutron energies greater than 0.3 MeV; the intermediate neutron spectrum is evaluated by unfolding of the triton spectrum. Moreover, a brief overview of the reactor neutron therapy (RENT) at the FRM is given. After a number of animal experiments for the determination of the biological effectiveness relative to X-rays, clinical irradiations have been started in 1985. The most important indications for RENT are listed. 140 patients with bad prognoses have been treated since. The average tumour control rate of 60% is surprisingly high. Possibilities for an assisting Boron Neutron Capture Therapy (BNCT) are shown. 8 figs., 23 refs

  16. Cadmium depletion impacts on hardening neutron spectrum for advanced fuel testing in ATR

    International Nuclear Information System (INIS)

    Chang, Gray S.

    2011-01-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim-Effect in the test region. (author)

  17. Average cross sections for the 252Cf neutron spectrum

    International Nuclear Information System (INIS)

    Dezso, Z.; Csikai, J.

    1977-01-01

    A number of average cross sections have been measured for 252 Cf neutrons in (n, γ), (n,p), (n,2n), (n,α) reactions by the activation method and for fission by fission chamber. Cross sections have been determined for 19 elements and 45 reactions. The (n,γ) cross section values lie in the interval from 0.3 to 200 mb. The data as a function of target neutron number increases up to about N=60 with minimum near to dosed shells. The values lie between 0.3 mb and 113 mb. These cross sections decrease significantly with increasing the threshold energy. The values are below 20 mb. The data do not exceed 10 mb. Average (n,p) cross sections as a function of the threshold energy and average fission cross sections as a function of Zsup(4/3)/A are shown. The results obtained are summarized in tables

  18. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  19. Experimental determination of spectral ratios and of neutrons energy spectrum in the fuel of the IPEN/MB-01 nuclear reactor

    International Nuclear Information System (INIS)

    Nunes, Beatriz Guimaraes

    2012-01-01

    This study aims to determine the spectral ratios and the neutron energy spectrum inside the fuel of IPEN/MB-01 Nuclear Reactor. These parameters are of great importance to accurately determine spectral physical parameters of nuclear reactors like reaction rates, fuel lifetime and also security parameters such as reactivity. For the experiment, activation detectors in the form of thin metal foils were introduced in a collapsible fuel rod. Then the rod was placed in the central position of the core which has a standard rectangular configuration of 26 x 28 fuel rods. There were used activation detectors from different elements such Au-197, U-238, Sc-45, Ni-58, Mg-24, Ti-47 and In-115 to cover a large range of the neutron energy spectrum. After the irradiation, the activation detectors were submitted to gamma spectrometry using a counting system with high purity Germanium, to obtain the reaction rates (saturation activity) per target nucleus. The spectral ratios were compared with calculated values obtained by the Monte Carlo method using the MCNP-4C code. The neutron energy spectrum was obtained inside the fuel rod using the SANDBP code with an input spectrum obtained by the MCNP-4C code, based on the saturation activity per target nucleus values of the activation detectors irradiated. (author)

  20. Helium production in mixed spectrum reactor-irradiated pure elements

    International Nuclear Information System (INIS)

    Kneff, D.W.; Oliver, B.M.; Skowronski, R.P.

    1986-01-01

    The objectives of this work are to apply helium accumulation neutron dosimetry to the measurement of neutron fluences and energy spectra in mixed-spectrum fission reactors utilized for fusion materials testing, and to measure helium generation rates of materials in these irradiation environments. Helium generation measurements have been made for several Fe, Cu Ti, Nb, Cr, and Pt samples irradiated in the mixed-spectrum High Flux Isotope Reactor (HFIR) and Oak Ridge Research Reactor (ORR) at the Oak Ridge National Laboratory. The results have been used to integrally test the ENDF/B-V Gas Production File, by comparing the measurements with helium generation predictions made by Argonne National Laboratory using ENDF/B-V cross sections and adjusted reactor spectra. The comparisons indicate consistency between the helium measurements and ENDF/B-V for iron, but cross section discrepancies exist for helium production by fast neutrons in Cu, Ti, Nb, and Cr (the latter for ORR). The Fe, Cu, and Ti work updates and extends previous measurements

  1. Transport calculation of neutron flux distribution in reflector of PW reactor

    International Nuclear Information System (INIS)

    Remec, I.

    1982-01-01

    Two-dimensional transport calculation of the neutron flux and spectrum in the equatorial plain of PW reactor, using computer program DOT 3, is presented. Results show significant differences between neutron fields in which test samples and reactor vessel are exposed. (author)

  2. Measuring Neutron Spectrum at MIT Research Reactor Utilizing He-3 Bonner Cylinder Approach with an Unfolding Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leder, A. [MIT; Anderson, A. J. [Chicago U., KICP; Billard, J. [Lyon, IPN; Figueroa-Feliciano, E. [Northwestern U.; Formaggio, J. A. [MIT; Hasselkus, C. [Wisconsin U., Madison; Newman, E. [MIT; Palladino, K. [Wisconsin U., Madison; Phuthi, M. [MIT; Winslow, L. [MIT; Zhang, L. [MIT

    2017-10-02

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering using dark-matter-style detectors with sub-keV thresholds placed near a neutrino source, such as the MIT (research) Reactor (MITR), which operates at 5.5 MW generating approximately 2.2e18 neutrinos/second at the core. Currently, Ricochet is characterizing the backgrounds at MITR, the main component of which comes in the form of neutrons emitted from the core simultaneous with the neutrino signal. To characterize this background, we wrapped a Bonner cylinder around a He-3 thermal neutron detector, whose data was then unfolded to produce a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum and its implications for deploying Ricochet in the future at the MITR site as well as the feasibility of reducing this background level via the addition of polyethylene shielding around the detector setup.

  3. Neutronics analysis of Dalat Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong; Nguyen Manh Hung; Pham Hong Son; Tran Quoc Duong

    2006-01-01

    Many neutronics codes have been used to calculate for Dalat Research Reactor (DRR) from 1983 (the first critical of DRR in December, 1983). The purposes of all calculations are to know exactly many important parameters related to Reactor Physics and Neutron Physics in reactor core. The results from calculation play important role in core and fuel management for DRR. Especially basing on the results we can predict about fuel cycle, fuel burn up distribution and plan for using optimize remain fresh fuel assemblies of DRR. By using system neutronics code including transport codes, diffusion codes and Mote Carlo code, many characteristics of fuel assemblies and other parameters of whole core were received such as main features of VVR-M2 fuel assembly type, multiplication factor, neutron flux distribution, power distribution, burn up distribution, excess reactivity, control rods worth, neutron spectrum, temperature reactivity coefficient ect. In the paper, brief description all computer codes to being used in DRR and the calculation results from the codes above are presented. (author)

  4. Determination of the neutrons energy spectrum in the central thimble of the reactor core TRIGA Mark III; Determinacion del espectro de energia de los neutrones en el dedal central del nucleo del reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Parra M, M. A.; Luis L, M. A. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Division de Ciencias Basicas, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, 02200 Mexico D. F. (Mexico); Raya A, R.; Cruz G, H. S., E-mail: roberto.raya@inin.gob.mx [ININ, Departamento del Reactor, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    This work presents the measurement of the neutrons spectrum in energies in the central thimble of the reactor TRIGA Mark III to a power of 1 MW in stationary state, with the core in the center of the pool. To achieve this objective, several thin sheets were irradiated (one at the time) in the same position of the core. The activation probes were selected in such a way that covered the energy range (1 x 10{sup -10} to 20 MeV) of the neutrons spectrum in the reactor core, for this purpose thin sheets were used of {sup 197}Au, {sup 58}Ni, {sup 115}In, {sup 24}Mg, {sup 27}Al, {sup 58}Fe, {sup 59}Co and {sup 63}Cu. After the irradiation, the high energy gamma emissions of the activated thin sheets were measured by means of gamma spectrometry, in a counting system of high resolution, with a Hyper pure Germanium detector, obtaining this way the activity induced in the thin sheets whose magnitude is proportional to the intensity of the neutrons flow, this activity together to a theoretical initial spectrum are the main entrance data of the computational code SANDBP (Hungarian version of the code Sand-II) that uses the unfolding method for the calculation of the spectrum. (Author)

  5. Neutron metrology file NMF-90. An integrated database for performing neutron spectrum adjustment calculations

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1996-01-01

    The Neutron Metrology File NMF-90 is an integrated database for performing neutron spectrum adjustment (unfolding) calculations. It contains 4 different adjustment codes, the dosimetry reaction cross-section library IRDF-90/NMF-G with covariances files, 6 input data sets for reactor benchmark neutron fields and a number of utility codes for processing and plotting the input and output data. The package consists of 9 PC HD diskettes and manuals for the codes. It is distributed by the Nuclear Data Section of the IAEA on request free of charge. About 10 MB of diskspace is needed to install and run a typical reactor neutron dosimetry unfolding problem. (author). 8 refs

  6. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  7. Prompt fission neutron spectra and average prompt neutron multiplicities

    International Nuclear Information System (INIS)

    Madland, D.G.; Nix, J.R.

    1983-01-01

    We present a new method for calculating the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity anti nu/sub p/ as functions of the fissioning nucleus and its excitation energy. The method is based on standard nuclear evaporation theory and takes into account (1) the motion of the fission fragments, (2) the distribution of fission-fragment residual nuclear temperature, (3) the energy dependence of the cross section sigma/sub c/ for the inverse process of compound-nucleus formation, and (4) the possibility of multiple-chance fission. We use a triangular distribution in residual nuclear temperature based on the Fermi-gas model. This leads to closed expressions for N(E) and anti nu/sub p/ when sigma/sub c/ is assumed constant and readily computed quadratures when the energy dependence of sigma/sub c/ is determined from an optical model. Neutron spectra and average multiplicities calculated with an energy-dependent cross section agree well with experimental data for the neutron-induced fission of 235 U and the spontaneous fission of 252 Cf. For the latter case, there are some significant inconsistencies between the experimental spectra that need to be resolved. 29 references

  8. Neutron spectrum unfolding using neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2004-01-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using a large set of neutron spectra compiled by the International Atomic Energy Agency. These include spectra from iso- topic neutron sources, reference and operational neutron spectra obtained from accelerators and nuclear reactors. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and correspondent spectrum was used as output during neural network training. The network has 7 input nodes, 56 neurons as hidden layer and 31 neurons in the output layer. After training the network was tested with the Bonner spheres count rates produced by twelve neutron spectra. The network allows unfolding the neutron spectrum from count rates measured with Bonner spheres. Good results are obtained when testing count rates belong to neutron spectra used during training, acceptable results are obtained for count rates obtained from actual neutron fields; however the network fails when count rates belong to monoenergetic neutron sources. (Author)

  9. Determination of neutron energy spectrum at a pneumatic rabbit station of a typical swimming pool type material test research reactor

    International Nuclear Information System (INIS)

    Malkawi, S.R.; Ahmad, N.

    2002-01-01

    The method of multiple foil activation was used to measure the neutron energy spectrum, experimentally, at a rabbit station of Pakistan Research Reactor-1 (PARR-1), which is a typical swimming pool type material test research reactor. The computer codes MSITER and SANDBP were used to adjust the spectrum. The pre-information required by the adjustment codes was obtained by modelling the core and its surroundings in three-dimensions by using the one dimensional transport theory code WIMS-D/4 and the multidimensional finite difference diffusion theory code CITATION. The input spectrum covariance information required by MSITER code was also calculated from the CITATION output. A comparison between calculated and adjusted spectra shows a good agreement

  10. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-01-01

    This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field

  11. NEUTRON SPECTRUM MEASUREMENTS USING MULTIPLE THRESHOLD DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, William W.; Duffey, Dick

    1963-11-15

    From American Nuclear Society Meeting, New York, Nov. 1963. The use of threshold detectors, which simultaneously undergo reactions with thermal neutrons and two or more fast neutron threshold reactions, was applied to measurements of the neutron spectrum in a reactor. A number of different materials were irradiated to determine the most practical ones for use as multiple threshold detectors. These results, as well as counting techniques and corrections, are presented. Some materials used include aluminum, alloys of Al -Ni, aluminum-- nickel oxides, and magesium orthophosphates. (auth)

  12. Analysis of the fast-neutron spectrum inside the experimental cavity of the NRU Mk4 FN rod

    International Nuclear Information System (INIS)

    Leung, T.C.

    1995-01-01

    The fast-neutron (FN) rods in the NRU reactor provide a facility to study the effects of irradiation on CANDU reactor materials. The Mark 4 (Mk4) FN rods use natural uranium and supply fast-neutrons for experiments on irradiation creep and growth, and corrosion, for pressure- and calandria-tube materials. The neutron fluxes above 1 MeV are up to 2.7x10 17 n.m -2 .s -1 . This paper describes a calculation of the fast-neutron spectrum inside the NRU Mk4 FN rod cavity. The calculation was performed using the WIMS-AECL code, which is a multi-group transport code with two dimensional capabilities using the collision-probability method. Results for the fast-neutron spectrum above 1 MeV are presented in nine groups. The analysis confirms that the spectrum in the fast-neutron irradiation facility in NRU is representative of the actual irradiation spectrum for fast-neutron damage in a CANDU reactor. The effects of changes in specimen holder size, temperature, coolant density and fuel burnup on the fast neutron spectrum are also presented. (author). 9 refs., 3 tabs., 4 figs

  13. Average radiation weighting factors for specific distributed neutron spectra

    International Nuclear Information System (INIS)

    Ninkovic, M.M.; Raicevic, J.J.

    1993-01-01

    Spectrum averaged radiation weighting factors for 6 specific neutron fields in the environment of 3 categories of the neutron sources (fission, spontaneous fission and (α,n)) are determined in this paper. Obtained values of these factors are greater 1.5 to 2 times than the corresponding quality factors used for the same purpose until a few years ago. This fact is very important to have in mind in the conversion of the neutron fluence into the neutron dose equivalent. (author)

  14. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, Sendai, 980-8579 (Japan); Kiran Kumar, N.A.P.; Koyanagi, Takaaki; Garrison, Lauren M. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA, 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Hasegawa, Akira [Tohoku University, Sendai, 980-8579 (Japan)

    2016-10-15

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90–∼800 °C and fast neutron fluences were 0.02–9.00 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten. - Highlights: • The microstructure and irradiation hardening of single crystal pure W irradiated in HFIR was investigated. • The neutron energy spectrum influence was evaluated by comparing the HFIR results with previous work in Joyo and JMTR. • In the dose range up to ∼1 dpa, the neutron energy spectrum influence of irradiation hardening was not clear. • In the dose range above 1 dpa, the neutron energy influence on irradiation hardening and microstructural development was clearly observed. • The irradiation induced precipitates caused significant irradiation hardening of pure W irradiated in HFIR.

  15. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    International Nuclear Information System (INIS)

    Brown, N.R.; Powers, J.J.; Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G.; Todosow, M.; Worrall, A.; Gehin, J.C.; Kim, T.K.; Taiwo, T.A.

    2015-01-01

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems

  16. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.R., E-mail: nbrown@bnl.gov [Brookhaven National Laboratory, Upton, NY (United States); Powers, J.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G. [Argonne National Laboratory, Argonne, IL (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States); Worrall, A.; Gehin, J.C. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States)

    2015-08-15

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10{sup 5} eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.

  17. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Aguilar, F.; Paredes, L.; Rivera M, T.

    2013-10-01

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a 6 Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  18. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  19. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-10-01

    The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field

  20. Unfolding neutron spectrum with Markov Chain Monte Carlo at MIT research Reactor with He-3 Neutral Current Detectors

    Science.gov (United States)

    Leder, A.; Anderson, A. J.; Billard, J.; Figueroa-Feliciano, E.; Formaggio, J. A.; Hasselkus, C.; Newman, E.; Palladino, K.; Phuthi, M.; Winslow, L.; Zhang, L.

    2018-02-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CEνNS) using dark-matter-style detectors with sub-keV thresholds placed near a neutrino source, such as the MIT (research) Reactor (MITR), which operates at 5.5 MW generating approximately 2.2 × 1018 ν/second in its core. Currently, Ricochet is characterizing the backgrounds at MITR, the main component of which comes in the form of neutrons emitted from the core simultaneous with the neutrino signal. To characterize this background, we wrapped Bonner cylinders around a 32He thermal neutron detector, whose data was then unfolded via a Markov Chain Monte Carlo (MCMC) to produce a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum and its implications for deploying Ricochet at the MITR site as well as the feasibility of reducing this background level via the addition of polyethylene shielding around the detector setup.

  1. Reactor AQUILON. The hardening of neutron spectrum in natural uranium rods, with a computation of epithermal fissions (1961); Pile AQUILON. Durcissement du spectre des neutrons dans les barreaux d'uranium et calcul des fissions epithermiques (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Durand -Smet, R; Lourme, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    - Microscopic flux measurements in reactor Aquilon have allowed to investigate the thermal and epithermal flux distribution in natural uranium rods, then to obtain the neutron spectrum variations in uranium, Wescott '{beta}' term of the average spectrum in the rod, and the ratio of epithermal to therma fissions. A new definition for the infinite multiplication factor is proposed in annex, which takes into account epithermal parameters. (authors) [French] - Un certain nombre de mesures effectuees dans la pile Aquilon ont permis d'etablir la distribution fine des flux thermique et epithermique dans les barreaux d'uranium, et d'en deduire les variations du spectre des neutrons dans l'uranium, le terme {beta} du spectre de Wescott moyen dans le barreau et le nombre de fissions epithermiques. En annexe, il est propose une definition nouvelle du coefficient de multiplication infini, qui fait intervenir les parametres epithermiques. (auteurs)

  2. Monitor for reactor neutron detector

    International Nuclear Information System (INIS)

    Shirakami, Hisayuki; Shibata, Masatoshi

    1992-01-01

    The device of the present invention judges as to whether a neutron detector is normal or not while considering the change of indication value depending on the power change of a reactor core. That is, the device of the present invention comprises a standard value setting device for setting the standard value for calibrating the neutron detector and an abnormality judging device for comparing the standard value with a measured value of the neutron detector and judging the abnormality when the difference is greater than a predetermined value. The measured value upon initialization of each of the neutron detectors is determined as a quasi-standard value. An average value of the difference between the measured value and the quasi-standard value of a plurality of effective neutron detectors at a same level for the height of the reactor core is multiplied to a power rate based on the reactor core power at a position where the neutron detector is disposed upon calibration. The value obtained by adding the multiplied value and the quasi-standard value is determined as a standard value. The abnormality judging device compares the standard value with the measured value of the neutron detector and, if the difference is greater than a predetermined value, the neutron detector is determined as abnormal. As a result, judgement can be conducted more accurately than conventional cases. (I.S.)

  3. Determination of the neutron spectrum in the well Naiade attached to the reactor Nereide

    International Nuclear Information System (INIS)

    Capgras, Andree; Clement, Christophe; Sueur, Maurice.

    1977-11-01

    The spectral distribution of neutrons in the centre of the well Naiade attached to the Fontenay-aux-Roses reactor Nereide is studied. In the thermal, epithermal and over 2.2 MeV regions, activation detectors are used: 197 Au and 55 Mn (bare and under cadmium), and 58 Ni. In the energy band from a few keV to 2.2 MeV two recoil proton proportional counters are employed. Under these conditions the whole spectrum is studied, but some comments are made on the difficulties of interpreting the results obtained by either of these methods [fr

  4. Modulation of the neutron spectrum for NCTB; Modulacion del espectro de neutrones para TCNB

    Energy Technology Data Exchange (ETDEWEB)

    Medina C, D.; Letechipia de L, C.; Vega C, H. R., E-mail: dmedina_c@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No.10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-09-15

    Cancer is characterized by the uncontrolled growth of differentiated cells in a part of the organism. Currently in the world there are millions of people living with cancer. Glioblastoma multiform e is the most common and most aggressive of brain tumors and is very difficult to treat by conventional surgery, chemotherapy or radiation. The only viable alternative is its treatment through Neutron Capture Therapy in Boron (NCTB), since is a selective therapy that requires a drug with {sup 10}B (a non-radioactive isotope of boron) and a modulated neutron beam. Thermal neutrons are captured by {sup 10}B, because has a large effective section of thermal neutron absorption, in an exothermic reaction forming the nucleus composed of {sup 11}B in an excited state that induces its cleavage in two nuclei: {sup 7}Li and alpha particle ({sup 4}He). This process causes the destruction of cancer cells by direct DNA damage, without damaging normal tissue. One of the problems associated with this therapy is to have a neutron beam with adequate flow and spectrum. The neutron spectrum must be moderated and filtered from the characteristics of the source. To this end, the main sources of neutrons are nuclear research reactors and particle accelerators. The intensity of the flow should be 2 x 10 E{sup 9} n/cm{sup 2}.s, in order to treat the patient in a reasonable time; thus, is interesting to design filters for a radial beam of a TRIGA reactor, where materials such as Cd, Al, Fe and polyethylene are being implemented in the interest of having a spectrum with which the therapy can be implemented. For this design is being played with the position of the materials, to be able to see the behavior of the spectrum and thus choose some arrangement as indicated, of course taking into account the doses of both neutrons and gammas. (Author)

  5. Delayed Neutron Fraction (beta-effective) Calculation for VVER 440 Reactor

    International Nuclear Information System (INIS)

    Hascik, J.; Michalek, S.; Farkas, G.; Slugen, V.

    2008-01-01

    Effective delayed neutron fraction (β eff ) is the main parameter in reactor dynamics. In the paper, its possible determination methods are summarized and a β eff calculation for a VVER 440 power reactor as well as for training reactor VR1 using stochastic transport Monte Carlo method based code MCNP5 is made. The uncertainties in determination of basic delayed neutron parameters lead to the unwished conservatism in the reactor control system design and operation. Therefore, the exact determination of the β eff value is the main requirement in the field of reactor dynamics. The interest in the delayed neutron data accuracy improvement started to increase at the end of 80-ties and the beginning of 90-ties, after discrepancies among the results of experiments and measurements what do you mean differences between different calculation approaches and experimental results. In consequence of difficulties in β eff experimental measurement, this value in exact state is determined by calculations. Subsequently, its reliability depends on the calculation method and the delayed neutron data used. An accurate estimate of β eff is essential for converting reactivity, as measured in dollars, to an absolute reactivity and/or to an absolute k eff . In the past, k eff has been traditionally calculated by taking the ratio of the adjoint- and spectrum-weighted delayed neutron production rate to the adjoint- and spectrum-weighted total neutron production rate. An alternative method has also been used in which β eff is calculated from simple k-eigenvalue solutions. The summary of the possible β eff determination methods can be found in this work and also a calculation of β eff first for the training reactor VR1 in one operation state and then for VVER 440 power reactor in two different operation states are made using the prompt method, by MCNP5 code.(author)

  6. Materials research with neutron beams from a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Root, J.; Banks, D. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario (Canada)

    2015-03-15

    Because of the unique ways that neutrons interact with matter, neutron beams from a research reactor can reveal knowledge about materials that cannot be obtained as easily with other scientific methods. Neutron beams are suitable for imaging methods (radiography or tomography), for scattering methods (diffraction, spectroscopy, and reflectometry) and for other possibilities. Neutron-beam methods are applied by students and researchers from academia, industry and government to support their materials research programs in several disciplines: physics, chemistry, materials science and life science. The arising knowledge about materials has been applied to advance technologies that appear in everyday life: transportation, communication, energy, environment and health. This paper illustrates the broad spectrum of materials research with neutron beams, by presenting examples from the Canadian Neutron Beam Centre at the NRU research reactor in Chalk River. (author)

  7. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  8. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    International Nuclear Information System (INIS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Shayesteh, M.

    2015-01-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  9. Experimental measurement of neutron spectrum in the reflector of a light water reactor

    International Nuclear Information System (INIS)

    Brethe, P.

    1963-09-01

    1. Thermal neutrons: The temperature of the thermal neutron spectrum was calculated using Au-Lu foils. This temperature varies from 300 deg. K (temperature of the moderator) at 30 cm of the core to 350 deg. K in a hole of the core. 2. Slowing down of neutron: Four resonance detectors have been used (Au, In, Co, Mn). We can write a 1/E form of the spectrum. The linking up energy E M between thermal neutron spectrum and slowing down spectrum is about 0.23 eV and is free from the Maxwell spectrum temperature. The decrease of slowing down flux regarding thermal flux, farther from the core, has been showed. 3. Fast neutrons: We used 3 threshold detectors (Ni, Al, Mg). We supposed a E 1/2 e -βE from of the spectrum above 3 MeV. The values of β are in a range from 0.775, at the centre of the core and in a loop-hole, to 0,64 at about 30 cm of the core. 4. Continuous shape of the spectrum: The following interpolations give useful informations between the field where measurements have been made: between 340 eV and 10 keV: 1/E form between 10 keV and 330 keV: 1/(E σ S (E)) form (σ S (E) elastic scattering section on hydrogen) between 330 keV and 3 MeV: calculated form by the moments method (ref. BSR). (author) [fr

  10. Thermal neutron filter design for the neutron radiography facility at the LVR-15 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soltes, Jaroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague, (Czech Republic); Viererbl, Ladislav; Lahodova, Zdena; Koleska, Michal; Vins, Miroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic)

    2015-07-01

    In 2011 a decision was made to build a neutron radiography facility at one of the unused horizontal channels of the LVR-15 research reactor in Rez, Czech Republic. One of the key conditions for operating an effective radiography facility is the delivery of a high intensity, homogeneous and collimated thermal neutron beam at the sample location. Additionally the intensity of fast neutrons has to be kept as low as possible as the fast neutrons may damage the detectors used for neutron imaging. As the spectrum in the empty horizontal channel roughly copies the spectrum in the reactor core, which has a high ratio of fast neutrons, neutron filter components have to be installed inside the channel in order to achieve desired beam parameters. As the channel design does not allow the instalment of complex filters and collimators, an optimal solution represent neutron filters made of large single-crystal ingots of proper material composition. Single-crystal silicon was chosen as a favorable filter material for its wide availability in sufficient dimensions. Besides its ability to reasonably lower the ratio of fast neutrons while still keeping high intensities of thermal neutrons, due to its large dimensions, it suits as a shielding against gamma radiation from the reactor core. For designing the necessary filter dimensions the Monte-Carlo MCNP transport code was used. As the code does not provide neutron cross-section libraries for thermal neutron transport through single-crystalline silicon, these had to be created by approximating the theory of thermal neutron scattering and modifying the original cross-section data which are provided with the code. Carrying out a series of calculations the filter thickness of 1 m proved good for gaining a beam with desired parameters and a low gamma background. After mounting the filter inside the channel several measurements of the neutron field were realized at the beam exit. The results have justified the expected calculated values

  11. Solving the uncommon reactor core neutronics problems

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1980-01-01

    The common reactor core neutronics problems have fundamental neutron space, energy spectrum solutions. Typically the most positive eigenvalue is associated with an all-positive flux for the pseudo-steady-state condition (k/sub eff/), or the critical state is to be effected by selective adjustment of some variable such as the fuel concentration. With sophistication in reactor analysis has come the demand for solutions of other, uncommon neutronics problems. Importance functionss are needed for sensitivity and uncertainty analyses, as for ratios of intergral reaction rates such as the fuel conversion (breeding) ratio. The dominant higher harmonic solution is needed in stability analysis. Typically the desired neutronics solution must contain negative values to qualify as a higher harmonic or to satisfy a fixed source containing negative values. Both regular and adjoint solutions are of interest as are special integrals of the solutions to support analysis

  12. Comparison of different methods for activation analysis of geological and pedological samples: Reactor and epithermal neutron activation, relative and monostandard method

    International Nuclear Information System (INIS)

    Alian, A.; Sansoni, B.

    1980-04-01

    Using purely instrumental methods, a comparative study is presented on neutron activation analysis of rock and soil samples by whole reactor neutron spectrum and epithermal neutrons with both relative and monostandard procedures. The latter procedure used with epithermal neutron activation analysis of soil samples necessitated the use of the 'effective resonance integrals' which were determined experimentally. The incorporation of the #betta# factor, representing deviation of reactor epithermal neutron flux from 1/E law, is developed in the present work. The main criteria for the choice of one or more of the procedures studied for a given purpose are also indicated. Analysis of 15 trace elements, Ca and Fe in the standard Japanese granite JG-1 using monostandard epithermal neutron activation gave results in good agreement with the average literature values. (orig./RB) [de

  13. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  14. Corrections on energy spectrum and scattering for fast neutron radiography at NECTAR facility

    International Nuclear Information System (INIS)

    Liu Shuquan; Thomas, Boucherl; Li Hang; Zou Yubin; Lu Yuanrong; Guo Zhiyu

    2013-01-01

    Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM-Ⅱ in Technische Universitaet Mounchen (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections. (authors)

  15. Corrections on energy spectrum and scatterings for fast neutron radiography at NECTAR facility

    Science.gov (United States)

    Liu, Shu-Quan; Bücherl, Thomas; Li, Hang; Zou, Yu-Bin; Lu, Yuan-Rong; Guo, Zhi-Yu

    2013-11-01

    Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM- II in Technische Universität München (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections.

  16. Neutronics study on hybrid reactor cooled by helium, water and molten salt

    International Nuclear Information System (INIS)

    Li Zaixin; Feng Kaiming; Zhang Guoshu; Zheng Guoyao; Zhao Fengchao

    2009-01-01

    There is no serious magnetohydrodynamics (MHD) problem when helium,water or molten salt of Flibe flows in high magnetic field. Thus helium, water and Flibe were proposed as candidate of coolant for fusion-fission hybrid reactor based on magnetic confinement. The effect on neutronics of hybrid reactor due to coolant was investigated. The analyses of neutron spectra and fuel breeding of blanket with different coolants were performed. Variations of tritium breeding ratio (TBR), blanket energy multiplication (M) and keff with operating time were also studied. MCNP code was used for neutron transport simulation. It is shown that spectra change greatly with different coolants. The blanket with helium exhibits very hard spectrum and good tritium breeding ability. And fission reactions are mainly from fast neutron. The blanket with water has soft spectrum and high energy multiplication factor. However, it needs to improve TBR. The blanket with Flibe has hard spectrum and less energy release. (authors)

  17. Calculation of the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-03-01

    The Miniature Neutron Source Reactor (MNSR) in Syria has five inner irradiation sites in the annulus Beryllium reflectors to analyze the unknown samples using the Neutron Activation Analysis technique and to produce medium and short half life isotopes. The fast neutron flux spectrum has a special importance in the MNSR reactor physics where this spectrum is required to measure the fast neutron flux in the MNSR inner irradiation sites. Hence, calculation of the fast neutron flux spectrum in the MNSR inner irradiation site is conducted in this work using the WIMSD4 code. The energy range is divided in the WIMSD4 to 69 energy groups. The first six energy groups represent the fast neutron ranging from 0.5 to 10 MeV. To calculate the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code, the MNSR is modeled as a super unit cell. This cell consists of three regions which are: the homogenized core, annulus Beryllium, and water. The fast neutron spectrum is calculated also using the U 235 fission neutron spectrum approximation. The U 235 fission neutron spectrum agrees very good with the WIMSD4 results when neutron energy exceeds 1 MeV, but it fails when the neutron energy ranges from 0.5 to 1 MeV. The WIMSD4 code is used as well to calculate the microscopic fission cross sections for the U 238 using six energy groups where a unit cell of U 238 is used since the U 238 is usually used to measure the fast neutron flux in the reactor. The macroscopic fission cross sections for the U 238 are calculated first then the microscopic fission cross sections are calculated knowing the U 238 atomic density. (Author)

  18. Calculation of the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2006-01-01

    The Miniature Neutron Source Reactor (MNSR) in Syria has five inner irradiation sites in the annulus Beryllium reflectors to analyze the unknown samples using the Neutron Activation Analysis technique and to produce medium and short half life isotopes. The fast neutron flux spectrum has a special importance in the MNSR reactor physics where this spectrum is required to measure the fast neutron flux in the MNSR inner irradiation sites. Hence, calculation of the fast neutron flux spectrum in the MNSR inner irradiation site is conducted in this work using the WIMSD4 code. The energy range is divided in the WIMSD4 to 69 energy groups. The first six energy groups represent the fast neutron ranging from 0.5 to 10 MeV. To calculate the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code, the MNSR is modeled as a super unit cell. This cell consists of three regions which are: the homogenized core, annulus Beryllium, and water. The fast neutron spectrum is calculated also using the U 235 fission neutron spectrum approximation. The U 235 fission neutron spectrum agrees very good with the WIMSD4 results when neutron energy exceeds 1 MeV, but it fails when the neutron energy ranges from 0.5 to 1 MeV. The WIMSD4 code is used as well to calculate the microscopic fission cross sections for the U 238 using six energy groups where a unit cell of U 238 is used since the U 238 is usually used to measure the fast neutron flux in the reactor. The macroscopic fission cross sections for the U 238 are calculated first then the microscopic fission cross sections are calculated knowing the U 238 atomic density. (Author)

  19. Neutron Environment Characterization of the Central Cavity in the Annular Core Research Reactor *

    Directory of Open Access Journals (Sweden)

    Parma Edward J.

    2016-01-01

    Full Text Available Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity “bucket” environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters.

  20. Commissioning of the Opal reactor cold neutron source

    International Nuclear Information System (INIS)

    Thiering, R.; Lu, W.; Ullah, R.

    2006-01-01

    Full text: At OPAL, Australia's first cold neutron facility will form an essential part of the reactor's research programs. Fast neutrons, born in the core of a reactor, interact with a cryogenic material, in this case liquid deuterium, to give them very low energies ( 1 0 m eV). A cold neutron flux of 1.4 1 0 E 1 4 n /cm 2/ s is expected, with a peak in the energy spectrum at 4.2m eV. The cold neutron source reached cryogenic conditions for the first time in late 2005. The cold neutron source operates with a sub-cooled liquid Deuterium moderator at 24 K. The moderator chamber, which contains the deuterium, has been constructed from AlMg 5. The thermosiphon and moderator chamber are cooled by helium gas, in a natural convection thermosiphon loop. The helium refrigeration system utilises the Brayton cycle, and is fully insulated within a high vacuum environment. Despite the proximity of the cold neutron source to the reactor core, it has been considered as effectively separate to the reactor system, due to the design of its special vacuum containment vessel. As OPAL is a multipurpose research reactor, used for beam research as well as radiopharmaceutical production and industrial irradiations, the cold neutron source has been designed with a stand-by mode, to maximise production. The stand-by mode is a warm operating mode using only gaseous deuterium at ambient temperatures (∼ 3 00 K ), allowing for continued reactor operations whilst parts of the cold source are unavailable or in maintenance. This is the first time such a stand-by feature has been incorporated into a cold source facility

  1. Characterization of the Annular Core Research Reactor (ACRR Neutron Radiography System Imaging Plane

    Directory of Open Access Journals (Sweden)

    Kaiser Krista

    2016-01-01

    Full Text Available The Annular Core Research Reactor (ACRR at Sandia National Laboratories (SNL is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1 available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  2. Derivation of a volume-averaged neutron diffusion equation; Atomos para el desarrollo de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez R, R.; Espinosa P, G. [UAM-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico D.F. 09340 (Mexico); Morales S, Jaime B. [UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: rvr@xanum.uam.mx

    2008-07-01

    This paper presents a general theoretical analysis of the problem of neutron motion in a nuclear reactor, where large variations on neutron cross sections normally preclude the use of the classical neutron diffusion equation. A volume-averaged neutron diffusion equation is derived which includes correction terms to diffusion and nuclear reaction effects. A method is presented to determine closure-relationships for the volume-averaged neutron diffusion equation (e.g., effective neutron diffusivity). In order to describe the distribution of neutrons in a highly heterogeneous configuration, it was necessary to extend the classical neutron diffusion equation. Thus, the volume averaged diffusion equation include two corrections factor: the first correction is related with the absorption process of the neutron and the second correction is a contribution to the neutron diffusion, both parameters are related to neutron effects on the interface of a heterogeneous configuration. (Author)

  3. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors - 202

    International Nuclear Information System (INIS)

    Recktenwald, G.D.; Bronk, L.A.; Deinert, M.R.

    2010-01-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks. (authors)

  4. Neutron energy spectrum in graphite blankets of fusion reactors

    International Nuclear Information System (INIS)

    Tsechanski, A.

    1981-09-01

    Neutron flux measurements were performed in a graphite stack and compared with calculations made with a two dimensional transport computer code. In the present work it is observed that the calculated spectrum in the elastic and inelastic scattering ranges (the first collision range in both cases), is sensitive to details of the angular distribution of these neutrons. Regarding the discrepancies in the elastic scattering range it is concluded that the microscopic cross section library ENDF/B-IV overestimates the large angle scattering (back scattering) as can be seen from comparison of measured and calculated spectra. The two most important conclusions of the present work are: 1. Inelastic scattering interaction of D-T neutrons in graphite cannot be calculated without a proper account of energy-angle correlation. 2. An experimental setup supplying monoenergetic collimated D-T neutrons constitutes a sensitive although indirect means for measuring angular distributions in inelastic and elastic scattering

  5. Physical particularities of nuclear reactors using heavy moderators of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  6. Physical particularities of nuclear reactors using heavy moderators of neutrons

    International Nuclear Information System (INIS)

    Kulikov, G. G.; Shmelev, A. N.

    2016-01-01

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using "2"3"3U as a fissile nuclide and "2"3"2Th and "2"3"1Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  7. Experimental Validation of Ex-Vessel Neutron Spectrum by Means of Dosimeter Materials Activation Method

    Directory of Open Access Journals (Sweden)

    S.A. Santa

    2017-06-01

    Full Text Available Neutron spectrum information in reactor core and around of ex-vessel reactor needs to be known with a certain degree of accuracy to support the development of fuels, materials, and other components. The most common method to determine neutron spectra is by utilizing the radioactivation of dosimeter materials. This report presents the evaluation of neutron flux incident on M3dosimeter sets which were irradiated outside the reactor vessel,as well as the validation of  neutron spectrum calculation. Al capsules containing both dosimeter set covered withCd and dosimeter set without Cd cover have been irradiated during the 35th operational cycle in the M3 ex-vessel irradiation hole position207 cmfrom core centerline at the space between the reactor vessel and the safety vessel. The capsules were positioned at Z=0.0 cm of core midplane. Each dosimeter set consists of Co-Al, Sc, Fe, Np, Nb, Ni, B, and Ta. The gamma-ray spectra of irradiated dosimeter materials were measured by 63 cc HPGe solid-state detector and photo-peak spectra were analyzed using BOB75 code. The reaction rates of each dosimeter materials and its uncertainty were analyzed based on 59Co (n,g 60Co, 237Np (n,f 95Zr-103Ru,  45Sc (n,g 46Sc, 58Fe (n,g 59Fe, 181Ta (n,g 182Ta, and 58Ni (n,p58Co reactions. The measured Cd ratios indicate that neutron spectrum at the irradiated dosimeter sets was dominated by low energy neutron. The experimental result shows that the calculated neutron spectra by DORT code at the ex-vessel positions need correction, especially in the fast neutron energy region, so as to obtain reasonable unfolding result consistent with the reaction rate measurement without any exception. Using biased DORT initial spectrum, the neutron spectrum and its integral quantity were unfolded by NEUPAC code. The result shows that total neutron flux, flux above 1.0 MeV, flux above 0.1 MeV, and the displacement rate of the dosimeter set not covered with Cd were 1.75× 1012 n cm2 s-1, 1

  8. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  9. Neutron personnel dosimetry considerations for fusion reactors

    International Nuclear Information System (INIS)

    Barton, T.P.; Easterly, C.E.

    1979-07-01

    The increasing development of fusion reactor technology warrants an evaluation of personnel neutron dosimetry systems to aid in the concurrent development of a radiation protection program. For this reason, current state of knowledge neutron dosimeters have been reviewed with emphasis placed on practical utilization and the problems inherent in each type of dosimetry system. Evaluations of salient parameters such as energy response, latent image instability, and minimum detectable dose equivalent are presented for nuclear emulsion films, track etch techniques, albedo and other thermoluminescent dosimetry techniques, electrical conductivity damage effects, lyoluminescence, thermocurrent, and thermally stimulated exoelectron emission. Brief summaries of dosimetry regulatory requirements and intercomparison study results help to establish compliance and recent trends, respectively. Spectrum modeling data generated by the Neutron Physics Division of Oak Ridge National Laboratory for the Princeton Tokamak Fusion Test Reactor (TFTR) Facility have been analyzed by both International Commission on Radiological Protection fluence to dose conversion factors and an adjoint technique of radiation dosimetry, in an attempt to determine the applicability of current neutron dosimetry systems to deuterium and tritium fusion reactor leakage spectra. Based on the modeling data, a wide range of neutron energies will probably be present in the leakage spectra of the TFTR facility, and no appreciable risk of somatic injury to occupationally exposed workers is expected. The relative dose contributions due to high energy and thermal neutrons indicate that neutron dosimetry will probably not be a serious limitation in the development of fusion power

  10. Neutron spectrum in small iron pile surrounded by lead reflector

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Hayashi, S.A.; Kobayashi, Katsuhei; Matsumura, Tetsuo; Nishihara, Hiroshi.

    1978-01-01

    In order to save the quantity of sample material, a possibility to assess group constants of a reactor material through measurement and analysis of neutron spectrum in a small sample pile surrounded by a reflector of heavy moderator, was investigated. As the sample and the reflector, we chose iron and lead, respectively. Although the time dispersion in moderation of neutrons was considerably prolonged by the lead reflector, this hardly interferes with the assessment of group constants. Theoretical calculation revealed that both the neutron flux spectrum and the sensitivity coefficient of group constants in an iron sphere, 35 cm in diameter surrounded by the lead reflector, 25 cm thick, were close to those of the bare iron sphere, 108 cm in diameter. The neutron spectra in a small iron pile surrounded by a lead reflector were experimentally obtained by the time-of-flight method with an electron linear accelerator and the result was compared with the predicted values. It could be confirmed that a small sample pile surrounded by a reflector, such as lead, was as useful as a much larger bulk pile for the assessment of group constants of a reactor material. (auth.)

  11. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  12. Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.

    Science.gov (United States)

    Chiba, Satoshi; Wakabayashi, Toshio; Tachi, Yoshiaki; Takaki, Naoyuki; Terashima, Atsunori; Okumura, Shin; Yoshida, Tadashi

    2017-10-24

    Transmutation of long-lived fission products (LLFPs: 79 Se, 93 Zr, 99 Tc, 107 Pd, 129 I, and 135 Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD 2 ), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD 2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.

  13. Design of a Multi-Spectrum CANDU-based Reactor, MSCR, with 37-element fuel bundles using SERPENT code

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.; Chan, P.

    2015-01-01

    The burning of highly-enriched uranium and plutonium from dismantled nuclear warhead material in the new design nuclear power plants represents an important step towards nonproliferation. The blending of these highly enriched uranium and plutonium with with uranium dioxide from the spent fuel of CANDU reactors, or mixing it with depleted uranium would need a very long time to dispose of this material. Consequently, considering that more efficient transmutation of actinides occurs in fast neutron reactors, a novel Multi-Spectrum CANDU Reactor, has been designed on the basis of the CANDU6 reactor with two concentric regions. The simulations of the MSCR were carried out using the SERPENT code. The inner or fast neutron spectrum core is fuelled by different levels of enriched uranium oxides. The helium is used as a coolant in the fast neutron core. The outer or the thermal neutron spectrum core is fuelled with natural uranium with heavy water as both moderator and coolant. Both cores use 37- element fuel bundles. The size of the two cores and the percentage level of enrichment of the fresh fuel in the fast core were optimized according to the criticality safety of the whole reactor. The excess reactivity, the regeneration factor, radial and axial flux shapes of the MSCR reactor were calculated at different of the concentration of fissile isotope 235 U of uranium fuel at the fast neutron spectrum core. The effect of variation of the concentration of the fissile isotope on the fluxes in both cores at each energy bin has been studied. (author)

  14. Design of a Multi-Spectrum CANDU-based Reactor, MSCR, with 37-element fuel bundles using SERPENT code

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.; Chan, P., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca, E-mail: lewis-b@rmc.ca, E-mail: Paul.Chan@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada)

    2015-07-01

    The burning of highly-enriched uranium and plutonium from dismantled nuclear warhead material in the new design nuclear power plants represents an important step towards nonproliferation. The blending of these highly enriched uranium and plutonium with with uranium dioxide from the spent fuel of CANDU reactors, or mixing it with depleted uranium would need a very long time to dispose of this material. Consequently, considering that more efficient transmutation of actinides occurs in fast neutron reactors, a novel Multi-Spectrum CANDU Reactor, has been designed on the basis of the CANDU6 reactor with two concentric regions. The simulations of the MSCR were carried out using the SERPENT code. The inner or fast neutron spectrum core is fuelled by different levels of enriched uranium oxides. The helium is used as a coolant in the fast neutron core. The outer or the thermal neutron spectrum core is fuelled with natural uranium with heavy water as both moderator and coolant. Both cores use 37- element fuel bundles. The size of the two cores and the percentage level of enrichment of the fresh fuel in the fast core were optimized according to the criticality safety of the whole reactor. The excess reactivity, the regeneration factor, radial and axial flux shapes of the MSCR reactor were calculated at different of the concentration of fissile isotope {sup 235}U of uranium fuel at the fast neutron spectrum core. The effect of variation of the concentration of the fissile isotope on the fluxes in both cores at each energy bin has been studied. (author)

  15. Neutron spectrometry around the VENUS reactor using Monte Carlo simulations and Bonner spheres measurements

    International Nuclear Information System (INIS)

    Coeck, M.; Lacoste, V.; Muller, H.

    2005-01-01

    Full text: Reliable determination of neutron doses in workplaces is still an issue in the field of radiation protection. The EVIDOS project ('evaluation of individual dosimetry in mixed neutron and photon radiation fields', 5FP supported by the EC) aims to evaluate different methods for individual dosimetry in mixed neutron-photon workplaces in nuclear industry, and focuses on the neutron component. This objective cannot be reached on the basis of investigations in calibration fields only, but requires studies in representative workplaces of the nuclear industry. The VENUS reactor, a zero-power research reactor established by the SCK·CEN, was chosen as one of these workplaces. This paper presents the assessment of the neutron field near the VENUS reactor, particularly in areas near the reactor shielding and in the control room where operators are frequently present during a reactor run. From the neutron spectrum, an evaluation of H*(10) can be made. MCNPX simulations were performed to obtain a reference spectrum at the two areas of interest. Using a k eff calculation the source term was acquired which was subsequently used in a fixed source MCNPX model of the complete shielding geometry of the reactor hall. Reference spectrometry was also performed using a Bonner spheres system. The unfolding spectra were obtained using the NUBAY and GRAVEL codes. The NUBAY program, based on Bayesian parameter estimation methods, assumes a parameterized spectrum and provides posterior probability distributions for both the set of parameters and a set of integral quantities. The code GRAVEL, an iterative algorithm based on SAND-II, was used with various default spectra, among them the NUBAY solution. Bonner spheres data GRAVEL unfolding was also performed using the MCNPX spectra as an initial guess. In this paper the outcome of both calculations and measurements is compared. (author)

  16. Concept on coupled spectrum B/T (burning and/or transmutation) reactor for treatment of minor actinides by thermal and fast neutrons

    International Nuclear Information System (INIS)

    Aziz, Ferhat; Kitamoto, Asashi

    1996-01-01

    A conceptual design of B/T (burning and/or transmutation) reactor based on a modified conventional 1150 MWe-PWR system, with core consisted of two concentric regions for thermal and fast neutrons, was proposed herein for B/T treatment of MA (minor actinides). The B/T fuel considered was supposed such that MA discharged from 1 GWe-LWR was blended homogeneously with the composition of LWR fuel. In the outer region 23- Np, 241 Am and 243 Am were loaded and burned by thermal neutron, while in the inner region 244 Cm was loaded and burned mainly by fast neutron. The geometry of B/T fuel and the fuel assembly in the outer region was left in the same condition to those of standard PWR while in the inner region the B/T fuel was arranged in the hexagonal geometry, allowed high fuel to coolant volume ratio (V m /V f ), to keep the harder neutron spectrum. Two cases of the Coupled Spectrum B/T Reactor (CSR) with different (V m 1 f ) ratio in the inner region were studied, and the results for the tight lattice with (V m /V f ) = 0.5 showed that those isotopes approached the equilibrium composition after about 5 recycle period, when the CSR was operated under the reactivity swing of 2.8 % dk/k. The evaluations on the void coefficient of reactivity, the Doppler effect and the reactivity swing showed that the CSR concept has the inherent safety and can burn and/or transmute all kind of MA in a single reactor. This CSR can burn about 808 kg of MA in one recycle period of 3 years, which is equivalent to the discharged fuel from about 12 units of LWR in a year. (author)

  17. Neutron source for a reactor

    International Nuclear Information System (INIS)

    Kobayashi, Hiromasa.

    1975-01-01

    Object: To easily increase a start-up power of a reactor without irradiation in other reactors. Structure: A neutron source comprises Cf 252 , a natural antimony rod, a layer of beryllium, and a vessel of neutron source. On upper and lower portion of Cf 252 are arranged natural antimony rods, which are surrounded by the Be layer, the entirety being charged into the vessel. The Cf 252 may emit neutron, has a half life more than a period of operating cycle of the reactor and is less deteriorated even irradiated by radioactive rays while being left within the reactor. The natural antimony rod is radioactivated by neutron from Cf 252 and neutron as reactor power increases to emit γ rays. The Be absorbs γ rays to emit the neutron. The antimony rod is irradiated within the reactor. Further, since the Cf 252 is small in neutron absorption cross section, it is hard to be deteriorated even while being inserted within the reactor. (Kamimura, M.)

  18. The Neutron Spectrum in a Uranium Tube

    International Nuclear Information System (INIS)

    Johansson, E.; Jonsson, E.; Lindberg, M.; Mednis, J.

    1963-10-01

    A series of experimental and theoretical investigations on neutron spectra in lattice cells has been started at the reactor R1. This report gives the results from the first one of these cells - one with a tube of natural -uranium surrounded by heavy water. In the measurements the cell was placed in the central, vertical channel of the reactor. The neutron spectrum from a lead scatterer in the uranium tube - outer diameter 49.2 mm, inner diameter 28.3 mm - was measured with a fast chopper in the energy region 0.01 to 100 eV. Subsidiary measurements indicated that the spectrum in the beam from the lead piece corresponds to the spectrum of the angular flux integrated over all angles. This correspondence is important for the interpretation of the experimental data. The thermal part of the spectrum was found to deviate significantly from a Maxwellian. However, the deviation is not very large, and one could use a Maxwellian, at least to give a rough idea of the hardness of the spectrum. For the present tube the temperature of this Maxwellian was estimated as 90 to 100 deg C above the moderator temperature (33 deg C). In the joining region the rise of the spectrum towards the thermal part is slower than for the cell boundary spectrum, measured earlier. In the epithermal region the limited resolution of the chopper has affected the measurements at the energies of the uranium resonances. However, the shape of the spectrum on the flanks of the first resonance in 238 U (6.68 eV) has been obtained accurately. In the theoretical treatment the THERMOS code with a free gas scattering model has been used. The energy region was 3.06 - 0.00025 eV. The agreement with the measurements is good for the thermal part - possibly the theoretical spectrum is a little softer than the experimental one. In the joining region the results from THERMOS are comparatively high - probably due to the scattering model used

  19. The Neutron Spectrum in a Uranium Tube

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E; Jonsson, E; Lindberg, M; Mednis, J

    1963-10-15

    A series of experimental and theoretical investigations on neutron spectra in lattice cells has been started at the reactor R1. This report gives the results from the first one of these cells - one with a tube of natural -uranium surrounded by heavy water. In the measurements the cell was placed in the central, vertical channel of the reactor. The neutron spectrum from a lead scatterer in the uranium tube - outer diameter 49.2 mm, inner diameter 28.3 mm - was measured with a fast chopper in the energy region 0.01 to 100 eV. Subsidiary measurements indicated that the spectrum in the beam from the lead piece corresponds to the spectrum of the angular flux integrated over all angles. This correspondence is important for the interpretation of the experimental data. The thermal part of the spectrum was found to deviate significantly from a Maxwellian. However, the deviation is not very large, and one could use a Maxwellian, at least to give a rough idea of the hardness of the spectrum. For the present tube the temperature of this Maxwellian was estimated as 90 to 100 deg C above the moderator temperature (33 deg C). In the joining region the rise of the spectrum towards the thermal part is slower than for the cell boundary spectrum, measured earlier. In the epithermal region the limited resolution of the chopper has affected the measurements at the energies of the uranium resonances. However, the shape of the spectrum on the flanks of the first resonance in {sup 238}U (6.68 eV) has been obtained accurately. In the theoretical treatment the THERMOS code with a free gas scattering model has been used. The energy region was 3.06 - 0.00025 eV. The agreement with the measurements is good for the thermal part - possibly the theoretical spectrum is a little softer than the experimental one. In the joining region the results from THERMOS are comparatively high - probably due to the scattering model used.

  20. Problem Oriented Neutron-Gamma Cross Sections Libraries for WWER-440 and WWER-1000 Shielding and Reactor Vessel Dosimetry Application

    International Nuclear Information System (INIS)

    Belousov, S.; Antonov, S.; Ilieva, K.

    1997-01-01

    The 47 neutron and 20 gamma group libraries BGL-440 and BGL-1000 for the shielding and reactor vessel dosimetry application have been generated for WWER-440 and WWER-1000 by collapsing the VITAMIN-B6 library (199 neutron and 42 gamma groups on the base of ENDF/B-6). The first parts of the libraries for neutron-gamma transport calculation, BGL-440-1 (150 nuclides) and BGL-1000-1 (140 nuclides), have been generated by a modified version of SAS1X control module of the SCALE system. The appropriate zone-average neutron flux had been used for these sub-libraries collapsing. The BGL-440-2 and BGL-1000-2 sub-libraries consist of cross sections for all 120 nuclides of VITAMIN-B6, for calculation of the transport through non-reactor materials of dosimeters, capsules, specimens which may be placed in the cavity behind the reactor vessel. The neutron spectrum just beyond the RPV had been used for this collapsing. As the first test the comparative calculations of the neutron flux on/behind the WWER-1000 reactor vessel have been realised using the libraries BGL-1000 and BUGLE, intended for the American PWR reactors. The integral neutron flux values by BGL-1000 and BUGLE differ by 3% onto the vessel, and 5% behind the vessel. This result shows that the calculations of the neutron flux responses for the WWER vessel surveillance, especially in locations behind the WWER vessel have to be done by the appropriate BGL library. Key words: neutron transport, multigroup neutron cross section libraries

  1. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    Science.gov (United States)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  2. Neutron and gamma ray streaming experiments at the fast neutron source reactor 'YAYOI'

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Yanagisawa, Ichiro; Akiyama, Masatsugu; An, Shigehiro

    1979-07-01

    Neutron and gamma ray streaming experiments were performed in the ducts and cavities that were located in the heavy concrete shields of the fast neutron source reactor YAYOI of University of Tokyo. The configurations have the feature that the streaming through the ducts are occurred following the scattering in the cavity. The axes of the ducts are perpendicular to the source radiation from the core. The spectrum of the source was modified by putting a plug in the beam hole of the core. An aluminum plug and the plug which contains paraffin were used. The decay in the ducts, however, hardly depends on the source spectrum. The decay in the ducts is nearly exponential. (author)

  3. Subcritical molten salt reactor with fast/intermediate spectrum for minor actinides transmutation

    International Nuclear Information System (INIS)

    Degtyarev, Alexey M.; Feinberg, Olga S.; Kolyaskin, Oleg E.; Myasnikov, Andrey A.; Karmanov, Fedor I.; Kuznetsov, Andrey Yu.; Ponomarev, Leonid I.; Seregin, Mikhail B.; Sidorkin, Stanislav F.

    2011-01-01

    The subcritical molten-salt reactor for transmutation of Am and Cm with the fast-intermediate neutron spectrum is suggested. It is shown that ∼10 such reactor-burners is enough to support the future nuclear power based on the fast reactors as well as for the transmutation of Am and Cm accumulated in the spent fuel storages. (author)

  4. Conversion of the RB reactor neutrons by highly enriched uranium fuel and lithium deuteride

    International Nuclear Information System (INIS)

    Strugar, P.; Sotic, O.; Ninkovic, M.; Pesic, M.; Altiparmakov, D.

    1981-01-01

    A thermal-to-fast-neutron converter has been constructed at the RB reactor. The material used for the conversion of thermal neutrons is highly enriched uranium fuel of Soviet production applied in Yugoslav heavy water experimental reactors RA and RB. Calculations and preliminary measurements show that the spectrum of converted neutrons only slightly differs from that of fission neutrons. The basic characteristics of converted neutrons can be expressed by the neutron radiation dose of 800 rad (8 Gy) for 1 h of reactor operation at a power level of 1 kW. This dose is approximately 10 times higher than the neutron dose at the same place without converter. At the same time, thermal neutron and gamma radiation doses are negligible. The constructed neutron converter offers wide possibilities for applications in reactor and nuclear physics and similar disciplines, where neutron spectra of high energies are required, as well as in the domain of neutron dosimetry and biological irradiations in homogeneous fields of larger dimensions. The possibility of converting thermal reactor neutrons with energies of about 14 MeV with the aid of lithium deuteride from natural lithium has been considered too. (author)

  5. Effects of neutron spectrum and external neutron source on neutron multiplication parameters in accelerator-driven system

    International Nuclear Information System (INIS)

    Shahbunder, Hesham; Pyeon, Cheol Ho; Misawa, Tsuyoshi; Lim, Jae-Yong; Shiroya, Seiji

    2010-01-01

    The neutron multiplication parameters: neutron multiplication M, subcritical multiplication factor k s , external source efficiency φ*, play an important role for numerical assessment and reactor power evaluation of an accelerator-driven system (ADS). Those parameters can be evaluated by using the measured reaction rate distribution in the subcritical system. In this study, the experimental verification of this methodology is performed in various ADS cores; with high-energy (100 MeV) proton-tungsten source in hard and soft neutron spectra cores and 14 MeV D-T neutron source in soft spectrum core. The comparison between measured and calculated multiplication parameters reveals a maximum relative difference in the range of 6.6-13.7% that is attributed to the calculation nuclear libraries uncertainty and accuracy for energies higher than 20 MeV and also dependent on the reaction rate distribution position and count rates. The effects of different core neutron spectra and external neutron sources on the neutron multiplication parameters are discussed.

  6. Unfolding of neutron spectra from Godiva type critical assemblies

    International Nuclear Information System (INIS)

    Harvey, J.T.; Meason, J.L.; Wright, H.L.

    1976-01-01

    The results from three experiments conducted at the White Sands Missile Range Fast Burst Reactor Facility are discussed. The experiments were designed to measure the ''free-field'' neutron leakage spectrum and the neutron spectra from mildly perturbed environments. SAND-II was used to calculate the neutron spectrum utilizing several different trial input spectra for each experiment. Comparisons are made between the unfolded neutron spectrum for each trial input on the basis of the following parameters: average neutron energy (above 10 KeV), integral fluence (above 10 KeV), spectral index and the hardness parameter, phi/sub eq//phi

  7. Determination of the neutron spectrum at different locations in the Argentine RA-1 Reactor; Determinacion del espectro neutronico en distintas posiciones del reactor RA-1

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, A M; Madariaga, M R [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    1999-12-31

    Full text: It is well known that the RA-1 reactor is used to irradiate different types of materials with neutrons. The Radio dosimetry Group (which belongs to the Nuclear Regulatory Authority) uses its fast column for the design, calibration and set up of criticality dosimeters as well as for a quick assessment of the dose to workers in case of an accident. With such purpose, Au(1), Au under Cd and In(2) foils were irradiated to estimate absolute thermal, epithermal and fast neutron fluxes at the irradiation location. The accuracy of this estimation is higher when the response to the present neutron spectrum of the different materials constituting the detectors is better known. This, in turn, requires the previous knowledge of such spectrum (a detailed energy dependence of neutron flux) at the analysed location. In this work a neutronic calculation is presented at the fast irradiation location. The whole calculation was carried out following two different methodologies, and considering a power of 40 kW. The reactor and its surroundings were represented by a simplified one-dimensional model, as a concentric cylindrical set of regions. Figures are drawn representing fast and thermal fluxes (with the cut at 0.4 eV) as a function of the distance to the core centre. The neutron flux (in n/cm{sup 2}sec.eV) as a function of energy is also shown at the fast irradiation location. Values of flux (in n/cm{sup 2}.sec.eV) are also provided as a function of energy in other typical locations, as well as the equivalent integrated flux values (in n/cm{sup 2}.sec). ((1) According to the reaction Au{sup 197}(n,{gamma})Au{sup 198}, having a cross section of {sigma}{sub 0}=98.8b for thermal neutrons. (2) According to the reaction In{sup 115}(n,n`)In{sup 115m}, with a cross section of some 70 mb for neutrons with energies above 1.2MeV). (author) [Espanol] Texto completo: Como se sabe, el reactor RA1 se utiliza para irradiar con neutrones distintos tipos de materiales. El grupo de

  8. Device for detecting neutron flux in nuclear reactor. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bessho, Y; Nishizawa, Y

    1976-07-30

    The object of the invention is to ensure accuracy in the operation of the nuclear reactor by reducing the difference that results between the readings of a Traversing Incore Probe (TIP) and a Local Power Range Monitor (LPRM) when the neutron flux distribution undergoes a change. In an apparatus for detecting neutrons in a nuclear reactor, an LPRM sensor comprising a layer containing a substance capable of nuclear fission, a section filled with argon gas and a collector is constructed so as to surround a TIP within a TIP guide tube at the height of the reactor axis. In this way, the LPRM detects the average value of neutron distribution in the region surrounding the TIP, so that no great difference between the readings of both the sensors is produced even if the neutron flux distribution is changed.

  9. Semiconductor research with reactor neutrons

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1992-01-01

    Reactor neutrons play an important role for characterization of semiconductor materials as same as other advanced materials. On the other hand reactor neutrons bring about not only malignant irradiation effects called radiation damage, but also useful effects such as neutron transmutation doping and defect formation for opto-electronics. Research works on semiconductor materials with the reactor neutrons of the Kyoto University Reactor (KUR) are briefly reviewed. In this review, a stress is laid on the present author's works. (author)

  10. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  11. Influence of orientation averaging on the anisotropy of thermal neutrons scattering on water molecules

    International Nuclear Information System (INIS)

    Markovic, M. I.; Radunovic, J. B.

    1976-01-01

    Determination of spatial distribution of neutron flux in water, most frequently used moderator in thermal reactors, demands microscopic scattering kernels dependence on cosine of thermal neutrons scattering angle when solving the Boltzmann equation. Since spatial orientation of water molecules influences this dependence it is necessary to perform orientation averaging or rotation-vibrational intermediate scattering function for water molecules. The calculations described in this paper and the obtained results showed that methods of orientation averaging do not influence the anisotropy of thermal neutrons scattering on water molecules, but do influence the inelastic scattering

  12. An Evaluation of Neutron Energy Spectrum Effects in Iron Based on Molecular Dynamics Displacement Cascade Simulations

    International Nuclear Information System (INIS)

    Greenwood, L.R.; Stoller, R.E.

    1998-01-01

    The results of molecular dynamics (MD) displacement cascade simulations in bcc iron have been used to obtain effective cross sections for two measures of primary damage production: (1) the number of surviving point defects expressed as a fraction of the displacements calculated using the standard secondary displacement model of Norgett, Robinson, and Torrens (NRT), and (2) the fraction of the surviving interstitials contained in clusters that formed during the cascade event. Primary knockon atom spectra for iron obtained from the SPECTER code have been used to weight these MD-based damage production cross sections in order to obtain spectrally-averaged values for several locations in commercial fission reactors and materials test reactors. An evaluation of these results indicates that neutron energy spectrum differences between the various enviromnents do not lead to significant differences between the average primary damage formation parameters. In particular, the defect production cross sections obtained for PWR and BWR neutron spectra were not significantly different. The variation of the defect production cross sections as a function of depth into the reactor pressure vessel wall is used as a sample application of the cross sections. A slight difference between the attenuation behavior of the PWR and BWR was noted; this difference could be explained by a subtle difference in the energy dependence of the neutron spectra. Overall, the simulations support the continued use of dpa as a damage correlation parameter

  13. Measurements of the neutron energy spectra in the core of IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Martins, Fernando Prat Goncalves

    2006-01-01

    This work presents the neutron spectrum measurements in the Reactor IPEN/MB-01 using very thin activation detectors in the metallic form, in reactor core, in moderator region. An articulated device allows that the foils are inserted in the central position of reactor core, ensuring that all the foils are irradiated in the same position. The activation detectors of different materials such Au 197 , Mg 24 , Ti 4 '8, In 115 , Sc 45 and others, were selected to cover a large range of neutron spectrum. After the irradiation, the activation detectors were submitted to a spectrometry gamma by using a system of counting with high purity Germanium, to obtain the saturation activity per target nuclide. The saturation activity is one of the main data of input of unfolding code SANDBP, that through an iterative adjustment, modify the spectrum that better agree with the dataset of code input, composition mainly for measure reaction rate per target nuclide and a initial input spectrum, calculated for Hammer-Technion code, supplying a solution spectrum. (author)

  14. Neutron resonance averaging

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs

  15. Non-Fick ian law for the neutron density current

    International Nuclear Information System (INIS)

    Espinosa P, G.; Vazquez R, R.; Morales S, J.

    2008-01-01

    In this paper, a fractional wave equation for the average neutron motion in a nuclear reactor is considered. This representation covers the full spectrum of the average neutron transport behavior, i.e., Fick ian and non-Fick ian effects. The fractional diffusion model retains the main dynamic characteristics of the neutron motion. The relaxation time associated with a rapid variation in the neutron flux contains an adjustable parameter, which can be manipulated to obtain the best representation of the neutron transport phenomena. (Author)

  16. Neutronics Study of the KANUTER Space Propulsion Reactor

    International Nuclear Information System (INIS)

    Venneri, Paolo; Nam, Seung Hyun; Kim, Yonghee

    2014-01-01

    The Korea Advanced Nuclear Thermal Engine Rocket (KANUTER) has been developed at the Korea Advanced Institute of Science and Technology (KAIST). This space propulsion system is unique in that it implements a HEU fuel with a thermal spectrum system. This allows the system to be designed with a minimal amount of fissile material and an incredibly small and light system. This then allows the implementation of the system in a cluster format which enables redundancy and easy scalability for different mission requirements. This combination of low fissile content, compact size, and thermalized spectrum contribute to an interesting and novel behavior of the reactor system. The two codes were both used for the burn up calculations in order to verify their validity while the static calculations and characterization of the core were done principally with MCNPX. The KANUTER space propulsion reactor is in the process of being characterized and improved. Its basic neutronic characteristics have been studied, and its behavior over time has been identified. It has been shown that this reactor will have difficulty operating as hoped in a bimodal configuration where it is able to provide both propulsion and power throughout mission to Mars. The reason for this has been identified as Xe 135 , and it is believed that a possible solution to this issue does exist, either in the form of an appropriately designed neutron spectrum or the building in of sufficient excess reactivity

  17. Neutronics Study of the KANUTER Space Propulsion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Nam, Seung Hyun; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea Advanced Nuclear Thermal Engine Rocket (KANUTER) has been developed at the Korea Advanced Institute of Science and Technology (KAIST). This space propulsion system is unique in that it implements a HEU fuel with a thermal spectrum system. This allows the system to be designed with a minimal amount of fissile material and an incredibly small and light system. This then allows the implementation of the system in a cluster format which enables redundancy and easy scalability for different mission requirements. This combination of low fissile content, compact size, and thermalized spectrum contribute to an interesting and novel behavior of the reactor system. The two codes were both used for the burn up calculations in order to verify their validity while the static calculations and characterization of the core were done principally with MCNPX. The KANUTER space propulsion reactor is in the process of being characterized and improved. Its basic neutronic characteristics have been studied, and its behavior over time has been identified. It has been shown that this reactor will have difficulty operating as hoped in a bimodal configuration where it is able to provide both propulsion and power throughout mission to Mars. The reason for this has been identified as Xe{sup 135}, and it is believed that a possible solution to this issue does exist, either in the form of an appropriately designed neutron spectrum or the building in of sufficient excess reactivity.

  18. Neutron polarizing set-up of the Sofia IRT research reactor

    International Nuclear Information System (INIS)

    Krezhov, K.; Mikhajlova, V.; Okorokov, A.

    1990-01-01

    Neutron polarizing set-up of one of the horizontal beam tubes of the IRT-200 research reactor of the Bulgarian Institute of Nuclear Research and Nuclear Energy is presented. Neutron mirrors are extensively used in an effort to compensate the moderate reactor beam intensity by the high reflected intensity and wide-band transmittance of the mirror neutron guides. Time-to-flight technique using a slotted neutron absorbing chopper with a horizontal rotation axis has been applied to obtain the exit neutron spectra. Beam polarization and flipping ratios have been determined. Cadmium ratio in the polarized beam has been found almost 10 4 and the average polarization has been measured to be higher than 96%. 3 figs, 3 refs

  19. Dosimetry of fission neutrons in a 1-W reactor, UTR-KINKI

    CERN Document Server

    Endo, S; Yoshitake, Y

    2002-01-01

    The energy spectrum of fission neutrons in the biological irradiation field of the Kinki University reactor, UTR-KINKI, has been determined by a multi-foil activation analysis coupled with artificial neural network techniques and a Au-foil activation method. The mean neutron energy was estimated to be 1.26+-0.05 MeV from the experimentally determined spectrum. Based on this energy value and other information, the neutron dose rate was estimated to be 19.7+-1.4 cGy/hr. Since this dose rate agrees with that measured by a pair of ionizing chambers (21.4 cGy/hr), we conclude that the mean neutron energy could be estimated with reasonable accuracy in the irradiation field of UTR-KINKI. (author)

  20. Neutron energy spectra calculations in the low power research reactor

    International Nuclear Information System (INIS)

    Omar, H.; Khattab, K.; Ghazi, N.

    2011-01-01

    The neutron energy spectra have been calculated in the fuel region, inner and outer irradiation sites of the zero power research reactor using the MCNP-4C code and the combination of the WIMS-D/4 transport code for generation of group constants and the three-dimensional CITATION diffusion code for core analysis calculations. The neutron energy spectrum has been divided into three regions and compared with the proposed empirical correlations. The calculated thermal and fast neutron fluxes in the low power research reactor MNSR inner and outer irradiation sites have been compared with the measured results. Better agreements have been noticed between the calculated and measured results using the MCNP code than those obtained by the CITATION code. (author)

  1. Measurement of thermal neutron spectrum by chopper at the RA reactor in the 'Boris Kidric' Institute; Merenje termickog neutronskog spektra iz reaktora RA u Institutu 'Boris Kidric' pomocu copera

    Energy Technology Data Exchange (ETDEWEB)

    Maglic, R [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1963-04-15

    Measurement of neutron spectrum described in this paper is one of the first measurements of neutron energy distribution at the reactor by time-of-flight method performed in our Institute. Measurement was done by applying the mechanical spectrometer (chopper) designed and constructed in 1961. Spectrometer was calibrated at the end of 1962.

  2. Numeric modeling of HfO2 neutron flux sensor parameters during sensor burnup in the RBMK-1500 reactor

    International Nuclear Information System (INIS)

    Jurkevicius, A.; Remeikis, V.

    2001-01-01

    The isotopic composition of hafnium in the radial neutron flux sensor of the RBMK-1500 reactor, the rates of the neutron absorption on Hf isotopes and the neutron spectrum in the sensor were numerically modeled. The sequence SAS2 (Shielding Analysis Sequence) from the package SCALE 4.3 was used for calculations. It has been obtained that the main neutron absorber 167 Er isotope practically burns up completely at the 18 MW d/kgU burnup depth, and at that time the capture rate of thermal neutrons in erbium decreases ten-fold. The average neutron flux density was calculated 7.6*10 13 neutrons. Cm -2 S -1 in the RBMK-1500 reactor grating, when the nuclear fuel enriched with 235 U by 2.4% and with Er by 0.4% is used in a fuel assembly. When the sensor burnup reaches 28 MW d/kgU, the neutron absorption rate of 178 Hf exceeds the rate of 177 Hf. The overall neutron absorption rate in hafnium decreases 2.53 times due to the sensor burnup to 56 MW d/kgU. The corrective factors ξ d (I) at different integral flux I of the sensors were calculated. The obtained dependence ξ d (I) calculated numerically was compared to the experimental one determined by processing repeated calibration results of Hf sensors in RBMK-1500 reactors, as well as compared to the theoretical one currently used in the Ignalina NPP special mathematical algorithms. (author)

  3. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Science.gov (United States)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  4. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.C.; Barker, J.G.; Rowe, J.M.; Williams, R.E. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6100, Gaithersburg, MD 20899-6100 (United States); Gagnon, C. [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States); Lindstrom, R.M. [Scientist Emeritus, Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8395, Gaithersburg, MD 20899-8395 (United States); Ibberson, R.M.; Neumann, D.A. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6100, Gaithersburg, MD 20899-6100 (United States)

    2015-08-21

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  5. Neutron spectrum measurement by TOF

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    1982-01-01

    The TOF experiments by using various facilities are described. The steady neutron spectra in light water which contains non-1/V absorbing materials were measured by the TOF method at a LINAC facility. The results were compared with the calculations based on the Koppel-Haywood model and two others. The leakage neutron spectra from a heavy-water assembly were measured and compared with model calculations. The time-dependent energy spectra in a small graphite assembly were measured. For this measurement, a chopper system was also used. The two-region calculation explains the spectrum just after the neutron burst. The time-dependent spectra in a small Be assembly and in an assembly of coolant-moderator containing hydrogen were also measured. The calculations based on various models are in progress. The TOF experiments at the reactor-chopper facility were carried out for measuring the total cross sections of crystalline moderators, the thermal neutron total cross section of high temperature beryllium, the thermal neutron total cross sections of granular lead and high temperature liquid lead, and the angle-dependent scattering spectra. A pseudo-chopper was designed and constructed. The spectra of the neutron field for medical use were measured by the chopper-TOF system. The thermal neutron total cross sections of Fe, Zr, Nb and Mg were measured, and the results were compared with the calculations by THRUSH and UNCLE-TOM codes. The random-trigger TOF experiments were made by using Cf-252. (Kato, T.)

  6. Measurements of thermal and fast neutron fluxes at the TRIGA reactor

    International Nuclear Information System (INIS)

    Zerdin, F.; Grabovsek, Z.; Klinc, T.; Solinc, H.

    1966-01-01

    Gold foils were placed at different positions in the TRIGA reactor core and in the experimental devices. Absolute values of the thermal neutron flux at these positions were obtained by coincidence method. Preliminary fast neutron spectrum was measured by threshold detector and by 'Li 6 sandwich' detector. A short description of the applied method and obtained measurements results are included [sl

  7. Characterization of the neutronic fields obtained by means of neutron traps inside the nuclear reactor core IPEN/MB-01

    International Nuclear Information System (INIS)

    Mura, Luiz Ernesto Credidio

    2011-01-01

    This paper presents the results of the neutron flux values obtained from the deployment of a Flux Trap of neutrons in the reactor core IPEN/MB-01. We analyzed several configurations of Flux Traps deployed in the reactor core IPEN/MB-01 in order to get elected to Flux Trap configuration more efficient. To characterize the neutron spectrum were irradiated in the center of the Flux Trap activation detectors of different materials (Au, Sc, In, Ti, Ni). The respective gamma spectroscopy of these elements after irradiation with and without cadmium cover, provided the experimental values of the nuclear reaction rates (saturation activity) by the target nuclei and their uncertainties used as input to the code SANDBP who calculated the energy spectrum of neutrons in the center of the 'Flux-Trap' in 50 energy groups, using the input spectra calculated at the irradiation position (center of the 'Flux Trap') by codes for Reactor Physics. The results found an increase in the thermal neutron flux in the center of the Flux Trap configuration 203 for the standard configuration (default) of about 350% without having the need to increase the reactor power. We also made comparisons between the spectra obtained by SANDBP deployed, compared to those calculated by MCNP-4C code and XSDRNPM. The spatial characterization of the thermal neutron flux is made with activation foils in the form of an infinitely dilute bulk alloy of 1% Au and 99% Al in some internal points of the configuration 203 (axially to Flux Trap a nd adjacent radial) and the results showed a significant increase in the magnitude of their values when compared to standard rectangular configuration. (author)

  8. Neutron spectrum adjustment. The role of covariances

    International Nuclear Information System (INIS)

    Remec, I.

    1992-01-01

    Neutron spectrum adjustment method is shortly reviewed. Practical example dealing with power reactor pressure vessel exposure rates determination is analysed. Adjusted exposure rates are found only slightly affected by the covariances of measured reaction rates and activation cross sections, while the multigroup spectra covariances were found important. Approximate spectra covariance matrices, as suggested in Astm E944-89, were found useful but care is advised if they are applied in adjustments of spectra at locations without dosimetry. (author) [sl

  9. Neutronic study of a nuclear reactor of fused salts

    International Nuclear Information System (INIS)

    Garcia B, F. B.; Francois L, J. L.

    2012-10-01

    The reactors of fused salts called Molten Salt Reactor have presented a resurgence of interest in the last decade, due to they have a versatility in particular to operate, either with a thermal or fast neutrons spectrum. The most active development was by the middle of 1950 and principles of 1970 in the Oak Ridge National Laboratory. In this work some developed models are presented particularly and studied with the help of the MCNPX code, for the development of the neutronic study of this reactor, starting of proposed models and from a simple and homogeneous geometry until other more complex models and approximate to more real cases. In particular the geometry conditions and criticality of each model were analyzed, the isotopic balance, as well as the concentrations of the salts and different assigned fuel types. (Author)

  10. Radiation protection commissioning of neutron beam instruments at the OPAL research reactor

    International Nuclear Information System (INIS)

    Parkes, Alison; Saratsopoulos, John; Deura, Michael; Kenny, Pat

    2008-01-01

    The neutron beam facilities at the 20 MW OPAL Research Reactor were commissioned in 2007 and 2008. The initial suite of eight neutron beam instruments on two thermal neutron guides, two cold neutron guides and one thermal beam port located at the reactor face, together with their associated shielding were progressively installed and commissioned according to their individual project plans. Radiation surveys were systematically conducted as reactor power was raised in a step-wise manner to 20 MW in order to validate instrument shielding design and performance. The performance of each neutron guide was assessed by neutron energy spectrum and flux measurements. The activation of beam line components, decay times assessments and access procedures for Bragg Institute beam instrument scientists were established. The multiple configurations for each instrument and the influence of operating more than one instrument or beamline simultaneously were also tested. Areas of interest were the shielding around the secondary shutters, guide shield and bunker shield interfaces and monochromator doors. The shielding performance, safety interlock checks, improvements, radiation exposures and related radiation protection challenges are discussed. This paper discusses the health physics experience of commissioning the OPAL Research Reactor neutron beam facilities and describes health physics results, actions taken and lessons learned during commissioning. (author)

  11. Contributions to the study of fast neutron spectrum in the 10 keV - 3 MeV range

    International Nuclear Information System (INIS)

    Garlea, I.

    1979-01-01

    The main objective of the work presented in this thesis was to create a fast neutron spectrum corresponding to the conditions required for a reference neutron field. The reference system for the fast neutron dosimetry in reactors, which the author promoted, is referred to as ΣΣ-ITN in the books. The conditions for introducing the ΣΣ systems into the thermal columns have been determined. The original contribution consists in determining the Westcott parameters of reactions 151 Eu(n,γ) 152 Eu and 176 Lu(n,γ) 17 +H7Lu used as thermal spectrum factors. The neutron description of the spectrum in cavity ΣΣ revealed that it is a Maxwell thermal spectrum displaying a temperature of 305+-7 deg C and a very small epithermal component (phisub(epi)/phisub(thermal) =4,5.10 -4 ). Better methods for determining reaction absolute rates resulted in less errors in calculating the microscopic integral sections mediated on the ΣΣ spectrum; there are under 5% errors for the fission cross sections and between 3% and 8% errors for the activating ones. The section values determined by the author have been included into the EXFOR library (IAEA); they are considered as reference measuremtns for the nuclear data improvement program. Testing the proposed method for the TRIGA on the ΣΣ-INT system proved that the multiple foil method provides correct results for both describing the spectral shape and for obtaining absolute values of the flux. Taking into account that the ΣΣ-ITN spectrum is a rapid one, the proposed method could not be tested within the low energy thermal and epithermal domain. For testing the method on an operational reactor, the core of the VVR-S IFIN reactor was employed. Due to the spectral structure of this reactor, it was possible to test the procedure within the whole energy range. In this view, the 5/10 core channel was selected which is similar to the channel required for measurements in the TRIGA-ROMANIA reactor. The absolute spectrum values are given in

  12. Utilization of boron irradiation filters in reactor neutron activation via epithermal (n,γ) and fast neutron reactions

    International Nuclear Information System (INIS)

    Chisela, F.

    1986-01-01

    The technique of instrumental neutron activation analysis based on irradiation with reactor epithermal and fast neutrons has been described and evaluated. Important characteristics of boron neutron absorbers used to remove thermal neutrons from the reactor neutron spectrum have been examined and compared with those of cadmium. Three boron compound shields, have been designed and constructed at the BER II 5MW reactor for use in epithermal neutron activation analysis of biological materials. The major advantages offered by these filters in this application include the flexibility of varying the filter thickness, the low radioactivity induced in the filters during irradiation, ease of fabrication and the relatively low cost of the filter materials. The radiation heating due to the 10 B(n,α) 7 Li-reaction has been experimentally investigated for the filters used and the results obtained confirm the necessity for efficient cooling of these filters during irradiation. Three irradiation facilities have been characterized with respect to the neutron flux density and the flux spatial distribution. An experiment has been designed and carried out to compensate the flux inhomogeneity in two irradiation positions of the DBV facility caused by the reactor geometry. Several biological samples including well characterized reference materials have been analysed after epithermal activation and the results compared with those obtained with the classical thermal neutron activation method. Improved sensitivity of determination has been found for elements with high resonance integral to thermal neutron cross section ratios (RI/σ 0 ). The range of elements that can be determined instrumentally is extended and the time scale of analysis is considerably reduced. (orig.) [de

  13. Constitutive laws for the neutron density current

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Morales-Sandoval, Jaime B.; Vazquez-Rodriguez, Rodolfo; Espinosa-Martinez, Erick-G.

    2008-01-01

    In this technical note, a fractional wave equation for the average neutron motion in nuclear reactor is considered. This representation covers the full spectrum of the average neutron transport behavior, i.e., Fickian and non-Fickian effects. The fractional diffusion model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional exponent that can be manipulated to obtain the best representation of the neutron transport phenomena. The detrended fluctuation analysis (DFA) method is presented in this paper to estimate the fractional exponent

  14. Absolute measurement of neutron fluxes inside the reactor core

    International Nuclear Information System (INIS)

    Ajdacic, S. V.

    1964-10-01

    The subject of this work is the development and study of two methods of neutron measurements in nuclear reactors, the new method of high neutron flux measurements and the Li 6 -semiconductor neutron spectrometer. This work is presented in four sections: Section I. The introduction explains the need for neutron measurements in reactors. A critical survey is given of the existing methods of high neutron flux measurement and methods of fast neutron spectrum determination. Section II. Theoretical basis of the work of semiconductor counters and their most important characteristics are given. Section III. The main point of this section is in presenting the basis of the new method which the author developed, i.e., the long-tube method, and the results obtained by it, with particular emphasis on absolute measurement of high neutron fluxes. Advantages and limitations of this method are discussed in details at the end of this section. Section IV. A comparison of the existing semiconductor neutron spectrometers is made and their advantages and shortcomings underlined. A critical analysis of the obtained results with the Li 6 -semiconductor spectrometer with plane geometry is given. A new type of Li 6 -semiconductor spectrometer is described, its characteristics experimentally determined, and a comparison of it with a classical Li 6 -spectrometer made (author)

  15. Design of neutron 'fluse-trop' in Tehran Research Reactor

    International Nuclear Information System (INIS)

    Khalafi, H.

    1999-01-01

    In this project, a Neutron Flux-Trap intended for 5MW Tehran Research Reactor was designed. Fuel conversion from HEU to LEU in research reactors usually deprives the core from the high neutron flux. Therefore one has to look for a remedy in such situations otherwise radioisotope production, especially for those neutron demanding ones, falls down dramatically. The initiations of Neutron Flux-Trap idea comes true to face up this problem and provide an appropriate place inside or outside the core with sufficient neutron flux higher than the normal average level. To implement such a design, a number of codes and calculational tools have been used. At preliminary stage, WIMSD and EXTERMINATOR-II were used and then at later stages CITATION and MCNP codes were used for final design. Furthermore, SAND-II and ORIGEN were also employed for spectral analysis and radioisotope production calculations. Good agreements resulted with experiments and especially the case that Neutron Flux-Trap filled with ordinary water

  16. Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report

    International Nuclear Information System (INIS)

    Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.

    1980-01-01

    It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited

  17. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  18. Neutron spectrum unfolding using computer code SAIPS

    International Nuclear Information System (INIS)

    Karim, S.

    1999-01-01

    The main objective of this project was to study the neutron energy spectrum at rabbit station-1 in Pakistan Research Reactor (PARR-I). To do so, multiple foils activation method was used to get the saturated activities. The computer code SAIPS was used to unfold the neutron spectra from the measured reaction rates. Of the three built in codes in SAIPS, only SANDI and WINDOWS were used. Contribution of thermal part of the spectra was observed to be higher than the fast one. It was found that the WINDOWS gave smooth spectra while SANDII spectra have violet oscillations in the resonance region. The uncertainties in the WINDOWS results are higher than those of SANDII. The results show reasonable agreement with the published results. (author)

  19. Measurement of spectrum at the experimental 6.5 MW reactor in Vinca; Merenje spektra na eksperimentalnom 6,5 MW reaktoru u Vinci

    Energy Technology Data Exchange (ETDEWEB)

    Berovic, N; Boreli, F; Aleksic, N; Dragin, R [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1961-07-01

    Since RA reactor is supplied with horizontal experimental channels which lead directly to the core fast neutron spectrum in the channel does not differ much from the neutron spectrum in the core. Spectrum was measured by 'telescope' for detecting scattered protons. Measuring procedure together with the measured spectrum are presented in this paper.

  20. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  1. Absolute measurement of neutron fluxes inside the reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Ajdacic, S V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1964-10-15

    The subject of this work is the development and study of two methods of neutron measurements in nuclear reactors, the new method of high neutron flux measurements and the Li{sup 6}-semiconductor neutron spectrometer. This work is presented in four sections: Section I. The introduction explains the need for neutron measurements in reactors. A critical survey is given of the existing methods of high neutron flux measurement and methods of fast neutron spectrum determination. Section II. Theoretical basis of the work of semiconductor counters and their most important characteristics are given. Section III. The main point of this section is in presenting the basis of the new method which the author developed, i.e., the long-tube method, and the results obtained by it, with particular emphasis on absolute measurement of high neutron fluxes. Advantages and limitations of this method are discussed in details at the end of this section. Section IV. A comparison of the existing semiconductor neutron spectrometers is made and their advantages and shortcomings underlined. A critical analysis of the obtained results with the Li{sup 6}-semiconductor spectrometer with plane geometry is given. A new type of Li{sup 6}-semiconductor spectrometer is described, its characteristics experimentally determined, and a comparison of it with a classical Li{sup 6}-spectrometer made (author)

  2. Application of neutron noise analysis to a swimming pool research reactor

    International Nuclear Information System (INIS)

    Behringer, K.; Lescano, V.H.; Meier, F.; Phildius, J.; Winkler, H.

    1982-01-01

    This work is part of a programme of establishing practical applications of neutron noise techniques to a swimming pool research reactor and deals with two different items: (1) The identification of local boiling caused e.g. by a partial blockage of the coolant flow in a fuel element. Local boiling can easily lead to a burn-out situation. The onset of boiling can be detected by neutron noise analysis and a boiling detection system is presently under development. (2) The measurement of the time evolution of the reactivity induced by xenon after reactor shut-down by an on-line reactivity meter based on neutron noise analysis. From the data, the prompt neutron decay constant at delayed critical, the equilibrium xenon reactivity worth, and an estimate of the average steady-state power flux in the core before reactor shut-down were obtained. (author)

  3. Errors of absolute methods of reactor neutron activation analysis caused by non-1/E epithermal neutron spectra

    International Nuclear Information System (INIS)

    Erdtmann, G.

    1993-08-01

    A sufficiently accurate characterization of the neutron flux and spectrum, i.e. the determination of the thermal flux, the flux ratio and the epithermal flux spectrum shape factor, α, is a prerequisite for all types of absolute and monostandard methods of reactor neutron activation analysis. A convenient method for these measurements is the bare triple monitor method. However, the results of this method, are very imprecise, because there are high error propagation factors form the counting errors of the monitor activities. Procedures are described to calculate the errors of the flux parameters, the α-dependent cross-section ratios, and of the analytical results from the errors of the activities of the monitor isotopes. They are included in FORTRAN programs which also allow a graphical representation of the results. A great number of examples were calculated for ten different irradiation facilities in four reactors and for 28 elements. Plots of the results are presented and discussed. (orig./HP) [de

  4. First records of thermal neutrons with the spectrometer for time of flight (TOF) in the RP-10 Nuclear Reactor

    International Nuclear Information System (INIS)

    Munive, M.; Baltuano, O; Soto, C; Ravello, Y

    2002-01-01

    To obtain the first spectrum of an emergent beam of neutrons of a nuclear reactor is the main parameter of the characterization in the use of this reactor; one of ways to get this spectrum is for the technique of time of flight, TOF, which registers the time that a neutron need to cover a certain distance, associating this time then to the kinetic energy of the neutron. The kinetic study of the beam of neutrons is carried out on neutron pulses that are generated by a revolving choke called Chopper; and the analysis in the time of the detected pulses is carried out for a system MCS. Using this technique it is achieved the record of the spectra in energy, or in wavelength , of the irradiation facilities No 2 and 4, and of the exit N o 5 of the thermal column of the Nuclear Reactor RP-10 of the Nuclear Center Oscar de la Guerra RACSO, Peru (au)

  5. Neutronics in ICF reactor ''SENRI-I''

    International Nuclear Information System (INIS)

    Nakai, S.; Ido, S.; Yamanaka, C.

    1983-01-01

    The neutronic behavior of SENRI-I has been examined taking into account the effect of fuel rhoR and Pb tamper on the emitted neutron from micro-explosion. One dimensional neutron transport was calculated by ANISIN-JR code with the nuclear data GICX-40. The effect of beam ports on neutronics and neutron streaming was examined by the three dimensional Monte-Carlo calculation code MORSE-E with the same nuclear data. The emitted neutrons are softened noticeably by the increase of the compressed fuel rhoR and the thickness of Pb coating. The latter also multiplies the net neutron number from pellet. The energy deposition and temperature increase and its distribution in the blankets and structural elements were obtained as a function of neutron spectrum from pellet. As for the tritium breeding ratio, the softening of neutron has little effect because the decrease of breeding by 7 Li with softening is compensated by the increase of breeding by 6 Li. The breeding ratio was 1.678, 1.639 and 1.576 with 14 MeV neutron, rhoR=0.7, rhoR=3 and rhoR=6 respectively. Neutron shielding and streaming from beam ports were examined and the dose rate of final optical elements were calculated to estimate the life of mirror. All these results show the feasibility of SENRI-I as a long life, maintenance free ICF pulse reactor and motivate to go further investigation and design studies in detail. (author)

  6. Summary report of the consultants' meeting on neutron sources spectra for EXFOR

    International Nuclear Information System (INIS)

    Simakov, S.P.; Kaeppeler, F.

    2011-10-01

    The participants highlighted the importance of complementing the averaged cross section data already stored in EXFOR by the incident neutron energy spectra. They shared their experience on measurement and simulation of neutron fields produced at reactors and accelerators over a wide energy range. The source characteristics, format and rules needed for storage in EXFOR were discussed. The participants submitted the numerical information on spectra that will essentially increase the number of 'complete' data sets in EXFOR. The report additionally provides an overview of (i) neutron production cross sections and thick target yields missing from the EXFOR database; (ii) codes for neutron spectra calculations; (iii) informational resources for reactor, radioactive and spallation neutron sources; (iv) codes for spectrum unfolding and (v) EXFOR compilation rules for the Maxwellian averaged cross sections measured for the reactor and astrophysical applications. (author)

  7. NEUTRONIC REACTOR

    Science.gov (United States)

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  8. Advances in neutronics calculation of fast neutron reactors - Demonstration on Super-Phenix reactor

    International Nuclear Information System (INIS)

    Czernecki, Sebastien

    1998-01-01

    The fast reactor european neutronics calculations system, ERANOS, has integrated recent improvements both in nuclear data, with the use of the adjusted nuclear library ERALIB 1 from the JEF2.2 library, and calculation methods, with the use of the new european cell code, ECCO, and the deterministic code, TGV/VARIANT. This code performs full 3-D reactor calculation in the transport theory with variational method. The aim of this work is to create and validate a new calculational scheme for fast spectrum systems offering good compromise between accuracy and running time. The new scheme is based on these improvements plus a special procedure accounting for control rod heterogeneity, which uses a reactivity equivalence homogenization. The new scheme has been validated by means of experiment/calculation comparisons, using the extensive start-up program measurements performed in Super-Phenix reactor. The validation uses also recent measurements performed in the Phenix reactor. The results are very satisfactory and show a significant improvement for almost all core parameters, especially for critical mass, control rod worth and radial subassembly power distribution. A detailed analysis of the discrepancies between the old scheme and the new one for this parameter allows to understand the separate effects of methods and nuclear data on the radial power distribution shape. (author) [fr

  9. The characterization of a neutron radiography Triga reactor for NAA of chlorine in an iron oxide matrix

    International Nuclear Information System (INIS)

    Glagolenko, I.; Carney, K.; Difelici, R.; Maddison, D.; Sayer, M.; Hart, P.; Ross, J.; Kahn, S.; Swanson, R.

    2000-01-01

    An irradiation position in the 250 kW Triga reactor was characterized for instrumental neutron activation analysis of chlorine in an iron oxide matrix. Factors that affect the accuracy of the determination include variations in the reactor neutron spectrum and flux as a function of spatial position and the presence of chlorine impurities. Gold wire and foils were used to determine the neutron flux and cadmium ratio as a function of height in an air-filled irradiation tube. (author)

  10. Correction Factor Analysis Of Foil Activation And The Effect Of Neglecting The Correction On Neutron Flux And Spectrum Measurement; ANALISIS FAKTOR KOREKSI KEPING AKTIVASI DAN PENGARUH PENGABAIANNYA PADA PENGUKURAN FLUKS DAN SPEKTRUM NEUTRON

    Energy Technology Data Exchange (ETDEWEB)

    Radiyanti, Ita Budi; Hamzah, Amir; Pinem, Surian [Multipurpose Reactor Centre Indonesia, Serpong, (Indonesia)

    1996-04-15

    Foil activation method is commonly used in flux and neutron spectrum measurement in nuclear reactor and other research. The effect of the thickness, type of foil material and neutron spectrum shape on the self shielding correction and activities correction on the edges of the foil have been analyzed. Also the effect of neglecting those correction factors on neutron flux and spectrum measurement were analyzed. The calculation of the correction factor has been done by using the program which had been verified for several foils. The foils used are Au, In. Cu, Co and Dy of 0.00254 cm -0.127 cm thickness and 1.27 cm diameter. The result showed that the correction factor foils were not similar due to the variation of activation cross section and neutron spectrum shape. For the neutron spectrum in RS-2 multi purpose reactor GAS using foils of 0.00254 cm thick. The effect of neglecting correction factor on thermal flux measurement for Au, In, Co and Cu were less than -6%, for Dy was about -25%. On epithermal flux measurement for Au and In were about -60%, Co and Dy was -12% and -6%, for Cu less than -2%. The effect of neglecting correction factor on spectrum measurement was the change on the neutron flux density values along neutron energy region.

  11. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo [ed.

    1992-06-15

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10{sup {minus}5} eV to 20 MeV. Almost of the cross section data reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in order tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum.

  12. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo

    1992-06-01

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10 -5 eV to 20 MeV. Almost all the cross section data are reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in other tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum. (author)

  13. Opportunities for TRIGA reactors in neutron radiography

    International Nuclear Information System (INIS)

    Barton, John P.

    1978-01-01

    In this country the two most recent installations of TRIGA reactors have both been for neutron radiography, one at HEDL and the other at ANL. Meanwhile, a major portion of the commercial neutron radiography is performed on a TRIGA fueled reactor at Aerotest. Each of these installations has different primary objectives and some comparative observations can be drawn. Another interesting comparison is between the TRIGA reactors for neutron radiography and other small reactors that are being installed for this purpose such as the MIRENE slow pulse reactors in France, a U-233 fueled reactor for neutron radiography in India and the L88 solution reactor in Denmark. At Monsanto Laboratory, in Ohio, a subcritical reactor based on MTR-type fuel has recently been purchased for neutron radiography. Such systems, when driven by a Van de Graaff neutron source, will be compared with the standard TRIGA reactor. Future demands on TRIGA or competitive systems for neutron radiography are likely to include the pulsing capability of the reactor, and also the extraction of cold neutron beams and resonance energy beams. Experiments recently performed on the Oregon State TRIGA Reactor provide information in each of these categories. A point of particular current concern is a comparison made between the resonance energy beam intensity extracted from the edge of the TRIGA core and from a slot which penetrated to the center of the TREAT reactor. These results indicate that by using such slots on a TRIGA, resonance energy intensities could be extracted that are much higher than previously predicted. (author)

  14. Refinements in the Los Alamos model of the prompt fission neutron spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Madland, D.G., E-mail: dgm@lanl.gov; Kahler, A.C.

    2017-01-15

    This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. They are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integral cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributions in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.

  15. Measurements of neutron flux in the RA reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1961-12-01

    This report includes the following separate parts: Thermal neutron flux in the experimental channels od RA reactor; Epithermal neutron flux in the experimental channels od RA reactor; Fast neutron flux in the experimental channels od RA reactor; Thermal neutron flux in the thermal column and biological experimental channel; Neutronic measurements in the RA reactor cell; Temperature reactivity coefficient of the RA reactor; design of the device for measuring the activity of wire [sr

  16. Lowering the enrichment of the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-01-01

    An investigation of lowering the fuel enrichment of MNSR was realized. A 3-D neutronic model was developed for the analysis of the reactor. It was found that lower number of fuel elements is needed when UO 2 is used with 5.45 g of 235 U content in each fuel rod. Sensitivity of the reactor to the purity of the beryllium reflector proved to be an important factor in determining the reactor neutronics as well as the weight of loaded fuel in the core. Inherent safety features of low excess reactivity and shutdown margins are preserved and enhanced. Average thermal fluxes over different zones of the core are kept very much unchanged

  17. Lowering the enrichment of the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    Kamis, I.; Khattab, K.

    1999-01-01

    An investigation of lowering the fuel enrichment of MNSR was realized. A 3-D neutronic model was developed for the analysis of the reactor. It was found that lower number of fuel elements is needed when UO 2 is used with 5.45 g of 235 U content in each fuel rod. sensitivity of the reactor to the purity of the beryllium reflector proved to be an important factor in determining the reactor neutronics as well as the weight of loaded fuel in the core. Inherent safety feature of low excess reactivity and shutdown margins are preserved and enhanced. average thermal fluxes over different zones of the core are kept very much unchanged. (author)

  18. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  19. Testing of the IRDF-90 cross-section library in benchmark neutron spectra

    International Nuclear Information System (INIS)

    Nolthenius, H.J.; Zsolnay, E.M.; Szondi, E.J.

    1993-09-01

    The new version of the International Reactor Dosimetry File IRDF-90 (called ''Version April 1993'') has been tested by calculation of average cross-sections and their uncertainties in a coarse three energy group structure and by neutron spectrum adjustments in reference neutron spectra. This paper presents the results obtained and compares them with the corresponding ones of the old IRDF-85 and with the data of the Nuclear Data Guide for Reactor Neutron Metrology. The applicability of the new library in the field of neutron metrology is discussed. (orig.)

  20. Neutron flux uncertainty and covariances for spectrum adjustment and estimation of WWER-1000 pressure vessel fluences

    International Nuclear Information System (INIS)

    Boehmer, Bertram

    2000-01-01

    Results of estimation of the covariance matrix of the neutron spectrum in the WWER-1000 reactor cavity and pressure vessel positions are presented. Two-dimensional calculations with the discrete ordinates transport code DORT in r-theta and r-z-geometry used to determine the neutron group spectrum covariances including gross-correlations between interesting positions. The new Russian ABBN-93 data set and CONSYST code used to supply all transport calculations with group neutron data. All possible sources of uncertainties namely caused by the neutron gross sections, fission sources, geometrical dimensions and material densities considered, whereas the uncertainty of the calculation method was considered negligible in view of the available precision of Monte Carlo simulation used for more precise evaluation of the neutron fluence. (Authors)

  1. Research of isolated resonances using the average energy shift method for filtered neutron beam

    International Nuclear Information System (INIS)

    Gritzay, O.O.; Grymalo, A.K.; Kolotyi, V.V.; Mityushkin, O.O.; Venediktov, V.M.

    2010-01-01

    This work is devoted to detailed description of one of the research directions in the Neutron Physics Department (NPD), namely, to research of resonance parameters of isolated nuclear level at the filtered neutron beam on the horizontal experimental channel HEC-8 of the WWR-M reactor. Research of resonance parameters is an actual problem nowadays. This is because there are the essential differences between the resonance parameter values in the different evaluated nuclear data library (ENDL) for many nuclei. Research of resonance parameter is possible due to the set of the neutron cross sections received at the same filter, but with the slightly shifted filter average energy. The shift of the filter average energy is possible by several processes. In this work this shift is realized by neutron energy dependence on scattering angle. This method is provided by equipment.

  2. Integral activation experiment of fusion reactor materials with d-Li neutrons up to 55 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Moellendorff, Ulrich von [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Wada, Masayuki [Business Automation Co., Ltd., Tokyo (Japan)

    2000-03-01

    An integral activation experiment of fusion reactor materials with a deuteron-lithium neutron source was performed. Since the maximum energy of neutrons produced was 55 MeV, the experiment with associated analysis was one of the first attempts for extending the energy range beyond 20 MeV. The following keywords represent the present study: d-Li neutrons, 55 MeV, dosimetry, SAND-II, spectrum adjustment, LA-150, MCNP, McDeLi, IFMIF, fusion reactor materials, integral activation experiment, low-activation, F82H, vanadium-alloy, IEAF, ALARA, and sequential charged particle reaction. (author)

  3. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G., E-mail: espinosa@fisica.unam.mx; Golzarri, J. I. [Instituto de Física, Universidad Nacional Autónoma de México Circuito de la Investigación Científica, Ciudad Universitaria. México, DF (Mexico); Raya-Arredondo, R.; Cruz-Galindo, S. [Instituto Nacional de Investigaciones Nucleares (Mexico); Sajo-Bohus, L. [Universidad Simón Bolivar, Laboratorio de Física Nuclear, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plastic detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.

  4. Testing FLUKA on neutron activation of Si and Ge at nuclear research reactor using gamma spectroscopy

    Science.gov (United States)

    Bazo, J.; Rojas, J. M.; Best, S.; Bruna, R.; Endress, E.; Mendoza, P.; Poma, V.; Gago, A. M.

    2018-03-01

    Samples of two characteristic semiconductor sensor materials, silicon and germanium, have been irradiated with neutrons produced at the RP-10 Nuclear Research Reactor at 4.5 MW. Their radionuclides photon spectra have been measured with high resolution gamma spectroscopy, quantifying four radioisotopes (28Al, 29Al for Si and 75Ge and 77Ge for Ge). We have compared the radionuclides production and their emission spectrum data with Monte Carlo simulation results from FLUKA. Thus we have tested FLUKA's low energy neutron library (ENDF/B-VIIR) and decay photon scoring with respect to the activation of these semiconductors. We conclude that FLUKA is capable of predicting relative photon peak amplitudes, with gamma intensities greater than 1%, of produced radionuclides with an average uncertainty of 13%. This work allows us to estimate the corresponding systematic error on neutron activation simulation studies of these sensor materials.

  5. Introduction to neutron metrology for reactor radiation damage

    International Nuclear Information System (INIS)

    Alberman, A.; Genthon, J.P.; Wright, S.B.; Zijp, W.L.

    1977-01-01

    This document, prepared by members of the Irradiation Damage Subgroup of the Euratom Working Group on Reactor Dosimetry (EWGRD) describes the background of the procedures for determining irradiation parameters which are of interest in radiation damage experiments. The first two chapters outline the concept of damage functions and damge models. The next two chapters give information on methods to determine neutron fluences and neutron spectra. The fifth chapter gives a review of correlation data available for graphite and steels. The last chapter gives guidance how to report the relevant irradiation parameters. Attention is given to the role of the neutron spectrum in deriving values for damage fluence, energy transferred to the lattice, and number of displacements. A suggested list to report data relevant to the irradiation, the instrumentation and the testing of material is included

  6. Influence of coated particle structure in thermal neutron spectrum energy range

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U; Teuchert, E

    1971-02-15

    The heterogenity due to lumping the fuel in coated particles affects the thermal neutron spectrum. A calculation model is discussed which, apart from some simplifying assumptions about the statistical distribution, allows a rigorous computation of effective cross sections for all nuclides of the heterogeneous medium. It is based on an exact computation of the neutron penetration probability through coating and kernel. The model is incorporated in a THERMOS-code providing a double heterogeneous cell calculation, which can be repeated automatically at different time steps in the depletion code system MAFIA-V.S.O.P.. A discussion of the effects of the coated particle structure is given by a comparison of calculations for heterogeneous and homogeneous fuel zones in pebble bed reactor elements. This is performed for enriched UO{sub 2} fuel and for a ThO{sub 2}-PuO{sub 2} mixture in the grains. Depending on the energy dependent total sigmas in the kernels the changes of the cross sections are ranging from 0.1% up to 45%. The influence on the spectrum averaged sigmas of the nuclides in the fresh UO{sub 2} fuel is lower than 1%. For the emerging {sup 240}Pu it increases up to 3.3% during irradiation. For the ThO{sub 2}-PuO{sub 2} fuel the averaged sigmas of the isotopes vary from 0.5% to 5.7% depending on the state of irradiation. Correspondingly there is an influence on the plutonium isotopic composition, on breeding ratios, and on the tilt of k{sub eff} during burnup which will be discussed in detail.

  7. Neutron spectrometric evaluations in the Argentine research reactor RA-1

    International Nuclear Information System (INIS)

    Kunst, J.J.; Papadopulos, S.B.; Gregori, B.N.; Cruzate, J.A.

    1998-01-01

    Full text: The determination of the quantities dose equivalent H * (10) and personal dose equivalent Hp(10) in mixed field (n,γ) needs the knowledge of the related spectrum. In order to fulfill this aim spectrometer system has been built based on the combination of polyethylene spheres of different diameters (Bonner Spheres System-BSS) and a He 3 proportional counter detector sensitive to thermal neutrons. The detector is located in the geometrical centre of each of the spheres and has an associated electronics with a charge preamplifier, an amplifier and a multichannel system that allows the outgoing spectrum analysis. In order to determine the neutron spectrum a deconvolution method is applied based on the LOUHI82 code. In this work are shown the spectra and the related values of H * (10) that have been got in five places of the reactor and in the command room with the BSS. (author) [es

  8. Experimental measurements and theoretical simulations for neutron flux in self-serve facility of Dhruva reactor

    International Nuclear Information System (INIS)

    Rana, Y.S.; Mishra, Abhishek; Singh, Tej

    2016-06-01

    Dhruva is a 100 MW th tank type research reactor with natural metallic uranium as fuel and heavy water as coolant, moderator and reflector. The reactor is utilized for production of a large variety of radioisotopes for fulfilling growing demands of various applications in industrial, agricultural and medicinal sectors, and neutron beam research in condensed matter physics. The core consists of two on-power tray rods for radioisotope production and fifteen experimental beam holes for neutron beam research. Recently, a self-serve facility has also been commissioned in one of the through tubes in the reactor for carrying out short term irradiations. To get accurate information about neutron flux spectrum, measurements have been carried out in self-serve facility of Dhruva reactor. The present report describes measurement method, analysis technique and results. Theoretical estimations for neutron flux were also carried out and a comparison between theoretical and experimental results is made. (author)

  9. Analytical treatment of space-energy neutron distribution in reactor cell

    International Nuclear Information System (INIS)

    Stefanovic, D.

    1971-01-01

    Application of the analytical procedure described in this paper for study of fission spectrum evolution in the reactor cell gave results which enable complete understanding of neutron slowing down and transport p recesses and can be used for testing practical approximative methods. Heterogeneous system made of natural uranium and heavy water was used as an example

  10. About neutron capture therapy method development at WWR-SM reactor in institute of Nuclear Physics of Uzbekistan Academy of Sciences

    International Nuclear Information System (INIS)

    Abdullaeva, G.A.; Baytelesov, S.A.; Dosimbaev, A.A.; Koblik, Yu.N.; Gritsay, O.O.

    2006-01-01

    Full text: Neutron capture therapy (NCT) is developing method of swellings treatment, on which specialists set one's serious hopes, as at its realization the practical possibilities of the effect on any swellings open. The essence of method is simple and lies in the fact that to the swelling enter preparation containing boron or gadolinium, which one have a large capture cross-section of the thermal and slow neutrons. Then the swelling is irradiated once with the slow (epithermal) neutron beam with fluency about 10 9 neutrons /sm 2 s for a short time and single. As a result of thermal neutrons capture by the boron (or gadolinium) nuclei secondary radiation which affecting swelling cells is emitted. NCT of oncologic diseases makes the specific demands to physical parameters of neutron beams. Now research reactors are often used for NCT. However, research reactor WWR-SM (INP, Uzbekistan AS, Tashkent) doesn't provide with the epithermal neutron beams and to develop this technique the reactor, first of all, needs for obtaining the epithermal neutron beams with energy spectrum in range from 1 eV up to 10 keV and with intensity ∼ 10 9 neutron /sm 2 s. Practically it is connected with upgrade of at least one of existed reactor channels, namely with equipping with the special equipment (filters), forming from the reactor spectrum the beam of necessary energy neutrons. It requires realization of preliminary model calculations, including calculations of capture cross-sections, of filters types and their geometrical parameters on the basis of optimal selected materials. Such calculations, as a rule, are carried out on the basis of Monte-Carlo method and designed software for calculation of nuclear reactor physical and technical characteristics [1]. In this work the calculation results of devices variants and problems discussion, related with possibility of WWR-SM reactor using for NCT are presented. (author)

  11. Neutronic of heterogenous gas cooled reactors

    International Nuclear Information System (INIS)

    Maturana, Roberto Hernan

    2008-01-01

    At present, one of the main technical features of the advanced gas cooled reactor under development is its fuel element concept, which implies a neutronic homogeneous design, thus requiring higher enrichment compared with present commercial nuclear power plants.In this work a neutronic heterogeneous gas cooled reactor design is analyzed by studying the neutronic design of the Advanced Gas cooled Reactor (AGR), a low enrichment, gas cooled and graphite moderated nuclear power plant.A search of merit figures (some neutronic parameter, characteristic dimension, or a mixture of both) which are important and have been optimized during the reactor design stage is been done, to aim to comprise how a gas heterogeneous reactor is been design, given that semi-infinity arrangement criteria of rods in LWRs and clusters in HWRs can t be applied for a solid moderator and a gas refrigerator.The WIMS code for neutronic cell calculations is been utilized to model the AGR fuel cell and to calculate neutronic parameters such as the multiplication factor and the pick factor, as function of the fuel burnup.Also calculation is been done for various nucleus characteristic dimensions values (fuel pin radius, fuel channel pitch) and neutronic parameters (such as fuel enrichment), around the design established parameters values.A fuel cycle cost analysis is carried out according to the reactor in study, and the enrichment effect over it is been studied.Finally, a thermal stability analysis is been done, in subcritical condition and at power level, to study this reactor characteristic reactivity coefficients.Present results shows (considering the approximation used) a first set of neutronic design figures of merit consistent with the AGR design. [es

  12. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    Energy Technology Data Exchange (ETDEWEB)

    Fhager, V

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  13. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    International Nuclear Information System (INIS)

    Fhager, V.

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  14. Measurements of europium-152 depth profile of stone embankments exposed the Nagasaki atomic bomb for neutron spectrum analysis

    International Nuclear Information System (INIS)

    Tatsumi-Miyajima, Junko; Shimasaki, Tatsuya; Okajima, Shunzo; Takada, Jitsuya; Yoshida, Masahiro; Takao, Hideaki; Okumura, Yutaka; Nakazawa, Masaharu.

    1990-01-01

    Quantitative measurement of neutron-induced radionuclide of 152 Eu in rocks near the hypocenter (ground center of the atomic bomb explosion) in Nagasaki was performed to obtain the depth profiles and calculate the neutron energy spectrum. Core samples were drilled and taken from the stone embankments on both sides of river within a radius of 500 m from the hypocenter. After cutting each core into about 27 mm-thick sections, each section was measured its gamma-ray spectrum with a pure germanium semiconductor detector and analyzed a content of natural europium by the activation method. The highest value 8.0 x 10 -2 Bq/μg of 152 Eu at the time of the blast was obtained from the surface plates of rock cores collected near the hypocenter. The surface activity of cores was reduced with increasing the slant distances from the hypocenter. The slopes of the depth profiles were similar among samples taken from the same location. In order to analyze the depth profile of 152 Eu activity in rock andesite, experiments using a fast neutron reactor and thermal neutron reactor were carried out. Comparing the measurements on the A-bomb exposure rock with the simulated results at the reactors, among the experiments, the depth profile using the neutron moderator of 10 mm polyethylene was closed to that obtained from the A-bomb exposed samples. The experiment of thermal neutron incidence only could not reproduce the profiles from the A-bomb exposed samples. This fact indicates that the depth profiles of 152 Eu in rock exposed to the A-bomb include valuable information concerning the neutron spectrum and intensity. (author)

  15. Measurements of the neutron energy spectra in the core of IPEN/MB-01 reactor; Medida do espectro de energia dos neutrons no nucleo do reator IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Fernando Prat Goncalves

    2006-07-01

    This work presents the neutron spectrum measurements in the Reactor IPEN/MB-01 using very thin activation detectors in the metallic form, in reactor core, in moderator region. An articulated device allows that the foils are inserted in the central position of reactor core, ensuring that all the foils are irradiated in the same position. The activation detectors of different materials such Au{sup 197}, Mg{sup 24}, Ti{sup 4}'8, In{sup 115}, Sc{sup 45} and others, were selected to cover a large range of neutron spectrum. After the irradiation, the activation detectors were submitted to a spectrometry gamma by using a system of counting with high purity Germanium, to obtain the saturation activity per target nuclide. The saturation activity is one of the main data of input of unfolding code SANDBP, that through an iterative adjustment, modify the spectrum that better agree with the dataset of code input, composition mainly for measure reaction rate per target nuclide and a initial input spectrum, calculated for Hammer-Technion code, supplying a solution spectrum. (author)

  16. Measurements of the neutron energy spectra in the core of IPEN/MB-01 reactor; Medida do espectro de energia dos neutrons no nucleo do reator IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Fernando Prat Goncalves

    2006-07-01

    This work presents the neutron spectrum measurements in the Reactor IPEN/MB-01 using very thin activation detectors in the metallic form, in reactor core, in moderator region. An articulated device allows that the foils are inserted in the central position of reactor core, ensuring that all the foils are irradiated in the same position. The activation detectors of different materials such Au{sup 197}, Mg{sup 24}, Ti{sup 4}'8, In{sup 115}, Sc{sup 45} and others, were selected to cover a large range of neutron spectrum. After the irradiation, the activation detectors were submitted to a spectrometry gamma by using a system of counting with high purity Germanium, to obtain the saturation activity per target nuclide. The saturation activity is one of the main data of input of unfolding code SANDBP, that through an iterative adjustment, modify the spectrum that better agree with the dataset of code input, composition mainly for measure reaction rate per target nuclide and a initial input spectrum, calculated for Hammer-Technion code, supplying a solution spectrum. (author)

  17. Non-Fick ian law for the neutron density current; Atomos para el desarrollo de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Vazquez R, R. [UAM-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico D.F. 09340 (Mexico); Morales S, J. [UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: gepe@xanum.uam.mx

    2008-07-01

    In this paper, a fractional wave equation for the average neutron motion in a nuclear reactor is considered. This representation covers the full spectrum of the average neutron transport behavior, i.e., Fick ian and non-Fick ian effects. The fractional diffusion model retains the main dynamic characteristics of the neutron motion. The relaxation time associated with a rapid variation in the neutron flux contains an adjustable parameter, which can be manipulated to obtain the best representation of the neutron transport phenomena. (Author)

  18. Measurement of the epithermal neutron flux of the Argonauta reactor by the Sandwich method

    International Nuclear Information System (INIS)

    Nascimento, H.M.

    1973-01-01

    A common method of obtaining information about the neutron spectrum in the energy range of 1 eV to a few keV is by using resonance sandwich detectors. A sandwich detector is usually made up of three foils placed one on top of the other, each having the same thickness and being made of the same material which has a pronounced absorption resonance. To make an adequate evaluation, the sandwich method was compared with one using an isolated detector. The results obtained from approximate theoretical calculations were checked experimentally, using In, Au and Mn foils, in an isotropic 1/E flux in the Argonaut Reactor at I.E.N. As practical application of this method, the deviation from a 1/E spectrum of the epithermal neutron flux in the core and external graphite reflector of the Argonaut Reactor has been measured with the sandwich foils previously calibrated in a 1/E spectrum. (author)

  19. Activation method for measurement of neutron spectrum parameters

    International Nuclear Information System (INIS)

    Efimov, B.V.; Demidov, A.M.; Ionov, V.S.; Konjaev, S.I.; Marin, S.V.; Bryzgalov, V.I.

    2007-01-01

    Experimental researches of spectrum parameters of neutrons at nuclear installations RRC KI are submitted. The installations have different designs of the cores, reflector, parameters and types of fuel elements. Measurements were carried out with use of the technique developed in RRC KI for irradiation resonance detectors UKD. The arrangement of detectors in the cores ensured possibility of measurement of neutron spectra with distinguished values of parameters. The spectrum parameters which are introduced by parametrical representation of a neutrons spectrum in the form corresponding to formalism Westcott. On experimental data were determinate absolute values of density neutron flux (DNF) in thermal and epithermal area of a spectrum (F t , f epi ), empirical dependence of temperature of neutron gas (Tn) on parameter of a rigidity of a spectrum (z), density neutron flux in transitional energy area of the spectrum. Dependences of spectral indexes of nuclides (UDy/UX), included in UKD, from a rigidity z and-or temperatures of neutron gas Tn are obtained.B Tools of mathematical processing of results are used for activation data and estimation of parameters of a spectrum (F t , f epi , z, Tn, UDy/UX). In the paper are presented some results of researches of neutron spectrum parameters of the nuclear installations (Authors)

  20. Teratogenic and embryolethal effects in mice of fission-spectrum neutrons and γ-rays

    International Nuclear Information System (INIS)

    Cairnie, A.B.; Grahn, D.; Rayburn, H.B.; Williamson, F.S.; Brown, R.J.

    1974-01-01

    Fission-spectrum neutrons from the Janus reactor at Argonne National Laboratory were compared with γ-rays in terms of their relative biological effectiveness (RBE) for embryolethal and teratogenic effects in mice. No evidence was found of any processes that were abnormally sensitive to neutrons. The RBE for killing embryos and producing abnormal embryos or specific abnormalities was between 2 and 3. This is close to the values found in other systems for processes involving cell killing. (U.S.)

  1. Neutronic study of a nuclear reactor of fused salts; Estudio neutronico de un reactor nuclear de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia B, F. B.; Francois L, J. L., E-mail: faviolabelen@gmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The reactors of fused salts called Molten Salt Reactor have presented a resurgence of interest in the last decade, due to they have a versatility in particular to operate, either with a thermal or fast neutrons spectrum. The most active development was by the middle of 1950 and principles of 1970 in the Oak Ridge National Laboratory. In this work some developed models are presented particularly and studied with the help of the MCNPX code, for the development of the neutronic study of this reactor, starting of proposed models and from a simple and homogeneous geometry until other more complex models and approximate to more real cases. In particular the geometry conditions and criticality of each model were analyzed, the isotopic balance, as well as the concentrations of the salts and different assigned fuel types. (Author)

  2. Simulation study on the cold neutron guides in China advanced research reactor

    International Nuclear Information System (INIS)

    Guo Liping; Yang Tonghua; Wang Hongli; Sun Kai; Zhao Zhixiang

    2003-01-01

    The designs of the two cold neutron guides, CNG1 and CNG2, to be built in China advanced research reactor (CARR) are studied with Monte-Carlo simulation technique. The neutron flux density at the exit of the both guides can reach above 1 x10 9 cm -2 ·s -1 under the assumed flux spectrum of the cold neutron source. The transmission efficiency is 50% and 42%, and the maximum divergence is about 2.2 degree and 1.9 degree, respectively for CNG1 and CNG2. Neutron distribution along horizontal direction is quite uniform for both guides, with maximum fluctuation of less than 3%. Gravity can affect neutron distribution along vertical direction considerably

  3. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  4. Physics of high-temperature reactors

    International Nuclear Information System (INIS)

    Massimo, L.

    1976-01-01

    The subject is covered in chapters entitled: general description of the HTR core; general considerations about reactor physics; neutron cross-sections; basic aspects of transport and diffusion theory; methods for the solution of the diffusion equation; slowing-down and thermalization in graphite; resonance absorption; spectrum calculations and cross-section averaging; burn-up; core design; fuel management and cost calculations; temperature coefficient; core dynamics and accident analysis; reactor control; peculiarities of HTR physics; analysis of calculational accuracy; sequence of reactor design calculations. (U.K.)

  5. Neutron metrology in the L.F.R. Neutron flux density spectrum in the inner graphite reflector of the L.F.R

    International Nuclear Information System (INIS)

    Zsolnay, E.M.

    1979-01-01

    The neutron spectrum in the vertical central plug of the Low Flux Reactor has been determined experimentally. Sets of activation and fission detectors have been irradiated, and the neutron spectrum has been unfolded with aid of 3 special computer programs SAND-II, RFSP-JUEL and CRYSTAL BALL. Using these 3 programs calculations are made on the improvement ratio, which is defined as the ratio of the variance of the input flux density to that of the output flux density. A Monte Carlo error analysis is made to examine the quality of the 3 solution spectra. The results obtained with the different computer codes were compared, and showed a general agreement. The experiment confirmed that the shape of the spectrum in the intermediate energy region is near the 1/E pattern. (author)

  6. Evaluation of neutron flux in the WWR-SM reactor channel and in the irradiating zone of U-150 cyclotron

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Zinov'ev, V.G.; Sadikova, Z.O.; Salimov, M.I.

    2006-01-01

    Full text: For effective work of a reactor, and correct planning of experiments related to the reactor irradiation of various materials it is required to control a neutron flux in the given irradiation point for a long irradiation period. For realization of research works on topazes ennobling under irradiation by reactor neutrons as well as by secondary neutrons produced in a cyclotron it is necessary to know the total neutron flux and spectra. To resolve the problem a technique for registration of neutrons with different energy and calculation of a neutrons spectrum in the given irradiation points in reactor channels and in cyclotron behind the nickel target has been developed. Neutron flux density and energy spectra were monitored by use of the following nuclear reactions: 59 Co(n,γ) 60 Co, 197 Au(n,γ) 198 Au, 58 Ni(n,p) 58 Co, 24 Mg(n,p) 24 Na, 48 Ti(n,p) 48 Sc, 46 Ti(n,p) 46 Sc, 54 Fe(n,p) 54 Mn, 89 Y(n,2n) 88 Y, 60 Ni(np) 60 Co. Gamma spectrometer composed of HPGe detector (Rel. Eff. - 15%) and Digital Spectra Analyzer DSA-1000 (Canberra Ind., USA) was used to measure gamma activity of irradiated samples. Acquired gamma spectra were processed by means of Genie 2000 standard software package. The σ(E) functions and neutron spectra were calculated by using the least squares method and approximating the tabular and experimental data with power polynomials. The developed technique was applied for the adjustment of the topazes irradiation regimes in the reactor core and under secondary neutrons flux from a nickel target in the cyclotron. The given technique allows to calculate a logarithmic spectrum of neutrons in a energy range from 0,025 eV up to 12 MeV with the uncertainty of about 10 %. (author)

  7. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett

    2001-01-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10 14 n/cm 2 /sec and a liquid D 2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  8. MADNIX a code to calculate prompt fission neutron spectra and average prompt neutron multiplicities

    International Nuclear Information System (INIS)

    Merchant, A.C.

    1986-03-01

    A code has been written and tested on the CDC Cyber-170 to calculate the prompt fission neutron spectrum, N(E), as a function of both the fissioning nucleus and its excitation energy. In this note a brief description of the underlying physical principles involved and a detailed explanation of the required input data (together with a sample output for the fission of 235 U induced by 14 MeV neutrons) are presented. Weisskopf's standard nuclear evaporation theory provides the basis for the calculation. Two important refinements are that the distribution of fission-fragment residual nuclear temperature and the cooling of the fragments as neutrons are emitted approximately taken into account, and also the energy dependence of the cross section for the inverse process of compound nucleus formation is included. This approach is then used to calculate the average number of prompt neutrons emitted per fission, v-bar p . At high excitation energies, where fission is still possible after neutron emission, the consequences of the competition between first, second and third chance fission on N(E) and v-bar p are calculated. Excellent agreement with all the examples given in the original work of Madland and Nix is obtained. (author) [pt

  9. Reactor beam calculations to determine optimum delivery of epithermal neutrons for treatment of brain tumors

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Nigg, D.W.; Capala, J.

    1997-01-01

    Studies were performed to assess theoretical tumor control probability (TCP) for brain-tumor treatment with boron neutron capture therapy (BNCT) using epithermal neutron sources from reactors. The existing epithermal-neutron beams at the Brookhaven Medical Research Reactor Facility (BMRR), the Petten High Flux Reactor Facility (HWR) and the Finnish Research Reactor 1 (FIR1) have been analyzed and characterized using common analytical and measurement methods allowing for this inter-comparison. Each of these three facilities is unique and each offers an advantage in some aspect of BNCT, but none of these existing facilities excel in all neutron-beam attributes as related to BNCT. A comparison is therefore also shown for a near-optimum reactor beam which does not currently exist but which would be feasible with existing technology. This hypothetical beam is designated BNCT-1 and has a spectrum similar to the FIR-1, the mono-directionality of the HFR and the intensity of the BMRR. A beam very similar to the BNCT-1 could perhaps be achieved with modification of the BMRR, HFR, or FIR, and could certainly be realized in a new facility with today's technology

  10. Influence of fuel assembly loading pattern and fuel burnups upon leakage neutron flux spectra from light water reactor core (Joint research)

    International Nuclear Information System (INIS)

    Kojima, Kensuke; Okumura, Keisuke; Kosako, Kazuaki; Torii, Kazutaka

    2016-01-01

    At the decommissioning of light water reactors (LWRs), it is important to evaluate an amount of radioactivity in the ex-core structures such as a reactor containment vessel, radiation shieldings, and so on. It is thought that the leakage neutron spectra in these radioactivation regions, which strongly affect the induced radioactivity, would be changed by different reactor core configurations such as fuel assembly loading pattern and fuel burnups. This study was intended to evaluate these effects. For this purpose, firstly, partial neutron currents on the core surfaces were calculated for some core configurations. Then, the leakage neutron flux spectra in major radioactivation regions were calculated based on the provided currents. Finally, influence of the core configurations upon the neutron flux spectra was evaluated. As a result, it has been found that the influence is small on the spectrum shapes of neutron fluxes. However, it is necessary to pay attention to the facts that intensities of the leakage neutron fluxes are changed by the configurations and that intensities and spectrum shapes of the leakage neutron fluxes are changed depending on the angular direction around the core. (author)

  11. Determination of the Neutron Flux in the Reactor Zones with the Strong Neutron Absorption and Leakage

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2004-11-01

    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the application of the SCALE-4.4a code system where the Dancoff factors are determined by the VEGA2DAN code. Two main parts of the experimental methodology are measurement of the activity of irradiated foils and determination of the averaged neutron absorption cross-section in the foils by the SCALE-4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114. (author)

  12. Neutron spectrum effects on TRU recycling in Pb-Bi cooled fast reactor core

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Kim, Jong Kyung; Park, Won Seok

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction

  13. Fast neutron spectroscopy by gas proton-recoil methods at the light water reactor pressure vessel simulator

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1980-10-01

    Fast neutron spectrum measurements were made in a Light Water Reactor (LWR) Pressure Vessel Simulator (PVS) to provide neutron spectral definition required to appropriately perform and interpret neutron dosimetry measurements related to fast neutron damage in LWR-PV steels. Proton-recoil proportional counter methods using hydrogen and methane gas-filled detectors were applied to obtain the proton spectra from which the neutron spectra were derived. Cylindrical and spherical geometry detectors were used to cover the neutron energy range between 50 keV and 2 MeV. Results show that the neutron spectra shift in energy distribution toward lower energy between the front and back of a PVS. The relative neutron flux densities increase in this energy range with increasing thickness of the steel. Neutron spectrum fine structure shapes and changes are observed. These results should assist in the generation of more accurate effective cross sections and fluences for use in LWR-PV fast neutron dosimetry and materials damage analyses

  14. Calculations of neutron spectra after neutron-neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2004-09-01

    A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  15. Effects of space-dependent cross sections on core physics parameters for compact fast spectrum space power reactors

    International Nuclear Information System (INIS)

    Lell, R.M.; Hanan, N.A.

    1987-01-01

    Effects of multigroup neutron cross section generation procedures on core physics parameters for compact fast spectrum reactors have been examined. Homogeneous and space-dependent multigroup cross section sets were generated in 11 and 27 groups for a representative fast reactor core. These cross sections were used to compute various reactor physics parameters for the reference core. Coarse group structure and neglect of space-dependence in the generation procedure resulted in inaccurate computations of reactor flux and power distributions and in significant errors regarding estimates of core reactivity and control system worth. Delayed neutron fraction was insensitive to cross section treatment, and computed reactivity coefficients were only slightly sensitive. However, neutron lifetime was found to be very sensitive to cross section treatment. Deficiencies in multigroup cross sections are reflected in core nuclear design and, consequently, in system mechanical design

  16. New fission-neutron-spectrum representation for ENDF

    International Nuclear Information System (INIS)

    Madland, D.G.

    1982-04-01

    A new representation of the prompt fission neutron spectrum is proposed for use in the Evaluated Nuclear Data File (ENDF). The proposal is made because a new theory exists by which the spectrum can be accurately predicted as a function of the fissioning nucleus and its excitation energy. Thus, prompt fission neutron spectra can be calculated for cases where no measurements exist or where measurements are not possible. The mathematical formalism necessary for application of the new theory within ENDF is presented and discussed for neutron-induced fission and spontaneous fission. In the case of neutron-induced fission, expressions are given for the first-chance, second-chance, third-chance, and fourth-chance fission components of the spectrum together with that for the total spectrum. An ENDF format is proposed for the new fission spectrum representation, and an example of the use of the format is given

  17. Measurement of cross sections of threshold detectors with spectrum average technique

    International Nuclear Information System (INIS)

    Agus, Y.; Celenk, I.; Oezmen, A.

    2004-01-01

    Cross sections of the reactions 103 Rh(n, n') 103m Rh, 115 In(n, n') 115m In, 232 Th(n, f), 47 Ti(n, p) 47 Sc, 64 Zn(n, p) 64 Cu, 58 Ni(n, p) 58 Co, 54 Fe(n, p) 54 Mn, 46 Ti(n, p) 46 Sc, 27 Al(n, p) 27 Mg, 56 Fe(n, p) 56 Mn, 24 Mg(n, p) 24 Na, 59 Co(n, α) 56 Mn, 27 Al(n, α) 24 Na and 48 Ti(n, p) 48 Sc were measured with average neutron energies above effective threshold by using the activation method through usage of spectrum average technique in an irradiation system where there are three equivalent Am/Be sources, each of which has 592 GBq activity. The cross sections were determined with reference to the fast neutron fission cross section of 238 U. The measured values and published values are generally in agreement. (orig.)

  18. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    GAVRON, VICTOR I. [Los Alamos National Laboratory; HILL, TONY S. [Los Alamos National Laboratory; PITCHER, ERIC J. [Los Alamos National Laboratory; TOVESSON, FREDERIK K. [Los Alamos National Laboratory

    2007-01-09

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number of minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture

  19. Intermediate neutron spectrum problems and the intermediate neutron spectrum experiment

    International Nuclear Information System (INIS)

    Jaegers, P.J.; Sanchez, R.G.

    1996-01-01

    Criticality benchmark data for intermediate energy spectrum systems does not exist. These systems are dominated by scattering and fission events induced by neutrons with energies between 1 eV and 1 MeV. Nuclear data uncertainties have been reported for such systems which can not be resolved without benchmark critical experiments. Intermediate energy spectrum systems have been proposed for the geological disposition of surplus fissile materials. Without the proper benchmarking of the nuclear data in the intermediate energy spectrum, adequate criticality safety margins can not be guaranteed. The Zeus critical experiment now under construction will provide this necessary benchmark data

  20. Neutron noise in nuclear reactors

    International Nuclear Information System (INIS)

    Blaquiere, A.; Pachowska, R.

    1961-06-01

    The power of a nuclear reactor, in the operating conditions, presents fluctuations due to various causes. This random behaviour can be included in the study of 'noises'. Among other sources of noise, we analyse hereafter the fluctuations due: a) to the discontinuous emissions of neutrons from an independent source; b) to the multiplication of neutrons inside the reactor. The method which we present makes use of the analogies between the rules governing a nuclear reactor in operation and a number of radio-electrical systems, in particular the feed-back loops. The reactor can be characterized by its 'passing band' and is described as a system submitted to a sequence of random pulses. In non linear operating condition, the effect of neutron noise is defined by means of a non-linear functional, this theory is thus related to previous works the references of which are given at the end of the present report. This leads us in particular in the case of nuclear reactors to some results given by A. Blaquiere in the case of radio-electrical loops. (author) [fr

  1. Neutrons characterization of the nuclear reactor Ian-R1 of Colombia; Caracterizacion de los neutrones del reactor nuclear IAN-R1 de Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez P, L. X.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Carretera Central del Norte Km. 1, Via Paipa, 150003 Tunja, Boyaca (Colombia); Vega C, H. R., E-mail: s.agustin.martinez@uptc.edu.co [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    By means of Monte Carlo methods, with the code MCNPX, the neutron characteristics of the research nuclear reactor Ian-R1 of Colombia, in power off but with the neutrons source in their start position, have been valued. The neutrons spectra, the total flow and their average power were calculated in the irradiation spaces inside the graphite reflector, as well as in the cells with air. Also the spectra, the total flow and the absorbed dose were calculated in several places distributed along the radial shaft inside the water moderator. The neutrons total flow was also considered to the long of the axial shaft. The characteristics of the neutrons spectra vary depending on their position regarding the source and the material that surrounds to the cell where the calculation was made. (Author)

  2. Nuclear reactor, fuel assembly and neutron measuring system

    International Nuclear Information System (INIS)

    Chaki, Masao; Murase, Michio; Zukeran, Atsushi; Moriya, Kimiaki

    1998-01-01

    The present invention provides a BWR type reactor improved with the efficiency of used fuels and fuel economy by increasing a rated power and reducing exchange fuels. Namely, in a BWR type reactor at present, a thermal limit value is determined by conducting nuclear calculation of the reactor core based on data of reactor flow rate measurement and data of neutron flux measurement. However, since the neutron calculation of the reactor core is based on fuel assemblies while the points for the neutron measurement are present at the outside of the fuel assemblies, errors are caused. A margin including the errors has been used as a thermal limit value during operation. In the present invention, neutron fluxes in the fuel assembly as a base of the nuclear calculation can be measured by the same number of neutron detector tubes, but the number of the measuring points is increased to four times. With such procedures, errors caused by the difference of the neutron calculation and values at neutron measuring points can be reduced. As a result, a margin of the thermal limit value is reduced to increase the degree of freedom of reactor operation. Then, the economical property of the reactor operation can be improved. (N.H.)

  3. Effects of silicon cross section and neutron spectrum on the radial uniformity in neutron transmutation doping

    International Nuclear Information System (INIS)

    Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi

    2012-01-01

    The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. - Highlights: ► The effects of silicon cross section and neutron spectrum on the radial uniformity in NTD were experimentally investigated. ► The numerical results using silicon single crystal cross section reveal good agreements. ► The radial uniformity in hard neutron spectrum was more flat than that in soft spectrum. ► The silicon single crystal cross section and hard neutron spectrum are recommended for numerical analyses and radial uniformity flattening in NTD, respectively.

  4. Thermal neutron spectra measurements in IEAR-1 Reactor, by using a crystal spectrometer

    International Nuclear Information System (INIS)

    Fulfaro, R.; Figueiredo Neto, A.M.; Stasiulevicius, E.; Vinhas, L.A.

    1975-01-01

    The thermal neutron spectrum of the IEN Argonauta reactor has been measured in the wavelength from 0.7 to 1.9A, using a neutron crystal spectrometer. An aluminium single crystal, in transmission, was used as monochromator. The aluminium crystal reflectivity employed in the analysis of the data was calculated for the first five permitted orders. An effective absorption coefficient of the crystal was used to perform the calculations instead of the macroscopic cross section of the element

  5. Energy dependence of relative abundances and periods of separate groups of delayed neutrons at neutron induced fission of 239Pu in a range of neutrons energies 0.37 - 5 MeV

    International Nuclear Information System (INIS)

    Roschenko, V.A.; Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Tarasko, M.Z.; Tertychnyi, R.G.

    2001-01-01

    The fundamental role of delayed neutrons in behavior, control and safety of reactors is well known today. Delayed neutron data are of great interest not only for reactor physics but also for nuclear fission physics and astrophysics. The purpose of the present work was the measurement of energy dependence of delayed neutrons (DN) group parameters at fission of nuclei 239 Pu in a range of energies of primary neutrons from 0.37 up to 5 MeV. The measurements were executed on installation designed on the basis of the electrostatic accelerator of KG - 2.5 SSC RF IPPE. The data are obtained in 6-group representation. It is shown, that there is a significant energy dependence of DN group parameters in a range of primary neutrons energies from thermal meanings up to 5 MeV, which is expressed in reduction of the average half-life of nuclei of the DN precursors on 10 %. The data, received in the present work, can be used at creation of a set of group constants for reactors with an intermediate spectrum of neutrons. (authors)

  6. Power Burst Reactor Facility as an epithermal neutron source for brain cancer therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.

    1986-01-01

    The Power Burst Facility (PBF) reactor is considered for modification to provide an intense, clean source of intermediate-energy (epithermal) neutrons desirable for clinical studies of neutron capture therapy (NCT) for malignant tumors. The modifications include partial replacement of the reflector, installation of a neutron-moderating, shifting region, additional shielding, and penetration of the present concrete shield with a collimating (and optionally) filtering region. The studies have indicated that the reactor, after these modifications, will be safely operable at full power (28 MW) within the acceptable limits of the plant protection systems. The neutron beam exiting from the collimator port is predicted to be of sufficient intensity (approx.10 10 neutrons/cm 2 -s) to provide therapeutic doses in very short irradiation times. The beam would be relatively free of undesirable fast neutrons, thermal neutrons and gamma rays. The calculated neutron energy spectrum and associated gamma rays in the beam were provided as input in simulation studies that used a computer model of a patient with a brain tumor to determine predicted dose rates to the tumor and healthy tissue. The results of this conceptual study indicate an intense, clean beam of epithermal neutrons for NCT clinical trials is attainable in the PBF facility with properly engineered design modifications. 9 refs., 11 figs., 3 tabs

  7. General remarks on fast neutron reactor physics

    International Nuclear Information System (INIS)

    Barre, J.Y.

    1980-01-01

    The main aspects of fast reactor physics, presented in these lecture notes, are restricted to LMFBR's. The emphasis is placed on the core neutronic balance and the burn-up problems. After a brief description of the power reactor main components and of the fast reactor chronology, the fundamental parameters of the one-group neutronic balance are briefly reviewed. Then the neutronic burn-up problems related to the Pu production and to the doubling time are considered

  8. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia

    Science.gov (United States)

    Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M. P.; Farias, R.; González, S. J.; Marrale, M.; Gallo, S.; Bartolotta, A.; Iacoviello, G.; Nigg, D.; Altieri, S.

    2018-01-01

    University of Pavia is equipped with a TRIGA Mark II research nuclear reactor, operating at a maximum steady state power of 250 kW. It has been used for many years to support Boron Neutron Capture Therapy (BNCT) research. An irradiation facility was constructed inside the thermal column of the reactor to produce a sufficient thermal neutron flux with low epithermal and fast neutron components, and low gamma dose. In this irradiation position, the liver of two patients affected by hepatic metastases from colon carcinoma were irradiated after borated drug administration. The facility is currently used for cell cultures and small animal irradiation. Measurements campaigns have been carried out, aimed at characterizing the neutron spectrum and the gamma dose component. The neutron spectrum has been measured by means of multifoil neutron activation spectrometry and a least squares unfolding algorithm; gamma dose was measured using alanine dosimeters. Results show that in a reference position the thermal neutron flux is (1.20 ± 0.03) ×1010 cm-2 s-1 when the reactor is working at the maximum power of 250 kW, with the epithermal and fast components, respectively, 2 and 3 orders of magnitude lower than the thermal component. The ratio of the gamma dose with respect to the thermal neutron fluence is 1.2 ×10-13 Gy/(n/cm2).

  9. Effect of spectral characterization of gaseous fuel reactors on transmutation and burning of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fung, C.; Anghaie, S. [Florida Univ., Wilmington, NC (United States)

    2007-07-01

    Gaseous Core Reactors (GCR) are fueled with stable uranium compounds in a reflected cavity. The spectral characteristics of neutrons in GCR systems could shift from one end of the spectrum to the other end by changing design parameters such as reflector material and thickness, uranium enrichment, and the average operational temperature and pressure. The rate of actinide generation, transmutation, and burnup is highly influenced by the average neutron energy in reactor core. In particular, the production rate and isotopic mix of plutonium are highly dependent on the neutron spectrum in the reactor. Other actinides of primary interest to this work are neptunium-237 and americium-241 due to their pivotal impact on high-level nuclear waste disposal. In all cavity reactors including GCR's, the reflector material and thickness are the most important design parameters in determining the core spectrum. The increase in the gaseous fuel pressure and enrichment results in relative shift of neutron population toward energies greater than 2 eV. Reflector materials considered in this study are beryllium oxide, lithium hydride, lithium deuteride, zirconium carbide, graphite, lead, and tungsten. Results of the study suggest that the beryllium oxide and tungsten reflected GCR systems set the lower (softest) and upper (hardest) limits of neutron spectra, respectively. The inventory of actinides with half-lives greater than 1000 years can be minimized by increasing neutron flux level in the reactor core. The higher the neutron flux, the lower the inventory of these actinides. The majority of the GCR designs maintained a flux level on the order of 10{sup 15} cm{sup -2}*s{sup -1} while the PWR flux is one order of magnitude lower. The inventory of the feeder isotopes to Np{sup 237} including U{sup 237}, Pu{sup 241}, and Am{sup 241} decreases with relative shift of neutron spectrum toward higher energies. This is due to increased resonance absorption in these isotopes due to higher

  10. Calculation of kinetic parameters of Caliban metallic core experimental reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Baud, J. [Commissariat a l' energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2009-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Department of the CEA Valduc Laboratory. One of these is the metallic core reactor Caliban. The knowledge of the fundamental kinetic parameters of the reactor is very useful, indeed necessary, to the operator. The purpose of this study was to develop and perform experiments allowing to determinate some of these parameters. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as the interval-distribution, the Feynman variance-to-mean, and the Rossi-{alpha} methods. By introducing the Nelson number, the effective delayed neutron fraction and the average neutron lifetime can also be calculated with the Rossi-{alpha} method. Subcritical, critical, and even supercritical experiments were performed. With the Rossi-{alpha} technique, it was found that the prompt neutron decay constant at criticality was (6.02*10{sup 5} {+-} 9%). Experiments also brought out the limitations of the used experimental parameters. (authors)

  11. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  12. Neutron flux distribution forecasting device of reactor

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi

    1991-01-01

    A neutron flux distribution is forecast by using current data obtained from a reactor. That is, the device of the present invention comprises (1) a neutron flux monitor disposed in various positions in the reactor, (2) a forecasting means for calculating and forecasting a one-dimensional neutron flux distribution relative to imaginable events by using data obtained from the neutron flux monitor and physical models, and (3) a display means for displaying the results forecast in the forecasting means to a reactor operation console. Since the forecast values for the one-dimensional neutron flux distribution relative to the imaginable events are calculated in the device of the present invention by using data obtained from the neutron flux monitor and the physical models, the data as a base of the calculation are new and the period for calculating the forecast values can be shortened. Accordingly, although there is a worry of providing some errors in the forecast values, they can be utilized sufficiently as reference data. As a result, the reactor can be operated more appropriately. (I.N.)

  13. On the possible use of the MASURCA reactor as a flexible, high-intensity, fast neutron beam facility

    Science.gov (United States)

    Dioni, Luca; Jacqmin, Robert; Sumini, Marco; Stout, Brian

    2017-09-01

    In recent work [1, 2], we have shown that the MASURCA research reactor could be used to deliver a fairly-intense continuous fast neutron beam to an experimental room located next to the reactor core. As a consequence of the MASURCA favorable characteristics and diverse material inventories, the neutron beam intensity and spectrum can be further tailored to meet the users' needs, which could be of interest for several applications. Monte Carlo simulations have been performed to characterize in detail the extracted neutron (and photon) beam entering the experimental room. These numerical simulations were done for two different bare cores: A uranium metallic core (˜30% 235U enriched) and a plutonium oxide core (˜25% Pu fraction, ˜78% 239Pu). The results show that the distinctive resonance energy structures of the two core leakage spectra are preserved at the channel exit. As the experimental room is large enough to house a dedicated set of neutron spectrometry instruments, we have investigated several candidate neutron spectrum measurement techniques, which could be implemented to guarantee well-defined, repeatable beam conditions to users. Our investigation also includes considerations regarding the gamma rays in the beams.

  14. Neutron spectrum for neutron capture therapy in boron

    International Nuclear Information System (INIS)

    Medina C, D.; Soto B, T. G.; Baltazar R, A.; Vega C, H. R.

    2016-10-01

    Glioblastoma multiforme is the most common and aggressive of brain tumors and is difficult to treat by surgery, chemotherapy or conventional radiation therapy. One treatment alternative is the Neutron Capture Therapy in Boron, which requires a beam modulated in neutron energy and a drug with 10 B able to be fixed in the tumor. When the patients head is exposed to the neutron beam, they are captured by the 10 B and produce a nucleus of 7 Li and an alpha particle whose energy is deposited in the cancer cells causing it to be destroyed without damaging the normal tissue. One of the problems associated with this therapy is to have an epithermal neutrons flux of the order of 10 9 n/cm 2 -sec, whereby irradiation channels of a nuclear research reactor are used. In this work using Monte Carlo methods, the neutron spectra obtained in the radial irradiation channel of the TRIGA Mark III reactor are calculated when inserting filters whose position and thickness have been modified. From the arrangements studied, we found that the Fe-Cd-Al-Cd polyethylene filter yielded a ratio between thermal and epithermal neutron fluxes of 0.006 that exceeded the recommended value (<0.05), and the dose due to the capture gamma rays is lower than the dose obtained with the other arrangements studied. (Author)

  15. SB3. Experiment on secondary gamma-ray production cross sections averaged over a fast-neutron spectrum for each of 13 different elements plus a stainless steel

    International Nuclear Information System (INIS)

    Maerker, R.E.

    1976-01-01

    The experimental and calculational details for a CSEWG integral data testing shielding experiment are presented. This particular experiment measured the secondary gamma-ray production cross sections averaged over a fast-neutron spectrum for iron, oxygen, sodium, aluminum, copper, titanium, calcium, potassium, silicon, nickel, zinc, barium, sulfur, and a type 321 stainless steel. The gamma-ray production cross sections were binned into 0.5-MeV wide gamma-ray energy intervals. 29 tables, 1 figure

  16. Calculation of neutron spectra in the reactor cell of the RA experimental reactor in Vinca

    International Nuclear Information System (INIS)

    Bosevski, T.; Altiparmakov, D.; Marinkovic, N.

    1974-01-01

    In the frame of neutron properties of RA experimental reactor the study of energy neutron spectra in the reactor cell are planned. Complex reactor cell geometry, nine cylindrical regions causes high space-energy variations of neutron flux with a significant gradient both in energy and space variables. Treatment of such a complex problem needs adequate methodology which ensures reliable results and control of accuracy. This paper describes in detail the method for calculating group constants based on lattice cell calculation for the need of calculation of reactor core parameters. In 26 group approximation for the energy region from 0 - 10.5 MeV, values of neutron spectra are obtained in 18 space points chosen to describe, with high accuracy, integral reactor cell parameters of primary importance for the reactor core calculation. Obtained space-energy distribution of neutron flux in the reactor cell is up to now unique in the study of neutron properties of Ra reactor [sr

  17. Study of the influence of the fast neutron spectrum on the production of defects in solids and liquids

    International Nuclear Information System (INIS)

    Mas, P.; Droulers, Y.

    1964-01-01

    In the first part of this work a calculation has been made of the number of defects formed in graphite by a given neutron flux having various spectral distributions. The defect formation function is that of KINCHIN and PEASE; its formulation is briefly given. An efficiency function is then defined for a fast neutron spectrum. This defects produced in a light water reactor and those produced in a graphite reactor. Finally an application of this method is given for comparing the defect forming tendency in graphite in the case of the reactor Melusine and of the reactor G-2 and G-3. In the second part are calculated the integrals for the energy release brought about by fast neutrons in carbon oxygen and hydrogen. In a region of 25 cm around the core of a swimming-pool type reactor these energy release integrals are approximately proportional to the neutron flux above 1 MeV. The determination of the energy released as a result of the passage of neutrons in organic liquids can therefore be reduced to the measurement of the flux above 1 MeV for the real spectral distribution. A calorimetric verification has been carried out in the case of water. (authors) [fr

  18. Burnup-dependent core neutronics analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Liang, Jingang; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON & DONJON were applied in burnup calculations of plate-type research reactors. • Continuous-energy Monte Carlo burnup calculations by RMC were chosen as references. • Comparisons of keff, isotopic densities and power distribution were performed. • Reasons leading to discrepancies between two different approaches were analyzed. • DRAGON & DONJON is capable of burnup calculations with appropriate treatments. - Abstract: The burnup-dependent core neutronics analysis of the plate-type research reactors such as JRR-3M poses a challenge for traditional neutronics calculational tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity, large leakage and the particular neutron spectrum of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the burnup-dependent core neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON & DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic one. In the first stage, the homogenizations of few-group cross sections by DRAGON and the full core diffusion calculations by DONJON have been verified by comparing with the detailed Monte Carlo simulations. In the second stage, the burnup-dependent calculations of both assembly level and the full core level were carried out, to examine the capability of the deterministic code system DRAGON & DONJON to reliably simulate the burnup-dependent behavior of research reactors. The results indicate that both RMC and DRAGON & DONJON code system are capable of burnup-dependent neutronics analysis of research reactors, provided that appropriate treatments are applied in both assembly and core levels for the deterministic codes

  19. Reactor cold neutron source facility, the first in Japan

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Maeda, Yutaka; Kawai, Takeshi; Tashiro, Tameyoshi; Sakakibara, Shoji; Katada, Minoru.

    1986-01-01

    In the Research Reactor Institute, Kyoto University, the first cold neutron source facility for the reactor in Japan was installed, and various tests are carried out outside the reactor. Nippon Sanso K.K. had manufactured it. After the prescribed tests outside the reactor, this facility will be installed soon in the reactor, and its outline is described on this occasion. Cold neutrons are those having very small energy by being cooled to about-250 deg C. Since the wavelength of the material waves of cold neutrons is long, and their energy is small, they are very advantageous as an experimental means for clarifying the structure of living body molecules and polymers, the atom configuration in alloys, and atomic and molecular movements by neutron scattering and neutron diffraction. The basic principle of the cold neutron source facility is to irradiate thermal neutrons on a cold moderator kept around 20 K, and to moderate and cool the neutrons by nuclear scattering to convert to cold neutrons. The preparatory research on cold neutrons and hydrogen liquefaction, the basic design to put the cold neutron source facility in the graphite moderator facility, the safety countermeasures, the manufacture and quality control, the operation outside the reactor and the performance are reported. The cold neutron source facility comprises a cold moderator tank and other main parts, a deuterium gas tank, a helium refrigerator and instrumentation. (Kako, I.)

  20. Utilizing horizontal reactors channels for neutron therapy

    International Nuclear Information System (INIS)

    Stankovsky, E.Yu.; Kurachenko, Yu.A.

    2000-01-01

    Two experimental heterogeneous reactors have been considered. The reactors may be applied in neutron capture therapy and in a conventional manner. The channel out of the core serves as the neutron source. At each of these facilities, both fast and epithermal neutron fluxes for BNCT research, human clinical trials, and characterized common computational techniques have been evaluated. (authors)

  1. Study of the environmental neutron spectrum at Zacatecas city

    International Nuclear Information System (INIS)

    Vega C, H.R.

    2003-01-01

    The environmental neutron spectrum has been measured at Zacatecas City in Mexico. Neutron spectrum was unfolded from count rates obtained with a multisphere neutron spectrometer with a Li I(Eu) scintillator. With the spectrum information the ambient dose equivalent and the isotropic effective dose were calculated. A model based upon the geomagnetic latitude and the altitude above sea level, that allows to estimate the neutron fluence rate is proposed, the model results are compared with total neutron fluences measured at several locations worldwide. Environmental neutron spectrum shows peaks at 1 and 100 MeV as well as a relevant amount of low energy neutrons. The neutron fluence rate was 65 ± 3 cm -2 -h -1 , producing 13.7 ± 0.6 n Sv-h -1 due to ambient dose equivalent rate and an isotropic effective dose rate of 14.1 ± 0.6 n Sv-h -1 . Neutron fluence rates predicted with the model are in agreement with those reported in the literature. (Author)

  2. Study of the environmental neutron spectrum at Zacatecas city

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R. [Universidad Autonoma de Zacatecas, Cuerpo Academico de Radiobiologia, A.P. 336, 98000 Zacatecas (Mexico)

    2003-07-01

    The environmental neutron spectrum has been measured at Zacatecas City in Mexico. Neutron spectrum was unfolded from count rates obtained with a multisphere neutron spectrometer with a Li I(Eu) scintillator. With the spectrum information the ambient dose equivalent and the isotropic effective dose were calculated. A model based upon the geomagnetic latitude and the altitude above sea level, that allows to estimate the neutron fluence rate is proposed, the model results are compared with total neutron fluences measured at several locations worldwide. Environmental neutron spectrum shows peaks at 1 and 100 MeV as well as a relevant amount of low energy neutrons. The neutron fluence rate was 65 {+-} 3 cm{sup -2}-h{sup -1}, producing 13.7 {+-} 0.6 n Sv-h{sup -1} due to ambient dose equivalent rate and an isotropic effective dose rate of 14.1 {+-} 0.6 n Sv-h{sup -1}. Neutron fluence rates predicted with the model are in agreement with those reported in the literature. (Author)

  3. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  4. Measurement of thermal, epithermal and fast neutron flux in the IEA-R1 reactor by the foil activation method

    International Nuclear Information System (INIS)

    Koskinas, M.F.

    1979-01-01

    Experimental and theoretical details of the foil activation method applied to neutrons flux measurements at the IEA-R1 reactor are presented. The thermal - and epithermal - neutron flux were determined form activation measurements of gold, cobalt and manganese foils; and for the fast neutron flux determination, aluminum, iron and nickel foils were used. The measurements of the activity induced in the metal foils were performed using a Ge-Li gamma spectrometry system. In each energy range of the reactor neutron spectrum, the agreement among the experimental flux values obtained using the three kind of materials, indicates the consistency of the theoretical approach and of the nuclear parameters selected. (Author) [pt

  5. Neutron flux measurement in the thermal column of the Malaysian TRIGA mark II reactor with MCNP verification

    International Nuclear Information System (INIS)

    Abdel Munem, E.; Shukri, A.; Tajuddin, A.A.

    2006-01-01

    A study of the thermal column of the Malaysian TRIGA Mark II reactor, forming part of a feasibility study for BNCT was proposed in 2001. In the current study, pure metals were used to measure the neutron flux at selected points in the thermal column and the neutron flux determined using SAND-II. Monte Carlo simulation of the thermal column was also carried out. The reactor core was homogenized and calculations of the neutron flux through the graphite stringers performed using MCNP5. The results show good agreement between the measured flux and the MCNP calculated flux. An obvious extension from this is that the MCNP neutron flux output can be utilized as an input spectrum for SAND-II for the flux iteration. (author)

  6. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  7. Seminar on Heat-transfer fluids for fast neutron reactors

    International Nuclear Information System (INIS)

    Brechet, Yves; Dautray, Robert; Friedel, Jacques; Brezin, Edouard; Martin, Georges; Pineau, Andre; Carre, Francois; Gauche, Francois; Rodriguez, Guillaume; Latge, Christian; Cabet, Celine; Garnier, Jean-Claude; Bamberger, Yves; Sauvage, Jean-Francois; Buisine, Denis; Agostini, Pietro; Ulyanov, Vladimir; Auger, Thierry; Heuer, Daniel; Ghetta, Veronique; Bubelis, Evaldas; Charlaix, Elisabeth; Barrat, Jean-Louis; Boquet, Lyderic; Glickman, Evgueny; Escaravage, Claude

    2014-03-01

    This book reports the content of a two-day meeting held by the Academy of Sciences on the use of heat-transfer fluids in fast neutron reactors. After a first part which proposes an overview of scientific and technical problems related to these heat-transfer fluids (heat transfer process, nuclear properties, chemistry, materials, risks), a contribution proposes a return on experience on the use of heat-transfer fluids in the different design options of reactors of fourth generation: from mercury to NaK in the first fast neutron reactor projects, specific assets and constraints of sodium used as heat-transfer fluid, concepts of fast neutron reactors cooled by something else than sodium, perspectives for projects and research in fast neutron reactors. The next contribution discusses the specifications of future fast-neutron reactors: expectations for fourth-generation reactors, expectations in terms of performance and of safety, specific challenges. The last contribution addresses actions to be undertaken in the field of research and development: actions regarding all reactor types or specific types as sodium-cooled reactors, lead cooled reactors, molten salt reactors, and gas-cooled fast reactors

  8. ORLIB: a computer code that produces one-energy group, time- and spatially-averaged neutron cross sections

    International Nuclear Information System (INIS)

    Blink, J.A.; Dye, R.E.; Kimlinger, J.R.

    1981-12-01

    Calculation of neutron activation of proposed fusion reactors requires a library of neutron-activation cross sections. One such library is ACTL, which is being updated and expanded by Howerton. If the energy-dependent neutron flux is also known as a function of location and time, the buildup and decay of activation products can be calculated. In practice, hand calculation is impractical without energy-averaged cross sections because of the large number of energy groups. A widely used activation computer code, ORIGEN2, also requires energy-averaged cross sections. Accordingly, we wrote the ORLIB code to collapse the ACTL library, using the flux as a weighting function. The ORLIB code runs on the LLNL Cray computer network. We have also modified ORIGEN2 to accept the expanded activation libraries produced by ORLIB

  9. SPECTRUM WEIGHTED RESPONSES OF SEVERAL DETECTORS IN MIXED FIELDS OF FAST AND THERMAL NEUTRONS

    Directory of Open Access Journals (Sweden)

    SANG IN KIM

    2014-04-01

    Full Text Available The spectrum weighted responses of various detectors were calculated to provide guidance on the proper selection and use of survey instruments on the basis of their energy response characteristics on the neutron fields. To yield the spectrum weighted response, the detector response functions of 17 neutron-measuring devices were numerically folded with each of the produced calibration neutron spectra through the in-house developed software ‘K-SWR’. The detectors’ response functions were taken from the IAEA Technical Reports Series No. 403 (TRS-403. The reference neutron fields of 21 kinds with 2 spectra groups with different proportions of thermal and fast neutrons have been produced using neutrons from the 241Am-Be sources held in a graphite pile, a bare 241Am-Be source, and a DT neutron generator. Fluence-average energy (Eave varied from 3.8 MeV to 16.9 MeV, and the ambient-dose-equivalent rate [H*(10/h] varied from 0.99 to 16.5 mSv/h.

  10. Investigating The Neutron Flux Distribution Of The Miniature Neutron Source Reactor MNSR Type

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Do Quang Binh

    2011-01-01

    Neutron flux distribution is the important characteristic of nuclear reactor. In this article, four energy group neutron flux distributions of the miniature neutron source reactor MNSR type versus radial and axial directions are investigated in case the control rod is fully withdrawn. In addition, the effect of control rod positions on the thermal neutron flux distribution is also studied. The group constants for all reactor components are generated by the WIMSD code, and the neutron flux distributions are calculated by the CITATION code. The results show that the control rod positions only affect in the planning area for distribution in the region around the control rod. (author)

  11. Measurements of integral cross sections in the californium-252 fission neutron spectrum

    International Nuclear Information System (INIS)

    Alberts, W.G.; Guenther, E.; Matzke, M.; Rassl, G.

    1977-01-01

    In a low-scattering arrangement cross sections averaged over the californium-252 spontaneous fission neutron spectrum were measured. The reactions 27 Al(n,α) 46 Ti, 47 Ti, 48 Ti(n,p), 54 Fe, 56 Fe(n,p), 58 Ni(n,p), 64 Zn(n,p), 115 In(n,n') were studied in order to obtain a consistent set of threshold detectors used in fast neutron flux density measurements. Overall uncertainties between 2 and 2.5% could be achieved; corrections due to neutron scattering in source and samples are discussed

  12. Radiobiological aspects of application of BR-10 reactor neutrons for radiotherapy of malignant tumours

    International Nuclear Information System (INIS)

    Ul'yanenko, S.E.; Kuznetsova, M.N.; Obaturov, G.M.

    1992-01-01

    Possibilities to increase the factor of therapeutical gain (FTG) by optimizing irradiation conditions and using hyperglycemia were studied. It is shown that relative biological effectiveness (RBE) of neutrons in fission spectrum of the BR-10 reactor in the dose range from 10 Gy used one time is 4.2-4.5 for tumours and 4.0-4.2 for normal skin; in case of fractionated irradiation by neutrons (1-8 fractions in the range of 6-10 Gy) RBE increases practically 1.5 fold; employment of neutron beam filters and hyperglycemia in conditions of combined gamma-neutron procedures of irradiation permits a considerable increase in FTG. 3 refs

  13. Effect of neutron anisotropic scattering in fast reactor analysis

    International Nuclear Information System (INIS)

    Chiba, Gou

    2004-01-01

    Numerical tests were performed about an effect of a neutron anisotropic scattering on criticality in the Sn transport calculation. The simplest approximation, the consistent P approximation and the extended transport approximation were compared with each other in one-dimensional slab fast reactor models. JAERI fast set which has been used for fast reactor analyses is inadequate to evaluate the effect because it doesn't include the scattering matrices and the self-shielding factors to calculate the group-averaged cross sections weighted by the higher-order moment of angular flux. In the present study, the sub-group method was used to evaluate the group-averaged cross sections. Results showed that the simplest approximation is inadequate and the transport approximation is effective for evaluating the anisotropic scattering. (author)

  14. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  15. EL-2 reactor: Thermal neutron flux distribution

    International Nuclear Information System (INIS)

    Rousseau, A.; Genthon, J.P.

    1958-01-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  16. On the research activities in reactor and neutron physics using the first egyptian research reactor

    International Nuclear Information System (INIS)

    Hassan, A.M.

    2000-01-01

    A review on the most important research activities in reactor and neutron physics using the first Egyptian Research Reactor (ET-RR-1) is given. An out look on: neutron cross-sections, neutron flux, neutron capture gamma-ray spectroscopy, neutron activation analysis, neutron diffraction and radiation shielding experiments, is presented

  17. Neutron-induced displacement damage analysis (with particular reference to zirconium)

    International Nuclear Information System (INIS)

    Woo, C.H.

    1978-10-01

    Neutron irradiation produces damage in a solid, initially in the form of atomic displacements. As a first step to understanding the effects of irradiation damage in reactor structural materials, information on the initial atomic displacements is necessary. The computer program DISPKAN, based on an extension and generalization of the program RICE, written at ORNL for such calculations, has been developed and installed on the CDC system at CRNL. Using neutron scattering data from ENDF/B files, DISPKAN performs a displacement and PKO analysis on the initial damage caused by neutrons from a given spectrum. The following quantities are calculated: the displacement rate per unit neutron flux, the PKO spectrum, the displacement spectrum, the fraction of PKO's with energy above T, the fraction of displacements produced by PKO's with energy above T, the average PKO energy, the average number of displacements produced per PKO, and the total number of PKO's produced per atom of the solid per unit fluence. The input and output formats of the program are explained. Sample runs are demonstrated. Results for zirconium, exposed to five neutron spectra typically available to experimentalist, are given to illustrate the spectral dependence of the initial displacement events. (author)

  18. Prompt neutron spectrum of the spontaneous fission of californium-252

    International Nuclear Information System (INIS)

    Zamyatnin, Yu.S.; Kroshkin, N.I.; Korostylev, V.A.; Nefedov, V.N.; Ryazanov, D.K.; Starostov, B.I.; Semenov, A.F.

    1976-01-01

    The californium-252 spontaneous fission neutron spectrum was measured in the energy range of 0.01 to 10 MeV by the time-of-flight technique using various neutron detectors. The measurements of 252 Cf neutron spectrum at energies of 0.01 to 5 MeV were performed as a function of fission fragment kinetic energy. The mean neutron spectrum energy in the range of 0.7 to 10 MeV was found from the results of measurements. The irregularity in the 252 Cf neutron spectrum in the neutron energy range of less than 0.7 MeV compared to theoretical values is discussed. The mechanism of 252 Cf neutron emission is also discussed on the basis of neutron yield angle measurements. 12 references

  19. Determination of the in-core power and the average core temperature of low power research reactors using gamma dose rate measurements

    International Nuclear Information System (INIS)

    Osei Poku, L.

    2012-01-01

    Most reactors incorporate out-of-core neutron detectors to monitor the reactor power. An accurate relationship between the powers indicated by these detectors and actual core thermal power is required. This relationship is established by calibrating the thermal power. The most common method used in calibrating the thermal power of low power reactors is neutron activation technique. To enhance the principle of multiplicity and diversity of measuring the thermal neutron flux and/or power and temperature difference and/or average core temperature of low power research reactors, an alternative and complimentary method has been developed, in addition to the current method. Thermal neutron flux/Power and temperature difference/average core temperature were correlated with measured gamma dose rate. The thermal neutron flux and power predicted using gamma dose rate measurement were in good agreement with the calibrated/indicated thermal neutron fluxes and powers. The predicted data was also good agreement with thermal neutron fluxes and powers obtained using the activation technique. At an indicated power of 30 kW, the gamma dose rate measured predicted thermal neutron flux of (1* 10 12 ± 0.00255 * 10 12 ) n/cm 2 s and (0.987* 10 12 ± 0.00243 * 10 12 ) which corresponded to powers of (30.06 ± 0.075) kW and (29.6 ± 0.073) for both normal level of the pool water and 40 cm below normal levels respectively. At an indicated power of 15 kW, the gamma dose rate measured predicted thermal neutron flux of (5.07* 10 11 ± 0.025* 10 11 ) n/cm 2 s and (5.12 * 10 11 ±0.024* 10 11 ) n/cm 2 s which corresponded to power of (15.21 ± 0.075) kW and (15.36 ± 0.073) kW for both normal levels of the pool water and 40 cm below normal levels respectively. The power predicted by this work also compared well with power obtained from a three-dimensional neutronic analysis for GHARR-1 core. The predicted power also compares well with calculated power using a correlation equation obtained from

  20. Testing of ENDF/B cross section data in the Californium-252 neutron benchmark field

    International Nuclear Information System (INIS)

    Mannhart, W.

    1979-01-01

    The fission neutron field of 252 Cf presently represents one of the most well-known neutron benchmark fields. For 13 neutron reactions which are of importance in reactor metrology, measurements of spectrum-averaged cross sections, [sigma], performed in this neutron field were compared with calculated average cross sections. This comparison allows one to draw conclusions as to the quality of different sigma(E) data taken from ENDF/B-IV, from ENDF/B-V, and from recent experiments and used in the calculation of average cross sections. The comparison includes an uncertainty analysis regarding the different uncertainty contributions of [sigma], of sigma(E), and of the spectral distribution of 252 Cf fission neutrons. Additionally, in a few examples, sensitivity studies were carried out. The sensitivity of the spectrum-averaged cross sections to individual characteristics of the sigma(E) data, such as normalization factors or shifts in the energy scale, was investigated. Similarly, the sensitivity of [sigma] to the spectral distribution of 252 Cf was determined. 4 figures, 2 tables

  1. Neutron and gamma-ray spectra measurement on the model of the KS-150 reactor radial shielding

    International Nuclear Information System (INIS)

    Holman, M.; Hogel, J.; Marik, J.; Kovarik, K.; Franc, L.; Vespalec, R.

    1977-01-01

    A shortened model of the peripheral region of the KS-150 reactor core consisting of two rows of fuel elements and a reflector was constructed from the peripheral fuel elements of the KS-150 reactor core in an experiment on the TR-0 reactor. The mockup of the thermal shield (10 cm of steel), the pressure vessel (15 cm of steel) and the inner wall of the water biological shielding (2 cm of steel) of the KS-150 reactor were erected outside the TR-0 vessel. Fast neutron and gamma spectra were measured with a stilbene crystal scintillation spectrometer. The resonance neutron spectra were measured with 197 Au, 63 Cu and 23 Na resonance activation detectors. Fast neutron spectra inside the reactor were measured with a 10 mm diameter by 10 mm thick stilbene crystal spectrometer, outside the reactor with a 10 mm diameter by 10 mm thick and a 20 mm diameter by 20 mm thick stilbene crystal spectrometer. Neutron spectra in the energy regions of 1 eV to 3 keV and 0.6 MeV to 0.8 MeV were obtained on the core periphery, on the reflector half-thickness and in front of and behind the reactor thermal shield. Gamma spectra were obtained in front of and behind the thermal shield. It was found that the attenuation of neutron fluxes by the reflector and the thermal shield increased with increasing energy while gamma radiation attenuation decreased with increasing energy. It was not possible to obtain the neutron spectrum in the 10 to 600 keV energy range because suitable detection instrumentation was not available. (J.P.)

  2. Theory of neutron slowing down in nuclear reactors

    CERN Document Server

    Ferziger, Joel H; Dunworth, J V

    2013-01-01

    The Theory of Neutron Slowing Down in Nuclear Reactors focuses on one facet of nuclear reactor design: the slowing down (or moderation) of neutrons from the high energies with which they are born in fission to the energies at which they are ultimately absorbed. In conjunction with the study of neutron moderation, calculations of reactor criticality are presented. A mathematical description of the slowing-down process is given, with particular emphasis on the problems encountered in the design of thermal reactors. This volume is comprised of four chapters and begins by considering the problems

  3. International intercomparison on the neutron flux density spectrum just before the REAL-80 project

    International Nuclear Information System (INIS)

    Ertek, C.

    1981-06-01

    This work briefly presents the results of the international intercomparison on the neutron flux density spectrum just before the REAL-80 intercomparison project. Some of the results of this intercomparison with a smaller number of laboratories will be also reflected in the REAL-80 project, therefore, it has some significant issues. This work is performed within the IAEA programme on standardization of reactor radiation measurements, one of the important objectives of which is the assistance of laboratories in Member States to implement or intercompare the multiple foil activation techniques for different neutron field measurements

  4. Effect of new cross-section evaluations on criticality and neutron energy spectrum of a typical material test research reactor

    International Nuclear Information System (INIS)

    Ahmad, Siraj-ul-Islam; Ahmad, Nasir; Aslam

    2004-01-01

    Several new WIMSD libraries based on recent cross-section evaluations such as IAEA, ENDFB-VI, JENDL, and JEF have been made available by IAEA. These libraries were used for the computation of multiplication factor and energy spectrum for Pakistan Research Reactor-1 (PARR-1). Methodology was validated for benchmark problems made available by IAEA and comparison with reference results. The value of effective multiplication factors for all newly released libraries are 1.8-3.2% less than that of 1981 WIMSD library. The effect of various cross-section libraries on neutron energy spectrum was also studied. Differences of about -10% to 12.5% were found in thermal flux using the newly released libraries as compared with that obtained using 1981 WIMSD library. From the analysis, it was found that the main source of the difference is the cross-sections of hydrogen bound in water. When these cross-sections of hydrogen (bound in water) from new libraries were used along with all other data in 1981 WIMSD library, the k eff obtained in this way has a difference of only 0.02-0.8% with that obtained from new libraries, while the flux spectrum agreed within 1% below 1 MeV with new libraries

  5. Validation of IRDFF in 252Cf Standard and IRDF-2002 Reference Neutron Fields

    Directory of Open Access Journals (Sweden)

    Simakov Stanislav

    2016-01-01

    Full Text Available The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard 252Cf(s.f. and reference 235U(nth,f neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm IRDFF-1.03 in the 252Cf standard spontaneous fission spectrum; that was not the case for the current recommended spectra for 235U(nth,f. IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF-2002 collection. The ISNF facility was re-simulated to remove unphysical oscillations in the spectrum. IRDFF-1.03 was shown to reproduce reasonably well the spectrum-averaged data measured in these fields except for the case of YAYOI.

  6. Effects of silicon cross section and neutron spectrum on the radial uniformity in neutron transmutation doping.

    Science.gov (United States)

    Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi

    2012-01-01

    The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    International Nuclear Information System (INIS)

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-01-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99 Mo, 95 Zr, 137 Cs, 140 Ba, 141,143 Ce, and 147 Nd. Modest incident-energy dependence exists for the 147 Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ∼5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except

  8. Achievement and development of neutron beam utilization in research reactors

    International Nuclear Information System (INIS)

    Isshiki, Masahiko

    1996-01-01

    Especially regarding the neutron beam experiment in Japan, the basic research has been developed by utilizing the JRR-2 of Japan Atomic Energy Research Institute and the KUR of Kyoto University over long years. Now, the JRR-3M of JAERI was revived as a high performance, general purpose reactor, and bears important roles as the neutron beam experiment center in Japan. Thanks to one of the most powerful reactor neutron sources in the world and the cold neutron source, the environment of research was greatly improved, and the excellent results of researches began to be reported. The discovery of neutrons by Chadwick and the history of the related researches are described. As neutron sources, radioisotopes, accelerators and nuclear reactors are properly used corresponding to purposes. As the utilization of research reactors for neutron sources, the utilization for irradiation and neutron beam experiment are carried out. The outline of the research reactor JRR-3M is explained. The state of utilization in neutron scattering experiment, neutron radiography, prompt γ-ray analysis and the medical irradiation of neutrons is reported. (K.I.)

  9. Neutron importance and the generalized Green function for the conventionally critical reactor with normalized neutron distribution

    International Nuclear Information System (INIS)

    Khromov, V.V.

    1978-01-01

    The notion of neutron importance when applied to nuclear reactor statics problems described by time-independent homogeneous equations of neutron transport with provision for normalization of neutron distribution is considered. An equation has been obtained for the function of neutron importance in a conditionally critical reactor with respect to an arbitrary nons linear functional determined for the normalized neutron distribution. Relation between this function and the generalized Green function of the selfconjugated operator of the reactor equation is determined and the formula of small perturbations for the functionals of a conditionally critical reactor is deduced

  10. ATR neutron spectral characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  11. A neutronic assessment of the new Spherical Cermets Fuel concept for the BWR-PB reactor

    International Nuclear Information System (INIS)

    Benchrif, A.; Chetaine, A.; Amsil, H.; Bounakhla, M.

    2010-01-01

    The tri-structural-isotopic (TRISO) fuel directly cooled by boiling light water is used in the boiling water reactor with pebble-bed coated particles (BWR-PB). At the lower coolant temperature, the TRISO fuel particles demonstrate an unacceptable irradiation swelling in the silicon carbide coating layer during a fuel cycle. So, the objectives of this paper, on the one hand is to evaluate some neutronic parameters of a new fuel concept, Spherical Cermets Fuel (SCF), for a BWR-PB reactor. On the other hand, to assess the fact of SCF fuel concept on the fuel assembly lifetime and the burn-up characteristic. All the parameters as well as Infinite Multiplication Factor, Spectrum Index, Instantaneous Conversion Ratio and Neutron Energy Spectrum was calculated then compared for the TRISO and the SCF fuel concept. It can be seen from the assessment of fuel assembly burn-up characteristics that the normalised neutron spectra of all the assembly's parts pointed out a thermal spectrum for the SCF fuel assembly's parts than the TRISO one. The SCF fuel element increase the assembly life time about 6.1 EFPY corresponding 8000 MWd/t. So, the fuel assembly can be operated for a reasonably long period without outside refuelling. The difference in the assembly lifetime might leads to SCF fuel concept adopted, because the geometry and concept of TRISO fuel particles are wholly different to SCF ones. (author)

  12. Experimental neutronic science and instrumentation: from hybrid reactors to fourth generation reactors

    International Nuclear Information System (INIS)

    Jammes, Ch.

    2010-07-01

    After an overview of his academic career and scientific and research activities, the author proposes a rather detailed synthesis and overview of his scientific activities in the fields of cross sections and Doppler effect (development and validation of a code), on the MUSE-4 hybrid reactor (experiments, static and dynamic measurements), on the TRADE hybrid reactor (experimental means, sub-critical reactivity measurement), on the RACE hybrid reactor (experimental results, modelling and interpretation), and on neutron detection (design and modelling of fission chamber, on-line measurement of the fast flow). The next part gives an overview of some research programs (neutron monitoring in sodium-cool fast reactors, research and development on fission chambers, improvement of effective delayed neutron measurements)

  13. Spectrum and H(10) of secondary neutrons around Linacs

    International Nuclear Information System (INIS)

    Ortiz H, A.; Hernandez A, B.; Vega C, H. R.; Hernandez D, V. M.; Rivera M, T.

    2009-10-01

    Neutron spectrum and ambient dose equivalent has been measured around two 10 MV linear accelerators. Accelerators are Siemens, one is a Mevatron model while another is the Primus. Main differences between those models are the beam collimator and the vault room. Here, Bonner sphere spectrometer with a passive thermal neutron detector has been utilized to measure the neutron spectrum inside the vault. Using an active detector the neutron spectrum was measured by the vaults door of both accelerators. With a neutron area monitor the dose equivalent was measured by the doors. Neutron strength, total fluence rate and ambient dose equivalent were compared, from this was found that shielding conditions are better in the Primus model. (Author)

  14. Program HEFEST for calculation of neutron spectrum on the basis of the activity of threshold detectors; Progam HEFEST za obradu neutronskog spektra na osnovu aktivnosti prag detektora

    Energy Technology Data Exchange (ETDEWEB)

    Cupac, S; Sokcic-Kostic, M; Pesic, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1985-07-01

    Program HEFEST for calculation of neutron spectrum on the basis of the activity of threshold detectors is described in this paper. After testing, program is used for the elaboration of the experimental results in determining the fast neutron spectrum on the coupled fast-thermal system on the reactor RB in IBK. (author)

  15. Three-dimensional Core Design of a Super Fast Reactor with a High Power Density

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi; Ju, Haitao

    2010-01-01

    The SuperCritical Water-cooled Reactor (SCWR) pursues high power density to reduce its capital cost. The fast spectrum SCWR, called a super fast reactor, can be designed with a higher power density than thermal spectrum SCWR. The mechanism of increasing the average power density of the super fast reactor is studied theoretically and numerically. Some key parameters affecting the average power density, including fuel pin outer diameter, fuel pitch, power peaking factor, and the fraction of seed assemblies, are analyzed and optimized to achieve a more compact core. Based on those sensitivity analyses, a compact super fast reactor is successfully designed with an average power density of 294.8 W/cm 3 . The core characteristics are analyzed by using three-dimensional neutronics/thermal-hydraulics coupling method. Numerical results show that all of the design criteria and goals are satisfied

  16. Neutronic study of the two french heavy water reactors

    International Nuclear Information System (INIS)

    Horowitz, J.

    1955-01-01

    The two french reactors - the reactor of Chatillon, named Zoe, and the reactor of Saclay - P2 - were the object of detailed neutronic studies which the main ideas are exposed in this report. These studies were mostly done by the Department of the Reactor Studies (D.E.P.). We have thus studied the distribution of neutronic fluxes; the factors influencing reactivity; the link between reactivity and divergence with the formula of Nordheim; the mean time life of neutrons; neutron spectra s of P2; the xenon effect; or the effect of the different adjustments of the plates and controls bar. (M.B.) [fr

  17. Thermal hydraulic and neutronic interaction in the rotating bed reactor

    International Nuclear Information System (INIS)

    Lee, C.C.

    1986-01-01

    Power transient characteristics in a rotating fluidized bed reactor (RBR) are investigated theoretically. A propellant flow perturbation is assumed to occur in an initially equilibrium state of the core. Transfer functions representing quasi-one-dimensional mutual feedback between thermal hydraulics and neutronics are developed and analyzed in the frequency domain. Neutronic responses are determined by Fermi-age theory for slowing down of fast neutrons and diffusion theory for thermal neutron distribution. Neutron leakage through the exhaust nozzle is accounted for by applying diffuse view factors similar to those applied in radiative heat transfer. The bed expansion behavior is described by a kinematic wave equation derived from the continuity of the gas phase. The drift flux approach is used to determine the yield fractions in the equilibrium bed. Thermal responses of fuel are evaluated by dividing it into several volume-averaged zones to better account for the transient effects over single zone models. Sample calculations are undertaken for the various operation conditions and design parameters of the RBR based on 250 MW/sub t/, 1000 MW/sub t/, and 5000 MW/sub t/ power reactors. The results show that power transients are dependent on the parametric changes of optical thickness and view factors

  18. Production and use of Li(d,n) neutrons for simulation of radiation effects in fusion reactors

    International Nuclear Information System (INIS)

    Goland, A.N.; Gurinsky, D.H.; Hendrie, J.; Kukkonen, J.; Sheehan, T.; Snead, C.L. Jr.

    1975-01-01

    In the Brookhaven Accelerator-Based Neutron Generator 1.5-cm thick x 12-cm wide films of lithium flowing at the velocity of approximately 10 m sec -1 will be the targets for 30-MeV D + and D - beams 1-cm high and 10-cm wide. At this energy a beam of energetic neutrons is emitted mainly in the forward direction (theta less than or equal to 20 0 ) as a result of the Li(d,n) breakup reaction. Measurements of the neutron flux and spectrum as a function of incident deuteron energy and emission angle theta(theta less than or equal to 20 0 ) indicate that the yield increases approximately linearly with increasing deuteron energy from 25 MeV to at least 35 MeV, and that the mean energy of the neutrons (theta = 0 0 ) is about 0.4 of the incident deuteron energies between 25 and 35 MeV. The most probable neutron energy in the forward-directed (theta = 0 0 ) spectrum is also about 0.4 of the deuteron energy over this range. For a 30-MeV beam, the full width at half maximum of the neutron spectrum is 11.8 MeV (theta = 0 0 ), and the mean neutron energy is 13 MeV. Pertinent radiation-damage parameters were calculated for various materials exposed to this neutron spectrum. In Nb, for example, the helium production rate and the displacement rate simulate the values anticipated in a D-T fusion reactor spectrum of comparable flux. Furthermore, the primary-recoil-atom energy distributions produced by Li(d,n) neutrons in Al, Nb, and Au are similar to those produced by 14-MeV neutrons. (U.S.)

  19. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    Directory of Open Access Journals (Sweden)

    Marziye Ebrahimkhani

    2016-02-01

    Full Text Available Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee and source multiplication coefficient (ks, has been investigated. A Monte Carlo code (MCNPX_2.6 has been used to calculate neutronic parameters such as effective multiplication coefficient (keff, net neutron multiplication (M, neutron yield (Yn/e, energy constant gain (G0, energy gain (G, importance of neutron source (φ∗, axial and radial distributions of neutron flux, and power peaking factor (Pmax/Pave in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current (Ie have been decreased in the highest case of ks, but G and φ∗ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing Ee from 100 MeV up to 1 GeV, Yn/e and G improved by 91.09% and 10.21%, and Ie and Pacc decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np–Pu assemblies on the periphery allows for a consistent keff because the Np–Pu assemblies experience less burn-up.

  20. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki, E-mail: koyanagit@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kumar, N.A.P. Kiran [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hwang, Taehyun [Tohoku University, Sendai, 980-8579 (Japan); Garrison, Lauren M.; Hu, Xunxiang [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-07-15

    Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.

  1. Experimental possibilities and fast neutron dose map of the fast neutron fields at the RB reactor facility

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.; Ninkovic, M.

    1993-01-01

    The RB is an unshielded, zero power nuclear facility with natural and enriched uranium fuel (2% and 80%) and D 2 O as moderator. It is possible to create different configurations of non-reflected and partially reflected critical systems and to make experiments in the fields of thermal neutrons. The fields of fast neutrons with 'softened' fission spectrum are made by modifying the system: modified experimental fuel channel EFC, coupled fast-thermal system in two configurations CFTS-1 and CFTS-2, coupled fast-thermal core HERBE. The intermediate and fast neutron absorbed doses in fast neutron fields are given. In first configuration of RB reactor it was almost impossible to perform dosimetric and other experiments. By creating these fields, with in our circumstances available fuel elements, the possibilities for different experiments are greatly improved. Now we can irradiate food samples, soil samples, electronic devices, study material properties, perform various dosimetry experiments, etc. (1 tab.)

  2. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    Full text: The Australian federal government gave ANSTO final approval to build a research reactor to replace HIFAR on August 25th 1999. The replacement reactor is to be a multipurpose reactor with a thermal neutron flux of 3 x 10 14 n.cm -2 .s -1 and having improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The replacement reactor will commence operation in 2005 and will cater for Australian scientific, industrial and medical needs well into the 21st century. The scientific capabilities of the neutron beams at the replacement reactor are being developed in consultation with representatives from academia, industry and government research laboratories to provide a facility for condensed matter research in physics, chemistry, materials science, life sciences, engineering and earth sciences. Cold, thermal and hot neutron sources are to be installed, and neutron guides will be used to position most of the neutron beam instruments in a neutron guide hall outside the reactor confinement building. Eight instruments are planned for 2005, with a further three to be developed by 2010. A conceptual layout for the neutron beam facility is presented including the location of the planned suite of neutron beam instruments. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by an accredited reactor builder in a turnkey contract. Tenders have been called for December 1999, with selection of contractor planned by June 2000. The neutron beam instruments will be developed by ANSTO and other contracted organisations in consultation with the user community and interested overseas scientists. The facility will be based, as far as possible, around a neutron guide hall that is be served by three thermal and three cold neutron guides. Efficient transportation of thermal and cold neutrons to the guide hall requires the use of modern super

  3. Influence of neutron energy on formation of radioisotopes during the irradiation of targets in reactor

    Directory of Open Access Journals (Sweden)

    P. M. Vorona

    2011-09-01

    Full Text Available Method of calculation of nuclear transformations in irradiated targets is realized for selection of optimal conditions for accumulation of radioisotopes in reactor, taking into account contributions of different energy neutrons (thermal, resonance and fast. Wide potentialities of program complex MCNP-4C based on the method of statistical testing (Monte Carlo method were used. Positive in proposed method is that all calculations starting from spectra and fluxes of neutrons in reactor and completing by quantity of accumulating nuclei carry out within the framework of the same methodological approach. It was shown by the example of radioactive 98Mo production in Mo98Mo(n, γ99Mo reaction that for achievement of maximal yield of target radionuclide. it is necessary to irradiate start targets of Molybdenum in hard spectrum with essential contribution of resonance neutrons.

  4. Neutron spectrum measurement inside containment vessel at Kori nuclear power plant unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Han, J. M.; Kim, T. W.; Kim, K. D.; Youn, C. H. [Nuclear Environment Technology Institute, Taejon (Korea, Republic of)

    2003-10-01

    There would be a case for the radiation worker have to work inside of the containment vessel to inspect or repair reactor facilities. In this case, the information about distribution of neutron field is needed to estimate neutron exposure dose of worker. Neutron spectra were measured by BMS(Bonner Multisphere Spectrometer) at 4 points of 6 ft and 20 ft, 2 points of 44 ft, 5 points of 70 ft in containment vessel of Kori unit 1. From the calculation, the following results were obtained. Neutron fluxes of 6 ft were between 2.623 x 10{sup 2} and 2.746 x 10{sup 4} neutron/cm{sup 2}{center_dot}sec, average neutron energies were between 9.209 x 10{sup -6} and 3.377 x 10{sup -2} MeV, equivalent doses of neutron were between 0.025 and 2.675 mSv/hr. Neutron fluxes of 20 ft were between 1.771 x 10{sup 1} and 1.682 x 10{sup 3} neutron/cm{sup 2}{center_dot}sec, average neutron energies were between 6.084 x 10{sup -6} and 2.988 x 10{sup -1} MeV, equivalent doses of neutron were between 0.004 and 0.228 mSv/hr. Neutron fluxes of 44 ft were between 3.367 x 10{sup 2} and 3.483 x 10{sup 2} neutron / cm{sup 2}{center_dot}sec, average neutron energies were between 3.962 x 10{sup -2} and 7.360 x 10{sup -2} MeV, equivalent doses of neutron were between 0.069 and 0.089 mSv/hr. Neutron fluxes of 70 ft were between 4.553 x 10{sup 3} and 1.407 x 10{sup 4} neutron/cm{sup 2}{center_dot}sec, average neutron energies were between 3.668 x 10{sup -4} and 6.764 x 10{sup -2} MeV, equivalent doses of neutron were between 0.449 and 2.660 mSv/hr.

  5. Polarization of fast neutrons in VVR-M reactor

    International Nuclear Information System (INIS)

    Garusov, E.A.; Lifshits, E.P.; Petrov, Yu.V.

    1987-01-01

    Neutron polarization in the reactor leads to circular polarization of γ quanta emitted both in radiational capture of neutrons and in the transition of nuclei excited as a result of inelastic scattering to the ground state. This may be used to determine the polarization of reactor neutrons. The circular polarization of γ quanta at light-water and graphite targets at the center of the active zone of the VVR-M reactor at the B.P. Konstantinov Leningrad Institute of Nuclear Physics was recently measured. A simplified experimental scheme is shown. Fast neutrons leaving the active zone of the reactor were excited in the inelastic scattering at the target nuclei. The polarization of the γ quanta emitted by nuclei in transitions to the ground state was measured by a polarimeter positioned above the active zone. The reason for the circular polarization of γ quanta may also be nonconservation of P parity on account of weak interaction in the capture of a neutron by hydrogen

  6. Least-squares adjustment of a 'known' neutron spectrum: The importance of the covariance matrix of the input spectrum

    International Nuclear Information System (INIS)

    Mannhart, W.

    1986-01-01

    Based on the responses of 25 different neutron activation detectors, the neutron spectrum of Cf-252 hs been adjusted with least-squares methods. For a fixed input neutron spectrum, the covariance matrix of this spectrum has been systematically varied to investigate the influence of this matrix on the final result. The investigation showed that the adjusted neutron spectrum is rather sensitive to the structure of the covariance matrix for the input spectrum. (author)

  7. Use of boron nitride for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements

    Science.gov (United States)

    Radulović, Vladimir; Trkov, Andrej; Jaćimović, Radojko; Gregoire, Gilles; Destouches, Christophe

    2016-12-01

    A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract.

  8. Development of a real-time stability measurement system for boiling water reactors

    International Nuclear Information System (INIS)

    March-Leuba, J.; King, W.T.

    1987-01-01

    This paper describes the development of a portable, real time system for boiling water reactor (BWR) stability measurements. The system provides a means for the operator to monitor the reactor stability using existing plant instrumentation and commercially available hardware. The noise component (i.e., perturbations around steady state) of the neutron signal in BWRs has been shown to contain information about reactor stability, and several algorithms have been developed to extract that information. For the present work, the authors have used an algorithm that has been implemented on a portable personal computer. This algorithm uses the autocorrelation function of naturally occurring neutron noise (measured without special plant perturbations) and an autoregressive modeling technique to produce the asymptotic DR. For this real-time implementation, neutron noise data is preconditioned (i.e., filtered and amplified) and sampled at a 5-Hz sampling rate using a commercial data-acquisition system. Approximately every 1.5 min, the current (snapshot) autocorrelation function is computed directly from the data, and the average autocorrelation is updated. The current and average DR estimates are evaluated with the same periodicity and are displayed on the screen along with the autocorrelations and average power spectrum of the neutron noise

  9. Evaluation of the neutrons spectrum near the Venus reactor: use of MCNPX-2.5C

    International Nuclear Information System (INIS)

    Verboomen, B.; Coeck, M.; Baeten, P.

    2003-01-01

    The present study has been justified by the choice of the Venus reactor (SCK-CEN) as a true work environment for the project of the fifth programme - frame E.V.I.D.O.S.. The objective of this programme is the evaluation, in neutron-photon combined field, and in true environment (nuclear industry), of the different methods of measurement used in neutron dosimetry. The project aims to the determination of abilities and limits of dosemeters and to establish methods to get doses equivalents from data gotten by spectrometry, personal and ambient dosimetry. For each environment, reference values have to be determined by spectrometry (energy and angle). The knowledge of the distribution in energy and in angle of neutrons allows then the calculation of the different doses equivalents. The determination of these references values by direct neutron calculation allows the validation of the Monte Carlo model. (N.C.)

  10. NEUTRONIC REACTOR STRUCTURE

    Science.gov (United States)

    Weinberg, A.M.; Vernon, H.C.

    1961-05-30

    A neutronic reactor is described. It has a core consisting of natural uranium and heavy water and having a K-factor greater than unity which is surrounded by a reflector consisting of natural uranium and ordinary water having a Kfactor less than unity.

  11. Neutron dosimetry for radiation damage in fission and fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1979-01-01

    The properties of materials subjected to the intense neutron radiation fields characteristic of fission power reactors or proposed fusion energy devices is a field of extensive current research. These investigations seek important information relevant to the safety and economics of nuclear energy. In high-level radiation environments, neutron metrology is accomplished predominantly with passive techniques which require detailed knowledge about many nuclear reactions. The quality of neutron dosimetry has increased noticeably during the past decade owing to the availability of new data and evaluations for both integral and differential cross sections, better quantitative understanding of radioactive decay processes, improvements in radiation detection technology, and the development of reliable spectrum unfolding procedures. However, there are problems caused by the persistence of serious integral-differential discrepancies for several important reactions. There is a need to further develop the data base for exothermic and low-threshold reactions needed in thermal and fast-fission dosimetry, and for high-threshold reactions needed in fusion-energy dosimetry. The unsatisfied data requirements for fission reactor dosimetry appear to be relatively modest and well defined, while the needs for fusion are extensive and less well defined because of the immature state of fusion technology. These various data requirements are examined with the goal of providing suggestions for continued dosimetry-related nuclear data research

  12. Neutrons characterization of the nuclear reactor Ian-R1 of Colombia

    International Nuclear Information System (INIS)

    Gonzalez P, L. X.; Martinez O, S. A.; Vega C, H. R.

    2014-08-01

    By means of Monte Carlo methods, with the code MCNPX, the neutron characteristics of the research nuclear reactor Ian-R1 of Colombia, in power off but with the neutrons source in their start position, have been valued. The neutrons spectra, the total flow and their average power were calculated in the irradiation spaces inside the graphite reflector, as well as in the cells with air. Also the spectra, the total flow and the absorbed dose were calculated in several places distributed along the radial shaft inside the water moderator. The neutrons total flow was also considered to the long of the axial shaft. The characteristics of the neutrons spectra vary depending on their position regarding the source and the material that surrounds to the cell where the calculation was made. (Author)

  13. Combined analysis of neutron and photon flux measurements for the Jules Horowitz reactor core mapping

    Energy Technology Data Exchange (ETDEWEB)

    Fourmentel, D.; Villard, J. F.; Lyoussi, A. [DEN Reactor Studies Dept., French Nuclear Energy and Alternative Energies Commission, CEA Cadarache, 13108 Saint Paul-Lez-Durance (France); Reynard-Carette, C. [Laboratoire Chimie Provence LCP UMR 6264, Univ. of Provence, Centre St. Jerome, 13397 Marseille Cedex 20 (France); Bignan, G.; Chauvin, J. P.; Gonnier, C.; Guimbal, P.; Malo, J. Y. [DEN Reactor Studies Dept., French Nuclear Energy and Alternative Energies Commission, CEA Cadarache, 13108 Saint Paul-Lez-Durance (France); Carette, M.; Janulyte, A.; Merroun, O.; Brun, J.; Zerega, Y.; Andre, J. [Laboratoire Chimie Provence LCP UMR 6264, Univ. of Provence, Centre St. Jerome, 13397 Marseille Cedex 20 (France)

    2011-07-01

    We study the combined analysis of nuclear measurements to improve the knowledge of the irradiation conditions in the experimental locations of the future Jules Horowitz Reactor (JHR). The goal of the present work is to measure more accurately neutron flux, photon flux and nuclear heating in the reactor. In a Material Testing Reactor (MTR), nuclear heating is a crucial parameter to design the experimental devices to be irradiated in harsh nuclear conditions. This parameter drives the temperature of the devices and of the samples. The numerical codes can predict this parameter but in-situ measurements are necessary to reach the expected accuracy. For this reason, one objective of the IN-CORE program [1] is to study the combined measurements of neutron and photon flux and their cross advanced interpretation. It should be reminded that both neutron and photon sensors are not totally selective as their signals are due to neutron and photon interactions. We intend to measure the neutron flux by three different kinds of sensors (Uranium Fission chamber, Plutonium Fission chamber and Self Powered Neutron Detector), the photon flux by two different sensors (Ionization chamber and Self Powered Gamma Detector) and the nuclear heating by two different ones (Differential calorimeter and Gamma Thermometer). For the same parameter, we expect that the use of different kinds of sensors will allow a better estimation of the aimed parameter by mixing different spectrum responses and different neutron and gamma contributions. An experimental test called CARMEN-1 is scheduled in OSIRIS reactor (CEA Saclay - France) at the end of 2011, with the goal to map irradiation locations in the reactor reflector to get a first validation of the analysis model. This article focuses on the sensor selection for CARMEN-1 experiment and to the way to link neutron and photon flux measurements in view to reduce their uncertainties but also to better assess the neutron and photon contributions to nuclear

  14. Combined analysis of neutron and photon flux measurements for the Jules Horowitz reactor core mapping

    International Nuclear Information System (INIS)

    Fourmentel, D.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Bignan, G.; Chauvin, J. P.; Gonnier, C.; Guimbal, P.; Malo, J. Y.; Carette, M.; Janulyte, A.; Merroun, O.; Brun, J.; Zerega, Y.; Andre, J.

    2011-01-01

    We study the combined analysis of nuclear measurements to improve the knowledge of the irradiation conditions in the experimental locations of the future Jules Horowitz Reactor (JHR). The goal of the present work is to measure more accurately neutron flux, photon flux and nuclear heating in the reactor. In a Material Testing Reactor (MTR), nuclear heating is a crucial parameter to design the experimental devices to be irradiated in harsh nuclear conditions. This parameter drives the temperature of the devices and of the samples. The numerical codes can predict this parameter but in-situ measurements are necessary to reach the expected accuracy. For this reason, one objective of the IN-CORE program [1] is to study the combined measurements of neutron and photon flux and their cross advanced interpretation. It should be reminded that both neutron and photon sensors are not totally selective as their signals are due to neutron and photon interactions. We intend to measure the neutron flux by three different kinds of sensors (Uranium Fission chamber, Plutonium Fission chamber and Self Powered Neutron Detector), the photon flux by two different sensors (Ionization chamber and Self Powered Gamma Detector) and the nuclear heating by two different ones (Differential calorimeter and Gamma Thermometer). For the same parameter, we expect that the use of different kinds of sensors will allow a better estimation of the aimed parameter by mixing different spectrum responses and different neutron and gamma contributions. An experimental test called CARMEN-1 is scheduled in OSIRIS reactor (CEA Saclay - France) at the end of 2011, with the goal to map irradiation locations in the reactor reflector to get a first validation of the analysis model. This article focuses on the sensor selection for CARMEN-1 experiment and to the way to link neutron and photon flux measurements in view to reduce their uncertainties but also to better assess the neutron and photon contributions to nuclear

  15. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University Reactor

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kanda, K.; Ujeno, Y.; Ishida, M.R.

    1990-01-01

    Physics studies related to radiation source, spectroscopy, beam quality, dosimetry, and biomedical applications using the Kyoto University Reactor Heavy Water Facility are described. Also, described are a Nickel Mirror Neutron Guide Tube and a Super Mirror Neutron Guide Tube that are used both for the measurement of boron concentration in phantom and living tissue and for precise measurements of neutron flux in phantom in the presence of both light and heavy water. Discussed are: (1) spectrum measurements using the time of flight technique, (2) the elimination of gamma rays and fast neutrons from a thermal neutron irradiation field, (3) neutron collimation without producing secondary gamma rays, (4) precise neutron flux measurements, dose estimation, and the measurement of boron concentration in tumor and its periphery using guide tubes, (5) the dose estimation of boron-10 for the first melanoma patient, and (6) special-purpose biological irradiation equipment. Other related subjects are also described

  16. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University reactor

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kanda, K.; Ujeno, Y.; Ishida, M.R.

    1990-01-01

    Physics studies related to radiation source, spectroscopy, beam quality, dosimetry, and biomedical applications using the Kyoto University Reactor Heavy Water Facility are described. Also, described are a Nickel Mirror Neutron Guide Tube and a Super Mirror Neutron Guide Tube that are used both for the measurement of boron concentration in phantom and living tissue and for precise measurements of neutron flux in phantom in the presence of both light and heavy water. Discussed are: (1) spectrum measurements using the time of flight technique, (2) the elimination of gamma rays and fast neutrons from a thermal neutron irradiation field, (3) neutron collimation without producing secondary gamma rays, (4) precise neutron flux measurements, dose estimation, and the measurement of boron concentration in tumor and its periphery using guide tubes, (5) the dose estimation of boron-10 for the first melanoma patient, and (6) special-purpose biological irradiation equipment. Other related subjects are also described

  17. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of spatial and energetic distribution of neutron flux distribution

    International Nuclear Information System (INIS)

    Aredes, Vitor Ottoni Garcia

    2014-01-01

    In this work was conducted the mapping of the thermal and epithermal neutrons flux and the energy spectrum of the neutrons in the reactor core IPEN/MB-01 for a cylindrical core configuration with minor excess reactivity, which is 28 x 28 fuel rods arranged in north-south and east-west directions. The calibration of control rods for this configuration determined their excess reactivity. The lower excess reactivity in the core decreased neutron flux disturbance caused by the neutron absorbing rods , given that the nuclear reactor was operated with the rods almost completely removed . Was used the 'Activation Analysis Technique' with the thin foil activation detectors ( infinitely diluted and hyper-pure), of different materials that work in different energy ranges, to calculate the saturation activity, used for determining the neutron flux and in the SANDBP code as input for the calculation of the neutrons energy spectrum. To discriminate thermal and epithermal flux , was used the 'Cadmium RatioTechnique' . The activation detectors were distributed in a total of 140 radial and axial positions in the reactor core and 16 irradiation, with bare and covered with cadmium activation foils. A model of this configuration was simulated by MCNP-5 code to determine the cadmium correction factor and comparison of the results obtained experimentally. The cylindrical configuration desired, with 17% less fuel than the standard rectangular configuration (28 x 26 fuel rods), reached criticality with the control rods approximately 90% removed, which decreased considerably the disturbance in neutron flux. Given the highest power density of the 28 x 28 cylindrical core, the neutron flux increased by over 50% in the central regions of the core compared to the values of the 28 x 26 standard rectangular core. (author)

  18. Performance Test for Neutron Detector and Associated System using Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seongwoo; Park, Sung Jae; Cho, Man Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Oh, Se Hyun [USERS, Daejeon (Korea, Republic of); Shin, Ho Cheol [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    SPND (Self-Powered Neutron Detector) has been developed to extend its lifespan. ENFMS (Ex-Core Flux Monitoring System) of pressurized water reactor has been also improved. After the development and improvement, their performance must be verified under the neutron irradiation environment. We used a research reactor for the performance verification of neutron detector and associated system because the research reactor can meet the neutron flux level of commercial nuclear reactor. In this paper, we report the performance verification method and result for the SPND and ENFMS using the research reactor. The performance tests for the SPND and ENFMS were conducted using UCI TRIGA reactor. The test environment of commercial reactor’s neutron flux level must be required. However, it is difficult to perform the test in the commercial rector due to the constraint of time and space. The research reactor can be good alternative neutron source for the test of neutron detectors and associated system.

  19. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR [High Flux Isotope Reactor] Reactor

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs

  20. An accurate solution of point reactor neutron kinetics equations of multi-group of delayed neutrons

    International Nuclear Information System (INIS)

    Yamoah, S.; Akaho, E.H.K.; Nyarko, B.J.B.

    2013-01-01

    Highlights: ► Analytical solution is proposed to solve the point reactor kinetics equations (PRKE). ► The method is based on formulating a coefficient matrix of the PRKE. ► The method was applied to solve the PRKE for six groups of delayed neutrons. ► Results shows good agreement with other traditional methods in literature. ► The method is accurate and efficient for solving the point reactor kinetics equations. - Abstract: The understanding of the time-dependent behaviour of the neutron population in a nuclear reactor in response to either a planned or unplanned change in the reactor conditions is of great importance to the safe and reliable operation of the reactor. In this study, an accurate analytical solution of point reactor kinetics equations with multi-group of delayed neutrons for specified reactivity changes is proposed to calculate the change in neutron density. The method is based on formulating a coefficient matrix of the homogenous differential equations of the point reactor kinetics equations and calculating the eigenvalues and the corresponding eigenvectors of the coefficient matrix. A small time interval is chosen within which reactivity relatively stays constant. The analytical method was applied to solve the point reactor kinetics equations with six-groups delayed neutrons for a representative thermal reactor. The problems of step, ramp and temperature feedback reactivities are computed and the results compared with other traditional methods. The comparison shows that the method presented in this study is accurate and efficient for solving the point reactor kinetics equations of multi-group of delayed neutrons

  1. Neutron beam facilities at the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Kim, S.

    2003-01-01

    The exciting development for Australia is the construction of a modern state-of-the-art 20-MW Replacement Research Reactor which is currently under construction to replace the aging reactor (HIFAR) at ANSTO in 2006. To cater for advanced scientific applications, the replacement reactor will provide not only thermal neutron beams but also a modern cold-neutron source moderated by liquid deuterium at approximately -250 deg C, complete with provision for installation of a hot-neutron source at a later stage. The latest 'supermirror' guides will be used to transport the neutrons to the Reactor Hall and its adjoining Neutron Guide Hall where a suite of neutron beam instruments will be installed. These new facilities will expand and enhance ANSTO's capabilities and performance in neutron beam science compared with what is possible with the existing HIFAR facilities, and will make ANSTO/Australia competitive with the best neutron facilities in the world. Eight 'leading-edge' neutron beam instruments are planned for the Replacement Research Reactor when it goes critical in 2006, followed by more instruments by 2010 and beyond. Up to 18 neutron beam instruments can be accommodated at the Replacement Research Reactor, however, it has the capacity for further expansion, including potential for a second Neutron Guide Hall. The first batch of eight instruments has been carefully selected in conjunction with a user group representing various scientific interests in Australia. A team of scientists, engineers, drafting officers and technicians has been assembled to carry out the Neutron Beam Instrument Project to successful completion. Today, most of the planned instruments have conceptual designs and are now being engineered in detail prior to construction and procurement. A suite of ancillary equipment will also be provided to enable scientific experiments at different temperatures, pressures and magnetic fields. This paper describes the Neutron Beam Instrument Project and gives

  2. Neutronic Design of an Accelerator Driven Sub-Critical Research Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    Conceptual design of an accelerator driven sub-critical research reactor (ADSRR), as a new project in the Vinca Institute of Nuclear Sciences, is suggested for support to the Ministry of science, technologies and development of Republic Serbia, Yugoslavia. This paper show initial results of neutronic analyses of the proposed ADSRR carried out by Monte Carlo based MCNP and SHIELD codes. According to the proposal, the ADSRR would be constructed, in a later phase, at high-energy channel H5B of the VINCY cyclotron of the TESLA Accelerator Installation, that is under completion in the Vinca Institute. The fuel elements of 80%-enriched uranium dioxide dispersed in aluminium matrix, available in the Vinca Institute, are proposed for the ADSRR core design. The HEU fuel elements are placed in aluminium tubes filled by the 'primary moderator' - light water. These 'fuel tubes' are placed in a square lattice within lead matrix in a stainless steel tank. The lead is used as a 'secondary moderator' in the core and as the axial and radial reflector. Such design of the ADSRR shows that this small low neutron flux system can be used as an experimental 'demonstration' ADS with some neutron characteristics similar to proposed well-known lead moderated and cooled power sub-critical ADS with intermediate or fast neutron spectrum. The proposed experimental ADSRR, beside usage as a valuable research machine in reactor and neutron physics, will contribute to following and developing new nuclear technologies in the country, useful for eventual nuclear power option and nuclear waste incineration in future. (author)

  3. Blankets for fusion reactors : materials and neutronics

    International Nuclear Information System (INIS)

    Carvalho, S.H. de.

    1980-03-01

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author) [pt

  4. Pulsed TRIGA reactor as substitute for long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1999-01-01

    TRIGA reactor cores have been used to demonstrate various pulsing applications. The TRIGA reactor fuel (U-ZrH x ) is very robust especially in pulsing applications. The features required to produce 50 pulses per second have been successfully demonstrated individually, including pulse tests with small diameter fuel rods. A partially optimized core has been evaluated for pulses at 50 Hz with peak pulsed power up to 100 MW and an average power up to 10 MW. Depending on the design, the full width at half power of the individual pulses can range between 2000 μsec to 3000 μsec. Until recently, the relatively long pulses (2000 μsec to 3000 μsec) from a pulsed thermal reactor or a long pulse spallation source (LPSS) have been considered unsuitable for time-of-flight measurements of neutron scattering. More recently considerable attention has been devoted to evaluating the performance of long pulse (1000 to 4000 μs) spallation sources for the same type of neutron measurements originally performed only with short pulses from spallation sources (SPSS). Adequate information is available to permit meaningful comparisons between CW, SPSS, and LPSS neutron sources. Except where extremely high resolution is required (fraction of a percent), which does require short pulses, it is demonstrated that the LPSS source with a 1000 msec or longer pulse length and a repetition rate of 50 to 60 Hz gives results comparable to those from the 60 MW ILL (CW) source. For many of these applications the shorter pulse is not necessarily a disadvantage, but it is not an advantage over the long pulse system. In one study, the conclusion is that a 5 MW 2000 μsec LPSS source improves the capability for structural biology studies of macromolecules by at least a factor of 5 over that achievable with a high flux reactor. Recent studies have identified the advantages and usefulness of long pulse neutron sources. It is evident that the multiple pulse TRIGA reactor can produce pulses comparable to

  5. A conceptual design of neutron tumor therapy reactor facility with a YAYOI based fast neutron source reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki; An, Shigehiro.

    1983-01-01

    Fast neutron is known as one of useful radiations for radiation therapy of tumors. Boron neutron capture therapy (BNCT) of tumors which makes use of 10 B(n, α) 7 Li reaction of 10 B compounds selectively attached to tumor cells with thermal and intermediate neutrons is another way of neutron based radiation therapy which is, above all, attractive enough to kill tumor cells selectively sparing normal tissue. In Japan, BNCT has already been applied and leaned to be effective. After more than a decade operational experiences and the specific experiments designed for therapeutical purposes, in this paper, a conceptual design of a special neutron therapy reactor facility based on YAYOI - fast neutron source reactor of Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo - modified to provide an upward beam of fast and intermediate neutrons is presented. Emphasis is placed on the in-house nature of facility and on the coordinating capability of biological and physical researches as well as maintenances of the facility. (author)

  6. Status of neutron beam utilization at the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Dien, Nguyen Nhi; Hai, Nguyen Canh

    2003-01-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  7. Measurement of delayed neutron-emitting fission products in nuclear reactor coolant water during reactor operation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The method covers the detection and measurement of delayed neutron-emitting fission products contained in nuclear reactor coolant water while the reactor is operating. The method is limited to the measurement of the delayed neutron-emitting bromine isotope of mass 87 and the delayed neutron-emitting iodine isotope of mass 137. The other delayed neutron-emitting fission products cannot be accurately distinguished from nitrogen 17, which is formed under some reactor conditions by neutron irradiation of the coolant water molecules. The method includes a description of significance, measurement variables, interferences, apparatus, sampling, calibration, standardization, sample measurement procedures, system efficiency determination, calculations, and precision

  8. Improved Delayed-Neutron Spectroscopy Using Trapped Ions

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Eric

    2018-04-24

    The neutrons emitted following the  decay of fission fragments (known as delayed neutrons because they are emitted after fission on a timescale of the -decay half-lives) play a crucial role in reactor performance and control. Reviews of delayed-neutron properties highlight the need for high-quality data for a wide variety of delayed-neutron emitters to better understand the timedependence and energy spectrum of the neutrons as these properties are essential for a detailed understanding of reactor kinetics needed for reactor safety and to understand the behavior of these reactors under various accident and component-failure scenarios. For fast breeder reactors, criticality calculations require accurate delayed-neutron energy spectra and approximations that are acceptable for light-water reactors such as assuming the delayed-neutron and fission-neutron energy spectra are identical are not acceptable and improved -delayed neutron data is needed for safety and accident analyses for these reactors. With improved nuclear data, the delayedneutrons flux and energy spectrum could be calculated from the contributions from individual isotopes and therefore could be accurately modeled for any fuel-cycle concept, actinide mix, or irradiation history. High-quality -delayed neutron measurements are also critical to constrain modern nuclear-structure calculations and empirical models that predict the decay properties for nuclei for which no data exists and improve the accuracy and flexibility of the existing empirical descriptions of delayed neutrons from fission such as the six-group representation

  9. Neutronic characteristics of linear-assembly breed-and-burn reactors

    International Nuclear Information System (INIS)

    Petroski, Robert; Forget, Benoit; Forsberg, Charles

    2012-01-01

    Highlights: ► Simple models used to characterize general behavior of linear-assembly B and B reactors. ► Diffusion theory model developed to explain axial distributions, height vs. reactivity. ► Neutron excess concept reformulated to include linear-assembly B and B reactors. ► Designed model of B and B reactor started using melt-refined B and B reactor used fuel. ► Computed doubling time of fuel cycle requiring no chemical separations. - Abstract: Linear-assembly breed-and-burn (B and B) reactors are B and B reactors that use axially connected assemblies similar to conventional LWR or fast reactor fuel assemblies. Methods for analyzing linear-assembly B and B reactors and their fuel cycles are developed and applied. General neutronic characteristics of linear-assembly B and B reactors are analyzed, including the effects that burnup, shuffling sequence, and radial and axial size have on equilibrium-cycle k-effective. The mechanisms that give rise to a highly peaked axial burnup distribution are explained, and a method for predicting peak burnup vs. k-effective based on infinite-medium depletion calculations is developed. Next, the neutron excess concept from previous studies of B and B reactors is extended to apply to linear-assembly B and B reactors, which allows the amount of starter fuel needed to establish a given equilibrium cycle to be calculated. Several example applications of the neutron excess formulation are given. First, an example model of a linear-assembly B and B reactor is analyzed to find the neutron excess cost of an equilibrium cycle. Second, simple one-dimensional models are used to predict the neutron excess value obtainable from different starter fuel configurations. Finally, these ideas are applied to design a fuel cycle consisting of linear-assembly B and B reactors and fuel recycling via a melt refining process. The neutron excess concept is used to design an appropriate starter fuel configuration made from melt refined fuel, which

  10. A neutron spectrum unfolding code based on iterative procedures

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.

    2012-10-01

    In this work, the version 3.0 of the neutron spectrum unfolding code called Neutron Spectrometry and Dosimetry from Universidad Autonoma de Zacatecas (NSDUAZ), is presented. This code was designed in a graphical interface under the LabVIEW programming environment and it is based on the iterative SPUNIT iterative algorithm, using as entrance data, only the rate counts obtained with 7 Bonner spheres based on a 6 Lil(Eu) neutron detector. The main features of the code are: it is intuitive and friendly to the user; it has a programming routine which automatically selects the initial guess spectrum by using a set of neutron spectra compiled by the International Atomic Energy Agency. Besides the neutron spectrum, this code calculates the total flux, the mean energy, H(10), h(10), 15 dosimetric quantities for radiation protection porpoises and 7 survey meter responses, in four energy grids, based on the International Atomic Energy Agency compilation. This code generates a full report in html format with all relevant information. In this work, the neutron spectrum of a 241 AmBe neutron source on air, located at 150 cm from detector, is unfolded. (Author)

  11. Neutron Beam Filters

    International Nuclear Information System (INIS)

    Adib, M.

    2011-01-01

    The purpose of filters is to transmit neutrons with selected energy, while remove unwanted ones from the incident neutron beam. This reduces the background, and the number of spurious. The types of commonly used now-a-day neutron filters and their properties are discussed in the present work. There are three major types of neutron filters. The first type is filter of selective thermal neutron. It transmits the main reflected neutrons from a crystal monochromate, while reject the higher order contaminations accompanying the main one. Beams coming from the moderator always contain unwanted radiation like fast neutrons and gamma-rays which contribute to experimental background and to the biological hazard potential. Such filter type is called filter of whole thermal neutron spectrum. The third filter type is it transmits neutrons with energies in the resonance energy range (En . 1 KeV). The main idea of such neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasimonochromatic neutron lines instead of white reactor spectrum.

  12. Kartini Research Reactor prospective studies for neutron scattering application

    International Nuclear Information System (INIS)

    Widarto

    1999-01-01

    The Kartini Research Reactor (KRR) is located in Yogyakarta Nuclear Research Center, Yogyakarta - Indonesia. The reactor is operated for 100 kW thermal power used for research, experiments and training of nuclear technology. There are 4 beam ports and 1 column thermal are available at the reactor. Those beam ports have thermal neutron flux around 10 7 n/cm 2 s each other and used for sub critical assembly, neutron radiography studies and Neutron Activation Analysis (NAA). Design of neutron collimator has been done for piercing radial beam port and the calculation result of collimated neutron flux is around 10 9 n/cm 2 s. This paper describes experiment facilities and parameters of the Kartini research reactor, and further more the prospective studies for neutron scattering application. The purpose of this paper is to optimize in utilization of the beam ports facilities and enhance the manpower specialty. The special characteristic of the beam ports and preliminary studies, pre activities regarding with neutron scattering studies for KKR is presented. (author)

  13. Compilation of Existing Neutron Screen Technology

    Directory of Open Access Journals (Sweden)

    N. Chrysanthopoulou

    2014-01-01

    Full Text Available The presence of fast neutron spectra in new reactors is expected to induce a strong impact on the contained materials, including structural materials, nuclear fuels, neutron reflecting materials, and tritium breeding materials. Therefore, introduction of these reactors into operation will require extensive testing of their components, which must be performed under neutronic conditions representative of those expected to prevail inside the reactor cores when in operation. Due to limited availability of fast reactors, testing of future reactor materials will mostly take place in water cooled material test reactors (MTRs by tailoring the neutron spectrum via neutron screens. The latter rely on the utilization of materials capable of absorbing neutrons at specific energy. A large but fragmented experience is available on that topic. In this work a comprehensive compilation of the existing neutron screen technology is attempted, focusing on neutron screens developed in order to locally enhance the fast over thermal neutron flux ratio in a reactor core.

  14. Average Soil Water Retention Curves Measured by Neutron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  15. Neutron metrology in LAMPF, USA

    International Nuclear Information System (INIS)

    Ketema, D.J.; Nolthenius, H.J.

    1990-08-01

    The characterization of appropriate materials for fusion reactors requires a high intensity neutron source which simulates the neutron spectrum and the radiation conditions at the positions of interest in a fusion reactor (first wall). A neutron spectrum of interest is found in the Clinton P. Anderson Los Alamos Meson Physics Facility (LAMPF). Various ceramic materials and some polycrystalline graphites were irradiated in this facility during two intervals of time in 1986 and 1987. The specimens were accompanied by several sets with activation detectors. This report presents the saturation activities per atom obtained from these sets. (author). 3 refs.; 8 figs.; 10 tabs

  16. Neutron spectrum measurement using rise-time discrimination method

    International Nuclear Information System (INIS)

    Luo Zhiping; Suzuki, C.; Kosako, T.; Ma Jizeng

    2009-01-01

    PSD method can be used to measure the fast neutron spectrum in n/γ mixed field. A set of assemblies for measuring the pulse height distribution of neutrons is built up,based on a large volume NE213 liquid scintillator and standard NIM circuits,through the rise-time discrimination method. After that,the response matrix is calculated using Monte Carlo method. The energy calibration of the pulse height distribution is accomplished using 60 Co radioisotope. The neutron spectrum of the mono-energetic accelerator neutron source is achieved by unfolding process. Suggestions for further improvement of the system are presented at last. (authors)

  17. Neutron beam utilization at the TRIGA Mark II reactor Vienna

    International Nuclear Information System (INIS)

    Villa, M.; Boeck, H.; Ismail, S.; Koerner, S.; Baron, M.; Hainbuchner, M.; Badurek, G.; Buchelt, R.J.

    1999-01-01

    A review is given about the research activities around the 250 kw TRIGA reactor Vienna, which are adequate to other neutron sources of comparable or bigger size. The topics selected for presentation range from neutron radiography, materials irradiation, neutron small-angle scattering, neutron activation analysis, neutron polarization to neutron interferometry. It is the aim of this presentation to stimulate programs for more efficient use around TRIGA research reactors with neutron flux densities of 1013 cm-2a-1 at the center of the reactor core. We briefly describe the experimental facilities installed at the 250 kw TRIGA reactor of the Austrian Universities in Vienna and present a great part of the current research activities performed with them. We believe that most of the techniques and experiments presented here are adequate for implementation to other reactors of similar or even higher power. Those technologies which require extremely specialized know-how not generally available at every research Inst.e will not be treated here or are just mentioned without any further details.(author)

  18. Maximum neutron flux in thermal reactors

    International Nuclear Information System (INIS)

    Strugar, P.V.

    1968-12-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples

  19. Calibration of the nuclear power channels of the IPEN/MB-01 reactor obtained from the measurements of the spatial thermal neutron flux distribution in the reactor core through the irradiation of infinitely diluted gold foils

    International Nuclear Information System (INIS)

    Goncalves, Lucas Batista

    2008-01-01

    Several nuclear parameters are obtained through the gamma spectrometry of targets irradiated in a research reactor core and this is the case of the activation foils which make possible, through the measurements of the activity induced, to determine the neutron flux in the place where they had been irradiated. The power level operation of the reactor is a parameter directly proportional to the average neutron flux in the core. This work aims to get the power operation of the reactor through of spatial neutron flux distribution in the core of IPEN/MB-01 reactor by the irradiation of infinitely diluted gold foils and prudently located in its interior. These foils were made in the form of metallic alloy in concentration levels such that the phenomena of flux disturbance, as the self-shielding factors to neutrons become worthless. These activation foils has only 1% of dispersed gold atoms in an aluminium matrix content of 99% of this element. The irradiations of foils have been carried through with and without cadmium plate. The total correlation between the average thermal neutron flux obtained by irradiation of infinitely diluted activation foils and the average digital value of current of the nuclear power channels 5 and 6 (non-compensated ionization chambers - CINC), allow the calibration of the nuclear channels of the IPEN/MB-01 reactor. (author)

  20. Prompt-gamma spectrometry for the optimization of reactor neutron beams in biomedical research

    International Nuclear Information System (INIS)

    Borisov, G.I.; Komkov, M.M.; Leonov, V.F.

    1988-01-01

    In order to select the optimal spectral composition and size for the reactor neutron beams applied to in vivo analysis and therapy in biomedical research it is necessary to determine the spatial slow-neutron flux distributions produced by the beam in the irradiated object and to calculate or measure the neutron dose equivalents of both the original spectrum and the moderated neutrons. In this study the maximum neutron dose equivalents are found by spectrometry of the prompt-γ emission from the interaction of neutrons with atomic nuclei in the irradiated object. Different spectral distributions were produced by using an unfiltered beam together with filters of quartz, cadmium, 10 B, iron, aluminum, and sulfur. The phantom used was a tank filled with an aqueous solution of urea. Cadmium-containing organs were simulated. For in vivo neutron-activation analysis of human tissues at a depth of 2-5 cm it was found advisable to use neutrons of 20-40 keV mean energy with a beam area of at least 45 cm 2

  1. Construction of the neutron beam facility at Australia's OPAL research reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane J.

    2006-01-01

    Australia's new research reactor, OPAL, has been designed principally for neutron beam science and radioisotope production. It has a capacity for 18 neutron beam instruments, located at the reactor face and in a neutron guide hall. The neutron beam facility features a 20 l liquid deuterium cold neutron source and cold and thermal supermirror neutron guides. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, when criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. This paper will outline the key features of the OPAL reactor, and will describe the neutron beam facility in particular. The status of the construction and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed

  2. Fast neutron dosimetry in research reactors

    International Nuclear Information System (INIS)

    Eckert, R.

    1960-01-01

    This work chiefly concerns the measurement of fast neutron fluxes by means of threshold detectors. It is shown first that the cross sections to use for measurements by threshold detectors depend largely on the neutron spectrum, that is the position in which the measurement is performed. The spectrum is determined by calculation for several positions in the piles EL2 and EL3; from this can be deduced the cross-sections to be used for the measurements carried out in these positions. In the last part of the report, possible methods for the experimental determination of the spectrum are indicated. (author) [fr

  3. Specification of fast neutron radiation quality from cell transformation data

    International Nuclear Information System (INIS)

    Coppola, M.

    1992-01-01

    Experimental data on the neoplastic transformation of C3H 10T1/2 cells measured at Casaccia after neutron and X-ray irradiation were used to determine neutron RBE values for the RSV-Tapiro fast reactor energy spectrum and for monoenergetic neutrons of 0.5, 1, and 6 MeV. In parallel, micro-dosimetric measurements provided the actual lineal energy distributions and related mean parameters for the reactor radiation. From these experiments, values of the neutron quality factor were derived for the reactor neutron energy spectrum and, in turn, for the other neutron energies tested. A mathematical expression giving a smooth dependence on neutron energy was also determined for the effective quality factor in the entire energy range examined. The results were compared with other proposals

  4. A Wide Spectrum Neutron Polarizer for a Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.

    1994-01-01

    A wide spectrum neutron polarizer for a pulsed neutron source is considered. The polarizer is made in a form of a set of magnetized mirrors placed on a drum. Homogeneous rotation of the polarizer is synchronized with the power pulses of the neutron source. The polarizer may be utilized in a collimated neutron beam with cross section of the order of magnitude of 100 cm 2 within a wavelength from 2 up to 20 A on sources with a pulse repetition frequency up to 50 Hz. (author). 5 refs.; 3 figs

  5. A neutronic feasibility study for LEU conversion of the Brookhaven Medical Research Reactor (BMRR).

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, N. A.

    1998-01-14

    A neutronic feasibility study for converting the Brookhaven Medical Research Reactor from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with Brookhaven National Laboratory. Two possible LEU cores were identified that would provide nearly the same neutron flux and spectrum as the present HEU core at irradiation facilities that are used for Boron Neutron Capture Therapy and for animal research. One core has 17 and the other has 18 LEU MTR-type fuel assemblies with uranium densities of 2.5g U/cm{sup 3} or less in the fuel meat. This LEU fuel is fully-qualified for routine use. Thermal hydraulics and safety analyses need to be performed to complete the feasibility study.

  6. Neutron spectrum and dose-equivalent in shuttle flights during solar maximum

    Energy Technology Data Exchange (ETDEWEB)

    Keith, J E; Badhwar, G D; Lindstrom, D J [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center

    1992-01-01

    This paper presents unambiguous measurements of the spectrum of neutrons found in spacecraft during spaceflight. The neutron spectrum was measured from thermal energies to about 10 MeV using a completely passive system of metal foils as neutron detectors. These foils were exposed to the neutron flux bare, covered by thermal neutron absorbers (Gd) and inside moderators (Bonner spheres). This set of detectors was flown on three U.S. Space Shuttle flights, STS-28, STS-36 and STS-31, during the solar maximum. We show that the measurements of the radioactivity of these foils lead to a differential neutron energy spectrum in all three flights that can be represented by a power law, J(E){approx equal}E{sup -0.765} neutrons cm{sup -2} day {sup -1} MeV{sup -1}. We also show that the measurements are even better represented by a linear combination of the terrestrial neutron albedo and a spectrum of neutrons locally produced in a aluminium by protons, computed by a previous author. We use both approximations to the neutron spectrum to produce a worst case and most probable case for the neutron spectra and the resulting dose-equivalents, computed using ICRP-51 neutron fluence-dose conversion tables. We compare these to the skin dose-equivalents due to charged particles during the same flights. (author).

  7. Reactor safety protection system

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Yokoyama, Tsuguo.

    1989-01-01

    A plurality of neutron detectors are disposed around a reactor core and detection signals from optional two neutron detectors are inputted into a ratio calculation device. If the ratio between both of the neutron flux level signals exceeds a predetermined value, a reactor trip signal is generated from an alarm setting device. Further, detection signals from all of the neutron detection devices are inputted into an average calculation device and the reactor trip signal is generated also in a case where the average value exceeds a predetermined set value. That is, when the reactor core power is increased locally, the detection signal from the neutron detector nearer to the point of power increase is greater than the increase rate for the entire reactor core power, while the detection signal from the neutron detector remote from the point of power increase is smaller. Thus, the local power increase ratio in the FBR reactor core can be detected efficiently by calculating the ratio for the neutron flux level signals from two neutron detectors, thereby enabling to exactly recognize the local power increase rate in the reactor core. (N.H.)

  8. Background determination for the neutron-neutron scattering experiment at the reactor YAGUAR

    Energy Technology Data Exchange (ETDEWEB)

    Muzichka, A.Yu. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Furman, W.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Krylov, A.R. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V.N. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Levakov, B.G. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Lyzhin, A.E. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Chernukhin, Yu.I. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Kandiev, Ya.Z. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Crawford, B.E. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S.L. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States)]. E-mail: sstephen@gettysburg.edu; Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2007-06-01

    The motivation and design is outlined for the experiment to measure the neutron-neutron singlet scattering length directly with thermal neutrons at the pulsed reactor YAGUAR. A statistical accuracy of 3% can be reached, though achieving the goal of an overall accuracy of 3-5% for the nn-scattering length depends on the background level. Possible sources of background are discussed in depth and the results of extensive modeling of the background are presented. Measurements performed at YAGUAR to test these background calculations are described. The experimental results indicate an anticipated background level up to 30% relative to the expected nn effect at the maximal energy burst of the reactor. The conclusion is made that the nn experiment at YAGUAR is feasible to produce the first directly measured value for the neutron-neutron scattering length.

  9. Measurement and calculation of spatial and energetic neutron flux in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    Bittelli, U.D.

    1988-01-01

    This work presents spatial and energetic flux distribution measured in the IEA-R1 reactor core. The thermal neutron flux was measured by gold activation foils (bare and covered with cadmium) in the fuel element number 108 (reaction: 197 Au(n,γ) 198 Au) at 451W overall reactor power. The fast neutron flux was measured by indium activation foils (reaction: 115 In(n,n') 115m In) in the fuel elements number 94 at 4510W overall reactor power. The neutron energy spectrum was adjusted by SAND II code with the data produced by the irradiation of seven activation detectors in the fuel element number 94 at 4510 W overall reactor power. The following reactions were used: 58 Fe(n,γ) 59 Fe, 232 Th(n,γ) 233 Th, 197 Au(n,γ) 198 Au, 59 Co(n,γ) 60 Co, 54 Fe(n,p) 54 Mn, 24 Mg(n,p) 24 Na, 47 Ti(n,p) 47 Sc, 48 Ti(n,p) 48 Sc and 115 In(n,n') 115m In. The experimental results compared to those obtained by CITATION (spatial distribution flux) and HAMMER (energetic distribution flux) code, showed good agreement. The results presented in this work are a good contribution for a better knowledge of spatial and energetic neutron flux distribution in the IEA-R1 reactor core, besides that the experimental procedure is easily applicable to another situations. (autor) [pt

  10. Parameters measurement for the thermal neutron beam in the thermal column hole of Xi’an pulse reactor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The distribution of the neutron spectra in the thermal column hole of Xi’an pulse reactor was measured with the time-of-flight method.Compared with the thermal Maxwellian theory neutron spectra,the thermal neutron spectra measured is a little softer,and the average neutron energy of the experimental spectra is about 0.042±0.01 eV.The thermal neutron fluence rate at the front end of thermal column hole,measured with gold foil activation techniques,is about 1.18×105 cm-2 s-1.The standard uncertainty of the measured thermal neutron fluence is about 3%.The spectra-averaged cross section of 197Au(n,γ) determined by the experimental thermal neutron spectra is(92.8±0.93) ×10-24 cm2.

  11. On the contradiction between the microscopic and integral data for fast neutron absorption cross-section for 238U nuclei

    International Nuclear Information System (INIS)

    Van'kov, A.A.

    1994-01-01

    The contradiction between a measured integral neutron absorption cross-section averaged over a fast reactor spectrum and the corresponding value which was calculated with the use of evaluated microscopic cross-sections and a theoretical neutron spectrum has been investigated. The possible systematic error of a correction factor which takes into account multiple resonance neutron scattering in samples used in the measurement of the absorption cross-section is investigated. It is proposed that this error may be one of the main reason for the contradiction mentioned above which arises in the measurement of the 236 U neutron absorption cross-section. (author). 13 refs, 3 figs

  12. Development of supercritical water reactors in Russia and abroad

    International Nuclear Information System (INIS)

    Glebov, A.P.; Klushin, A.V.

    2014-01-01

    The results of Russian and foreign studies on the water-cooled high critical parameters reactors are analyzed. Developments on this subject are conducted in more than 15 countries. The advantages of WWER- SCP and characteristics of experimental reactor of WWER-SCP-30 are discussed. It is noted that priority task is to develop a reactor with thermal neutron spectrum with a subsequent transition to the reactor with a fast neutron spectrum [ru

  13. Neutron dosimetry. Environmental monitoring in a BWR type reactor; Dosimetria de neutrones. Monitoreo ambiental en un reactor del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tavera D, L; Camacho L, M E

    1991-01-15

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  14. Calibration of the nuclear power channels for the cylindrical configuration of the IPEN/MB-01 reactor obtained from the measurements of the spatial neutron flux distribution in the reactor core through the irradiation of gold foils

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Silva, Alexandre F. Povoa da; Mura, Luiz Ernesto Credidio; Aredes, Vitor Ottoni Garcia; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br, E-mail: alexpovoa@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The activation foil is one of the most used techniques to obtain and compare nuclear parameters from the nuclear data libraries, given by a gamma spectrometry system. Through the measurements of activity induced in the foils, it is possible to determine the neutron flux profile exactly where it has been irradiated. The power level operation of the reactor is a parameter directly proportional to the average neutron flux in the core. The objective of this work is to obtain, for a cylindrical configuration, the power generation through a spatial thermal neutron flux distribution in the core of IPEN/MB-01 Reactor, by irradiating gold foils positioned symmetrically into the core. They are put in a Lucite plate which will not interfere in the analysis of the neutron flux, because of its low microscopic absorption cross section for the analyzed neutrons. The foils are irradiated with and without cadmium covered small plates, to obtain the thermal and epithermal neutron flux, through specific equations. The correlation between the average power neutron flux, as a result of the foil's irradiation, and the average power digital neutron flux of the nuclear power channels, allows the calibration of the nuclear channels of the reactor. This same correlation was done in 2008 with the reactor in a rectangular configuration, which resulted in a specific calibration of the power level operation. This calibration cannot be used in the cylindrical configuration, because the nuclear parameters could change, which may lead to a different neutron profile. Furthermore, the precise knowledge of the power neutron flux in the core also validates the mathematics used to calculate the power neutron flux. (author)

  15. Limitations for qualitative and quantitative neutron activation analysis using reactor neutrons

    International Nuclear Information System (INIS)

    El-Abbady, W.H.; El-Tanahy, Z.H.; El-Hagg, A.A.; Hassan, A.M.

    1999-01-01

    In this work, the most important limitations for qualitative and quantitative analysis using reactor neutrons for activation are reviewed. Each limitation is discussed using different examples of activated samples. Photopeak estimation, nuclear reactions interference and neutron flux measurements are taken into consideration. Solutions for high accuracy evaluation in neutron activation analysis applications are given. (author)

  16. Biological dosimetry studies for boron neutron capture therapy at the RA-1 research reactor facility

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Castillo, Jorge

    2004-01-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminescent dosimeters to characterize the BNCT facility developed at the RA-1 research reactor operated by the National Atomic Energy Commission in Buenos Aires. Biological dosimetry was performed employing the hamster cheek pouch oral cancer model previously validated for BNCT studies by our group. Results indicate that the RA-1 neutron source produces useful dose rates for BNCT studies but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications. (author)

  17. Neutron flux measurements in C-9 capsule pressure tube

    International Nuclear Information System (INIS)

    Barbos, D.; Roth, C. S.; Gugiu, D.; Preda, M.

    2001-01-01

    C-9 capsule is a fuel testing facility in which the testing consists of a daily cycle ranging between the limits 100% power to 50% power. C-9 in-pile section with sample holder an instrumentation are introduced in G-9 and G-10 experimental channels. The experimental fuel channel has a maximum value when the in-pile section (pressure tube) is in G-9 channel and minimum value in G-10 channel. In this paper the main goals are determination or measurements of: - axial thermal neutron flux distribution in C-9 pressure tube both in G-9 and G-10 channel; - ratio of maximum neutron flux value in G-9 and the same value in G-9 channel and the same value in G-10 channel; - neutron flux-spectrum. On the basis of axial neutron flux distribution measurements, the experimental fuel element in sample holder position in set. Both axial neutron flux distribution of thermal neutrons and neutron flux-spectrum were performed using multi- foil activation technique. Activation rates were obtained by absolute measurements of the induced activity using gamma spectroscopy methods. To determine the axial thermal neutron flux distribution in G-9 and G-10, Cu 100% wire was irradiated at the reactor power of 2 MW. Ratio between the two maximum values, in G-9 and G-10 channels, is 2.55. Multi-foil activation method was used for neutron flux spectrum measurements. The neutron spectra and flux were obtained from reaction rate measurements by means of SAND 2 code. To obtain gamma-ray spectra, a HPGe detector connected to a multichannel analyzer was used. The spectrometer is absolute efficiency calibrated. The foils were irradiated at 2 MW reactor power in previously determined maximum flux position resulted from wire measurements. This reaction rates were normalized for 10 MW reactor power. Neutron self shielding corrections for the activation foils were applied. The self-shielding corrections are computed using Monte Carlo simulation methods. The measured integral flux is 1.1·10 14 n/cm 2 s

  18. Sensitivity analysis of the kinetic behaviour of a Gas Cooled Fast Reactor to variations of the delayed neutron parameters

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.; Lathouwers, D.

    2007-01-01

    In advanced Generation IV (fast) reactors an integral fuel cycle is envisaged, where all Heavy Metal is recycled in the reactor. This leads to a nuclear fuel with a considerable content of Minor Actinides. For many of these isotopes the nuclear data is not very well known. In this paper the sensitivity of the kinetic behaviour of the reactor to the dynamic parameters λ k , β k and the delayed spectrum χ d,k is studied using first order perturbation theory. In the current study, feedback due to Doppler and/or thermohydraulic effects are not treated. The theoretical framework is applied to a Generation IV Gas Cooled Fast Reactor. The results indicate that the first-order approach is satisfactory for small variations of the data. Sensitivities to delayed neutron data are similar for increasing and decreasing transients. Sensitivities generally increase with reactivity for increasing transients. For decreasing transients, there are less clearly defined trends, although the sensitivity to the delayed neutron spectrum decreases with larger sub-criticality, as expected. For this research, an adjoint capable version of the time-dependent diffusion code DALTON is under development. (authors)

  19. Determination of europium content in Li_2SiO_3(Eu) by neutron activation analysis using Am-Be neutron source

    International Nuclear Information System (INIS)

    Naik, Yeshwant; Tapase, Anant Shamrao; Mhatre, Amol; Datrik, Chandrashekhar; Tawade, Nilesh; Kumar, Umesh; Naik, Haladhara

    2016-01-01

    Circulardiscs of Li_2SiO_3 doped with europium were prepared and a new activation procedure for the neutron dose estimation in a breeder blanket of fusion reactor is described. The amount of europium in the disc was determined by neutron activation analysis (NAA) using an isotopic neutron source. The average neutron absorption cross section for the reaction was calculated using neutron distribution of the Am-Be source and available neutron absorption cross section data for the "1"5"1Eu(n,γ)"1"5"2"mEu reaction, which was used for estimation of europium in the pallet. The cross section of the elements varies with neutron energy, and the flux of the neutrons in each energy range seen by the nuclei under investigation also varies. Neutron distribution spectrum of the Am-Be source was worked out prior to NAA and the effective fractional flux for the nuclear reaction considered for the flux estimation was also determined. - Highlights: • Lithium meta-silicate is breeder materials for a fusion reactor. • Europium is used for neutron dose estimation in a breeder blanket. • It is important to determine amount of europium in lithium meta-silicate. • Amount of europium in lithium meta-silicate was determined by neutron activation and off-line gamma spectrometry.

  20. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  1. Neutron flux measurements in PUSPATI Triga Reactor

    International Nuclear Information System (INIS)

    Gui Ah Auu; Mohamad Amin Sharifuldin Salleh; Mohamad Ali Sufi.

    1983-01-01

    Neutron flux measurement in the PUSPATI TRIGA Reactor (PTR) was initiated after its commissioning on 28 June 1982. Initial measured thermal neutron flux at the bottom of the rotary specimen rack (rotating) and in-core pneumatic terminus were 3.81E+11 n/cm 2 sec and 1.10E+12n/cm 2 sec respectively at 100KW. Work to complete the neutron flux data are still going on. The cadmium ratio, thermal and epithermal neutron flux are measured in the reactor core, rotary specimen rack, in-core pneumatic terminus and thermal column. Bare and Cadmium covered gold foils and wires are used for the above measurement. The activities of the irradiated gold foils and wires are determined using Ge(Li) and hyperpure germinium detectors. (author)

  2. Using TRIGA Mark II research reactor for irradiation with thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kolšek, Aljaž, E-mail: aljaz.kolsek@gmail.com; Radulović, Vladimir, E-mail: vladimir.radulovic@ijs.si; Trkov, Andrej, E-mail: andrej.trkov@ijs.si; Snoj, Luka, E-mail: luka.snoj@ijs.si

    2015-03-15

    Highlights: • Monte Carlo N-Particle Transport Code was used to design and perform calculations. • Characterization of the TRIGA Mark II ex-core irradiation facilities was performed. • The irradiation device was designed in the TRIGA irradiation channel. • The use of the device improves the fraction of thermal neutron flux by 390%. - Abstract: Recently a series of test irradiations was performed at the JSI TRIGA Mark II reactor for the Fission Track-Thermoionization Mass Spectrometry (FT-TIMS) method, which requires a well thermalized neutron spectrum for sample irradiation. For this purpose the Monte Carlo N-Particle Transport Code (MCNP5) was used to computationally support the design of an irradiation device inside the TRIGA model and to support the actual measurements by calculating the neutron fluxes inside the major ex-core irradiation facilities. The irradiation device, filled with heavy water, was designed and optimized inside the Thermal Column and the additional moderation was placed inside the Elevated Piercing Port. The use of the device improves the ratio of thermal neutron flux to the sum of epithermal and fast neutron flux inside the Thermal Column Port by 390% and achieves the desired thermal neutron fluence of 10{sup 15} neutrons/cm{sup 2} in irradiation time of 20 h.

  3. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra

    International Nuclear Information System (INIS)

    Duran, I.; Bolshakova, I.; Holyaka, R.; Viererbl, L.; Lahodova, Z.; Sentkerestiova, J.; Bem, P.

    2010-01-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10 16 cm -2 was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  4. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  5. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tariq Siddique, M.; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM.

  6. maximum neutron flux at thermal nuclear reactors

    International Nuclear Information System (INIS)

    Strugar, P.

    1968-10-01

    Since actual research reactors are technically complicated and expensive facilities it is important to achieve savings by appropriate reactor lattice configurations. There is a number of papers, and practical examples of reactors with central reflector, dealing with spatial distribution of fuel elements which would result in higher neutron flux. Common disadvantage of all the solutions is that the choice of best solution is done starting from the anticipated spatial distributions of fuel elements. The weakness of these approaches is lack of defined optimization criteria. Direct approach is defined as follows: determine the spatial distribution of fuel concentration starting from the condition of maximum neutron flux by fulfilling the thermal constraints. Thus the problem of determining the maximum neutron flux is solving a variational problem which is beyond the possibilities of classical variational calculation. This variational problem has been successfully solved by applying the maximum principle of Pontrjagin. Optimum distribution of fuel concentration was obtained in explicit analytical form. Thus, spatial distribution of the neutron flux and critical dimensions of quite complex reactor system are calculated in a relatively simple way. In addition to the fact that the results are innovative this approach is interesting because of the optimization procedure itself [sr

  7. Prometeo I. A program for averaging thermal constants over a Wigner-Wilkins flux spectrum on the Univac UCT of J.E.N

    International Nuclear Information System (INIS)

    Corella, M. R.; Iglesias, T.

    1964-01-01

    The Prometeo I program for the Univac UCT of J.E.N., determines the spectrum of thermal neutrons in equilibrium with a hydrogen-moderated homogeneous mixture from the Wigner-Wilkins differential equation, and averages various, cross sections over the spectrum. The present cross section libraries, available for the Prometeo I , are tabulated. (Author) 4 refs

  8. Condensed matter and materials research using neutron diffraction and spectroscopy: reactor and pulsed neutron sources

    International Nuclear Information System (INIS)

    Bisanti, Paola; Lovesey, S.W.

    1987-05-01

    The paper provides a short, and partial view of the neutron scattering technique applied to condensed matter and materials research. Reactor and accelerator-based neutron spectrometers are discussed, together with examples of research projects that illustrate the puissance and modern applications of neutron scattering. Some examples are chosen to show the range of facilities available at the medium flux reactor operated by Casaccia ENEA, Roma and the advanced, pulsed spallation neutron source at the Rutherford Appleton Laboratory, Oxfordshire. (author)

  9. Use of boron nitride for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Radulović, Vladimir, E-mail: vladimir.radulovic@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Trkov, Andrej [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); IAEA, Vienna International Centre, PO Box 100, A-1400 Vienna (Austria); Jaćimović, Radojko [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Gregoire, Gilles; Destouches, Christophe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St. Paul-Lez-Durance (France)

    2016-12-21

    A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract. - Graphical abstract: Neutron spectra inside the JSI TRIGA Mark II PT irradiation position, obtained with a Monte Carlo calculation: blue: unperturbed, green inside a BN container, of wall thickness 4 mm, 13 mm in diameter and 14 mm in height.

  10. Use of boron nitride for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements

    International Nuclear Information System (INIS)

    Radulović, Vladimir; Trkov, Andrej; Jaćimović, Radojko; Gregoire, Gilles; Destouches, Christophe

    2016-01-01

    A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract. - Graphical abstract: Neutron spectra inside the JSI TRIGA Mark II PT irradiation position, obtained with a Monte Carlo calculation: blue: unperturbed, green inside a BN container, of wall thickness 4 mm, 13 mm in diameter and 14 mm in height.

  11. A contribution for the problematic of measurements of fast-neutron-energy spectrum in thermal reactor-systems

    International Nuclear Information System (INIS)

    Dederichs, H.

    1978-06-01

    The aims of this work are to check the experimental conditions for using of a 6 Li-semiconductor-spectrometer at thermal reactor-systems and to measure the neutron-energy-spectra at the critical experiment KAHTER comparing with the theory. Using the spectrometer at thermal-neutraon-experiments questions will be attended as resolution, statistic and selection of usable nuclear data. The nuclear data will be gauged by qualified measurements, the statistic will be estimated by simulated calculations and the resolution will be improved by using the Fredholm-equation in the calculations. The calculated spectra show a good agreement with the measured spectra. Only in the energy region of maximum distribution of fission-neutrons there are little difference. The measurements show the using of the spectrometer is recommended at systems with preponderant thermal neutron-spectra, although the resolution and statistic are optimized for the spectrometer by measurements at experiments with fast neutron-spectra. (orig.) 891 RW [de

  12. Reactor physics experiments in PURNIMA sub critical facility coupled with 14 MeV neutron source

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Degweker, S.B.; Patel, Tarun; Bishnoi, Saroj; Adhikari, P.S.

    2011-01-01

    Accelerator Driven Sub-critical Systems (ADSS) are attracting increasing worldwide attention due to their superior safety characteristics and their potential for burning actinide and fission product waste and energy production. A number of countries around the world have drawn up roadmaps/programs for development of ADSS. Indian interest in ADSS has an additional dimension, which is related to the planned utilization of our large thorium reserves for future nuclear energy generation. A programme for development of ADSS is taken up at the Bhabha Atomic Research Centre (BARC) in India. This includes R and D activities for high current proton accelerator development, target development and Reactor Physics studies. As part of the ADSS Reactor Physics research programme, a sub-critical facility is coming up in BARC which will be coupled with an existing D-D/D-T neutron generator. Two types of cores are planned. In one of these, the sub-critical reactor assembly consists of natural uranium moderated by high density polyethylene (HDP) and reflected by BeO. The other consists of natural uranium moderated by light water. The maximum neutron yield of the neutron source with tritium target is around 10 10 neutron per sec. Various reactor physics experiments like measurement of the source strength, neutron flux distribution, buckling estimation and sub-critical source multiplication are planned. Apart from this, measurement of the total fission power and neutron spectrum will also be carried out. Mainly activation detectors will be used in all in-core neutron flux measurement. Measurement of the degree of sub-criticality by various deterministic and noise methods is planned. Helium detectors with advanced data acquisition card will be used for the neutron noise experiments. Noise characteristics of ADSS are expected to be different from that of traditional reactors due to the non-Poisson statistical features of the source. A new theory incorporating these features has been

  13. Reactor power control device

    International Nuclear Information System (INIS)

    Kobayashi, Akira.

    1980-01-01

    Purpose: To prevent misoperation in a control system for the adjustment of core coolant flow rate, and the increase in the neutron flux density caused from the misoperation in BWR type reactors. Constitution: In a reactor power control system adapted to control the reactor power by the adjustment of core flow rate, average neutron flux signals of a reactor core, entire core flow rate signals and operation state signals for coolant recycling system are inputted to a microcomputer. The outputs from the computer are sent to a recycling MG set speed controller to control the reactor core flow rate. The computer calculates the change ratio with time in the average neutron flux signals, correlation between the average neutron flux signals and the entire core flow rate signals, change ratio with time in the operation state signals for the coolant recycling system and the like and judges the abnormality in the coolant recycling system based on the calculated results. (Ikeda, J.)

  14. Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code

    Science.gov (United States)

    Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has

  15. Construction of the Neutron Beam Facility at Australia's OPAL Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, J.S.

    2005-01-01

    Full text: Australia's new research reactor, OPAL, has been designed for high quality neutron beam science and radioisotope production. It has a capacity for eighteen neutron beam instruments to be located at the reactor face and in a neutron guide hall. The new neutron beam facility features a 20 litre liquid deuterium cold neutron source and supermirror neutron reflecting guides for intense cold and thermal neutron beams. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, where criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. The lecture will outline Australia's aspirations for neutron science at the OPAL reactor, and describe the neutron beam facility under construction. The status of this project and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed. This project is the culmination of almost a decade of effort. We now eagerly anticipate catapulting Australia's neutron beam science capability to meet the best in the world today. (author)

  16. Utilization of cold neutron beams at intermediate flux reactors

    International Nuclear Information System (INIS)

    Clark, D.D.

    1992-01-01

    With the advent of cold neutron beam (CNB) facilities at U.S. reactors [National Institute of Standards and Technology (NIST) in 1991; Cornell University and the University of Texas at Austin, anticipated in 1992], it is appropriate to reexamine the types of research for which they are likely to be best suited or uniquely suited. With the exception of a small-angle neutron scattering facility at Brookhaven National Laboratory, there has been no prior experience in the United States with such beams, but they have been extensively used at European reactors where cold neutron sources and neutron guides were developed some years age. This paper does not discuss specialized cases such as ultracold neutrons or very high flux facilities such as the Institute Laue-Langevin ractor and the proposed advanced neutron source. Instead, it concentrates on potential utilization of CNBs at intermediate-flux reactors such as at Cornell and Texas, i.e., in the 1-MW range and operated <24 h a day

  17. Effect of updated WIMSD libraries on neutron energy spectrum at irradiation site of Pakistan Research Reactor-1 using 3D modeling

    International Nuclear Information System (INIS)

    Ahmad, Siraj-ul-Islam; Ahmad, Nasir

    2005-01-01

    International Atomic Energy Agency (IAEA) has recently released new WIMSD libraries based on current cross-section evaluations. Using these libraries the effect of different evaluated data sets on effective multiplication factor and neutron energy spectrum was studied with the help of 3D reactor simulation code CITATION. Simulation methodology adopted in this work was validated by analyzing IAEA 10 MW benchmark reactor. The k eff values obtained using all newly released libraries are within 0.45% to the experimental value, while the old library released in 1981 resulted in calculated value 1.05% larger than experimental. The flux spectrum obtained for standard fuel element using 3D modeling is smaller in fast energy range and higher in thermal energy range than is calculated using the 1D model for the standard cell. In the flux trap, differences of about -4% to 13% were found in thermal flux using the newly released libraries as compared to that obtained using 1981 WIMSD library. The major differences in the flux spectra between newly available libraries and the 1981 WIMSD library in thermal energy range are due to the differences in cross-sections of hydrogen bound-in-water. The use of only newly available cross-sections of hydrogen bound-in-water with 1981 WIMSD library resulted in significant improvement in value of k eff as well as in the flux spectrum. Moreover the differences among new libraries in the thermal energy range are also due to these cross-sections. Difference in fission spectra from different libraries is responsible for differences of flux spectra in the fast energy range. These differences in flux are reduced significantly in the fast energy range by only replacement of fission spectra

  18. EL-2 reactor: Thermal neutron flux distribution; EL-2: Repartition du flux de neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A; Genthon, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  19. Lifetime Neutron Fluence Analysis of the Ringhals Unit 1 Boiling Water Reactor

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a neutron fluence assessment considering the entire commercial operating history (35 cycles or ∼ 25 effective full power years of the Ringhals Unit 1 reactor pressure vessel beltline region. In this assessment, neutron (E >1.0 MeV fluence and iron atom displacement distributions were calculated on the moderator tank and reactor pressure vessel structures. To validate those calculations, five in-vessel surveillance chain dosimetry sets were evaluated as well as material samples taken from the upper core grid and wide range neutron monitor tubes to act as a form of retrospective dosimetry. During the analysis, it was recognized that delays in characterizing the retrospective dosimetry samples reduced the amount of reactions available to be counted and complicated the material composition determination. However, the comparisons between the surveillance chain dosimetry measurements (M and calculated (C results show similar and consistent results with the linear average M/C ratio of 1.13 which is in good agreement with the resultant least squares best estimate (BE/C ratios of 1.10 for both neutron (E >1.0 MeV flux and iron atom displacement rate.

  20. Experimental determination of neutron temperature distribution in reactor cell

    International Nuclear Information System (INIS)

    Bosevski, T.

    1965-12-01

    This paper describes theoretical preparation of the experiment for measuring neutron temperature distribution at the RB reactor by activation foils. Due to rather low neutron flux Cu and Lu foil were irradiated for 4 days. Special natural uranium fuel element was prepared to enable easy removal of foils after irradiation. Experimental device was placed in the reactor core at half height in order to measure directly the mean neutron density. Experimental data of neutron temperature distribution for square lattice pitch 16 cm are presented with mean values of neutron temperature in the moderator, in the fuel and on the fuel element surface

  1. Critical fluctuations of the number of neutrons in a reactor

    International Nuclear Information System (INIS)

    Ryazanov, V.V.; Lakoza, E.L.; Sysoev, V.M.

    1995-01-01

    The nuclear chain reaction is the most important physical process in a reactor. The theory of nuclear chain reaction fluctuations (neutron noise), developed in and other studies, has given results that are important for reactor physics and reactor practice (correlation analysis of neutron noise for measurement of the physical characteristics and reactor monitoring, stability of the critical state, etc.). Here we propose to study these problems by applying the methods of continuous phase transitions and synergetics and using the analogy with chemical chain reactions and the general laws of critical phenomena. The optimal reactor operating conditions are critical. To predict how a critical reactor will behave it is necessary to reveal those features of the neutron laws that are universal in some way, i.e., do not depend on the details of the individual acts of neutron motion and transformation that occur in reactors of different types. The similarity between chemical and nuclear chain reactions was noted long ago. Consequently, a universal theory of continuous phase transition was developed for systems of diverse physical nature

  2. Neutronics comparative analysis between MNSR and slowpoke-II reactors

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-01-01

    Neutronics analysis of both MNSR and Slowpoke reactors were made. Calculations including flux distribution, power estimation, excess and shutdown reactivity margins, flooding effects of irradiation sites, and initial investigation of fuel conversion from high to low enriched uranium were discussed. A neutronic 3-D model, dedicated mainly for the MNSR, has been developed to perform such neutronic calculations for both reactors. Well-known cell and core calculation codes such as WIMSD4 and CITATIONS have been used. It was found out that it is possible to lower the fuel enrichment of the Miniature Neutron Source Reactor (MNSR) to 20% using U O 2 as fuel instead of U Al 4 . The number of fuel elements required for the new core is 199. The use of double thickness of the bottom reflector in Slowpoke reactor made it possible to load the reactor with lower enriched fuel compared to MNSR. Values of reactivity flooding effects for single or combination of inner irradiation sites were obtained accurately. Results show good agreement with reported data for MNSR. (author)

  3. Four energy group neutron flux distribution in the Syrian miniature neutron source reactor using the WIMSD4 and CITATION code

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2009-01-01

    A 3-D (R, θ , Z) neutronic model for the Miniature Neutron Source Reactor (MNSR) was developed earlier to conduct the reactor neutronic analysis. The group constants for all the reactor components were generated using the WIMSD4 code. The reactor excess reactivity and the four group neutron flux distributions were calculated using the CITATION code. This model is used in this paper to calculate the point wise four energy group neutron flux distributions in the MNSR versus the radius, angle and reactor axial directions. Good agreement is noticed between the measured and the calculated thermal neutron flux in the inner and the outer irradiation site with relative difference less than 7% and 5% respectively. (author)

  4. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  5. An Investigation of an Irradiated Fuel Pin by Measurement of the Production of Fast Neutrons in a Thermal Column and by Pile Oscillation Technique

    International Nuclear Information System (INIS)

    Gustavsson, Veine

    1968-05-01

    A fuel pin irradiated to about 3400 MWd/tU from the Halden reactor has been investigated by a measurement of the production of fast neutrons in a thermal column and by pile oscillator technique in the central channel of the reactor R1. Calibration was made by using samples with different U 235 enrichments. The thermal column experiment gives the quantity ave(νΣ f ) (average in the thermal column spectrum) for the Halden sample. Σ f is the macroscopic fission cross section and ν is the number of fast neutrons produced per fission. The result of the oscillator measurements is a value of ave(Σ a ) - w ave(Σ f ) (average in the central channel spectrum) for the irradiated sample, w is the importance of a fast neutron relative to a thermal one and ave(Σ a ) is the macroscopic absorption cross section. The results from both the experiments have been compared with values calculated by the REBUS code and the agreement was good

  6. OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN TUNGSTEN SUBJECTED TO NEUTRON FLUX WITH PKA SPECTRUM CORRESPONDING TO THE HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-12-31

    The objective of this work is to study the damage accumulation in pure tungsten (W) subjected to neutron bombardment with a primary knock-on atom (PKA) spectrum corresponding to the High Flux Isotope Reactor (HFIR), using the object kinetic Monte Carlo (OKMC) method.

  7. Neutron spectrometry in mixed fields: characterisation of the Ra-1- reactor workplace

    International Nuclear Information System (INIS)

    Gregori, B.; Carelli, J.; Cruzate, J.; Papadopulos, S.

    2006-01-01

    The characterisation of the neutron spectrum of a workplace is an essential dosimetric tool for improving the assessment of the personal equivalent dose of the workers. In addition, if the operational conditions of the facility are well defined, the set of field spectra obtained may be used as a reference for comparing the performance of different type of neutron detectors. Recently, using a neutron spectrometric system based on a set of moderated spheres with 3 He detector, the characterisation of the neutron spectra in workplaces of the Argentine Reactor No. 1 (R.A. -1) has been carried out. The spectrometric system consists of 12 spheres made of the high density polyethylene d mean δ =0.95 g cm 3 , with diameters between 3'' and 12'' and a proportional counter of 3 He, 4 atm of nominal pressure, Centronic trade mark, located in the centre of the spheres. The neutron response matrix was calculated using the M.C.N.P. -I.V.B. code and E.N.D.F./B-VI library in the energy range between thermal neutron and 100 MeV. The neutron spectrum was unfolded using the M.A.X.E.D. unfolding code. The validation of the spectrometric system was performed at Cea-Cadarache (France) with of 252 Cf, Am Be, and 252 Cf + D 2 O sources. Therefore, in this work, the spectral fluence of the field in the selected points of the facility (R.A.-1) has been presented and the ambient dose equivalent, H *(10), and the personal dose equivalent, Hp(10), have been derived from the neutron fluence, applying ICRP-74 recommended fluence to dose conversion factors. The quantities evaluated have uncertainties less than 15%, which is considered good enough for radiation protection requirements. (authors)

  8. Utilization of RP-10 reactor for neutron therapy

    International Nuclear Information System (INIS)

    Paucar, R.; Nieto, M.; Parreno, F.; Vela, M.; Pozo, Z.

    1997-01-01

    In the Nuclear Energy Peruvian Institute, IPEN, a research area has established of Neutron Radiotherapy, know as NCT. This research joins the physics of particles (Neutrons and photons) and Medical Physics, and this one is an applied investigation where in considering the construction of a treatment hall in Huarangal (Peru) Reactor's irradiation facility, it can treat patients with brain tumors. In Neutron Therapy (NCT), it tries to use neutrons to destroy tumor cells where other therapeutic techniques are not effective. This process consist on to incise a neutrons beam of adequate characteristics over the tumor area of the patient. The neutrons used are of thermal energy and therefore irradiations are developed in experimental reactors. For this one, it is used horizontal channels prepared suitably. Before the irradiation, it is injected to the patient a substance which is absorbed by tumoral tissue. The substance components will be B-10, nuclide with an absorption cross section high to thermal neutrons (3837 b). The B-10 irradiate with thermal neutrons produce alpha particles of short reach (10 μm. on soft tissue) and with LET values (lineal energy transference) very high. The result is a cell preferential destruction which have absorbed the substance and it's next neighbors, like the cell size is 10 μm. This process as know as Boron Neutron Capture Therapy (BNCT). This work describes Peruvian RP-10 reactor and recently efforts to assess the design and feasibility of the medical neutron irradiation facility for NCT. (author). 22 refs., 6 tabs

  9. Applications of a lead pile coupled with fast reactor core of Yayoi as an intermediate energy neutron standard field

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakazawa, Masaharu; Sekiguchi, Akira; Wakabayashi, Hiroaki.

    1976-10-01

    Intermediate neutron column of YAYOI reactor is here evaluated as an intermediate energy neutron standard field which provides a base of the measurements of various reaction rates in that energy region, including detector calibration and Doppler coefficient determination. The experiments were performed using YAYOI's core as a fast neutron source by coupling with the large lead pile, which is a 160 ton's octagon of 2.5 m high and with a thickness of about 2.5 m face to face distance. Spatial variation of the neutron flux in the lead pile was estimated by gold activation foils, and the neutron spectrum by sandwich foils, a helium-3 proportional counter and a proton recoil counter. The calculated results were obtained using one and two- dimensional discrete ordinate code, ANISN and TWOTRAN II. Through comparison of experiment with calculation, it became clear that the neutron field at the central block has simple energy spectrum and stable spatial distribution of the neutron flux, the absolute of which was 5.0 x 10 4 (n/cm 2 /sec/Watt) at the representative energy of 1 KeV. The energy spectrum of the position and the spatial dependent neutron flux in the lead pile are both represented by the semiempirical formula, which must be useful both for evaluation of experimental data and for future applications. (auth.)

  10. Method of fueling for a nuclear reactor

    International Nuclear Information System (INIS)

    Igarashi, Takao.

    1983-01-01

    Purpose: To enable the monitoring of reactor power with sufficient accuracy, upon starting even without existence of neutron source in case of a low average burnup degree in the reactor core. Constitution: Each of fuel assemblies is charged such that neutron source region monitors for the start-up system in a reactor core neutron instrumentation system having nuclear fuel assemblies and a neutron instrumentation system are surrounded with 4 or 16 fuel assemblies of a low burnup degree. Then, the average burnup degree of the fuel assemblies surrounding the neutron source region monitors are increased than the reactor core burnup degree, whereby neutrons released from the peripheral fuels are increased, sufficient number of neutron counts can be obtained even with no neutron sources upon start-up and the reactor power can be monitored at a sufficient accuracy. (Sekiya, K.)

  11. Experimental measurement of neutron spectrum in the reflector of a light water reactor; Determination experimentale du spectre des neutrons dans le reflecteur d'une pile a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Brethe, P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-09-15

    1. Thermal neutrons: The temperature of the thermal neutron spectrum was calculated using Au-Lu foils. This temperature varies from 300 deg. K (temperature of the moderator) at 30 cm of the core to 350 deg. K in a hole of the core. 2. Slowing down of neutron: Four resonance detectors have been used (Au, In, Co, Mn). We can write a 1/E form of the spectrum. The linking up energy E{sub M} between thermal neutron spectrum and slowing down spectrum is about 0.23 eV and is free from the Maxwell spectrum temperature. The decrease of slowing down flux regarding thermal flux, farther from the core, has been showed. 3. Fast neutrons: We used 3 threshold detectors (Ni, Al, Mg). We supposed a E{sup 1/2} e{sup -{beta}}{sup E} from of the spectrum above 3 MeV. The values of {beta} are in a range from 0.775, at the centre of the core and in a loop-hole, to 0,64 at about 30 cm of the core. 4. Continuous shape of the spectrum: The following interpolations give useful informations between the field where measurements have been made: between 340 eV and 10 keV: 1/E form between 10 keV and 330 keV: 1/(E {sigma}{sub S}(E)) form ({sigma}{sub S}(E) elastic scattering section on hydrogen) between 330 keV and 3 MeV: calculated form by the moments method (ref. BSR). (author) [French] 1. Neutrons thermiques: La temperature du spectre des neutrons thermiques a ete determinee par la methode (or-lutecium). Cette temperature varie de 300 deg. K (temperature du moderateur) a 30 cm du coeur, a 350 deg. K dans une encoche du coeur. 2. Neutrons en ralentissement: 4 detecteurs resonnants ont ete employes (Au, In, Co, Mn). Le spectre peut etre mis sous la forme 1/E quelle que soit la distance a la limite coeur-reflecteur. L'energie de raccordement E{sub M} entre spectre des neutrons thermiques et spectre en ralentissement est environ 0,23 eV et independante de la temperature du spectre de Maxwell. La diminution relative du flux en ralentissement par rapport au flux thermique quand la distance au coeur

  12. A new neutron noise technique for fast reactors

    International Nuclear Information System (INIS)

    Zhuo Fengguan; Jin Manyi; Yao Shigui; Su Zhuting

    1987-12-01

    This paper gives a new neutron noise technique for fast reactors, which is known as thermalization measurement technique of the neutron noise. The theoretical formulas of the technique were developed, and a digital delayed coincidence time analyzer consisted of TTL integrated circuits was constructed for the study of this technique. The technique has been tested and applied practically at Df-VI fast zero power reactor. It was shown that the provided technique in this work has a number of significant advantages in comparison with the conventional neutron noise method

  13. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  14. Intense neutron source facility for the fusion energy program

    International Nuclear Information System (INIS)

    Armstrong, D.D.; Emigh, C.R.; Meier, K.L.; Meyer, E.A.; Schneider, J.D.

    1975-01-01

    The Intense Neutron Source Facility, INS, has been proposed to provide a neutronic environment similar to that anticipated in a fully operational fusion-power reactor. The neutron generator will produce an intense flux of 14-MeV neutrons greater than 10 14 neutrons per cm 2 /sec from the collision of two intersecting beams, one of 1.1 A of 270 keV tritium ions and the other of a supersonic jet of deuterium gas. Using either the pure 14-MeV primary neutron spectrum or by tailoring the spectrum with appropriate moderators, crucial radiation-damage effects which are likely to occur in fusion reactors can be thoroughly explored and better understood

  15. Small Angle Neutron Scattering instrument at Malaysian TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Shukri; Kassim, Razali; Mahmood, Zal Uyun [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia); Radiman, Shahidan

    1998-10-01

    The TRIGA MARK II Research reactor at the Malaysian Institute for Nuclear Research (MINT) was commissioned in July 1982. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. One of the project involved the Small Angle Neutron Scattering (SANS). (author)

  16. The measurement of tripartition alpha particle low energy spectrum in 235U fission induced by thermal neutrons

    International Nuclear Information System (INIS)

    El Hage Sleiman, F.

    1980-01-01

    The energy spectrum of the α particles emitted in the thermal neutron induced fission of 235 U was measured from 11.5 MeV down to 2 MeV using the parabola mass spectrometer Lohengrin at the ILL high flux reactor. A Monte Carlo program, that simulates the α particle motion to the spectrometer, has been developed. Numerical results of Monte Carlo calculations for differents values of parameter are reported. The overall energy spectrum is slightly asymmetric at low energy. The possible reasons for the existence of this asymmetry are discussed [fr

  17. EPRTM Reactor neutron instrumentation

    International Nuclear Information System (INIS)

    Pfeiffer, Maxime; SALA, Stephanie

    2013-06-01

    The core safety during operation is linked, in particular, to the respect of criteria related to the heat generated in fuel rods and to the heat exchange between the rods and the coolant. This local power information is linked to the power distribution in the core. In order to evaluate the core power distribution, the EPR TM reactor relies on several types of neutron detectors: - ionization chambers located outside the vessel and used for protection and monitoring - a fixed in-core instrumentation based on Cobalt Self Powered Neutron Detectors used for protection and monitoring - a mobile reference in-core instrumentation based on Vanadium aero-balls This document provides a description of this instrumentation and its use in core protection, limitation, monitoring and control functions. In particular, a description of the detectors and the principles of their signal generation is supplied as well as the description of the treatments related to these detectors in the EPR TM reactor I and C systems (including periodical calibration). (authors)

  18. Personal neutron dosimetry at a research reactor facility

    International Nuclear Information System (INIS)

    Kamenopoulou, V.; Carinou, E.; Stamatelatos, I.E.

    2001-01-01

    Individual neutron monitoring presents several difficulties due to the differences in energy response of the dosemeters. In the present study, an individual dosemeter (TLD) calibration approach is attempted for the personnel of a research reactor facility. The neutron energy response function of the dosemeter was derived using the MCNP code. The results were verified by measurements to three different neutron spectra and were found to be in good agreement. Three different calibration curves were defined for thermal, intermediate and fast neutrons. At the different working positions around the reactor, neutron spectra were defined using the Monte Carlo technique and ambient dose rate measurements were performed. An estimation of the neutrons energy is provided by the ratio of the different TLD pellets of each dosemeter in combination with the information concerning the worker's position; then the dose equivalent is deduced according to the appropriate calibration curve. (author)

  19. Neutrons down-under: Australia's research reactor review

    International Nuclear Information System (INIS)

    Murray, Allan

    1995-01-01

    Australian research reactor review commenced in September 1992, the Review had the following Terms of Reference: Whether, on review of the benefits and costs for scientific, commercial, industrial and national interest reasons, Australia has a need for a new reactor; a review of the present reactor, HIFAR, to include: an assessment of national and commercial benefits and costs of operations, its likely remaining useful life and its eventual closure and decommissioning; if Australia has a need for a new nuclear research reactor, the Review will consider: possible locations for a new reactor, its environmental impact at alternative locations, recommend a preferred location, and evaluate matters associated with regulation of the facility and organisational arrangements for reactor-based research. From the Review findings the following recommendations were stated: keep HIFAR going; commission a PRA to ascertain HIFAR's remaining life and refurbishment possibilities; identify and establish a HLW repository; accept that neither HIFAR nor a new reactor can be completely commercial; any decision on a new neutron source must rest primarily on benefits to science and Australia's national interest; make a decision on a new neutron source in about five years' time (1998). Design Proposals for a New Reactor are specified

  20. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  1. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  2. Application of reactors for testing neutron-induced upsets in commercial SRAMs

    International Nuclear Information System (INIS)

    Griffin, P.J.; Luera, T.F.; Sexton, F.W.; Cooper, P.J.; Karr, S.G.; Hash, G.L.; Fuller, E.

    1997-01-01

    Reactor neutron environments can be used to test/screen the sensitivity of unhardened commercial SRAMs to low-LET neutron-induced upset. Tests indicate both thermal/epithermal (< 1 keV) and fast neutrons can cause upsets in unhardened parts. Measured upset rates in reactor environments can be used to model the upset rate for arbitrary neutron spectra

  3. Neutron mean annihilation time and inverse of the mean annihilation rate in nuclear reactor

    International Nuclear Information System (INIS)

    Hayashi, Masatoshi

    1999-01-01

    There is a dogma in nuclear reactor theory that in a critical reactor the mean annihilation time of neutron is equal to the mean generation time. The author insists that this is a dogma from the basic reexamination of the mean annihilation time of neutron. There are two kinds of neutrons, one participating in chain reactions and the other not participating in chain reactions. The mean annihilation time of neutron is the mean time of the time to annihilation of all neutrons generated in the reactor. The 'prompt neutron life' as a dynamic characteristic parameter proper to nuclear reactor can not be understood as the mean time of neutron to annihilation. The author explains the logic quantitatively with two kinds of nuclear reactors, a bare reactor and an infinite reactor, for which two different mean neutron annihilation times can be defined. Thus, (1) the inverse of the annihilation rate can not simply be considered as the mean annihilation time, (2) the mean annihilation time of a critical reactor is not necessarily equal to the mean generation time, and (3) the prompt neutron life used as a dynamic characteristic parameter of a nuclear reactor can not be understood as the mean time of neutron to annihilation. (M.M.)

  4. Gamma spectrum following neutron capture in {sup 167}Er

    Energy Technology Data Exchange (ETDEWEB)

    Visser, D.; Khoo, T.L.; Lister, C.J. [and others

    1995-08-01

    Statistical decay from a highly excited state samples all the lower-lying states and, hence, provides a sensitive measure of the level density. Pairing has a major impact on the level density, e.g. creating a pair gap between the 0- and 2-quasiparticle configurations. Hence the shape of the statistical spectrum contains information on pairing, and can be used to provide information on the reduction of pairing with thermal excitation energy. For this reason, we measured the complete spectrum of {gamma}rays following thermal neutron capture in {sup 167}Er. The experiment was performed at the Brookhaven reactor using Compton-suppressed Ge detectors from TESSA. The spectrum, which was corrected for detector response and efficiency, reveals primary (first-step, high-energy) transitions up to nearly 8 MeV, secondary (last-step, lower-energy) transitions, as we as a continuous statistical component. Effort was expanded to identify all lines from contaminant sources and an upper limit of 5% was tentatively set for their contributions. The spectral shape of the statistical spectrum will be compared with theoretical spectra obtained from a calculation of pairing which accounts for a stepwise reduction of the pair correlations as the number of quasiparticles increases. The primary lines which decay directly to the near-yrast states will also be used to deduce the level densities.

  5. Neutron spectrometry for reactor applications: status, limitations, and future directions

    International Nuclear Information System (INIS)

    Gold, R.

    1975-08-01

    The ability of ''state-of-the-art'' reactor neutron spectrometry to provide definitive environmental results required for high fluence radiation damage experiments is reviewed. A formal definition of the neutron component is presented as well as general considerations which accrue from both this definition and the existence of the mixed radiation field generally encountered in reactors. A description of four selected methods of reactor neutron spectrometry is included, namely Proton Recoil (PR) methods, Time-Of-Flight (TOF) methods, the 6 Li(n,α) 3 H coincidence method, and Multiple Foil Activation (MFA) methods. These selected methods are compared. Future requirements and directions for reactor neutron spectrometry are discussed. In particular, the needs of future CTR research are stressed and the He 4 - recoil proportional counter spectroscopy method is advanced as a means of meeting these future requirements. 50 references. (auth)

  6. Conversion of reactor neutrons by lithium deuteride; Konverzija reaktorskih neutrona pomocu litijumdeuterida

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P; Altiparmakov, D [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1979-07-01

    Nuclear reactors are powerful neutron sources. But for many purposes, neutrons of higher than fission energy are needed. Such neutrons may be produced by the conversion of reactor neutrons into 14 MeV neutrons using lithium deuteride converter. For that converter is generally employed {sup 6}LiD, the usual material for the thermonuclear weapons, and therefore hardly accessible in needed quantity. That was the reason to analyse such converter made of LiD with the lithium of natural isotopic content. This analysis starts with the basic conversion relations, takes into account neutron absorption and tritium generation, and finally, estimates the 14 MeV neutron flux and the heat generated in proposed converter, when the converter was coupled to each of three Yugoslav nuclear reactors. Results show that the converter made of LiD with the natural lithium is 50% less efficient than the converter of {sup 6}LiD. Intensity of 14 MeV neutrons is within limits 5. 10{sup 5} - 10{sup 10} (n/cm{sup 2}.s) for the converter used either as external converter with reactor RB, within the thermal column in the reactor TRIGA or as a 'fuel' segment at the reactor RA. (author)

  7. Attenuation of Reactor Gamma Radiation and Fast Neutrons Through Large Single-Crystal Materials

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A generalized formula is given which, for neutron energies in the range 10-4< E< 10 eV and gamma rays with average energy 2 MeV , permits calculation of the transmission properties of several single crystal materials important for neutron scattering instrumentation. A computer program Filter was developed which permits the calculation of attenuation of gamma radiation, nuclear capture, thermal diffuse and Bragg-scattering cross-sections as a function of materials constants, temperature and neutron energy. The applicability of the deduced formula along with the code checked from the obtained agreement between the calculated and experimental neutron transmission through various single-crystals A feasibility study for use of Si, Ge, Pb, Bi and sapphire is detailed in terms of optimum crystal thickness, mosaic spread and cutting plane for efficient transmission of thermal reactor neutrons and for rejection of the accompanying fast neutrons and gamma rays.

  8. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  9. Experimental techniques for the consolidation of the neutron spectrum

    International Nuclear Information System (INIS)

    Chiaraviglio, N.; Bazzana, S.

    2013-01-01

    Unfolding techniques are widely known but their use is not widespread due to their complexity. Such procedure consists in the adjustment of calculated quantities to experimental results by the modification of the neutron spectrum, getting correction factors for the calculated quantities. In this work we describe the general procedure that must be executed for a neutron spectrum unfolding. (author) [es

  10. Evaluation of neutronic characteristics of in-pile test reactor for fast reactor safety research

    Energy Technology Data Exchange (ETDEWEB)

    Uto, N.; Ohno, S.; Kawata, N. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-09-01

    An extensive research program has been carried out at the Power Reactor and Nuclear Fuel Development Corporation for the safety of future liquid-metal fast breeder reactors to be commercialized. A major part of this program is investigation and planning of advanced safety experiments conducted with a new in-pile safety test facility, which is larger and more advanced than any of the currently existing test reactors. Such a transient safety test reactor generally has unique neutronic characteristics that require various studies from the reactor physics point of view. In this paper, the outcome of the neutronics study is highlighted with presenting a reference core design concept and its performance in regard to the safety test objectives. (author)

  11. Neutronic and thermo-hydraulic design of LEU core for Japan Research Reactor 4

    International Nuclear Information System (INIS)

    Arigane, Kenji; Watanabe, Shukichi; Tsuruta, Harumichi

    1988-04-01

    As a part of the Reduced Enrichment Research and Test Reactor (RERTR) program in JAERI, the enrichment reduction for Japan Research Reactor 4 (JRR-4) is in progress. A fuel element using a 19.75 % enriched UAlx-Al dispersion type with a uranium density of 2.2 g/cm 3 was designed as the LEU fuel and the neutronic and thermo-hydraulic performances of the LEU core were compared with those of the current HEU core. The results of the neutronic design are as follows: (1) the excess reactivity of the LEU core becomes about 1 % Δk/k less, (2) the thermal neutron flux in the fuel region decreases about 25 % on the average, (3) the thermal neutron fluxes in the irradiation pipes are almost the same and (4) the core burnup lifetime becomes about 20 % longer. The thermo-hydraulic design also shows that: (1) the fuel plate surface temperature decreases about 10 deg C due to the increase of the number of fuel plates and (2) the temperature margin with respect to the ONB temperature increases. Therefore, it is confirmed that the same utilization performance as the HEU core is attainable with the LEU core. (author)

  12. Simulating Neutronic Core Parameters in a Research and Test Reactor

    International Nuclear Information System (INIS)

    Selim, H.K.; Amin, E.A.; Koutb, M.E.

    2011-01-01

    The present study proposes an Artificial Neural Network (ANN) modeling technique that predicts the control rods positions in a nuclear research reactor. The neutron, flux in the core of the reactor is used as the training data for the neural network model. The data used to train and validate the network are obtained by modeling the reactor core with the neutronic calculation code: CITVAP. The type of the network used in this study is the feed forward multilayer neural network with the backpropagation algorithm. The results show that the proposed ANN has good generalization capability to estimate the control rods positions knowing neutron flux for a research and test reactor. This method can be used to predict critical control rods positions to be used for reactor operation after reload

  13. The development of ex-core neutron flux monitoring system for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying

  14. The development of ex-core neutron flux monitoring system for integral reactor

    International Nuclear Information System (INIS)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S.

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying the ex

  15. A neutron radiography facility on the IRT-2000 reactor

    International Nuclear Information System (INIS)

    Khadduri, I.Y.

    1976-01-01

    A neutron radiography facility has been constructed on the thermal neutron channel of the IRT-2000 reactor. A collimated thermal neutron beam exposure area of 10 cm diameter is obtained with an L/D ratio of 48.8. The film used is cellulose nitrate coated with lithium tetraborate which is insensitive to gamma and beta radiation. Some pictures with good contrast and resolution have been obtained. Pictures of parts of an IRT-2000 reactor fuel pin have also been recorded. (orig) [de

  16. An ultracold neutron source at the NC State University PULSTAR reactor

    Science.gov (United States)

    Korobkina, E.; Wehring, B. W.; Hawari, A. I.; Young, A. R.; Huffman, P. R.; Golub, R.; Xu, Y.; Palmquist, G.

    2007-08-01

    Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D 2 converter will be implemented coupled to two moderators, D 2O at room temperature, to thermalize reactor neutrons, and solid CH 4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D 2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D 2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D 2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH 4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.

  17. Possible error-prone repair of neoplastic transformation induced by fission-spectrum neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Hill, C K; Han, A; Elkind, M M

    1948-01-01

    An examination was made of the effect of fission-spectrum neutrons from the JANUS reactor at Argonne National Laboratory, delivered either as acute or protracted irradiation, on the incidence of neoplastic transformation in the C3H 10T1/2 mouse embryo cell line. Acute exposures were delivered at 10-38 cGy min/sup -1/, protracted exposures at 0.086 or 0.43 cGy min/sup -1/. The total doses for both ranged from 2.4 to 350 cGy. In the low dose region (2.4-80 cGy), there was a large enhancement in transformation frequency when the neutrons were delivered at the low dose rates compared with the high dose rates, but the survival of the cells was not significantly different between the two exposures conditions. Analysis of the intial parts of the curves shows that the regression line for protracted doses is about 9 times steeper than that for single acute exposures. Finally, the possibility is discussed that an ''error-prone'' repair process may be causing the enhanced transformation frequency by protracted neutron exposures.

  18. Neutron dosimetry. Environmental monitoring in a BWR type reactor

    International Nuclear Information System (INIS)

    Tavera D, L.; Camacho L, M.E.

    1991-01-01

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  19. Reactor neutron activation for multielemental analysis

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    1999-01-01

    Neutron Activation Analysis using single comparator (K 0 NAA method) has been used for obtaining multielemental profiles in a variety of matrices related to environment. Gold was used as the comparator. Neutron flux was characterised by determining f, the epithermal to thermal neutron flux ratio and cc, the deviation from ideal shape of the neutron spectrum. The f and a were determined in different irradiation positions in APSARA reactor, PCF position in CIRUS reactor and tray rod position in Dhruva reactor using both cadmium cut off and multi isotope detector methods. High resolution gamma ray spectrometry was used for radioactive assay of the activation products. This technique is being used for multielement analysis in a variety of matrices like lake sediments, sea nodules and crusts, minerals, leaves, cereals, pulses, leaves, water and soil. Elemental profiles of the sediments corresponding to different depths from Nainital lake were determined and used to understand the history of natural absorption/desorption pattern of the previous 160 years. Ferromanganese crusts from different locations of Indian Ocean were analysed with a view to studying the distribution of some trace elements along with Fe and Mn. Variation of Mn/Fe ratio was used to identify the nature of the crusts as hydrogenous or hydrothermal. Fe-rich and Fe-depleted nodules from Indian Ocean were analysed to understand the REE patterns and it is proposed that REE-Th associated minerals could be the potential Th contributors to the sea water and thus reached ferromanganese nodules. Dolomites (unaltered and altered), two types of serpentines and intrusive rock dolerite from the asbestos mines of Cuddapah basin were analysed for major, minor and trace elements. The elemental concentrations are used for distinguishing and characterising these minerals. From our investigations, it was concluded that both dolomite and dolerite contribute elements in the serpentinisation process. Chemical neutron

  20. Design study of a medical reactor for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Sasaki, M.; Hirota, J.; Tamao, S.; Kanda, K.; Mishima, Y.

    1992-01-01

    A new design study of a medical reactor for Boron Neutron Capture Therapy (BNCT) has been carried out. The reactor is to be used exclusively for the treatment of malignant melanoma and other cancers as well as for the further biomedical research. Main specifications of the reactor are as follows; thermal power of 2 MW, water cooling by natural convection, semitight core of triangular lattice, UO 2 fuel rod of 9.5 mm diameter and no refueling in the reactor-life. Three horizontal and one vertical neutron beam hole are to be provided to deliver thermal and epithermal neutrons. N-γ coupling Sn transport calculations indicate that the patient treatment period will be about 30 minutes with minimal fast neutron and gamma contaminants. (author)

  1. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    International Nuclear Information System (INIS)

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    Highlights: ► Kinetic parameters of Tehran research reactor mixed-core have been calculated. ► Burn-up effect on TRR kinetics parameters has been studied. ► Replacement of LEU-CFE with HEU-CFE in the TRR core has been investigated. ► Results of each mixed core were compared to the reference core. ► Calculation of kinetic parameters are necessary for reactivity and power excursion transient analysis. - Abstract: In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR P C package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change

  2. Design of a target and moderator at the Los Alamos Spallation Radiation Effects Facility (LASREF) as a neutron source for fusion reactor materials development

    International Nuclear Information System (INIS)

    Ferguson, P.D.; Mueller, G.E.

    1993-01-01

    The LASREF facility is located in the beam stop area at LAMPF. The neutron spectrum is fission-like with the addition of a 3% to 5% component with E > 20 MeV. The present study evaluates the limits on geometry and material selection that will maximize the neutron flux. MCNP and LAHET were used to predict the neutron flux and energy spectrum for a variety of geometries. The problem considers 760 MeV protons incident on tungsten. The resulting neutrons are multiplied in uranium through (n,xn) reactions. Calculations show that a neutron flux greater than 10 19 n/m 2 /s is achievable. The helium to dpa ratio and the transmutation product generation are calculated. These results are compared to expectations for the proposed DEMO fusion reactor and to FFTF

  3. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Taryo, Taswanda

    2002-01-01

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  4. Neutronics methods for transient and safety analysis of fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Marco

    2017-07-01

    Modeling the evolution of possible or postulated accidents in nuclear reactors is fundamental in designing safe systems. For the next generation of reactors, in particular fast reactors, fuel movement during an accident can, in principle, drive an energetic event. Such is the issue of recriticality. The thermal energy produced during these events will, possibly, be converted into mechanical energy by some mechanisms. For example, the nuclear heat deposited in the fuel could cause fuel vaporization and its subsequent expansion. This movement would accelerate the surrounding sodium: part of the initial energy in the fuel is thus converted into sodium kinetic energy. This mechanical energy will finally be absorbed, in some way or another, by the reactor vessel. Providing an accurate estimate for the maximum mechanical work that any accidental sequence can do onto the reactor vessel is an essential step in designing a reactor containment that would withstand any load generated by any accident. That would assure accident containment, without consequences for the general public. Fast reactor accident modeling is a complicated task. The outcome of an accident is determined by different physical phenomena, all acting at almost the same time. Safety analysts must track all these different phenomena. Multi-physics codes have been developed for this task. They must contain accurate models for fluid-dynamics, neutronics, and structures. This work has to do with neutronics modeling of such accidents. Past and recent analyses have been limited to the approximate description of the neutronic field, for example by using a rough description of the energy and/or of the angular dependence of the neutron flux. In this work, different neutronic solvers are selected and coupled into a general multi-physics code for fast reactor accident analysis. Performances of each of them is then assessed. Some emphasis has been put also in assessing the speed of these solvers for determining the

  5. ATW neutron spectrum measurements at LAMPF

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Littleton, P.E.; Morgan, G.L. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Accelerator transmutation of waste (ATW) is a proposal to use a high flux of accelerator-produced thermalized neutrons to transmute both fission product and higher actinide commercial nuclear waste into stable or short-lived radioactive species in order to avoid long-term storage of nuclear waste. At LAMPF the authors recently performed experiments that were designed to measure the spectrum of neutrons produced per incident proton for full-scale proposed ATW targets of lead and lithium. The neutrons produced in such targets have a spectrum of energies that extends up to the energy of the incident proton beam, but the distribution peaks between 1 and 5 MeV. Transmutation reactions and fission of actinides are most efficient when the neutron energy is below a few eV, so the target must be surrounded by a non-absorbing material (blanket) to produce additional neutrons and reduce the energy of high energy neutrons without loss. The experiments with the lead target, 25 cm diameter by 40 cm long, were conducted with 800 MeV protons, while those with the lithium target, 25 cm diameter by 175 cm long, were conducted with 400 MeV protons. The blanket in both sets of experiments was a 60 cm diameter by 200 cm long annulus of lead that surrounded the target. Surrounding the blanket was a steel water tank with dimensions of 250 cm diameter by 300 cm long that simulated the transmutation region. A small sample pipe penetrated the length of the lead blanket and other sample pipes penetrated the length of the water tank at different radii from the beam axis so that the neutron spectra at different locations could be measured by foil activation. After irradiation the activated foil sets were extracted and counted with calibrated high resolution germanium gamma ray detectors at the Los Alamos nuclear chemistry counting facility.

  6. Validation of evaluated neutron standard cross sections

    International Nuclear Information System (INIS)

    Badikov, S.; Golashvili, T.

    2008-01-01

    Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)

  7. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.

    1994-05-01

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  8. Designing a mini subcritical nuclear reactor; Diseno de un mini reactor nuclear subcritico

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo G, C. R.; Vega C, H. R.; Davila H, V. M., E-mail: rafelaescobedo@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Jardin Juarez 147, Col. Centro, 98000 Zacatecas, Zac. (Mexico)

    2015-10-15

    In this work the design of a mini subcritical nuclear reactor formed by means of light water moderator, uranium as fuel, and isotopic neutron source of {sup 239}PuBe was carried out. The design was done by Monte Carlo methods with the code MCNP5 in which uranium was modeled in an array of concentric holes cylinders of 8.5, 14.5, 20.5, 26.5, 32.5 cm of internal radius and 3 cm of thickness, 36 cm of height. Different models were made from a single fuel cylinder (natural uranium) to five. The neutron source of {sup 239}PuBe was situated in the center of the mini reactor; in each arrangement was used water as moderator. Cross sections libraries Endf/Vi were used and the number of stories was large enough to ensure less uncertainty than 3%. For each case the effective multiplication factor k{sub e}-f{sub f}, the amplification factor and the power was calculated. Outside the mini reactor the ambient dose equivalent H (10) was calculated for different cases. The value of k{sub eff}, the amplification factor and power are directly related to the number of cylinders of uranium as fuel. Although the average energy of the neutrons {sup 239}PuBe is between 4.5 and 5 MeV in the case of the mini reactor for a cylinder, in the neutron spectrum the presence of thermal neutrons does not exist, so that produced fissions are generated with fast neutrons, and in designs of two and three rings the neutron spectra shows the presence of thermal neutrons, however the fissions are being generated with fast neutrons. Finally in the four and five cases the amount of moderator is enough to thermalized the neutrons and thereby produce the fission. The maximum value for k{sub eff} was 0.82; this value is very close to the assembly of Universidad Autonoma de Zacatecas generating a k{sub eff} of 0.86. According to the safety and radiation protection standards for the design of mini reactor of one, two and three cylinders they comply with the established safety, while designs of four and five

  9. Extension of the AUS reactor neutronics system for application to fusion blanket neutronics

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1984-03-01

    The AUS modular code scheme for reactor neutronics computations has been extended to apply to fusion blanket neutronics. A new group cross-section library with 200 neutron groups, 37 photon groups and kerma factor data has been generated from ENDF/B-IV. The library includes neutron resonance subgroup parameters and temperature-dependent data for thermal neutron scattering matrices. The validity of the overall calculation system for fusion applications has been checked by comparison with a number of published conceptual design studies

  10. Neutronic modeling of pebble bed reactors in APOLLO2

    International Nuclear Information System (INIS)

    Grimod, M.

    2010-01-01

    In this thesis we develop a new iterative homogenization technique for pebble bed reactors, based on a 'macro-stochastic' transport approximation in the collision probability method. A model has been developed to deal with the stochastic distribution of pebbles with different burnup in the core, considering spectral differences in homogenization and depletion calculations. This is generally not done in the codes presently used for pebble bed analyses, where a pebble with average isotopic composition is considered to perform the cell calculation. Also an iterative core calculation scheme has been set up, where the low-order RZ S N full-core calculation computes the entering currents in the spectrum zones subdividing the core. These currents, together with the core k eff , are then used as surface source in the fine-group heterogeneous calculation of the multi-pebble geometries. The developed method has been verified using reference Monte Carlo simulations of a simplified PBMR- 400 model. The pebbles in this model are individually positioned and have different randomly assigned burnup values. The APOLLO2 developed method matches the reference core k eff within ± 100 pcm, with relative differences on the production shape factors within ± 4%, and maximum discrepancy of 3% at the hotspot. Moreover, the first criticality experiment of the HTR-10 reactor was used to perform a first validation of the developed model. The computed critical number of pebbles to be loaded in the core is very close to the experimental value of 16890, only 77 pebbles less. A method to calculate the equilibrium reactor state was also developed and applied to analyze the simplified PBMR-400 model loaded with different fuel types (UO 2 , Pu, Pu + MA). The potential of the APOLLO2 method to compute different fluxes for the different pebble types of a multi-pebble geometry was used to evaluate the bias committed by the average composition pebble approximation. Thanks to a 'compensation of error

  11. Computational uncertainties in silicon dioxide/plutonium intermediate neutron spectrum systems

    International Nuclear Information System (INIS)

    Jaegers, P.J.

    1997-01-01

    In the past several years, several proposals have been made for the long-term stabilization and storage of surplus fissile materials. Many of these proposed scenarios involve systems that have an intermediate neutron energy spectrum. Such intermediate-energy systems are dominated by scattering and fission events induced by neutrons ranging in energy from 1 eV to 100keV. To ensure adequate safety margins and cost effectiveness, it is necessary to have benchmark data for these intermediate-energy spectrum systems; however, a review of the nuclear criticality benchmarks indicates that no formal benchmarks are available. Nuclear data uncertainties have been reported for some types of intermediate-energy spectrum systems. Using a variety of Monte Carlo computer codes and cross-section sets, reported significant variations in the calculated k ∞ of intermediate-energy spectrum metal/ 235 U systems. We discuss the characteristics of intermediate neutron spectrum systems and some of the computational differences that can occur in calculating the k eff of these systems

  12. Neutron spectrum for neutron capture therapy in boron; Espectro de neutrones para terapia por captura de neutrones en boro

    Energy Technology Data Exchange (ETDEWEB)

    Medina C, D.; Soto B, T. G. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas, 98068 Zacatecas, Zac. (Mexico); Baltazar R, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, 98068 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: dmedina_c@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    Glioblastoma multiforme is the most common and aggressive of brain tumors and is difficult to treat by surgery, chemotherapy or conventional radiation therapy. One treatment alternative is the Neutron Capture Therapy in Boron, which requires a beam modulated in neutron energy and a drug with {sup 10}B able to be fixed in the tumor. When the patients head is exposed to the neutron beam, they are captured by the {sup 10}B and produce a nucleus of {sup 7}Li and an alpha particle whose energy is deposited in the cancer cells causing it to be destroyed without damaging the normal tissue. One of the problems associated with this therapy is to have an epithermal neutrons flux of the order of 10{sup 9} n/cm{sup 2}-sec, whereby irradiation channels of a nuclear research reactor are used. In this work using Monte Carlo methods, the neutron spectra obtained in the radial irradiation channel of the TRIGA Mark III reactor are calculated when inserting filters whose position and thickness have been modified. From the arrangements studied, we found that the Fe-Cd-Al-Cd polyethylene filter yielded a ratio between thermal and epithermal neutron fluxes of 0.006 that exceeded the recommended value (<0.05), and the dose due to the capture gamma rays is lower than the dose obtained with the other arrangements studied. (Author)

  13. Contributions to the neutronic analysis of a gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Reyes-Ramirez, Ricardo; Francois, Juan-Luis; Reinking-Cejudo, Arturo G.

    2011-01-01

    Highlights: → Differences on reactivity with MCNPX and TRIPOLI-4 are negligible. → Fuel lattice and core criticality calculations were done. → A higher Doppler coefficient than coolant density coefficient. → Zirconium carbide is a better reflector than silicon carbide. → Adequate active height, radial size and reflector thickness were obtained. - Abstract: In this work the Monte Carlo codes MCNPX and TRIPOLI-4 were used to perform the criticality calculations of the fuel assembly and the core configuration of a gas-cooled fast reactor (GFR) concept, currently in development. The objective is to make contributions to the neutronic analysis of a gas-cooled fast reactor. In this study the fuel assembly is based on a hexagonal lattice of fuel-pins. The materials used are uranium and plutonium carbide as fuel, silicon carbide as cladding, and helium gas as coolant. Criticality calculations were done for a fuel assembly where the axial reflector thickness was varied in order to find the optimal thickness. In order to determine the best material to be used as a reflector, in the reactor core with neutrons of high energy spectrum, criticality calculations were done for three reflector materials: zirconium carbide, silicon carbide and natural uranium. It was found that the zirconium carbide provides the best neutron reflection. Criticality calculations using different active heights were done to determine the optimal height, and the reflector thickness was adjusted. Core criticality calculations were performed with different radius sizes to determine the active radial dimension of the core. A negative temperature coefficient of reactivity was verified for the fuel. The effect on reactivity produced by changes in the coolant density was also evaluated. We present the main neutronic characteristics of a preliminary fuel and core designs for the GFR concept. ENDF-VI cross-sections libraries were used in both the MCNPX and TRIPOLI-4 codes, and we verified that the

  14. Pulsed White Spectrum Neutron Generator for Explosive Detection

    International Nuclear Information System (INIS)

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-01-01

    Successful explosive material detection in luggage and similar sized containers is a critical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designed and fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set of parallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80-120 kV. First experiments demonstrated ion source operation and successful beam pulsing

  15. Characterization of the neutron flux in the Hohlraum of the thermal column of the TRIGA Mark III reactor of the ININ

    International Nuclear Information System (INIS)

    Delfin L, A.; Palacios, J.C.; Alonso, G.

    2006-01-01

    Knowing the magnitude of the neutron flux in the reactor irradiation facilities, is so much importance for the operation of the same one, like for the investigation developing. Particularly, knowing with certain precision the spectrum and the neutron flux in the different positions of irradiation of a reactor, it is essential for the evaluation of the results obtained for a certain irradiation experiment. The TRIGA Mark III reactor account with irradiation facilities designed to carry out experimentation, where the reactor is used like an intense neutron source and gamma radiation, what allows to make irradiations of samples or equipment in radiation fields with components and diverse levels in the different facilities, one of these irradiation facilities is the Thermal Column where the Hohlraum is. In this work it was carried out a characterization of the neutron flux inside the 'Hohlraum' of the irradiation facility Thermal Column of the TRIGA Mark III reactor of the Nuclear Center of Mexico to 1 MW of power. It was determined the sub cadmic neutron flux and the epi cadmic by means of the neutron activation technique of thin sheets of gold. The maps of the distribution of the neutron flux for both energy groups in three different positions inside the 'Hohlraum' are presented, these maps were obtained by means of the irradiation of undressed thin activation sheets of gold and covered with cadmium in arrangements of 10 x 12, located parallel to 11.5 cm, 40.5 cm and 70.5 cm to the internal wall of graphite of the installation in inverse address to the position of the reactor core. Starting from the obtained values of neutron flux it was found that, for the same position of the surface of irradiation of the experimental arrangement, the relative differences among the values of neutron flux can be of 80%, and that the differences among different positions of the irradiation surfaces can vary until in a one order of magnitude. (Author)

  16. Experimental determination of the neutron source for the Argonauta reactor subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Renke, Carlos A.C.; Furieri, Rosanne C.A.A.; Pereira, Joao C.S.; Voi, Dante L.; Barbosa, Andre L.N., E-mail: renke@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplier medium requires a well defined neutron source to carry out the experiments necessary for the acquisition of the desired data. The Argonauta research reactor installed at the Instituto de Engenharia Nuclear has a subcritical assembly, under development, to be coupled at the upper part of the reactor core that will provide the needed neutrons emerging from its internal thermal column made of graphite. In order to perform neutronic calculations to compare with the experimental results, it is necessary a precise knowledge of the emergent neutron flux that will be used as neutron source in the subcritical assembly. In this work, we present the thermal neutron flux profile determined experimentally via the technique of neutron activation analysis, using dysprosium wires uniformly distributed at the top of the internal thermal neutron column of the Argonauta reactor and later submitted to a detection system using Geiger-Mueller detector. These experimental data were then compared with those obtained through neutronic calculation using HAMMER and CITATION codes in order to validate this calculation system and to define a correct neutron source distribution to be used in the subcritical assembly. This procedure avoids a coupled neutronic calculation of the subcritical assembly and the reactor core. It has also been determined the dimension of the graphite pedestal to be used in the bottom of the subcritical assembly tank in order to smooth the emergent neutron flux at the reactor top. Finally, it is estimated the thermal neutron flux inside the assembly tank when filled with water. (author)

  17. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  18. An Investigation of an Irradiated Fuel Pin by Measurement of the Production of Fast Neutrons in a Thermal Column and by Pile Oscillation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Veine

    1968-05-15

    A fuel pin irradiated to about 3400 MWd/tU from the Halden reactor has been investigated by a measurement of the production of fast neutrons in a thermal column and by pile oscillator technique in the central channel of the reactor R1. Calibration was made by using samples with different U 235 enrichments. The thermal column experiment gives the quantity ave({nu}{sigma}{sub f}) (average in the thermal column spectrum) for the Halden sample. {sigma}{sub f} is the macroscopic fission cross section and {nu} is the number of fast neutrons produced per fission. The result of the oscillator measurements is a value of ave({sigma}{sub a}) - w ave({sigma}{sub f}) (average in the central channel spectrum) for the irradiated sample, w is the importance of a fast neutron relative to a thermal one and ave({sigma}{sub a}) is the macroscopic absorption cross section. The results from both the experiments have been compared with values calculated by the REBUS code and the agreement was good.

  19. Compilation of neutron flux density spectra and reaction rates in different neutron fields

    International Nuclear Information System (INIS)

    Ertek, C.

    1979-07-01

    Upon the recommendation of International Working Group of Reactor Radiation Measurements (IWGRRM), the compilation of neutron flux density spectra and the reaction rates obtained by activation and fission foils in different neutron fields is presented. The neutron fields considered are as follows: 1/E; iron block; LWR core and pressure vessel; LMFBR core and blanket; CTR first wall and blanket; fission spectrum

  20. A fast spectrum dual path flow cermet reactor

    International Nuclear Information System (INIS)

    Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.

    1993-01-01

    A cermet fueled, dual path fast reactor for space nuclear propulsion applications is conceptually designed. The reactor utilizes an outer annulus core and an inner cylindrical core with radial and axial reflector. The dual path flow minimizes the impact of power peaking near the radial reflector. Basic neutronics and core design aspects of the reactor are discussed. The dual path reactor is integrated into a 25000 lbf thrust nuclear rocket

  1. Preliminary neutronic study on Pu-based OTTO cycle pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Setiadipura, Topan; Zuhair [National Nuclear Energy Agency of Indonesia (BATAN), Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Irwanto, Dwi [Bandung Institute of Technology (ITB), Bandung (Indonesia). Nuclear Physics and Biophysics Research Group

    2017-12-15

    The neutron physics characteristic of Pebble Bed Reactor (PBR) allows a better incineration of plutonium (Pu). An optimized design of simple PBR might give a symbiotic solution of providing a safe energy source, effective fuel utilization shown by a higher burnup value, and incineration of Pu stockpiles. This study perform a preliminary neutronic design study of a 200 MWt Once Through Then Out (OTTO) cycle PBR with Pu-based fuel. The safety criteria of the design were represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. In this preliminary phase, the parametric survey is limited to the heavy metal (HM) loading per pebble and the average axial speed of the fuel. An optimum high burnup of 419.7 MWd/kg-HM was achieved in this study. This optimum design uses a HM loading of 2.5 g/pebble with average axial fuel velocity 0.5 cm/day.

  2. Reference Neutron Radiographs of Nuclear Reactor Fuel

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    Reference neutron radiographs of nuclear reactor fuel were produced by the Euraton Neutron Radiography Working Group and published in 1984 by the Reidel Publishing Company. In this collection a classification is given of the various neutron radiographic findings, that can occur in different parts...... of pelletized, annular and vibro-conpacted nuclear fuel pins. Those parts of the pins are shown where changes of appearance differ from those for the parts as fabricated. Also radiographs of those as fabricated parts are included. The collection contains 158 neutron radiographs, reproduced on photographic paper...

  3. 239Pu prompt fission neutron spectra impact on a set of criticality and experimental reactor benchmarks

    International Nuclear Information System (INIS)

    Peneliau, Y.; Litaize, O.; Archier, P.; De Saint Jean, C.

    2014-01-01

    A large set of nuclear data are investigated to improve the calculation predictions of the new neutron transport simulation codes. With the next generation of nuclear power plants (GEN IV projects), one expects to reduce the calculated uncertainties which are mainly coming from nuclear data and are still very important, before taking into account integral information in the adjustment process. In France, future nuclear power plant concepts will probably use MOX fuel, either in Sodium Fast Reactors or in Gas Cooled Fast Reactors. Consequently, the knowledge of 239 Pu cross sections and other nuclear data is crucial issue in order to reduce these sources of uncertainty. The Prompt Fission Neutron Spectra (PFNS) for 239 Pu are part of these relevant data (an IAEA working group is even dedicated to PFNS) and the work presented here deals with this particular topic. The main international data files (i.e. JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0, BRC-2009) have been considered and compared with two different spectra, coming from the works of Maslov and Kornilov respectively. The spectra are first compared by calculating their mathematical moments in order to characterize them. Then, a reference calculation using the whole JEFF-3.1.1 evaluation file is performed and compared with another calculation performed with a new evaluation file, in which the data block containing the fission spectra (MF=5, MT=18) is replaced by the investigated spectra (one for each evaluation). A set of benchmarks is used to analyze the effects of PFNS, covering criticality cases and mock-up cases in various neutron flux spectra (thermal, intermediate, and fast flux spectra). Data coming from many ICSBEP experiments are used (PU-SOL-THERM, PU-MET-FAST, PU-MET-INTER and PU-MET-MIXED) and French mock-up experiments are also investigated (EOLE for thermal neutron flux spectrum and MASURCA for fast neutron flux spectrum). This study shows that many experiments and neutron parameters are very sensitive to

  4. Neutron irradiation facilities for fission and fusion reactor materials studies

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs

  5. A technique of measuring neutron spectrum

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Kirthi, K.N.; Ganguly, A.K.

    1975-01-01

    Plastic scintillators have been used to measure fast neutron spectrum from various sources. Gamma background discrimination has been done by selecting thin scintillators and thereby achieving near 100% transmission of Compton-edge electrons. The measured distribution has been unfolded by using an iterative least square technique. This gives minimum variance and maximum likelihood estimate with error minimised. Smoothening of the observed distribution has been done by Fourier and time series analyses. The method developed is applicable in principle for the determination of spectra of high energy neutrons ranging from 1 MeV to 70 MeV and beyond. However, practical application of the method is limited by the non-availability of cross-section data for various neutron induced reactions with carbon and hydrogen present in the polymerised polystyrene scintillator. This procedure has been adopted in the present work for spectral determination up to 14 MeV neutrons using the published value of reaction and scattering cross-sections. The spectra of Po-Be, Pu-Be, Am-Be and Ra-Be arrived at agree well with the published spectra obtained by other methods. Spectrum from spontaneous fission of Cf-252 have also been measured and fitted to the expression N(E)=Esup(1/2)exp(-E/T). The fitted parameter T and spectral details agree well with those in published literature

  6. An improved slow neutron spectrometer at nuclear research reactor et-r r-1. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abu El-Ela, M A [Reactor and Neutron Physics, Nuclear Research Center, AEA, Cairo (Egypt)

    1996-03-01

    An improved slow neutron selector has been aligned at channel number 6 of the nuclear research reactor ET-R R-1 Inshas. The flight path is 4 meter. The collimator-rotor-collimator system has the dimensions 0.3 x 2.5 x 70 cm with the rotor diameter 16 cm and 3 slits of 0.3 x 2.5 cm cross section. The rotor rotation rate varies between 600 r.p.m. the counting system has one of the best modern high electronic advanced technology time analyzer with minimum dwell time 2 sec, 8192 channels and a double detector inputs of TTL and NEG NIM standard pulses. The analyzer external triggering signals are of TTL standard type. A special design {sup 3} He detector for time of flight spectrometry has been used in the SNS. The reactor bare thermal neutron spectrum has been successfully measured, to show good agreement with the previous data. 6 figs.

  7. Thermal neutron flux measurement using self-powered neutron detector (SPND) at out-core locations of TRIGA PUSPATI Reactor (RTP)

    Science.gov (United States)

    Ali, Nur Syazwani Mohd; Hamzah, Khaidzir; Mohamad Idris, Faridah; Hairie Rabir, Mohamad

    2018-01-01

    The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND’s signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.

  8. A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.A. [Department of Mechanical Engineering, University of Texas, Austin, TX (United States); Deinert, M.R. [Theoretical and Applied Mechanics, Cornell University, 219 Kimball Hall, Ithaca, NY 14853 (United States)]. E-mail: mrd6@cornell.edu; Cady, K.B. [Theoretical and Applied Mechanics, Cornell University, 219 Kimball Hall, Ithaca, NY 14853 (United States)

    2006-10-15

    The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.

  9. The study of time-dependent neutronics parameters of the 2MW TRIGA Mark II Moroccan research reactor using BUCAL1 computer code

    International Nuclear Information System (INIS)

    Bakkari, B. El; Nacir, B.; El Younoussi, C.; Boulaich, Y.; Riyach, I.; Otmani, S.; Marcih, I.; Elbadri, H.; El Bardouni, T; Merroun, O.; Boukhal, H.; Zoubair, M.; Htet, A.; Chakir, M.

    2010-01-01

    The 2-MW TRIGA MARK II research reactor at Centre National de l'Energie, des Sciences et des Techniques Nucleaires (CNESTEN) achieved initial criticality on May 2, 2007 with 71 fuel elements. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower and training and production of radioisotopes for their use in agriculture, industry and medicine. This work aims to study the time-dependent neutronics parameters of the TRIGA reactor for elaborating and planning of an in-core fuel management strategy to maximize the utilization of the TRIGA fluxes, using a new elaborated burnup computer code called 'BUCAL1'. The code can be used to aid in analysis, prediction, and optimization of fuel burnup performance in a nuclear reactor. It was developed to incorporate the neutron absorption tally/reaction information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The use of Monte Carlo method and punctual cross section data characterizing the MCNP code allows an accurate simulation of neutron life cycle in the reactor, and the integration of data on the entire energy spectrum, thus a more accurate estimation of results than deterministic code can do. Also, for the purpose of this study, a full-model of the TRIGA reactor was developed using the MCNP5 code. The validation of the MCNP model of the TRIGA reactor was made by benchmarking the reactivity experiments. (author)

  10. Neutron noise analysis for malfunction diagnosis at sodium cooled reactors

    International Nuclear Information System (INIS)

    Hoppe, P.

    1978-09-01

    For the investigation of the potential use of neutron noise analysis at sodium cooled power reactors, measurements have been performed at the KNK I reactor over a period of 18 month under different operational conditions. The signal fluctuations of the following tranducers have been recorded: In-core and Ex-core neutron detectors, temperature-, flow-, pressure-, vibration- and acoustic sensors. These extensive measurements have been analyzed in the frequency range from 0,001 Hz to 1000 Hz with all currently known methods for the identification of noise sources. The following results have been found: - Neutron noise for f 20 Hz the white detection noise prevails. In the region from 1 Hz to 20 Hz the vibrations of core components contribute to neutron noise. - Neutron noise is influenced by the state of the plant. - The contributions to neutron noise due to the fluctuations of coolant flow and inlet temperature are small compared to those produced by the movements of the control rod initiated by the reactor control system. The quantitatively unidentifiable amount of reactivity fluctuations (0,6 time-dependent thermal bowing of the core. With respect to these results and by calculation of the neutron noise patterns to be expected for the SNR 300, the following possible applications for neutron noise analysis have been found: By means of neutron noise analysis only reactivity fluctuations can be identified and supervised which are produced by time dependent changes of the core geometry. Furthermore neutron noise analysis is well suited for a sensitive detection of control rod vibrations and of local sodium boiling. Finally it can be used for the surveillance of the proper functioning of the reactor control system and of the control rod drive mechanism. (orig./HP) 891 HP [de

  11. Lifetime measurement of prompt neutrons using the neutronic noise analysis

    International Nuclear Information System (INIS)

    Ortiz Servin, J.J.

    1992-01-01

    The purpose of this work is to estimate the life of the prompt neutrons, i, of a nuclear reactor utilizing the neutron noise analysis. This technique carry to development of mathematical model that is valid for lower powers reactor. The equation resulting convey to the observation about power spectrum behaviour respect to the frecquency. In this case, the reactor in study is the Triga Mark III of Nuclear Center of Mexico that it was provided of fission chambers for register the neutron fluxes. These fluxes was digitized and storage in computer disc as signals dependents of time, for later apply the Fourier Transformation and obtain the spectras. The spectras measured to different reactor powers were adjusted to the development equation before, using the method of square minimum and so estimate the parameter i. The analysis of results throw a value of 22.73 +/- 0.92 μs. On the other hand, the calculate value to the resolve the kinetic equation of reactor defer in lower than 4 % about the estimate. Of this, it concludes that the model utilized is trusty with a good mistake margin, moreover of that the technique of Neutron Noise analysis demonstrate be competitive (Author)

  12. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  13. Neutronics of a mixed-flow gas-core reactor

    International Nuclear Information System (INIS)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF 6 (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation

  14. Solution of Point Reactor Neutron Kinetics Equations with Temperature Feedback by Singularly Perturbed Method

    Directory of Open Access Journals (Sweden)

    Wenzhen Chen

    2013-01-01

    Full Text Available The singularly perturbed method (SPM is proposed to obtain the analytical solution for the delayed supercritical process of nuclear reactor with temperature feedback and small step reactivity inserted. The relation between the reactivity and time is derived. Also, the neutron density (or power and the average density of delayed neutron precursors as the function of reactivity are presented. The variations of neutron density (or power and temperature with time are calculated and plotted and compared with those by accurate solution and other analytical methods. It is shown that the results by the SPM are valid and accurate in the large range and the SPM is simpler than those in the previous literature.

  15. The energy spectrum of delayed neutrons from thermal neutron induced fission of 235U and its analytical approximation

    International Nuclear Information System (INIS)

    Doroshenko, A.Yu.; Tarasko, M.Z.; Piksaikin, V.M.

    2002-01-01

    The energy spectrum of the delayed neutrons is the poorest known of all input data required in the calculation of the effective delayed neutron fractions. In addition to delayed neutron spectra based on the aggregate spectrum measurements there are two different approaches for deriving the delayed neutron energy spectra. Both of them are based on the data related to the delayed neutron spectra from individual precursors of delayed neutrons. In present work these two different data sets were compared with the help of an approximation by gamma-function. The choice of this approximation function instead of the Maxwellian or evaporation type of distribution is substantiated. (author)

  16. Experimental spectrum of reactor antineutrinos and spectra of main fissile isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sinev, V. V., E-mail: vsinev@pcbai10.inr.ruhep.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-05-15

    Within the period between the years 1988 and 1990, the spectrum of positrons from the inverse-beta-decay reaction on a proton was measured at the Rovno atomic power plant in the course of experiments conducted there. The measured spectrum has the vastest statistics in relation to other neutrino experiments at nuclear reactors and the lowest threshold for positron detection. An experimental reactor-antineutrino spectrum was obtained on the basis of this positron spectrum and was recommended as a reference spectrum. The spectra of individual fissile isotopes were singled out from the measured antineutrino spectrum. These spectra can be used to analyze neutrino experiments performed at nuclear reactors for various compositions of the fuel in the reactor core.

  17. Change of neutron flow sensors effectiveness in the course of reactor experiments

    International Nuclear Information System (INIS)

    Kurpesheva, A.M.; Kotov, V.M.; Zhotabaev, Zh.R.

    2007-01-01

    Full text: IGR reactor is a reactor of thermal capacity type. During the operation, uranium-graphite core can be heated up to 1500 deg. C and reactivity can be changed considerably. Core dimensions are comparatively small. Amount of control rods, providing required reactivity, is not big as well. Increasing of core temperature leads to the rise of neutrons path length in its basic material - graphite. Change of temperature is not even. All this causes the non-conservation of neutron flows ratio in irradiated sample and in the place of reactor power sensors installation. Deviations in this ratio were registered during the number of reactor experiments. Empiric corrections can be introduced in order to decrease influence of change of neutron flow effectiveness upon provision of required parameters of investigated matters load. However, dependence of these corrections upon many factors can lead to the increasing of instability of process control. Previous experiment-calculated experiments showed inequality of neutron field in the place of sensors location (up to tens of percent), low effectiveness of experimental works, carried out without access to the individual reactor laying elements. Imperfection during the experiment was an idea of possibility to connect distribution of out of reactor neutron flow and control rods position. Subsequent analysis showed that for the development of representative phenomenon model it is necessary to take into account reactor operation dynamic subject to unevenness of heating of individual laying parts. Elemental calculations showed that temperature laying effects in the change of neutron outer field are great. Algorithm of calculations for the change of outer filed and field of investigated fabrication includes calculation of neutron-physic reactor characteristics interlacing with calculations of thermal-physic reactor characteristics, providing correlation of temperature fields for neutron-physic calculations. In the course of such

  18. Research and development of the software for visualizing nuclear reactor and neutronics analysis

    International Nuclear Information System (INIS)

    Okui, Shota; Sekimoto, Hiroshi

    2009-01-01

    It is not easy to image three-dimensional construct of a nuclear reactor with only its two-dimensional figure because it contains a number of structures and its construction is very complicated. Several visualization softwares for the nuclear reactor or some other plant exist, but require high skills and their operation is not simple. In this study, we developed nuclear reactor visualization software, called 'Visual Reactor (VR)', which does not require specific skills. We added the neutronics analysis code to that software. This code executes cell calculation, neutron diffusion calculation and nuclide burnup calculation by itself without any other codes. We tried to treat simple physics model in order to perform these calculation in a short time. Neutronics characteristics, such as neutron flux and power density distribution, are visualized on structure of nuclear reactor. Target operating system is Microsoft Windows XP or Vista. VR is utilized to figure out the structure of nuclear reactor and whole picture of neutronics characteristics. (author)

  19. Dosimetry of mixed gamma - neutron fluxes in the active zone of working reactor and gamma-flux after quenching

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Zinov'ev, V.; Ibragimova, E.M.; Muminov, M.I.

    2006-01-01

    vacancy, varied within 0.57 - 2.8. Besides, pure SiO 2 samples in the Cd - can filled with water were irradiated in the thermal column of operating reactor for 6 hours. Under these conditions the fast neutron flux was estimated as weak as 6·10 10 n/cm 2 s, the fluence was 1.3·10 15 cm -2 . The optical density of band 215 nm was 2.5, while the neutron fluence was ∼30 times less. Thus, the concentration of E ' -centers does not correlate with a neutron fluence. To extract the contribution from gamma-rays into the induced optical absorption in the glass matrix, samples of pure SiO 2 were irradiated by gamma-rays in 4 hours after quenching the reactor at the ionization current of 50 nA during 30 minutes, 12 and 24 hours; next time in 9 hours after the quenching at 40 nA and for 120 hours at 10 nA. In this case the gamma-spectrum did not include 10 MeV line from oxygen due to the short life-time, which prevails in the spectrum of working reactor. Maximal dose of γ-radiation of the quenched reactor was shown to induce the band at 215 nm up to the density of 0.5. When the sample was in contact with water the efficiency of E'-center production was 2 times higher that in dry condition. Thus, the high efficiency of structure defect production in SiO 2 glass owes to the influence of 10 MeV γ-radiation of the working reactor. The work was carried out under the grant F2.1.2 from Center of Science and Technology of Uzbekistan and supported by NATO CBP.EAP.CLG.981765. (author)

  20. Determination of neutron flux densities in WWR-S reactor core

    International Nuclear Information System (INIS)

    Tomasek, F.

    1989-04-01

    The method is described of determining neutron flux densities and neutron fluences using activation detectors. The basic definitions and relations for determining reaction rates, fluence and neutron flux as well as the characteristics of some reactions and of sitable activation detectors are reported. The flux densities were determined of thermal and fast neutrons and of gamma quanta in the WWR-S reactor core. The data measured in the period 1984-1987 are tabulated. Cross sections for the individual reactions were determined from spectra measurements processed using program SAND-II and cross section library ENDF-B IV. Neutron flux densities were also measured for the WWR-S reactor vertical channels. (E.J.). 10 figs., 8 tabs., 111 refs

  1. BWR type reactors

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1986-01-01

    Purpose: To enable to remove water not by way of mechanical operation in a reactor core and improve the fuel economy in BWR type reactors. Constitution: A hollow water removing rod of a cross-like profile made of material having a smaller neutron absorption cross section than the moderator is disposed to the water gap for each of unit structures composed of four fuel assemblies, and water is charged and discharged to and from the water removing rod. Water is removed from the water removing rod to decrease the moderators in the water gap to carry out neutron spectrum shift operation from the initial to the medium stage of reactor core cycles. At the final stage of the cycle, airs in the water removing rod are extracted and the moderator is introduced. The moderator is filled and the criticality is maintained with the accumulated nuclear fission materials. The neutron spectrum shift operation can be attained by eliminating hydrothermodynamic instability and using a water removing rod of a simple structure. (Horiuchi, T.)

  2. A comparison of the predicted and observed reaction rates of various neutron detectors in a thermal reactor spectrum

    International Nuclear Information System (INIS)

    Hardiman, J.P.; Maunders, E.J.

    1963-08-01

    A number of the detectors commonly used in integral neutron spectrum measurements have been irradiated in the pitch moderator position of a Calder Hall lattice where the detailed energy spectrum is known from time of flight measurements. Predicted and observed reaction rates are generally in good agreement although they are brought into better agreement by a small modification to the spectrum. The predicted cadmium ratios are quite sensitive to the value adopted for the effective cadmium cut off energy, values of which were determined for various detectors using the Ferranti Mercury computer. The values varied over a wide range, although in every case only 40 mil. cadmium filters were used. (author)

  3. Effective neutron temperature measurements in well moderated reactor by the reactivity coefficient method

    International Nuclear Information System (INIS)

    Raisic, N.; Klinc, T.

    1968-11-01

    The ratio of the reactivity changes of a nuclear reactor produced by successive introduction of two different neutron absorbers in the reactor core, has been measured and information on effective neutron temperature at a particular point obtained. Boron was used as a l/v absorber and cadmium as an absorber sensiti ve to neutron temperature. Effective neutron temperature distribution has been deduced by moving absorbers across the reactor core and observing the corresponding reactivity changes. (author)

  4. Calculation of the neutron parameters of fast thermal reactor

    International Nuclear Information System (INIS)

    Kukuleanu, V.; Mocioiu, D.; Drutse, E.; Konstantinesku, E.

    1975-01-01

    The system of neutron calculation for fast reactors is given. This system was used for estimation of physical parameters of fast thermal reactors investigated. The results obtained and different specific problems of the reactors of this type are described. (author)

  5. Importance of the neutron spectrum for determination of radiation damage

    International Nuclear Information System (INIS)

    Hehn, G.; Stiller, P.; Mattes, M.

    1977-01-01

    Since the radiation effects of neutrons depend strongly on the neutron energy, the correlation between the induced damage and the fluence of the fast neutrons shows appreciable disadvantages. The measured values of changes in material properties resulted in large differences for the same fast neutron fluence, being partly due to different neutron spectra. The uncertainties in damage data led to strong overdesign of important structural components. Different neutron environment at surveillance sample position may give an underestimation of the embrittlement in the reactor pressure vessel, which has to be avoided. The application of damage functions combined with accurately calculated neutron spectra, promise to be a reasonable solution. The damage function has the advantage of a phenomenological quantity that all spectral effects are included. But the correlation quantity has to be determined of high experimental costs. Therefore approximations of its energy distributions are very important. For the keV energy region the kerma function is reasonably good. For the MeV energy region a higher effort is needed to calculate the displacement cross section. The same holds for the low energy part. In all three parts the formation of stable material property levels may vary, so that the final correlation can be determined only by measurements of material properties in different neutron spectra. In material samples the spectra distribution of the displacement production rate was determined at different local positions outside the reactor core of a PWR and a fast breeder showing the most important energy regions of both reactors. (orig.) [de

  6. The advanced neutron source - A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    The advanced neutron source (ANS) is a new facility being designed at the Oak Ridge National Laboratory that is based on a heavy-water-moderated reactor and extensive experiment and user-support facilities. The primary purpose of the ANS is to provide world-class facilities for neutron scattering research, isotope production, and materials irradiation in the United States. The neutrons provided by the reactor will be thermalized to produce sources of hot, thermal, cold, very cold, and ultracold neutrons usable at the experiment stations. Beams of cold neutrons will be directed into a large guide hall using neutron guide technology, greatly enhancing the number of research stations possible in the project. Fundamental and nuclear physics, materials analysis, and other research pro- grams will share the neutron beam facilities. Sufficient laboratory and office space will be provided to create an effective user-oriented environment

  7. A neutron amplifier: prospects for reactor-based waste transmutation

    International Nuclear Information System (INIS)

    Blanovsky, A.

    2004-01-01

    A design concept and characteristics for an epithermal breeder controlled by variable feedback and external neutron source intensity are presented. By replacing the control rods with neutron sources, we could maintain good power distribution and perform radioactive waste burning in high flux subcritical reactors (HFSR) that have primary system size, power density and cost comparable to a pressurized water reactor (PWR). Another approach for actinide transmutation is a molten salt subcritical reactor proposed by Russian scientists. To increase neutron source intensity the HFSR is divided into two zones: a booster and a blanket with solid and liquid fuels. A neutron gate (absorber and moderator) imposed between two zones permits fast neutrons from the booster to flow to the blanket. Neutrons moving in the reverse direction are moderated and absorbed in the absorber zone. In the HFSR, neptunium-plutonium fuel is circulated in the booster and blanket, and americium-curium in the absorber zone and outer reflector. Use of a liquid actinide fuel permits transport of the delayed-neutron emitters from the blanket to the booster, where they can provide additional neutrons (source-dominated mode) or all the necessary excitation without an external neutron source (self-amplifying mode). With a blanket neutron multiplication gain of 20 and a booster gain of 50, an external neutron source rate of at least 10 15 n/s (0.7 MW D-T or 2.5 MW electron beam power) is needed to control the HFSR that produces 300 MWt. Most of the power could be generated in the blanket that burns about 100 kg of actinides a year. The analysis takes into consideration a wide range of HFSR design aspects including the wave model of observed relativistic phenomena, plant seismic diagnostics, fission electric cells (FEC) with a multistage collector (anode) and layered cathode. (author)

  8. The effect of temperature and the control rod position on the spatial neutron flux distribution in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2007-01-01

    The effect of water and fuel temperature increase and changes in the control rod positions on the spatial neutron flux distribution in the Syrian Miniature Neutron Source Reactor (MNSR) is discussed. The cross sections of all the reactor components at different temperatures are generated using the WIMSD4 code. These group constants are used then in the CITATION code to calculate the special neutron flux distribution using four energy groups. This work shows that water and fuel temperature increase in the reactor during the reactor daily operating time does not affect the spatial neutron flux distribution in the reactor. Changing the control rod position does not affect as well the spatial neutron flux distribution except in the region around the control rod position. This stability in the spatial neutron flux distribution, especially in the inner and outer irradiation sites, makes MNSR as a good tool for the neutron activation analysis (NAA) technique and production of radioisotopes with medium or short half lives during the reactor daily operating time. (author)

  9. Measuring neutron flux density in near-vessel space of a commercial WWER-1000 reactor

    International Nuclear Information System (INIS)

    Borodkin, G.I.; Eremin, A.N.; Lomakin, S.S.; Morozov, A.G.

    1987-01-01

    Distribution of neutron flux density in two experimental channels on the reactor vessel external surface and in ionization chamber channel of a commercial WWER-1000 reactor, is measured by the activation detector technique. Azimuthal distributions of fast and thermal neutron fluxes and height distributions of fast neutron flux density within energy range >1.2 and 2.3 MeV are obtained. Conclusion is made, that reactor core state and its structural peculiarities in the measurement range essentially affect space and energy distribution of neutron field near the vessel. It should be taken into account when determining permissible neutron fluence for the reactor vessel

  10. Measurements of the energy spectrum of backscattered fast neutrons

    International Nuclear Information System (INIS)

    Segal, Y.

    1976-03-01

    Experimental measurements have been made of the energy spectra of neutrons transmitted through slabs of iron, lead and perspex for incident neutron energies of 0.5, 1.0, 1.5 and 1.8 MeV. The neutron energy measurements were made using a He-3 spectrometer. The dependence of the neutrons energy spectrum as a function of scattering thickness was determined. The neutrons source used was a 3MeV Van de Graaff accelerator with a tritium target using the H 3 (p,n) He 3 reaction. The results obtained by the investigator on energy dependence of transmitted neutrons as a function of thickness of scattering material were compared, where possible, with the results obtained by other workers. The comparisons indicated good agreement. The experiment's results are compared with MORSE Monte Carlo calculated values. It is worthwhile to note that direct comparison between measured cross section values and the recommended ones are very far from satisfactory. In almost all cases the calculated spectrum is harder than the experimental one, a situation common to the penetrating and the back-scattered flux

  11. Fast neutron reactors: the safety point of view

    International Nuclear Information System (INIS)

    Laverie, M.; Avenas, M.

    1984-01-01

    All versions of nuclear reactors present favourable and unfavourable characteristics from the point of view of safety. The safety of the installations is obtained by making efforts to utilize in the best possible way those which are favourable and by taking proper steps in the face of those which are unfavourable. The present article shows how this general principle has been applied as regards the fast neutron reactors of integrated design which have been developped in France, taking into account the specific features of this version. A qualitative method to compare the safety of this version with that of pressurized water reactors which has been widely put to the test commercially all over the world is presented. These analyses make, generally speaking, several positive characteristics stand out for these fast neutron reactors from the safety aspects [fr

  12. Tests of Neutron Spectrum Calculations with the Help of Foil Measurements in a D{sub 2}O and in an H{sub 2}O-Moderated Reactor and in Reactor Shields of Concrete an Iron

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, R; Aalto, E

    1964-09-15

    Foil measurements covering the fast, epithermal and thermal neutron energy regions have been made in the centre of the Swedish D{sub 2}O-moderated reactor R1, in the pool reactor R2-0, and in different positions in reactor shields of iron, magnetite concrete and ordinary concrete. Neutron spectra have also been calculated for most of these positions, often with the help of a numerical integration of the Boltzmann equation. The measurements and the calculated spectra are presented.

  13. Method of measuring neutron spectra in JMTR exclusively used for irradiation and their evaluation

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    1983-01-01

    In the core of the Japan Materials Testing Reactor, about 60 capsules are irradiated. These are the material capsules for irradiating reactor materials, the fuel capsules for irradiating reactor fuel, the RI capsules for producing radioisotopes and so on. In the irradiation experiment using a reactor, the information on the neutron fluence is indispensable, and the neutron fluence in the irradiated specimen part is evaluated with a dosimeter or the nuclear calculation for the core of the JMTR. At the time of irradiating reactor materials, the dosimeter Fe-54 (n,p) Mn-54 is generally used for evaluating the neutron fluence more than 1 MeV. In the case of fuel irradiation, the thermal neutron fluence is evaluated with the dosimeter Co-59 (n,γ) Co-60. It is important to examine in detail neutron spectra by both calculation and experiment in the reactors exclusively used for irradiation such as the JMTR. The neutron irradiation field in the JMTR, neutron spectrum measuring experiment, the neutron flux monitors for standardizing data, the measurement of X-ray and gamma ray, neutron guess spectrum, the compilation of neutron cross section for SAND 2, and the unfolding of neutron spectra are reported. The degree of agreement of the neutron fluence more than 1 MeV by measurement and calculation was +- 10 to 20 %. (Kako, I.)

  14. Vanadium Beta Emission Detectors for Reactor In-Core Neutron Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Soederlund, B

    1969-06-15

    In-core flux measurements are becoming increasingly important in both power reactors and test reactors. In particular power distribution measurements in large power reactors have to be performed with a great number of neutron detectors capable of withstanding high integrated flux values. This report presents a summary of the development and application of a new type of nuclear radiation sensor, a beta emission detector, for measurements at high neutron flux levels. The work has been carried out at the Section for Instrumentation and has been the basis for a type of neutron detector employed in the Marviken in-core system as well as for other types. The report describes the design and principle of operation, experiments and tests. Also included are the results and comments from a long-term irradiation of some detectors in the Halden reactor.

  15. Neutron Radiography at the RP-10 reactor

    International Nuclear Information System (INIS)

    Hinostrosa, H.; Ravello, Y.; Cornejo, N.; Mendoza, M.; Montoya, M.

    1992-01-01

    The facility of neutron radiography at the RP-10 peruvian research reactor is described. The factor of collimation L/D is 149; the Cadmium ratio for the gold in the inspection's area is 4.5, and the thermal neutrons flux on the sample is 3,14 x 10 6 n/cm 2 s (author). 5 refs. 5 fig

  16. Modified parity space averaging approaches for online cross-calibration of redundant sensors in nuclear reactors

    Directory of Open Access Journals (Sweden)

    Moath Kassim

    2018-05-01

    Full Text Available To maintain safety and reliability of reactors, redundant sensors are usually used to measure critical variables and estimate their averaged time-dependency. Nonhealthy sensors can badly influence the estimation result of the process variable. Since online condition monitoring was introduced, the online cross-calibration method has been widely used to detect any anomaly of sensor readings among the redundant group. The cross-calibration method has four main averaging techniques: simple averaging, band averaging, weighted averaging, and parity space averaging (PSA. PSA is used to weigh redundant signals based on their error bounds and their band consistency. Using the consistency weighting factor (C, PSA assigns more weight to consistent signals that have shared bands, based on how many bands they share, and gives inconsistent signals of very low weight. In this article, three approaches are introduced for improving the PSA technique: the first is to add another consistency factor, so called trend consistency (TC, to include a consideration of the preserving of any characteristic edge that reflects the behavior of equipment/component measured by the process parameter; the second approach proposes replacing the error bound/accuracy based weighting factor (Wa with a weighting factor based on the Euclidean distance (Wd, and the third approach proposes applying Wd,TC,andC, all together. Cold neutron source data sets of four redundant hydrogen pressure transmitters from a research reactor were used to perform the validation and verification. Results showed that the second and third modified approaches lead to reasonable improvement of the PSA technique. All approaches implemented in this study were similar in that they have the capability to (1 identify and isolate a drifted sensor that should undergo calibration, (2 identify a faulty sensor/s due to long and continuous missing data range, and (3 identify a healthy sensor. Keywords: Nuclear Reactors

  17. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    Science.gov (United States)

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  18. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and

  19. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    International Nuclear Information System (INIS)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-01-01

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  20. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  1. Neutron streaming evaluation for the DREAM fusion power reactor

    International Nuclear Information System (INIS)

    Seki, Yasushi; Nishio, Satoshi; Ueda, Shuzo; Kurihara, Ryoichi

    2000-01-01

    Aiming at high degree of safety and benign environmental effect, we have proposed a tokamak fusion reactor concept called DREAM, which stands for DRastically EAsy Maintenance Reactor. The blanket structure of the reactor is made from very low activation SiC/SiC composites and cooled by non-reactive helium gas. High net thermal efficiency of about 50% is realized by 900 C helium gas and high plant availability is possible with simple maintenance scheme. In the DREAM Reactor, neutron streaming is a big problem because cooling pipes with diameter larger than 80 cm are used for blanket heat removal. Neutron streaming through the cooling pipes could cause hot spots in the superconducting magnets adjacent to the cooling pipes to shorten the magnet lifetime or increase cryogenic cooling requirement. Neutron streaming could also activate components such as gas turbine further away from the fusion plasma. The effect of neutron streaming through the helium cooling pipes was evaluated for the two types of cooling pipe extraction scheme. The result of a preliminary calculation indicates the gas turbine activation prohibits personnel access in the case of inboard pipe extraction while with additional shielding measures, limited contact maintenance is possible in the case of outboard extraction. (author)

  2. Measurement of the thermal neutron self shielding coefficient in the Syrian miniature neutron source reactor inner irradiation site using the dy soils

    International Nuclear Information System (INIS)

    Khattab, K.; Khamis, I.

    2007-01-01

    Measurement of the thermal self shielding coefficient ( Gth ) in the Syrian Miniature Neutron Source Reactor (MNSR) inner irradiation site using Dy foils is presented in this paper. The thermal self shielding coefficient is measured as a function of the foil thickness or numbers. The mathematical equation which calculates the average relative radioactivity (Bq/g) versus the foil number is found as well.

  3. Equipment for neutron measurements at VR-1 Sparrow training reactor

    International Nuclear Information System (INIS)

    Kolros, Antonin; Huml, Ondrej; Kos, Josef

    2008-01-01

    Full text: The VR-1 Sparrow training reactor is the experimental nuclear facility especially employed for education and teaching of students from different technical universities in the Czech Republic and other countries. Since 2005 the uniform all-purpose devices EMK310 have been used for measurement at reactor laboratory with different type of gas filled neutron detectors. The neutron detection system are employed for reactivity measurement, control rod calibration, critical experiment, study of delayed neutrons, study of nuclear reactor dynamics and study of detection systems dead time. The small dimension isotropic detectors are especially used for measurement of thermal neutron flux distribution inside the reactor core. The EMK-310 is a high performance, portable, three-channel fast amplitude analyzer designed for counting applications. It was developed for nuclear applications and made in close co-operation with firm TEMA Ltd. The precise rack eliminates electromagnetic disturbance and contains the control unit and four modules. The modules of high voltage supply and amplifier for gas filled detectors or scintillation probes are used in basic configuration. Software is tailored specifically to the reactor measurement and allows full online control. For applications involving the study of signals that may vary with the time, example study of delayed neutrons or nuclear reactor dynamics, the EMK-310 provides a Multichannel Scaling (MCS) acquisition mode. MCS dwell time can be set from 2 ms. Now, the new generation of digital multichannel analyzers DA310 is introduced. They have similarly attributes as EMK310 but the output information of unipolar signals from detector is more complete. The pipeline A/D converter with field programmable gate array (FPGA) is the hearth of the DA310 device. The resolution is 12 bits (4096 channels); the sample frequency is 80 MHz. The application for the neutron noise analysis is supposed. The correction method for non linearity

  4. Nuclear reactor ex-core startup neutron detector

    International Nuclear Information System (INIS)

    Wyvill, J.R.

    1980-01-01

    A sensitive ex-core neutron detector is needed to monitor the power level of reactors during startup. The neutron detector of this invention has a photomultiplier with window resistant to radiation darkening at the input end and an electrical connector at the output end. The photomultiplier receives light signals from a neutron-responsive scintillator medium, typically a cerium-doped lithium silicate glass, that responds to neutrons after they have been thermalized by a silicone resin moderator. Enclosing and shielding the photmultiplier, the scintillator medium and the moderator is a combined lead and borated silicone resin housing

  5. Analysis of neutron spectrum effects on primary damage in tritium breeding blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Hee, E-mail: cyh871@snu.ac.kr [School of Energy Systems Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Joo, Han Gyu [School of Energy Systems Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2012-07-15

    The effect of neutron spectrum on primary damages in a structural material of a tritium breeding blanket is investigated with a newly established recoil spectrum estimation system. First, a recoil spectrum generation code is developed to obtain the energy spectrum of primary knock-on atoms (PKAs) for a given neutron spectrum utilizing the latest ENDF/B data. Secondly, a method for approximating the high energy tail of the recoil spectrum is introduced to avoid expensive molecular dynamics calculations for high energy PKAs using the concept of recoil energy of the secondary knock-on atoms originated by the INtegration of CAScades (INCAS) model. Thirdly, the modified spectrum is combined with a set of molecular dynamics calculation results to estimate the primary damage parameters such as the number of surviving point defects. Finally, the neutron spectrum is varied by changing the material of the spectral shifter and the result in primary damage parameters is examined.

  6. Analysis of neutron spectrum effects on primary damage in tritium breeding blankets

    Science.gov (United States)

    Choi, Yong Hee; Joo, Han Gyu

    2012-07-01

    The effect of neutron spectrum on primary damages in a structural material of a tritium breeding blanket is investigated with a newly established recoil spectrum estimation system. First, a recoil spectrum generation code is developed to obtain the energy spectrum of primary knock-on atoms (PKAs) for a given neutron spectrum utilizing the latest ENDF/B data. Secondly, a method for approximating the high energy tail of the recoil spectrum is introduced to avoid expensive molecular dynamics calculations for high energy PKAs using the concept of recoil energy of the secondary knock-on atoms originated by the INtegration of CAScades (INCAS) model. Thirdly, the modified spectrum is combined with a set of molecular dynamics calculation results to estimate the primary damage parameters such as the number of surviving point defects. Finally, the neutron spectrum is varied by changing the material of the spectral shifter and the result in primary damage parameters is examined.

  7. A comparison in the reconstruction of neutron spectrums using classical iterative techniques

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Gallego, E.

    2009-10-01

    One of the key drawbacks to the use of BUNKI code is that the process begins the reconstruction of the spectrum based on a priori knowledge as close as possible to the solution that is sought. The user has to specify the initial spectrum or do it through a subroutine called MAXIET to calculate a Maxwellian and a 1/E spectrum as initial spectrum. Because the application of iterative procedures by to resolve the reconstruction of neutron spectrum needs an initial spectrum, it is necessary to have new proposals for the election of the same. Based on the experience gained with a widely used method of reconstruction, called BUNKI, has developed a new computational tools for neutron spectrometry and dosimetry, which was first introduced, which operates by means of an iterative algorithm for the reconstruction of neutron spectra. The main feature of this tool is that unlike the existing iterative codes, the choice of the initial spectrum is performed automatically by the program, through a neutron spectra catalog. To develop the code, the algorithm was selected as the routine iterative SPUNIT be used in computing tool and response matrix UTA4 for 31 energy groups. (author)

  8. Determination of prompt neutron decay constant of the AP-600 reactor core

    International Nuclear Information System (INIS)

    Surbakti, T.

    1998-01-01

    Determination of prompt neutron decay constant of the AP-600 reactor core has been performed using combination of two codes WIMS/D4 and Batan-2DIFF. The calculation was done at beginning of cycle and all of control rods pulled out. Cell generation from various kinds of core materials was done with 4 neutron energy group in 1-D transport code (WIMS/D4). The cell is considered for 1/4 fuel assembly in cluster model with square pitch arrange and then, the dimension of its unit cell is calculated. The unit cell consist of a fuel and moderator unit. The unit cell dimension as input data of WIMS/D4 code, called it annulus, is obtained from the equivalent unit cell. Macroscopic cross sections as output was used as input on neutron diffusion code Batan-2DIFF for core calculation as appropriate with three enrichment regions of the fuel of AP-600 core, namely 2, 2.5, and 3%. From result of diffusion code ( Batan-2DIFF) is obtained the value of delayed neutron fraction of 6.932E-03 and average prompt neutron life-time of 26.38 μs, so that the value of prompt neutron decay constant is 262.8 s-1. If it is compared the calculation result with the design value, the deviation are, for the design value of delayed neutron fraction is 7.5E-03, about 8% and the design value of average prompt neutron life time is 19.6 μs, about 34% respectively. The deviation because there are still unknown several core components of AP-600, so it didn't include in calculation yet

  9. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  10. Monochromatic neutron beam production at Brazilian nuclear research reactors

    Science.gov (United States)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  11. Differential and integral comparisons of three representations of the prompt neutron spectrum for the spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Madland, D.G.; LaBauve, R.J.; Nix, J.R.

    1984-01-01

    Because of their importance as neutron standards, we present comparisons of measured and calculated prompt fission neutron spectra N(E) and average prompt neutron multiplicities anti nu/sub p/ for the spontaneous fission of 252 Cf. In particular, we test three representations of N(E) against recent experimental measurements of the differential spectrum and threshold integral cross sections. These representations are the Maxwellian spectrum, the NBS spectrum, and the Los Alamos spectrum of Madland and Nix. For the Maxwellian spectrum, we obtain the value of the Maxwellian temperature T/sub M/ by a least-squares adjustment to the experimental differential spectrum of Poenitz and Tamura. For the Los Alamos spectrum, a similar least-squares adjustment determines the nuclear level-density parameter a, which is the single unknown parameter that appears. The NBS spectrum has been previously constructed by adjustments to eight differential spectra measured during the period 1965 to 1974. Among these three representations, we find that the Los Alamos spectrum best reproduces both the differential and integral measurements, assuming ENDF/B-V cross sections in the calculation of the latter. Although the NBS spectrum reproduces the integral measurements fairly well, it fails to satisfactorily reproduce the new differential measurement, and the Maxwellian spectrum fails to satisfactorily reproduce the integral measurements. Additionally, we calculate a value of anti nu/sub p/ from the Los Alamos theory that is within approximately 1% of experiment. 25 references

  12. An evaluation of the spontaneous fission prompt neutron spectrum of 252Cf

    International Nuclear Information System (INIS)

    Bojkov, G.S.; Yurevich, V.I.

    1987-01-01

    An evaluation of the spontaneous fission prompt neutron spectrum of 252 Cf from 1 keV to 20 MeV is described. Variance-covariance matrices for a number of recent experimental data sets were constructed and used to evaluate the neutron spectrum following a Bayesian procedure. The evaluated spectrum is compared with various experimental and theoretical representations. (author)

  13. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  14. Comparison of Americium-Beryllium neutron spectrum obtained using activation foil detectors and NE-213 spectrometer

    International Nuclear Information System (INIS)

    Sunny, Sunil; Subbaiah, K.V.; Selvakumaran, T.S.

    1999-01-01

    Neutron spectrum of Americium - Beryllium (α,n) source is measured with two different spectrometers vis-a-vis activation foils (foil detectors) and NE-213 organic scintillator. Activity induced in the foils is measured with 4π-β-γ sodium iodide detector by integrating counts under photo peak and the saturation activity is found by correcting to elapsed time before counting. The data on calculated activity is fed into the unfolding code, SAND-II to obtain neutron spectrum. In the case of organic scintillator, the pulse height spectrum is obtained using MCA and this is processed with unfolding code DUST in order to get neutron spectrum. The Americium - Beryllium (α,n) neutron spectrum thus obtained by two different methods is compared. It is inferred that the NE-213 scintillator spectrum is in excellent agreement with the values beyond 1MeV. Neutron spectrum obtained by activation foils depends on initial guess spectrum and is found to be in reasonable agreement with NE-213 spectrum. (author)

  15. Description of the CAREM Reactor Neutronic Calculation Codes

    International Nuclear Information System (INIS)

    Villarino, Eduardo; Hergenreder, Daniel

    2000-01-01

    In this work is described the neutronic calculation line used to design the CAREM reactor.A description of the codes used and the interfaces between the different programs are presented.Both, the normal calculation line and the alternative or verification calculation line are included.The calculation line used to obtain the kinetics parameters (effective delayed-neutron fraction and prompt-neutron lifetime) is also included

  16. INR TRIGA Research Reactors: A Neutron Source for Radioisotopes and Materials Investigation

    International Nuclear Information System (INIS)

    Barbos, D.; Ciocanescu, M.; Paunoiu, C.; Bucsa, A.F.

    2013-01-01

    At the INR there are 2 high intensity neutron sources. These sources are in fact the two nuclear TRIGA reactors: TRIGA SSR 14 MW and TRIGA ACPR. TRIGA stationary reactor is provided with several in-core irradiation channels. Other several out-of-core irradiation channels are located in the vertical channels in the beryllium reflector blocks. The maximum value of the thermal neutron flux (E 14 cm -2 s -1 and of fast neutron flux (E>1 MeV) is 6.89×10 13 cm -2 s -1 . For neutron activation analysis both reactors are used and k0-NAA method has been implemented. At INR Pitesti a prompt gamma ray neutron activation analysis devices has been designed, manufactured ant put into operation. For nuclear materials properties investigation neutron radiography methods was developed in INR. For these purposes two neutron radiography devices were manufacture, one of them underwater and other one dry. The neutron beams are used for investigation of materials properties and components produced or under development for applications in the energy sector (fission and fusion). At TRIGA 14 MW reactor a neutron difractormeter and a SANS devices are available for material residual stress and texture measurements. TRIGA 14 MW reactor is used for medical and industrial radioisotopes production ( 131 I, 125 I, 192 Ir, etc) and a method for 99 Mo- 99 Tc production from fission is under developing. At INR Pitesti several special programmes for new types of nuclear fuel behavior characterization are under development. (author)

  17. Delayed photoneutrons of the of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Ngo Quang Huy; Ha Van Thong; Vu Hai Long; Ngo Phu Khang; Nguyen Nhi Dien; Pham Van Lam; Huynh Dong Phuong; Luong Ba Vien; Le Vinh Vinh

    1994-01-01

    Time spectrum of delayed neutrons of the Dalat nuclear research reactor is measured and analyzed. It corresponds to a shut-down neutron fluxes of about 10 5 /10 8 n/cm 2 /sec after 100 hours continuous reactor operation at steady power level of 500 kW. Data processing of experimental time neutron spectrum gives 16 exponents, of which 10, resulting from photoneutrons due to (γ,n) reactions on beryllium used inside the reactor core, are obtained by using successive exponential stripping fitting method. For the Dalat reactor, the effective delayed photoneutron fraction relative to the total effective delayed neutron fraction is β B e eff =0.49%β eff for a beryllium weight relative to U 235 fuel of m B e/m U = 8.5. This result is acceptable in comparison to those obtained for other Be-U 235 media. (author). 5 refs., 2 figs., 4 tabs

  18. Frequency spectrum analysis of 252Cf neutron source based on LabVIEW

    International Nuclear Information System (INIS)

    Mi Deling; Li Pengcheng

    2011-01-01

    The frequency spectrum analysis of 252 Cf Neutron source is an extremely important method in nuclear stochastic signal processing. Focused on the special '0' and '1' structure of neutron pulse series, this paper proposes a fast-correlation algorithm to improve the computational rate of the spectrum analysis system. And the multi-core processor technology is employed as well as multi-threaded programming techniques of LabVIEW to construct frequency spectrum analysis system of 252 Cf neutron source based on LabVIEW. It not only obtains the auto-correlation and cross correlation results, but also auto-power spectrum,cross-power spectrum and ratio of spectral density. The results show that: analysis tools based on LabVIEW improve the fast auto-correlation and cross correlation code operating efficiency about by 25% to 35%, also verify the feasibility of using LabVIEW for spectrum analysis. (authors)

  19. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    International Nuclear Information System (INIS)

    Allen, Francis; Bonin, Hugues

    2008-01-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU TM nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  20. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Francis [Director General Nuclear Safety, 280 Slater St, Ottawa, K1A OK2 (Canada); Bonin, Hugues [Royal Military College of Canada, 11 General Crerar Cres, Kingston, K7K 7B4 (Canada)

    2008-07-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU{sup TM} nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  1. Neutron shielding studies on an advanced molten salt fast reactor design

    International Nuclear Information System (INIS)

    Merk, Bruno; Konheiser, Jörg

    2014-01-01

    Highlights: • Material damage due to irradiation has already been discovered at the MSRE. • Neutronic analysis of MSFR with curved blanket wall geometry. • Neutron fluence limit at the wall of the outer vessel can be kept for 80 years. • Shielded MSFR core will be of same dimension than a SFR core. - Abstract: The molten salt reactor technology has gained some new interest. In contrast to the historic molten salt reactors, the current projects are based on designing a molten salt fast reactor. Thus the shielding becomes significantly more challenging than in historic concepts. One very interesting and innovative result of the most recent EURATOM project on molten salt reactors – EVOL – is the fluid flow optimized design of the inner reactor vessel using curved blanket walls. The developed structure leads to a very uniform flow distribution. The design avoids all internal structures. Based on this new geometry a model for neutron physics calculation is presented. The major steps are: the modeling of the curved geometry in the unstructured mesh neutron transport code HELIOS and the determination of the real neutron flux and power distribution for this new geometry. The developed model is then used for the determination of the neutron fluence distribution in the inner and outer wall of the system. Based on these results an optimized shielding strategy is developed for the molten salt fast reactor to keep the fluence in the safety related outer vessel below expected limit values. A lifetime of 80 years can be assured, but the size of the core/blanket system will be comparable to a sodium cooled fast reactor. The HELIOS results are verified against Monte-Carlo calculations with very satisfactory agreement for a deep penetration problem

  2. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  3. Prompt neutron energy spectrum for the spontaneous fission of Cf-252

    International Nuclear Information System (INIS)

    Blinov, M.V.; Boykov, G.S.; Vitenko, V.A.

    1985-06-01

    The prompt neutron spectrum for the spontaneous fission of Cf-252 has been measured in 0.01-10 MeV region by the time-of-flight technique using a fast ionization chamber with U-235 layers as the neutron detector. Numerical data for the spectrum are presented, with an error file. (author)

  4. Development of SiC Neutron Detector Assembly to Measure the Neutron Flux of the Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Hwan; Park, June Sic; Shin, Hee Sung; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    At present, the conventional detector to measure the neutron at harsh environment is a Self Powered Neutron Detector (SPND). Rhodium(Rh)-103 is in the SPND. When neutron is incident on the Rhodium, the neutron capture reaction occurs, and the Rh-103 is converted to Rh-104. The Rh-104 is decayed to Pd-104 by {beta}-decay, and electrons are generated as the decay products. Because of the half life of Rh-104, approximately 5 minutes are required for the SPND output to reach the equilibrium condition. Therefore the on-line monitoring of the nuclear reactor state is limited if the neutron flux in the reactor core is monitored with the SPND. Silicon carbide (SiC) has the possibility to be developed as neutron detector at harsh environment, because the SiC can be operative at high temperature and high neutron flux conditions. Previously, the basic operation properties of the SiC detector were studied. Also, the radiation response of the SiC detector was studied at high neutron and gamma dose rate. The measurement results for an ex-core neutron flux monitor or a neutron flux monitor of the spent fuel were published. The SiC detector was also developed as neutron detector to measure the fissile material with active interrogation method. However, the studies about the development of SiC detector are still limited. In the present work, the radiation damage effect of the SiC detector was studied. The detector structure was determined based on the study, and a neutron detector assembly was made with the SiC detectors. The neutron and gamma-ray response of the detector assembly is presented in this paper. The detector assembly was positioned in the HANARO research reactor core, the performance test was done. The preliminary results are also included in this paper

  5. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  6. The IAEA collaborating centre for neutron activation based methodologies of research reactors

    International Nuclear Information System (INIS)

    Bode, P.

    2010-01-01

    The Reactor Institute Delft of the Delft University of Technology houses the Netherlands' only academic nuclear research reactor, with associated instrumentation and laboratories, for scientific education and research with ionizing radiation. The Institute's swimming pool type research reactor reached first criticality in 1963 and is currently operated at 2MW thermal powers on a 100 h/week basis. The reactor is equipped with neutron mirror guides serving ultra modern neutron beam physics instruments and with a very bright positron facility. Fully automated gamma-ray spectrometry systems are used by the laboratory for neutron activation analysis, providing large scale services under an ISO/IEC 17025:2005 compliant management system, being (since 1993) the first accredited laboratory of its kind in the world. Already for several years, this laboratory is sustainable by rendering these services to both the public and the private sector. The prime user of the Institute's fac ilities is the scientific Research Department of Radiation, Radionuclide and Reactors of the Faculty of Applied Sciences, housed inside the building. All reactor facilities are also made available for use by or for services to, external clients (industry, government, private sector, other (international research institutes and universities). The Reactor Institute Delft was inaugurated in May 2009 as a new lAEA Collaborating Centre for Neutron Activation Based Methodologies of Research Reactors. The collaboration involves education, research and development in (I) Production of reactor-produced, no-carrier added radioisotopes of high specific activity via neutron activation; (II) Neutron activation analysis with emphasis on automation as well as analysis of large samples, and radiotracer techniques and as a cross-cutting activity, (IIl) Quality assurance and management in research and application of research reactor based techniques and in research reactor operations. This c ollaboration will

  7. Thai Research Reactor (TRR-1/M1) Neutron Beam Measurements

    International Nuclear Information System (INIS)

    Ratanatongchai, Wichian

    2009-07-01

    Full text: Neutron beam tube of neutron radiography facility at Thai Research Reactor (TRR-1/M1) Thailand Institute of Nuclear Technology (public organization) is a divergent beam. The rectangular open-end of the beam tube is 16 cm x 17 cm while the inner-end is closed to the reactor core. The neutron beam size was measured using 20 cm x 40 cm neutron imaging plate. The measurement at the position 100 cm from the end of the collimator has shown that the beam size was 18.2 cm x 19.0 cm. Gamma ray in neutron the beam was also measured by the identical position using industrial X ray film. The area of gamma ray was 27.8 cm x 31.1 cm with the highest intensity found to be along the neutron beam circumference

  8. Neutron collar calibration for assay of LWR [light-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Pieper, J.E.

    1987-03-01

    The neutron-coincidence collar is used for the verification of the uranium content in light-water reactor fuel assemblies. An AmLi neutron source is used to give an active interrogation of the fuel assembly to measure the 235 U content, and the 238 U content is verified from a passive neutron-coincidence measurement. This report gives the collar calibration data of pressurized-water reactor and boiling-water reactor fuel assemblies. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and different fuel assembly sizes. The data were collected at Exxon Nuclear, Franco-Belge de Fabrication de Combustibles, ASEA-Atom, and other nuclear fuel fabrication facilities

  9. Optimization study of ultracold neutron sources at TRIGA reactors using MCNP

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.; Rogov, A.D.

    1997-01-01

    Monte Carlo simulation for the optimization of ultracold and very cold neutron sources for TRIGA reactors is performed. The calculations of thermal and cold neutron fluxes from the TRIGA reactor for different positions and configurations of a very cold solid methane moderator were performed with using the MCNP program. The production of neutrons in the ultracold and very cold energy range was calculated for the most promising final moderators (converters): very cold solid deuterium and heavy methane. The radiation energy deposition was calculated for the optimized solid methane-heavy methane cold neutron moderator

  10. Nuclear data and measurements series: Ratio of the prompt-fission-neutron spectrum of plutonium 239 to that of uranium 235

    International Nuclear Information System (INIS)

    Sugimoto, M.; Smith, A.B.; Guenther, P.T.

    1986-09-01

    The prompt-fission-neutron spectrum resulting from 239 Pu fission induced by 0.55 MeV incident neutrons is measured from 1.0 to 10.0 MeV relative to that of 235 U fission induced by the same incident-energy neutrons. The measurements employ the time-of-flight technique. Energy-dependent ratios of the two spectra are deduced from the measured values over the energy range 1.0 to 10.0 MeV. The experimentally-derived ratio results are compared with those calculated from ENDF/B-V, revision-2, and with results of recent microscopic measurements. Using the ENDF/B-V 235 U Watt parameters for the 235 U spectrum, the experimental measurements imply a ratio of average fission-spectrum energies of 239 Pu/ 235 U = 1.045 +- 0.003, compared to the value 1.046 calculated from ENDF/B-V, revision 2. 12 refs., 2 figs., 2 tabs

  11. Research reactor of the future: The advanced neutron source

    International Nuclear Information System (INIS)

    Appleton, B.; West, C.

    1994-01-01

    Agents for cancer detection and treatment, stronger materials, better electronic gadgets, and other consumer and industrial products - these are assured benefits of a research reactor project proposed for Oak Ridge. Just as American companies have again assumed world leadership in producing semiconductor chips as well as cars and trucks, the United States is poised to retake the lead in neutron science by building and operating the $2.9 billion Advanced Neutron Source (ANS) research reactor by the start of the next century. In 1985, the neutron community, led by ORNL researchers, proposed a pioneering project, later called the ANS. Scheduled to begin operation in 2003, the ANS is seen not only as a replacement for the aging HFIR and HFBR but also as the best laboratory in the world for conducting neutron-based research

  12. Studying the effect of xenon poisoning on the power of the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-07-01

    The uranium 235 is often used as a fuel to produce the energy in nuclear reactors. Uranium nuclei are fissioned with thermal neutrons and produce energy plus a number of neutrons. A fraction of such fission neutrons is involved in other fission with new nuclei to sustain the fission reactions. The remain fraction of the neutrons is lost from the reactor in two ways: escaped from the reactor, or absorbed with other nuclei that exist in the reactor before or produced from fission. Fission nuclei which absorb neutrons heavily are called p oison , such as Xe 135. Because Xe 135 absorbs neutrons heavily, it reduces the number of neutrons in the reactor. Hence, Xe 135 is studied explicitly in the MNSR reactor, and calculation of its negative reactivity is presented in this research during the operation, equilibrium, and after the shutting down of the reactor. (author)

  13. Neutron spectroscopy at the turn of the century

    CERN Document Server

    Popov, Yu P

    2003-01-01

    Neutron spectrometry is a powerful method of investigating atomic nuclei and condensed matter. Such investigations provide necessary data for a very wide spectrum of scientific and technological applications from the fundamental problems of the structure of matter and nucleosynthesis in the Universe to atomic power technologies and the structure of condensed matter. The most frequently utilized is the time-of-flight (TOF) method for powerful pulsed neutron sources. However, in many cases, one can use more effective, simpler and cheaper methods. For example, for astrophysics and radioactive waste transmutation problems, it is sufficient to know an average resonance cross section or "resonance integrals" for capture and fission reactions for neutron spectra specific to neutron fluxes in stars or in the active zone of a transmutation reactor. In these cases, the slow-down neutron spectroscopy (SDNS) methods in lead and graphite moderators will be useful. Compared to the TOF method, the lead SDNS gives a 10/sup 3...

  14. Incident spectrum determination for time-of-flight neutron powder diffraction data analysis

    International Nuclear Information System (INIS)

    Hodges, J. P.

    1998-01-01

    Accurate characterization of the incident neutron spectrum is an important requirement for precise Rietveld analysis of time-of-flight powder neutron diffraction data. Without an accurate incident spectrum the calculated model for the measured relative intensities of individual Bragg reflections will possess systematic errors. We describe a method for obtaining an accurate numerical incident spectrum using data from a transmitted beam monitor

  15. RA-0 reactor. New neutronic calculations

    International Nuclear Information System (INIS)

    Rumis, D.; Leszczynski, F.

    1990-01-01

    An updating of the neutronic calculations performed at the RA-0 reactor, located at the Natural, Physical and Exact Sciences Faculty of Cordoba National University, are herein described. The techniques used for the calculation of a reactor like the RA-0 allows prediction in detail of the flux behaviour in the core's interior and in the reflector, which will be helpful for experiments design. In particular, the use of WIMSD4 code to make calculations on the reactor implies a novelty in the possible applications of this code to solve the problems that arise in practice. (Author) [es

  16. Cold neutron PGAA facility developments at university research reactors in the USA

    International Nuclear Information System (INIS)

    Uenlue, K.; Rios-Martinez, C.

    2005-01-01

    The PGAA applications can be enhanced by using subthermal neutrons, cold neutrons at university research reactors. Only two cold neutron beam facilities were developed at the U.S. university research reactors, namely at Cornell University and the University of Texas at Austin. Both facilities used mesitylene moderator. The mesitylene moderator in the Cornell Cold Neutron Beam Facility (CNBF) was cooled by a helium cryorefrigerator via copper cold fingers to maintain the moderator below 30 K at full power reactor operation. Texas Cold Neutron Source (TCNS) also uses mesitylene moderator that is cooled by a cryorefrigerator via a neon thermosiphon. The operation of the TCNS is based on a helium cryorefrigerator, which liquefies neon gas in a 3-m long thermosiphon. The thermosiphon cools and maintains mesitylene moderator at about 30 K in a chamber. Neutrons streaming through the mesitylene chamber are moderated and thus reduce their energy to produce a cold neutron distribution. (author)

  17. Implementation and training methodology of subcritical reactors neutronic calculations triggered by external neutron source and applications

    International Nuclear Information System (INIS)

    Carluccio, Thiago

    2011-01-01

    This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k eff and k src , and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)

  18. Sensitivity studies of the neutron multiplicity spectrum in the spallation of Pb targets

    International Nuclear Information System (INIS)

    Sinha, A.; Garg, S.B.; Srinivasan, M.

    1986-01-01

    The number of neutrons produced per incident proton in the spallation of Pb targets is of direct relevance to the design of accelerator breeders. The nuclear cascade initiated by high-energy protons in spallation targets is usually described by an intranuclear cascade evaporation (INCE) model. Even though this model describes various average nuclear properties of spallation targets fairly well, differential quantities such as energy spectra, angular spectra etc., are not reproduced within the limits of experimental uncertainty. One of the reasons for this is the uncertainty in the magnitude of the parameters involved in the model, notably the level density parameter Bsub(O) whose magnitude is quoted by different workers to be in the range of 8-20 MeV. The accuracy of Bsub(O) could be improved if we could experimentally determine a quantity which is much more sensitive to Bsub(O) than the average neutron yield. In this paper we discuss one such quantity, namely the neutron multiplicity spectrum (MS). We compute the MS due to the spallation of Pb targets of different sizes at proton energies of 1.5, 1.0 and 0.59 GeV using the Monte Carlo code HETC. It is noticed that for the 1.5 GeV proton case the probability P(ν) for leakage of ν neutrons for ν in the range of 60-65, changes by about 70% when Bsub(O) is varied from 8 to 20 MeV. The corresponding change in the average neutron yield is <20%. It is therefore suggested that an accurate measurement of the MS can serve as a useful tool to narrow down the range of uncertainty in the Bsub(O) parameter. (author)

  19. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    International Nuclear Information System (INIS)

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-01-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  20. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Christian; Filliatre, Philippe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan [Division of Applied Nuclear Physics, Uppsala University, SE-75120 Uppsala, (Sweden)

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)