WorldWideScience

Sample records for reactor model geometry

  1. Development and analysis of some versions of the fractional-order point reactor kinetics model for a nuclear reactor with slab geometry

    Science.gov (United States)

    Vyawahare, Vishwesh A.; Nataraj, P. S. V.

    2013-07-01

    In this paper, we report the development and analysis of some novel versions and approximations of the fractional-order (FO) point reactor kinetics model for a nuclear reactor with slab geometry. A systematic development of the FO Inhour equation, Inverse FO point reactor kinetics model, and fractional-order versions of the constant delayed neutron rate approximation model and prompt jump approximation model is presented for the first time (for both one delayed group and six delayed groups). These models evolve from the FO point reactor kinetics model, which has been derived from the FO Neutron Telegraph Equation for the neutron transport considering the subdiffusive neutron transport. Various observations and the analysis results are reported and the corresponding justifications are addressed using the subdiffusive framework for the neutron transport. The FO Inhour equation is found out to be a pseudo-polynomial with its degree depending on the order of the fractional derivative in the FO model. The inverse FO point reactor kinetics model is derived and used to find the reactivity variation required to achieve exponential and sinusoidal power variation in the core. The situation of sudden insertion of negative reactivity is analyzed using the FO constant delayed neutron rate approximation. Use of FO model for representing the prompt jump in reactor power is advocated on the basis of subdiffusion. Comparison with the respective integer-order models is carried out for the practical data. Also, it has been shown analytically that integer-order models are a special case of FO models when the order of time-derivative is one. Development of these FO models plays a crucial role in reactor theory and operation as it is the first step towards achieving the FO control-oriented model for a nuclear reactor. The results presented here form an important step in the efforts to establish a step-by-step and systematic theory for the FO modeling of a nuclear reactor.

  2. Atmospheric dispersion of argon-41 from anuclear research reactor: measurement and modeling of plume geometry and gamma radiation field

    DEFF Research Database (Denmark)

    Lauritzen, Bent; Astrup, Poul; Drews, Martin

    2003-01-01

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine release of argon-41 from the BR1 research reactor in Mol, Belgium. Simultaneous measurements of plume geometry and radiation fields for argon-41 decay were performed as well as measurements of the argon......-41 source term and the meteorological parametres. Good overall agreement is found between measurement data and model results using the mesoscale atmospheric dispersion and dose rate model RIMPUFF....

  3. Neutron transport in hexagonal reactor cores modeled by trigonal-geometry diffusion and simplified P{sub 3} nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Duerigen, Susan

    2013-05-15

    The superior advantage of a nodal method for reactor cores with hexagonal fuel assemblies discretized as cells consisting of equilateral triangles is its mesh refinement capability. In this thesis, a diffusion and a simplified P{sub 3} (or SP{sub 3}) neutron transport nodal method are developed based on trigonal geometry. Both models are implemented in the reactor dynamics code DYN3D. As yet, no other well-established nodal core analysis code comprises an SP{sub 3} transport theory model based on trigonal meshes. The development of two methods based on different neutron transport approximations but using identical underlying spatial trigonal discretization allows a profound comparative analysis of both methods with regard to their mathematical derivations, nodal expansion approaches, solution procedures, and their physical performance. The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They are based on the transverse-integration procedure, which renders them computationally efficient, and they use a combination of polynomial and exponential functions to represent the neutron flux moments of the SP{sub 3} and diffusion equations, which guarantees high accuracy. The SP{sub 3} equations are derived in within-group form thus being of diffusion type. On this basis, the conventional diffusion solver structure can be retained also for the solution of the SP{sub 3} transport problem. The verification analysis provides proof of the methodological reliability of both trigonal DYN3D models. By means of diverse hexagonal academic benchmark and realistic detailed-geometry full-transport-theory problems, the superiority of the SP{sub 3} transport over the diffusion model is demonstrated in cases with pronounced anisotropy effects, which is, e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.

  4. Supersymmetric Sigma Model Geometry

    Directory of Open Access Journals (Sweden)

    Ulf Lindström

    2012-08-01

    Full Text Available This is a review of how sigma models formulated in Superspace have become important tools for understanding geometry. Topics included are: The (hyperkähler reduction; projective superspace; the generalized Legendre construction; generalized Kähler geometry and constructions of hyperkähler metrics on Hermitian symmetric spaces.

  5. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.

  6. MODEL SIMULATION OF GEOMETRY AND STRESS-STRAIN VARIATION OF BATAN FUEL PIN PROTOTYPE DURING IRRADIATION TEST IN RSG-GAS REACTOR

    Directory of Open Access Journals (Sweden)

    Suwardi Suwardi

    2015-03-01

    Full Text Available MODEL SIMULATION OF GEOMETRY AND STRESS-STRAIN VARIATION OF BATAN FUEL PIN PROTOTYPE DURING IRRADIATION TEST IN RSG-GAS REACTOR*. The first short fuel pin containing natural UO2 pellet in Zry4 cladding has been prepared at the CNFT (Center for Nuclear Fuel Technology then a ramp test will be performed. The present work is part of designing first irradiation experiments in the PRTF (Power Ramp Test Facility of RSG-GAS 30 MW reactor. The thermal mechanic of the pin during irradiation has simulated. The geometry variation of pellet and cladding is modeled by taking into account different phenomena such as thermal expansion, densification, swelling by fission product, thermal creep and radiation growth. The cladding variation is modeled by thermal expansion, thermal and irradiation creeps. The material properties are modeled by MATPRO and standard numerical parameter of TRANSURANUS code. Results of irradiation simulation with 9 kW/m LHR indicates that pellet-clad contacts onset from 0.090 mm initial gaps after 806 d, when pellet radius expansion attain 0.015 mm while inner cladding creep-down 0.075 mm. A newer computation data show that the maximum measured LHR of n-UO2 pin in the PRTF 12.4 kW/m. The next simulation will be done with a higher LHR, up to ~ 25 kW/m. MODEL SIMULASI VARIASI GEOMETRI DAN STRESS-STRAIN DARI PROTOTIP BAHAN BAKAR PIN BATAN SELAMA UJI IRADIASI DI REAKTOR RSG-GAS. Pusat Teknologi Bahan Bakar Nuklir (PTBBN telah menyiapkan tangkai (pin bahan bakar pendek perdana yang berisi pelet UO2 alam dalam kelongsong paduan zircaloy untuk dilakukan uji iradiasi daya naik. Penelitian ini merupakan bagian dari perancangan percobaan iradiasi pertama di PRTF (Power Ramp Test Fasility yang terpasang di reaktor serbaguna RSG-GAS berdaya 30 MW. Telah dilakukan pemodelan dan simulasi kinerja termal mekanikal pin selama iradiasi. Variasi geometri pelet dan kelongsong selama pengujian dimodelkan dengan memperhatikan fenomena ekspansi termal

  7. ACCELERATING FUSION REACTOR NEUTRONICS MODELING BY AUTOMATIC COUPLING OF HYBRID MONTE CARLO/DETERMINISTIC TRANSPORT ON CAD GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Biondo, Elliott D [ORNL; Ibrahim, Ahmad M [ORNL; Mosher, Scott W [ORNL; Grove, Robert E [ORNL

    2015-01-01

    Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).

  8. Mixing In Jet-Stirred Reactors With Different Geometries

    KAUST Repository

    Ayass, Wassim W.

    2013-12-01

    This work offers a well-developed understanding of the mixing process inside Jet- Stirred Reactors (JSR’s) with different geometries. Due to the difficulty of manufacturing these JSR’s made in quartz, existing JSR configurations were assessed with certain modifications and optimal operating conditions were suggested for each reactor. The effect of changing the reactor volume, the nozzle diameter and shape on mixing were both studied. Two nozzle geometries were examined in this study, a crossed shape nozzle and an inclined shape nozzle. Overall, six reactor configurations were assessed by conducting tracer experiments - using the state-of-art technologies of high-speed cameras and laser absorption spectroscopy- and Computational Fluid Dynamics (CFD) simulations. The high-speed camera tracer experiment gives unique qualitative information – not present in the literature – about the actual flow field. On the other hand, when using the laser technique, a more quantitative analysis emerges with determining the experimental residence time distribution (RTD) curves of each reactor. Comparing these RTD curves with the ideal curve helped in eliminating two cases. Finally, the CFD simulations predict the RTD curves as well as the mixing levels of the JSR’s operated at different residence times. All of these performed studies suggested the use of an inclined nozzle configuration with a reactor diameter D of 40mm and a nozzle diameter d of 1mm as the optimal choice for low residence time operation. However, for higher residence times, the crossed configuration reactor with D=56mm and d=0.3mm gave a nearly perfect behavior.

  9. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  10. An improved combinatorial geometry model for arbitrary geometry in DSMC

    Science.gov (United States)

    Kargaran, H.; Minuchehr, A.; Zolfaghari, A.

    2017-03-01

    This paper focuses on a new direct simulation Monte Carlo (DSMC) code based on combinatorial geometry (CG) for simulation of any rarefied gas flow. The developed code, called DgSMC-A, has been supplied with an improved CG modeling able to significantly optimize the particle-tracking process, resulting in a highly reduced runtime compared to the conventional codes. The improved algorithm inserts a grid over the geometry and saves those grid elements containing some part of the geometry border. Since only a small part of a grid is engaged with the geometry border, significant time can be saved using the proposed algorithm. Embedding the modified algorithm in the DgSMC-A resulted in a fast, robust and self-governing code needless to any mesh generator. The code completely handles complex geometries created with first-and second-order surfaces. In addition, we developed a new surface area calculator in the CG methodology for complex geometries based on the Monte Carlo method with acceptable accuracy. Several well-known test cases are examined to indicate the code ability to deal with a wide range of realistic problems. Results are also found to be in good agreement with references and experimental data.

  11. Surrogate Modeling for Geometry Optimization

    DEFF Research Database (Denmark)

    Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie

    2009-01-01

    A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....

  12. Configurational analysis of an EBT reactor in various magnetic geometries

    Energy Technology Data Exchange (ETDEWEB)

    Owen, L.W.; Uckan, N.A.

    1980-01-01

    Optimization of vacuum field particle confinement in an ELMO Bumpy Torus (EBT) reactor has been considered. Several methods of improving the efficient utilization of magnetic fields and the particle confinement characteristics of a reactor have been analyzed. These include the use of (1) magnets with a large mirror ratio, (2) high field Nb/sub 3/Sn or Nb/sub 3/Sn/NbTi hybrid mirror coils, (3) split-wedge mirror coils, (4) aspect ratio enhancement (ARE) coils, and (5) recently developed field symmetrizing (SYM) coils. Of these, particle drift orbits and three-dimensional tensor pressure equilibrium calculations have shown that the ARE and SYM coils used in conjunction with high field magnets offer the most promise of good plasma performance in a smaller size (up to 50%) EBT reactor. The relative merits of each magnetic configuration are discussed, and the design characteristics are given.

  13. A Multivariate Model of Achievement in Geometry

    Science.gov (United States)

    Bailey, MarLynn; Taasoobshirazi, Gita; Carr, Martha

    2014-01-01

    Previous studies have shown that several key variables influence student achievement in geometry, but no research has been conducted to determine how these variables interact. A model of achievement in geometry was tested on a sample of 102 high school students. Structural equation modeling was used to test hypothesized relationships among…

  14. Transient analyses for a molten salt fast reactor with optimized core geometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, R., E-mail: rui.li@kit.edu [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Wang, S.; Rineiski, A.; Zhang, D. [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Merle-Lucotte, E. [Laboratoire de Physique Subatomique et de Cosmologie – IN2P3 – CNRS/Grenoble INP/UJF, 53, rue des Martyrs, 38026 Grenoble (France)

    2015-10-15

    Highlights: • MSFR core is analyzed by fully coupling neutronics and thermal-hydraulics codes. • We investigated four types of transients intensively with the optimized core geometry. • It demonstrates MSFR has a high safety potential. - Abstract: Molten salt reactors (MSRs) have encountered a marked resurgence of interest over the past decades, highlighted by their inclusion as one of the six candidate reactors of the Generation IV advanced nuclear power systems. The present work is carried out in the framework of the European FP-7 project EVOL (Evaluation and Viability Of Liquid fuel fast reactor system). One of the project tasks is to report on safety analyses: calculations of reactor transients using various numerical codes for the molten salt fast reactor (MSFR) under different boundary conditions, assumptions, and for different selected scenarios. Based on the original reference core geometry, an optimized geometry was proposed by Rouch et al. (2014. Ann. Nucl. Energy 64, 449) on thermal-hydraulic design aspects to avoid a recirculation zone near the blanket which accumulates heat and very high temperature exceeding the salt boiling point. Using both fully neutronics thermal-hydraulic coupled codes (SIMMER and COUPLE), we also re-confirm the efforts step by step toward a core geometry without the recirculation zone in particular as concerns the modifications of the core geometrical shape. Different transients namely Unprotected Loss of Heat Sink (ULOHS), Unprotected Loss of Flow (ULOF), Unprotected Transient Over Power (UTOP), Fuel Salt Over Cooling (FSOC) are intensively investigated and discussed with the optimized core geometry. It is demonstrated that due to inherent negative feedbacks, an MSFR plant has a high safety potential.

  15. Verification of a neutronic code for transient analysis in reactors with Hex-z geometry

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Pintor, S.; Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Ginestar, D. [Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)

    2012-07-01

    Due to the geometry of the fuel bundles, to simulate reactors such as VVER reactors it is necessary to develop methods that can deal with hexagonal prisms as basic elements of the spatial discretization. The main features of a code based on a high order finite element method for the spatial discretization of the neutron diffusion equation and an implicit difference method for the time discretization of this equation are presented and the performance of the code is tested solving the first exercise of the AER transient benchmark. The obtained results are compared with the reference results of the benchmark and with the results provided by PARCS code. (authors)

  16. Reactor Physics Analysis Models for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    2007-10-15

    Canada deuterium uranium (CANDU) reactor physics analysis is typically performed in three steps. At first, macroscopic cross-sections of the reference lattice is produced by modeling the reference fuel channel. Secondly macroscopic cross-sections of reactivity devices in the reactor are generated. The macroscopic cross-sections of a reactivity device are calculated as incremental cross-sections by subtracting macroscopic cross-sections of a three-dimensional lattice without reactivity device from those of a three-dimensional lattice with a reactivity device. Using the macroscopic cross-sections of the reference lattice and incremental cross-sections of the reactivity devices, reactor physics calculations are performed. This report summarizes input data of typical CANDU reactor physics codes, which can be utilized for the future CANDU reactor physics analysis.

  17. Reference worldwide model for antineutrinos from reactors

    OpenAIRE

    Baldoncini, Marica; Callegari, Ivan; Fiorentini, Giovanni; Mantovani, Fabio; Ricci, Barbara; Strati, Virginia; Xhixha, Gerti

    2014-01-01

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Bor...

  18. Biofilm carrier migration model describes reactor performance.

    Science.gov (United States)

    Boltz, Joshua P; Johnson, Bruce R; Takács, Imre; Daigger, Glen T; Morgenroth, Eberhard; Brockmann, Doris; Kovács, Róbert; Calhoun, Jason M; Choubert, Jean-Marc; Derlon, Nicolas

    2017-06-01

    The accuracy of a biofilm reactor model depends on the extent to which physical system conditions (particularly bulk-liquid hydrodynamics and their influence on biofilm dynamics) deviate from the ideal conditions upon which the model is based. It follows that an improved capacity to model a biofilm reactor does not necessarily rely on an improved biofilm model, but does rely on an improved mathematical description of the biofilm reactor and its components. Existing biofilm reactor models typically include a one-dimensional biofilm model, a process (biokinetic and stoichiometric) model, and a continuous flow stirred tank reactor (CFSTR) mass balance that [when organizing CFSTRs in series] creates a pseudo two-dimensional (2-D) model of bulk-liquid hydrodynamics approaching plug flow. In such a biofilm reactor model, the user-defined biofilm area is specified for each CFSTR; thereby, Xcarrier does not exit the boundaries of the CFSTR to which they are assigned or exchange boundaries with other CFSTRs in the series. The error introduced by this pseudo 2-D biofilm reactor modeling approach may adversely affect model results and limit model-user capacity to accurately calibrate a model. This paper presents a new sub-model that describes the migration of Xcarrier and associated biofilms, and evaluates the impact that Xcarrier migration and axial dispersion has on simulated system performance. Relevance of the new biofilm reactor model to engineering situations is discussed by applying it to known biofilm reactor types and operational conditions.

  19. Advances in Spectral Nodal Methods applied to S{sub N} Nuclear Reactor Global calculations in Cartesian Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Barros, R.C.; Filho, H.A.; Oliveira, F.B.S. [Departamento de Modelagem Computacional, Instituto Politecnico, Universidade do Estado do Rio de Janeiro- UERJ, Rua Alberto Rangel s/n, 28630-050 Nova Friburgo, RJ (Brazil); Silva, F.C. da [Programa de Engenharia Nuclear, COPPE, Universidade Federal do Rio de Janeiro - UFRJ, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil)]. e-mail: dickbarros@uol.com.br

    2004-07-01

    Presented here are the advances in spectral nodal methods for discrete ordinates (SN) eigenvalue problems in Cartesian geometry. These coarse-mesh methods are based on three ingredients: (i) the use of the standard discretized spatial balance SN equations; (ii) the use of the non-standard spectral diamond (SD) auxiliary equations in the multiplying regions of the domain, e.g. fuel assemblies; and (iii) the use of the non-standard spectral Green's function (SGF) auxiliary equations in the non-multiplying regions of the domain, e.g., the reflector. In slab-geometry the hybrid SD-SGF method generates numerical results that are completely free of spatial truncation errors. In X,Y-geometry, we obtain a system of two 'slab-geometry' SN equations for the node-edge average angular fluxes by transverse-integrating the X,Y-geometry SN equations separately in the y- and then in the x-directions within an arbitrary node of the spatial grid set up on the domain. In this paper, we approximate the transverse leakage terms by constants. These are the only approximations considered in the SD-SGF-constant nodal method, as the source terms, that include scattering and eventually fission events, are treated exactly. Moreover, we describe in this paper the progress of the approximate SN albedo boundary conditions for substituting the non-multiplying regions around the nuclear reactor core. We show numerical results to typical model problems to illustrate the accuracy of spectral nodal methods for coarse-mesh SN criticality calculations. (Author)

  20. Modeling a Packed Bed Reactor Utilizing the Sabatier Process

    Science.gov (United States)

    Shah, Malay G.; Meier, Anne J.; Hintze, Paul E.

    2017-01-01

    A numerical model is being developed using Python which characterizes the conversion and temperature profiles of a packed bed reactor (PBR) that utilizes the Sabatier process; the reaction produces methane and water from carbon dioxide and hydrogen. While the specific kinetics of the Sabatier reaction on the RuAl2O3 catalyst pellets are unknown, an empirical reaction rate equation1 is used for the overall reaction. As this reaction is highly exothermic, proper thermal control is of the utmost importance to ensure maximum conversion and to avoid reactor runaway. It is therefore necessary to determine what wall temperature profile will ensure safe and efficient operation of the reactor. This wall temperature will be maintained by active thermal controls on the outer surface of the reactor. Two cylindrical PBRs are currently being tested experimentally and will be used for validation of the Python model. They are similar in design except one of them is larger and incorporates a preheat loop by feeding the reactant gas through a pipe along the center of the catalyst bed. The further complexity of adding a preheat pipe to the model to mimic the larger reactor is yet to be implemented and validated; preliminary validation is done using the smaller PBR with no reactant preheating. When mapping experimental values of the wall temperature from the smaller PBR into the Python model, a good approximation of the total conversion and temperature profile has been achieved. A separate CFD model incorporates more complex three-dimensional effects by including the solid catalyst pellets within the domain. The goal is to improve the Python model to the point where the results of other reactor geometry can be reasonably predicted relatively quickly when compared to the much more computationally expensive CFD approach. Once a reactor size is narrowed down using the Python approach, CFD will be used to generate a more thorough prediction of the reactors performance.

  1. Reference worldwide model for antineutrinos from reactors

    Science.gov (United States)

    Baldoncini, Marica; Callegari, Ivan; Fiorentini, Giovanni; Mantovani, Fabio; Ricci, Barbara; Strati, Virginia; Xhixha, Gerti

    2015-03-01

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework, we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency. We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO +), and proposed (Juno, RENO-50, LENA, and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation, and detection processes are estimated using a Monte Carlo-based approach, which provides an overall site-dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes, and we estimate a 2.4% increase of the unoscillated event rate in the geoneutrino energy window due to the storage of spent nuclear fuels in the cooling pools. We predict that the research reactors contribute to less than 0.2% to the commercial reactor signal in the investigated 14 sites. We perform a multitemporal analysis of the expected reactor signal over a time lapse of ten years using reactor operational records collected in a comprehensive database published at www.fe.infn.it/antineutrino.

  2. Coil Designs for Novel Magnetic Geometries to Cure the Divertor Heat Flux Problem for Reactors

    Science.gov (United States)

    Pekker, M.; Valanju, P.; Kotschenreuther, M.; Wiley, J. C.; Strickler, D.

    2004-11-01

    Coil designs are developed for novel magnetic divertor geometries with a second axi-symmetric x-point and flux expansion region along the separatrix. Adjacent posters describe how these lead to spreading of heat flux and the possibility of stable, complete detachment to overcome serious physics and engineering problems in reactors. The principal feasibility issue is creating, with simple coils, additional X-points on the separatrix without extensively deforming the magnetic field in the main plasma. For the spherical tokamak NSTX, we show that adding one or two poloidal coils suffices to create a divergent flux at the divertor, i.e., a new x-point. The currents and forces for the extra coils are small. We also modify ARIES ST design to show reactor feasibility. Optimized coil designs for PEGASUS, ARIES RS/AT, and a modular ITER retrofit are also being developed. For our calculations we used self consistent code FBEQ, which was used to design NSTX. We also use NCSX tools for optimization of designs with competing physics and engineering constraints.

  3. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  4. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  5. Geometry

    Indian Academy of Sciences (India)

    of geometry he completely changed our way of thinking. Later geometers were to spend entire lifetimes trying ... dimensions up to and including three it is difficult to think of dimensions beyond except abstractly -in one's .... form I. gij ai aj is positive for any collection of numbers. (aI, ... , an). Moreover, the given form can easily ...

  6. Geometri

    DEFF Research Database (Denmark)

    Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...... matematik, geometri, og fysik til at forstå, hvad det er, der foregår....

  7. The VSEPR model of molecular geometry

    CERN Document Server

    Gillespie, Ronald J

    2012-01-01

    Valence Shell Electron Pair Repulsion (VSEPR) theory is a simple technique for predicting the geometry of atomic centers in small molecules and molecular ions. This authoritative reference was written by Istvan Hartiggai and the developer of VSEPR theory, Ronald J. Gillespie. In addition to its value as a text for courses in molecular geometry and chemistry, it constitutes a classic reference for professionals.Starting with coverage of the broader aspects of VSEPR, this volume narrows its focus to a succinct survey of the methods of structural determination. Additional topics include the appli

  8. Modeling of Reactor Kinetics and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov

    2010-09-01

    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  9. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  10. Study Neutronic of Small Pb-Bi Cooled Non-Refuelling Nuclear Power Plant Reactor (SPINNOR) with Hexagonal Geometry Calculation

    Science.gov (United States)

    Nur Krisna, Dwita; Su'ud, Zaki

    2017-01-01

    Nuclear reactor technology is growing rapidly, especially in developing Nuclear Power Plant (NPP). The utilization of nuclear energy in power generation systems has been progressing phase of the first generation to the fourth generation. This final project paper discusses the analysis neutronic one-cooled fast reactor type Pb-Bi, which is capable of operating up to 20 years without refueling. This reactor uses Thorium Uranium Nitride as fuel and operating on power range 100-500MWtNPPs. The method of calculation used a computer simulation program utilizing the SRAC. SPINNOR reactor is designed with the geometry of hexagonal shaped terrace that radially divided into three regions, namely the outermost regions with highest percentage of fuel, the middle regions with medium percentage of fuel, and most in the area with the lowest percentage. SPINNOR fast reactor operated for 20 years with variations in the percentage of Uranium-233 by 7%, 7.75%, and 8.5%. The neutronic calculation and analysis show that the design can be optimized in a fast reactor for thermal power output SPINNOR 300MWt with a fuel fraction 60% and variations of Uranium-233 enrichment of 7%-8.5%.

  11. Surrogate Modeling for Geometry Optimization in Material Design

    DEFF Research Database (Denmark)

    Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas B.; Holzwarth, Natalie A.W.

    2007-01-01

    We propose a new approach based on surrogate modeling for geometry optimization in material design. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)......We propose a new approach based on surrogate modeling for geometry optimization in material design. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)...

  12. Low enriched uranium foil targets with different geometries for the production of Molybdenum-99 in the BMR (Brazilian Multipurpose Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Muniz, Rafael O.R.; Coelho, Talita S., E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A new research reactor is being planned in Brazil to take care of the demand of radiopharmaceuticals in the country and conduct research in various areas. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Two low enriched (<20% {sup 235}U) metallic uranium foil targets (cylinder and plate geometries) are being considered for production of Molybdenum-99 ({sup 99}Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of {sup 99}Mo for these targets in the RMB and to determine the temperatures achieved in the targets. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations were utilized the computer codes MTRCR-IEA-R1 and ANSYS CFX. (author)

  13. Seclazone Reactor Modeling And Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Osinga, T. [ETH-Zuerich (Switzerland); Olalde, G. [CNRS Odeillo (France); Steinfeld, A. [PSI and ETHZ (Switzerland)

    2005-03-01

    A numerical model is formulated for the SOLZINC solar chemical reactor for the production of Zn by carbothermal reduction of ZnO. The model involves solving, by the finite-volume technique, a 1D unsteady state energy equation that couples heat transfer to the chemical kinetics for a shrinking packed bed exposed to thermal radiation. Validation is accomplished by comparison with experimentally measured temperature profiles and Zn production rates as a function of time, obtained for a 5-kW solar reactor tested at PSI's solar furnace. (author)

  14. A reduced fidelity model for the rotary chemical looping combustion reactor

    KAUST Repository

    Iloeje, Chukwunwike O.

    2017-01-11

    The rotary chemical looping combustion reactor has great potential for efficient integration with CO capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate the feasibility of continuous reactor operation. Though this detailed model provides a high resolution representation of the rotary reactor performance, it is too computationally expensive for studies that require multiple model evaluations. Specifically, it is not ideal for system-level studies where the reactor is a single component in an energy conversion system. In this study, we present a reduced fidelity model (RFM) of the rotary reactor that reduces computational cost and determines an optimal combination of variables that satisfy reactor design requirements. Simulation results for copper, nickel and iron-based oxygen carriers show a four-order of magnitude reduction in simulation time, and reasonable prediction accuracy. Deviations from the detailed reference model predictions range from 3% to 20%, depending on oxygen carrier type and operating conditions. This study also demonstrates how the reduced model can be modified to deal with both optimization and design oriented problems. A parametric study using the reduced model is then applied to analyze the sensitivity of the optimal reactor design to changes in selected operating and kinetic parameters. These studies show that temperature and activation energy have a greater impact on optimal geometry than parameters like pressure or feed fuel fraction for the selected oxygen carrier materials.

  15. Modeling of metal interaction geometries for protein-ligand docking.

    Science.gov (United States)

    Seebeck, Birte; Reulecke, Ingo; Kämper, Andreas; Rarey, Matthias

    2008-05-15

    The accurate modeling of metal coordination geometries plays an important role for structure-based drug design applied to metalloenzymes. For the development of a new metal interaction model, we perform a statistical analysis of metal interaction geometries that are relevant to protein-ligand complexes. A total of 43,061 metal sites of the Protein Data Bank (PDB), containing amongst others magnesium, calcium, zinc, iron, manganese, copper, cadmium, cobalt, and nickel, were evaluated according to their metal coordination geometry. Based on statistical analysis, we derived a model for the automatic calculation and definition of metal interaction geometries for the purpose of molecular docking analyses. It includes the identification of the metal-coordinating ligands, the calculation of the coordination geometry and the superposition of ideal polyhedra to identify the optimal positions for free coordination sites. The new interaction model was integrated in the docking software FlexX and evaluated on a data set of 103 metalloprotein-ligand complexes, which were extracted from the PDB. In a first step, the quality of the automatic calculation of the metal coordination geometry was analyzed. In 74% of the cases, the correct prediction of the coordination geometry could be determined on the basis of the protein structure alone. Secondly, the new metal interaction model was tested in terms of predicting protein-ligand complexes. In the majority of test cases, the new interaction model resulted in an improved docking accuracy of the top ranking placements. 2007 Wiley-Liss, Inc.

  16. Bianchi-IX string cosmological model in Lyra geometry

    Indian Academy of Sciences (India)

    Abstract. A class of cosmological solutions of massive strings for the Bianchi-IX space-time are obtained within the framework of Lyra geometry. Various physical and kinematical properties of the models are discussed.

  17. A simple model of reactor cores for reactor neutrino flux calculations for the KamLAND experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan)]. E-mail: kyo@awa.tohoku.ac.jp; Inoue, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Owada, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Suekane, F. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Suzuki, A. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Hirano, G. [TEPCO Systems Corporation, Tokyo 135-0034 (Japan); Kosaka, S. [TEPCO Systems Corporation, Tokyo 135-0034 (Japan); Ohta, T. [Tokyo Electric Power Company, Tokyo 100-8560 (Japan); Tanaka, H. [Tokyo Electric Power Company, Tokyo 100-8560 (Japan)

    2006-12-21

    KamLAND is a reactor neutrino oscillation experiment with a very long baseline. This experiment successfully measured oscillation phenomena of reactor antineutrinos coming mainly from 53 reactors in Japan. In order to extract the results, it is necessary to accurately calculate time-dependent antineutrino spectra from all the reactors. A simple model of reactor cores and code implementing it were developed for this purpose. This paper describes the model of the reactor cores used in the KamLAND reactor analysis.

  18. Influence of geometry on pressure and velocity distribution in packed-bed methanol steam reforming reactor

    Science.gov (United States)

    Ivanović, Ivana; Sedmak, Aleksandar; Milošević, Miloš; Cvetković, Ivana; Pohar, Andrej; Likozar, Blaž

    2017-07-01

    The main tasks of this research is to propose several changes in the packed bed micro methanol steam reformer geometry in order to ensure its performance. The reformer is an integral part of the existing indirect internal reforming high temperature PEMFC and most of its geometry is already defined. The space for remodeling is very limited.

  19. Pebble Bed Reactor Dust Production Model

    Energy Technology Data Exchange (ETDEWEB)

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-09-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

  20. Fischer-Tropsch Slurry Reactor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Y.; Gamwo, I.K.; Harke, F.W. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas, solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.

  1. Discrete element modelling of pebble packing in pebble bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Suikkanen, Heikki, E-mail: heikki.suikkanen@lut.fi; Ritvanen, Jouni, E-mail: jouni.ritvanen@lut.fi; Jalali, Payman, E-mail: payman.jalali@lut.fi; Kyrki-Rajamäki, Riitta, E-mail: riitta.kyrki-rajamaki@lut.fi

    2014-07-01

    Highlights: • A discrete element method code is developed for pebble bed reactor analyses. • Methods are established to extract packing information at various spatial scales. • Packing simulations inside annular core geometry are done varying input parameters. • The restitution coefficient has the strongest effect on the resulting packing density. • Detailed analyses reveal local densification especially near the walls. - Abstract: It is important to understand the packing characteristics and behaviour of the randomly packed pebble bed to further analyse the reactor physical and thermal-hydraulic behaviour and to design a safe and economically feasible pebble bed reactor. The objective of this work was to establish methods to model and analyse the pebble packing in detail to provide useful tools and data for further analyses. Discrete element method (DEM) is a well acknowledged method for analysing granular materials, such as the fuel pebbles in a pebble bed reactor. In this work, a DEM computer code was written specifically for pebble bed analyses. Analysis methods were established to extract data at various spatial scales from the pebble beds resulting from the DEM simulations. A comparison with available experimental data was performed to validate the DEM implementation. To test the code implementation in full-scale reactor calculations, DEM packing simulations were done in annular geometry with 450,000 pebbles. Effects of the initial packing configuration, friction and restitution coefficients and pebble size distribution to the resulting pebble bed were investigated. The packing simulations revealed that from the investigated parameters the restitution coefficient had the largest effect on the resulting average packing density while other parameters had smaller effects. Detailed local packing density analysis of pebble beds with different average densities revealed local variations especially strong in the regions near the walls. The implemented DEM

  2. Three-phase packed bed reactor with an evaporating solvent—II. Modelling of the reactor

    NARCIS (Netherlands)

    van Gelder, K.B.; Borman, P.C.; Weenink, R.E.; Westerterp, K.R.

    1990-01-01

    In this paper two models are presented for a three-phase catalytic packed bed reactor in which in evaporating solvent is used to absorb and remove most of the reaction heat. A plug flow model and a model comprising mass and heat dispersion in the reactor are discussed. The results of both models are

  3. Reactor modeling and physicochemical properties characterization for a polyethylene fluidized bed reactor

    OpenAIRE

    Fernandes, F.A.N.; LONA BATISTA,L. M. F.

    1999-01-01

    A new steady state model for the fluidized bed reactor and a physicochemical characterization model were developed for the simulation of polyethylene production using gas-phase technology. The association of these models was done in order to predict the characteristics of the polymer produced in the fluidized bed reactor (molecular weight, polydispersity, melt index, and other characteristics) throughout the reactor and also to predict the growth of the polymer particle.

  4. A 3D Geometry Model Search Engine to Support Learning

    Science.gov (United States)

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  5. The Geometry of Memory: A Physical Model

    Science.gov (United States)

    Maier, Willard; Miller, Bruce

    2008-10-01

    In recent history physicists have become interested in viewing processes in the brain in terms of the nonlinear dynamics of interacting neurons. To achieve this they have explored different levels of fidelity in modeling the interacting neurons. An open question is whether there is a connection between specific firing patterns and the representation of memory. Izhikevich has proposed a possible connection that he has named polychoronous groups and explored it within the context of a specific dynamical model. Here a minimal model of polychronous groups in neural networks is presented. The model is computationally efficient and allows the study of polychronous groups independent of specific neuron models prevalent in the literature. Computational experiments were performed with the model in one- and two-dimensional neural architectures to determine the dependence of the number of polychronous groups on various connectivity options. Our results (arXiv:0806.1070v1 [cond-mat.dis-nn]) suggest that the concept is robust and may therefore play an important role in more realistic systems. The possibility of using polychronous groups as computational elements is also discussed.

  6. An improved porous media model for nuclear reactor analysis

    National Research Council Canada - National Science Library

    Roozbeh Vadi Kamran Sepanloo

    2016-01-01

    ...) for nuclear reactor analysis. In the conventional approach, whole reactor core simplifies to a single porous medium and also, the resis- tance coefficients that are essential to using this model are constant values...

  7. Pengembangan Perangkat Pembelajaran Geometri Ruang dengan Model Proving Theorem

    Directory of Open Access Journals (Sweden)

    Bambang Eko Susilo

    2016-03-01

    Full Text Available Kemampuan berpikir kritis dan kreatif mahasiswa masih lemah. Hal ini ditemukan pada mahasiswa yang mengambil mata kuliah Geometri Ruang yaitu dalam membuktikan soal-soal pembuktian (problem to proof. Mahasiswa masih menyelesaikan secara algoritmik atau prosedural sehingga diperlukan pengembangan perangkat pembelajaran Geometri Ruang berbasis kompetensi dan konservasi dengan model Proving Theorem. Dalam penelitian ini perangkat perkuliahan yang dikembangkan yaitu Silabus, Satuan Acara Perkuliahan (SAP, Kontrak Perkuliahan, Media Pembelajaran, Bahan Ajar, Tes UTS dan UAS serta Angket Karakter Konservasi telah dilaksanakan dengan baik dengan kriteria (1 validasi perangkat pembelajaran mata kuliah Geometri ruang berbasis kompetensi dan konservasi dengan model proving theorem berkategori baik dan layak digunakan dan (2 keterlaksanaan RPP pada pembelajaran yang dikembangkan secara keseluruhan berkategori baik.Critical and creative thinking abilities of students still weak. It is found in students who take Space Geometry subjects that is in solving problems to to prove. Students still finish in algorithmic or procedural so that the required the development of Space Geometry learning tools based on competency and conservation with Proving Theorem models. This is a research development which refers to the 4-D models that have been modified for the Space Geometry learning tools, second semester academic year 2014/2015. Instruments used include validation sheet, learning tools and character assessment questionnaire. In this research, the learning tools are developed, namely Syllabus, Lesson Plan, Lecture Contract, Learning Media, Teaching Material, Tests, and Character Conservation Questionnaire had been properly implemented with the criteria (1 validation of Space Geometry learning tools based on competency and conservation with Proving Theorem models categorized good and feasible to use, and (2 the implementation of Lesson Plan on learning categorized

  8. Modelling Complex Inlet Geometries in CFD

    DEFF Research Database (Denmark)

    Skovgaard, M.; Nielsen, Peter V.

    field. In order to apply CFD for this purpose it is essential to be able to model the inlet conditions precisely and effectively, in a way which is comprehensible to the manufacturer of inlet devices and in a way which can be coped with by the computer. In this paper a universal method is presented...

  9. The thermodynamic geometry of the Ising model

    Science.gov (United States)

    Rotskoff, Grant; Crooks, Gavin

    2015-03-01

    Biological machines have evolved to produce useful work in a finite time by operating out-of-equilibrium, but we do not know how evolution has guided the design of these machines: Are there generic design principles that direct motors towards higher efficiency? To answer this question, one must first calculate a finite-time efficiency, which poses a significant challenge--tools of equilibrium statistical mechanics fail to describe the relationship between a protocol and the efficiency of a machine subject to that protocol. Using a geometric framework, I will describe a procedure for predicting the protocol that minimizes the dissipated work during an irreversible process. My talk will focus on optimal control of the 2D Ising model; this example will provide strategies for employing geometric thermodynamics to models that cannot be solved analytically.

  10. Development of a system model for advanced small modular reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  11. Airlift column photobioreactors for Porphyridium sp. culturing: part I. effects of hydrodynamics and reactor geometry.

    Science.gov (United States)

    Luo, Hu-Ping; Al-Dahhan, Muthanna H

    2012-04-01

    Photosynthetic microorganisms have been attracting world attention for their great potential as renewable energy sources in recent years. Cost effective production in large scale, however, remains a major challenge to overcome. It is known to the field that turbulence could help improving the performance of photobioreactors due to the so-called flashing light effects. Better understanding of the multiphase fluid dynamics and the irradiance distribution inside the reactor that cause the flashing light effects, as well as quantifying their impacts on the reactor performance, thus, are crucial for successful design and scale-up of photobioreactors. In this study, a species of red marine microalgae, Porphyridium sp., was grown in three airlift column photobioreactors (i.e., draft tube column, bubble column, and split column). The physical properties of the culture medium, the local fluid dynamics and the photobioreactor performances were investigated and are reported in this part of the manuscript. Results indicate that the presence of microalgae considerably affected the local multiphase flow dynamics in the studied draft tube column. Results also show that the split column reactor works slightly better than the draft tube and the bubble columns due to the spiral flow pattern inside the reactor. Copyright © 2011 Wiley Periodicals, Inc.

  12. A methodology for modeling photocatalytic reactors for indoor pollution control using previously estimated kinetic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Passalia, Claudio; Alfano, Orlando M. [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina); Brandi, Rodolfo J., E-mail: rbrandi@santafe-conicet.gov.ar [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Indoor pollution control via photocatalytic reactors. Black-Right-Pointing-Pointer Scaling-up methodology based on previously determined mechanistic kinetics. Black-Right-Pointing-Pointer Radiation interchange model between catalytic walls using configuration factors. Black-Right-Pointing-Pointer Modeling and experimental validation of a complex geometry photocatalytic reactor. - Abstract: A methodology for modeling photocatalytic reactors for their application in indoor air pollution control is carried out. The methodology implies, firstly, the determination of intrinsic reaction kinetics for the removal of formaldehyde. This is achieved by means of a simple geometry, continuous reactor operating under kinetic control regime and steady state. The kinetic parameters were estimated from experimental data by means of a nonlinear optimization algorithm. The second step was the application of the obtained kinetic parameters to a very different photoreactor configuration. In this case, the reactor is a corrugated wall type using nanosize TiO{sub 2} as catalyst irradiated by UV lamps that provided a spatially uniform radiation field. The radiative transfer within the reactor was modeled through a superficial emission model for the lamps, the ray tracing method and the computation of view factors. The velocity and concentration fields were evaluated by means of a commercial CFD tool (Fluent 12) where the radiation model was introduced externally. The results of the model were compared experimentally in a corrugated wall, bench scale reactor constructed in the laboratory. The overall pollutant conversion showed good agreement between model predictions and experiments, with a root mean square error less than 4%.

  13. Hurwitz numbers, matrix models and enumerative geometry

    CERN Document Server

    Bouchard, Vincent

    2007-01-01

    We propose a new, conjectural recursion solution for Hurwitz numbers at all genera. This conjecture is based on recent progress in solving type B topological string theory on the mirrors of toric Calabi-Yau manifolds, which we briefly review to provide some background for our conjecture. We show in particular how this B-model solution, combined with mirror symmetry for the one-leg, framed topological vertex, leads to a recursion relation for Hodge integrals with three Hodge class insertions. Our conjecture in Hurwitz theory follows from this recursion for the framed vertex in the limit of infinite framing.

  14. Modelling Flow over Stepped Spillway with Varying Chute Geometry ...

    African Journals Online (AJOL)

    This study has modeled some characteristics of the flows over stepped spillway with varying chute geometry through a laboratory investigation. Using six physically built stepped spillway models, with each having six horizontal plain steps at 4cm constant height, 30 cm width and respective chute slope angles at 310, 320, ...

  15. Effect of geometry of rice kernels on drying modeling results

    Science.gov (United States)

    Geometry of rice grain is commonly represented by sphere, spheroid or ellipsoid shapes in the drying models. Models using simpler shapes are easy to solve mathematically, however, deviation from the true grain shape might lead to large errors in predictions of drying characteristics such as, moistur...

  16. Thermal-hydraulic modeling of reactivity accidents in MTR reactors

    Directory of Open Access Journals (Sweden)

    Khater Hany

    2006-01-01

    Full Text Available This paper describes the development of a dynamic model for the thermal-hydraulic analysis of MTR research reactors during a reactivity insertion accident. The model is formulated for coupling reactor kinetics with feedback reactivity and reactor core thermal-hydraulics. To represent the reactor core, two types of channels are considered, average and hot channels. The developed computer program is compiled and executed on a personal computer, using the FORTRAN language. The model is validated by safety-related benchmark calculations for MTR-TYPE reactors of IAEA 10 MW generic reactor for both slow and fast reactivity insertion transients. A good agreement is shown between the present model and the benchmark calculations. Then, the model is used for simulating the uncontrolled withdrawal of a control rod of an ETRR-2 reactor in transient with over power scram trip. The model results for ETRR-2 are analyzed and discussed.

  17. Comparison of THALES and VIPRE-01 Subchannel Codes for Loss of Flow and Single Reactor Coolant Pump Rotor Seizure Accidents using Lumped Channel APR1400 Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Oezdemir, Erdal; Moon, Kang Hoon; Oh, Seung Jong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of); Kim, Yongdeog [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    Subchannel analysis plays important role to evaluate safety critical parameters like minimum departure from nucleate boiling ratio (MDNBR), peak clad temperature and fuel centerline temperature. In this study, two different subchannel codes, VIPRE-01 (Versatile Internals and Component Program for Reactors: EPRI) and THALES (Thermal Hydraulic AnaLyzer for Enhanced Simulation of core) are examined. In this study, two different transient cases for which MDNBR result play important role are selected to conduct analysis with THALES and VIPRE-01 subchannel codes. In order to get comparable results same core geometry, fuel parameters, correlations and models are selected for each code. MDNBR results from simulations by both code are agree with each other with negligible difference. Whereas, simulations conducted by enabling conduction model in VIPRE-01 shows significant difference from the results of THALES.

  18. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    Science.gov (United States)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  19. Dynamic reactor modeling with applications to SPR and ZEDNA

    Energy Technology Data Exchange (ETDEWEB)

    Suo-Anttila, Ahti Jorma [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-12-01

    A dynamic reactor model has been developed for pulse-type reactor applications. The model predicts reactor power, axial and radial fuel expansion, prompt and delayed neutron population, and prompt and delayed gamma population. All model predictions are made as a function of time. The model includes the reactivity effect of fuel expansion on a dynamic timescale as a feedback mechanism for reactor power. All inputs to the model are calculated from first principles, either directly by solving systems of equations, or indirectly from Monte Carlo N-Particle Transport Code (MCNP) derived results. The model does not include any empirical parameters that can be adjusted to match experimental data. Comparisons of model predictions to actual Sandia Pulse Reactor SPR-III pulses show very good agreement for a full range of pulse magnitudes. The model is also applied to Z-pinch externally driven neutron assembly (ZEDNA) type reactor designs to model both normal and off-normal ZEDNA operations.

  20. Modelling and simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Saeter, Olav

    1998-12-31

    This thesis presents a three-dimensional Computational Fluid Dynamics (CFD) code (EXSIM94) for modelling and simulation of gas explosions in complex geometries. It gives the theory and validates the following sub-models : (1) the flow resistance and turbulence generation model for densely packed regions, (2) the flow resistance and turbulence generation model for single objects, and (3) the quasi-laminar combustion model. It is found that a simple model for flow resistance and turbulence generation in densely packed beds is able to reproduce the medium and large scale MERGE explosion experiments of the Commission of European Communities (CEC) within a band of factor 2. The model for a single representation is found to predict explosion pressure in better agreement with the experiments with a modified k-{epsilon} model. This modification also gives a slightly improved grid independence for realistic gas explosion approaches. One laminar model is found unsuitable for gas explosion modelling because of strong grid dependence. Another laminar model is found to be relatively grid independent and to work well in harmony with the turbulent combustion model. The code is validated against 40 realistic gas explosion experiments. It is relatively grid independent in predicting explosion pressure in different offshore geometries. It can predict the influence of ignition point location, vent arrangements, different geometries, scaling effects and gas reactivity. The validation study concludes with statistical and uncertainty analyses of the code performance. 98 refs., 96 figs, 12 tabs.

  1. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen

    2008-09-26

    This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008.

  2. CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design

    Science.gov (United States)

    Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, St.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W.

    2017-06-01

    In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.

  3. Influence of Irradiance, Flow Rate, Reactor Geometry, and Photopromoter Concentration in Mineralization Kinetics of Methane in Air and in Aqueous Solutions by Photocatalytic Membranes Immobilizing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ignazio Renato Bellobono

    2008-01-01

    Full Text Available Photomineralization of methane in air (10.0–1000 ppm (mass/volume of C at 100% relative humidity (dioxygen as oxygen donor was systematically studied at 318±3 K in an annular laboratory-scale reactor by photocatalytic membranes immobilizing titanium dioxide as a function of substrate concentration, absorbed power per unit length of membrane, reactor geometry, and concentration of a proprietary vanadium alkoxide as photopromoter. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC disappearance, to yield carbon dioxide, were followed. At a fixed value of irradiance (0.30 W⋅cm-1, the mineralization experiments in gaseous phase were repeated as a function of flow rate (4–400 m3⋅h−1. Moreover, at a standard flow rate of 300 m3⋅h−1, the ratio between the overall reaction volume and the length of the membrane was varied, substantially by varying the volume of reservoir, from and to which circulation of gaseous stream took place. Photomineralization of methane in aqueous solutions was also studied, in the same annular reactor and in the same conditions, but in a concentration range of 0.8–2.0 ppm of C, and by using stoichiometric hydrogen peroxide as an oxygen donor. A kinetic model was employed, from which, by a set of differential equations, four final optimised parameters, k1 and K1, k2 and K2, were calculated, which is able to fit the whole kinetic profile adequately. The influence of irradiance on k1 and k2, as well as of flow rate on K1 and K2, is rationalized. The influence of reactor geometry on k values is discussed in view of standardization procedures of photocatalytic experiments. Modeling of quantum yields, as a function of substrate concentration and irradiance, as well as of concentration of photopromoter, was carried out very satisfactorily. Kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or

  4. Simulation of a reactor FBR with hexagonal-Z geometry using the code PARCS 3.1; Simulacion de un reactor FBR con geometria hexagonal-Z usando el codigo PARCS 3.1

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M. C.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Filio L, C., E-mail: rf.melisa@gmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    The nuclear reactor core type FBR (Fast Breeder Reactor) was modeled in three dimensions of hexagonal-Z geometry using the code PARCS (Purdue Advanced Reactor Core Simulator) version 3.1 developed by Purdue University researchers. To carry out the modeling of the mentioned reactor was taken the corresponding information to one of the described benchmarks in the document NEACRP-L-330 (3-D Neutron Transport Benchmarks, 1991); fundamentally the corresponding to the geometric data and the cross sections. Being a quick reactor of breeding, known as the Knk-II, for which are considered 4 energy groups without dispersions up. The reactor core is formed by prismatic elements of hexagonal transversal cut where part of them only corresponds to nuclear fuel assemblies. This has four reflector rings and 6 identical control elements that together with the active part of the core is configured with 8 different types of elements.With the extracted information of the mentioned document the entrance file was prepared for PARCS 3.1 only considering a sixth part of the core due to the symmetry that presents their configuration. The NEACRP-L-330 shows a wide range of results reported by those who collaborated in its elaboration using different solution techniques that go from the Monte Carlo method to the approaches S{sub 2} and P{sub 1}. Of all the results were selected those obtained with the code HEXNOD, to which were carried out a comparison of the effective multiplication factor, being smaller differences to the 300 pcm, for three different scenarios: a) with the control bars extracted totally, b) with the semi-inserted control bars and c) with the control bars inserted completely and two different axial meshes, a thick mesh with 14 slices and another fine with 38, that which implies that the results can be considered very similar among if same. Radial maps and axial profiles are included, as much of the power as of the neutrons flow. (Author)

  5. Stochastic geometry, spatial statistics and random fields models and algorithms

    CERN Document Server

    2015-01-01

    Providing a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, this volume places a special emphasis on fundamental classes of models and algorithms as well as on their applications, for example in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R, which are widely used in the mathematical community. It can be regarded as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered, with a focus on asymptotic methods.

  6. CFD Modeling of Flow and Ion Exchange Kinetics in a Rotating Bed Reactor System

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina; Schjøtt Andersen, Patrick Alexander; Byström, Emil

    2017-01-01

    A rotating bed reactor (RBR) has been modeled using computational fluid dynamics (CFD). The flow pattern in the RBR was investigated and the flow through the porous material in it was quantified. A simplified geometry representing the more complex RBR geometry was introduced and the simplified...... model was able to reproduce the main characteristics of the flow. Alternating reactor shapes were investigated, and it was concluded that the use of baffles has a very large impact on the flows through the porous material. The simulations suggested, therefore, that even faster reaction rates could...... be achieved by making the baffles deeper. Two-phase simulations were performed, which managed to reproduce the deflection of the gas–liquid interface in an unbaffled system. A chemical reaction was implemented in the model, describing the ion-exchange phenomena in the porous material using four different...

  7. Geometry-dependent atomic multipole models for the water molecule.

    Science.gov (United States)

    Loboda, O; Millot, C

    2017-10-28

    Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.

  8. Monte Carlo modelling of TRIGA research reactor

    Science.gov (United States)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  9. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  10. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  11. Slab2 - Updated subduction zone geometries and modeling tools

    Science.gov (United States)

    Portner, D. E.; Hayes, G. P.; Furtney, M.; Moore, G.; Flamme, H. E.; Hearne, M. G.

    2016-12-01

    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0) combines a variety of geophysical data sets (earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow subduction zone, bathymetry, trench locations, and sediment thickness information) to image the shape of subducting slabs in three dimensions, at approximately 85% of the world's convergent margins. The database is used extensively for a variety of purposes from earthquake source imaging to magnetotelluric modeling. Gaps in Slab1.0 exist where input data are sparse and/or where slabs are geometrically complex (and difficult to image with an automated approach). Slab1.0 also does not include information on the uncertainty in the modeled geometrical parameters, or the input data used to image them, and provides no means for others to reproduce the models it describes. Now near completion, Slab2 will update and replace Slab1.0 by: (1) extending modeled slab geometries to the full extent of all known global subduction zones; (2) incorporating regional data sets (e.g., tomography models) that may describe slab geometry more comprehensively than do previously used teleseismic data; (3) providing information on the uncertainties in each modeled slab surface; (4) modifying our modeling approach to a fully-three dimensional data interpolation, rather than following the 2-D to 3-D steps of Slab1.0; (5) adding further layers to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling; (6) migrating the slab modeling code base to a more universally distributable language, Python; and (7) providing the code base and input data we use to create our models, such that the community can both reproduce the slab geometries, and add their own data sets to ours to further improve upon those models in the future. In this presentation we will describe our progress made in creating Slab2, and provide information on

  12. Design, Operation, and Modeling of a Vertical APCVD Reactor for Silicon Carbide Film Growth

    Science.gov (United States)

    DeAnna, Russell G.; Fleischman, Aaron J.; Zorman, Christian A.; Mehregany, Mehran

    1998-01-01

    An atmospheric pressure chemical vapor deposition (APCVD) reactor utilizing a unique vertical geometry which enables 3C-SiC films to be grown on two, 4-inch diameter Si wafers has been constructed. Contrary to expectations, 3C-SiC films grown in this reactor are thickest at the downstream end of the substrates. To better understand the reason for the thickness distribution on the wafers, an axisymmetric finite-element model of the gas flow in the reactor was constructed. The model uses the ANSYS53 Flowtran package and includes compressible and temperature-dependent fluid properties in laminar or turbulent flow. It does not include reaction chemistry or unsteady flow. The ANSYS53 results predict that the cool, inlet fluid falls through the inlet pipe and the warm, diffuser region like a jet. This jet impinges on top of the susceptor and gets diverted to the reactor side walls, where it flows to the bottom of the reactor, turns, and slowly rises along the face of the susceptor. This may explain why the SiC films are thickest at the downstream side of the wafers, as gas containing fresh reactants first passes over this region. Modeling results are presented for both one atmosphere and one half atmosphere reactor pressure.

  13. 3D Cadastral Data Model Based on Conformal Geometry Algebra

    Directory of Open Access Journals (Sweden)

    Ji-yi Zhang

    2016-02-01

    Full Text Available Three-dimensional (3D cadastral data models that are based on Euclidean geometry (EG are incapable of providing a unified representation of geometry and topological relations for 3D spatial units in a cadastral database. This lack of unification causes problems such as complex expression structure and inefficiency in the updating of 3D cadastral objects. The inability of current cadastral data models to express cadastral objects in a unified manner can be attributed to the different expressions of dimensional objects. Because the hierarchical Grassmann structure corresponds to the hierarchical structure of dimensions in conformal geometric algebra (CGA, geometric objects in different dimensions can be constructed by outer products in a unified expression form, which enables the direct extension of two-dimensional (2D spatial representations to 3D spatial representations. The multivector structure in CGA can be employed to organize and store different dimensional objects in a multidimensional and unified manner. With the advantages of CGA in multidimensional expressions, a new 3D cadastral data model that is based on CGA is proposed in this paper. The geometries and topological relations of 3D spatial units can be represented in a unified form within the multivector structure. Detailed methods for 3D cadastral data model design based on CGA and data organization in CGA are introduced. The new cadastral data model is tested and analyzed with experimental data. The results indicate that the geometry and topological relations of 3D cadastral objects can be represented in a multidimensional manner with an intuitive topological structure and a unified dimensional expression.

  14. Single domain PEMFC model based on agglomerate catalyst geometry

    Science.gov (United States)

    Siegel, N. P.; Ellis, M. W.; Nelson, D. J.; von Spakovsky, M. R.

    A steady two-dimensional computational model for a proton exchange membrane (PEM) fuel cell is presented. The model accounts for species transport, electrochemical kinetics, energy transport, current distribution, and water uptake and release in the catalyst layer. The governing differential equations are solved over a single computational domain, which consists of a gas channel, gas diffusion layer, and catalyst layer for both the anode and cathode sides of the cell as well as the solid polymer membrane. The model for the catalyst regions is based on an agglomerate geometry, which requires water species to exist in both dissolved and gaseous forms simultaneously. Data related to catalyst morphology, which was required by the model, was obtained via a microscopic analysis of a commercially available membrane electrode assembly (MEA). The coupled set of differential equations is solved with the commercial computational fluid dynamics (CFD) solver, CFDesign™, and is readily adaptable with respect to geometry and material property definitions. The results show that fuel cell performance is highly dependent on catalyst structure, specifically the relative volume fractions of gas pores and polymer membrane contained within the active region as well as the geometry of the individual agglomerates.

  15. Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor

    Directory of Open Access Journals (Sweden)

    F. Haugen, R. Bakke, and B. Lie

    2013-04-01

    Full Text Available A dynamic model has been adapted to a pilot anaerobic reactor fed diarymanure. Both steady-state data from online sensors and laboratory analysis anddynamic operational data from online sensors are used in the model adaptation.The model is based on material balances, and comprises four state variables,namely biodegradable volatile solids, volatile fatty acids, acid generatingmicrobes (acidogens, and methane generating microbes (methanogens. The modelcan predict the methane gas flow produced in the reactor. The model may beused for optimal reactor design and operation, state-estimation and control.Also, a dynamic model for the reactor temperature based on energy balance ofthe liquid in the reactor is adapted. This model may be used for optimizationand control when energy and economy are taken into account.

  16. Advanced Small Modular Reactor Economics Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J [ORNL

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the

  17. Photocatalytic degradation of water contaminants in multiple photoreactors and evaluation of reaction kinetic constants independent of photon absorption, irradiance, reactor geometry, and hydrodynamics.

    Science.gov (United States)

    Grčić, Ivana; Li Puma, Gianluca

    2013-12-03

    The literature on photocatalytic oxidation of water pollutants often reports reaction kinetic constants, which cannot be unraveled from photoreactor type and experimental conditions. This study addresses this challenging aspect by presenting a general and simple methodology for the evaluation of fundamental "intrinsic" reaction kinetic constants of photocatalytic degradation of water contaminants, which are independent of photoreactor type, catalyst concentration, irradiance levels, and hydrodynamics. The degradation of the model contaminant, oxalic acid (OA) on titanium dioxide (TiO2) aqueous suspensions, was monitored in two annular photoreactors (PR1 and PR2). The photoreactors with significantly different geometries were operated under different hydrodynamic regimes (turbulent batch mode and laminar flow-through recirculation mode), optical thicknesses, catalyst and OA concentrations, and photon irradiances. The local volumetric rate of photon absorption (LVRPA) was evaluated by the six-flux radiation absorption-scattering model (SFM). The SFM was further combined with a comprehensive kinetic model for the adsorption and photodecomposition of OA on TiO2 to determine local reaction rates and, after integration over the reactor volume, the intrinsic reaction kinetic constants. The model could determine the oxidation of OA in both PR1 and PR2 under a wide range of experimental conditions. This study demonstrates a more meaningful way for determining reaction kinetic constants of photocatalytic degradation of water contaminants.

  18. Tokamak reactor cost model based on STARFIRE/WILDCAT costing

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.

    1983-03-01

    A cost model is presented which is useful for survey and comparative studies of tokamak reactors. The model is heavily based on STARFIRE and WILDCAT costing guidelines, philosophies, and procedures and reproduces the costing for these devices quite accurately.

  19. Fast reactor fuel pin behaviour modelling in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J.R.; Hughes, H.

    1979-05-01

    Two fuel behavior codes have been applied extensively to fast reactor problems; SLEUTH developed at Springfields Nuclear Laboratory and FRUMP at AERE Harwell. Other UKAEA Establishments and those of the CEGB have contributed work which has been important in model development. The codes themselves are available for use by the various organizations concerned with fast reactors.

  20. Modeling moisture ingress through simplified concrete crack geometries

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Michel, Alexander; Geiker, Mette Rica

    2011-01-01

    This paper introduces a numerical model for ingress in cracked steel fibre reinforced concrete. Details of a simplified crack are preset in the model’s geometry using the cracked hinge model (CHM). The total crack length estimated using the CHM was, based on earlier work on conventional concrete......, considered to have two parts; 1) a coalesced crack length which behaves as a free-surface for moisture ingress, and 2) an isolated microcracking length which resists ingress similarly to the bulk material. Transport model results are compared to experimental results from steel fibre reinforced concrete wedge...... on moisture ingress. Results from the transport model indicate the length of the isolated microcracks was approximately 19 mm for the investigated concrete composition....

  1. Cosmological evolution in a two-brane warped geometry model

    Directory of Open Access Journals (Sweden)

    Sumit Kumar

    2015-07-01

    Full Text Available We study an effective 4-dimensional scalar–tensor field theory, originated from an underlying brane–bulk warped geometry, to explore the scenario of inflation. It is shown that the inflaton potential naturally emerges from the radion energy–momentum tensor which in turn results in an inflationary model of the Universe on the visible brane that is consistent with the recent results from the Planck's experiment. The dynamics of modulus stabilization from the inflaton rolling condition is demonstrated. The implications of our results in the context of recent BICEP2 results are also discussed.

  2. Safe design and operation of fluidized-bed reactors: Choice between reactor models

    NARCIS (Netherlands)

    Westerink, E.J.; Westerterp, K.R.

    1990-01-01

    For three different catalytic fluidized bed reactor models, two models presented by Werther and a model presented by van Deemter, the region of safe and unique operation for a chosen reaction system was investigated. Three reaction systems were used: the oxidation of benzene to maleic anhydride, the

  3. MODELING OF TUBULAR ELECTROCHEMICAL REACTOR FOR DYE REMOVAL

    Directory of Open Access Journals (Sweden)

    V. VIJAYAKUMAR

    2017-06-01

    Full Text Available The aim of the present investigation is to model a tubular electrochemical reactor for the treatment of synthetic dye wastewater. The tubular reactor was modeled and solved by finite difference method. For the model solution, the column was divided into 11 nodes in the axial direction and the variation in the radial direction has been neglected. An initial dye concentration of 200 mg L-1was taken in the reservoir. The reactor was operated in a batch with recirculation operation. Based on preliminary experiments all parameters have been optimized. The model simulation is compared with the experimental value and it is observed that the model fairly matches well with the experiment. The modeling of tubular electrochemical reactors for dye waste water treatment could be useful in the design and scale up of electrochemical process.

  4. INTERVAL OBSERVER FOR A BIOLOGICAL REACTOR MODEL

    Directory of Open Access Journals (Sweden)

    T. A. Kharkovskaia

    2014-05-01

    Full Text Available The method of an interval observer design for nonlinear systems with parametric uncertainties is considered. The interval observer synthesis problem for systems with varying parameters consists in the following. If there is the uncertainty restraint for the state values of the system, limiting the initial conditions of the system and the set of admissible values for the vector of unknown parameters and inputs, the interval existence condition for the estimations of the system state variables, containing the actual state at a given time, needs to be held valid over the whole considered time segment as well. Conditions of the interval observers design for the considered class of systems are shown. They are: limitation of the input and state, the existence of a majorizing function defining the uncertainty vector for the system, Lipschitz continuity or finiteness of this function, the existence of an observer gain with the suitable Lyapunov matrix. The main condition for design of such a device is cooperativity of the interval estimation error dynamics. An individual observer gain matrix selection problem is considered. In order to ensure the property of cooperativity for interval estimation error dynamics, a static transformation of coordinates is proposed. The proposed algorithm is demonstrated by computer modeling of the biological reactor. Possible applications of these interval estimation systems are the spheres of robust control, where the presence of various types of uncertainties in the system dynamics is assumed, biotechnology and environmental systems and processes, mechatronics and robotics, etc.

  5. THATCH: A computer code for modelling thermal networks of high- temperature gas-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Kennett, R.J.; Colman, J.; Ginsberg, T. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MW{sub th} reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs.

  6. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    Science.gov (United States)

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. UASB reactor hydrodynamics: residence time distribution and proposed modelling tools.

    Science.gov (United States)

    López, I; Borzacconi, L

    2010-05-01

    The hydrodynamic behaviour of UASB (Up Flow Anaerobic Sludge Blanket) reactors based on residence time distribution curves allows the implementation of global models, including the kinetic aspects of biological reactions. The most relevant hydrodynamic models proposed in the literature are discussed and compared with the extended tanks in series (ETIS) model. Although derived from the tanks in series model, the ETIS model's parameter is not an integer. The ETIS model can be easily solved in the Laplace domain and applied to a two-stage anaerobic digestion linear model. Experimental data from a 250 m3 UASB reactor treating malting wastewater are used to calibrate and validate the proposed model.

  8. Modelling and control design for SHARON/Anammox reactor sequence

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work presents a complete model of the SHARON/Anammox reactor sequence. The dynamics of the reactor were explored pointing out the different scales of the rates in the system: slow microbial...... metabolism against fast chemical reaction and mass transfer. Likewise, the analysis of the dynamics contributed to establish qualitatively the requirements for control of the reactors, both for regulation and for optimal operation. Work in progress on quantitatively analysing different control structure...... (pairing of controlled variables with manipulated variables) as well as exploring the feasibility of advanced process control including model predictive control....

  9. APPLICATION OF MODEL PREDICTIVE CONTROL TO BATCH POLYMERIZATION REACTOR

    Directory of Open Access Journals (Sweden)

    N.M. Ghasem

    2006-06-01

    Full Text Available The absence of a stable operational state in polymerization reactors that operates in batches is factor that determine the need of a special control system. In this study, advanced control methodology is implemented for controlling the operation of a batch polymerization reactor for polystyrene production utilizingmodel predictive control. By utilizing a model of the polymerization process, the necessary operational conditions were determined for producing the polymer within the desired characteristics. The maincontrol objective is to bring the reactor temperature to its target temperature as rapidly as possible with minimal temperature overshoot. Control performance for the proposed method is encouraging. It has been observed that temperature overshoot can be minimized by the proposed method with the use of both reactor and jacket energy balance for reactor temperature control.

  10. Extending potential flow modelling of flat-sheet geometries as applied in membrane-based systems

    NARCIS (Netherlands)

    Dirkse, M.H.; Loon, van W.K.P.; Stigter, J.D.; Post, J.W.; Veerman, J.; Bot, G.P.A.

    2008-01-01

    Abstract The efficiency of chemical reactors can be analysed using the residence time distribution. This research focusses on flat-sheet geometries applied in membrane-based systems. The residence time distribution depends mainly on the 2D velocity field, parallel to the membrane. The velocity

  11. RSMASS-D models: An improved method for estimating reactor and shield mass for space reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1997-10-01

    Three relatively simple mathematical models have been developed to estimate minimum reactor and radiation shield masses for liquid-metal-cooled reactors (LMRs), in-core thermionic fuel element (TFE) reactors, and out-of-core thermionic reactors (OTRs). The approach was based on much of the methodology developed for the Reactor/Shield Mass (RSMASS) model. Like the original RSMASS models, the new RSMASS-derivative (RSMASS-D) models use a combination of simple equations derived from reactor physics and other fundamental considerations, along with tabulations of data from more detailed neutron and gamma transport theory computations. All three models vary basic design parameters within a range specified by the user to achieve a parameter choice that yields a minimum mass for the power level and operational time of interest. The impact of critical mass, fuel damage, and thermal limitations are accounted for to determine the required fuel mass. The effect of thermionic limitations are also taken into account for the thermionic reactor models. All major reactor component masses are estimated, as well as instrumentation and control (I&C), boom, and safety system masses. A new shield model was developed and incorporated into all three reactor concept models. The new shield model is more accurate and simpler to use than the approach used in the original RSMASS model. The estimated reactor and shield masses agree with the mass predictions from separate detailed calculations within 15 percent for all three models.

  12. A simplified model of aerosol removal by natural processes in reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A.; Washington, K.E.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States); Burson, S.B. [Nuclear Regulatory Commission, Washington, DC (United States)

    1996-07-01

    Simplified formulae are developed for estimating the aerosol decontamination that can be achieved by natural processes in the containments of pressurized water reactors and in the drywells of boiling water reactors under severe accident conditions. These simplified formulae were derived by correlation of results of Monte Carlo uncertainty analyses of detailed models of aerosol behavior under accident conditions. Monte Carlo uncertainty analyses of decontamination by natural aerosol processes are reported for 1,000, 2,000, 3,000, and 4,000 MW(th) pressurized water reactors and for 1,500, 2,500, and 3,500 MW(th) boiling water reactors. Uncertainty distributions for the decontamination factors and decontamination coefficients as functions of time were developed in the Monte Carlo analyses by considering uncertainties in aerosol processes, material properties, reactor geometry and severe accident progression. Phenomenological uncertainties examined in this work included uncertainties in aerosol coagulation by gravitational collision, Brownian diffusion, turbulent diffusion and turbulent inertia. Uncertainties in aerosol deposition by gravitational settling, thermophoresis, diffusiophoresis, and turbulent diffusion were examined. Electrostatic charging of aerosol particles in severe accidents is discussed. Such charging could affect both the coagulation and deposition of aerosol particles. Electrostatic effects are not considered in most available models of aerosol behavior during severe accidents and cause uncertainties in predicted natural decontamination processes that could not be taken in to account in this work. Median (50%), 90 and 10% values of the uncertainty distributions for effective decontamination coefficients were correlated with time and reactor thermal power. These correlations constitute a simplified model that can be used to estimate the decontamination by natural aerosol processes at 3 levels of conservatism. Applications of the model are described.

  13. Parameter optimization in differential geometry based solvation models.

    Science.gov (United States)

    Wang, Bao; Wei, G W

    2015-10-07

    Differential geometry (DG) based solvation models are a new class of variational implicit solvent approaches that are able to avoid unphysical solvent-solute boundary definitions and associated geometric singularities, and dynamically couple polar and non-polar interactions in a self-consistent framework. Our earlier study indicates that DG based non-polar solvation model outperforms other methods in non-polar solvation energy predictions. However, the DG based full solvation model has not shown its superiority in solvation analysis, due to its difficulty in parametrization, which must ensure the stability of the solution of strongly coupled nonlinear Laplace-Beltrami and Poisson-Boltzmann equations. In this work, we introduce new parameter learning algorithms based on perturbation and convex optimization theories to stabilize the numerical solution and thus achieve an optimal parametrization of the DG based solvation models. An interesting feature of the present DG based solvation model is that it provides accurate solvation free energy predictions for both polar and non-polar molecules in a unified formulation. Extensive numerical experiment demonstrates that the present DG based solvation model delivers some of the most accurate predictions of the solvation free energies for a large number of molecules.

  14. Metabolic modeling of synthesis gas fermentation in bubble column reactors.

    Science.gov (United States)

    Chen, Jin; Gomez, Jose A; Höffner, Kai; Barton, Paul I; Henson, Michael A

    2015-01-01

    A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.

  15. Computer Modeling of Platinum Reforming Reactors | Momoh ...

    African Journals Online (AJOL)

    Usually, the reformate that is leaving any stage of the platinum reforming reactors in terms of hydrocarbon composition is assessed by laboratory analysis. The ideal composition can only be tested through theoretical means, which in most cases is avoided because of long computation time involved. This paper, instead of ...

  16. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Borum, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chaleff, Ethan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogerson, Doug W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Batteh, John J. [Modelon Corporation (Sweden); Tiller, Michael M. [Xogeny Corporation, Canton, MI (United States)

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  17. Differential geometry based solvation model II: Lagrangian formulation.

    Science.gov (United States)

    Chen, Zhan; Baker, Nathan A; Wei, G W

    2011-12-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of

  18. Modeling of Carbochlorination of Zircon in Fluidized Bed Reactor

    Science.gov (United States)

    Jazini, M. H.; Ghoreishi, S. M.; Dadkhah, A. A.

    2010-02-01

    The chlorination of zircon is an integral part of the overall process for the production of zirconium. A two-phase hydrodynamic-type model was used to simulate the fluidized bed zircon carbochlorination reactor. In the plug-plug (P-P) model, the flow of gas in both dense and bubble phases was considered as a plug flow compared with the plug-mixed (P-M) model in which the flow in dense phase was assumed to be mixed. The zircon conversion obtained by model was compared with experimental measurements for model validation. The results of the P-M model indicated a stronger correlation with experimental data. Using the validated model, the effects of the zircon inlet size distribution, reactor temperature, inlet gas concentration, chlorine conversion velocity, and converted zircon were investigated. The results demonstrated that higher reactor temperature, smaller zircon size, and higher inlet gas velocity and concentration enhanced the chlorination rate.

  19. Identification of Chemical Reactor Plant’s Mathematical Model

    Directory of Open Access Journals (Sweden)

    Pyakillya Boris

    2015-01-01

    Full Text Available This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.

  20. Unified Stochastic Geometry Model for MIMO Cellular Networks with Retransmissions

    KAUST Repository

    Afify, Laila H.

    2016-10-11

    This paper presents a unified mathematical paradigm, based on stochastic geometry, for downlink cellular networks with multiple-input-multiple-output (MIMO) base stations (BSs). The developed paradigm accounts for signal retransmission upon decoding errors, in which the temporal correlation among the signal-to-interference-plus-noise-ratio (SINR) of the original and retransmitted signals is captured. In addition to modeling the effect of retransmission on the network performance, the developed mathematical model presents twofold analysis unification for MIMO cellular networks literature. First, it integrates the tangible decoding error probability and the abstracted (i.e., modulation scheme and receiver type agnostic) outage probability analysis, which are largely disjoint in the literature. Second, it unifies the analysis for different MIMO configurations. The unified MIMO analysis is achieved by abstracting unnecessary information conveyed within the interfering signals by Gaussian signaling approximation along with an equivalent SISO representation for the per-data stream SINR in MIMO cellular networks. We show that the proposed unification simplifies the analysis without sacrificing the model accuracy. To this end, we discuss the diversity-multiplexing tradeoff imposed by different MIMO schemes and shed light on the diversity loss due to the temporal correlation among the SINRs of the original and retransmitted signals. Finally, several design insights are highlighted.

  1. A Biophysical Model for the Staircase Geometry of Stereocilia.

    Directory of Open Access Journals (Sweden)

    Gilad Orly

    Full Text Available Cochlear hair cell bundles, made up of 10s to 100s of individual stereocilia, are essential for hearing, and even relatively minor structural changes, due to mutations or injuries, can result in total deafness. Consistent with its specialized role, the staircase geometry (SCG of hair cell bundles presents one of the most striking, intricate, and precise organizations of actin-based cellular shapes. Composed of rows of actin-filled stereocilia with increasing lengths, the hair cell's staircase-shaped bundle is formed from a progenitor field of smaller, thinner, and uniformly spaced microvilli with relatively invariant lengths. While recent genetic studies have provided a significant increase in information on the multitude of stereocilia protein components, there is currently no model that integrates the basic physical forces and biochemical processes necessary to explain the emergence of the SCG. We propose such a model derived from the biophysical and biochemical characteristics of actin-based protrusions. We demonstrate that polarization of the cell's apical surface, due to the lateral polarization of the entire epithelial layer, plays a key role in promoting SCG formation. Furthermore, our model explains many distinct features of the manifestations of SCG in different species and in the presence of various deafness-associated mutations.

  2. Modelling of CANDU-SCWR unit cell with DRAGON: from cartesian to hexagonal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Bejaoui, N.; Marleau, G. [Ecole Polytechnique de Montreal, Institute of Nuclear Engineering, Montreal, QC (Canada)

    2014-07-01

    A new hexagonal model of the Canadian supercritical water-cooled reactor unit cell geometry is compared with the Cartesian model in DRAGON. This hexagonal model is considered for a compact core since further savings in the construction costs can be achieved by a reduction in the heavy water inventory in the core while still satisfying the constraints on the mechanical size of the pressure tube header. In our study, we investigate two options: using a reduced lattice pitch while preserving the same pressure tube; and increasing the outer radius of the pressure tube while using an hexagonal cell that has the same 2-D volume as the original Cartesian model. Preliminary results indicate that the effective multiplication factor of the equivalent hexagonal unit cell is slightly lower than of the original Cartesian cell (0.15 mk). Reducing the lattice pitch of the hexagonal cell to that of the Cartesian cell decreases further the reactivity (20 mk) but reduces the moderator volume by more than 20 %. Other options for reducing the moderator volume that consists in increasing the outer radius of the pressure tube are analyzed, including replacing the moderator by super critical light water coolant or other structure material. (author)

  3. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  4. Numerical Modelling of a Fast Pyrolysis Process in a Bubbling Fluidized Bed Reactor

    Science.gov (United States)

    Jalalifar, S.; Ghiji, M.; Abbassi, R.; Garaniya, V.; Hawboldt, K.

    2017-07-01

    In this study, the Eulerian-Granular approach is applied to simulate a fast pyrolysis bubbling fluidized bed reactor. Fast pyrolysis converts biomass to bio-products through thermochemical conversion in absence of oxygen. The aim of this study is to employ a numerical framework for simulation of the fast pyrolysis process and extend this to more complex reactor geometries. The framework first needs to be validated and this was accomplished by modelling a lab-scale pyrolysis fluidized bed reactor in 2-D and comparing with published data. A multi-phase CFD model has been employed to obtain clearer insights into the physical phenomena associated with flow dynamics and heat transfer, and by extension the impact on reaction rates. Biomass thermally decomposes to solid, condensable and non-condensable and therefore a multi-fluid model is used. A simplified reaction model is sued where the many components are grouped into a solid reacting phase, condensable/non-condensable phase, and non-reacting solid phase (the heat carrier). The biomass decomposition is simplified to four reaction mechanisms based on the thermal decomposition of cellulose. A time-splitting method is used for coupling of multi-fluid model and reaction rates. A good agreement is witnessed in the products yield between the CFD simulation and the experiment.

  5. Towards an efficient multiphysics model for nuclear reactor dynamics

    Directory of Open Access Journals (Sweden)

    Obaidurrahman K.

    2015-01-01

    Full Text Available Availability of fast computer resources nowadays has facilitated more in-depth modeling of complex engineering systems which involve strong multiphysics interactions. This multiphysics modeling is an important necessity in nuclear reactor safety studies where efforts are being made worldwide to combine the knowledge from all associated disciplines at one place to accomplish the most realistic simulation of involved phenomenon. On these lines coupled modeling of nuclear reactor neutron kinetics, fuel heat transfer and coolant transport is a regular practice nowadays for transient analysis of reactor core. However optimization between modeling accuracy and computational economy has always been a challenging task to ensure the adequate degree of reliability in such extensive numerical exercises. Complex reactor core modeling involves estimation of evolving 3-D core thermal state, which in turn demands an expensive multichannel based detailed core thermal hydraulics model. A novel approach of power weighted coupling between core neutronics and thermal hydraulics presented in this work aims to reduce the bulk of core thermal calculations in core dynamics modeling to a significant extent without compromising accuracy of computation. Coupled core model has been validated against a series of international benchmarks. Accuracy and computational efficiency of the proposed multiphysics model has been demonstrated by analyzing a reactivity initiated transient.

  6. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-05-01

    Full Text Available A modified model for the neutralization process of Stirred Tank Reactors (CSTR reactor is presented in this study. The model accounts for the effect of strong acid [HCL] flowrate and strong base [NaOH] flowrate with the ionic concentrations of [Cl-] and [Na+] on the Ph of the system. In this work, the effect of important reactor parameters such as ionic concentrations and acid and base flowrates on the dynamic behavior of the CSTR is investigated and the behavior of mathematical model is compared with the reported models for the McAvoy model and Jutila model. Moreover, the results of the model are compared with the experimental data in terms of pH dynamic study. A good agreement is observed between our model prediction and the actual plant data. © 2011 BCREC UNDIP. All rights reserved(Received: 1st March 2011, Revised: 28th March 2011; Accepted: 7th April 2011[How to Cite: A.S. Ibrehem. (2011. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 47-52. doi:10.9767/bcrec.6.1.825.47-52][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.825.47-52 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/825 ] | View in 

  7. Modeling and simulation of CANDU reactor and its regulating system

    Science.gov (United States)

    Javidnia, Hooman

    Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different

  8. Triangle geometry processing for surface modeling and cartesian grid generation

    Science.gov (United States)

    Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  9. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  10. Enhanced model predictive control of a catalytic flow reversal reactor

    Energy Technology Data Exchange (ETDEWEB)

    Devals, C.; Bertrand, F.; Perrier, M. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Chimique; Fuxman, A.; Forbes, J.F.; Hayes, R.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2009-08-15

    The removal of atmospheric methane by conversion to carbon dioxide has the potential to significantly reduce the greenhouse gas (GHG) effect. Methane can be burned using conventional or catalytic combustion. Different types of reactors can be used for catalytic combustion, including the catalytic flow reversal reactor (CFRR) which has drawn much attention because auto-thermal operation can be achieved for lean low temperature feed. However, the control of CFRR is challenging. This study presented a method to predict the stationary state for the reactor. The method can be incorporated into a model predictive control (MPC) strategy as a terminal constant. The study involved a numerical simulation of the catalytic combustion of lean methane in a CFRR. In particular, the combustion of lean methane air mixtures in a CFRR was examined using a two dimensional heterogeneous continuum model, based on mole and energy balance equations for the solid (the inert and catalytic sections of the reactor) and the fluid phases. Several simulations were performed to study the reactor performance. The results showed the impact on the methane conversion and the maximum temperature in the reactor of key process parameters, such as the methane inlet concentration, the superficial gas velocity, the switching time, and the mass extraction rate. A simple empirical model was created to predict the maximum temperature and conversion of methane in the reactor at stationary state. Simulations revealed an improvement in control performance when adding a constraint for the maximum temperature. The improved results showed better performance in terms of heat extraction and smoothness of operation at low and high inlet concentrations. 23 refs., 4 tabs., 14 figs.

  11. Modelling of porous biomass pyrolysis in screw reactor

    Science.gov (United States)

    Levin, A. A.; Kozlov, A. N.

    2017-09-01

    This paper is concerned with the development of a model of wood pyrolysis in a screw reactor as the first stage of the multistage gasification process. To prevent clinkering of particles and thermal inhomogeneities, screw-type transportation is used to transport fuel. In order to describe kinetics of pyrolysis and transport of volatiles within the wood particles and their transition to the gas phase we carried out the studies using a complex of synchronous thermal analysis. A detailed numerical modeling of pyrolyzer was performed with the Comsol Multiphysics software which makes it possible to optimize the design and operating parameters of the pyrolysis process in a screw reactor.

  12. BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle Allan Lawrence [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williamson, Richard L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Novascone, Stephen Rhead [Idaho National Lab. (INL), Idaho Falls, ID (United States); Medvedev, Pavel G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on the formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.

  13. Development of capability to Model A TRIGA reactor using ATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.B.

    1985-05-01

    The capability to perform thermal-hydraulic analyses of a TRIGA reactor was demonstrated using the ATHENA computer code. TRIGA is an advanced reactor designed to produce electrical power while being inherently safe during reactivity accidents, loss-of-coolant accidents (LOCAs), and station blackout. The TRIGA system contains a water-filled primary system and a power conversion system that utilizes freon as the working fluid. An ATHENA model of a TRIGA-like reactor was developed. Calculations of a station blackout and a large-break LOCA were performed to demonstrate the capability of ATHENA to represent the TRIGA system. A mask of the TRIGA model and an interface with the Nuclear Plant Analyzer (NPA) were developed, allowing a graphic display of the calculated results on the NPA.

  14. CAD-based Automatic Modeling Method for Geant4 geometry model Through MCAM

    Science.gov (United States)

    Wang, Dong; Nie, Fanzhi; Wang, Guozhong; Long, Pengcheng; LV, Zhongliang; LV, Zhongliang

    2014-06-01

    Geant4 is a widely used Monte Carlo transport simulation package. Before calculating using Geant4, the calculation model need be established which could be described by using Geometry Description Markup Language (GDML) or C++ language. However, it is time-consuming and error-prone to manually describe the models by GDML. Automatic modeling methods have been developed recently, but there are some problem existed in most of present modeling programs, specially some of them were not accurate or adapted to specifically CAD format. To convert the GDML format models to CAD format accurately, a Geant4 Computer Aided Design (CAD) based modeling method was developed for automatically converting complex CAD geometry model into GDML geometry model. The essence of this method was dealing with CAD model represented with boundary representation (B-REP) and GDML model represented with constructive solid geometry (CSG). At first, CAD model was decomposed to several simple solids which had only one close shell. And then the simple solid was decomposed to convex shell set. Then corresponding GDML convex basic solids were generated by the boundary surfaces getting from the topological characteristic of a convex shell. After the generation of these solids, GDML model was accomplished with series boolean operations. This method was adopted in CAD/Image-based Automatic Modeling Program for Neutronics & Radiation Transport (MCAM), and tested with several models including the examples in Geant4 install package. The results showed that this method could convert standard CAD model accurately, and can be used for Geant4 automatic modeling.

  15. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    Science.gov (United States)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  16. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    plate may have been underestimated and thus the heat flux had been underestimated. The MELCOR model predicts a film thickness on the order of 100 microns, which agrees very well with film flow model developed in this study for scaling analysis. However, the expected differences in film thicknesses for near vacuum and near atmospheric test conditions are not significant. Further study on the behavior of condensate film is expected to refine the simulation results. Possible refinements include but are not limited to, the followings: CFD simulation focusing on the liquid film behavior and benchmarking with experimental analyses for simpler geometries. 16 1 INTRODUCTION This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). The experimental results are employed to validate the containment condensation model in reactor containment system safety analysis code for integral SMRs. Such a containment condensation model is important to demonstrate the adequate cooling. In the three years of investigation, following the original proposal, the following planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental

  17. Extending rule-based methods to model molecular geometry and 3D model resolution.

    Science.gov (United States)

    Hoard, Brittany; Jacobson, Bruna; Manavi, Kasra; Tapia, Lydia

    2016-08-01

    Computational modeling is an important tool for the study of complex biochemical processes associated with cell signaling networks. However, it is challenging to simulate processes that involve hundreds of large molecules due to the high computational cost of such simulations. Rule-based modeling is a method that can be used to simulate these processes with reasonably low computational cost, but traditional rule-based modeling approaches do not include details of molecular geometry. The incorporation of geometry into biochemical models can more accurately capture details of these processes, and may lead to insights into how geometry affects the products that form. Furthermore, geometric rule-based modeling can be used to complement other computational methods that explicitly represent molecular geometry in order to quantify binding site accessibility and steric effects. We propose a novel implementation of rule-based modeling that encodes details of molecular geometry into the rules and binding rates. We demonstrate how rules are constructed according to the molecular curvature. We then perform a study of antigen-antibody aggregation using our proposed method. We simulate the binding of antibody complexes to binding regions of the shrimp allergen Pen a 1 using a previously developed 3D rigid-body Monte Carlo simulation, and we analyze the aggregate sizes. Then, using our novel approach, we optimize a rule-based model according to the geometry of the Pen a 1 molecule and the data from the Monte Carlo simulation. We use the distances between the binding regions of Pen a 1 to optimize the rules and binding rates. We perform this procedure for multiple conformations of Pen a 1 and analyze the impact of conformation and resolution on the optimal rule-based model. We find that the optimized rule-based models provide information about the average steric hindrance between binding regions and the probability that antibodies will bind to these regions. These optimized models

  18. Modeling residence-time distribution in horizontal screw hydrolysis reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, David A.; Stickel, Jonathan J.

    2018-01-01

    The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. This study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters. Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.

  19. Polymer mixtures in confined geometries: Model systems to explore ...

    Indian Academy of Sciences (India)

    While binary (A,B) symmetric polymer mixtures in = 3 dimensions have an unmixing critical point that belongs to the 3 Ising universality class and crosses over to mean field behavior for very long chains, the critical behavior of mixtures confined into thin film geometry falls in the 2 Ising class irrespective of chain length.

  20. Polymer mixtures in confined geometries: Model systems to explore ...

    Indian Academy of Sciences (India)

    Abstract. While binary (A,B) symmetric polymer mixtures in d = 3 dimensions have an unmixing critical point that belongs to the 3d Ising universality class and crosses over to mean field behavior for very long chains, the critical behavior of mixtures confined into thin film geometry falls in the 2d Ising class irrespective of chain ...

  1. Numerical Modelling of Wood Gasification in Thermal Plasma Reactor

    Czech Academy of Sciences Publication Activity Database

    Hirka, Ivan; Živný, Oldřich; Hrabovský, Milan

    2017-01-01

    Roč. 37, č. 4 (2017), s. 947-965 ISSN 0272-4324 Institutional support: RVO:61389021 Keywords : Plasma modelling * CFD * Thermal plasma reactor * Biomass * Gasification * Syngas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.355, year: 2016 https://link.springer.com/article/10.1007/s11090-017-9812-z

  2. Modelling of a falling sludge bed reactor using AQUASIM

    African Journals Online (AJOL)

    drinie

    2001-10-04

    Oct 4, 2001 ... equilibrium constants, following. Musvoto et al. (1997). A constant. pH of 7 was chosen for the entire system, since insufficient data was available to calibrate this detail in the mathematical model. Reactor configuration. Figure 2 shows the configuration of the FSBR. Analysis showed that the solids density ...

  3. Modelling of a recycling sludge bed reactor using AQUASIM

    African Journals Online (AJOL)

    drinie

    the article, it is herewith pointed out that the term “falling sludge bed reactor” is replaced with “recycling sludge bed reactor”. Modelling of a recycling sludge bed reactor using AQUASIM. NE Ristow1*, K Whittington-Jones2, C Corbett2, P Rose2 and GS Hansford1. 1 Department of Chemical Engineering, University of Cape ...

  4. Modelling of a falling sludge bed reactor using AQUASIM

    African Journals Online (AJOL)

    drinie

    2001-10-04

    Oct 4, 2001 ... effluent from the baffled reactor went into an algal-ponding system as a polishing step. Before integration of the process could be performed to include recycling of the alkalinity that is generated, mathematical modelling of the individual unit operations was required. This study focused specifically on the ...

  5. Accelerating navigation in the VecGeom geometry modeller

    Science.gov (United States)

    Wenzel, Sandro; Zhang, Yang; pre="for the"> VecGeom Developers,

    2017-10-01

    The VecGeom geometry library is a relatively recent effort aiming to provide a modern and high performance geometry service for particle detector simulation in hierarchical detector geometries common to HEP experiments. One of its principal targets is the efficient use of vector SIMD hardware instructions to accelerate geometry calculations for single track as well as multi-track queries. Previously, excellent performance improvements compared to Geant4/ROOT could be reported for elementary geometry algorithms at the level of single shape queries. In this contribution, we will focus on the higher level navigation algorithms in VecGeom, which are the most important components as seen from the simulation engines. We will first report on our R&D effort and developments to implement SIMD enhanced data structures to speed up the well-known “voxelised” navigation algorithms, ubiquitously used for particle tracing in complex detector modules consisting of many daughter parts. Second, we will discuss complementary new approaches to improve navigation algorithms in HEP. These ideas are based on a systematic exploitation of static properties of the detector layout as well as automatic code generation and specialisation of the C++ navigator classes. Such specialisations reduce the overhead of generic- or virtual function based algorithms and enhance the effectiveness of the SIMD vector units. These novel approaches go well beyond the existing solutions available in Geant4 or TGeo/ROOT, achieve a significantly superior performance, and might be of interest for a wide range of simulation backends (GeantV, Geant4). We exemplify this with concrete benchmarks for the CMS and ALICE detectors.

  6. The Assessment and Validation of Mini-Compact Tension Test Specimen Geometry and Progress in Establishing Technique for Fracture Toughness Master Curves for Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nanstad, Randy K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Small specimens are playing the key role in evaluating properties of irradiated materials. The use of small specimens provides several advantages. Typically, only a small volume of material can be irradiated in a reactor at desirable conditions in terms of temperature, neutron flux, and neutron dose. A small volume of irradiated material may also allow for easier handling of specimens. Smaller specimens reduce the amount of radioactive material, minimizing personnel exposures and waste disposal. However, use of small specimens imposes a variety of challenges as well. These challenges are associated with proper accounting for size effects and transferability of small specimen data to the real structures of interest. Any fracture toughness specimen that can be made out of the broken halves of standard Charpy specimens may have exceptional utility for evaluation of reactor pressure vessels (RPVs) since it would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs. Assessment and validation of mini-CT specimen geometry has been performed on previously well characterized HSST Plate 13B, an A533B class 1 steel. It was shown that the fracture toughness transition temperature measured by these Mini-CT specimens is within the range of To values that were derived from various large fracture toughness specimens. Moreover, the scatter of the fracture toughness values measured by Mini-CT specimens perfectly follows the Weibull distribution function providing additional proof for validation of this geometry for the Master Curve evaluation of rector pressure vessel steels. Moreover, the International collaborative program has been developed to extend the assessment and validation efforts to irradiated weld metal. The program is underway and involves ORNL, CRIEPI, and EPRI.

  7. MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR

    Science.gov (United States)

    A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

  8. Numerical simulations and mathematical models of flows in complex geometries

    DEFF Research Database (Denmark)

    Hernandez Garcia, Anier

    The research work of the present thesis was mainly aimed at exploiting one of the strengths of the Lattice Boltzmann methods, namely, the ability to handle complicated geometries to accurately simulate flows in complex geometries. In this thesis, we perform a very detailed theoretical analysis...... and through the Chapman-Enskog multi-scale expansion technique the dependence of the kinetic viscosity on each scheme is investigated. Seeking for optimal numerical schemes to eciently simulate a wide range of complex flows a variant of the finite element, off-lattice Boltzmann method [5], which uses...... the characteristic based integration is also implemented. Using the latter scheme, numerical simulations are conducted in flows of different complexities: flow in a (real) porous network and turbulent flows in ducts with wall irregularities. From the simulations of flows in porous media driven by pressure gradients...

  9. Model predictive control of a solar-thermal reactor

    Science.gov (United States)

    Saade Saade, Maria Elizabeth

    Solar-thermal reactors represent a promising alternative to fossil fuels because they can harvest solar energy and transform it into storable and transportable fuels. The operation of solar-thermal reactors is restricted by the available sunlight and its inherently transient behavior, which affects the performance of the reactors and limits their efficiency. Before solar-thermal reactors can become commercially viable, they need to be able to maintain a continuous high-performance operation, even in the presence of passing clouds. A well-designed control system can preserve product quality and maintain stable product compositions, resulting in a more efficient and cost-effective operation, which can ultimately lead to scale-up and commercialization of solar thermochemical technologies. In this work, we propose a model predictive control (MPC) system for a solar-thermal reactor for the steam-gasification of biomass. The proposed controller aims at rejecting the disturbances in solar irradiation caused by the presence of clouds. A first-principles dynamic model of the process was developed. The model was used to study the dynamic responses of the process variables and to identify a linear time-invariant model used in the MPC algorithm. To provide an estimation of the disturbances for the control algorithm, a one-minute-ahead direct normal irradiance (DNI) predictor was developed. The proposed predictor utilizes information obtained through the analysis of sky images, in combination with current atmospheric measurements, to produce the DNI forecast. In the end, a robust controller was designed capable of rejecting disturbances within the operating region. Extensive simulation experiments showed that the controller outperforms a finely-tuned multi-loop feedback control strategy. The results obtained suggest that our controller is suitable for practical implementation.

  10. Modeling, simulation, and optimization of bacterial leaching reactors.

    Science.gov (United States)

    Crundwell, F K

    Bacterial leaching represents an unusual problem in biochemical engineering, because the substrate for bacterial growth is not supplied directly, but is a product of another reaction, the leaching of mineral particles. In addition, leaching is a heterogeneous reaction dependent on the particle-size distribution in the feed and on the kinetics of particle shrinkage. In this study, these effects are incorporated in the material balance for each mineral by the number balance. Examination of the number balance gives rise to a novel analysis of the competing technologies for leaching. The model is completed by the addition of material balances for the ferrous and ferric ions, the dissolved oxygen, and for each bacterial species to the number balance for each mineral present in the feed. The model is compared with pilot plant data for three different ores. It is shown that the model is in excellent agreement with the data. The performance of a bacterial leaching reactor is explored using the model, and the washout and sensitivity criteria are determined. It is shown that there are three washout conditions, in which the leaching conversion drops to zero. The washout conditions are dependent on the growth rate of the bacteria, on the rate of dissolution of the mineral, and on the rate of mass transfer of oxygen to the reactor. The critical washout condition is that arising from the rate of mineral dissolution. The optimization of a plant in which continuous tank reactors are configured in series is addressed. This analysis shows that the primary reactor should be between 1.5 and 2 times the size of each of the secondary reactors in a series combination.

  11. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  12. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  13. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.

    2016-07-06

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used with a presumed joint probability density function (PDF). The jet, in hot and diluted coflow experimental set-up under MILD conditions, is simulated using this reactor model for two oxygen dilution levels. The computed results for mean temperature, major and minor species mass fractions are compared with the experimental data and simulation results obtained recently using a multi-environment transported PDF approach. Overall, a good agreement is observed at three different axial locations for these comparisons despite the over-predicted peak value of CO formation. This suggests that MILD combustion can be effectively modelled by the proposed PSR model with lower computational cost.

  14. Modeling phototrophic biofilms in a plug-flow reactor.

    Science.gov (United States)

    Muñoz Sierra, J D; Picioreanu, C; van Loosdrecht, M C M

    2014-01-01

    The use of phototrophic biofilms in wastewater treatment has been recognized as a potential option for development of new reactor configurations. For better understanding of these systems, a numerical model was developed including relevant microbial processes. As a novelty, this model was implemented in COMSOL Multiphysics, a modern computational environment for complex dynamic models. A two-dimensional biofilm model was used to study the spatial distribution of microbial species within the biofilm and along the length of the reactor. The biofilm model was coupled with a one-dimensional plug-flow bulk liquid model. The impact of different operational conditions on the chemical oxygen demand (COD) and ammonia conversions was assessed. The model was tuned by varying two parameters: the half-saturation coefficient for light use by phototrophs and the oxygen mass transfer coefficient. The mass transfer coefficient was found to be determining for the substrate conversion rate. Simulations indicate that heterotrophs would overgrow nitrifiers and phototrophs within the biofilm until a low biodegradable COD value in the wastewater is reached (organic loading rate reactor performance.

  15. Studies on modelling of bubble driven flows in chemical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grevskott, Sverre

    1997-12-31

    Multiphase reactors are widely used in the process industry, especially in the petrochemical industry. They very often are characterized by very good thermal control and high heat transfer coefficients against heating and cooling surfaces. This thesis first reviews recent advances in bubble column modelling, focusing on the fundamental flow equations, drag forces, transversal forces and added mass forces. The mathematical equations for the bubble column reactor are developed, using an Eulerian description for the continuous and dispersed phase in tensor notation. Conservation equations for mass, momentum, energy and chemical species are given, and the k-{epsilon} and Rice-Geary models for turbulence are described. The different algebraic solvers used in the model are described, as are relaxation procedures. Simulation results are presented and compared with experimental values. Attention is focused on the modelling of void fractions and gas velocities in the column. The energy conservation equation has been included in the bubble column model in order to model temperature distributions in a heated reactor. The conservation equation of chemical species has been included to simulate absorption of CO{sub 2}. Simulated axial and radial mass fraction profiles for CO{sub 2} in the gas phase are compared with measured values. Simulations of the dynamic behaviour of the column are also presented. 189 refs., 124 figs., 1 tab.

  16. Modeling of Flow in Nuclear Reactor Fuel Cell Outlet

    Directory of Open Access Journals (Sweden)

    František URBAN

    2010-12-01

    Full Text Available Safe and effective load of nuclear reactor fuel cells demands qualitative and quantitative analysis of relations between coolant temperature in fuel cell outlet temperature measured by thermocouple and middle temperature of coolant in thermocouple plane position. In laboratory at Insitute of thermal power engineering of the Slovak University of Technology in Bratislava was installed an experimental physical fuel cell model of VVER 440 nuclear power plant with V 213 nuclear reactors. Objective of measurements on physical model was temperature and velocity profiles analysis in the fuel cell outlet. In this paper the measured temperature and velocity profiles are compared with the results of CFD simulation of fuel cell physical model coolant flow.

  17. A Coupled Plasma and Sheath Model for High Density Reactors

    Science.gov (United States)

    Deepak, Bose; Govindan, T. R.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2001-01-01

    We present a coupled plasma and collisionless; sheath model for the simulation of high density plasma processing reactors. Due to inefficiencies in numerical schemes and the resulting computational burden, a coupled multidimensional plasma and sheath simulation has not been possible model for gas mixtures and high density reactors of practical interest. In this work we demonstrate that with a fully implicit algorithm and a refined computational mesh, a self-consistent plasma and sheath simulation is feasible. We discuss the details of the model equations, the importance of ion inertia, and the resulting sheath profiles for argon and chlorine plasmas. We find that at low operating pressures (10-30 mTorr), the charge separation occurs only within a 0.5 mm layer near the surface in a 300 mm inductively coupled plasma etch reactor. A unified model eliminates the use of off-line or loosely coupled sheath models with simplifying assumptions which generally lead to uncertainties in ion flux and sheath electrical properties.

  18. Development of an automated core model for nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mosteller, R.D.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop an automated package of computer codes that can model the steady-state behavior of nuclear-reactor cores of various designs. As an added benefit, data produced for steady-state analysis also can be used as input to the TRAC transient-analysis code for subsequent safety analysis of the reactor at any point in its operating lifetime. The basic capability to perform steady-state reactor-core analysis already existed in the combination of the HELIOS lattice-physics code and the NESTLE advanced nodal code. In this project, the automated package was completed by (1) obtaining cross-section libraries for HELIOS, (2) validating HELIOS by comparing its predictions to results from critical experiments and from the MCNP Monte Carlo code, (3) validating NESTLE by comparing its predictions to results from numerical benchmarks and to measured data from operating reactors, and (4) developing a linkage code to transform HELIOS output into NESTLE input.

  19. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two-part series, a new rotary reactor concept for gas-fueled CLC is proposed and analyzed. In part 1, the detailed configuration of the rotary reactor is described. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotary wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride, which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure, and it is heated to a high temperature by fuel combustion. Typical design parameters for a thermal capacity of 1 MW have been proposed, and a simplified model is developed to predict the performances of the reactor. The potential drawbacks of the rotary reactor are also discussed. © 2012 American Chemical Society.

  20. OPTIMASI GEOMETRI TERAS REAKTOR DAN KOMPOSISI BAHAN BAKAR BERBENTUK BOLA PADA DESAIN HIGH TEMPERATURE FAST REACTOR (HTFR

    Directory of Open Access Journals (Sweden)

    Agustina Mega

    2015-04-01

    Full Text Available Telah dilakukan desain High Temperature Fast Reactor (HTFR tipe pebble dengan bahan bakar uranium plutonium nitrida berpendingin Pb-Bi. Parameter yang dianalisis adalah kritikalitas teras, koefisien reaktivitas temperatur bahan bakar, koefisien reaktivitas void pendingin dan kemampuan breeding reaktor. Perhitungan dilakukan dengan paket program SRAC2K3. Dari penelitian ini diharapkan diperoleh desain teras berumur lama dan memiliki fitur keselamatan melekat. Dari penelitian ini diperoleh desain reaktor dengan diameter 520 cm dan tinggi 480 cm. Bahan bakar berbentuk pebble dengan 63 % UN-37 % PuN pada zona core dan 95,5 % UN-4,5 % PuN pada zona blanket. Reaktor tidak kritis setelah kurang lebih 800 hari dan keff pada BoL 1,078223 dan keff setelah 800 hari adalah 0,986379. Dari penelitian ini diperoleh koefisien reaktivitas temperatur bahan bakar sebesar -2,190014E-05 pada saat BoL dan -1,390773E-05 setelah 800 hari serta koefisien reaktivitas void pendingin sebesar -2,160402E-04/% void pada saat BoL dan setelah 800 hari sebesar -2,942364E-03/% void. Reaktor merupakan jenis fast breeder ditandai dengan naiknya densitas plutonium 239. Kata kunci : desain, teras, HTFR, keselamatan, umur, koefisien reaktivitas.   Design of pebble bed type High Temperature Fast Reactor (HTFR with uranium plutonium nitride fuel and Pb-Bi cooled has been done. The parameters being analyzed were core criticality, fuel temperature coefficient, void coefficient and reactor breeding ability. Calculation was done by using SRAC2K3 computer code. This research is expected to obtaine the design with long life core and inherent safety features. This research obtained core design with a diameter of 520 cm and 480 cm core high. Shaped pebble fuel bed with the 63 % UN-37 % PUN on core zone and 95.5 % UN-4.5 % Pu on blanket zone and keff value is 1.078223 with approximately 800 day of core life. The fuel temperature coefficient is -2.190014E-05 at BOL and is 1.390773E-05 at EOL and

  1. Designing visual displays and system models for safe reactor operations

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-12-31

    The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.

  2. Transient Changes in Molecular Geometries and How to Model Them

    DEFF Research Database (Denmark)

    Dohn, Asmus Ougaard

    changes in molecular structure, vibrations and solvation. In this thesis, we employ our recently developed Quantum-/Molecular -Mechanical Direct Dynamics method to do simulations of transition metal complexes in solution, to uncover their energy dissipation channels, and how they are affected...... Dynamics project of this work focuses on a bi-metallic Ir complex, where the excited state bond formation results in a large Ir-Ir contraction with oscillatory behaviour. Forty simulated excited state trajectories of 3.5 ps each compare well with experimental results, and uncover a new vibrational mode. We...... observe how the wide distribution of ground state geometries is responsible for decoherence, and that the solvent cage actually facilitates coherent motion, by blocking the newly discovered vibrational mode. We furthermore observe a non-specific, rotational solvent response to the excitation. The second...

  3. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Ade, Brian J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Sunny, Eva E [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Betzler, Benjamin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Pinkston, Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)

    2015-03-01

    A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core model used to perform analyses in support of HFIR operation is an MCNP model for the beginning of Cycle 400, which was documented in detail in a 2005 technical report. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed to serve as reference for the design of an LEU fuel for HFIR. The recent enhancements in modeling and simulations for HFIR that are discussed in the present report include: (1) revision of the 2005 MCNP model for the beginning of Cycle 400 to improve the modeling data and assumptions as necessary based on appropriate primary reference sources HFIR drawings and reports; (2) improvement of the fuel region model, including an explicit representation for the involute fuel plate geometry that is characteristic to HFIR fuel; and (3) revision of the Monte Carlo-based depletion model for HFIR in use since 2009 but never documented in detail, with the development of a new depletion model for the HFIR explicit fuel plate representation. The new HFIR models for Cycle 400 are used to determine various metrics of relevance to reactor performance and safety assessments. The calculated metrics are compared, where possible, with measurement data from preconstruction critical experiments at HFIR, data included in the current HFIR safety analysis report, and/or data from previous calculations performed with different methods or codes. The results of the analyses show that the models presented in this report provide a robust and reliable basis for HFIR analyses.

  4. Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation.

    Science.gov (United States)

    Pluijmert, Marieke; Delhaas, Tammo; de la Parra, Adrián Flores; Kroon, Wilco; Prinzen, Frits W; Bovendeerd, Peter H M

    2017-04-01

    In patient-specific mathematical models of cardiac electromechanics, usually a patient-specific geometry and a generic myofiber orientation field are used as input, upon which myocardial tissue properties are tuned to clinical data. It remains unclear to what extent deviations in myofiber orientation and geometry between model and patient influence model predictions on cardiac function. Therefore, we evaluated the sensitivity of cardiac function for geometry and myofiber orientation in a biventricular (BiV) finite element model of cardiac mechanics. Starting out from a reference geometry in which myofiber orientation had no transmural component, two new geometries were defined with either a 27 % decrease in LV short- to long-axis ratio, or a 16 % decrease of RV length, but identical LV and RV cavity and wall volumes. These variations in geometry caused differences in both local myofiber and global pump work below 6 %. Variation of fiber orientation was induced through adaptive myofiber reorientation that caused an average change in fiber orientation of [Formula: see text] predominantly through the formation of a component in transmural direction. Reorientation caused a considerable increase in local myofiber work [Formula: see text] and in global pump work [Formula: see text] in all three geometries, while differences between geometries were below 5 %. The findings suggest that implementing a realistic myofiber orientation is at least as important as defining a patient-specific geometry. The model for remodeling of myofiber orientation seems a useful approach to estimate myofiber orientation in the absence of accurate patient-specific information.

  5. Anaerobic digestion model no. 1-based distributed parameter model of an anaerobic reactor: I. Model development.

    Science.gov (United States)

    Mu, S J; Zeng, Y; Wu, P; Lou, S J; Tartakovsky, B

    2008-06-01

    This work presents a distributed parameter model of the anaerobic digestion process. The model is based on the Anaerobic digestion model no. 1 (ADM1) and was developed to simulate anaerobic digestion process in high-rate reactors with significant axial dispersion, such as in upflow anaerobic sludge bed (UASB) reactors. The model, which was named ADM1d, combines ADM1's kinetics of biomass growth and substrate transformation with axial dispersion material balances. ADM1d uses a hyperbolic tangent function to describe biomass distribution within a one compartment model. A comparison of this approach with a two-compartment, sludge bed - liquid above the bed, model showed similar simulation results while the one-compartment model had less equations. A comparison of orthogonal collocation and finite difference algorithms for numerical solution of ADM1d showed better stability of the finite difference algorithm.

  6. Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry.

    Science.gov (United States)

    Meyer, Andrew J; Patten, Carolynn; Fregly, Benjamin J

    2017-01-01

    Neuromusculoskeletal disorders affecting walking ability are often difficult to manage, in part due to limited understanding of how a patient's lower extremity muscle excitations contribute to the patient's lower extremity joint moments. To assist in the study of these disorders, researchers have developed electromyography (EMG) driven neuromusculoskeletal models utilizing scaled generic musculoskeletal geometry. While these models can predict individual muscle contributions to lower extremity joint moments during walking, the accuracy of the predictions can be hindered by errors in the scaled geometry. This study presents a novel EMG-driven modeling method that automatically adjusts surrogate representations of the patient's musculoskeletal geometry to improve prediction of lower extremity joint moments during walking. In addition to commonly adjusted neuromusculoskeletal model parameters, the proposed method adjusts model parameters defining muscle-tendon lengths, velocities, and moment arms. We evaluated our EMG-driven modeling method using data collected from a high-functioning hemiparetic subject walking on an instrumented treadmill at speeds ranging from 0.4 to 0.8 m/s. EMG-driven model parameter values were calibrated to match inverse dynamic moments for five degrees of freedom in each leg while keeping musculoskeletal geometry close to that of an initial scaled musculoskeletal model. We found that our EMG-driven modeling method incorporating automated adjustment of musculoskeletal geometry predicted net joint moments during walking more accurately than did the same method without geometric adjustments. Geometric adjustments improved moment prediction errors by 25% on average and up to 52%, with the largest improvements occurring at the hip. Predicted adjustments to musculoskeletal geometry were comparable to errors reported in the literature between scaled generic geometric models and measurements made from imaging data. Our results demonstrate that with

  7. Modeling biooxidation of iron in packed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diz, H.R. [Gannon Univ., Erie, PA (United States). Dept. of Environmental Science and Engineering; Novak, J.T. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1999-02-01

    Acid mine drainage (AMD) from active and abandoned mines continues to be an important source of water pollution in the US and around the world. AMD typically has high levels of acidity, sulfate, and metals. A model based on Monod kinetics and originally developed for use with rotating biological contactors was modified for use with a packed-bed column reactor. The reactor was filled with expanded polystyrene beads to immobilize chemolithotrophic bacteria and fed up to 570 mg L{sup {minus}1} ferrous iron [Fe(II)] in simulated acid mine drainage. A tracer study indicated changing behavior as a function of hydraulic residence time (HRT), with a transition from complete mix flow behavior to plug flow behavior as HRT decreased. The Fe(II) oxidation efficiency exceeded 95% until the HRT was reduced below 0.5 h. The reactor performance could be predicted with the model using estimates from the literature for {cflx u} and Y. The experimentally determined half-saturation constant K{sub s} was found to range from 5 to 12 mg L{sup {minus}1}. The maximum volumetric capacity constant R{sub max} was estimated to be {approximately}360 mg Fe(II)h{sup {minus}1} L{sup {minus}1} beads under complete mix flow conditions but appeared to be as high as 724 mg Fe(II)h{sup {minus}1} L{sup {minus}1} beads as conditions approached plug flow at short HRTs.

  8. Control of whole heart geometry by intramyocardial mechano-feedback: a model study.

    Directory of Open Access Journals (Sweden)

    Theo Arts

    2012-02-01

    Full Text Available Geometry of the heart adapts to mechanical load, imposed by pressures and volumes of the cavities. We regarded preservation of cardiac geometry as a homeostatic control system. The control loop was simulated by a chain of models, starting with geometry of the cardiac walls, sequentially simulating circulation hemodynamics, myofiber stress and strain in the walls, transfer of mechano-sensed signals to structural changes of the myocardium, and finalized by calculation of resulting changes in cardiac wall geometry. Instead of modeling detailed mechano-transductive pathways and their interconnections, we used principles of control theory to find optimal transfer functions, representing the overall biological responses to mechanical signals. As biological responses we regarded tissue mass, extent of contractile myocyte structure and extent of the extra-cellular matrix. Mechano-structural stimulus-response characteristics were considered to be the same for atrial and ventricular tissue. Simulation of adaptation to self-generated hemodynamic load rendered physiologic geometry of all cardiac cavities automatically. Adaptation of geometry to chronic hypertension and volume load appeared also physiologic. Different combinations of mechano-sensors satisfied the condition that control of geometry is stable. Thus, we expect that for various species, evolution may have selected different solutions for mechano-adaptation.

  9. High Flux Isotope Reactor system RELAP5 input model

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  10. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy.

    Science.gov (United States)

    Chi, Yujie; Tian, Zhen; Jia, Xun

    2016-08-07

    Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0

  11. Comparison of low enriched uranium (UAl{sub x}-Al and U-Ni) targets with different geometries for the production of molybdenum-99 in the RMB (Brazilian multipurpose reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Silva, Jose Eduardo R. da; Angelo, Gabriel; Fedorenko, Giuliana G., E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Nishiyama, Pedro J.B. de O., E-mail: pedro.julio@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Brazilian Multipurpose Reactor (RMB), now in the conception design phase, is being designed in Brazil to attend the demand of radiopharmaceuticals in the country and conduct researches in various areas. The new reactor, planned for 30 MW, will replace the IEA-R1 reactor of IPEN-CNEN/SP. Low enriched uranium (<20% {sup 235}U) UAl{sub x} dispersed in Al (plate geometry) and metallic uranium foil targets (plate and cylinder geometries) are being considered for production of Molybdenum-99 ({sup 99}Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of {sup 99}Mo for these targets in the RMB. For the neutronic calculations were utilized the computer codes Hammer-Technion, Citation and Scale and for the thermal-hydraulics calculations were utilized the computer code MTRCR-IEAR1 and ANSYS CFX. (author)

  12. Discovering Planetary Nebula Geometries: Explorations with a Hierarchy of Models

    Science.gov (United States)

    Huyser, Karen A.; Knuth, Kevin H.; Fischer, Bernd; Schumann, Johann; Granquist-Fraser, Domhnull; Hajian, Arsen R.

    2004-01-01

    Astronomical objects known as planetary nebulae (PNe) consist of a shell of gas expelled by an aging medium-sized star as it makes its transition from a red giant to a white dwarf. In many cases this gas shell can be approximately described as a prolate ellipsoid. Knowledge of the physics of ionization processes in this gaseous shell enables us to construct a model in three dimensions (3D) called the Ionization-Bounded Prolate Ellipsoidal Shell model (IBPES model). Using this model we can generate synthetic nebular images, which can be used in conjunction with Hubble Space Telescope (HST) images of actual PNe to perform Bayesian model estimation. Since the IBPES model is characterized by thirteen parameters, model estimation requires the search of a 13-dimensional parameter space. The 'curse of dimensionality,' compounded by a computationally intense forward problem, makes forward searches extremely time-consuming and frequently causes them to become trapped in local solutions. We find that both the speed and of the search can be improved by judiciously reducing the dimensionality of the search space. Our basic approach employs a hierarchy of models of increasing complexity that converges to the IBPES model. Earlier studies establish that a hierarchical sequence converges more quickly, and to a better solution, than a search relying only on the most complex model. Here we report results for a hierarchy of five models. The first three models treat the nebula as a 2D image, while the last two models explore its characteristics as a 3D object and enable us to characterize the physics of the nebula. This five-model hierarchy is applied to HST images of ellipsoidal PNe to estimate their geometric properties and gas density profiles.

  13. MONTE CARLO ANALYSES OF THE YALINA THERMAL FACILITY WITH SERPENT STEREOLITHOGRAPHY GEOMETRY MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.

    2015-01-01

    This paper analyzes the YALINA Thermal subcritical assembly of Belarus using two different Monte Carlo transport programs, SERPENT and MCNP. The MCNP model is based on combinatorial geometry and universes hierarchy, while the SERPENT model is based on Stereolithography geometry. The latter consists of unstructured triangulated surfaces defined by the normal and vertices. This geometry format is used by 3D printers and it has been created by: the CUBIT software, MATLAB scripts, and C coding. All the Monte Carlo simulations have been performed using the ENDF/B-VII.0 nuclear data library. Both MCNP and SERPENT share the same geometry specifications, which describe the facility details without using any material homogenization. Three different configurations have been studied with different number of fuel rods. The three fuel configurations use 216, 245, or 280 fuel rods, respectively. The numerical simulations show that the agreement between SERPENT and MCNP results is within few tens of pcms.

  14. 3D geometry analysis of the medial meniscus – a statistical shape modeling approach

    Science.gov (United States)

    Vrancken, A C T; Crijns, S P M; Ploegmakers, M J M; O'Kane, C; van Tienen, T G; Janssen, D; Buma, P; Verdonschot, N

    2014-01-01

    The geometry-dependent functioning of the meniscus indicates that detailed knowledge on 3D meniscus geometry and its inter-subject variation is essential to design well functioning anatomically shaped meniscus replacements. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size- or shape-driven. Also we performed a cluster analysis to identify distinct morphological groups of medial menisci and assessed whether meniscal geometry is gender-dependent. A statistical shape model was created, containing the meniscus geometries of 35 subjects (20 females, 15 males) that were obtained from MR images. A principal component analysis was performed to determine the most important modes of geometry variation and the characteristic changes per principal component were evaluated. Each meniscus from the original dataset was then reconstructed as a linear combination of principal components. This allowed the comparison of male and female menisci, and a cluster analysis to determine distinct morphological meniscus groups. Of the variation in medial meniscus geometry, 53.8% was found to be due to primarily size-related differences and 29.6% due to shape differences. Shape changes were most prominent in the cross-sectional plane, rather than in the transverse plane. Significant differences between male and female menisci were only found for principal component 1, which predominantly reflected size differences. The cluster analysis resulted in four clusters, yet these clusters represented two statistically different meniscal shapes, as differences between cluster 1, 2 and 4 were only present for principal component 1. This study illustrates that differences in meniscal geometry cannot be explained by scaling only, but that different meniscal shapes can be distinguished. Functional analysis, e.g. through finite element modeling, is required to assess whether these distinct shapes actually influence

  15. 3D geometry analysis of the medial meniscus--a statistical shape modeling approach.

    Science.gov (United States)

    Vrancken, A C T; Crijns, S P M; Ploegmakers, M J M; O'Kane, C; van Tienen, T G; Janssen, D; Buma, P; Verdonschot, N

    2014-10-01

    The geometry-dependent functioning of the meniscus indicates that detailed knowledge on 3D meniscus geometry and its inter-subject variation is essential to design well functioning anatomically shaped meniscus replacements. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size- or shape-driven. Also we performed a cluster analysis to identify distinct morphological groups of medial menisci and assessed whether meniscal geometry is gender-dependent. A statistical shape model was created, containing the meniscus geometries of 35 subjects (20 females, 15 males) that were obtained from MR images. A principal component analysis was performed to determine the most important modes of geometry variation and the characteristic changes per principal component were evaluated. Each meniscus from the original dataset was then reconstructed as a linear combination of principal components. This allowed the comparison of male and female menisci, and a cluster analysis to determine distinct morphological meniscus groups. Of the variation in medial meniscus geometry, 53.8% was found to be due to primarily size-related differences and 29.6% due to shape differences. Shape changes were most prominent in the cross-sectional plane, rather than in the transverse plane. Significant differences between male and female menisci were only found for principal component 1, which predominantly reflected size differences. The cluster analysis resulted in four clusters, yet these clusters represented two statistically different meniscal shapes, as differences between cluster 1, 2 and 4 were only present for principal component 1. This study illustrates that differences in meniscal geometry cannot be explained by scaling only, but that different meniscal shapes can be distinguished. Functional analysis, e.g. through finite element modeling, is required to assess whether these distinct shapes actually influence

  16. Heat transfer analysis of cylindrical anaerobic reactors with different sizes: a heat transfer model.

    Science.gov (United States)

    Liu, Jiawei; Zhou, Xingqiu; Wu, Jiangdong; Gao, Wen; Qian, Xu

    2017-10-01

    The temperature is the essential factor that influences the efficiency of anaerobic reactors. During the operation of the anaerobic reactor, the fluctuations of ambient temperature can cause a change in the internal temperature of the reactor. Therefore, insulation and heating measures are often used to maintain anaerobic reactor's internal temperature. In this paper, a simplified heat transfer model was developed to study heat transfer between cylindrical anaerobic reactors and their surroundings. Three cylindrical reactors of different sizes were studied, and the internal relations between ambient temperature, thickness of insulation, and temperature fluctuations of the reactors were obtained at different reactor sizes. The model was calibrated by a sensitivity analysis, and the calibrated model was well able to predict reactor temperature. The Nash-Sutcliffe model efficiency coefficient was used to assess the predictive power of heat transfer models. The Nash coefficients of the three reactors were 0.76, 0.60, and 0.45, respectively. The model can provide reference for the thermal insulation design of cylindrical anaerobic reactors.

  17. Differential geometry-based solvation and electrolyte transport models for biomolecular modeling: a review

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guowei; Baker, Nathan A.

    2016-11-11

    This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Recently, differential geometry theory has been used to define the surfaces that separate the microscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In these approaches, the microscopic domains are modeled with atomistic or quantum mechanical descriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics, and continuum electrostatics) are applied to the macroscopic domains. This multiphysics description is integrated through an energy functional formalism and the resulting Euler-Lagrange equation is employed to derive a variety of governing partial differential equations for different solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute interface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive validation of these models has been carried out over hundreds of molecules, including proteins and ion channels, and the experimental data have been compared in terms of solvation energies, voltage-current curves, and density distributions. We also propose a new quantum model for electrolyte transport.

  18. Simulation of styrene polymerization reactors: kinetic and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    A. S. Almeida

    2008-06-01

    Full Text Available A mathematical model for the free radical polymerization of styrene is developed to predict the steady-state and dynamic behavior of a continuous process. Special emphasis is given for the kinetic and thermodynamic models, where the most sensitive parameters were estimated using data from an industrial plant. The thermodynamic model is based on a cubic equation of state and a mixing rule applied to the low-pressure vapor-liquid equilibrium of polymeric solutions, suitable for modeling the auto-refrigerated polymerization reactors, which use the vaporization rate to remove the reaction heat from the exothermic reactions. The simulation results show the high predictive capability of the proposed model when compared with plant data for conversion, average molecular weights, polydispersity, melt flow index, and thermal properties for different polymer grades.

  19. Implementation of Structured Inquiry Based Model Learning toward Students' Understanding of Geometry

    Science.gov (United States)

    Salim, Kalbin; Tiawa, Dayang Hjh

    2015-01-01

    The purpose of this study is implementation of a structured inquiry learning model in instruction of geometry. The model used is a model with a quasi-experimental study amounted to two classes of samples selected from the population of the ten classes with cluster random sampling technique. Data collection tool consists of a test item…

  20. Meso-scale modeling of irradiated concrete in test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, A. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Vaitová, M. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic); Le Pape, Y., E-mail: lepapeym@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Štemberk, P. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic)

    2015-12-15

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  1. Control Rod Driveline Reactivity Feedback Model for Liquid Metal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Min; Jeong, Hae-Yong; Chang, Won-Pyo; Cho, Chung-Ho; Lee, Yong-Bum

    2008-01-15

    The thermal expansion of the control rod drivelines (CRDL) is one important passive mitigator under all unprotected accident conditions in the metal and oxide cores. When the CRDL are washed by hot sodium in the coolant outlet plenum, the CRDL thermally expands and causes the control rods to be inserted further down into the active core region, providing a negative reactivity feedback. Since the control rods are attached to the top of the vessel head and the core attaches to the bottom of the reactor vessel (RV), the expansion of the vessel wall as it heats will either lower the core or raise the control rods supports. This contrary thermal expansion of the reactor vessel wall pulls the control rods out of the core somewhat, providing a positive reactivity feedback. However this is not a safety factor early in a transient because its time constant is relatively large. The total elongated length is calculated by subtracting the vessel expansion from the CRDL expansion to determine the net control rod expansion into the core. The system-wide safety analysis code SSC-K includes the CRDL/RV reactivity feedback model in which control rod and vessel expansions are calculated using single-nod temperatures for the vessel and CRDL masses. The KALIMER design has the upper internal structures (UIS) in which the CRDLs are positioned outside the structure where they are exposed to the mixed sodium temperature exiting the core. A new method to determine the CRDL expansion is suggested. Two dimensional hot pool thermal hydraulic model (HP2D) originally developed for the analysis of the stratification phenomena in the hot pool is utilized for a detailed heat transfer between the CRDL mass and the hot pool coolant. However, the reactor vessel wall temperature is still calculated by a simple lumped model.

  2. The effects of geometry and operational conditions on gas holdup, liquid circulation and mass transfer in an airlift reactor

    Directory of Open Access Journals (Sweden)

    Gouveia E.R.

    2003-01-01

    Full Text Available In airlift reactors transport phenomena are achieved by pneumatic agitation and circulation occurs in a defined cyclic pattern through a loop. In the present work, the effect of geometrical relations on gas holdup and liquid velocity, and consequently on the gas-liquid mass transfer coefficient, was studied in a 6-liter airlift bioreactor with A D/A R = 0.63; A D, downcomer cross-sectional area, and A R, riser cross-sectional area. Measurements of the volumetric oxygen transfer coefficient (kLa were taken in a water-air system using a modified sulfite oxidation method. Different conditions were examined by varying parameters such as superficial air velocity in the riser (U GR, bottom clearance (d1 and top clearance (d2. It was observed from the experimental results that d1 and d2 have a remarkable effect on kLa values. The effect is due to their influence on gas holdup and liquid velocity, consequently affecting kLa. Superficial air velocity in the riser (U GR ranged from 0.0126 to 0.0440 m.s-1 and kLa varied between 40 to 250 h-1, whereas gas holdup (e reached values up to 0.2. The volumetric oxygen transfer coefficient (kLa, gas holdup in the riser (eR and downcomer (eD and superficial liquid velocity in the riser (U LR for all the geometrical relations were successfully correlated with dimensionless numbers, namely, the Sherwood number (Sh and the Froude number (Fr as well as with geometrical relations such as the bottom space ratio (B = d1/D D and top space ratio (T = (d2 + D D/D D.

  3. An integration scheme for stiff solid-gas reactor models

    Directory of Open Access Journals (Sweden)

    Bjarne A. Foss

    2001-04-01

    Full Text Available Many dynamic models encounter numerical integration problems because of a large span in the dynamic modes. In this paper we develop a numerical integration scheme for systems that include a gas phase, and solid and liquid phases, such as a gas-solid reactor. The method is based on neglecting fast dynamic modes and exploiting the structure of the algebraic equations. The integration method is suitable for a large class of industrially relevant systems. The methodology has proven remarkably efficient. It has in practice performed excellent and been a key factor for the success of the industrial simulator for electrochemical furnaces for ferro-alloy production.

  4. A spectral nodal method for eigenvalue S{sub N} transport problems in two-dimensional rectangular geometry for energy multigroup nuclear reactor global calculations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Davi Jose M.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: davijmsilva@yahoo.com.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Programa de Pos-Graduacao em Modelagem Computacional

    2015-07-01

    A spectral nodal method is developed for multigroup x,y-geometry discrete ordinates (S{sub N}) eigenvalue problems for nuclear reactor global calculations. This method uses the conventional multigroup SN discretized spatial balance nodal equations with two non-standard auxiliary equations: the spectral diamond (SD) auxiliary equations for the discretization nodes inside the fuel regions, and the spectral Green's function (SGF) auxiliary equations for the non-multiplying regions, such as the baffle and the reactor. This spectral nodal method is derived from the analytical general solution of the SN transverse integrated nodal equations with constant approximations for the transverse leakage terms within each discretization node. The SD and SGF auxiliary equations have parameters, which are determined to preserve the homogeneous and the particular components of these local general solutions. Therefore, we refer to the offered method as the hybrid SD-SGF-Constant Nodal (SD-SGF-CN) method. The S{sub N} discretized spatial balance equations, together with the SD and the SGF auxiliary equations form the SD-SGF-CN equations. We solve the SD-SGF-CN equations by using the one-node block inversion inner iterations (NBI), wherein the most recent estimates for the incoming group node-edge average or prescribed boundary conditions are used to evaluate the outgoing group node-edge average fluxes in the directions of the S{sub N} transport sweeps, for each estimate of the dominant eigenvalue in the conventional Power outer iterations. We show in numerical calculations that the SD-SGF-CN method is very accurate for coarse-mesh multigroup S{sub N} eigenvalue problems, even though the transverse leakage terms are approximated rather simply. (author)

  5. Atomic forces for geometry-dependent point multipole and gaussian multipole models.

    Science.gov (United States)

    Elking, Dennis M; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G

    2010-11-30

    In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise because of (1) the transfer of torque between neighboring atoms and (2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In this study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives partial derivative D(m'm)(l)/partial derivative Omega. The force equations can be applied to electrostatic models based on atomic point multipoles or gaussian multipole charge density. Hydrogen-bonded dimers are used to test the intermolecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential. The electrostatic energies and forces are compared with their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, whereas geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. 2010 Wiley Periodicals, Inc.

  6. PEM fuel cell geometry optimisation using mathematical modeling

    Directory of Open Access Journals (Sweden)

    E Carcadea

    2008-09-01

    Full Text Available There have been extensive efforts devoted to proton exchangemembrane (PEM fuel cell modeling and simulations to study fuel cellperformance. Although fuel cells have been successfully demonstrated inboth automotive and stationary power applications, there are numeroustechnical and logistic issues that still have to be solved, such asperformance, cost, and system issues. A model based on steady,isothermal, electrochemical, three-dimensional computational fluiddynamics using the FLUENT CFD software package has been developedto predict the fluid flow pattern within a PEMFC. Three types of flow field areinvestigated with serpentine, parallel or spiral channels in order todetermine the best configuration for the fuel cell performance. In thiscontext, the paper presents the results that we have obtained and, as aconclusion of the simulations, we have achieved the best configurationregarding the performance for the fuel cell with serpentine channels. Weconsider the mathematical and computational modeling as an importantalternative for fuel cell optimization and for the exploitation/experimentationin cost reduction.

  7. Modelling of electron beam absorption in complex geometries

    Science.gov (United States)

    Klassen, Alexander; Bauereiß, Andreas; Körner, Carolin

    2014-02-01

    Computational modelling of processes that involve highly energetic electrons like electron beam melting, welding, drilling or electron beam lithography, to name but a few, requires information about the attenuation of the electron beam as it passes through the sample. Depth-dose curves as a function of electron energy, target material as well as local surface obliquity have to be provided in situ during the calculation. The most efficient way to address this issue is by employing mathematical expressions. Therefore, we propose an electron beam model based on a set of semi-empirical equations available from different published literature and on theoretical considerations. Particular stress is thereby put on accuracy and the range of validity of the theoretical approach by comparison with experimental data. Finally, we apply our model to powder-bed based additive manufacturing. The numerical results demonstrate that electron beam absorption and depth of penetration have a strong influence on the quality of the fabricated product.

  8. A Model for Geometry-Dependent Errors in Length Artifacts.

    Science.gov (United States)

    Sawyer, Daniel; Parry, Brian; Phillips, Steven; Blackburn, Chris; Muralikrishnan, Bala

    2012-01-01

    We present a detailed model of dimensional changes in long length artifacts, such as step gauges and ball bars, due to bending under gravity. The comprehensive model is based on evaluation of the gauge points relative to the neutral bending surface. It yields the errors observed when the gauge points are located off the neutral bending surface of a bar or rod but also reveals the significant error associated with out-of-straightness of a bar or rod even if the gauge points are located in the neutral bending surface. For example, one experimental result shows a length change of greater than 1.5 µm on a 1 m ball bar with an out-of-straightness of 0.4 mm. This and other results are in agreement with the model presented in this paper.

  9. Parameter estimation for LLDPE gas-phase reactor models

    Directory of Open Access Journals (Sweden)

    G. A. Neumann

    2007-06-01

    Full Text Available Product development and advanced control applications require models with good predictive capability. However, in some cases it is not possible to obtain good quality phenomenological models due to the lack of data or the presence of important unmeasured effects. The use of empirical models requires less investment in modeling, but implies the need for larger amounts of experimental data to generate models with good predictive capability. In this work, nonlinear phenomenological and empirical models were compared with respect to their capability to predict the melt index and polymer yield of a low-density polyethylene production process consisting of two fluidized bed reactors connected in series. To adjust the phenomenological model, the optimization algorithms based on the flexible polyhedron method of Nelder and Mead showed the best efficiency. To adjust the empirical model, the PLS model was more appropriate for polymer yield, and the melt index needed more nonlinearity like the QPLS models. In the comparison between these two types of models better results were obtained for the empirical models.

  10. modelling flow over stepped spillway with varying chute geometry

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... stepped Spillway, chute Slope, energy dissipated, hydraulic models. 1. Introduction. Stepped spillways (cascades) are commonly used for river training, debris dam structures, storm water sys- tems and aeration cascades [1]. Stepped cascade flows are characterized by the strong kinetic energy of flow.

  11. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  12. Modelling of non-catalytic reactors in a gas-solid trickle flow reactor: Dry, regenerative flue gas desulphurization using a silica-supported copper oxide sorbent

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    A one-dimensional, two-phase dispersed plug flow model has been developed to describe the steady-state performance of a relatively new type of reactor, the gas-solid trickle flow reactor (GSTFR). In this reactor, an upward-flowing gas phase is contacted with as downward-flowing dilute solids phase

  13. Astronaut EVA exposure estimates from CAD model spacesuit geometry.

    Science.gov (United States)

    De Angelis, Giovanni; Anderson, Brooke M; Atwell, William; Nealy, John E; Qualls, Garry D; Wilson, John W

    2004-03-01

    Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesuit, developed at NASA Langley Research Center (LaRC), is used to represent the directional shielding of an astronaut; it has detailed helmet and backpack structures, hard upper torso, and multilayer space suit fabric material. The NASA Computerized Anatomical Male and Female (CAM and CAF) models are used in conjunction with the space suit CAD model for dose evaluation within the human body. The particle environments are taken from the orbit-averaged NASA AP8 and AE8 models at solar cycle maxima and minima. The transport of energetic particles through space suit materials and body tissue is calculated by using the NASA LaRC HZETRN code for hadrons and a recently developed deterministic transport code, ELTRN, for electrons. The doses within the CAM and CAF models are determined from energy deposition at given target points along 968 directional rays convergent on the points and are evaluated for several points on the skin and within the body. Dosimetric quantities include contributions from primary protons, light ions, and electrons, as well as from secondary brehmsstrahlung and target fragments. Directional dose patterns are displayed as rays and on spherical surfaces by the use of a color relative intensity representation.

  14. Model based design of biochemical micro-reactors

    Directory of Open Access Journals (Sweden)

    Tobias eElbinger

    2016-02-01

    Full Text Available Mathematical modelling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation and optimization of metabolic processes in biochemical micro-reactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first micro-reactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments multi-enzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions.The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multi-enzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the micro-reactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns which differ for different experimental arrangements. Furthermore, the total output

  15. Perbandingan antara Keefektifan Model Guided Discovery Learning dan Project-Based Learning pada Matakuliah Geometri

    Directory of Open Access Journals (Sweden)

    Okky Riswandha Imawan

    2015-12-01

    Abstract This research aims to describe the effectiveness and effectiveness differences of the Guided Discovery Learning (GDL Model and the Project Based Learning (PjBL Model in terms of achievement, self-confidence, and critical thinking skills of students on the Solid Geometry subjects. This research was quasi experimental. The research subjects were two undergraduate classes of Mathematics Education Program, Ahmad Dahlan University, in their second semester, established at random. The data analysis to test the effectiveness of the GDL and PjBL Models in terms of each of the dependent variables used the t-test. The data analysis to test differences between effectiveness of the GDL and that of the PjBL Model used the MANOVA test. The results of this research show that viewed from achievement, self confidence, and critical thinking skills of the students are the application of the GDL Model on Solid Geometry subject is effective, the application of the PjBL Model on Solid Geometry subject is effective, and there is no difference in the effectiveness of GDL and PjBL Models on Solid Geometry subject in terms of achievement, self confidence, and critical thinking skills of the students. Keywords: guided discovery learning model, project-based learning model, achievement, self-confidence, critical thinking skills

  16. Astronaut EVA Exposure Estimates from CAD Model Spacesuit Geometry

    OpenAIRE

    GIOVANNI DE, ANGELIS; Brooke M., ANDERSON; William, ATWELL; John E., NEALY; Garry D., QUALLS; John W., WILSON; Old Dominion University:NASA Langley Research Center:Istituto Superiore di Sanita'; Swales Aerospace Corporation; The Boeing Company; Old Dominion University; NASA Langley Research Center

    2004-01-01

    Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesu...

  17. Dimer geometry, amoebae and a vortex dimer model

    Science.gov (United States)

    Nash, Charles; O'Connor, Denjoe

    2017-09-01

    We present a geometrical approach and introduce a connection for dimer problems on bipartite and non-bipartite graphs. In the bipartite case the connection is flat but has non-trivial {Z}2 holonomy round certain curves. This holonomy has the universality property that it does not change as the number of vertices in the fundamental domain of the graph is increased. It is argued that the K-theory of the torus, with or without punctures, is the appropriate underlying invariant. In the non-bipartite case the connection has non-zero curvature as well as non-zero Chern number. The curvature does not require the introduction of a magnetic field. The phase diagram of these models is captured by what is known as an amoeba. We introduce a dimer model with negative edge weights which correspond to vortices. The amoebae for various models are studied with particular emphasis on the case of negative edge weights. Vortices give rise to new kinds of amoebae with certain singular structures which we investigate. On the amoeba of the vortex full hexagonal lattice we find the partition function corresponds to that of a massless Dirac doublet.

  18. Thermal hydraulics modeling of the US Geological Survey TRIGA reactor

    Science.gov (United States)

    Alkaabi, Ahmed K.

    The Geological Survey TRIGA reactor (GSTR) is a 1 MW Mark I TRIGA reactor located in Lakewood, Colorado. Single channel GSTR thermal hydraulics models built using RELAP5/MOD3.3, RELAP5-3D, TRACE, and COMSOL Multiphysics predict the fuel, outer clad, and coolant temperatures as a function of position in the core. The results from the RELAP5/MOD3.3, RELAP5-3D, and COMSOL models are similar. The TRACE model predicts significantly higher temperatures, potentially resulting from inappropriate convection correlations. To more accurately study the complex fluid flow patterns within the core, this research develops detailed RELAP5/MOD3.3 and COMSOL multichannel models of the GSTR core. The multichannel models predict lower fuel, outer clad, and coolant temperatures compared to the single channel models by up to 16.7°C, 4.8°C, and 9.6°C, respectively, as a result of the higher mass flow rates predicted by these models. The single channel models and the RELAP5/MOD3.3 multichannel model predict that the coolant temperatures in all fuel rings rise axially with core height, as the coolant in these models flows predominantly in the axial direction. The coolant temperatures predicted by the COMSOL multichannel model rise with core height in the B-, C-, and D-rings and peak and then decrease in the E-, F-, and G-rings, as the coolant tends to flow from the bottom sides of the core to the center of the core in this model. Experiments at the GSTR measured coolant temperatures in the GSTR core to validate the developed models. The axial temperature profiles measured in the GSTR show that the flow patterns predicted by the COMSOL multichannel model are consistent with the actual conditions in the core. Adjusting the RELAP5/MOD3.3 single and multichannel models by modifying the axial and cross-flow areas allow them to better predict the GSTR coolant temperatures; however, the adjusted models still fail to predict accurate axial temperature profiles in the E-, F-, and G-rings.

  19. Comprehensive model for disruption erosion in a reactor environment

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, A. [Argonne National Lab., IL (United States); Konkashbaev, I. [Troitsk Institute for Innovation, Moscow Region (Russia)

    1994-08-01

    Disruptions in tokamak reactors are still of serious concern and present a potential obstacle for successful operation and reliable design. Erosion of plasma-facing materials due to thermal energy dump during a disruption can severely limit the lifetime of these components, therefore diminishes the economic feasibility of the reactor. A comprehensive disruption erosion model which takes into account the interplay of all physical processes during plasma-material interaction has been developed. The initial burst of energy delivered to facing-material surfaces from direct impact of plasma particles causes sudden ablation of these materials. As a result, a vapor cloud is formed in front of the incident plasma particles. Shortly thereafter, the plasma particles are stopped in the vapor cloud, heating and ionizing it. The energy transmitted to the material surfaces is then dominated by photon radiation. It is the dynamics and the evolution of this vapor cloud that finally determines the net erosion rate and, consequently, the component lifetime. The model integrates with sufficient detail and in a self-consistent way, material thermal evolution response, plasma-vapor interaction physics, vapor hydrodynamics and radiation transport in order to realistically simulate the effects of a plasma disruption on plasma-facing components. Candidate materials such as beryllium and carbon have.been analyzed. The dependence of the net erosion rate on disruption physics and various parameters was analyzed and is discussed.

  20. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  1. Geometry based finite element modeling of the electrical contact between a cultured neuron and a microelectrode

    NARCIS (Netherlands)

    Buitenweg, Jan R.; Rutten, Wim; Marani, Enrico

    2003-01-01

    The electrical contact between a substrate embedded microelectrode and a cultured neuron depends on the geometry of the neuron-electrode interface. Interpretation and improvement of these contacts requires proper modeling of all coupling mechanisms. In literature, it is common practice to model the

  2. Mathematical modeling for prediction and optimization of TIG welding pool geometry

    Directory of Open Access Journals (Sweden)

    U. Esme

    2009-04-01

    Full Text Available In this work, nonlinear and multi-objective mathematical models were developed to determine the process parameters corresponding to optimum weld pool geometry. The objectives of the developed mathematical models are to maximize tensile load (TL, penetration (P, area of penetration (AP and/or minimize heat affected zone (HAZ, upper width (UW and upper height (UH depending upon the requirements.

  3. 3D Printing of Molecular Models with Calculated Geometries and p Orbital Isosurfaces

    Science.gov (United States)

    Carroll, Felix A.; Blauch, David N.

    2017-01-01

    3D printing was used to prepare models of the calculated geometries of unsaturated organic structures. Incorporation of p orbital isosurfaces into the models enables students in introductory organic chemistry courses to have hands-on experience with the concept of orbital alignment in strained and unstrained p systems.

  4. Information geometry

    CERN Document Server

    Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz

    2017-01-01

    The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...

  5. MODELLING AND CONTROL OF CONTINUOUS STIRRED TANK REACTOR WITH PID CONTROLLER

    Directory of Open Access Journals (Sweden)

    Artur Wodołażski

    2016-09-01

    Full Text Available This paper presents a model of dynamics control for continuous stirred tank reactor (CSTR in methanol synthesis in a three-phase system. The reactor simulation was carried out for steady and transient state. Efficiency ratio to achieve maximum performance of the product per reactor unit volume was calculated. Reactor dynamics simulation in closed loop allowed to received data for tuning PID controller (proportional-integral-derivative. The results of the regulation process allow to receive data for optimum reactor production capacity, along with local hot spots eliminations or temperature runaway.

  6. Reactor design, cold-model experiment and CFD modeling for chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Ma, Jinchen; Hu, Xintao; Zhao, Haibo; Wang, Baowen; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    Chemical looping combustion (CLC) is an efficient, clean and cheap technology for CO{sub 2} capture, and an interconnected fluidized bed is more appropriate solution for CLC. This paper aims to design a reactor system for CLC, carry out cold-model experiment of the system, and model fuel reactor using commercial CFD software. As for the CLC system, the air reactor (AR) is designed as a fast fluidized bed while the fuel reactor (FR) is a bubbling bed; a cyclone is used for solid separation of the AR exit flow. The AR and FR are separated by two U-type loop seals to remain gas sealed. Considered the chemical kinetics of oxygen carrier, fluid dynamics, pressure balance and mass balance of the system simultaneously, some key design parameters of a CH{sub 4}-fueled and Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-based CLC reactor (thermal power of 50 kWth) are determined, including key geometric parameters (reactor cross-sectional area and reactor height) and operation parameters (bed material quantity, solid circulation rate, apparent gas velocity of each reactor). A cold-model bench having same geometric parameters with its prototype is built up to study the effects of various operation conditions (including gas velocity in the reactors and loop seals, and bed material height, etc.) on the solids circulation rate, gas leakage, and pressure balance. It is witnessed the cold-model system is able to meet special requirements for CLC system such as gas sealing between AR and FR, the circulation rate and particles residence time. Furthermore, the thermal FR reactor with oxygen carrier of Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} and fuel of CH{sub 4} is simulated by commercial CFD solver FLUENT. It is found that for the design case the combustion efficiency of CH{sub 4} reaches 88.2%. A few part of methane is unburned due to fast, large bubbles rising through the reactor.

  7. Modelling of turbulence and combustion for simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Bjoern Johan

    1998-12-31

    This thesis analyses and presents new models for turbulent reactive flows for CFD (Computational Fluid Dynamics) simulation of gas explosions in complex geometries like offshore modules. The course of a gas explosion in a complex geometry is largely determined by the development of turbulence and the accompanying increased combustion rate. To be able to model the process it is necessary to use a CFD code as a starting point, provided with a suitable turbulence and combustion model. The modelling and calculations are done in a three-dimensional finite volume CFD code, where complex geometries are represented by a porosity concept, which gives porosity on the grid cell faces, depending on what is inside the cell. The turbulent flow field is modelled with a k-{epsilon} turbulence model. Subgrid models are used for production of turbulence from geometry not fully resolved on the grid. Results from laser doppler anemometry measurements around obstructions in steady and transient flows have been analysed and the turbulence models have been improved to handle transient, subgrid and reactive flows. The combustion is modelled with a burning velocity model and a flame model which incorporates the burning velocity into the code. Two different flame models have been developed: SIF (Simple Interface Flame model), which treats the flame as an interface between reactants and products, and the {beta}-model where the reaction zone is resolved with about three grid cells. The flame normally starts with a quasi laminar burning velocity, due to flame instabilities, modelled as a function of flame radius and laminar burning velocity. As the flow field becomes turbulent, the flame uses a turbulent burning velocity model based on experimental data and dependent on turbulence parameters and laminar burning velocity. The laminar burning velocity is modelled as a function of gas mixture, equivalence ratio, pressure and temperature in reactant. Simulations agree well with experiments. 139

  8. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    NARCIS (Netherlands)

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using

  9. The chemical energy unit partial oxidation reactor operation simulation modeling

    Science.gov (United States)

    Mrakin, A. N.; Selivanov, A. A.; Batrakov, P. A.; Sotnikov, D. G.

    2018-01-01

    The chemical energy unit scheme for synthesis gas, electric and heat energy production which is possible to be used both for the chemical industry on-site facilities and under field conditions is represented in the paper. The partial oxidation reactor gasification process mathematical model is described and reaction products composition and temperature determining algorithm flow diagram is shown. The developed software product verification showed good convergence of the experimental values and calculations according to the other programmes: the temperature determining relative discrepancy amounted from 4 to 5 %, while the absolute composition discrepancy ranged from 1 to 3%. The synthesis gas composition was found out practically not to depend on the supplied into the partial oxidation reactor (POR) water vapour enthalpy and compressor air pressure increase ratio. Moreover, air consumption coefficient α increase from 0.7 to 0.9 was found out to decrease synthesis gas target components (carbon and hydrogen oxides) specific yield by nearly 2 times and synthesis gas target components required ratio was revealed to be seen in the water vapour specific consumption area (from 5 to 6 kg/kg of fuel).

  10. Modeling and fabrication of an RF MEMS variable capacitor with a fractal geometry

    KAUST Repository

    Elshurafa, Amro M.

    2013-08-16

    In this paper, we model, fabricate, and measure an electrostatically actuated MEMS variable capacitor that utilizes a fractal geometry and serpentine-like suspension arms. Explicitly, a variable capacitor that possesses a top suspended plate with a specific fractal geometry and also possesses a bottom fixed plate complementary in shape to the top plate has been fabricated in the PolyMUMPS process. An important benefit that was achieved from using the fractal geometry in designing the MEMS variable capacitor is increasing the tuning range of the variable capacitor beyond the typical ratio of 1.5. The modeling was carried out using the commercially available finite element software COMSOL to predict both the tuning range and pull-in voltage. Measurement results show that the tuning range is 2.5 at a maximum actuation voltage of 10V.

  11. Mathematical modeling of methyl ester concentration distribution in a continuous membrane tubular reactor and comparison with conventional tubular reactor

    Science.gov (United States)

    Talaghat, M. R.; Jokar, S. M.; Modarres, E.

    2017-10-01

    The reduction of fossil fuel resources and environmental issues made researchers find alternative fuels include biodiesels. One of the most widely used methods for production of biodiesel on a commercial scale is transesterification method. In this work, the biodiesel production by a transesterification method was modeled. Sodium hydroxide was considered as a catalyst to produce biodiesel from canola oil and methanol in a continuous tubular ceramic membranes reactor. As the Biodiesel production reaction from triglycerides is an equilibrium reaction, the reaction rate constants depend on temperature and related linearly to catalyst concentration. By using the mass balance for a membrane tubular reactor and considering the variation of raw materials and products concentration with time, the set of governing equations were solved by numerical methods. The results clearly show the superiority of membrane reactor than conventional tubular reactors. Afterward, the influences of molar ratio of alcohol to oil, weight percentage of the catalyst, and residence time on the performance of biodiesel production reactor were investigated.

  12. Identification of the reduced order models of a BWR reactor; Identificacion de modelos de orden reducido de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez S, A. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: augusto@correo.unam.mx

    2004-07-01

    The present work has as objective to analyze the relative stability of a BWR type reactor. It is analyzed that so adaptive it turns out to identify the parameters of a model of reduced order so that this it reproduces a condition of given uncertainty. This will take of a real fact happened in the La Salle plant under certain operation conditions of power and flow of coolant. The parametric identification is carried out by means of an algorithm of recursive least square and an Output Error model (Output Error), measuring the output power of the reactor when the instability is present, and considering that it is produced by a change in the reactivity of the system in the same way that a sign of type step. Also it is carried out an analytic comparison of the relative stability, analyzing two types of answers: the original answer of the uncertainty of the reactor vs. the obtained response identifying the parameters of the model of reduced order, reaching the conclusion that it is very viable to adapt a model of reduced order to study the stability of a reactor, under the only condition to consider that the dynamics of the reactivity is of step type. (Author)

  13. The abstract geometry modeling language (AgML): experience and road map toward eRHIC

    Science.gov (United States)

    Webb, Jason; Lauret, Jerome; Perevoztchikov, Victor

    2014-06-01

    The STAR experiment has adopted an Abstract Geometry Modeling Language (AgML) as the primary description of our geometry model. AgML establishes a level of abstraction, decoupling the definition of the detector from the software libraries used to create the concrete geometry model. Thus, AgML allows us to support both our legacy GEANT 3 simulation application and our ROOT/TGeo based reconstruction software from a single source, which is demonstrably self- consistent. While AgML was developed primarily as a tool to migrate away from our legacy FORTRAN-era geometry codes, it also provides a rich syntax geared towards the rapid development of detector models. AgML has been successfully employed by users to quickly develop and integrate the descriptions of several new detectors in the RHIC/STAR experiment including the Forward GEM Tracker (FGT) and Heavy Flavor Tracker (HFT) upgrades installed in STAR for the 2012 and 2013 runs. AgML has furthermore been heavily utilized to study future upgrades to the STAR detector as it prepares for the eRHIC era. With its track record of practical use in a live experiment in mind, we present the status, lessons learned and future of the AgML language as well as our experience in bringing the code into our production and development environments. We will discuss the path toward eRHIC and pushing the current model to accommodate for detector miss-alignment and high precision physics.

  14. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  15. Room acoustics modeling using a point-cloud representation of the room geometry

    DEFF Research Database (Denmark)

    Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte

    2013-01-01

    geometry acquisition is presented. The method exploits a depth sensor of the Kinect device that provides a point based information of a scanned room interior. After post-processing of the Kinect output data, a 3D point-cloud model of the room is obtained. Sound transmission between two selected points...

  16. A Construction of Multisender Authentication Codes with Sequential Model from Symplectic Geometry over Finite Fields

    Directory of Open Access Journals (Sweden)

    Shangdi Chen

    2014-01-01

    Full Text Available Multisender authentication codes allow a group of senders to construct an authenticated message for a receiver such that the receiver can verify authenticity of the received message. In this paper, we construct multisender authentication codes with sequential model from symplectic geometry over finite fields, and the parameters and the maximum probabilities of deceptions are also calculated.

  17. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    and users to generate and test models systematically, efficiently and reliably. In this way, development of products and processes can be faster, cheaper and very efficient. In this contribution, as part of the framework a generic modeling template for the systematic derivation of problem specific catalytic...... membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  18. A Cut Cell Method for Simulating Spatial Models of Biochemical Reaction Networks in Arbitrary Geometries.

    Science.gov (United States)

    Strychalski, Wanda; Adalsteinsson, David; Elston, Timothy C

    2010-01-01

    Cells use signaling networks consisting of multiple interacting proteins to respond to changes in their environment. In many situations, such as chemotaxis, spatial and temporal information must be transmitted through the network. Recent computational studies have emphasized the importance of cellular geometry in signal transduction, but have been limited in their ability to accurately represent complex cell morphologies. We present a finite volume method that addresses this problem. Our method uses Cartesian cut cells and is second order in space and time. We use our method to simulate several models of signaling systems in realistic cell morphologies obtained from live cell images and examine the effects of geometry on signal transduction.

  19. Multi-objective optimization of a compact pressurized water nuclear reactor computational model for biological shielding design using innovative materials

    Energy Technology Data Exchange (ETDEWEB)

    Tunes, M.A., E-mail: matheus.tunes@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil); Oliveira, C.R.E. de, E-mail: cassiano@unm.edu [Department of Nuclear Engineering, The University of New Mexico, Farris Engineering Center, 221, Albuquerque, NM 87131-1070 (United States); Schön, C.G., E-mail: schoen@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil)

    2017-03-15

    Highlights: • Use of two n-γ transport codes leads to optimized model of compact nuclear reactor. • It was possible to safely reduce both weight and volume of the biological shielding. • Best configuration obtained by using new composites for both γ and n attenuation. - Abstract: The aim of the present work is to develop a computational model of a compact pressurized water nuclear reactor (PWR) to investigate the use of innovative materials to enhance the biological shielding effectiveness. Two radiation transport codes were used: the first one – MCNP – for the PWR design and the GEM/EVENT to simulate (in a 1D slab) the behavior of several materials and shielding thickness on gamma and neutron radiation. Additionally MATLAB Optimization Toolbox was used to provide new geometric configurations of the slab aiming at reducing the volume and weight of the walls by means of a cost/objective function. It is demonstrated in the reactor model that the dose rate outside biological shielding has been reduced by one order of magnitude for the optimized model compared with the initial configuration. Volume and weight of the shielding walls were also reduced. The results indicated that one-dimensional deterministic code to reach an optimized geometry and test materials, combined with a three-dimensional model of a compact nuclear reactor in a stochastic code, is a fast and efficient procedure to test shielding performance and optimization before the experimental assessment. A major outcome of this research is that composite materials (ECOMASS 2150TU96) may replace (with advantages) traditional shielding materials without jeopardizing the nuclear power plant safety assurance.

  20. A stochastic model for tumor geometry evolution during radiation therapy in cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yifang; Lee, Chi-Guhn [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S 3G8 (Canada); Chan, Timothy C. Y., E-mail: tcychan@mie.utoronto.ca [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, 124-100 College Street Toronto, Ontario M5G 1P5 (Canada); Cho, Young-Bin [Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University of Avenue, Toronto, Ontario M5T 2M9, Canada and Department of Radiation Oncology, University of Toronto, 148-150 College Street, Toronto, Ontario M5S 3S2 (Canada); Islam, Mohammad K. [Department of Radiation Physics, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University of Avenue, Toronto, Ontario M5T 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 148-150 College Street, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, 124-100 College Street, Toronto, Ontario M5G 1P5 (Canada)

    2014-02-15

    Purpose: To develop mathematical models to predict the evolution of tumor geometry in cervical cancer undergoing radiation therapy. Methods: The authors develop two mathematical models to estimate tumor geometry change: a Markov model and an isomorphic shrinkage model. The Markov model describes tumor evolution by investigating the change in state (either tumor or nontumor) of voxels on the tumor surface. It assumes that the evolution follows a Markov process. Transition probabilities are obtained using maximum likelihood estimation and depend on the states of neighboring voxels. The isomorphic shrinkage model describes tumor shrinkage or growth in terms of layers of voxels on the tumor surface, instead of modeling individual voxels. The two proposed models were applied to data from 29 cervical cancer patients treated at Princess Margaret Cancer Centre and then compared to a constant volume approach. Model performance was measured using sensitivity and specificity. Results: The Markov model outperformed both the isomorphic shrinkage and constant volume models in terms of the trade-off between sensitivity (target coverage) and specificity (normal tissue sparing). Generally, the Markov model achieved a few percentage points in improvement in either sensitivity or specificity compared to the other models. The isomorphic shrinkage model was comparable to the Markov approach under certain parameter settings. Convex tumor shapes were easier to predict. Conclusions: By modeling tumor geometry change at the voxel level using a probabilistic model, improvements in target coverage and normal tissue sparing are possible. Our Markov model is flexible and has tunable parameters to adjust model performance to meet a range of criteria. Such a model may support the development of an adaptive paradigm for radiation therapy of cervical cancer.

  1. A stochastic model for tumor geometry evolution during radiation therapy in cervical cancer.

    Science.gov (United States)

    Liu, Yifang; Chan, Timothy C Y; Lee, Chi-Guhn; Cho, Young-Bin; Islam, Mohammad K

    2014-02-01

    To develop mathematical models to predict the evolution of tumor geometry in cervical cancer undergoing radiation therapy. The authors develop two mathematical models to estimate tumor geometry change: a Markov model and an isomorphic shrinkage model. The Markov model describes tumor evolution by investigating the change in state (either tumor or nontumor) of voxels on the tumor surface. It assumes that the evolution follows a Markov process. Transition probabilities are obtained using maximum likelihood estimation and depend on the states of neighboring voxels. The isomorphic shrinkage model describes tumor shrinkage or growth in terms of layers of voxels on the tumor surface, instead of modeling individual voxels. The two proposed models were applied to data from 29 cervical cancer patients treated at Princess Margaret Cancer Centre and then compared to a constant volume approach. Model performance was measured using sensitivity and specificity. The Markov model outperformed both the isomorphic shrinkage and constant volume models in terms of the trade-off between sensitivity (target coverage) and specificity (normal tissue sparing). Generally, the Markov model achieved a few percentage points in improvement in either sensitivity or specificity compared to the other models. The isomorphic shrinkage model was comparable to the Markov approach under certain parameter settings. Convex tumor shapes were easier to predict. By modeling tumor geometry change at the voxel level using a probabilistic model, improvements in target coverage and normal tissue sparing are possible. Our Markov model is flexible and has tunable parameters to adjust model performance to meet a range of criteria. Such a model may support the development of an adaptive paradigm for radiation therapy of cervical cancer.

  2. Reconstruction of the standard model in a generalized differential geometry based on the real structure

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Y. [Dept. of Physics, Boston Univ., MA (United States); Kase, H. [Dept. of Physics, Daido Inst. of Technology, Nagoya (Japan); Morita, K. [Dept. of Physics, Nagoya Univ. (Japan)

    2001-04-01

    The standard model is reconstructed in a generalized differential geometry (GDG) based on the idea of a real structure as proposed by Coquereaux et al. and Connes. The GDG considered in this article is a kind of non-commutative geometry (NCG) on the discrete space that successfully reproduces the Higgs mechanism of the spontaneously broken gauge theory. Here, a GDG is a direct generalization of the differential geometry on an ordinary continuous manifold to the product space of this manifold with a discrete manifold. In a GDG, a one-form basis {chi} on the discrete space is incorporated in addition to the one-form basis dx{sup {mu}} on Minkowski space, rather than {gamma}{sup 5} as in Connes's original work. Although the Lagrangians obtained in this way are the same as those obtained in our previous formulation of GDG, the basic formalism becomes very simply and clear. (orig.)

  3. Non-linear model based control of a propylene polymerization reactor

    NARCIS (Netherlands)

    Al-Haj Ali, M.; Betlem, B.; Weickert, G.; Roffel, B.

    2007-01-01

    A modified generic model controller is developed and tested through a simulation study. The application involves model-based control of a propylene polymerization reactor in which the monomer conversion and melt index of the produced polymer are controlled by manipulating the reactor cooling water

  4. Model description and kinetic parameter analysis of MTBE biodegradation in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A dynamic modeling approach was used to estimate in-situ model parameters, which describe the degradation of methyl tert-butyl ether (MTBE) in a laboratory packed bed reactor. The measured dynamic response of MTBE pulses injected at the reactor's inlet was analyzed by least squares and parameter...

  5. Feasibility Study of Ex Ovo Chick Chorioallantoic Artery Model for Investigating Pulsatile Variation of Arterial Geometry.

    Directory of Open Access Journals (Sweden)

    Kweon-Ho Nam

    Full Text Available Despite considerable research efforts on the relationship between arterial geometry and cardiovascular pathology, information is lacking on the pulsatile geometrical variation caused by arterial distensibility and cardiomotility because of the lack of suitable in vivo experimental models and the methodological difficulties in examining the arterial dynamics. We aimed to investigate the feasibility of using a chick embryo system as an experimental model for basic research on the pulsatile variation of arterial geometry. Optical microscope video images of various arterial shapes in chick chorioallantoic circulation were recorded from different locations and different embryo samples. The high optical transparency of the chorioallantoic membrane (CAM allowed clear observation of tiny vessels and their movements. Systolic and diastolic changes in arterial geometry were visualized by detecting the wall boundaries from binary images. Several to hundreds of microns of wall displacement variations were recognized during a pulsatile cycle. The spatial maps of the wall motion harmonics and magnitude ratio of harmonic components were obtained by analyzing the temporal brightness variation at each pixel in sequential grayscale images using spectral analysis techniques. The local variations in the spectral characteristics of the arterial wall motion were reflected well in the analysis results. In addition, mapping the phase angle of the fundamental frequency identified the regional variations in the wall motion directivity and phase shift. Regional variations in wall motion phase angle and fundamental-to-second harmonic ratio were remarkable near the bifurcation area. In summary, wall motion in various arterial geometry including straight, curved and bifurcated shapes was well observed in the CAM artery model, and their local and cyclic variations could be characterized by Fourier and wavelet transforms of the acquired video images. The CAM artery model with

  6. A Physically—Based Geometry Model for Transport Distance Estimation of Rainfall-Eroded Soil Sediment

    Directory of Open Access Journals (Sweden)

    Qian-Gui Zhang

    2016-01-01

    Full Text Available Estimations of rainfall-induced soil erosion are mostly derived from the weight of sediment measured in natural runoff. The transport distance of eroded soil is important for evaluating landscape evolution but is difficult to estimate, mainly because it cannot be linked directly to the eroded sediment weight. The volume of eroded soil is easier to calculate visually using popular imaging tools, which can aid in estimating the transport distance of eroded soil through geometry relationships. In this study, we present a straightforward geometry model to predict the maximum sediment transport distance incurred by rainfall events of various intensity and duration. In order to verify our geometry prediction model, a series of experiments are reported in the form of a sediment volume. The results show that cumulative rainfall has a linear relationship with the total volume of eroded soil. The geometry model can accurately estimate the maximum transport distance of eroded soil by cumulative rainfall, with a low root-mean-square error (4.7–4.8 and a strong linear correlation (0.74–0.86.

  7. Modeling and simulation of high-pressure industrial autoclave polyethylene reactor

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available High-pressure technology for polyethylene production has been widely used by industries around the world. A good model for the reactor fluid dynamics is essential to set the operating conditions of an autoclave reactor. The high-pressure autoclave reactor model developed in this work was based on a non-isothermal dynamic model, where PID control equations are used to maintain the operation at the unstable steady state. The kinetic mechanism to describe the polymerization rate and molecular weight averages are presented. The model is capable of computing temperature, concentration gradients and polymer characteristics. The model was validated for an existing industrial reactor and data for production of homopolymer polyethylene and has represented well the behavior of the autoclave reactor used in ethylene homopolymerization.

  8. TOBI: A nonlinear model for boiling water reactor stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wehle, F. (Siemens/KWU, Offenbach (West Germany)); Pruitt, D.W.

    1990-06-01

    The magnitude and the divergent nature of the oscillations during the LaSalle unit 2 nuclear power plant even on March 9, 1988, renewed concern about the state of knowledge on boiling water reactor (BWR) instabilities and was followed by many activities, e.g., the Idaho Stability Symposium. For appropriate representation of the physical processes, typical BWR time-domain stability calculations with, e.g., TRAC, RETRAN, or THERMIT require a large number of axial nodes and are very costly with regard to computer time. Linear models are inexpensive, but only valid as long as the parameters have no large deviation from the reference operating conditions. The objective of this work is the development of a physical model that is applicable for stability analysis in the nonlinear regime, but without the disadvantage of numerical problems and excessive computing times. The basic concept of the model TOBI is the integral study of the interaction between the time-dependent single- and two-phase regions. A series of calculations for purely thermal-hydraulic systems and BWRs has shown that TOBI is a convenient tool for stability analysis. Because of the simple but physically realistic modeling, it is very helpful in achieving an improved understanding of the mechanisms that affect BWR stability, and it is inexpensive, with regard to computer time, to perform extensive parameter sensitivity studies, even in the nonlinear regime.

  9. Slab1.0: A three-dimensional model of global subduction zone geometries

    Science.gov (United States)

    Hayes, G.P.; Wald, D.J.; Johnson, R.L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/ d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of average active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested. Copyright 2011 by the American Geophysical Union.

  10. Information Geometry and the Wright-Fisher model of Mathematical Population Genetics

    OpenAIRE

    Tran, Tat Dat

    2012-01-01

    My thesis addresses a systematic approach to stochastic models in population genetics; in particular, the Wright-Fisher models affected only by the random genetic drift. I used various mathematical methods such as Probability, PDE, and Geometry to answer an important question: \\"How do genetic change factors (random genetic drift, selection, mutation, migration, random environment, etc.) affect the behavior of gene frequencies or genotype frequencies in generations?”. In a Hardy-Weinberg ...

  11. (U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carney, Theodore Clayton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fichtl, Christopher Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-05

    The dynamic compaction response of CeO2 is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO2 at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.

  12. Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Uebert G.; Dominguez, Dany S. [Universidade Estadual de Santa Cruz (UESC), Ilh´eus, BA (Brazil). Programa de P´os-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Mazaira, Leorlen Y.R.; Lira, Carlos A.B.O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Hernandez, Carlos R.G., E-mail: uebert.gmoreira@gmail.com, E-mail: dsdominguez@gmail.com, E-mail: leored1984@gmail.com, E-mail: cabol@ufpe.br, E-mail: cgh@instec.cu [Instituto Superior de Tecnologas y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)

  13. An Idealized Direct-Contact Biomass Pyrolysis Reactor Model

    Science.gov (United States)

    Miller, R. S.; Bellan, J.

    1996-01-01

    A numerical study is performed in order to assess the performance of biomass pyrolysis reactors which utilize direct particle-wall thermal conduction heating. An idealized reactor configuration consisting of a flat-plate turbulent boundary layer flow with particle convection along the heated wall and incorporating particle re-entrainment is considered.

  14. Geometry modeling of single track cladding deposited by high power diode laser with rectangular beam spot

    Science.gov (United States)

    Liu, Huaming; Qin, Xunpeng; Huang, Song; Hu, Zeqi; Ni, Mao

    2018-01-01

    This paper presents an investigation on the relationship between the process parameters and geometrical characteristics of the sectional profile for the single track cladding (STC) deposited by High Power Diode Laser (HPDL) with rectangle beam spot (RBS). To obtain the geometry parameters, namely cladding width Wc and height Hc of the sectional profile, a full factorial design (FFD) of experiment was used to conduct the experiments with a total of 27. The pre-placed powder technique has been employed during laser cladding. The influence of the process parameters including laser power, powder thickness and scanning speed on the Wc and Hc was analyzed in detail. A nonlinear fitting model was used to fit the relationship between the process parameters and geometry parameters. And a circular arc was adopted to describe the geometry profile of the cross-section of STC. The above models were confirmed by all the experiments. The results indicated that the geometrical characteristics of the sectional profile of STC can be described as the circular arc, and the other geometry parameters of the sectional profile can be calculated only using Wc and Hc. Meanwhile, the Wc and Hc can be predicted through the process parameters.

  15. Free-energy analysis of spin models on hyperbolic lattice geometries.

    Science.gov (United States)

    Serina, Marcel; Genzor, Jozef; Lee, Yoju; Gendiar, Andrej

    2016-04-01

    We investigate relations between spatial properties of the free energy and the radius of Gaussian curvature of the underlying curved lattice geometries. For this purpose we derive recurrence relations for the analysis of the free energy normalized per lattice site of various multistate spin models in the thermal equilibrium on distinct non-Euclidean surface lattices of the infinite sizes. Whereas the free energy is calculated numerically by means of the corner transfer matrix renormalization group algorithm, the radius of curvature has an analytic expression. Two tasks are considered in this work. First, we search for such a lattice geometry, which minimizes the free energy per site. We conjecture that the only Euclidean flat geometry results in the minimal free energy per site regardless of the spin model. Second, the relations among the free energy, the radius of curvature, and the phase transition temperatures are analyzed. We found out that both the free energy and the phase transition temperature inherit the structure of the lattice geometry and asymptotically approach the profile of the Gaussian radius of curvature. This achievement opens new perspectives in the AdS-CFT correspondence theories.

  16. Evaluation of model parameters for simulating TiO(2) coated UV reactors.

    Science.gov (United States)

    Duran, J E; Taghipour, F; Mohseni, M

    2011-01-01

    A CFD-based model for simulating TiO(2) coated photocatalytic reactors used in drinking water treatment applications was preliminarily evaluated. The model includes aspects of hydrodynamics, mass transfer, UV-radiation field, and surface chemical reactions. Appropriate models for each of the associated physicochemical phenomena were experimentally or analytically examined. Once defined and evaluated, the individual models were integrated into a CFD-based model for simulating photocatalytic reactor performance, which was experimentally evaluated.

  17. Models and Stability Analysis of Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  18. Modeling of a fluidized bed reactor for the ethylene-propylene copolymerization

    Directory of Open Access Journals (Sweden)

    Juan Guillermo Cadavid Estrada

    2010-04-01

    Full Text Available A mathematical model for the ethylene - propylene copolymerization with a Ziegler - Natta catalyst in a gas phase fludized bed reactor is presented. The model includes a two active site kinetic model with spontaneous transfer reactions and site deactivation. Also, it is studied and simulated the growth of a polymeric particle which is exposed to an outside atmosphere (monomers concentrations and temperature that represent the emulsion phase conditions of the reactor. Particle growth model is the basis for the study of the sizes distribution into the reactor. Two phase model of Kunii-Levenspiel is the basis for the modelling and simulation of the fluid bed reactor, the models developed consider two extreme cases for the gas mixed grade in emulsion phase (perfectly mixed and plug flow. The solution of the models includes mass (for the two monomers and energy balances, coupled with the particle growth and residence time distribution models.

  19. Representing Misalignments of the STAR Geometry Model using AgML

    Science.gov (United States)

    Webb, Jason C.; Lauret, Jérôme; Perevotchikov, Victor; Smirnov, Dmitri; Van Buren, Gene

    2017-10-01

    The STAR Heavy Flavor Tracker (HFT) was designed to provide high-precision tracking for the identification of charmed hadron decays in heavy-ion collisions at RHIC. It consists of three independently mounted subsystems, providing four precision measurements along the track trajectory, with the goal of pointing decay daughters back to vertices displaced by less than 100 microns from the primary event vertex. The ultimate efficiency and resolution of the physics analysis will be driven by the quality of the simulation and reconstruction of events in heavy-ion collisions. In particular, it is important that the geometry model properly accounts for the relative misalignments of the HFT subsystems, along with the alignment of the HFT relative to STARs primary tracking detector, the Time Projection Chamber (TPC). The Abstract Geometry Modeling Language (AgML) provides a single description of the STAR geometry, generating both our simulation (GEANT 3) and reconstruction geometries (ROOT). AgML implements an ideal detector model, while misalignments are stored separately in database tables. These have historically been applied at the hit level. Simulated detector hits are projected from their ideal position along the track’s trajectory, until they intersect the misaligned detector volume, where the struck detector element is calculated for hit digitization. This scheme has worked well as hit errors have been negligible compared with the size of sensitive volumes. The precision and complexity of the HFT detector require us to apply misalignments to the detector volumes themselves. In this paper we summarize the extension of the AgML language and support libraries to enable the static misalignment of our reconstruction and simulation geometries, discussing the design goals, limitations and path to full misalignment support in ROOT/VMC-based simulation.

  20. Seismic analysis modeling and seismic response analysis of KALIMER reactor building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Choi, In Kil [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    The 3D finite element models with shell elements are developed to calculate the eigenvalues and seismic responses of KALIMER reactor building with several preliminary wall dimensions. The eigenvalues and weight for these designs are calculated, and the seismic response spectrum analyses using the final dimension of reactor building are performed for both the fixed-base and isolated-base conditions. The stresses and displacements for the seismic spectrum loads of the US NRC RG 1.60 are calculated in the several points of reactor building. The stress levels of the isolated condition are reduced to a third times of the non-isolated one. For obtaining the time history nodal responses of reactor building, two lumped-mass beam models are developed. The one is composed of one stick for whole reactor building, the other is composed of two sticks for the reactor building and the reactor support structure. From the eigenvalue analyses for two models, the eigenvalue results do not effect by the offset of center of gravity of KALIMER reactor building. But the rotary inertia of the lumped models of reactor building generates some additional rotating modes with low frequency, while it does not exist in 3D shell model. The time history responses for the non-isolated and isolated reactor buildings are calculated under the 1940 El Centro (NS) earthquake and an artificial time history, generated using the seismic spectrum curve of US NRC RG1.60. The analysis results show that the horizontal accelerations of the isolated building are dramatically decreased to one-tenths of the non-isolated one, but the vertical responses are increased by about 40%. By the way the horizontal isolation of KALIMER reactor building is very effective method to reduce the acceleration responses. (author). 6 refs., 25 figs., 24 tabs.

  1. Modeling wave propagation in realistic heart geometries using the phase-field method

    Science.gov (United States)

    Fenton, Flavio H.; Cherry, Elizabeth M.; Karma, Alain; Rappel, Wouter-Jan

    2005-03-01

    We present a novel algorithm for modeling electrical wave propagation in anatomical models of the heart. The algorithm uses a phase-field approach that represents the boundaries between the heart muscle and the surrounding medium as a spatially diffuse interface of finite thickness. The chief advantage of this method is to automatically handle the boundary conditions of the voltage in complex geometries without the need to track the location of these boundaries explicitly. The algorithm is shown to converge accurately in nontrivial test geometries with no-flux (zero normal current) boundary conditions as the width of the diffuse interface becomes small compared to the width of the cardiac action potential wavefront. Moreover, the method is illustrated for anatomically realistic models of isolated rabbit and canine ventricles as well as human atria.

  2. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  3. Probabilistic biomechanical finite element simulations: whole-model classical hypothesis testing based on upcrossing geometry

    Directory of Open Access Journals (Sweden)

    Todd C. Pataky

    2016-11-01

    Full Text Available Statistical analyses of biomechanical finite element (FE simulations are frequently conducted on scalar metrics extracted from anatomically homologous regions, like maximum von Mises stresses from demarcated bone areas. The advantages of this approach are numerical tabulability and statistical simplicity, but disadvantages include region demarcation subjectivity, spatial resolution reduction, and results interpretation complexity when attempting to mentally map tabulated results to original anatomy. This study proposes a method which abandons the two aforementioned advantages to overcome these three limitations. The method is inspired by parametric random field theory (RFT, but instead uses a non-parametric analogue to RFT which permits flexible model-wide statistical analyses through non-parametrically constructed probability densities regarding volumetric upcrossing geometry. We illustrate method fundamentals using basic 1D and 2D models, then use a public model of hip cartilage compression to highlight how the concepts can extend to practical biomechanical modeling. The ultimate whole-volume results are easy to interpret, and for constant model geometry the method is simple to implement. Moreover, our analyses demonstrate that the method can yield biomechanical insights which are difficult to infer from single simulations or tabulated multi-simulation results. Generalizability to non-constant geometry including subject-specific anatomy is discussed.

  4. Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach

    Energy Technology Data Exchange (ETDEWEB)

    Zaidabadinejad, Majid; Ansarifar, Gholam Reza [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2017-11-15

    In nuclear reactor imbalance of axial power distribution induces xenon oscillations. These fluctuations must be maintained bounded within allowable limits. Otherwise, the nuclear power plant could become unstable. Therefore, bounded these oscillations is considered to be a restriction for the load following operation. Also, in order to design the nuclear reactor control systems, poisons concentrations, especially xenon must be accessible. But, physical measurement of these parameters is impossible. In this paper, for the first time, in order to estimate the axial xenon oscillations and ensures these oscillations are kept bounded within allowable limits during load-following operation, a robust observer based nonlinear control based on multipoint kinetics reactor model for pressurized-water nuclear reactors is presented. The reactor core is simulated based on the multi-point nuclear reactor model (neutronic and thermal-hydraulic). Simulation results are presented to demonstrate the effectiveness of the proposed observer based controller for the load-following operation.

  5. LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry

    Directory of Open Access Journals (Sweden)

    Raj Bali

    2013-01-01

    Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.

  6. Fast pyrolysis in a novel wire-mesh reactor: decomposition of pine wood and model compounds

    NARCIS (Netherlands)

    Hoekstra, E.; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.; Hogendoorn, Kees

    2012-01-01

    In fast pyrolysis, biomass decomposition processes are followed by vapor phase reactions. Experimental results were obtained in a unique wire-mesh reactor using pine wood, KCl impregnated pine wood and several model compounds (cellulose, xylan, lignin, levoglucosan, glucose). The wire-mesh reactor

  7. PENGEMBANGAN PERANGKAT AJAR MODEL CORE PENDEKATAN METAKOGNITIF UNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH GEOMETRI KELAS VIII

    Directory of Open Access Journals (Sweden)

    Daroinis Sa’adah

    2017-02-01

    Full Text Available The objectives of this study are to develop teaching aids, to test the validity and practically teaching aids, and to test the effectiveness of learning process using CORE (Connecting, Organizing, Reflecting, and Extending model with metacognitive approach to improve the ability in Geometri problem solving. This research and development design is adapted from Plomp model by using several phases: (1 preliminary investigation; (2 design; (3 realization/construction; (4 test, evaluation and revision. This study developed some teaching aids; a part of syllabus, lesson plan, students book, students’ work sheet, and test of problem solving ability. The subject of the try out is eighth graders of MTs NU Nurul Huda Kudus. The research data to test the validity, practically, and effectiveness are collected by: (1 validation sheet; (2 observation sheet; (3 problem solving test. The results of research showed that development teaching aids using CORE model with metacognitive approach for Geometry material of VIII grade is valid and practical, and learning CORE model with metacognitive approach for Geometry material of VIII grade is effective.

  8. Balanced Exploration and Exploitation Model search for efficient epipolar geometry estimation.

    Science.gov (United States)

    Goshen, Liran; Shimshoni, Ilan

    2008-07-01

    The estimation of the epipolar geometry is especially difficult when the putative correspondences include a low percentage of inlier correspondences and/or a large subset of the inliers is consistent with a degenerate configuration of the epipolar geometry that is totally incorrect. This work presents the Balanced Exploration and Exploitation Model Search (BEEM) algorithm that works very well especially for these difficult scenes. The algorithm handles these two problems in a unified manner. It includes the following main features: (1) Balanced use of three search techniques: global random exploration, local exploration near the current best solution and local exploitation to improve the quality of the model. (2) Exploits available prior information to accelerate the search process. (3) Uses the best found model to guide the search process, escape from degenerate models and to define an efficient stopping criterion. (4) Presents a simple and efficient method to estimate the epipolar geometry from two SIFT correspondences. (5) Uses the locality-sensitive hashing (LSH) approximate nearest neighbor algorithm for fast putative correspondences generation. The resulting algorithm when tested on real images with or without degenerate configurations gives quality estimations and achieves significant speedups compared to the state of the art algorithms.

  9. Decision model for evaluating reactor disposition of excess plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, T.

    1995-02-01

    The US Department of Energy is currently considering a range of technologies for disposition of excess weapon plutonium. Use of plutonium fuel in fission reactors to generate spent fuel is one class of technology options. This report describes the inputs and results of decision analyses conducted to evaluate four evolutionary/advanced and three existing fission reactor designs for plutonium disposition. The evaluation incorporates multiple objectives or decision criteria, and accounts for uncertainty. The purpose of the study is to identify important and discriminating decision criteria, and to identify combinations of value judgments and assumptions that tend to favor one reactor design over another.

  10. The Van Hiele Model of Geometric Thought and possible contributions to the dynamic geometry

    Directory of Open Access Journals (Sweden)

    ALVES, G. S.

    2010-06-01

    Full Text Available This work presents the main ideas discussed in an essay written in a Computers and Education class in a Master Course at PPGI-UFRJ. We discuss the need to emphasize the topics related to euclidian geometry in primary and secondary schools. The Van Hiele model of the development of geometric thought is presented as a guideline for learning and as an instrument for the evaluation of students´ geometric abilities. Based on Van Hiele ideas and on tests created by the Fundão/UFRJ Project staff, a quantitative study on the level of geomteric thought was performed with students of a public technical high school in Rio de Janeiro. As conclusions, an exposition on possible contributions of dynamic geometry to the Van Hiele model is made.

  11. A Tightly Coupled Particle-Fluid Model for DNA-Laden Flows in Complex Microscale Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D; Miller, G H; Colella, P; Graves, D T; Martin, D F; Schwartz, P O

    2004-11-18

    We present a stable and convergent method for the computation of flows of DNA-laden fluids in microchannels with complex geometry. The numerical strategy combines a ball-rod model representation for polymers tightly coupled with a projection method for incompressible viscous flow. We use Cartesian grid embedded boundary methods to discretize the fluid equations in the presence of complex domain boundaries. A sample calculation is presented showing flow through a packed array microchannel in 2D.

  12. Radiation Shielding for Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.T.

    1999-10-01

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor

  13. A computational approach to modeling cellular-scale blood flow in complex geometry

    Science.gov (United States)

    Balogh, Peter; Bagchi, Prosenjit

    2017-04-01

    We present a computational methodology for modeling cellular-scale blood flow in arbitrary and highly complex geometry. Our approach is based on immersed-boundary methods, which allow modeling flows in arbitrary geometry while resolving the large deformation and dynamics of every blood cell with high fidelity. The present methodology seamlessly integrates different modeling components dealing with stationary rigid boundaries of complex shape, moving rigid bodies, and highly deformable interfaces governed by nonlinear elasticity. Thus it enables us to simulate 'whole' blood suspensions flowing through physiologically realistic microvascular networks that are characterized by multiple bifurcating and merging vessels, as well as geometrically complex lab-on-chip devices. The focus of the present work is on the development of a versatile numerical technique that is able to consider deformable cells and rigid bodies flowing in three-dimensional arbitrarily complex geometries over a diverse range of scenarios. After describing the methodology, a series of validation studies are presented against analytical theory, experimental data, and previous numerical results. Then, the capability of the methodology is demonstrated by simulating flows of deformable blood cells and heterogeneous cell suspensions in both physiologically realistic microvascular networks and geometrically intricate microfluidic devices. It is shown that the methodology can predict several complex microhemodynamic phenomena observed in vascular networks and microfluidic devices. The present methodology is robust and versatile, and has the potential to scale up to very large microvascular networks at organ levels.

  14. A model of microbial growth in a plug flow reactor with wall attachment.

    Science.gov (United States)

    Ballyk, M; Smith, H

    1999-05-01

    A mathematical model of microbial growth for limiting nutrient in a plug flow reactor which accounts for the colonization of the reactor wall surface by the microbes is formulated and studied analytically and numerically. It can be viewed as a model of the large intestine or of the fouling of a commercial bio-reactor or pipe flow. Two steady state regimes are identified, namely, the complete washout of the microbes from the reactor and the successful colonization of both the wall and bulk fluid by the microbes. Only one steady state is stable for any particular set of parameter values. Sharp and explicit conditions are given for the stability of each, and for the long term persistence of the bacteria in the reactor.

  15. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  16. The Dynamic Anaerobic Reactor & Integrated Energy System (DARIES) model: model development, validation, and sensitivity analysis.

    Science.gov (United States)

    Brouwer, A F; Grimberg, S J; Powers, S E

    2012-12-01

    The Dynamic Anaerobic Reactor & Integrated Energy System (DARIES) model has been developed as a biogas and electricity production model of a dairy farm anaerobic digester system. DARIES, which incorporates the Anaerobic Digester Model No. 1 (ADM1) and simulations of both combined heat and power (CHP) and digester heating systems, may be run in either completely mixed or plug flow reactor configurations. DARIES biogas predictions were shown to be statistically coincident with measured data from eighteen full-scale dairy operations in the northeastern United States. DARIES biogas predictions were more accurate than predictions made by the U.S. AgSTAR model FarmWare 3.4. DARIES electricity production predictions were verified against data collected by the NYSERDA DG/CHP Integrated Data System. Preliminary sensitivity analysis demonstrated that DARIES output was most sensitive to influent flow rate, chemical oxygen demand (COD), and biodegradability, and somewhat sensitive to hydraulic retention time and digester temperature.

  17. An Analytical Model of Multiarc Sprag Clutch considering Geometry and Internal Interaction during Engagement

    Directory of Open Access Journals (Sweden)

    Chuang Huang

    2017-01-01

    Full Text Available A new multiarc sprag clutch model considering geometry and internal interaction during engagement is proposed in this paper. To increase the accuracy of the model, an improved model of geometric deformation coordination is presented to describe the basic geometrical quantities after rotation of the sprag. Then, based on this model, a novel nonlinear iteration method focusing on the varied contact radius is proposed to compute the normal contact force and show a good agreement with the FEM model. In addition, the alternate friction model considering stationary and rate-dependency friction is formulated and applied in the contacts of both the inner race and outer race. The proposed model is verified by comparison with other published results and experimental results. In subsequent analysis, the new model fully reveals the dynamical behaviors of the multiarc clutch during preload engagement under torque excitation; therefore, it will be useful for the performance analysis and dynamic design of multiarc sprag clutch.

  18. Aspect Ratio of Receiver Node Geometry based Indoor WLAN Propagation Model

    Science.gov (United States)

    Naik, Udaykumar; Bapat, Vishram N.

    2017-08-01

    This paper presents validation of indoor wireless local area network (WLAN) propagation model for varying rectangular receiver node geometry. The rectangular client node configuration is a standard node arrangement in computer laboratories of academic institutes and research organizations. The model assists to install network nodes for the better signal coverage. The proposed model is backed by wide ranging real time received signal strength measurements at 2.4 GHz. The shadow fading component of signal propagation under realistic indoor environment is modelled with the dependency on varying aspect ratio of the client node geometry. The developed new model is useful in predicting indoor path loss for IEEE 802.11b/g WLAN. The new model provides better performance in comparison to well known International Telecommunication Union and free space propagation models. It is shown that the proposed model is simple and can be a useful tool for indoor WLAN node deployment planning and quick method for the best utilisation of the office space.

  19. Nanodosimetric Simulation of Direct Ion-Induced DNA Damage Using Different Chromatin Geometry Models.

    Science.gov (United States)

    Henthorn, N T; Warmenhoven, J W; Sotiropoulos, M; Mackay, R I; Kirkby, K J; Merchant, M J

    2017-12-01

    Monte Carlo based simulation has proven useful in investigating the effect of proton-induced DNA damage and the processes through which this damage occurs. Clustering of ionizations within a small volume can be related to DNA damage through the principles of nanodosimetry. For simulation, it is standard to construct a small volume of water and determine spatial clusters. More recently, realistic DNA geometries have been used, tracking energy depositions within DNA backbone volumes. Traditionally a chromatin fiber is built within the simulation and identically replicated throughout a cell nucleus, representing the cell in interphase. However, the in vivo geometry of the chromatin fiber is still unknown within the literature, with many proposed models. In this work, the Geant4-DNA toolkit was used to build three chromatin models: the solenoid, zig-zag and cross-linked geometries. All fibers were built to the same chromatin density of 4.2 nucleosomes/11 nm. The fibers were then irradiated with protons (LET 5-80 keV/μm) or alpha particles (LET 63-226 keV/μm). Nanodosimetric parameters were scored for each fiber after each LET and used as a comparator among the models. Statistically significant differences were observed in the double-strand break backbone size distributions among the models, although nonsignificant differences were noted among the nanodosimetric parameters. From the data presented in this article, we conclude that selection of the solenoid, zig-zag or cross-linked chromatin model does not significantly affect the calculated nanodosimetric parameters. This allows for a simulation-based cell model to make use of any of these chromatin models for the scoring of direct ion-induced DNA damage.

  20. Adaptive control using a hybrid-neural model: application to a polymerisation reactor

    Directory of Open Access Journals (Sweden)

    Cubillos F.

    2001-01-01

    Full Text Available This work presents the use of a hybrid-neural model for predictive control of a plug flow polymerisation reactor. The hybrid-neural model (HNM is based on fundamental conservation laws associated with a neural network (NN used to model the uncertain parameters. By simulations, the performance of this approach was studied for a peroxide-initiated styrene tubular reactor. The HNM was synthesised for a CSTR reactor with a radial basis function neural net (RBFN used to estimate the reaction rates recursively. The adaptive HNM was incorporated in two model predictive control strategies, a direct synthesis scheme and an optimum steady state scheme. Tests for servo and regulator control showed excellent behaviour following different setpoint variations, and rejecting perturbations. The good generalisation and training capacities of hybrid models, associated with the simplicity and robustness characteristics of the MPC formulations, make an attractive combination for the control of a polymerisation reactor.

  1. Elements for measuring the complexity of 3D structural models: Connectivity and geometry

    Science.gov (United States)

    Pellerin, Jeanne; Caumon, Guillaume; Julio, Charline; Mejia-Herrera, Pablo; Botella, Arnaud

    2015-03-01

    The reliable modeling of three-dimensional complex geological structures can have a major impact on forecasting and managing natural resources and on predicting seismic and geomechanical hazards. However, the qualification of a model as structurally complex is often qualitative and subjective making the comparison of the capabilities and performances of various geomodeling methods or software difficult. In this paper, we consider the notion of structural complexity from a geometrical point of view and argue that it can be characterized using general metrics computed on three-dimensional sealed structural models. We propose global and local measures of the connectivity and of the geometry of the model components and show how they permit to classify nine 3D synthetic structural models. Depending on the complexity elements favored, the classification varies. The models we introduce could be used as benchmark models for geomodeling algorithms.

  2. A study of reactor vessel integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hoon [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Kim, Jong Kyung; Shin, Chang Ho; Seo, Bo Kyun [Hanyang Univ., Seoul (Korea, Republic of)

    1999-02-15

    The fast neutron fluence at the Reactor Pressure Vessel(RPV) of KNGR designed for 60 years lifetime was calculated by full-scope Monte Carlo simulation for reactor vessel integrity assessment. KNGR core geometry was modeled on a three-dimensional representation of the one-sixteenth of the reactor in-vessel component. Each fuel assemblies were modeled explicitly, and each fuel pins were axially divided into 5 segments. The maximum flux of 4.3 x 10{sup 10} neutrons/cm{sup 2}. sec at the RPV was obtained by tallying neutrons crossing the beltline of inner surface of the RPV.

  3. Unified tractable model for downlink MIMO cellular networks using stochastic geometry

    KAUST Repository

    Afify, Laila H.

    2016-07-26

    Several research efforts are invested to develop stochastic geometry models for cellular networks with multiple antenna transmission and reception (MIMO). On one hand, there are models that target abstract outage probability and ergodic rate for simplicity. On the other hand, there are models that sacrifice simplicity to target more tangible performance metrics such as the error probability. Both types of models are completely disjoint in terms of the analytic steps to obtain the performance measures, which makes it challenging to conduct studies that account for different performance metrics. This paper unifies both techniques and proposes a unified stochastic-geometry based mathematical paradigm to account for error probability, outage probability, and ergodic rates in MIMO cellular networks. The proposed model is also unified in terms of the antenna configurations and leads to simpler error probability analysis compared to existing state-of-the-art models. The core part of the analysis is based on abstracting unnecessary information conveyed within the interfering signals by assuming Gaussian signaling. To this end, the accuracy of the proposed framework is verified against state-of-the-art models as well as system level simulations. We provide via this unified study insights on network design by reflecting system parameters effect on different performance metrics. © 2016 IEEE.

  4. Geometry Modeling and Grid Generation for Computational Aerodynamic Simulations Around Iced Airfoils and Wings

    Science.gov (United States)

    Choo, Yung K.; Slater, John W.; Vickerman, Mary B.; VanZante, Judith F.; Wadel, Mary F. (Technical Monitor)

    2002-01-01

    Issues associated with analysis of 'icing effects' on airfoil and wing performances are discussed, along with accomplishments and efforts to overcome difficulties with ice. Because of infinite variations of ice shapes and their high degree of complexity, computational 'icing effects' studies using available software tools must address many difficulties in geometry acquisition and modeling, grid generation, and flow simulation. The value of each technology component needs to be weighed from the perspective of the entire analysis process, from geometry to flow simulation. Even though CFD codes are yet to be validated for flows over iced airfoils and wings, numerical simulation, when considered together with wind tunnel tests, can provide valuable insights into 'icing effects' and advance our understanding of the relationship between ice characteristics and their effects on performance degradation.

  5. Efficient incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation models

    NARCIS (Netherlands)

    Neal, J. C.; Odini, Nicolas; trigg, mark; Freer, Jim; garcia-pintado, javier; mason, david; Wood, Melissa; Bates, P. D.

    2015-01-01

    This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger

  6. Challenges in reactive transport modeling for prediction of geometry evolution in fractured carbonate rocks

    Science.gov (United States)

    Peters, C. A.; Deng, H.; Guo, B.; Fitts, J. P.

    2014-12-01

    Carbonate minerals are common in sedimentary rocks including in formations that serve as caprock seals. These formations are intended to stop migration of injected fluids, such as CO2 in the context of geologic carbon sequestration, ensuring permanent isolation from the atmosphere. Fractures in caprocks may allow injected CO2 and pressurized brine to escape. If the caprock contains substantial amounts of carbonates, flow of acidified fluids may cause substantial mineral dissolution which would increase the leakiness over time. Our research seeks to understand this process with particular attention to the evolution of fracture geometry and the implications for flow permeability. Our work combines high-pressure core flow experiments, x-ray imaging methods, reactive transport modeling, and computational fluid dynamics simulations. We have found that fracture permeability can increase substantially as a result of calcite dissolution. However, the extent of permeability increase is affected by complex alterations in fracture geometry. Newly-formed surface roughness and microporosity diminishes flow relative to what would be predicted by conventional practical models such as the local cubic law model. In contrast, channelization could lead to higher-than-expected flow rates because such fractures would stabilize open flow paths against geomechanical closure forces. Modeling these processes requires fine-scale 2D, if not 3D, reactive transport flow models that simulate not only the increase in fracture aperture but also the evolution in fracture geometry. Development of computationally-tractable reactive transport models that accurately predict reaction-induced changes in fracture permeability is an ongoing research priority in our lab.

  7. Accurate geometry scalable complementary metal oxide semiconductor modelling of low-power 90 nm amplifier circuits

    Directory of Open Access Journals (Sweden)

    Apratim Roy

    2014-05-01

    Full Text Available This paper proposes a technique to accurately estimate radio frequency behaviour of low-power 90 nm amplifier circuits with geometry scalable discrete complementary metal oxide semiconductor (CMOS modelling. Rather than characterising individual elements, the scheme is able to predict gain, noise and reflection loss of low-noise amplifier (LNA architectures made with bias, active and passive components. It reduces number of model parameters by formulating dependent functions in symmetric distributed modelling and shows that simple fitting factors can account for extraneous (interconnect effects in LNA structure. Equivalent-circuit model equations based on physical structure and describing layout parasites are developed for major amplifier elements like metal–insulator–metal (MIM capacitor, spiral symmetric inductor, polysilicon (PS resistor and bulk RF transistor. The models are geometry scalable with respect to feature dimensions, i.e. MIM/PS width and length, outer-dimension/turns of planar inductor and channel-width/fingers of active device. Results obtained with the CMOS models are compared against measured literature data for two 1.2 V amplifier circuits where prediction accuracy for RF parameters (S(21, noise figure, S(11, S(22 lies within the range of 92–99%.

  8. Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.

    1999-02-24

    A regional groundwater flow model encompassing approximately 100 mi{sup 2} surrounding the C, K. L. and P reactor areas has been developed. The Reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department.

  9. Modelling of Mass Transfer Phenomena in Chemical and Biochemical Reactor Systems using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina

    the velocity and pressure distributions in a fluid. CFD also enables the modelling of several fluids simultaneously, e.g. gas bubbles in a liquid, as well as the presence of turbulence and dissolved chemicals in a fluid, and many other phenomena. This makes CFD an appreciated tool for studying flow structures......, mixing, and other mass transfer phenomena in chemical and biochemical reactor systems. In this project, four selected case studies are investigated in order to explore the capabilities of CFD. The selected cases are a 1 ml stirred microbioreactor, an 8 ml magnetically stirred reactor, a Rushton impeller...... stirred pilot plant reactor, and a rotating bed reactor filled with catalytic porous material. A selection of the simulated phenomena includes the velocities and turbulent quantities in the reactors, as well as the distribution of the gas and liquid phases in them. Mixing times, oxygen transfer rates...

  10. Modeling Ultraviolet (UV) Light Emitting Diode (LED) Energy Propagation in Reactor Vessels

    Science.gov (United States)

    2014-03-27

    concern is through Advanced Oxidation Processes (AOP). One such process uses ultraviolet (UV) energy to decompose hydrogen peroxide ( H2O2 ) to create...MODELING ULTRAVIOLET (UV) LIGHT EMITTING DIODE (LED) ENERGY PROPAGATION IN REACTOR VESSELS THESIS...

  11. Modelling solid-convective flash pyrolysis of straw and wood in the Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Bech, Niels; Larsen, Morten Boberg; Jensen, Peter Arendt

    2009-01-01

    Less than a handful of solid-convective pyrolysis reactors for the production of liquid fuel from biomass have been presented and for only a single reactor a detailed mathematical model has been presented. In this article we present a predictive mathematical model of the pyrolysis process...... in the Pyrolysis Centrifuge Reactor, a novel solid-convective flash pyrolysis reactor. The model relies on the original concept for ablative pyrolysis of particles being pyrolysed through the formation of an intermediate liquid compound which is further degraded to form liquid organics, char, and gas. To describe...... the kinetics of the pyrolysis reactions the Broido-Shafizadeh scheme is employed with cellulose parameters for wood and modified parameters for straw to include the catalytic effect of its alkali-containing ash content. The model describes the presented experimental results adequately for engineering purposes...

  12. IDENTIFICATION OF AN IDEAL REACTOR MODEL IN A SECONDARY COMBUSTION CHAMBER

    Science.gov (United States)

    Tracer analysis was applied to a secondary combustion chamber of a rotary kiln incinerator simulator to develop a computationally inexpensive networked ideal reactor model and allow for the later incorporation of detailed reaction mechanisms. Tracer data from sulfur dioxide trace...

  13. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: Modeling and experimental comparison

    DEFF Research Database (Denmark)

    Wang, Rongchang; Terada, Akihiko; Lackner, Susanne

    2009-01-01

    A comparative study was conducted on the start-up performance and biofilm development in two different biofilm reactors with aim of obtaining partial nitritation. The reactors were both operated under oxygen limited conditions, but differed in geometry. While substrates (O-2, NH3) co...... results showed that the counter-diffusion biofilms developed faster and attained a larger maximum biofilm thickness than the co-diffusion biofilms. Under oxygen limited condition (DO

  14. Efficient incorporation of channel cross-section geometry uncertainty into regional and global scale flood models

    Science.gov (United States)

    Neal, Jeffrey; Odoni, Nicholas; Trigg, Mark; Freer, Jim; Garcia-Pintado, Javier; Mason, David; Wood, Melissa; Bates, Paul

    2015-04-01

    This work explores the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of flood wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization and that can then be estimated through calibration or data assimilation. We first outline the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK and Niger Inner Delta, Mali are also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning's coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was greater by 0.015-0.02 than the more complex channel shape and this erroneously slowed wave propagation times through the 30 km reach by 1.4 hours (17%). Even a poor estimate of channel shape resulted in more physically realistic calibration of channel Manning's coefficient and channel depth. On the River Niger, where the river depth and shape are unknown, we calibrate depth, shape and friction using ICEsat data for a number of reaches. Including the

  15. 3D CAD model of the subcritical nuclear reactor of IPN; Modelo CAD 3D del reactor nuclear subcritico del IPN

    Energy Technology Data Exchange (ETDEWEB)

    Pahuamba V, F. de J.; Delfin L, A.; Gomez T, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Ibarra R, G.; Del Valle G, E.; Sanchez R, A., E-mail: narehc@hotmail.com [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN, Edif. 9, Unidad Profesional Adolfo Lopez Mateos, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico)

    2016-09-15

    The three-dimensional (3D) CAD model of the subcritical reactor Chicago model 9000 of Instituto Politecnico Nacional (IPN) allows obtaining a 3D view with the dimensions of each of its components, such as: natural uranium cylindrical rods, fuel elements, hexagonal reactor core arrangement, cylindrical stainless steel tank containing the core, fuel element support grids and reactor water cleaning system. As a starting point for the development of the model, the Chicago model 9000 subcritical reactor manual provided by the manufacturer was used, the measurement and verification of the components to adapt the geometric, physical and mechanical characteristics was carried out and materials standards were used to obtain a design that allows to elaborate a new manual according to the specifications. In addition, the 3D models of the building of the Advanced Physics Laboratory, neutron generator, cobalt source and the corridors connecting to the subcritical reactor facility were developed, allowing an animated ride, developed by computer-aided design software. The manual provided by the company Nuclear Chicago, dates from the year 1959 and presents diverse deviations in the design and dimensions of the reactor components. The model developed; in addition to supporting the development of the new manual represents a learning tool to visualize the reactor components. (Author)

  16. Structure analysis of a reactor pressure vessel by two- and three-dimensional models. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, H.; Mayr, M.

    1982-03-01

    This paper investigates the reactor pressure vessel of a 1300 MW pressurised water reactor. In order to determine the stresses and deformations of the vessel, two- and three-dimensional finite element models are used which represent the real structure with different degrees of accuracy. The results achieved by these different models are compared for the case of the transient called ''Start up of the nuclear power plant''. 5 refs.

  17. Human eye analytical and mesh-geometry models for ophthalmic dosimetry using MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Angelocci, Lucas V.; Fonseca, Gabriel P.; Yoriyaz, Helio, E-mail: hyoriyaz@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Eye tumors can be treated with brachytherapy using Co-60 plaques, I-125 seeds, among others materials. The human eye has regions particularly vulnerable to ionizing radiation (e.g. crystalline) and dosimetry for this region must be taken carefully. A mathematical model was proposed in the past [1] for the eye anatomy to be used in Monte Carlo simulations to account for dose distribution in ophthalmic brachytherapy. The model includes the description for internal structures of the eye that were not treated in previous works. The aim of this present work was to develop a new eye model based on the Mesh geometries of the MCNP6 code. The methodology utilized the ABAQUS/CAE (Simulia 3DS) software to build the Mesh geometry. For this work, an ophthalmic applicator containing up to 24 model Amersham 6711 I-125 seeds (Oncoseed) was used, positioned in contact with a generic tumor defined analytically inside the eye. The absorbed dose in eye structures like cornea, sclera, choroid, retina, vitreous body, lens, optical nerve and optical nerve wall were calculated using both models: analytical and MESH. (author)

  18. LipidWrapper: an algorithm for generating large-scale membrane models of arbitrary geometry.

    Science.gov (United States)

    Durrant, Jacob D; Amaro, Rommie E

    2014-07-01

    As ever larger and more complex biological systems are modeled in silico, approximating physiological lipid bilayers with simple planar models becomes increasingly unrealistic. In order to build accurate large-scale models of subcellular environments, models of lipid membranes with carefully considered, biologically relevant curvature will be essential. In the current work, we present a multi-scale utility called LipidWrapper capable of creating curved membrane models with geometries derived from various sources, both experimental and theoretical. To demonstrate its utility, we use LipidWrapper to examine an important mechanism of influenza virulence. A copy of the program can be downloaded free of charge under the terms of the open-source FreeBSD License from http://nbcr.ucsd.edu/lipidwrapper. LipidWrapper has been tested on all major computer operating systems.

  19. Numerical algebraic geometry for model selection and its application to the life sciences

    KAUST Repository

    Gross, Elizabeth

    2016-10-12

    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology.

  20. Analytic solutions for seismic travel time and ray path geometry through simple velocity models.

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, Sanford

    2007-12-01

    The geometry of ray paths through realistic Earth models can be extremely complex due to the vertical and lateral heterogeneity of the velocity distribution within the models. Calculation of high fidelity ray paths and travel times through these models generally involves sophisticated algorithms that require significant assumptions and approximations. To test such algorithms it is desirable to have available analytic solutions for the geometry and travel time of rays through simpler velocity distributions against which the more complex algorithms can be compared. Also, in situations where computational performance requirements prohibit implementation of full 3D algorithms, it may be necessary to accept the accuracy limitations of analytic solutions in order to compute solutions that satisfy those requirements. Analytic solutions are described for the geometry and travel time of infinite frequency rays through radially symmetric 1D Earth models characterized by an inner sphere where the velocity distribution is given by the function V (r) = A-Br{sup 2}, optionally surrounded by some number of spherical shells of constant velocity. The mathematical basis of the calculations is described, sample calculations are presented, and results are compared to the Taup Toolkit of Crotwell et al. (1999). These solutions are useful for evaluating the fidelity of sophisticated 3D travel time calculators and in situations where performance requirements preclude the use of more computationally intensive calculators. It should be noted that most of the solutions presented are only quasi-analytic. Exact, closed form equations are derived but computation of solutions to specific problems generally require application of numerical integration or root finding techniques, which, while approximations, can be calculated to very high accuracy. Tolerances are set in the numerical algorithms such that computed travel time accuracies are better than 1 microsecond.

  1. Modeling thalamocortical cell: impact of ca channel distribution and cell geometry on firing pattern.

    Science.gov (United States)

    Zomorrodi, Reza; Kröger, Helmut; Timofeev, Igor

    2008-01-01

    The influence of calcium channel distribution and geometry of the thalamocortical cell upon its tonic firing and the low threshold spike (LTS) generation was studied in a 3-compartment model, which represents soma, proximal and distal dendrites as well as in multi-compartment model using the morphology of a real reconstructed neuron. Using an uniform distribution of Ca(2+) channels, we determined the minimal number of low threshold voltage-activated calcium channels and their permeability required for the onset of LTS in response to a hyperpolarizing current pulse. In the 3-compartment model, we found that the channel distribution influences the firing pattern only in the range of 3% below the threshold value of total T-channel density. In the multi-compartmental model, the LTS could be generated by only 64% of unequally distributed T-channels compared to the minimal number of equally distributed T-channels. For a given channel density and injected current, the tonic firing frequency was found to be inversely proportional to the size of the cell. However, when the Ca(2+) channel density was elevated in soma or proximal dendrites, then the amplitude of LTS response and burst spike frequencies were determined by the ratio of total to threshold number of T-channels in the cell for a specific geometry.

  2. Predicting the optimal geometry of microneedles and their array for dermal vaccination using a computational model.

    Science.gov (United States)

    Römgens, Anne M; Bader, Dan L; Bouwstra, Joke A; Oomens, Cees W J

    2016-11-01

    Microneedle arrays have been developed to deliver a range of biomolecules including vaccines into the skin. These microneedles have been designed with a wide range of geometries and arrangements within an array. However, little is known about the effect of the geometry on the potency of the induced immune response. The aim of this study was to develop a computational model to predict the optimal design of the microneedles and their arrangement within an array. The three-dimensional finite element model described the diffusion and kinetics in the skin following antigen delivery with a microneedle array. The results revealed an optimum distance between microneedles based on the number of activated antigen presenting cells, which was assumed to be related to the induced immune response. This optimum depends on the delivered dose. In addition, the microneedle length affects the number of cells that will be involved in either the epidermis or dermis. By contrast, the radius at the base of the microneedle and release rate only minimally influenced the number of cells that were activated. The model revealed the importance of various geometric parameters to enhance the induced immune response. The model can be developed further to determine the optimal design of an array by adjusting its various parameters to a specific situation.

  3. GEOMETRY, HEAT REMOVAL AND KINETICS SCOPING MODELS FOR HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B

    2007-11-16

    It is recognized that detailed models of proposed hydrogen storage systems are essential to gain insight into the complex processes occurring during the charging and discharging processes. Such insight is an invaluable asset for both assessing the viability of a particular system and/or for improving its design. The detailed models, however, require time to develop and run. Clearly, it is much more efficient to begin a modeling effort with a good system design and to progress from that point. To facilitate this approach, it is useful to have simplified models that can quickly estimate optimal loading and discharge kinetics, effective hydrogen capacities, system dimensions and heat removal requirements. Parameters obtained from these models can then be input to the detailed models to obtain an accurate assessment of system performance that includes more complete integration of the physical processes. This report describes three scoping models that assess preliminary system design prior to invoking a more detailed finite element analysis. The three models address the kinetics, the scaling and heat removal parameters of the system, respectively. The kinetics model is used to evaluate the effect of temperature and hydrogen pressure on the loading and discharge kinetics. As part of the kinetics calculations, the model also determines the mass of stored hydrogen per mass of hydride (in a particular reference form). As such, the model can determine the optimal loading and discharge rates for a particular hydride and the maximum achievable loading (over an infinite period of time). The kinetics model developed with the Mathcad{reg_sign} solver, runs in a mater of seconds and can quickly be used to identify the optimal temperature and pressure for either the loading or discharge processes. The geometry scoping model is used to calculate the size of the system, the optimal placement of heat transfer elements, and the gravimetric and volumetric capacities for a particular

  4. Update on Small Modular Reactors Dynamic System Modeling Tool: Web Application

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Batteh, John J [Modelon Corporation (Sweden); Tiller, Michael M. [Xogeny Corporation (United States)

    2015-01-01

    Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individual component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.

  5. Modeling of ethylbenzene dehydrogenation kinetics process taking into account deactivation of catalyst bed of the reactor

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2017-01-01

    Full Text Available Styrene synthesis process occurring in a two-stage continuous adiabatic reactor is a complex chemical engineering system. It is characterized by indeterminacy, nonstationarity and occurs in permanent uncontrolled disturbances. Therefore, the task of developing the predictive control system of the main product concentration of the dehydrogenation reaction - styrene to maintain this value within a predetermined range throughout the period of operation is important. This solution is impossible without the development of the process model on the basis of the kinetic revised scheme, taking into account the drop of the reactor catalytic bed activity due to coke formation on the surface. The article justifies and proposes: the drop changes dependence of catalyst bed activity as a time of reactor block operation function and improved model of chemical reactions kinetics. The synthesized mathematical model of the process is a system of ordinary differential equations and allows you: to calculate the concentration profiles of reaction mixture components during the passage of the charge through the adiabatic reactor stage, to determine the contact gas composition at the outlet of the reactor stages throughout the cycle of catalytic system, taking into account temperature changes and drop of the catalyst bed activity. The compensation of the decreased catalyst bed activity is carried out by raising the temperature in the reactor block for the duration of the operation. The estimation of the values of chemical reactions rate constants, as well as the calculation and analysis of the main and by-products concentrations of dehydrogenation reactions at the outlet of the reactor plant is curried out. Simulation results show that the change of temperature of the reactor, carried out by the exponential law considering deactivation of the catalyst bed allows the yield in a given range of technological regulations throughout the operation cycle of the reactor block.

  6. Modelling of a falling sludge bed reactor using AQUASIM | Ristow ...

    African Journals Online (AJOL)

    The hydrodynamic processes taking place in the FSBR have been simulated using a system of mixed reactors connected by water flow and mass flux streams. Trends obtained from varying the hydraulic retention time, the sludge recycle ratio, and the feed COD: SO4 2- ratio allow for identification of the critical biological ...

  7. Modelling of a recycling sludge bed reactor using AQUASIM: reprint ...

    African Journals Online (AJOL)

    The recycling sludge bed reactor (RSBR) allows for increased solids retention time, resulting in greater substrate conversion for all particulate degradation and biological reactions. The purpose of the RSBR is to hydrolyse primary settled sewage (PSS). Soluble products are then used for the biological treatment of acid mine ...

  8. FBR for Catalytic Propylene Polymerization: Controlled Mixing and Reactor Modeling

    NARCIS (Netherlands)

    Meier, G.B.; Weickert, G.; van Swaaij, Willibrordus Petrus Maria

    2002-01-01

    Particle mixing and segregation have been studied in a small-scale fluidized-bed reactor (FBR) under pressure. The solids mixing is relatively faster than the residence time of catalyst particles in the case of a polymerization process, but smaller particles accumulate in the upper zone. Semibatch

  9. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow

    2002-05-01

    The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV

  10. Differential geometry measures of nonlinearity for filtering with nonlinear dynamic and linear measurement models

    Science.gov (United States)

    La Scala, Barbara F.; Mallick, Mahendra; Arulampalam, Sanjeev

    2007-09-01

    In our previous work, we presented an algorithm to quantify the degree of nonlinearity of nonlinear filtering problems with linear dynamic models and nonlinear measurement models. A quantitative measure of the degree of nonlinearity was formulated using differential geometry measures of nonlinearity, the parameter-effects curvature and intrinsic curvature. We presented numerical results for a number of practical nonlinear filtering problems of interest such as the bearing-only filtering, ground moving target indicator filtering, and video filtering problems. In this paper, we present an algorithm to compute the degree of nonlinearity of a nonlinear filtering problem with a nonlinear dynamic model and a linear measurement model. This situation arises for the bearing-only filtering problem with modified polar coordinates and log polar coordinates. We present numerical results using simulated data.

  11. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary

  12. Noncommutative geometry and the BV formalism: Application to a matrix model

    Science.gov (United States)

    Iseppi, Roberta A.; van Suijlekom, Walter D.

    2017-10-01

    We analyze a U(2) -matrix model derived from a finite spectral triple. By applying the BV formalism, we find a general solution to the classical master equation. To describe the BV formalism in the context of noncommutative geometry, we define two finite spectral triples: the BV spectral triple and the BV auxiliary spectral triple. These are constructed from the gauge fields, ghost fields and anti-fields that enter the BV construction. We show that their fermionic actions add up precisely to the BV action. This approach allows for a geometric description of the ghost fields and their properties in terms of the BV spectral triple.

  13. Phases and geometry of the N=1 A_2 quiver gauge theory and matrix models

    OpenAIRE

    Casero, Roberto; Trincherini, Enrico

    2003-01-01

    We study the phases and geometry of the N=1 A_2 quiver gauge theory using matrix models and a generalized Konishi anomaly. We consider the theory both in the Coulomb and Higgs phases. Solving the anomaly equations, we find that a meromorphic one-form sigma(z)dz is naturally defined on the curve Sigma associated to the theory. Using the Dijkgraaf-Vafa conjecture, we evaluate the effective low-energy superpotential and demonstrate that its equations of motion can be translated into a geometric ...

  14. Modelling Plane Geometry: the connection between Geometrical Visualization and Algebraic Demonstration

    Science.gov (United States)

    Pereira, L. R.; Jardim, D. F.; da Silva, J. M.

    2017-12-01

    The teaching and learning of Mathematics contents have been challenging along the history of the education, both for the teacher, in his dedicated task of teaching, as for the student, in his arduous and constant task of learning. One of the topics that are most discussed in these contents is the difference between the concepts of proof and demonstration. This work presents an interesting discussion about such concepts considering the use of the mathematical modeling approach for teaching, applied to some examples developed in the classroom with a group of students enrolled in the discipline of Geometry of the Mathematics curse of UFVJM.

  15. Interactive Modeling of Architectural Freeform Structures - Combining Geometry with Fabrication and Statics

    KAUST Repository

    Jiang, Caigui

    2014-09-01

    This paper builds on recent progress in computing with geometric constraints, which is particularly relevant to architectural geometry. Not only do various kinds of meshes with additional properties (like planar faces, or with equilibrium forces in their edges) become available for interactive geometric modeling, but so do other arrangements of geometric primitives, like honeycomb structures. The latter constitute an important class of geometric objects, with relations to “Lobel” meshes, and to freeform polyhedral patterns. Such patterns are particularly interesting and pose research problems which go beyond what is known for meshes, e.g. with regard to their computing, their flexibility, and the assessment of their fairness.

  16. Literature Reviews on Modeling Internal Geometry of Textile Composites and Rate-Independent Continuum Damage

    Science.gov (United States)

    Su-Yuen, Hsu

    2011-01-01

    Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.

  17. Validation and analysis of forward osmosis CFD model in complex 3D geometries

    DEFF Research Database (Denmark)

    Gruber, Mathias F.; Gruber, Mathias F.; Johnson, Carl J.

    2012-01-01

    In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment...... separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer. © 2012 by the authors; licensee MDPI, Basel, Switzerland....

  18. System modeling for the advanced thermionic initiative single cell thermionic space nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.H.; Lewis, B.R.; Klein, A.C. (Department of Nuclear Engineering, Oregon State University, Radiation Center, C116, Corvallis, Oregon 97331-5902 (United States)); Pawlowski, R.A. (Battelle Pacific Northwest Laboratories, Richland, Washington 99352 (United States))

    1993-01-15

    Incore thermionic space reactor design concepts which operate in a nominal power output range of 20 to 40 kWe are described. Details of the neutronics, thermionic, shielding, and heat rejection performance are presented. Two different designs, ATI-Driven and ATI-Driverless, are considered. Comparison of the core overall performance of these two configurations are described. The comparison of these two cores includes the overall conversion efficiency, reactor mass, shield mass, and heat rejection mass. An overall system design has been developed to model the advanced incore thermionic energy conversion based nuclear reactor systems for space applications in this power range.

  19. A model for a countercurrent gas—solid—solid trickle flow reactor for equilibrium reactions. The methanol synthesis

    NARCIS (Netherlands)

    Westerterp, K.R.; Kuczynski, M.

    1987-01-01

    The theoretical background for a novel, countercurrent gas—solid—solid trickle flow reactor for equilibrium gas reactions is presented. A one-dimensional, steady-state reactor model is developed. The influence of the various process parameters on the reactor performance is discussed. The physical

  20. Analisis Kemampuan Pemecahan Masalah Geometri dan Karakter Siswa SMP Kelas VIII Melalui Pembelajaran Model 4K

    Directory of Open Access Journals (Sweden)

    Muhammad 'Azmi Nuha

    2014-11-01

    Full Text Available Tujuan penelitian ini adalah untuk mengetahui deskripsi kemampuan pemecahan masalah geometri, karakter disiplin, dan karakter toleransi pada siswa SMP kelas 8. Pengambilan sampel dalam peneltian ini menggunakan teknik purposive sampling. Dari hasil kemampuan awal yaitu hasil tes materi lingkaran kemudian diranking dan dibagi atas 3 kelompok kelas yaitu siswa berprestasi tinggi, sedang dan rendah. Seting pembelajaran dalam penelitian ini menggunakan Model 4K. Model 4K adalah model pembelajaran yang bercirikan karakter, kinerja, kreatif, dan konservatif. Hasil penelitian menyebutkan bahwa kemampuan memahami permasalahan subjek penelitian pada pembelajaran Model 4K tinggi. Kemampuan merencanakan penyelesaian dari keenam subjek penelitian memperlihatkan sebuah tingkatan yang menyatakan bahwa siswa yang prestasinya lebih tinggi dalam hal membuat perencanaan lebih baik daripada siswa yang prestasinya lebih rendah. Hasil penelitian pada karakter menyebutkan bahwa strategi pembelajaran keteladanan, habituasi dan penguatan, serta berpikir reflektif dapat memberikan karakter disiplin dan toleransi yang tinggi pada subjek penelitian.The purpose of this study was to determine the description of the geometry problem solving skills, disciplined character, and the character of tolerance in junior high school students’ grade 8. The samples in this research using purposive sampling technique. From the results of the initial capabilities are the result of the test material circle then be ranked and divided into three groups, namely the class of outstanding students of high, medium and low. Setting learning in this study using the model 4K. Model 4K is a learning model that is characterized by character, performance, creative and conservative. The study says that the ability to understand the problems the subject of research on learning Model 4K high. The ability to plan the completion of the six subjects showed a level which states that higher student

  1. Effects of the purkinje system and cardiac geometry on biventricular pacing: a model study.

    Science.gov (United States)

    Romero, Daniel; Sebastian, Rafael; Bijnens, Bart H; Zimmerman, Viviana; Boyle, Patrick M; Vigmond, Edward J; Frangi, Alejandro F

    2010-04-01

    Heart failure leads to gross cardiac structural changes. While cardiac resynchronization therapy (CRT) is a recognized treatment for restoring synchronous activation, it is not clear how changes in cardiac shape and size affect the electrical pacing therapy. This study used a human heart computer model which incorporated anatomical structures such as myofiber orientation and a Purkinje system (PS) to study how pacing affected failing hearts. The PS was modeled as a tree structure that reproduced its retrograde activation feature. In addition to a normal geometry, two cardiomyopathies were modeled: dilatation and hypertrophy. A biventricular pacing protocol was tested in the context of atrio-ventricular block. The contribution of the PS was examined by removing it, as well as by increasing endocardial conductivity. Results showed that retrograde conduction into the PS was a determining factor for achieving intraventricular synchrony. Omission of the PS led to an overestimate of the degree of electrical dyssynchrony while assessing CRT. The activation patterns for the three geometries showed local changes in the order of activation of the lateral wall in response to the same pacing strategy. These factors should be carefully considered when determining lead placement and optimizing device parameters in clinical practice.

  2. Vehicle Sketch Pad: a Parametric Geometry Modeler for Conceptual Aircraft Design

    Science.gov (United States)

    Hahn, Andrew S.

    2010-01-01

    The conceptual aircraft designer is faced with a dilemma, how to strike the best balance between productivity and fidelity? Historically, handbook methods have required only the coarsest of geometric parameterizations in order to perform analysis. Increasingly, there has been a drive to upgrade analysis methods, but these require considerably more precise and detailed geometry. Attempts have been made to use computer-aided design packages to fill this void, but their cost and steep learning curve have made them unwieldy at best. Vehicle Sketch Pad (VSP) has been developed over several years to better fill this void. While no substitute for the full feature set of computer-aided design packages, VSP allows even novices to quickly become proficient in defining three-dimensional, watertight aircraft geometries that are adequate for producing multi-disciplinary meta-models for higher order analysis methods, wind tunnel and display models, as well as a starting point for animation models. This paper will give an overview of the development and future course of VSP.

  3. Modelling of vapour explosion in stratified geometrie; Modelisation de l'explosion de vapeur en geometrie stratifiee

    Energy Technology Data Exchange (ETDEWEB)

    Picchi, St

    1999-07-07

    When a hot liquid comes into contact with a colder volatile liquid, one can obtain in some conditions an explosive vaporization, told vapour explosion, whose consequences can be important on neighbouring structures. This explosion needs the intimate mixing and the fine fragmentation between the two liquids. In a stratified vapour explosion, these two liquids are initially superposed and separated by a vapor film. A triggering of the explosion can induce a propagation of this along the film. A study of experimental results and existent models has allowed to retain the following main points: - the explosion propagation is due to a pressure wave propagating through the medium; - the mixing is due to the development of Kelvin-Helmholtz instabilities induced by the shear velocity between the two liquids behind the pressure wave. The presence of the vapour in the volatile liquid explains experimental propagation velocity and the velocity difference between the two fluids at the pressure wave crossing. A first model has been proposed by Brayer in 1994 in order to describe the fragmentation and the mixing of the two fluids. Results of the author do not show explosion propagation. We have therefore built a new mixing-fragmentation model based on the atomization phenomenon that develops itself during the pressure wave crossing. We have also taken into account the transient aspect of the heat transfer between fuel drops and the volatile liquid, and elaborated a model of transient heat transfer. These two models have been introduced in a multi-components, thermal, hydraulic code, MC3D. Results of calculation show a qualitative and quantitative agreement with experimental results and confirm basic options of the model. (author)

  4. Analysis of Fluid Flow and Heat Transfer Model for the Pebble Bed High Temperature Gas Cooled Reactor

    OpenAIRE

    S. Yamoah; E.H.K. Akaho; Nana G.A. Ayensu; M. Asamoah

    2012-01-01

    The pebble bed type high temperature gas cooled nuclear reactor is a promising option for next generation reactor technology and has the potential to provide high efficiency and cost effective electricity generation. The reactor unit heat transfer poses a challenge due to the complexity associated with the thermalflow design. Therefore to reliably simulate the flow and heat transport of the pebble bed modular reactor necessitates a heat transfer model that deals with radiation as well as ther...

  5. IMPROVING TBO OF FREIGHT CAR BOGIES. GEOMETRY MODEL OF CENTER PAD WEAR

    Directory of Open Access Journals (Sweden)

    L. A. Muradian

    2017-02-01

    Full Text Available Purpose. The scientific work is aimed to: 1 analyze the technical condition of freight cars and technological methods used in the repair; 2 identify possible ways to improve resource of freight car bogies; 3 develop a mathematical model to describe the wear geometry of the original surface of bogie center pad at the corresponding life cycle of a freight car. Methodology. In order to solve the problem complex of increasing TBO of freight car bogies the methods for the synthesis, analysis and systematic approach were used. In addition, the use of mathematical modeling unit, solid state physics, the theory of friction and wear of solids. Findings. The analysis of the technical condition of freight cars has shown that up to 15% of the faults falls on the bogies. A separate element of the repaired bogie is a bolster. At this the center pad is recovered most often. The center pad wear is uneven and the technological methods used for the repair, do not allow providing uniform wear due to which there is a need in premature repairs. One of the ways to improve the center pad resource during repair is the application of welding or sputtering deposition, but with providing discrete strength and durability in the longitudinal and transverse directions of the car axis, respectively. In order to establish the boundaries of the distribution of renewable material along the center pad diameter it was considered the fatigue wear process in cooperation with center plate and described the geometry of the surface of the center pad wear. Originality. Technical condition of freight car bogies according to wear criterion was analyzed in the paper. It is shown that the dynamics of bogie faults has a positive character. In addition, a significant place among the repaired parts takes the bolster, and a special loaded place is the center pad. To describe the geometry of wear for the first time a mathematical model for determining the initial surface of the center pad in the

  6. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics.

    Science.gov (United States)

    Kalyuzhnyi, Sergey V; Fedorovich, Vyacheslav V; Lens, Piet

    2006-03-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using one-dimensional (with regard to reactor height) equations. A universal description of both the fluid hydrodynamics and granular sludge dynamics was elaborated by applying known physical laws and empirical relations derived from experimental observations. In addition, the developed model includes: (1) multiple-reaction stoichiometry, (2) microbial growth kinetics, (3) equilibrium chemistry in the liquid phase, (4) major solid-liquid-gas interactions, and (5) material balances for dissolved and solid components along the reactor height. The integrated model has been validated with a set of experimental data on the start-up, operation performance, sludge dynamics, and solute intermediate concentration profiles of a UASB reactor treating cheese whey [Yan et al. (1989) Biol Wastes 27:289-305; Yan et al. (1993) Biotechnol Bioeng 41:700-706]. A sensitivity analysis of the model, performed with regard to the seed sludge characteristics and the key model parameters, showed that the output of the dispersed plug flow model was most influenced by the sludge settleability characteristics and the growth properties (especially mu(m)) of both protein-degrading bacteria and acetotrophic methanogens.

  7. CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zimeng; Liu, Jing; Dai, Yuancan; Dong, Weiyang [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Zhang, Shicheng, E-mail: zhangsc@fudan.edu.cn [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Chen, Jianmin, E-mail: jmchen@fudan.edu.cn [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A CFD model is developed for a UV-LED based photocatalytic deodorization reactor. Black-Right-Pointing-Pointer Radiation field model and Langmuir-Hinshelwood kinetics are integrated in the model. Black-Right-Pointing-Pointer The model can predict the pollutant concentration profile and the reactor performance. Black-Right-Pointing-Pointer LED distance is predicted to be a critical parameter in photocatalytic reactor design. - Abstract: This paper presents a model study of a UV light-emitting-diode (UV-LED) based photocatalytic odor abatement process. It integrated computational fluid dynamics (CFD) modeling of the gas flow in the reactor with LED-array radiation field calculation and Langmuir-Hinshelwood reaction kinetics. It was applied to simulate the photocatalytic degradation of dimethyl sulfide (DMS) in a UV-LED reactor based on experimentally determined chemical kinetic parameters. A non-linear power law relating reaction rate to irradiation intensity was adopted. The model could predict the steady state DMS concentration profiles by calculating the advection, diffusion and Langmuir-Hinshelwood reaction kinetics. By affecting the radiation intensity and uniformity, the position of the LED array relative to the catalyst appeared to be a critical parameter determining DMS removal efficiency. Too small distances might yield low quantum efficiency and consequently poor abatement performance. This study provided an example of LED-based photocatalytic process modeling and gave insights into the optimization of light source design for photocatalytic applications.

  8. Multiscale Modeling of a Packed Bed Chemical Looping Reforming (PBCLR Reactor

    Directory of Open Access Journals (Sweden)

    Arpit Singhal

    2017-12-01

    Full Text Available Packed bed reactors are broadly used in industry and are under consideration for novel reactor concepts such as packed bed chemical looping reforming (PBCLR. Mass and heat transfer limitations in and around the particles in packed bed reactors strongly affect the behavior of these units. This study employs a multiscale modeling methodology to simulate a PBCLR reactor. Specifically, small-scale particle-resolved direct numerical simulation is utilized to improve large-scale mass transfer models for use in an industrial scale 1D model. Existing intra-particle mass transfer models perform well for simple first order reactions, but several model enhancements were required to model the more complex steam methane reforming reaction system. Three specific aspects required enhanced modeling: the generation of additional gas volume by the reforming reactions, the lack of clear reaction orders in the equilibrium reactions, and the diffusion of multiple reactant species into the particle. Large-scale simulations of the PBCLR reactor with the enhanced 1D model showed that the highly reactive Ni-based catalyst/oxygen carrier employed allows for the use of large particle sizes and high gas flowrates, offering potential for process intensification.

  9. Development and validation of mass transfer models for the design of agitated gas-liquid reactors

    OpenAIRE

    Laakkonen, Marko

    2006-01-01

    Mechanical agitation is used commonly in gas-liquid reactors to improve the homogeneity of dispersion and to enhance the transfer of reacting compounds between gas and liquid. The design and scaleup of gas-liquid reactors is problematic due to non-ideal mixing, heat and mass transfer limitations. In this work, phenomenological models were developed and validated against experiments to investigate local gas-liquid mass transfer in agitated tanks. The aim was to develop more generalized and rel...

  10. PREMOR: a point reactor exposure model computer code for survey analysis of power plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1979-10-01

    The PREMOR computer code was written to exploit a simple, two-group point nuclear reactor power plant model for survey analysis. Up to thirteen actinides, fourteen fission products, and one lumped absorber nuclide density are followed over a reactor history. Successive feed batches are accounted for with provision for from one to twenty batches resident. The effect of exposure of each of the batches to the same neutron flux is determined.

  11. Modeling of natural circulation for the inherent safety analysis of sodium cooled fast reactors

    Directory of Open Access Journals (Sweden)

    A.S. Bochkarev

    2016-12-01

    Full Text Available The paper discusses a set of developed integrated one-dimensional models of thermal-hydraulic processes that contribute to the removal of decay heat in a BN-type reactor. The assumptions and constraints involved in one-dimensional equations of unsteady natural convection in closed circuits have been analyzed. It has been shown that the calculated values of the primary circuit sodium temperature and flow rate in conditions with a loss of heat sink and with a forced circulation of the primary coolant are in a reasonable agreement with the results of a benchmark experiment in the PHENIX reactor. The model makes it possible to assess the effects general thermophysical and geometrical parameters and the selected technology have on the efficiency of passive heat removal by the natural coolant convection in the reactor tank and in the emergency heat removal system's intermediate circuit and by the heat transfer through the reactor vessel. The model is a part of an integrated algorithm used to assess the inherent safety level of advanced fast neutron reactors and is intended primarily to develop, at the early conceptual design stage, the recommendations and requirements with respect to the reactor equipment parameters leading to an increase in the reactor inherent safety. The model will be used to identify the set of quantitative thermal-hydraulic criteria that have an effect on the dynamics of emergency transients leading to a potential loss of integrity by the reactor safety barriers, and to formulate such limits for the defined criteria as would cause, if observed, the requirement for the safety barrier integrity to be met under any combination of the accident initiating events.

  12. Experimental Validation and Model Verification for a Novel Geometry ICPC Solar Collector

    DEFF Research Database (Denmark)

    Perers, Bengt; Duff, William S.; Daosukho, Jirachote

    A novel geometry ICPC solar collector was developed at the University of Chicago and Colorado State University. A ray tracing model has been designed to investigate the optical performance of both the horizontal and vertical fin versions of this collector. Solar radiation is modeled as discrete...... to the desired incident angle of the sun’s rays, performance of the novel ICPC solar collector at various specified angles along the transverse and longitudinal evacuated tube directions were experimentally determined. To validate the ray tracing model, transverse and longitudinal performance predictions...... at the corresponding specified incident angles are compared to the Sandia results. A 100 m2 336 Novel ICPC evacuated tube solar collector array has been in continuous operation at a demonstration project in Sacramento California since 1998. Data from the initial operation of the array are used to further validate...

  13. 3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art.

    Science.gov (United States)

    González-Aguilera, Diego; Muñoz-Nieto, Angel; Gómez-Lahoz, Javier; Herrero-Pascual, Jesus; Gutierrez-Alonso, Gabriel

    2009-01-01

    3D digital surveying and modelling of cave geometry represents a relevant approach for research, management and preservation of our cultural and geological legacy. In this paper, a multi-sensor approach based on a terrestrial laser scanner, a high-resolution digital camera and a total station is presented. Two emblematic caves of Paleolithic human occupation and situated in northern Spain, "Las Caldas" and "Peña de Candamo", have been chosen to put in practise this approach. As a result, an integral and multi-scalable 3D model is generated which may allow other scientists, pre-historians, geologists…, to work on two different levels, integrating different Paleolithic Art datasets: (1) a basic level based on the accurate and metric support provided by the laser scanner; and (2) a advanced level using the range and image-based modelling.

  14. Information geometry and population genetics the mathematical structure of the Wright-Fisher model

    CERN Document Server

    Hofrichter, Julian; Tran, Tat Dat

    2017-01-01

    The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.

  15. 3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art

    Directory of Open Access Journals (Sweden)

    Diego González-Aguilera

    2009-02-01

    Full Text Available 3D digital surveying and modelling of cave geometry represents a relevant approach for research, management and preservation of our cultural and geological legacy. In this paper, a multi-sensor approach based on a terrestrial laser scanner, a high-resolution digital camera and a total station is presented. Two emblematic caves of Paleolithic human occupation and situated in northern Spain, “Las Caldas” and “Peña de Candamo”, have been chosen to put in practise this approach. As a result, an integral and multi-scalable 3D model is generated which may allow other scientists, pre-historians, geologists…, to work on two different levels, integrating different Paleolithic Art datasets: (1 a basic level based on the accurate and metric support provided by the laser scanner; and (2 a advanced level using the range and image-based modelling.

  16. The Wasserstein geometry of nonlinear σ models and the Hamilton-Perelman Ricci flow

    Science.gov (United States)

    Carfora, Mauro

    Nonlinear sigma models are quantum field theories describing, in the large deviation sense, random fluctuations of harmonic maps between a Riemann surface and a Riemannian manifold. Via their formal renormalization group analysis, they provide a framework for possible generalizations of the Hamilton-Perelman Ricci flow. By exploiting the heat kernel embedding introduced by Gigli and Mantegazza, we show that the Wasserstein geometry of the space of probability measures over Riemannian metric measure spaces provides a natural setting for discussing the relation between nonlinear sigma models and Ricci flow theory. In particular, we analyze the embedding of Ricci flow into a heat kernel renormalization group flow for dilatonic nonlinear sigma models, and characterize a non-trivial generalization of the Hamilton-Perelman version of the Ricci flow. We discuss in detail the monotonicity and gradient flow properties of this extended flow.

  17. Programming While Construction of Engineering 3D Models of Complex Geometry

    Science.gov (United States)

    Kheyfets, A. L.

    2017-11-01

    The capabilities of geometrically accurate computational 3D models construction with the use of programming are presented. The construction of models of an architectural arch and a glo-boid worm gear is considered as an example. The models are designed in the AutoCAD pack-age. Three programs of construction are given. The first program is for designing a multi-section architectural arch. The control of the arch’s geometry by impacting its main parameters is shown. The second program is for designing and studying the working surface of a globoid gear’s worm. The article shows how to make the animation for this surface’s formation. The third program is for formation of a worm gear cavity surface. The cavity formation dynamics is studied. The programs are written in the AutoLisp programming language. The program texts are provided.

  18. Fabrication of nuclear ship reactor MRX model and study on inspection and maintenance of components

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Yoshiyuki [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Nakazawa, Toshio; Kusunoki, Tsuyoshi; Takahashi, Hiroki; Yoritsune, Tsutomu

    1997-10-01

    The MRX (Marine Reactor X) is an integral type small reactor adopting passive safety systems. As for an integral type reactor, primary system components are installed in the reactor vessel. It is therefor important to establish the appropriate procedure for construction, inspection and maintenance, dismauntling, etc., for all components in the reactor vessel as well as in the reactor containment, because inspection space is limited. To study these subjects, a one-fifth model of the MRX was fabricated and operation capabilities were studied. As a result of studies, the following results are obtained. (1) Manufacturing and installing problems of the reactor pressure vessel, the containment vessel and internal components are basically not abserved. (2) Heat transfer tube structures of the steam generator and the heat exchangers of emergency decay heat removal system and containment water cooler were not seen of any problem for fabrication. However, due consideration is required in the detailed design of supports of heat transfer tubes. (3) Further studies should be needed for designs of flange penetrations and leak countermeasures for pipes instrument cables. (4) Arrangements of equipments in the containment should be taken in consideration in detail because the space is narrow. (5) Further discussion is required for installation methods of instruments and cables. (author)

  19. Hex-dominant mesh generation for basin modeling with complex geometry

    Science.gov (United States)

    Ran, Longmin; Borouchaki, Houman; Benali, Abdallah; Bennis, Chakib

    2010-06-01

    Basin modeling aims to reconstruct the geological history of a basin and its oil system by means of fluid flow simulations, which is done by using a series of meshes describing basin geometry at each geological instant. These meshes are preferably hexahedral rather than tetrahedral in virtue for better numerical results. The basin can simply consist of geological layers delimited one from another by horizons. It can be geometrically complex with one or more faults interrupting the layers, which is barely studied but increasingly demanded. This paper exposes an automatic method which generates hex-dominant meshes for basin modeling with complex geometry. Firstly, based on their triangulations at the latest instant, 3D surface grids are generated with identical topology for all the horizons, and with some quadrilaterals being split across the diagonals to adapt to fault traces. Afterwards, all instants are iterated to generate corresponding meshes by firstly applying horizon and fault displacement on the mesh generated for precedent instant; the method then connects the bottom and top surface grids of the new layer along corresponding nodes, and splits certain cells along faults when necessary. Simulations have been carried out on generated meshes with satisfactory results.

  20. A system dynamics model for tritium cycle of pulsed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolong; Nie, Baojie [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Chen, Dehong, E-mail: dehong.chen@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-05-15

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  1. Nonlinear Dynamic Modeling and Simulation of a Passively Cooled Small Modular Reactor

    Science.gov (United States)

    Arda, Samet Egemen

    A nonlinear dynamic model for a passively cooled small modular reactor (SMR) is developed. The nuclear steam supply system (NSSS) model includes representations for reactor core, steam generator, pressurizer, hot leg riser and downcomer. The reactor core is modeled with the combination of: (1) neutronics, using point kinetics equations for reactor power and a single combined neutron group, and (2) thermal-hydraulics, describing the heat transfer from fuel to coolant by an overall heat transfer resistance and single-phase natural circulation. For the helical-coil once-through steam generator, a single tube depiction with time-varying boundaries and three regions, i.e., subcooled, boiling, and superheated, is adopted. The pressurizer model is developed based upon the conservation of fluid mass, volume, and energy. Hot leg riser and downcomer are treated as first-order lags. The NSSS model is incorporated with a turbine model which permits observing the power with given steam flow, pressure, and enthalpy as input. The overall nonlinear system is implemented in the Simulink dynamic environment. Simulations for typical perturbations, e.g., control rod withdrawal and increase in steam demand, are run. A detailed analysis of the results show that the steady-state values for full power are in good agreement with design data and the model is capable of predicting the dynamics of the SMR. Finally, steady-state control programs for reactor power and pressurizer pressure are also implemented and their effect on the important system variables are discussed.

  2. Regional groundwater flow model for C, K. L. and P reactor areas, Savannah River Site, Aiken, SC

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.

    2000-02-11

    A regional groundwater flow model encompassing approximately 100 mi2 surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data up through Spring 1999. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.

  3. An approach to model reactor core nodalization for deterministic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my [Nuclear Energy Department, Regulatory Economics & Planning Division, Tenaga Nasional Berhad (Malaysia); Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my [Prototypes & Plant Development Center, Malaysian Nuclear Agency (Malaysia); Roslan, Ridha, E-mail: ridha@aelb.gov.my; Sadri, Abd Aziz [Nuclear Installation Divisions, Atomic Energy Licensing Board (Malaysia); Farid, Mohd Fairus Abd [Reactor Technology Center, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  4. Modeling, simulation, and analysis of a reactor system for the generation of white liquor of a pulp and paper industry

    Directory of Open Access Journals (Sweden)

    Ricardo Andreola

    2011-02-01

    Full Text Available An industrial system for the production of white liquor of a pulp and paper industry, Klabin Paraná Papéis, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by the evaporation and reaction, in addition to variations in the volumetric flow of lime mud across the reactors due to the composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction was nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurred more pronouncedly in the slaker reactor than in the final causticizing reactors; nevertheless, the lime mud flow remained nearly constant across the reactors.

  5. Mathematical Modeling of Weld Bead Geometry, Quality, and Productivity for Stainless Steel Claddings Deposited by FCAW

    Science.gov (United States)

    Gomes, J. H. F.; Costa, S. C.; Paiva, A. P.; Balestrassi, P. P.

    2012-09-01

    In recent years, industrial settings are seeing a rise in the use of stainless steel claddings. The anti-corrosive surfaces are made from low cost materials such as carbon steel or low alloy steels. To ensure the final quality of claddings, however, it is important to know how the welding parameters affect the process's outcome. Beads should be defect free and deposited with the desired geometry, with efficiency, and with a minimal waste of material. The objective of this study then is to analyze how the flux-cored arc welding (FCAW) parameters influence geometry, productivity, and the surface quality of the stainless steel claddings. It examines AISI 1020 carbon steel cladded with 316L stainless steel. Geometry was analyzed in terms of bead width, penetration, reinforcement, and dilution. Productivity was analyzed according to deposition rate and process yield, and surface quality according to surface appearance and slag formation. The FCAW parameters chosen included the wire feed rate, voltage, welding speed, and contact-tip-workpiece distance. To analyze the parameters' influences, mathematical models were developed based on response surface methodology. The results show that all parameters were significant. The degrees of importance among them varied according to the responses of interest. What also proved to be significant was the interaction between parameters. It was found that the combined effect of two parameters significantly affected a response; even when taken individually, the two might produce little effect. Finally, the development of Pareto frontiers confirmed the existence of conflicts of interest in this process, suggesting the application of multi-objective optimization techniques to the sequence of this study.

  6. Modelling dynamic processes in a nuclear reactor by state change modal method

    Science.gov (United States)

    Avvakumov, A. V.; Strizhov, V. F.; Vabishchevich, P. N.; Vasilev, A. O.

    2017-12-01

    Modelling of dynamic processes in nuclear reactors is carried out, mainly, using the multigroup neutron diffusion approximation. The basic model includes a multidimensional set of coupled parabolic equations and ordinary differential equations. Dynamic processes are modelled by a successive change of the reactor states. It is considered that the transition from one state to another occurs promptly. In the modal method the approximate solution is represented as eigenfunction expansion. The numerical-analytical method is based on the use of dominant time-eigenvalues of a group diffusion model taking into account delayed neutrons.

  7. Critical review of the reactor-safety study radiological health effects model. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, D.W.; Evans, J.S.; Jacob, N.; Kase, K.R.; Maletskos, C.J.; Robertson, J.B.; Smith, D.G.

    1983-03-01

    This review of the radiological health effects models originally presented in the Reactor Safety Study (RSS) and currently used by the US Nuclear Regulatory Commission (NRC) was undertaken to assist the NRC in determining whether or not to revise the models and to aid in the revision, if undertaken. The models as presented in the RSS and as implemented in the CRAC (Calculations of Reactor Accident Consequences) Code are described and critiqued. The major elements analyzed are those concerning dosimetry, early effects, and late effects. The published comments on the models are summarized, as are the important findings since the publication of the RSS.

  8. 3D geometry analysis of the medial meniscus - a statistical shape modeling approach

    NARCIS (Netherlands)

    Vrancken, A.C.T.; Crijns, S.P.M.; Ploegmakers, M.J.M.; O'Kane, C.; van Tienen, T.G.; Janssen, D.; Buma, P.; Verdonschot, Nicolaas Jacobus Joseph

    2014-01-01

    The geometry-dependent functioning of the meniscus indicates that detailed knowledge on 3D meniscus geometry and its inter-subject variation is essential to design well functioning anatomically shaped meniscus replacements. Therefore, the aim of this study was to quantify 3D meniscus geometry and to

  9. A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)

  10. Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry

    Science.gov (United States)

    Yousefnezhad, Mohsen; Fotouhi, Morteza; Vejdani, Kaveh; Kamali-Zare, Padideh

    2016-09-01

    We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the nonlinear time dependency of tortuosity (λ =√{D /D* } ) changes with very high precision in various media with uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data (D = free diffusion coefficient, D* = effective diffusion coefficient). To construct this model, we first developed a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity differences across cell membranes lead to changes in the ECS dynamics. The evolution of the underlying dynamics is then captured by a level set method. Subsequently, using a homogenization technique, we derived a coarse-grained model with parameters that are explicitly related to the geometry of cells and their associated ECS. Our modeling results in very accurate analytical approximation of tortuosity based on time, space, osmolarity differences across cell membranes, and water permeability of cell membranes. Our model provides a unique platform for studying ECS dynamics not only in physiologic conditions such as sleep-wake cycles and aging but also in pathologic conditions such as stroke, seizure, and neoplasia, as well as in predictive pharmacokinetic modeling such as predicting medication biodistribution and efficacy and novel biomolecule development and testing.

  11. Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry

    Science.gov (United States)

    Campanari, S.; Iora, P.

    A finite volume model of a solid oxide fuel cell has been developed. The model applies a detailed electrochemical and thermal analysis to a tubular SOFC of given geometry, material properties and assigned input flows. Electrochemical modeling includes an evaluation of ohmic, activation and diffusion losses as well as a kinetic model of hydrocarbon reactions, based on most recent literature experiences. Internal heat exchange coefficients have been calculated with a specific fluid-dynamic finite volume analysis. The model is calibrated on the available experimental data for atmospheric and pressurized tubular SOFCs, showing the capacity of predicting accurately the SOFC operating conditions. The model generates total cell balances and internal cell profiles for any relevant thermodynamic or electrochemical variable, giving the possibility of discussing the effects of different operating conditions on the internal FC behavior. A sensitivity analysis is carried out to investigate the effects of different assumptions on a selection of key model parameters involved in the calculation of cell losses, internal heat exchange process and reforming reactions. Among other results, it is shown that the importance of the adoption of appropriate parameters for the evaluation of activation polarization, as well as the relevance of a kinetic model for reforming reactions.

  12. Wave model for longitudinal dispersion: application to the laminar-flow tubular reactor

    NARCIS (Netherlands)

    Kronberg, Alexandre E.; Benneker, A.H.; Benneker, A.H.; Westerterp, K.R.

    1996-01-01

    The wave model for longitudinal dispersion, published elsewhere as an alternative to the commonly used dispersed plug-flow model, is applied to the classic case of the laminar-flow tubular reactor. The results are compared in a wide range of situations to predictions by the dispersed plug-flow model

  13. Modeling, simulation, and optimization of a front-end system for acetylene hydrogenation reactors

    Directory of Open Access Journals (Sweden)

    R. Gobbo

    2004-12-01

    Full Text Available The modeling, simulation, and dynamic optimization of an industrial reaction system for acetylene hydrogenation are discussed in the present work. The process consists of three adiabatic fixed-bed reactors, in series, with interstage cooling. These reactors are located after the compression and the caustic scrubbing sections of an ethylene plant, characterizing a front-end system; in contrast to the tail-end system where the reactors are placed after the de-ethanizer unit. The acetylene conversion and selectivity profiles for the reactors are optimized, taking into account catalyst deactivation and process constraints. A dynamic optimal temperature profile that maximizes ethylene production and meets product specifications is obtained by controlling the feed and intercoolers temperatures. An industrial acetylene hydrogenation system is used to provide the necessary data to adjust kinetics and transport parameters and to validate the approach.

  14. Capacitor model to interpret the electric behavior of fluidized beds. Influence of apparatus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rojo, V.; Guardiola, J.; Vian, A.

    1986-01-01

    This work provides a model to know the degree of electrification in fluidized beds on the basis of voltage measurements between an electric probe and a metallic distributor. The model is based on the similarity of behavior between the probe-bed-distributor system and a capacitor. The influence of three variables related to apparatus geometry - height of probe, column diameter and height of bed - has been studied in an air fluidized bed of glass beads. The results show that the degree of bed electrification is not influenced by the column diameter; the effect of bed height depends on the quality of fluidization: with a bubbling bed the degree of electrification increases with bed height whereas the opposite effect is observed with a slugging bed. Additional fixed bed experiments make clear that the rate of charge dissipation grows for increasing values of bed height and column diameter, and for decreasing values of probe height.

  15. A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index.

    Science.gov (United States)

    Shi, Xiangnan; Cao, Libo; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen

    2014-07-18

    In this study, we developed a statistical rib cage geometry model accounting for variations by age, sex, stature and body mass index (BMI). Thorax CT scans were obtained from 89 subjects approximately evenly distributed among 8 age groups and both sexes. Threshold-based CT image segmentation was performed to extract the rib geometries, and a total of 464 landmarks on the left side of each subject׳s ribcage were collected to describe the size and shape of the rib cage as well as the cross-sectional geometry of each rib. Principal component analysis and multivariate regression analysis were conducted to predict rib cage geometry as a function of age, sex, stature, and BMI, all of which showed strong effects on rib cage geometry. Except for BMI, all parameters also showed significant effects on rib cross-sectional area using a linear mixed model. This statistical rib cage geometry model can serve as a geometric basis for developing a parametric human thorax finite element model for quantifying effects from different human attributes on thoracic injury risks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A Parametric Sizing Model for Molten Regolith Electrolysis Reactors to Produce Oxygen from Lunar Regolith

    Science.gov (United States)

    Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.

    2015-01-01

    We present a parametric sizing model for a Molten Electrolysis Reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material properties validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a vast database of reactor performance and design trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that 1) can sustain the required mass of molten regolith, current, and operating temperature to meet the desired oxygen production level, 2) can operate for long durations via joule heated, cold wall operation in which molten regolith does not touch the reactor side walls, 3) can support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. The effects of several design variables are explored, including operating temperature, regolith type/composition, batch time, and the degree of operational flexibility.

  17. Modelling of the anti-neutrino production and spectra from a Magnox reactor

    Science.gov (United States)

    Mills, Robert W.; Mountford, David J.; Coleman, Jonathon P.; Metelko, Carl; Murdoch, Matthew; Schnellbach, Yan-Jie

    2018-01-01

    The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152) during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of monitored reactor

  18. Modelling of the anti-neutrino production and spectra from a Magnox reactor

    Directory of Open Access Journals (Sweden)

    Mills Robert W

    2018-01-01

    Full Text Available The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152 during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of

  19. U-loop reactor modelling for optimization. Part 2: Mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Roende Andersen, B.; Bagterp Joergensen, J.; Bay Joergensen, S.

    2005-09-01

    The present report is a continuation of Andersen et al. [2005] where the heat loss from the U-loop reactor pilot plant Gas estimated for operation without fermentation. The proposed model described the dependency on circulation velocity, air flow rate and reactor temperature. The model could not describe variations in heat exchanger flow rate. Since the heat exchanger flow rate is actuator for the reactor temperature control during cooling, this dependency is important. The most likely explanation of the mismatch between the model and the experimental values are inadequate calibration of the flow and temperature sensors. The energy balance for the reactor cannot be included in the present model before these sensors have been calibrated. This calibration still awaits. Initially separate mass transfer experiments were planned and a master project is devoted to mass transfer in autumn 2005. Until these experiments are performed, the mass transfer is attempted estimated from a fermentation experiment, but the experiment is not designed for estimating mass transfer. The fermentation experiment studied in this report was delayed till July 2005, consequently only a crude model has been set up. The most reasonable description of the U-loop reactor is obtained by partial differential equations due to the distributed nature of the reactor. However given the limited time that only allowed a crude model to be formulated with a number of well mixed tanks in series. Furthermore the significant pressure variations through the reactor have been ignored. This means that only a rough average value of the mass transfer coefficient can be estimated. This value can be compared at different operating conditions for this U-loop reactor but the value cannot be sensibly compared to other reactor types. Anyway, the crude model does indicate some of the process limitations. The experiment was planned to run under methanol limitation with excess of oxygen and nitrogen. The results from the

  20. Development and modeling of a flat plate serpentine reactor for photocatalytic degradation of 17-ethinylestradiol.

    Science.gov (United States)

    Wang, Dawei; Li, Yi; Zhang, Wenlong; Wang, Qing; Wang, Peifang; Wang, Chao

    2013-04-01

    A flat plate serpentine reactor modified from ultraviolet disinfection pool in municipal wastewater treatment plants was developed for the removal of 17-ethinylestradiol (EE2) for the first time. The photocatalytic degradation performance of EE2 was investigated in this serpentine reactor under different conditions such as inlet concentrations, loaded catalyst concentrations, incident radiations fluxes, and flow velocities. More than 98% of EE2 was removed under certain conditions within 120 min. An integrated model including a six-flux adsorption-scattering model and a modified flow diffusion model was established to investigate the effect of radiation field and flow velocities, respectively. A satisfactory agreement was observed between the model simulation and experimental results, showing a potential for design and scale-up of photocatalytic reactor for wastewater treatment.

  1. Preliminary assessment of Geant4 HP models and cross section libraries by reactor criticality benchmark calculations

    DEFF Research Database (Denmark)

    Cai, Xiao-Xiao; Llamas-Jansa, Isabel; Mullet, Steven

    2013-01-01

    to reactor modelling. Before version 9.5, Geant4 HP thermal scattering model (i.e. the S(α; β) model ) supports only three bounded isotopes, namely, H in water and polyethylene, and C in graphite. Newly supported materials include D in heavy water, O and Be in beryllium oxide, H and Zr in zirconium hydride......, U and O in uranium dioxide, Al metal, Be metal, and Fe metal. The native HP cross section library G4NDL does not include data for elements with atomic number larger than 92. Therefore, transuranic elements, which have impacts for a realistic reactor, can not be simulated by the combination of the HP...

  2. Dynamic behavior of the HTR-10 reactor: Dual temperature feedback model

    Directory of Open Access Journals (Sweden)

    Hosseini Seyed Ali

    2015-01-01

    Full Text Available The current work aims at presenting a simple model for PBM-type reactors' dynamic behavior analysis. The proposed model is based on point kinetics equations coupled with feedbacks from fuel and moderator temperatures. The temperature reactivity coefficients were obtained through MCNP code and via available experimental data. Parameters such as heat capacity and heat conductivity were carefully analyzed and the final system of equations was numerically solved. The obtained results, while in partial agreement with previously proposed models, suggest lower sensitivity to step reactivity insertion as compared to other reactor designs and inherent safety of the design.

  3. Capabilities of the ATHENA computer code for modeling the SP-100 space reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, C.D.

    1985-09-01

    The capability to perform thermal-hydraulic analyses of an SP-100 space reactor was demonstrated using the ATHENA computer code. The preliminary General Electric SP-100 design was modeled using Athena. The model simulates the fast reactor, liquid-lithium coolant loops, and lithium-filled heat pipes of this design. Two ATHENA demonstration calculations were performed simulating accident scenarios. A mask for the SP-100 model and an interface with the Nuclear Plant Analyzer (NPA) were developed, allowing a graphic display of the calculated results on the NPA. 22 figs.

  4. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Liger, Karine, E-mail: karine.liger@cea.fr [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Mascarade, Jérémy [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Joulia, Xavier; Meyer, Xuan-Mi [Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, Toulouse F-31030 (France); CNRS, Laboratoire de Génie Chimique, Toulouse F-31030 (France); Troulay, Michèle; Perrais, Christophe [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France)

    2016-11-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q{sub 2} form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  5. Modelling and operation of reactors for enzymatic biodiesel production

    DEFF Research Database (Denmark)

    Price, Jason Anthony

    to the production of high fructose corn syrup, upgrading of fats and oils and biodiesel production to name a few. Despite these examples of industrial enzymatic applications, it is still not “clear cut” how to implement biocatalyst in industry and how best to optimize the processes. This is because the processing...... aspects of the enzyme with reaction/reactor engineering is performed. This strategy is applied to a case study of biodiesel production catalysed by a liquid enzyme formulation. The use of enzymes for biodiesel production is still in its infancy with non-optimized process designs. Furthermore is it unclear...

  6. Modelling radiative properties of participating species in a microwave plasma reactor for diamond deposition

    Science.gov (United States)

    Prasanna, S.; Rivière, Ph; Soufiani, A.

    2014-11-01

    The paper details the modelling of radiation in a microwave assisted plasma reactor used to deposit synthetic diamond over a substrate. The main radiatively active constituents in the reactor are atomic and molecular hydrogen, acetylene, methane and soot (if produced). Radiation from hydrogen occurs in ultraviolet (UV) whereas the hydrocarbons are active in the infrared region. Soot absorb and scatter in the UV but only absorption is important in the infrared-visible (IR-V) region. Hence, the two spectral regions have been treated independently. A two temperature model has been adopted for hydrogen thermodynamic state where Tg represents rotational, vibrational and translational temperature and Te represents electronic excitation temperature. As scattering is significant in UV, the radiative transfer equation is solved using Discrete Ordinate Method (DOM) with cumulative-k narrow-band model for molecular hydrogen. Radiation from atomic hydrogen has been found to be negligibly small compared to molecular hydrogen. In the IR-V, radiative transfer equation is solved using ray tracing method with gas properties represented by statistical narrow-band models. Preliminary simulations for reactor conditions indicate that soot significantly increase the radiative transfer in the reactor and presence of soot can disrupt the operation of the plasma reactor.

  7. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis

    Science.gov (United States)

    Gokcen, Tahir; Dateo, Christopher E.; Meyyappan, M.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process, developed at Rice University, has been reported to produce single-walled carbon nanotubes from gas-phase reactions of iron carbonyl in carbon monoxide at high pressures (10-100 atm). Computational modeling is used here to develop an understanding of the HiPco process. A detailed kinetic model of the HiPco process that includes of the precursor, decomposition metal cluster formation and growth, and carbon nanotube growth was developed in the previous article (Part I). Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. The diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by the Boudouard reaction with metal catalysts. Based on the detailed model simulations, a reduced kinetic model was also developed in Part I for use in reactor-scale flowfield calculations. Here this reduced kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance. Carbon nanotube growth is examined with respect to several process variables (peripheral jet temperature, reactor pressure, and Fe(CO)5 concentration) with the use of the axisymmetric model, and the computed results are compared with existing experimental data. The model yields most of the qualitative trends observed in the experiments and helps to understanding the fundamental processes in HiPco carbon nanotube production.

  8. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    DEFF Research Database (Denmark)

    Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.

    2016-01-01

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (a...

  9. A new class of actuator surface models incorporating wind turbine blade and nacelle geometry effects

    Science.gov (United States)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2015-11-01

    It was shown by Kang, Yang and Sotiropoulos that the nacelle has significant effects on the turbine wake even in the far wake region, which the standard actuator line model is not able to predict. We develop a new class of actuator surface models for the blades and nacelle, which is able to resolve the effects of both tip vortices and nacelle vortex. The new nacelle model, which is based on distributing forces from the actual nacelle geometry as in the diffused interface immersed boundary methods, is first tested by carrying out LES of the flow past a sphere and demonstrating good agreement with available in the literature DNS results. The proposed model is subsequently validated by simulating the flow past the hydrokinetic turbine used in the simulations of Kang et al. and good agreement with the measurements is demonstrated. Finally, the proposed model is applied to utility scale wind turbines to elucidate the role of nacelle vortex dynamics on turbine wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by SNL and MSI.

  10. Kinetic model for torrefaction of wood chips in a pilot-scale continuous reactor

    DEFF Research Database (Denmark)

    Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai

    2014-01-01

    at different torrefaction temperatures, it was possible to predict the HHV of torrefied wood chips from the pilot reactor. The results from this study and the presented modeling approach can be used to predict the product quality from pilot scale torrefaction reactors based on small scale experiments and could...... wood. The kinetic parameters were determined using a thermogravimetric analyzer (TGA) and the mass loss during the initial heating period was taken into account when deriving the kinetic parameters. It was shown that the experimental results at different heating rates (10-50 °C min-1) are in good...... accordance with the model data. In an additional step a continuous, pilot scale reactor was built to produce torrefied wood chips in large quantities. The "two-step reaction in series" model was applied to predict the mass yield of the torrefaction reaction. Parameters used for the calculation were...

  11. Modelling of an adiabatic trickle-bed reactor with phase change

    DEFF Research Database (Denmark)

    Ramirez Castelan, Carlos Eduardo; Hidalgo-Vivas, Angelica; Brix, Jacob

    2017-01-01

    This paper describes a modelling approach of the behavior of trickle-bed reactors used for catalytic hydrotreating of oil fractions. A dynamic plug-flow heterogeneous one-dimensional adiabatic model was used to describe the main reactions present in the hydrotreating process: hydrodesulfurization...

  12. Computation of flow and thermal fields in a model CVD reactor

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Computation of flow and thermal fields in a model CVD reactor. VISHWADEEP SAXENA, K MURALIDHAR and V ... been numerically studied. This configuration is encountered during the modelling of flow and heat transfer in CVD .... carried out on a P-III, 600 MHz machine with 512 MB RAM. Typical CPU times required.

  13. Advanced Monte Carlo Model for Arborescent Polyisobutylene Production in Batch Reactor

    NARCIS (Netherlands)

    Zhao, Y.R.; McAuley, K.B.; Iedema, P.D.; Puskas, J.E.

    2014-01-01

    An advanced Monte Carlo (MC) model is developed to predict the molecular weight distribution and branching level for arborescent polyisobutylene produced in a batch reactor via carbocationic copolymerization of isobutylene and an inimer. This new MC model uses differential equations and random

  14. Fractal Geometry Enables Classification of Different Lung Morphologies in a Model of Experimental Asthma

    Science.gov (United States)

    Obert, Martin; Hagner, Stefanie; Krombach, Gabriele A.; Inan, Selcuk; Renz, Harald

    2015-06-01

    Animal models represent the basis of our current understanding of the pathophysiology of asthma and are of central importance in the preclinical development of drug therapies. The characterization of irregular lung shapes is a major issue in radiological imaging of mice in these models. The aim of this study was to find out whether differences in lung morphology can be described by fractal geometry. Healthy and asthmatic mouse groups, before and after an acute asthma attack induced by methacholine, were studied. In vivo flat-panel-based high-resolution Computed Tomography (CT) was used for mice's thorax imaging. The digital image data of the mice's lungs were segmented from the surrounding tissue. After that, the lungs were divided by image gray-level thresholds into two additional subsets. One subset contained basically the air transporting bronchial system. The other subset corresponds mainly to the blood vessel system. We estimated the fractal dimension of all sets of the different mouse groups using the mass radius relation (mrr). We found that the air transporting subset of the bronchial lung tissue enables a complete and significant differentiation between all four mouse groups (mean D of control mice before methacholine treatment: 2.64 ± 0.06; after treatment: 2.76 ± 0.03; asthma mice before methacholine treatment: 2.37 ± 0.16; after treatment: 2.71 ± 0.03; p concept of fractal geometry allows a well-defined, quantitative numerical and objective differentiation of lung shapes — applicable most likely also in human asthma diagnostics.

  15. Verification of RBMK-1500 reactor main circulation circuit model with Cathare V1.3L

    Energy Technology Data Exchange (ETDEWEB)

    Jasiulevicius, A. [Kaunas University of Technology, Dept. of Thermal and Nuclear Energy, Kaunas (Lithuania)

    2001-07-01

    Among other computer codes, French code CATHARE is also applied for RBMK reactor calculations. In this paper results of such application for Ignalina NPP reactor (RBMK-1500 type) main circulation circuit are presented. Three transients calculations were performed: all main circulation pumps (MCP) trip, trip of one main circulation pump and trip of one main circulation pump without a closure of check valve on the pump line. Calculation results were compared to data from the Ignalina NPP, where all these transients were recorded in the years 1986, 1996 and 1998. The presented studies prove the capability of the CATHARE code to treat thermal-hydraulic transients with a reactor scram in the RBMK, in case of single or multiple pump trips. However, the presented model needs further improvements in order to simulate loss of coolant accidents. For this reason, emergency core cooling system should be included in the model. Additional model improvement is also needed in order to gain more independent pressure behavior in both loops. Also, flow rates through the reactor channels should be modeled by dividing channels into several groups, referring to channel power (in RBMK power produced in a channel, located in different parts of the core is not the same). The point-neutron kinetic model of the CATHARE code is not suitable to predict transients when the reactor is operating at a nominal power level. Such transients would require the use of 3D-neutron kinetics model to describe properly the strong space-time effect on the power distribution in the reactor core.

  16. KYNREFREV - the XSPEC model for X-ray reverberation in the lamp-post geometry

    Science.gov (United States)

    Dovciak, M.; Caballero-Garcia, M.; Epitropakis, A.; Papadakis, I.; Alston, W.; Miniutti, G.; Kara, E.; De Marco, B.; Karas, V.; Matt, G.

    2017-10-01

    In the last decade the X-ray reverberation echos produced by reflection of the coronal emission from the inner parts of the accretion disc was observed in several AGN. To estimate the properties of the system showing these features fast and modular XSPEC model is needed. In this contribution we want to introduce such a model that is ready to be used for both the frequency and energy dependencies of lags in the lamp-post geometry and is fast enough for fitting the data effectively. The parameters of the model, like the black hole spin, height of the corona, density of the disc affecting the disc ionisation profile, reflecting disc region (inner and outer edge and azimuthal segment), circular obscuring cloud and others will be described. The black-body reverberation due to the thermalised part of the illuminating radiation, that is important mainly for low mass AGN and for soft X-ray energy band, is included as well. The power-law hard lag for frequency dependence is also available directly in the model.

  17. Model Reduction Using Proper Orthogonal Decomposition and Predictive Control of Distributed Reactor System

    Directory of Open Access Journals (Sweden)

    Alejandro Marquez

    2013-01-01

    Full Text Available This paper studies the application of proper orthogonal decomposition (POD to reduce the order of distributed reactor models with axial and radial diffusion and the implementation of model predictive control (MPC based on discrete-time linear time invariant (LTI reduced-order models. In this paper, the control objective is to keep the operation of the reactor at a desired operating condition in spite of the disturbances in the feed flow. This operating condition is determined by means of an optimization algorithm that provides the optimal temperature and concentration profiles for the system. Around these optimal profiles, the nonlinear partial differential equations (PDEs, that model the reactor are linearized, and afterwards the linear PDEs are discretized in space giving as a result a high-order linear model. POD and Galerkin projection are used to derive the low-order linear model that captures the dominant dynamics of the PDEs, which are subsequently used for controller design. An MPC formulation is constructed on the basis of the low-order linear model. The proposed approach is tested through simulation, and it is shown that the results are good with regard to keep the operation of the reactor.

  18. Homogeneity of Continuum Model of an Unsteady State Fixed Bed Reactor for Lean CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Subagjo

    2014-07-01

    Full Text Available In this study, the homogeneity of the continuum model of a fixed bed reactor operated in steady state and unsteady state systems for lean CH4 oxidation is investigated. The steady-state fixed bed reactor system was operated under once-through direction, while the unsteady-state fixed bed reactor system was operated under flow reversal. The governing equations consisting of mass and energy balances were solved using the FlexPDE software package, version 6. The model selection is indispensable for an effective calculation since the simulation of a reverse flow reactor is time-consuming. The homogeneous and heterogeneous models for steady state operation gave similar conversions and temperature profiles, with a deviation of 0.12 to 0.14%. For reverse flow operation, the deviations of the continuum models of thepseudo-homogeneous and heterogeneous models were in the range of 25-65%. It is suggested that pseudo-homogeneous models can be applied to steady state systems, whereas heterogeneous models have to be applied to unsteady state systems.

  19. 3D CFD modeling of subsonic and transonic flowing-gas DPALs with different pumping geometries

    Science.gov (United States)

    Yacoby, Eyal; Sadot, Oren; Barmashenko, Boris D.; Rosenwaks, Salman

    2015-10-01

    Three-dimensional computational fluid dynamics (3D CFD) modeling of subsonic (Mach number M ~ 0.2) and transonic (M ~ 0.9) diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing medium is reported. The performance of these lasers is compared with that of supersonic (M ~ 2.7 for Cs and M ~ 2.4 for K) DPALs. The motivation for this study stems from the fact that subsonic and transonic DPALs require much simpler hardware than supersonic ones where supersonic nozzle, diffuser and high power mechanical pump (due to a drop in the gas total pressure in the nozzle) are required for continuous closed cycle operation. For Cs DPALs with 5 x 5 cm2 flow cross section pumped by large cross section (5 x 2 cm2) beam the maximum achievable power of supersonic devices is higher than that of the transonic and subsonic devices by only ~ 3% and ~ 10%, respectively. Thus in this case the supersonic operation mode has no substantial advantage over the transonic one. The main processes limiting the power of Cs supersonic DPALs are saturation of the D2 transition and large ~ 60% losses of alkali atoms due to ionization, whereas the influence of gas heating is negligible. For K transonic DPALs both the gas heating and ionization effects are shown to be unimportant. The maximum values of the power are higher than those in Cs transonic laser by ~ 11%. The power achieved in the supersonic and transonic K DPAL is higher than for the subsonic version, with the same resonator and K density at the inlet, by ~ 84% and ~ 27%, respectively, showing a considerable advantaged of the supersonic device over the transonic one. For pumping by rectangular beams of the same (5 x 2 cm2) cross section, comparison between end-pumping - where the laser beam and pump beam both propagate at along the same axis, and transverse-pumping - where they propagate perpendicularly to each other, shows that the output power and optical-to-optical efficiency are not

  20. Extension of the comet method to 2-D hexagonal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Kevin John; Rahnema, Farzad; Zhang, Dingkang, E-mail: farzad@gatech.edu [Nuclear and Radiological Engineering Program, George W. Woodruff School, Georgia Institute of Technology, Atlanta, GA (United States)

    2011-07-01

    The capability of the heterogeneous coarse mesh radiation transport (COMET) method developed at Georgia Tech has been expanded. COMET is now able to treat hexagonal geometry in two dimensions, allowing reactor problems to be solved for those next-generation reactors which utilize prismatic block structure and hexagonal lattice geometry in their designs. The COMET method is used to solve whole core reactor analysis problems without resorting to homogenization or low-order transport approximations. The eigenvalue and fission density distribution of the reactor are determined iteratively using response functions. The method has previously proven accurate in solving PWR, BWR, and CANDU eigenvalue problems. In this paper, three simple test cases inspired by high temperature test reactor material cross sections and fuel block geometry are presented. These cases are given not in an attempt to model realistic nuclear power systems, but in order to test the ability of the improved method. Solutions determined by the new hexagonal version of COMET, COMET-Hex, are compared with solutions determined by MCNP5, and the results show the accuracy and efficiency of the improved COMET-Hex method in calculating the eigenvalue and fuel pin fission density in sample full-core problems. COMETHex determines the eigenvalues of these simple problems to an order of within 50 pcm of the reference solutions and all pin fission densities to an average error of 0.2%, and it requires fewer than three minutes to produce these results. (author)

  1. Mathematical Modeling and Simulation of the Dehydrogenation of Ethyl Benzene to Form Styrene Using Steady-State Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Zaidon M. Shakoor

    2013-05-01

    Full Text Available In this research, two models are developed to simulate the steady state fixed bed reactor used for styrene production by ethylbenzene dehydrogenation. The first is one-dimensional model, considered axial gradient only while the second is two-dimensional model considered axial and radial gradients for same variables.The developed mathematical models consisted of nonlinear simultaneous equations in multiple dependent variables. A complete description of the reactor bed involves partial, ordinary differential and algebraic equations (PDEs, ODEs and AEs describing the temperatures, concentrations and pressure drop across the reactor was given. The model equations are solved by finite differences method. The reactor models were coded with Mat lab 6.5 program and various numerical techniques were used to obtain the desired solution.The simulation data for both models were validated with industrial reactor results with a very good concordance.

  2. Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization

    Science.gov (United States)

    Blanchet, David; Fontaine, Bruno

    2017-09-01

    The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.

  3. Wastewater treatment using photo-impinging streams cyclone reactor: Computational fluid dynamics and kinetics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Royaee, Sayed Javid; Shafeghat, Amin [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of); Sohrabi, Morteza [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-02-15

    A photo impinging streams cyclone reactor has been used as a novel apparatus in photocatalytic degradation of organic compounds using titanium dioxide nanoparticles in wastewater. The operating parameters, including catalyst loading, pH, initial phenol concentration and light intensity have been optimized to increase the efficiency of the photocatalytic degradation process within this photoreactor. The results have demonstrated a higher efficiency and an increased performance capability of the present reactor in comparison with the conventional processes. In the next step, residence time distribution (RTD) of the slurry phase within the reactor was measured using the impulse tracer method. A CFD-based model for predicting the RTD was also developed which compared well with the experimental results. The RTD data was finally applied in conjunction with the phenol degradation kinetic model to predict the apparent rate coefficient for such a reaction.

  4. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: pnch@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)

    2017-03-15

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  5. Tractable Stochastic Geometry Model for IoT Access in LTE Networks

    KAUST Repository

    Gharbieh, Mohammad

    2017-02-07

    The Internet of Things (IoT) is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the high volumes of traffic that must be accommodated. Cellular networks are indeed a natural candidate for the data tsunami the IoT is expected to generate in conjunction with legacy human-type traffic. However, the random access process for scheduling request represents a major bottleneck to support IoT via LTE cellular networks. Accordingly, this paper develops a mathematical framework to model and study the random access channel (RACH) scalability to accommodate IoT traffic. The developed model is based on stochastic geometry and discrete time Markov chains (DTMC) to account for different access strategies and possible sources of inter-cell and intra-cell interferences. To this end, the developed model is utilized to assess and compare three different access strategies, which incorporate a combination of transmission persistency, back-off, and power ramping. The analysis and the results showcased herewith clearly illustrate the vulnerability of the random access procedure as the IoT intensity grows. Finally, the paper offers insights into effective scenarios for each transmission strategy in terms of IoT intensity and RACH detection thresholds.

  6. Algebraic Geometry

    CERN Document Server

    Holme, Audun

    1988-01-01

    This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.

  7. Respiratory tract lung geometry and dosimetry model for male Sprague-Dawley rats.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Frederick J.; Asgharian, Bahman; Schroeter, Jeffry D.; Price, Owen; Corley, Richard A.; Einstein, Daniel R.; Jacob, Rick E.; Cox, Timothy C.; Kabilan, Senthil; Bentley, Timothy

    2014-08-26

    While inhalation toxicological studies of various compounds have been conducted using a number of different strains of rats, mechanistic dosimetry models have only had tracheobronchial (TB) structural data for Long-Evans rats, detailed morphometric data on the alveolar region of Sprague-Dawley rats and limited alveolar data on other strains. Based upon CT imaging data for two male Sprague-Dawley rats, a 15-generation, symmetric typical path model was developed for the TB region. Literature data for the alveolar region of Sprague-Dawley rats were analyzed to develop an eight-generation model, and the two regions were joined to provide a complete lower respiratory tract model for Sprague-Dawley rats. The resulting lung model was used to examine particle deposition in Sprague-Dawley rats and to compare these results with predicted deposition in Long-Evans rats. Relationships of various physiologic variables and lung volumes were either developed in this study or extracted from the literature to provide the necessary input data for examining particle deposition. While the lengths, diameters and branching angles of the TB airways differed between the two Sprague- Dawley rats, the predicted deposition patterns in the three major respiratory tract regions were very similar. Between Sprague-Dawley and Long-Evans rats, significant differences in TB and alveolar predicted deposition fractions were observed over a wide range of particle sizes, with TB deposition fractions being up to 3- to 4-fold greater in Sprague-Dawley rats and alveolar deposition being significantly greater in Long-Evans rats. Thus, strain-specific lung geometry models should be used for particle deposition calculations and interspecies dose comparisons.

  8. Respiratory Tract Lung Geometry and Dosimetry Model for Male Sprague-Dawley Rats

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Frederick J.; Asgharian, Bahman; Schroeter, Jeffry D.; Price, Owen; Corley, Richard A.; Einstein, Daniel R.; Jacob, Rick E.; Cox, Timothy C.; Kabilan, Senthil; Bentley, Timothy

    2015-07-24

    While inhalation toxicological studies of various compounds have been conducted using a number of different strains of rats, mechanistic dosimetry models have only had tracheobronchial (TB) structural data for Long-Evans rats, detailed morphometric data on the alveolar region of Sprague-Dawley rats and limited alveolar data on other strains. Based upon CT imaging data for two male Sprague-Dawley rats, a 15-generation, symmetric typical path model was developed for the TB region. Literature data for the alveolar region of Sprague-Dawley rats were analyzed to develop an eight-generation model, and the two regions were joined to provide a complete lower respiratory tract model for Sprague-Dawley rats. The resulting lung model was used to examine particle deposition in Sprague-Dawley rats and to compare these results with predicted deposition in Long-Evans rats. Relationships of various physiologic variables and lung volumes were either developed in this study or extracted from the literature to provide the necessary input data for examining particle deposition. While the lengths, diameters and branching angles of the TB airways differed between the two Sprague-Dawley rats, the predicted deposition patterns in the three major respiratory tract regions were very similar. Between Sprague-Dawley and Long-Evans rats, significant differences in TB and alveolar predicted deposition fractions were observed over a wide range of particle sizes, with TB deposition fractions being up to 3- to 4-fold greater in Sprague-Dawley rats and alveolar deposition being significantly greater in Long-Evans rats. Thus, strain-specific lung geometry models should be used for particle deposition calculations and interspecies dose comparisons.

  9. Massive computation methodology for reactor operation (MACRO)

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Cecilia; Pomp, Stephan; Sjoestrand, Henrik; Wallin, Gustav; Oesterlund, Michael [Division of applied nuclear physics, Department of physics and astronomy, Uppsala University, Laegerhyddsvaegen 1, 751 20 Uppsala (Sweden); Koning, Arjan; Rochman, Dimitri [Nuclear Research and consultancy Group (NRG) Westerduinweg 3, Petten (Netherlands); Bejmer, Klaes-Hakan [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, Vaellingby (Sweden); Henriksson, Hans [Vattenfall Research and Development AB, Jaemtlandsgatan 99, Vaellingby (Sweden)

    2010-07-01

    Today, nuclear data libraries do not handle uncertainties from nuclear data in a consistent manner and the reactor codes do not request uncertainties in nuclear data input. Thus, the output from these codes have unknown uncertainties. The plan is to use a method proposed by Koning and Rochman to investigate the propagation of nuclear data uncertainties into reactor physics codes and macroscopic parameters. A project (acronym MACRO) has started at Uppsala University in collaboration with A. Koning and with financial support from Vattenfall AB and the Swedish Research Council within the GENIUS (Generation IV research in universities of Sweden) project. In the proposed method the uncertainties in nuclear model parameters will be derived from theoretical considerations and comparisons of nuclear model results with experimental cross-section data. Given the probability distribution in the model parameters a large set of random, complete ENDF-formatted nuclear data libraries will be created using the TALYS code. The generated nuclear data libraries will then be used in neutron transport codes to obtain macroscopic reactor parameters. For this, models of reactor systems with proper geometry and elements will be used. This will be done for all data libraries and the variation of the final results will be regarded as a systematic uncertainty in the investigated reactor parameter. The understanding of these systematic uncertainties is especially important for the design and intercomparison of new reactor concepts, i.e., Generation IV, and optimization applications for current generation reactors is envisaged. (authors)

  10. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)

    2013-07-01

    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  11. Probing emergent geometry through phase transitions in free vector and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Amado, Irene; Sundborg, Bo [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden); Thorlacius, Larus [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden); Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik (Iceland); Wintergerst, Nico [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden)

    2017-02-01

    Boundary correlation functions provide insight into the emergence of an effective geometry in higher spin gravity duals of O(N) or U(N) symmetric field theories. On a compact manifold, the singlet constraint leads to nontrivial dynamics at finite temperature and large N phase transitions even at vanishing ’t Hooft coupling. At low temperature, the leading behavior of boundary two-point functions is consistent with propagation through a bulk thermal anti de Sitter space. Above the phase transition, the two-point function shows significant departure from thermal AdS space and the emergence of localized black hole like objects in the bulk. In adjoint models, these objects appear at length scales of order of the AdS radius, consistent with a Hawking-Page transition, but in vector models they are parametrically larger than the AdS scale. In low dimensions, we find another crossover at large distances beyond which the correlation function again takes a thermal AdS form, albeit with a temperature dependent normalization factor.

  12. A Stochastic Geometry Model for Multi-hop Highway Vehicular Communication

    KAUST Repository

    Farooq, Muhammad Junaid

    2015-11-19

    Carrier sense multiple access (CSMA) protocol is standardized for vehicular communication to ensure a distributed and efficient communication between vehicles. However, several vehicular applications require efficient multi-hop information dissemination. This paper exploits stochastic geometry to develop a tractable and accurate modeling framework to characterize the multi-hop transmissions for vehicular networks in a multi-lane highway setup. In particular, we study the tradeoffs between per-hop packet forward progress, per-hop transmission success probability, and spatial frequency reuse (SFR) efficiency imposed by different packet forwarding schemes, namely, most forward with fixed radius (MFR), the nearest with forward progress (NFP), and the random with forward progress (RFP). We also define a new performance metric, denoted as the aggregate packet progress (APP), which is a dimensionless quantity that captures the aforementioned tradeoffs. To this end, the developed model reveals the interplay between the spectrum sensing threshold (th) of the CSMA protocol and the packet forwarding scheme. Our results show that, in contrary to ALOHA networks which always favor NFP, MFR may achieve the highest APP in CSMA networks if th is properly chosen.

  13. Mesoscopic Modeling of Thrombus Formation and Growth: Platelet Deposition in Complex Geometries

    Science.gov (United States)

    Yazdani, Alireza; Karniadakis, George

    2014-11-01

    Haemodynamics and blood rheology are important contributing factors to thrombus formation at a vulnerable vessel wall, and adhesion of platelets to a vascular surface, particularly in regions of flow stagnation, recirculation and reattachment is significantly important in formation of thrombi. For example, haemodynamic micro-environment can have effects on thrombosis inside the atherosclerotic plaques and aneurysms. To study these effects, we have developed and validated a model for platelet aggregation in blood flow using Dissipative Particle Dynamics (DPD) method. In this model platelets are considered as single DPD particles interacting with each other via Morse potential once activated. We assign an activation delay time to each platelet such that they remain passive during that time. We investigate the effect of different geometries on platelet aggregation by considering arterial stenosis at different levels of occlusion, and aneurysms of different shapes and sizes. The results show a marked increase in platelet aggregation within the boundaries of deceleration zone by increasing the degree of stenosis. Further, we observe enhanced platelet margination and wall deposition in the presence of red blood cells.

  14. Thermal-hydraulic modeling needs for passive reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  15. Modeling Fluid and Heat Transport in a New Type Thermal Isomerization Fluidized Bed Reactor

    Science.gov (United States)

    Yang, Xiaoxiao; Fu, Zewu; Zhao, Yuying; Liu, Liujun; Li, Rui

    2017-10-01

    In the current work, with a new concept of resident ratio which impacts the reaction time, a fluid flow and heat transfer model were employed for simulating pressure drop, temperature profile and fluid flow properties of new type thermal isomerization reactor. The thermal isomerization experiment of β-pinenewas performed using the reactor. Momentum equation, energy equation and kinetic equationswere used to describe the fluid flow and heat transfer. The experimental results were in good agreement with theoretical simulation which indicated that the temperature difference between boundary and initial can be decreased by using steel balls and this modified fluidized bed can improve the yield and selectivity of the products effectively.

  16. Experiments and modelling VOCs' removal in a DBD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sarron, V.; Aubry, O.; Khacef, A.; Cormier, J.M. [Orleans Univ., Orleans Cedex (France). Polytech d' Orleans, Group for Research and Studies on Mediators of Inflamation

    2010-07-01

    Non-thermal plasma discharges are being considered as a means to convert volatile organic compounds (VOCs) diluted in air at atmospheric pressure. This study showed that the treatment of propane or ethane in a dielectric barrier discharge (DBD) reactor at a temperature of 800 K can be modeled from a chemical mechanism. The DBD reactor was simulated using consecutive elementary plug flow reactors (PFR). Streamer effects leading to active species production such as O-atoms in dry air from electronic dissociation of oxygen (O{sub 2}) were simulated by injection of O-atoms at the inlet of each elementary PFR. A good agreement was obtained for all the studied inlet mixtures, in which ethane concentrations and propane were varied in air. The concentration of O-atoms were found to play a role on carbon monoxide (CO) and carbon dioxide (CO{sub 2}) concentrations at a given energy density. An increase of O promoted CO{sub 2} concentration. In addition, the models made it possible to determine the concentrations levels of non measured by-products. The O-atom concentration was the main parameter of the developed model to simulate a DBD reactor. It was concluded that the obtained models can be efficient tools for predicting light hydrocarbons conversion in a non-thermal plasma. 7 refs., 10 figs.

  17. A Self-Consistent Plasma-Sheath Model for the Inductively Coupled Plasma Reactor

    Science.gov (United States)

    Bose, Deepak; Govindam, T. R.; Meyyappan, M.

    2000-01-01

    Accurate determination of ion flux on a wafer requires a self-consistent, multidimensional modeling of plasma reactor that adequately resolves the sheath region adjoining the wafer. This level of modeling is difficult to achieve since non-collisional sheath lengths are usually 3-4 orders of magnitude smaller than the reactor scale. Also, the drift-diffusion equations used for ion transport becomes invalid in the sheath since the ion frictional force is no longer in equilibrium with drift and diffusion forces. The alternative is to use a full momentum equation for each ionic species. In this work we will present results from a self-consistent reactor scale-sheath scale model for 2D inductively coupled plasmas. The goal of this study is to improve the modeling capabilities and assess the importance of additional physics in determining important reactor performance features, such as the ion flux uniformity, coil frequency and configuration effects, etc. Effect of numerical dissipation on the solution quality will also be discussed.

  18. Modelling anaerobic digestion in a biogas reactor: ADM1 model development with lactate as an intermediate (Part I).

    Science.gov (United States)

    Satpathy, Preseela; Biernacki, Piotr; Uhlenhut, Frank; Cypionka, Heribert; Steinigeweg, Sven

    2016-12-05

    The Anaerobic Digestion Model No. 1 (ADM1) was extended to include lactate, a crucial metabolic product during sugar fermentation. This study tests the validity of the modified ADM1 model in improving the predictions of a standard biogas reactor. This reactor was prepared in the laboratory with simple organic substrates with an intention to represent an 'average biogas plant'. Kinetic parameters were determined from a lactic acid enriched steady-state reactor. The parameters were adjusted further in order to acquire satisfying simulation results systematically with the batch experiments and then against the standard biogas reactor. Arresting methanogenesis revealed that lactate degradation occurred majorly via acetate followed by propionate, and a non-negligible proportion of butyrate too was found, which were further updated in the model. The modified ADM1 provided a successful correlation with the experimental results for the batch and continuous experiments. We justified that inclusion of lactate in the model resulted in optimized simulation for both biogas and methane content in the standard biogas reactor.

  19. Mathematical modeling of flow and kinetics in a reactor for dilute-Acid hydrolysis of cellulose particles: a mixture flow approach.

    Science.gov (United States)

    Zahrai, Sima; Wikström, Gunilla

    2007-02-01

    A mathematical model to simulate the dilute-acid hydrolysis process of cellulose particles is presented. In this model, the mass is treated as a mixture of different components. A test case is considered for which transport equations for components are developed and solved together with the momentum equation for the fluid flow. To solve the model equations, a commercially available flow solver was used. All input data were taken from previously published works. For the small static mixer considered as test geometry, the result, in terms of the conversion of the cellulose particles, was reasonable. With input parameters that are relevant to a plant-size reactor, the model can be used to predict the conversion of both cellulose and hemicellulose particles.

  20. Modelling and Prediction of Stainless Steel Clad Bead Geometry Deposited by GMAW Using Regression and Artificial Neural Network Models

    Directory of Open Access Journals (Sweden)

    P. Sreeraj

    2012-01-01

    Full Text Available To improve the corrosion-resistant properties of carbon steel, usually cladding process is used. It is a process of depositing a thick layer of corrosion-resistant material over carbon steel plate. Most of the engineering applications require high strength and corrosion resistant materials for long-term reliability and performance. Cladding these properties can be achieved with minimum cost. The main problem faced in cladding is the selection of optimum combinations of process parameters for achieving quality clad and hence good clad bead geometry. This paper highlights an experimental study to predict various input process parameters (welding current, welding speed, gun angle, contact tip-to-work distance, andpinch to getoptimum dilutionin stainless steel cladding of low carbon structural steel plates using Gas Metal Arc Welding (GMAW. Experiments were conducted based on central composite rotatable design with full replication technique, and mathematical models were developed using multiple regression method. The developed models have been checked for adequacy and significance. Using Artificial Neural Network (ANN the parameters were predicted, and percentage of error was calculated between predicted and actual values. The direct and interaction effects of process parameters on clad bead geometry are presented in graphical form.

  1. Methods for modeling impact-induced reactivity changes in small reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Tallman, Tyler N.; Radel, Tracy E.; Smith, Jeffrey A.; Villa, Daniel L.; Smith, Brandon M. (U. of Wisconsin, Madison, WI); Radel, Ross F.; Lipinski, Ronald J.; Wilson, Paul Philip Hood (U. of Wisconsin, Madison, WI)

    2010-10-01

    This paper describes techniques for determining impact deformation and the subsequent reactivity change for a space reactor impacting the ground following a potential launch accident or for large fuel bundles in a shipping container following an accident. This technique could be used to determine the margin of subcriticality for such potential accidents. Specifically, the approach couples a finite element continuum mechanics model (Pronto3D or Presto) with a neutronics code (MCNP). DAGMC, developed at the University of Wisconsin-Madison, is used to enable MCNP geometric queries to be performed using Pronto3D output. This paper summarizes what has been done historically for reactor launch analysis, describes the impact criticality analysis methodology, and presents preliminary results using representative reactor designs.

  2. Modeling the behavior of a light-water production reactor target rod

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, D.J.

    1992-03-01

    Pacific Northwest Laboratory has been conducting a series of in-reactor experiments in the Idaho National Engineering Laboratory (INEL) Advanced Test Reactor (ATR) to determine the amount of tritium released by permeation from a target rod under neutron irradiation. The model discussed in this report was developed from first principles to model the behavior of the first target rod irradiated in the ATR. The model can be used to determine predictive relationships for the amount of tritium that permeates through the target rod cladding during irradiation. The model consists of terms and equations for tritium production, gettering, partial pressure, and permeation, all of which are described in this report. The model addressed only the condition of steady state and features only a single adjustable parameter. The target rod design for producing tritium in a light-water reactor was tested first in the WC-1 in-reactor experiment. During irradiation, tritium is generated in the target rod within the ceramic lithium target material. The target rod has been engineered to limit the release of tritium to the reactor coolant during normal operations. The engineered features are a nickel-plated Zircaloy-4 getter and a barrier coating on the cladding surfaces. The ceramic target is wrapped with the getter material and the resulting ``pencils`` are inserted into the barrier coated cladding. These features of the rod are described in the report, along with the release of tritium from the ceramic target. The steady-state model could be useful for the design procedure of target rod components.

  3. Modeling the behavior of a light-water production reactor target rod

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, D.J.

    1992-03-01

    Pacific Northwest Laboratory has been conducting a series of in-reactor experiments in the Idaho National Engineering Laboratory (INEL) Advanced Test Reactor (ATR) to determine the amount of tritium released by permeation from a target rod under neutron irradiation. The model discussed in this report was developed from first principles to model the behavior of the first target rod irradiated in the ATR. The model can be used to determine predictive relationships for the amount of tritium that permeates through the target rod cladding during irradiation. The model consists of terms and equations for tritium production, gettering, partial pressure, and permeation, all of which are described in this report. The model addressed only the condition of steady state and features only a single adjustable parameter. The target rod design for producing tritium in a light-water reactor was tested first in the WC-1 in-reactor experiment. During irradiation, tritium is generated in the target rod within the ceramic lithium target material. The target rod has been engineered to limit the release of tritium to the reactor coolant during normal operations. The engineered features are a nickel-plated Zircaloy-4 getter and a barrier coating on the cladding surfaces. The ceramic target is wrapped with the getter material and the resulting pencils'' are inserted into the barrier coated cladding. These features of the rod are described in the report, along with the release of tritium from the ceramic target. The steady-state model could be useful for the design procedure of target rod components.

  4. Confirmation of a realistic reactor model for BNCT dosimetry at the TRIGA Mainz.

    Science.gov (United States)

    Ziegner, Markus; Schmitz, Tobias; Khan, Rustam; Blaickner, Matthias; Palmans, Hugo; Sharpe, Peter; Hampel, Gabriele; Böck, Helmuth

    2014-11-01

    In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations. The depletion calculation code origen2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core. The material composition of the current core was used in a mcnp5 model of the initial core developed earlier. To perform calculations for the region outside the reactor core, the model was expanded to include the thermal column and compared with the previously established attila model. Subsequently, the computational model is simplified in order to reduce the calculation time. Both simulation models are validated by experiments with different setups using alanine dosimetry and gold activation measurements with two different types of phantoms. The mcnp5 simulated neutron spectrum and source strength are found to be in good agreement with the previous attila model whereas the photon production is much lower. Both mcnp5 simulation models predict all experimental dose values with an accuracy of about 5%. The simulations reveal that a Teflon environment favorably reduces the gamma dose component as compared to a polymethyl methacrylate phantom. A computer model for BNCT dosimetry was established, allowing the prediction of dosimetric quantities without further calibration and within a reasonable computation time for clinical applications. The good agreement between the mcnp5 simulations and experiments demonstrates that the attila model overestimates the gamma dose contribution. The detailed model can be used for the planning of structural modifications in the thermal column

  5. PEBBLES: A COMPUTER CODE FOR MODELING PACKING, FLOW AND RECIRCULATIONOF PEBBLES IN A PEBBLE BED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-10-01

    A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.

  6. Confirmation of a realistic reactor model for BNCT dosimetry at the TRIGA Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Ziegner, Markus, E-mail: Markus.Ziegner.fl@ait.ac.at [AIT Austrian Institute of Technology GmbH, Vienna A-1220, Austria and Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna A-1020 (Austria); Schmitz, Tobias; Hampel, Gabriele [Institut für Kernchemie, Johannes Gutenberg-Universität, Mainz DE-55128 (Germany); Khan, Rustam [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad PK-44000 (Pakistan); Blaickner, Matthias [AIT Austrian Institute of Technology GmbH, Vienna A-1220 (Austria); Palmans, Hugo [Acoustics and Ionising Radiation Division, National Physical Laboratory, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, Wiener Neustadt A-2700 (Austria); Sharpe, Peter [Acoustics and Ionising Radiation Division, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Böck, Helmuth [Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna A-1020 (Austria)

    2014-11-01

    Purpose: In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations. Methods: The depletion calculation code ORIGEN2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core. The material composition of the current core was used in a MCNP5 model of the initial core developed earlier. To perform calculations for the region outside the reactor core, the model was expanded to include the thermal column and compared with the previously established ATTILA model. Subsequently, the computational model is simplified in order to reduce the calculation time. Both simulation models are validated by experiments with different setups using alanine dosimetry and gold activation measurements with two different types of phantoms. Results: The MCNP5 simulated neutron spectrum and source strength are found to be in good agreement with the previous ATTILA model whereas the photon production is much lower. Both MCNP5 simulation models predict all experimental dose values with an accuracy of about 5%. The simulations reveal that a Teflon environment favorably reduces the gamma dose component as compared to a polymethyl methacrylate phantom. Conclusions: A computer model for BNCT dosimetry was established, allowing the prediction of dosimetric quantities without further calibration and within a reasonable computation time for clinical applications. The good agreement between the MCNP5 simulations and experiments demonstrates that the ATTILA model overestimates the gamma dose contribution. The detailed model can be used for the planning of structural

  7. Modelization of physical phenomena in research reactors with the help of new developments in transport methods, and methodology validation with experimental data; Modelisation des phenomenes physiques dans les reacteurs de recherche a l'aide de developpements realises dans les methodes de transport et qualification

    Energy Technology Data Exchange (ETDEWEB)

    Rauck, St

    2000-10-01

    The aim of this work is to develop a scheme for experimental reactors, based on transport equations. This type of reactors is characterized by a small core, a complex, very heterogeneous geometry and a large leakage. The possible insertion of neutron beams in the reflector and the presence of absorbers in the core increase the difficulty of the 3D-geometrical description and the physical modeling of the component parameters of the reactor. The Orphee reactor has been chosen for our study. Physical models (homogenization, collapsing cross section in few groups, albedo multigroup condition) have been developed in the APOLLO2 and CRONOS2 codes to calculate flux and power maps in a 3D-geometry, with different burnup and through transport equations. Comparisons with experimental measurements have shown the interest of taking into account anisotropy, steep flux gradients by using Sn methods, and on the other hand using a 12-group cross section library. The modeling of neutron beams has been done outside the core modeling through Monte Carlo calculations and with the total geometry, including a large thickness of heavy water. Thanks to this calculations, one can evaluate the neutron beams anti-reactivity and determinate the core cycle. We assure these methods more accurate than usual transport-diffusion calculations will be used for the conception of new research reactors. (author)

  8. Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data

    Science.gov (United States)

    Minson, Sarah E.; Murray, Jessica R.; Langbein, John O.; Gomberg, Joan S.

    2015-01-01

    We present an inversion strategy capable of using real-time high-rate GPS data to simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can solve this complex inversion problem (including calculating the uncertainties on our results) in real time. Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time, the time required to obtain a source model of the earthquake does not depend on the computational cost. Instead, the time required is controlled by the duration of the rupture and the time required for information to propagate from the source to the receivers. We apply our modeling approach, called Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases, the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time series are the best data to use for determining the moment magnitude of the event, but slightly smoothing the raw time series helps stabilize the inversion for fault geometry.

  9. Non-invasive 3D geometry extraction and robotic modeling of a Sea lion foreflipper

    Science.gov (United States)

    Patel, R. K.; Leftwich, M. C.; Friedman, C.

    2016-02-01

    California Sea Lions are very agile swimmers and unlike many marine animals, they use their fore flipper rather than their hind flipper undulations to generate high thrust values. To date there exist limited amount of qualitative studies for sea lions swimming that show the flippers are used for thrust, stability, and control during swimming motions. Quantitative studies mainly measured drag used for cost of transport, and analyzed banked turn performance. Recently, the kinematics of a California sea lion flipper during the thrust phase was extracted using video tracking in two dimensions. This work extends the tracking ability to three dimensions using a non-invasive Direct Linear Transformation (DLT) technique employed on non-research sea lions at the Smithsonian National Zoological Park. The flippers are therefore marker-less and tracking is carried out manually in post processing after capturing complete dorsal-ventral flipper motions. Two cameras are used (3840 × 2160 pixels resolution) and calibrated in space using a calibration target inserted into the sea lion habitat. They are synchronized in time using a simple light flash. The fluid flow and forces generated by a sea lion clap is also being explored. Recently, a sea lion flipper from a deceased subject was externally scanned in high detail for fluid dynamics research. The flipper's geometry is being used in this work to design and build an articulate flipper model that is approximately 60% of the full size span. The model is actuated by servo motors and is designed to mimic a sea lion flipper clap motion based on the previously extracted kinematics from above. The model incorporates three axles, simulating the movements of the sea lion's elbow, wrist, and knuckles. The flipper tip speed is designed to match typical Reynolds numbers for the full-scale flipper for an acceleration from rest maneuver. The model will be tested in a water flume to obtain the forces during the thrust production phase of the

  10. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  11. Two-phase flow experiments in a model of the hot leg of a pressurised water reactor. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Tobias; Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Deendarlianto

    2011-09-15

    In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264 C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which

  12. Modeling of mass transfer and chemical reactions in a bubble column reactor using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2004-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  13. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.

  14. Process-based, long-term morphodynamic modeling to investigate conditions for equilibrium estuarine geometry

    Science.gov (United States)

    van der Wegen, M.; Wang, Z. B.; Savenije, H. H. G.; Roelvink, J. A.

    2009-04-01

    a (damped) classical progressive wave. After 6400 years the model shows these two tidal wave characteristics, both present in about 40 % of the tidal embayment with a 20% transient interval in between. The results suggest that alluvial estuaries evolve towards an exponentially shaped geometry although the evolution timescale is long and allows for different tidal wave characteristics more landward. Friedrichs, C.T. and D.G. Aubrey (1994), Tidal propagation in strongly convergent channels, Journal of Geophysical Research, 99(C2), 3321-3336. Friedrichs, C.T., (1995), Stability Shear Stress and Equilibrium Cross-Sectional Geometry of Sheltered Tidal Channels, Journal of Coastal Research, 11, 4, 1062-1074. Jay, D.A., (1991). Green's law revisited: Tidal long wave propagation in channels with strong topography, Journal of Geophysical Research, Vol. 96, no C11, 20,585-20,598 Prandle, D., (2003), Relationship between tidal dynamics and bathymetry in strongly convergent estuaries, Journal of Physical Oceanography, 33, 2738-2750. Savenije, H.H.G., (2001), A simple analytical expression to describe tidal damping or amplification, Journal of Hydrology, 243, 205-215. Van der Wegen, M., Wang, Z.B., Savenije, H.H.G., Roelvink, J.A., 2008. Long-term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment, J. Geophys. Res., Vol. 113, F03001, doi:10.1029/2007JF000898

  15. Experimental and modeling analysis of fast ionization wave discharge propagation in a rectangular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, Keisuke; Adamovich, Igor V. [Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Xiong Zhongmin; Kushner, Mark J. [Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Starikovskaia, Svetlana [Ecole Polytechnique, Paris (France); Czarnetzki, Uwe; Luggenhoelscher, Dirk [Department of Physics and Astronomy, Ruhr University Bochum, Bochum (Germany)

    2011-08-15

    Fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 ns, and voltage rise time {approx}1 kV/ns), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.

  16. Influence of Initial Geometry and Boundary Conditions on Flat Subduction Models and Resulting Topography

    Science.gov (United States)

    Nelson, P.; Moucha, R.

    2014-12-01

    Numerical investigations of surface deformation in response to flat slab subduction began with seminal papers by Bird (1988) and Mitrovica et al. (1989). Recently, a number of numerical studies have begun to explore the complexity in the dynamics of flat-slab subduction initiation and continuation, but did not address the corresponding surface deformation (English et al., 2003; Pérez-Campos et al., 2008; Liu et al., 2010; Jones et al., 2011; Arrial and Billen, 2013; Vogt and Gerya, 2014). Herein, we explore the conditions that lead to flat-slab subduction and characterize the resulting surface deformation using a 2D finite-difference marker-in-cell method. We specifically explore how initial model geometry and boundary conditions affect the evolution of the angle at which a slab subducts in the presence/absence of a buoyant oceanic plateau and the resulting surface topography. In our simulations, the surface is tracked through time as an internal erosion/sedimentation surface. The top boundary of the crust is overlaid by a "sticky" (viscous 10^17 Pa.s) water/air layer with correspondingly stratified densities. We apply a coupled surface processes model that solves the sediment transport/diffusion erosion equation at each time step to account for the corresponding crustal mass flux and its effect on crustal deformation. Model results show the initial angle of subduction has a substantial impact on the subduction angle of the slab and hence the evolution of topography. The results also indicate plate velocity and the presence of an oceanic plateau in a forced subduction only have a moderate effect on the angle of subduction.

  17. Improving activity transport models for water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A

    2001-08-01

    Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH{sub T} constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)

  18. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion

    Science.gov (United States)

    López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  19. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion.

    Science.gov (United States)

    López-Sánchez, Erick J; Romero, Juan M; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  20. Fracture mechanics of the femoral neck in a composite bone model: effects of platen geometry.

    Science.gov (United States)

    Smith, Sean D; Jansson, Kyle S; Philippon, Marc J; LaPrade, Robert F; Wijdicks, Coen A

    2014-01-22

    Load applicator (platen) geometry used for axial load to failure testing of the femoral neck varies between studies and the biomechanical consequences are unknown. The purpose of this study was to determine if load application with a flat versus a conical platen results in differing fracture mechanics. Femurs were aligned in 25° of adduction and an axial compressive force was applied to the femoral heads at a rate of 6 mm/min until failure. Load application with the conical platen resulted in an average ultimate failure load, stiffness, and energy to failure of 9067 N, 4033 N/mm, and 12.12 J, respectively. Load application with the flat platen resulted in a significant (pfracture patterns were observed for the two platens and the conical platen produced fractures more similar to clinical observations. Use of a flat platen underestimates the strength and stiffness of the femoral neck and inaccurately predicts the associated fracture pattern. These findings must be considered when interpreting the results of prior biomechanical studies on femoral neck fracture and for the development of future femoral neck fracture models. © 2013 Elsevier Ltd. All rights reserved.

  1. Modeling and Analysis of Cellular Networks using Stochastic Geometry: A Tutorial

    KAUST Repository

    Elsawy, Hesham

    2016-11-03

    This paper presents a tutorial on stochastic geometry (SG) based analysis for cellular networks. This tutorial is distinguished by its depth with respect to wireless communication details and its focus on cellular networks. The paper starts by modeling and analyzing the baseband interference in a baseline single-tier downlink cellular network with single antenna base stations and universal frequency reuse. Then, it characterizes signal-to-interference-plus-noise-ratio (SINR) and its related performance metrics. In particular, a unified approach to conduct error probability, outage probability, and transmission rate analysis is presented. Although the main focus of the paper is on cellular networks, the presented unified approach applies for other types of wireless networks that impose interference protection around receivers. The paper then extends the unified approach to capture cellular network characteristics (e.g., frequency reuse, multiple antenna, power control, etc.). It also presents numerical examples associated with demonstrations and discussions. To this end, the paper highlights the state-of-the- art research and points out future research directions.

  2. Modeling Geometry and Progressive Failure of Material Interfaces in Plain Weave Composites

    Science.gov (United States)

    Hsu, Su-Yuen; Cheng, Ron-Bin

    2010-01-01

    A procedure combining a geometrically nonlinear, explicit-dynamics contact analysis, computer aided design techniques, and elasticity-based mesh adjustment is proposed to efficiently generate realistic finite element models for meso-mechanical analysis of progressive failure in textile composites. In the procedure, the geometry of fiber tows is obtained by imposing a fictitious expansion on the tows. Meshes resulting from the procedure are conformal with the computed tow-tow and tow-matrix interfaces but are incongruent at the interfaces. The mesh interfaces are treated as cohesive contact surfaces not only to resolve the incongruence but also to simulate progressive failure. The method is employed to simulate debonding at the material interfaces in a ceramic-matrix plain weave composite with matrix porosity and in a polymeric matrix plain weave composite without matrix porosity, both subject to uniaxial cyclic loading. The numerical results indicate progression of the interfacial damage during every loading and reverse loading event in a constant strain amplitude cyclic process. However, the composites show different patterns of damage advancement.

  3. Lithologically controlled strength variation and the Himalayan megathrust geometry: an analogue modeling approach

    Science.gov (United States)

    Ghosh, Subhajit; Das, Animesh; Bose, Santanu; Mandal, Nibir

    2017-04-01

    thrust to localize in the close vicinity of the weak zone, splaying from the basal décollement. Eventually, the weak horizon starts to deform by accumulating shear strain along it, leading to a new detachment at a shallow depth. At this stage, entire shallow part of the sandpack lying over the weak layer is deformed by closely-spaced imbricate thrusts. Extrapolating the model results to the natural prototype, we propose that the unmetamorphosed coal-shale-sand stone-black shale horizons below the Siwaliks as a key mechanical attribute to the basal décollement shift and the consequent flat-ramp-flat geometry of the MHT.

  4. Scaled model studies of decay heat removal by natural convection for sodium cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H. (Institut fuer Angewandte Thermo- und Fluiddynamik (IATF), Kernforschungszentrum Karlsruhe (Germany)); Weinberg, D. (Institut fuer Angewandte Thermo- und Fluiddynamik (IATF), Kernforschungszentrum Karlsruhe (Germany)); Marten, K. (Institut fuer Angewandte Thermo- und Fluiddynamik (IATF), Kernforschungszentrum Karlsruhe (Germany)); Schnetgoeke, G. (Institut fuer Angewandte Thermo- und Fluiddynamik (IATF), Kernforschungszentrum Karlsruhe (Germany))

    1993-06-01

    Thermohydraulic experiments were performed with water in order to simulate decay heat removal by natural convection in a pool-type sodium cooled reactor. Two water test rigs of different scales were used, namely, RAMONA (1:20) and NEPTUN (1:5). RAMONA was taken to study the transition from nominal operation by forced convection to decay heat removal operation by natural convection. Steady-state similarity tests were carried out in both facilities. All tests provide a basis for verification of computer programs. Calculations performed with the three-dimensional code FLUTAN proved that the thermohydraulic processes are quantitatively mastered, even for the very complex geometry of the NEPTUN test rig. (orig.)

  5. Analogue modelling of thrust systems : Passive vs. active hanging wall strain accommodation and sharp vs. smooth fault-ramp geometries

    NARCIS (Netherlands)

    Rosas, F.M.; Duarte, J.C.; Almeida, P.; Schellart, W. P.; van Riel, N.A.W.; Terrinha, P.

    2017-01-01

    We present new analogue modelling results of crustal thrust-systems in which a deformable (brittle) hanging wall is assumed to endure passive internal deformation during thrusting, i.e. exclusively as a consequence of having to adapt its shape to the variable geometry of a rigid footwall. Building

  6. Methods and Models for the Coupled Neutronics and Thermal-Hydraulics Analysis of the CROCUS Reactor at EFPL

    Directory of Open Access Journals (Sweden)

    A. Rais

    2015-01-01

    Full Text Available In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear data library for the CROCUS reactor using the Serpent 2 Monte Carlo code and also with reactor core modeling using the PARCS code. PARCS eigenvalue, radial power distribution, and control rod reactivity worth results were benchmarked against Serpent 2 full-core model results. Using the Serpent 2 model as reference, PARCS eigenvalue predictions were within 240 pcm, radial power was within 3% in the central region of the core, and control rod reactivity worth was within 2%. A second part reviews the current methodology used for the safety analysis of the CROCUS reactor and presents the envisioned approach for the multiphysics modeling of the reactor.

  7. Natural and mixed convection in the cylindrical pool of TRIGA reactor

    Science.gov (United States)

    Henry, R.; Tiselj, I.; Matkovič, M.

    2017-02-01

    Temperature fields within the pool of the JSI TRIGA MARK II nuclear research reactor were measured to collect data for validation of the thermal hydraulics computational model of the reactor tank. In this context temperature of the coolant was measured simultaneously at sixty different positions within the pool during steady state operation and two transients. The obtained data revealed local peculiarities of the cooling water dynamics inside the pool and were used to estimate the coolant bulk velocity above the reactor core. Mixed natural and forced convection in the pool were simulated with a Computational Fluid Dynamics code. A relatively simple CFD model based on Unsteady RANS turbulence model was found to be sufficient for accurate prediction of the temperature fields in the pool during the reactor operation. Our results show that the simple geometry of the TRIGA pool reactor makes it a suitable candidate for a simple natural circulation benchmark in cylindrical geometry.

  8. Modeling and optimizing a reactor for producing hydrogen through methane conversion with water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Opris, I.; Gilca, Al.; Popa, Gh.; Vasilescu-Obrejan, A.

    1980-01-01

    A theoretical model is developed for a reactor for converting methane with steam which takes into consideration two sequential reactions: CH/sub 4/+H/sub 2/O yields CO/sup +/3H/sub 2/ and CO/sup +/H/sub 2/O equal and opposite reaction CO/sub 2//sup +/H/sub 2/; the model is constructed with consideration of certain simplifying hypotheses, as well as with the use of known kinetic, thermodynamic and other data. A program is developed for processing the model using a computer. The model may be used for optimizing the operational parameters of the cited reactor for the production of H/sub 2/ and a synthesis gas.

  9. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    Science.gov (United States)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  10. Integrated dynamic modeling of rail vehicles and infrastructure : modeling switch geometry.

    Science.gov (United States)

    2015-08-27

    Many procedures have been proposed to solve the wheel/rail contact problem, most of which belong to one of two categories: off-line and on-line contact search methods. This investigation is focused on the development of a contact surface model for th...

  11. A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)

    Science.gov (United States)

    A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...

  12. Numerical modeling of disperse material evaporation in axisymmetric thermal plasma reactor

    Directory of Open Access Journals (Sweden)

    Stefanović Predrag Lj.

    2003-01-01

    Full Text Available A numerical 3D Euler-Lagrangian stochastic-deterministic (LSD model of two-phase flow laden with solid particles was developed. The model includes the relevant physical effects, namely phase interaction, panicle dispersion by turbulence, lift forces, particle-particle collisions, particle-wall collisions, heat and mass transfer between phases, melting and evaporation of particles, vapour diffusion in the gas flow. It was applied to simulate the processes in thermal plasma reactors, designed for the production of the ceramic powders. Paper presents results of extensive numerical simulation provided (a to determine critical mechanism of interphase heat and mass transfer in plasma flows, (b to show relative influence of some plasma reactor parameters on solid precursor evaporation efficiency: 1 - inlet plasma temperature, 2 - inlet plasma velocity, 3 - particle initial diameter, 4 - particle injection angle a, and 5 - reactor wall temperature, (c to analyze the possibilities for high evaporation efficiency of different starting solid precursors (Si, Al, Ti, and B2O3 powder, and (d to compare different plasma reactor configurations in conjunction with disperse material evaporation efficiency.

  13. CFD analysis and flow model reduction for surfactant production in helix reactor

    Directory of Open Access Journals (Sweden)

    Nikačević N.M.

    2015-01-01

    Full Text Available Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD simulations. Non-reactive flow is simulated, though viscosity is treated as variable in the direction of flow, as it increases during the reaction. The design and operating parameters (reactor diameter, number of coils and inlet velocity are varied in CFD simulations, in order to examine the effects on the flow pattern. Given that 3D simulations are not practical for fast computations needed for optimization, scale-up and control, CFD flow model is reduced to one-dimensional axial dispersion (AD model with spatially variable dispersion coefficient. Dimensionless dispersion coefficient (Pe is estimated under different conditions and results are analyzed. Finally, correlation which relates Pe number with Reynolds number and number of coils from the reactor entrance is proposed for the particular reactor application and conditions.

  14. Non-Riemannian geometry, Born-Infeld models and trace free gravitational equations

    Science.gov (United States)

    Cirilo-Lombardo, Diego Julio

    2017-12-01

    Non-Riemannian generalization of the standard Born-Infeld (BI) Lagrangian is introduced and analyzed from a theory of gravitation with dynamical torsion field. The field equations derived from the proposed action lead to a trace free gravitational equation (non-Riemannian analog to the trace free equation (TFE) from Finkelstein et al., 2001; Ellis et al., 2011; Ellis, 2014) and the field equations for the torsion respectively. In this theoretical context, the fundamental constants arise all from the same geometry through geometrical invariant quantities (as from the curvature R). New results involving generation of primordial magnetic fields and the link with leptogenesis and baryogenesis are presented and possible explanations given. The physically admissible matter fields can be introduced in the model via the torsion vector hμ. Such fields include some dark matter candidates such as axion, right neutrinos and Majorana and moreover, physical observables as vorticity can be included in the same way. From a new wormhole solution in a cosmological spacetime with torsion we also show that the primordial cosmic magnetic fields can originate from hμ with the axion field (that is contained in hμ) the responsible to control the dynamics and stability of the cosmic magnetic field but not the magnetogenesis itself. As we pointed out before (Cirilo-Lombardo, 2017), the analysis of Grand Unified Theories (GUT) in the context of this model indicates that the group manifold candidates are based in SO (10), SU (5) or some exceptional groups as E (6), E (7) , etc.

  15. A free geometry model-independent neural eye-gaze tracking system.

    Science.gov (United States)

    Gneo, Massimo; Schmid, Maurizio; Conforto, Silvia; D'Alessio, Tommaso

    2012-11-16

    Eye Gaze Tracking Systems (EGTSs) estimate the Point Of Gaze (POG) of a user. In diagnostic applications EGTSs are used to study oculomotor characteristics and abnormalities, whereas in interactive applications EGTSs are proposed as input devices for human computer interfaces (HCI), e.g. to move a cursor on the screen when mouse control is not possible, such as in the case of assistive devices for people suffering from locked-in syndrome. If the user's head remains still and the cornea rotates around its fixed centre, the pupil follows the eye in the images captured from one or more cameras, whereas the outer corneal reflection generated by an IR light source, i.e. glint, can be assumed as a fixed reference point. According to the so-called pupil centre corneal reflection method (PCCR), the POG can be thus estimated from the pupil-glint vector. A new model-independent EGTS based on the PCCR is proposed. The mapping function based on artificial neural networks allows to avoid any specific model assumption and approximation either for the user's eye physiology or for the system initial setup admitting a free geometry positioning for the user and the system components. The robustness of the proposed EGTS is proven by assessing its accuracy when tested on real data coming from: i) different healthy users; ii) different geometric settings of the camera and the light sources; iii) different protocols based on the observation of points on a calibration grid and halfway points of a test grid. The achieved accuracy is approximately 0.49°, 0.41°, and 0.62° for respectively the horizontal, vertical and radial error of the POG. The results prove the validity of the proposed approach as the proposed system performs better than EGTSs designed for HCI which, even if equipped with superior hardware, show accuracy values in the range 0.6°-1°.

  16. Resolving Nuclear Reactor Lifetime Extension Questions: A Combined Multiscale Modeling and Positron Characterization approach

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, B; Asoka-Kumar, P; Denison, A; Glade, S; Howell, R; Marian, J; Odette, G; Sterne, P

    2004-04-06

    The objective of this work is to determine the chemical composition of nanometer precipitates responsible for irradiation hardening and embrittlement of reactor pressure vessel steels, which threaten to limit the operating lifetime of nuclear power plants worldwide. The scientific approach incorporates computational multiscale modeling of radiation damage and microstructural evolution in Fe-Cu-Ni-Mn alloys, and experimental characterization by positron annihilation spectroscopy and small angle neutron scattering. The modeling and experimental results are

  17. Experimental and Kinetic Modeling Study of Ethyl Levulinate Oxidation in a Jet-Stirred Reactor

    KAUST Repository

    Wang, Jui-Yang

    2017-06-01

    A jet-stirred reactor was designed and constructed in the Clean Combustion Research Center (CCRC) at King Abdullah University of Science and Technology (KAUST); was validated with n-heptane, iso-octane oxidation and cyclohexene pyrolysis. Different configurations of the setup have been tested to achieve good agreement with results from the literature. Test results of the reactor indicated that installation of a pumping system at the downstream side in the experimental apparatus was necessary to avoid the reoccurrence of reactions in the sampling probe. Experiments in ethyl levulinate oxidation were conducted in the reactor under several equivalence ratios, from 600 to 1000 K, 1 bar and 2 s residence time. Oxygenated species detected included methyl vinyl ketone, levulinic acid and ethyl acrylate. Ethylene, methane, carbon monoxide, hydrogen, oxygen and carbon dioxide were further quantified with a gas chromatography, coupled with a flame ionization detector and a thermal conductivity detector. The ethyl levulinate chemical kinetic model was first developed by Dr. Stephen Dooley, Trinity College Dublin, and simulated under the same conditions, using the Perfect-Stirred Reactor code in Chemkin software. In comparing the simulation results with experimental data, some discrepancies were noted; predictions of ethylene production were not well matched. The kinetic model was improved by updating several classes of reactions: unimolecular decomposition, H-abstraction, C-C and C-O beta-scissions of fuel radicals. The updated model was then compared again with experimental results and good agreement was achieved, proving that the concerted eliminated reaction is crucial for the kinetic mechanism formulation of ethyl levulinate. In addition, primary reaction pathways and sensitivity analysis were performed to describe the role of molecular structure in combustion (800 and 1000 K for ethyl levulinate oxidation in the jet-stirred reactor).

  18. Differential geometry

    CERN Document Server

    Guggenheimer, Heinrich W

    1977-01-01

    This is a text of local differential geometry considered as an application of advanced calculus and linear algebra. The discussion is designed for advanced undergraduate or beginning graduate study, and presumes of readers only a fair knowledge of matrix algebra and of advanced calculus of functions of several real variables. The author, who is a Professor of Mathematics at the Polytechnic Institute of New York, begins with a discussion of plane geometry and then treats the local theory of Lie groups and transformation groups, solid differential geometry, and Riemannian geometry, leading to a

  19. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  20. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety

  1. Technical report on implementation of reactor internal 3D modeling and visual database system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeun Seung; Eom, Young Sam; Lee, Suk Hee; Ryu, Seung Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    In this report was described a prototype of reactor internal 3D modeling and VDB system for NSSS design quality improvement. For improving NSSS design quality several cases of the nuclear developed nation`s integrated computer aided engineering system, such as Mitsubishi`s NUWINGS (Japan), AECL`s CANDID (Canada) and Duke Power`s PASCE (USA) were studied. On the basis of these studies the strategy for NSSS design improvement system was extracted and detail work scope was implemented as follows : 3D modelling of the reactor internals were implemented by using the parametric solid modeler, a prototype system of design document computerization and database was suggested, and walk-through simulation integrated with 3D modeling and VDB was accomplished. Major effects of NSSS design quality improvement system by using 3D modeling and VDB are the plant design optimization by simulation, improving the reliability through the single design database system and engineering cost reduction by improving productivity and efficiency. For applying the VDB to full scope of NSSS system design, 3D modelings of reactor coolant system and nuclear fuel assembly and fuel rod were attached as appendix. 2 tabs., 31 figs., 7 refs. (Author) .new.

  2. Swelling in light water reactor internal components: Insights from computational modeling

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, Roger E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barashev, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Golubov, Stanislav I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    A modern cluster dynamics model has been used to investigate the materials and irradiation parameters that control microstructural evolution under the relatively low-temperature exposure conditions that are representative of the operating environment for in-core light water reactor components. The focus is on components fabricated from austenitic stainless steel. The model accounts for the synergistic interaction between radiation-produced vacancies and the helium that is produced by nuclear transmutation reactions. Cavity nucleation rates are shown to be relatively high in this temperature regime (275 to 325°C), but are sensitive to assumptions about the fine scale microstructure produced under low-temperature irradiation. The cavity nucleation rates observed run counter to the expectation that void swelling would not occur under these conditions. This expectation was based on previous research on void swelling in austenitic steels in fast reactors. This misleading impression arose primarily from an absence of relevant data. The results of the computational modeling are generally consistent with recent data obtained by examining ex-service components. However, it has been shown that the sensitivity of the model s predictions of low-temperature swelling behavior to assumptions about the primary damage source term and specification of the mean-field sink strengths is somewhat greater that that observed at higher temperatures. Further assessment of the mathematical model is underway to meet the long-term objective of this research, which is to provide a predictive model of void swelling at relevant lifetime exposures to support extended reactor operations.

  3. Multi-objective genetic algorithm parameter estimation in a reduced nuclear reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Marseguerra, M.; Zio, E.; Canetta, R. [Polytechnic of Milan, Dept. of Nuclear Engineering, Milano (Italy)

    2005-07-01

    The fast increase in computing power has rendered, and will continue to render, more and more feasible the incorporation of dynamics in the safety and reliability models of complex engineering systems. In particular, the Monte Carlo simulation framework offers a natural environment for estimating the reliability of systems with dynamic features. However, the time-integration of the dynamic processes may render the Monte Carlo simulation quite burdensome so that it becomes mandatory to resort to validated, simplified models of process evolution. Such models are typically based on lumped effective parameters whose values need to be suitably estimated so as to best fit to the available plant data. In this paper we propose a multi-objective genetic algorithm approach for the estimation of the effective parameters of a simplified model of nuclear reactor dynamics. The calibration of the effective parameters is achieved by best fitting the model responses of the quantities of interest to the actual evolution profiles. A case study is reported in which the real reactor is simulated by the QUAndry based Reactor Kinetics (Quark) code available from the Nuclear Energy Agency and the simplified model is based on the point kinetics approximation to describe the neutron balance in the core and on thermal equilibrium relations to describe the energy exchange between the different loops. (authors)

  4. Sensitivity Analysis of the TRIGA IPR-R1 Reactor Models Using the MCNP Code

    Directory of Open Access Journals (Sweden)

    C. A. M. Silva

    2014-01-01

    Full Text Available In the process of verification and validation of code modelling, the sensitivity analysis including systematic variations in code input variables must be used to help identifying the relevant parameters necessary for a determined type of analysis. The aim of this work is to identify how much the code results are affected by two different types of the TRIGA IPR-R1 reactor modelling processes performed using the MCNP (Monte Carlo N-Particle Transport code. The sensitivity analyses included small differences of the core and the rods dimensions and different levels of model detailing. Four models were simulated and neutronic parameters such as effective multiplication factor (keff, reactivity (ρ, and thermal and total neutron flux in central thimble in some different conditions of the reactor operation were analysed. The simulated models presented good agreement between them, as well as in comparison with available experimental data. In this way, the sensitivity analyses demonstrated that simulations of the TRIGA IPR-R1 reactor can be performed using any one of the four investigated MCNP models to obtain the referenced neutronic parameters.

  5. Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2016-05-15

    Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis

  6. Sensitivity Analysis for Iceberg Geometry Shape in Ship-Iceberg Collision in View of Different Material Models

    Directory of Open Access Journals (Sweden)

    Yan Gao

    2014-01-01

    Full Text Available The increasing marine activities in Arctic area have brought growing interest in ship-iceberg collision study. The purpose of this paper is to study the iceberg geometry shape effect on the collision process. In order to estimate the sensitivity parameter, five different geometry iceberg models and two iceberg material models are adopted in the analysis. The FEM numerical simulation is used to predict the scenario and the related responses. The simulation results including energy dissipation and impact force are investigated and compared. It is shown that the collision process and energy dissipation are more sensitive to iceberg local shape than other factors when the elastic-plastic iceberg material model is applied. The blunt iceberg models act rigidly while the sharp ones crush easily during the simulation process. With respect to the crushable foam iceberg material model, the iceberg geometry has relatively small influence on the collision process. The spherical iceberg model shows the most rigidity for both iceberg material models and should be paid the most attention for ice-resist design for ships.

  7. Modeling of a Buss-Kneader as a Polymerization Reactor for Acrylates. Part I : Model Validation

    NARCIS (Netherlands)

    Troelstra, E.J; van Lune, J.; Dierendonck , van L.L.; Janssen, L.P.B.M.; Renken, A.

    2002-01-01

    The Buss-Kneader is generally known as a compounding device. Although a reasonable number of papers have been published on extruders as polymerization reactors, only little is known about the behavior of the Buss-Kneader when used as a polymerization reactor. Its good mixing properties in the radial

  8. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.

  9. Structure analysis of a reactor pressure vessel by two and three-dimensional models

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, H.; Mayr, M. (Technischer Ueberwachungs-Verein Bayern e.V., Muenchen (Germany, F.R.))

    1982-03-01

    This paper investigates the reactor pressure vessel of a 1300 MW pressurised water reactor. In order to determine the stresses and deformations of the vessel, two- and three-dimensional finite element models are used which represent the real structure with different degrees of accuracy. The results achieved by these different models are compared for the case of the transient called 'Start up of the nuclear power plant'. It was found that axisymmetric models, which consider non-axisymmetric components by correction factors, together with special attention to holes and other stress concentrations, allow a sufficient computation of stresses and deformations in the vessel, with the exception of the coolant nozzle region. In this latter case a fully three-dimensional analysis may be necessary.

  10. Modeling Of A Fluid Catalytic Cracking (Fcc) Riser Reactor - The ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 1 (2002) >. Log in or Register to get access to full text downloads.

  11. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  12. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.

    Science.gov (United States)

    Worth Longest, P; Hindle, Michael; Das Choudhuri, Suparna

    2009-06-01

    For most newly developed spray aerosol inhalers, the generation time is a potentially important variable that can be fully controlled. The objective of this study was to determine the effects of spray aerosol generation time on transport and deposition in a standard induction port (IP) and more realistic mouth-throat (MT) geometry. Capillary aerosol generation (CAG) was selected as a representative system in which spray momentum was expected to significantly impact deposition. Sectional and total depositions in the IP and MT geometries were assessed at a constant CAG flow rate of 25 mg/sec for aerosol generation times of 1, 2, and 4 sec using both in vitro experiments and a previously developed computational fluid dynamics (CFD) model. Both the in vitro and numerical results indicated that extending the generation time of the spray aerosol, delivered at a constant mass flow rate, significantly reduced deposition in the IP and more realistic MT geometry. Specifically, increasing the generation time of the CAG system from 1 to 4 sec reduced the deposition fraction in the IP and MT geometries by approximately 60 and 33%, respectively. Furthermore, the CFD predictions of deposition fraction were found to be in good agreement with the in vitro results for all times considered in both the IP and MT geometries. The numerical results indicated that the reduction in deposition fraction over time was associated with temporal dissipation of what was termed the spray aerosol "burst effect." Based on these results, increasing the spray aerosol generation time, at a constant mass flow rate, may be an effective strategy for reducing deposition in the standard IP and in more realistic MT geometries.

  13. On stochastic geometry modeling of cellular uplink transmission with truncated channel inversion power control

    KAUST Repository

    Elsawy, Hesham

    2014-08-01

    Using stochastic geometry, we develop a tractable uplink modeling paradigm for outage probability and spectral efficiency in both single and multi-tier cellular wireless networks. The analysis accounts for per user equipment (UE) power control as well as the maximum power limitations for UEs. More specifically, for interference mitigation and robust uplink communication, each UE is required to control its transmit power such that the average received signal power at its serving base station (BS) is equal to a certain threshold ρo. Due to the limited transmit power, the UEs employ a truncated channel inversion power control policy with a cutoff threshold of ρo. We show that there exists a transfer point in the uplink system performance that depends on the following tuple: BS intensity λ, maximum transmit power of UEs Pu, and ρo. That is, when Pu is a tight operational constraint with respect to (w.r.t.) λ and ρo, the uplink outage probability and spectral efficiency highly depend on the values of λ and ρo. In this case, there exists an optimal cutoff threshold ρ*o, which depends on the system parameters, that minimizes the outage probability. On the other hand, when Pu is not a binding operational constraint w.r.t. λ and ρo, the uplink outage probability and spectral efficiency become independent of λ and ρo. We obtain approximate yet accurate simple expressions for outage probability and spectral efficiency, which reduce to closed forms in some special cases. © 2002-2012 IEEE.

  14. Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2008-02-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

  15. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, N.G. [Nanoscience Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark); Simeoni, G.G., E-mail: ggsimeoni@outlook.com [Heinz Maier-Leibnitz Zentrum (MLZ) and Physics Department, Technical University of Munich, D-85748 Garching (Germany); Lefmann, K. [Nanoscience Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2016-04-21

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (adjustable supermirror curvature) and the compact size (only 0.5 m long). We have simulated the neutron transport across the entire guide system. We present a detailed computer characterization of the existing device, along with the study of the factors mostly influencing the future improvement. We have optimized the simulated prototype as a function of the neutron wavelength, accounting also for all relevant features of a real instrument like the non-reflecting side edges. The results confirm the “chromatic” displacement of the focal point (flux density maximum) at fixed supermirror curvature, and the ability of a variable curvature to keep the focal point at the sample position. Our simulations are in excellent agreement with theoretical predictions and the experimentally measured beam profile. With respect to the possibility of a further upgrade, we find that supermirror coatings with m-values higher than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum.

  16. Tolerance Geometry.

    Science.gov (United States)

    Roberts, Fred S.

    The author cites work on visual perception which indicates that in order to study perception it is necessary to replace such classical geometrical notions as betweeness, straightness, perpendicularity, and parallelism with more general concepts. The term tolerance geometry is used for any geometry when primitive notions are obtained from the…

  17. Impact of Mantle Wind on Subducting Plate Geometry and Interplate Pressure: Insights From Physical Modelling.

    Science.gov (United States)

    Boutelier, D.; Cruden, A. R.

    2005-12-01

    New physical models of subduction investigate the impact of large-scale mantle flow on the structure of the subducted slab and deformation of the downgoing and overriding plates. The experiments comprise two lithospheric plates made of highly filled silicone polymer resting on a model asthenosphere of low viscosity transparent silicone polymer. Subduction is driven by a piston that pushes the subducting plate at constant rate, a slab-pull force due to the relative density of the slab, and a basal drag force exerted by flow in the model asthenosphere. Large-scale mantle flow is imposed by a second piston moving at constant rate in a tunnel at the bottom of the experiment tank. Passive markers in the mantle track the evolution of flow during the experiment. Slab structure is recorded by side pictures of the experiment while horizontal deformation is studied via passive marker grids on top of both plates. The initial mantle flow direction beneath the overriding plate can be sub-horizontal or sub-vertical. In both cases, as the slab penetrates the mantle, the mantle flow pattern changes to accommodate the subducting high viscosity lithosphere. As the slab continues to descend, the imposed flow produces either over- or under-pressure on the lower surface of the slab depending on the initial mantle flow pattern (sub-horizontal or sub-vertical respectively). Over-pressure imposed on the slab lower surface promotes shallow dip subduction while under-pressure tends to steepen the slab. These effects resemble those observed in previous experiments when the overriding plate moves horizontally with respect to a static asthenosphere. Our experiments also demonstrate that a strong vertical drag force (due to relatively fast downward mantle flow) exerted on the slab results in a decrease in strain rate in both the downgoing and overriding plates, suggesting a decrease in interplate pressure. Furthermore, with an increase in drag force deformation in the downgoing plate can switch

  18. Modeling and Analysis of Inter-Vehicle Communication: A Stochastic Geometry Approach

    KAUST Repository

    Farooq, Muhammad Junaid

    2015-05-01

    Vehicular communication is the enabling technology for the development of the intelligent transportation systems (ITS), which aims to improve the efficiency and safety of transportation. It can be used for a variety of useful applications such as adaptive traffic control, coordinated braking, emergency messaging, peer-to-peer networking for infotainment services and automatic toll collection etc... Accurate yet simple models for vehicular networks are required in order to understand and optimize their operation. For reliable communication between vehicles, the spectrum access is coordinated via carrier sense multiple access (CSMA) protocol. Existing models either use a simplified network abstraction and access control scheme for analysis or depend on simulation studies. Therefore it is important to develop an analytical model for CSMA coordinated communication between vehicles. In the first part of the thesis, stochastic geometry is exploited to develop a modeling framework for CSMA coordinated inter-vehicle communication (IVC) in a multi-lane highway scenario. The performance of IVC is studied in multi-lane highways taking into account the inter-lane separations and the number of traffic lanes and it is shown that for wide multi-lane highways, the line abstraction model that is widely used in literature loses accuracy and hence the analysis is not reliable. Since the analysis of CSMA in the vehicular setting makes the analysis intractable, an aggressive interference approximation and a conservative interference approximation is proposed for the probability of transmission success. These approximations are tight in the low traffic and high traffic densities respectively. In the subsequent part of the thesis, the developed model is extended to multi-hop IVC because several vehicular applications require going beyond the local communication and efficiently disseminate information across the roads via multi-hops. Two well-known greedy packet forwarding schemes are

  19. Neutronic study of a nuclear reactor of fused salts; Estudio neutronico de un reactor nuclear de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia B, F. B.; Francois L, J. L., E-mail: faviolabelen@gmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The reactors of fused salts called Molten Salt Reactor have presented a resurgence of interest in the last decade, due to they have a versatility in particular to operate, either with a thermal or fast neutrons spectrum. The most active development was by the middle of 1950 and principles of 1970 in the Oak Ridge National Laboratory. In this work some developed models are presented particularly and studied with the help of the MCNPX code, for the development of the neutronic study of this reactor, starting of proposed models and from a simple and homogeneous geometry until other more complex models and approximate to more real cases. In particular the geometry conditions and criticality of each model were analyzed, the isotopic balance, as well as the concentrations of the salts and different assigned fuel types. (Author)

  20. A model to estimate volume change due to radiolytic gas bubbles and thermal expansion in solution reactors

    Energy Technology Data Exchange (ETDEWEB)

    Souto, F.J. [NIS-6: Advanced Nuclear Technology, Los Alamos National Lab., Los Alamos, NM (United States); Heger, A.S. [ESA-EA: Engineering Sciences and Application, Los Alamos National Lab., Los Alamos, NM (United States)

    2001-07-01

    To investigate the effects of radiolytic gas bubbles and thermal expansion on the steady-state operation of solution reactors at the power level required for the production of medical isotopes, a calculational model has been developed. To validate this model, including its principal hypotheses, specific experiments at the Los Alamos National Laboratory SHEBA uranyl fluoride solution reactor were conducted. The following sections describe radiolytic gas generation in solution reactors, the equations to estimate the fuel solution volume change due to radiolytic gas bubbles and thermal expansion, the experiments conducted at SHEBA, and the comparison of experimental results and model calculations. (author)

  1. (I) A Declarative Framework for ERP Systems(II) Reactors: A Data-Driven Programming Model for Distributed Applications

    DEFF Research Database (Denmark)

    Stefansen, Christian Oskar Erik

    . • Using Soft Constraints to Guide Users in Flexible Business Process Management Systems. The paper shows how the inability of a process language to express soft constraints—constraints that can be violated occasionally, but are closely monitored—leads to a loss of intentional information in process....../Asynchronous Programming Model for Distributed Applications. The paper motivates, explains, and defines a distributed data-driven programming model. In the model a reactor is a stateful unit of distribution. A reactor specifies constructive, declarative constraints on its data and the data of other reactors in the style...

  2. Modeling Crosslinking Polymerization in Batch and Continuous Reactors

    NARCIS (Netherlands)

    Kryven, I.; Berkenbos, A.; Melo, P.; Kim, D.M.; Iedema, P.D.

    2013-01-01

    A new pseudo-distribution approach is applied to the modeling of crosslinking copolymerization of vinyl and divinyl monomer and compared to Monte Carlo (MC) simulations. With the number of free pending double bonds as the main distribution variable, a rigorous solution of the three leading moments

  3. Discrete Dark Matter Model and Reactor Mixing Angle

    OpenAIRE

    Lamprea, J. M.

    2017-01-01

    We present a scenario where the stability of dark matter and the phenomenology of neutrinos are related by the breaking of a flavour symmetry. We propose two models based on this idea for which we have obtained interesting neutrino and dark matter phenomenology.

  4. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Goodarz Ahmadi

    2004-10-01

    In this project, an Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column was developed. The approach used an Eulerian analysis of liquid flows in the bubble column, and made use of the Lagrangian trajectory analysis for the bubbles and particle motions. The bubble-bubble and particle-particle collisions are included the model. The model predictions are compared with the experimental data and good agreement was found An experimental setup for studying two-dimensional bubble columns was developed. The multiphase flow conditions in the bubble column were measured using optical image processing and Particle Image Velocimetry techniques (PIV). A simple shear flow device for bubble motion in a constant shear flow field was also developed. The flow conditions in simple shear flow device were studied using PIV method. Concentration and velocity of particles of different sizes near a wall in a duct flow was also measured. The technique of Phase-Doppler anemometry was used in these studies. An Eulerian volume of fluid (VOF) computational model for the flow condition in the two-dimensional bubble column was also developed. The liquid and bubble motions were analyzed and the results were compared with observed flow patterns in the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were also analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures were also studied. The simulation results were compared with the experimental data and discussed A thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion was developed. The balance laws were obtained and the constitutive laws established.

  5. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  6. Pumps modelling of a sodium fast reactor design and analysis of hydrodynamic behavior

    Directory of Open Access Journals (Sweden)

    Ordóñez Ródenas José

    2016-01-01

    Full Text Available One of the goals of Generation IV reactors is to increase safety from those of previous generations. Different research platforms have been identified the need to improve the reliability of the simulation tools to ensure the capability of the plant to accommodate the design basis transients established in preliminary safety studies. The paper describes the modelling of primary pumps in advanced sodium cooled reactors using the TRACE code. Following the implementation of the models, the results obtained in the analysis of different design basis transients are compared with the simplifying approximations used in reference models. The paper shows the process to obtain a consistent pump model of the ESFR (European Sodium Fast Reactor design and the analysis of loss of flow transients triggered by pumps coast–down analyzing the thermal hydraulic neutronic coupled system response. A sensitivity analysis of the system pressure drops effect and the other relevant parameters that influence the natural convection after the pumps coast–down is also included.

  7. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    Energy Technology Data Exchange (ETDEWEB)

    Oland, C.B.

    1985-01-01

    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs.

  8. Numerical Solution of Fractional Neutron Point Kinetics Model in Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Nowak Tomasz Karol

    2014-06-01

    Full Text Available This paper presents results concerning solutions of the fractional neutron point kinetics model for a nuclear reactor. Proposed model consists of a bilinear system of fractional and ordinary differential equations. Three methods to solve the model are presented and compared. The first one entails application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. Second involves building an analog scheme in the FOMCON Toolbox in MATLAB environment. Third is the method proposed by Edwards. The impact of selected parameters on the model’s response was examined. The results for typical input were discussed and compared.

  9. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Quiping [The Ohio State Univ., Columbus, OH (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Chtistensen, Richard [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States); Yoder, Graydon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  10. Modeling of water lighting process and calculation of the reactor-clarifier to improve energy efficiency

    Science.gov (United States)

    Skolubovich, Yuriy; Skolubovich, Aleksandr; Voitov, Evgeniy; Soppa, Mikhail; Chirkunov, Yuriy

    2017-10-01

    The article considers the current questions of technological modeling and calculation of the new facility for cleaning natural waters, the clarifier reactor for the optimal operating mode, which was developed in Novosibirsk State University of Architecture and Civil Engineering (SibSTRIN). A calculation technique based on well-known dependences of hydraulics is presented. A calculation example of a structure on experimental data is considered. The maximum possible rate of ascending flow of purified water was determined, based on the 24 hour clarification cycle. The fractional composition of the contact mass was determined with minimal expansion of contact mass layer, which ensured the elimination of stagnant zones. The clarification cycle duration was clarified by the parameters of technological modeling by recalculating maximum possible upward flow rate of clarified water. The thickness of the contact mass layer was determined. Likewise, clarification reactors can be calculated for any other lightening conditions.

  11. Unified Tractable Model for Large-Scale Networks Using Stochastic Geometry: Analysis and Design

    KAUST Repository

    Afify, Laila H.

    2016-12-01

    The ever-growing demands for wireless technologies necessitate the evolution of next generation wireless networks that fulfill the diverse wireless users requirements. However, upscaling existing wireless networks implies upscaling an intrinsic component in the wireless domain; the aggregate network interference. Being the main performance limiting factor, it becomes crucial to develop a rigorous analytical framework to accurately characterize the out-of-cell interference, to reap the benefits of emerging networks. Due to the different network setups and key performance indicators, it is essential to conduct a comprehensive study that unifies the various network configurations together with the different tangible performance metrics. In that regard, the focus of this thesis is to present a unified mathematical paradigm, based on Stochastic Geometry, for large-scale networks with different antenna/network configurations. By exploiting such a unified study, we propose an efficient automated network design strategy to satisfy the desired network objectives. First, this thesis studies the exact aggregate network interference characterization, by accounting for each of the interferers signals in the large-scale network. Second, we show that the information about the interferers symbols can be approximated via the Gaussian signaling approach. The developed mathematical model presents twofold analysis unification for uplink and downlink cellular networks literature. It aligns the tangible decoding error probability analysis with the abstract outage probability and ergodic rate analysis. Furthermore, it unifies the analysis for different antenna configurations, i.e., various multiple-input multiple-output (MIMO) systems. Accordingly, we propose a novel reliable network design strategy that is capable of appropriately adjusting the network parameters to meet desired design criteria. In addition, we discuss the diversity-multiplexing tradeoffs imposed by differently favored

  12. A free geometry model-independent neural eye-gaze tracking system

    Directory of Open Access Journals (Sweden)

    Gneo Massimo

    2012-11-01

    Full Text Available Abstract Background Eye Gaze Tracking Systems (EGTSs estimate the Point Of Gaze (POG of a user. In diagnostic applications EGTSs are used to study oculomotor characteristics and abnormalities, whereas in interactive applications EGTSs are proposed as input devices for human computer interfaces (HCI, e.g. to move a cursor on the screen when mouse control is not possible, such as in the case of assistive devices for people suffering from locked-in syndrome. If the user’s head remains still and the cornea rotates around its fixed centre, the pupil follows the eye in the images captured from one or more cameras, whereas the outer corneal reflection generated by an IR light source, i.e. glint, can be assumed as a fixed reference point. According to the so-called pupil centre corneal reflection method (PCCR, the POG can be thus estimated from the pupil-glint vector. Methods A new model-independent EGTS based on the PCCR is proposed. The mapping function based on artificial neural networks allows to avoid any specific model assumption and approximation either for the user’s eye physiology or for the system initial setup admitting a free geometry positioning for the user and the system components. The robustness of the proposed EGTS is proven by assessing its accuracy when tested on real data coming from: i different healthy users; ii different geometric settings of the camera and the light sources; iii different protocols based on the observation of points on a calibration grid and halfway points of a test grid. Results The achieved accuracy is approximately 0.49°, 0.41°, and 0.62° for respectively the horizontal, vertical and radial error of the POG. Conclusions The results prove the validity of the proposed approach as the proposed system performs better than EGTSs designed for HCI which, even if equipped with superior hardware, show accuracy values in the range 0.6°-1°.

  13. Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors

    Science.gov (United States)

    Kirk, Matthew F.; Roden, Eric E.; Crossey, Laura J.; Brealey, Adrian J.; Spilde, Michael N.

    2010-05-01

    Microbial SO 42- reduction limits accumulation of aqueous As in reducing aquifers where the sulfide that is produced forms minerals that sequester As. We examined the potential for As partitioning into As- and Fe-sulfide minerals in anaerobic, semi-continuous flow bioreactors inoculated with 0.5% (g mL -1) fine-grained alluvial aquifer sediment. A fluid residence time of three weeks was maintained over a ca. 300-d incubation period by replacing one-third of the aqueous phase volume of the reactors with fresh medium every seven days. The medium had a composition comparable to natural As-contaminated groundwater with slightly basic pH (7.3) and 7.5 μM aqueous As(V) and also contained 0.8 mM acetate to stimulate microbial activity. Medium was delivered to a reactor system with and without 10 mmol L -1 synthetic goethite (α-FeOOH). In both reactors, influent As(V) was almost completely reduced to As(III). Pure As-sulfide minerals did not form in the Fe-limited reactor. Realgar (As 4S 4) and As 2S 3(am) were undersaturated throughout the experiment. Orpiment (As 2S 3) was saturated while sulfide content was low (˜50 to 150 μM), but precipitation was likely limited by slow kinetics. Reaction-path modeling suggests that, even if these minerals had formed, the dissolved As content of the reactor would have remained at hazardous levels. Mackinawite (Fe 1 + xS; x ⩽ 0.07) formed readily in the Fe-bearing reactor and held dissolved sulfide at levels below saturation for orpiment and realgar. The mackinawite sequestered little As (<0.1 wt.%), however, and aqueous As accumulated to levels above the influent concentration as microbial Fe(III) reduction consumed goethite and mobilized adsorbed As. A relatively small amount of pyrite (FeS 2) and greigite (Fe 3S 4) formed in the Fe-bearing reactor when we injected a polysulfide solution (Na 2S 4) to a final concentration of 0.5 mM after 216, 230, 279, and 286 days. The pyrite, and to a lesser extent the greigite, that formed

  14. Modelling of CVD reactors : thermochemical and mass transport approaches for Si1-xGex deposition

    OpenAIRE

    Rouch, H.; Pons, M.; Benezech, A.; Barbier, J.; Bernard, C.; Madar, R.

    1993-01-01

    Over the years, the design of chemical vapor deposition processes has relied on accumulated empirical ability. It is now well established that the properties of films grown by this chemical process are strongly determined by both transport phenomena and homogeneous and heterogeneous reactions in the reactor. Thermodynamic calculations and mass transport modeling provide a possible approach to delineate the general features of a given process. The application of this concept to the deposition ...

  15. A bibliographic review of mathematical models of packed-bed biological reactors (PBR

    Directory of Open Access Journals (Sweden)

    Deisy Corredor

    2005-09-01

    Full Text Available Several authors have sublected packed-bed biological reactors to mathematical and theoretical analysis. They have taken reaction kinetics and single-dimensional, homogeneous, pseudo-homogeneous and heterogeneous models into account. Numerical methods have provided the set of equations so developed. The effect of physically important process variables in terms of design and operation have been investigated (i.e. residence time, operating- flow, substrate conversion, bio-film area and film thickness.

  16. Modeling and Performance of Waste Tires as Media in Fixed Bed Sequence Batch Reactor

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2016-12-01

    Results: The maximum removal efficiencies of dissolved chemical oxygen demand for FBSBR and SBR reactors were 98.3 % and 97.9 %, respectively. In addition, Stover-Kincannon model provided a very suitable fitness (R2   > 0.99 for loading the bioreactor FBSBR. Conclusion: According to the results, not only waste tires can be reused, but also these wastes can be employed as a proper biological bed in wastewater refineries to improve their efficiency.

  17. Space-time-dynamic model of passively-phased ring-geometry fiber laser array

    Energy Technology Data Exchange (ETDEWEB)

    Bochove, Erik J. [Air Force Research Laboratory, Kirtland Air Force Base, NM; Aceves, Alejandro B. [Southern Methodist University, Dallas; Deiterding, Ralf [ORNL; Crabtree, Lily I [ORNL; Braiman, Yehuda [ORNL; Jacobo, Adrian [University of the Balearic Islands, Palma de Mallorca, Spain; Colet, Pere R. [University of the Balearic Islands, Palma de Mallorca, Spain

    2010-01-01

    We performed a linearized stability analysis and preliminary simulations of passive phasing in a CW operating ring geometry fiber laser array coupled in an external cavity with a single-mode feedback fiber that functions as spatial filter. A two-element array with path length error is predicted to have a dynamically stable stationary operating state at the calculated operating wavelength.

  18. CFD modelling of cooling channel geometry of PEM fuel cell for ...

    African Journals Online (AJOL)

    The evaluation is performed using a computational fluid dynamics (CFD) code based on a finite volume approach. The systems performances are presented as a function of the system temperature, operating parameters and cooling channel geometry. The results obtained indicate that incorporating cooling channels within ...

  19. Open-geometry Fourier modal method: modeling nanophotonic structures in infinite domains

    DEFF Research Database (Denmark)

    Häyrynen, Teppo; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2016-01-01

    We present an open-geometry Fourier modal method based on a new combination of open boundary conditions and an efficient k-space discretization. The open boundary of the computational domain is obtained using basis functions that expand the whole space, and the integrals subsequently appearing due...

  20. A Modular Description of the Geometry in Monte Carlo Modeling Studies for Nuclear Medicine

    Science.gov (United States)

    Bollini, D.; Campanini, R.; Lanconelli, N.; Riccardi, A.; Gombia, M.

    EGS is a very popular Monte Carlo code, used in the simulation of Nuclear Medicine devices. Simulation techniques are particularly effective to optimize collimator configuration and camera design in Single Photon Emission studies. With the EGS code, users must define the geometry where particles are transported. This can be both a very hard task and a source of inefficiency, especially in the case of complex geometries as, for instance, hexagonal hole collimators or pixellated detectors. In this paper we present a modular description of such geometries. Our method allows the computation of the region a point belongs to in a few steps; thus we are able to calculate this region in a reduced number of operations, independently of the collimator and detector dimensions. With a modular description we can reduce the computational time by 30%, with respect to a ``traditional'' description of the geometry. We validated the modular description in the simulation of a Nuclear Medicine apparatus for scintimammography. Two different collimators have been considered: one with square holes and one with hexagonal holes. We accomplished their characterization and tested their performance in a torso-breast phantom. Outcomes of the two collimators are comparable, even if it seems that the hexagonal hole collimator, thanks to its greater septal penetration, could give slightly better results for small tumors located near the collimator.

  1. Obtaining manufactured geometries of deep-drawn components through a model updating procedure using geometric shape parameters

    Science.gov (United States)

    Balla, Vamsi Krishna; Coox, Laurens; Deckers, Elke; Plyumers, Bert; Desmet, Wim; Marudachalam, Kannan

    2018-01-01

    The vibration response of a component or system can be predicted using the finite element method after ensuring numerical models represent realistic behaviour of the actual system under study. One of the methods to build high-fidelity finite element models is through a model updating procedure. In this work, a novel model updating method of deep-drawn components is demonstrated. Since the component is manufactured with a high draw ratio, significant deviations in both profile and thickness distributions occurred in the manufacturing process. A conventional model updating, involving Young's modulus, density and damping ratios, does not lead to a satisfactory match between simulated and experimental results. Hence a new model updating process is proposed, where geometry shape variables are incorporated, by carrying out morphing of the finite element model. This morphing process imitates the changes that occurred during the deep drawing process. An optimization procedure that uses the Global Response Surface Method (GRSM) algorithm to maximize diagonal terms of the Modal Assurance Criterion (MAC) matrix is presented. This optimization results in a more accurate finite element model. The advantage of the proposed methodology is that the CAD surface of the updated finite element model can be readily obtained after optimization. This CAD model can be used for carrying out analysis, as it represents the manufactured part more accurately. Hence, simulations performed using this updated model with an accurate geometry, will therefore yield more reliable results.

  2. Development of new methods for the modeling of technical systems and result evaluation for reactor safety simulation codes. Modeling, simulation models; Entwicklung neuer Methoden zur Modellierung technischer Systeme und zur Ergebnisauswertung fuer Simulationsprogramme der Reaktorsicherheit. Modellierung, Simulationsprogramme

    Energy Technology Data Exchange (ETDEWEB)

    Cester, Francesco; Deitenbeck, Helmuth; Kuentzel, Matthias; Scheuer, Josef; Voggenberger, Thomas

    2015-04-15

    The overall objective of the project is to develop a general simulation environment for program systems used in reactor safety analysis. The simulation environment provides methods for graphical modeling and evaluation of results for the simulation models. The terms of graphical modeling and evaluation of results summarize computerized methods of pre- and postprocessing for the simulation models, which can assist the user in the execution of the simulation steps. The methods comprise CAD (''Computer Aided Design'') based input tools, interactive user interfaces for the execution of the simulation and the graphical representation and visualization of the simulation results. A particular focus was set on the requirements of the system code ATHLET. A CAD tool was developed that allows the specification of 3D geometry of the plant components and the discretization with a simulation grid. The system provides inter-faces to generate the input data of the codes and to export the data for the visualization software. The CAD system was applied for the modeling of a cooling circuit and reactor pressure vessel of a PWR. For the modeling of complex systems with many components, a general purpose graphical network editor was adapted and expanded. The editor is able to simulate networks with complex topology graphically by suitable building blocks. The network editor has been enhanced and adapted to the modeling of balance of plant and thermal fluid systems in ATHLET. For the visual display of the simulation results in the local context of the 3D geometry and the simulation grid, the open source program ParaView is applied, which is widely used for 3D visualization of field data, offering multiple options for displaying and ana-lyzing the data. New methods were developed, that allow the necessary conversion of the results of the reactor safety codes and the data of the CAD models. The trans-formed data may then be imported into ParaView and visualized. The

  3. Architectural geometry

    KAUST Repository

    Pottmann, Helmut

    2014-11-26

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  4. Modeling and Analysis of the Weld Bead Geometry in Submerged Arc Welding by Using Adaptive Neurofuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Nuri Akkas

    2013-01-01

    Full Text Available This study is aimed at obtaining a relationship between the values defining bead geometry and the welding parameters and also to select optimum welding parameters. For this reason, an experimental study has been realized. The welding parameters such as the arc current, arc voltage, and welding speed which have the most effect on bead geometry are considered, and the other parameters are held as constant. Four, three, and five different values for the arc current, the arc voltage, and welding speed are used, respectively. So, sixty samples made of St 52-3 material were prepared. The bead geometries of the samples are analyzed, and the thickness and penetration values of the weld bead are measured. Then, the relationship between the welding parameters is modeled by using artificial neural network (ANN and neurofuzzy system approach. Each model is checked for its adequacy by using test data which are selected from experimental results. Then, the models developed are compared with regard to accuracy. Also, the appropriate welding parameters values can be easily selected when the models improve.

  5. Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation.

    Science.gov (United States)

    López, Iván; Borzacconi, Liliana

    2010-10-01

    A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Projective geometry

    CERN Document Server

    Faulkner, T Ewan

    2006-01-01

    This text explores the methods of the projective geometry of the plane. Some knowledge of the elements of metrical and analytical geometry is assumed; a rigorous first chapter serves to prepare readers. Following an introduction to the methods of the symbolic notation, the text advances to a consideration of the theory of one-to-one correspondence. It derives the projective properties of the conic and discusses the representation of these properties by the general equation of the second degree. A study of the relationship between Euclidean and projective geometry concludes the presentation. Nu

  7. Differential geometry

    CERN Document Server

    Graustein, William C

    2006-01-01

    This first course in differential geometry presents the fundamentals of the metric differential geometry of curves and surfaces in a Euclidean space of three dimensions. Written by an outstanding teacher and mathematician, it explains the material in the most effective way, using vector notation and technique. It also provides an introduction to the study of Riemannian geometry.Suitable for advanced undergraduates and graduate students, the text presupposes a knowledge of calculus. The first nine chapters focus on the theory, treating the basic properties of curves and surfaces, the mapping of

  8. Beautiful geometry

    CERN Document Server

    Maor, Eli

    2014-01-01

    If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur

  9. Hydrodynamic analysis of a three-fluidized bed reactor cold flow model for chemical looping hydrogen generation. Pressure characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhipeng; Xiang, Wenguo; Chen, Shiyi; Wang, Dong [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Chemical looping hydrogen generation (CLHG) can produce pure hydrogen with inherent separation of CO{sub 2} from fossils fuel. The process involves a metal oxide, as an oxygen carrier, such as iron oxide. The CLHG system consists of three reactors: a fuel reactor (FR), a steam reactor (SR) and an air reactor (AR). In the FR, the fuel gases react with iron oxides (hematite Fe{sub 2}O{sub 3}, magnetite Fe{sub 3}O{sub 4}, wuestite FeO), generating reduced iron oxides (FeO or even Fe), and with full conversion of gaseous fuels, pure CO{sub 2} can be obtained after cooling the flue gas from the fuel reactor; in the SR, FeO and Fe reacts with steam to generate magnetite (Fe{sub 3}O{sub 4}) and H{sub 2}, the latter representing the final target product of the process; in the AR, the magnetite is oxidized back to hematite which is used in another cycle. A cold flow model of three-fluidized bed for CLHG corresponding to 50 KW hot units has been built. A major novelty of this facility is the compact fuel reactor, which integrates a bubble and a fast fluidized bed to avoid the incomplete conversion of the fuel gas caused by the thermodynamics equilibrium. In order to study the pressure characteristics and the solids concentration of the system, especially in the fuel reactor, the gas velocity of three reactors, gas flow of L-type value, total solids inventory (TSI) and the secondary air of fuel reactor were varied. Results show that the pressure and the solids concentration are strongly influenced by the fluidizing-gas velocity of three reactors. Moreover, the entrainment of the upper part of fuel reactor increases as the total solids inventory increases, and the operating range of the FR can be changed by introducing secondary air or increasing the total solids inventory.

  10. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Lam; Dimitri Gidaspow

    2000-09-01

    The objective if this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The computed time averaged particle velocities and concentrations agree with PIV measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. This phase of the work was presented at the Chemical Reaction Engineering VIII: Computational Fluid Dynamics, August 6-11, 2000 in Quebec City, Canada. To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. The results together with simulations will be presented at the annual meeting of AIChE in November 2000.

  11. Generalizing Source Geometry of Site Contamination by Simulating and Analyzing Analytical Solution of Three-Dimensional Solute Transport Model

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2014-01-01

    Full Text Available Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.

  12. Development of RF plasma simulations of in-reactor tests of small models of the nuclear light bulb fuel region

    Science.gov (United States)

    Roman, W. C.; Jaminet, J. F.

    1972-01-01

    Experiments were conducted to develop test configurations and technology necessary to simulate the thermal environment and fuel region expected to exist in in-reactor tests of small models of nuclear light bulb configurations. Particular emphasis was directed at rf plasma tests of approximately full-scale models of an in-reactor cell suitable for tests in Los Alamos Scientific Laboratory's Nuclear Furnace. The in-reactor tests will involve vortex-stabilized fissioning uranium plasmas of approximately 200-kW power, 500-atm pressure and equivalent black-body radiating temperatures between 3220 and 3510 K.

  13. Performance enhancement by unsteady-state reactor operation: Theoretical analysis for two-sites kinetic model

    OpenAIRE

    Reshetnikov, S. I.; Ivanov, E. A.; Kiwi-Minsker, L; Renken, A.

    2003-01-01

    Theor. anal. of the reactor performance under unsteady-state conditions was carried out. The reactions are described by two kinetic models, which involve the participation in catalytic reaction of two types of active sites. The kinetic model I assumes the blocking of one of the active sites by a reactant, and the kinetic model II suggests a transformation of active sites of one type into another under the effect of the reaction temp. The unsteady-state conditions on the catalyst surface are s...

  14. Estimation Of 137Cs Using Atmospheric Dispersion Models After A Nuclear Reactor Accident

    Science.gov (United States)

    Simsek, V.; Kindap, T.; Unal, A.; Pozzoli, L.; Karaca, M.

    2012-04-01

    Nuclear energy will continue to have an important role in the production of electricity in the world as the need of energy grows up. But the safety of power plants will always be a question mark for people because of the accidents happened in the past. Chernobyl nuclear reactor accident which happened in 26 April 1986 was the biggest nuclear accident ever. Because of explosion and fire large quantities of radioactive material was released to the atmosphere. The release of the radioactive particles because of accident affected not only its region but the entire Northern hemisphere. But much of the radioactive material was spread over west USSR and Europe. There are many studies about distribution of radioactive particles and the deposition of radionuclides all over Europe. But this was not true for Turkey especially for the deposition of radionuclides released after Chernobyl nuclear reactor accident and the radiation doses received by people. The aim of this study is to determine the radiation doses received by people living in Turkish territory after Chernobyl nuclear reactor accident and use this method in case of an emergency. For this purpose The Weather Research and Forecasting (WRF) Model was used to simulate meteorological conditions after the accident. The results of WRF which were for the 12 days after accident were used as input data for the HYSPLIT model. NOAA-ARL's (National Oceanic and Atmospheric Administration Air Resources Laboratory) dispersion model HYSPLIT was used to simulate the 137Cs distrubition. The deposition values of 137Cs in our domain after Chernobyl Nuclear Reactor Accident were between 1.2E-37 Bq/m2 and 3.5E+08 Bq/m2. The results showed that Turkey was affected because of the accident especially the Black Sea Region. And the doses were calculated by using GENII-LIN which is multipurpose health physics code.

  15. Development, validation and application of an effective convectivity model for simulation of melt pool heat transfer in a light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Chi Thanh

    2007-12-15

    volumetrically decay-heated melt pool, we advanced the Effective Convectivity Conductivity Model (ECCM), which was previously developed and implemented in the MVITA code. In the present study, natural convection heat transfer is accounted for by only the Effective Convectivity Model (ECM). The heat transport and interactions are represented through an energy-conservation formulation. The ECM then enables simulations of heat transfer of a high Rayleigh melt pool in 3D large dimension geometry. In order to describe the phase-change heat transfer associated with core debris, a temperature-based enthalpy formulation is employed in the ECM (the phase-change ECM or so called the PECM). The PECM is capable to represent possible convection heat transfer in a mushy zone. The simple approach of the PECM method allows implementing different models of the fluid velocity in a mushy zone for a non-eutectic mixture. The developed models are validated by a dual approach, i.e., against the existing experimental data and the CFD simulation results. The ECM and PECM methods are applied to predict thermal loads to the vessel wall and Control Rod Guide Tubes (CRGTs) during core debris heat up and melting in the BWR lower plenum. Applying the ECM and PECM to simulations of reactor-scale melt pool heat transfer, the results of the ECM and PECM calculations show an apparent effectiveness of the developed methods that enables simulations of long term accident transients. It is also found that during severe accident progression, the cooling by water flowing inside the CRGTs plays a very important role in reducing the thermal load on the reactor vessel wall. The results of the CFD, ECM and PECM simulations suggest a potential of the CRGT cooling as an effective mitigative measure during a severe accident progression

  16. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  17. The reactor core TRIGA Mark-III with fuels type 30/20; El nucleo del reactor TRIGA Mark-III con combustible tipo 30/20

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F., E-mail: fortunato.aguilar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    This work describes the calculation series carried out with the program MCNP5 in order to define the configuration of the reactor core with fuels 30/20 (fuels with 30% of uranium content in the Or-Zr-H mixture and a nominal enrichment of 20%). To select the configuration of the reactor core more appropriate to the necessities and future uses of the reactor, the following criterions were taken into account: a) the excess in the reactor reactivity, b) the switch out margin and c) to have new irradiation facilities inside the reactor core. Taking into account these criterions is proceeded to know the characteristics of the components that form the reactor core (dimensions, geometry, materials, densities and positions), was elaborated a base model of the reactor core, for the MCNP5 code, with a configuration composed by 85 fuel elements, 4 control bars and the corresponding structural elements. The high reactivity excess obtained with this model, gave the rule to realize other models of the reactor core in which the reactivity excess and the switch out margin were approximate to the values established in the technical specifications of the reactor operation. Several models were realized until finding the satisfactory model; this is composite for 74 fuels, 4 control bars and 6 additional experimental positions inside the reactor core. (Author)

  18. Hydraulic Geometry, GIS and Remote Sensing, Techniques against Rainfall-Runoff Models for Estimating Flood Magnitude in Ephemeral Fluvial Systems

    Directory of Open Access Journals (Sweden)

    Rafael Garcia-Lorenzo

    2010-11-01

    Full Text Available This paper shows the combined use of remotely sensed data and hydraulic geometry methods as an alternative to rainfall-runoff models. Hydraulic geometric data and boolean images of water sheets obtained from satellite images after storm events were integrated in a Geographical Information System. Channel cross-sections were extracted from a high resolution Digital Terrain Model (DTM and superimposed on the image cover to estimate the peak flow using HEC-RAS. The proposed methodology has been tested in ephemeral channels (ramblas on the coastal zone in south-eastern Spain. These fluvial systems constitute an important natural hazard due to their high discharges and sediment loads. In particular, different areas affected by floods during the period 1997 to 2009 were delimited through HEC-GeoRAs from hydraulic geometry data and Landsat images of these floods (Landsat‑TM5 and Landsat-ETM+7. Such an approach has been validated against rainfall-surface runoff models (SCS Dimensionless Unit Hydrograph, SCSD, Témez gamma HU Tγ and the Modified Rational method, MRM comparing their results with flood hydrographs of the Automatic Hydrologic Information System (AHIS in several ephemeral channels in the Murcia Region. The results obtained from the method providing a better fit were used to calculate different hydraulic geometry parameters, especially in residual flood areas.

  19. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania

    Directory of Open Access Journals (Sweden)

    Matthew R. McCurry

    2015-06-01

    Full Text Available The reliability of finite element analysis (FEA in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context.

  20. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania

    Science.gov (United States)

    Evans, Alistair R.; McHenry, Colin R.

    2015-01-01

    The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context. PMID:26056620

  1. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad; Prakosa, Adityo; Vadakkumpadan, Fijoy [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Rajchl, Martin [Department of Computing, Imperial College London, London SW7 2AZ (United Kingdom); White, James [Stephenson Cardiovascular MR Centre, University of Calgary, Calgary, Alberta T2N 2T9 (Canada); Herzka, Daniel A.; McVeigh, Elliot [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lardo, Albert C. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Division of Cardiology, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21224 (United States); Trayanova, Natalia A. [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21205 (United States)

    2015-08-15

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D

  2. Experimental and kinetic modeling study of 3-methylheptane in a jet-stirred reactor

    KAUST Repository

    Karsenty, Florent

    2012-08-16

    Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on a high-molecular-weight branched alkane, namely, 3-methylheptane, oxidized in a jet-stirred reactor. This fuel, along with 2-methylheptane, 2,5-dimethylhexane, and n-octane, are candidate surrogate components for conventional diesel fuels derived from petroleum, synthetic Fischer-Tropsch diesel and jet fuels derived from coal, natural gas, and/or biomass, and renewable diesel and jet fuels derived from the thermochemical treatment of bioderived fats and oils. This study presents new experimental results along with a low- and high-temperature chemical kinetic model for the oxidation of 3-methylheptane. The proposed model is validated against these new experimental data from a jet-stirred reactor operated at 10 atm, over the temperature range of 530-1220 K, and for equivalence ratios of 0.5, 1, and 2. Significant effort is placed on the understanding of the effects of methyl substitution on important combustion properties, such as fuel reactivity and species formation. It was found that 3-methylheptane reacts more slowly than 2-methylheptane at both low and high temperatures in the jet-stirred reactor. © 2012 American Chemical Society.

  3. Model reactor for photocatalytic degradation of persistent chemicals in ponds and waste water.

    Science.gov (United States)

    Franke, R; Franke, C

    1999-12-01

    A laboratory scale flow-through model reactor for the degradation of persistent chemicals using titanium dioxide (TiO2) as photocatalyst immobilized on glass beads is presented. In the test system with a volume of 18 L contaminated water is pumped to the upper part of the floating reactor and flows over the coated beads which are exposed to UV-radiation. The degradation of two dyes of different persistence was investigated. Primary degradation of methylene blue did not fit a first order kinetic due to coincident adsorption onto the photocatalyst and direct photolysis, resulting in a half-life of 6 h. A filtrate of a green algae suspension accelerated the colour removal. In contrast, reactive red 2 was degraded only by photocatalysis; neither adsorption nor direct photolysis led to a colour removal. The course of primary degradation followed a first order kinetic with a half-life of 18 h and a rate constant of 0.04 h-1. Analysis of the degradation products indicated mineralization by detection of NO2- and NO3-, accompanied by a decrease of pH and an increase of conductivity. A successful adaptation of the model reactor (scale 1:10) to dimensions required for surface waters and waste water treatment plants would be a cost-efficient and environmentally sustainable application of photocatalysis for the treatment of industrially polluted water and could be of relevance for third world countries, particularly those favoured by high solar radiation.

  4. Calibration of a fuel-to-cladding gap conductance model for fast reactor fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.B.

    1978-05-01

    The report presents refined methods for calculation of fuel temperatures in PuO/sub 2/-UO/sub 2/ fuel in Fast Breeder Reactor (FBR) fuel pins. Of primary concern is the calculation of the temperature changes across the fuel-to-cladding gap of pins with fuel burnups that range from 60 to 10,900 MWd/MTM (0.006 to 1.12 at.%). Described in particular are: (1) a proposed set of heat transfer formulations and corresponding material properties for modeling radial heat transfer through the fuel and cladding; and (2) the calibration of a fuel-to-cladding gap conductance model, as part of a thermal performance computer code (SIEX-M1) which incorporates the proposed heat transfer expressions, using integral thermal performance data from two unique in-reactor experiments. The test data used are from the HEDL P-19 and P-20 experiments which were irradiated in the Experimental Breeder Reactor Number Two (EBR-II), for the Hanford Engineering Development Laboratory (HEDL).

  5. Thermodynamic modelling and solar reactor design for syngas production through SCWG of algae

    Science.gov (United States)

    Venkataraman, Mahesh B.; Rahbari, Alireza; Pye, John

    2017-06-01

    Conversion of algal biomass into value added products, such as liquid fuels, using solar-assisted supercritical water gasification (SCWG) offers a promising approach for clean fuel production. SCWG has significant advantages over conventional gasification in terms of flexibility of feedstock, faster intrinsic kinetics and lower char formation. A relatively unexplored avenue in SCWG is the use of non-renewable source of energy for driving the endothermic gasification. The use of concentrated solar thermal to provide the process heat is attractive, especially in the case of expensive feedstocks such as algae. This study attempts to identify the key parameters and constraints in designing a solar cavity receiver/reactor for on-sun SCWG of algal biomass. A tubular plug-flow reactor, operating at 24 MPa and 400-600 °C with a solar input of 20MWth is modelled. Solar energy is utilized to increase the temperature of the reaction medium (10 wt.% algae solution) from 400 to 605 °C and simultaneously drive the gasification. The model additionally incorporates material constraints based on the allowable stresses for a commercially available Ni-based alloy (Inconel 625), and exergy accounting for the cavity reactor. A parametric evaluation of the steady state performance and quantification of the losses through wall conduction, external radiation and convection, internal convection, frictional pressure drop, mixing and chemical irreversibility, is presented.

  6. Subtracted geometry

    Science.gov (United States)

    Saleem, Zain Hamid

    In this thesis we study a special class of black hole geometries called subtracted geometries. Subtracted geometry black holes are obtained when one omits certain terms from the warp factor of the metric of general charged rotating black holes. The omission of these terms allows one to write the wave equation of the black hole in a completely separable way and one can explicitly see that the wave equation of a massless scalar field in this slightly altered background of a general multi-charged rotating black hole acquires an SL(2, R) x SL(2, R) x SO(3) symmetry. The "subtracted limit" is considered an appropriate limit for studying the internal structure of the non-subtracted black holes because new 'subtracted' black holes have the same horizon area and periodicity of the angular and time coordinates in the near horizon regions as the original black hole geometry it was constructed from. The new geometry is asymptotically conical and is physically similar to that of a black hole in an asymptotically confining box. We use the different nice properties of these geometries to understand various classically and quantum mechanically important features of general charged rotating black holes.

  7. Cost-based optimization of a nuclear reactor core design: a preliminary model

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Wagner F.; Alves Filho, Hermes [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico. Dept. de Modelagem Computacional]. E-mails: wfsacco@iprj.uerj.br; halves@iprj.uerj.br; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Div. de Reatores]. E-mail: cmnap@ien.gov.br

    2007-07-01

    A new formulation of a nuclear core design optimization problem is introduced in this article. Originally, the optimization problem consisted in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the radial power peaking factor in a three-enrichment zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. Here, we address the same problem using the minimization of the fuel and cladding materials costs as the objective function, and the radial power peaking factor as an operational constraint. This cost-based optimization problem is attacked by two metaheuristics, the standard genetic algorithm (SGA), and a recently introduced Metropolis algorithm called the Particle Collision Algorithm (PCA). The two algorithms are submitted to the same computational effort and their results are compared. As the formulation presented is preliminary, more elaborate models are also discussed (author)

  8. Modeling of discharges in a capacitively coupled dual frequency plasma reactor

    Directory of Open Access Journals (Sweden)

    Bojarov Aleksandar

    2009-01-01

    Full Text Available In this paper we have modeled a dual frequency coupled plasma reactor (DF-CCP by using a 1d3v PIC/MCC code. The obtained results apart from their theoretical relevance have practical applications especially for development of plasma reactors and for nanoelectronics. Dual frequency plasmas are used for etching of dielectric interconnect layers with high aspect ratios (contact holes. In the DF-CCP, the density of the plasma is controlled by the high frequency, while the ion energy depends mainly on the potential drop in the sheath, which is controlled by the low frequency. The results of our simulations show the dependence of the energy of the ions arriving at the inner electrode on the voltage of the low frequency generator and how the voltage of the high frequency generator affects the ion flux on the electrode.

  9. Modelling of turbulent flow in a radial reactor with fixed bed

    Science.gov (United States)

    Zhapbasbayev, U. K.; Ramazanova, G. I.; Kenzhaliev, O. B.

    2015-03-01

    The data of the computation of turbulent flow in the CF- π and CP- π configurations of the radial reactor with a fixed bed are presented. The Reynolds motion equations have been solved jointly with the k- ɛ turbulence model. To couple the parameters of flows at the interface free part-fixed bed the classical continuity equations were used. The computational data are obtained for the averaged and turbulent characteristics, and it is shown that the flow in the fixed bed causes the generation of the turbulence kinetic energy and its dissipation rate; the flow in the CF- π configuration is distributed more uniformly as compared to the CP- π configuration of the radial reactor. Computed data are compared with the experimental ones.

  10. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    of interest. The specific nonlinear soil behavior included in the NLSSI calculation presented in this report is gapping and sliding. Other NLSSI effects are not included in the calculation. The results presented in this report document initial model runs in the linear and nonlinear analysis process. Final comparisons between traditional and advanced SPRA will be presented in the September 30th deliverable.

  11. A bionic approach to mathematical modeling the fold geometry of deployable reflector antennas on satellites

    Science.gov (United States)

    Feng, C. M.; Liu, T. S.

    2014-10-01

    Inspired from biology, this study presents a method for designing the fold geometry of deployable reflectors. Since the space available inside rockets for transporting satellites with reflector antennas is typically cylindrical in shape, and its cross-sectional area is considerably smaller than the reflector antenna after deployment, the cross-sectional area of the folded reflector must be smaller than the available rocket interior space. Membrane reflectors in aerospace are a type of lightweight structure that can be packaged compactly. To design membrane reflectors from the perspective of deployment processes, bionic applications from morphological changes of plants are investigated. Creating biologically inspired reflectors, this paper deals with fold geometry of reflectors, which imitate flower buds. This study uses mathematical formulation to describe geometric profiles of flower buds. Based on the formulation, new designs for deployable membrane reflectors derived from bionics are proposed. Adjusting parameters in the formulation of these designs leads to decreases in reflector area before deployment.

  12. A study of the isobutane dehydrogenation in a porous membrane catalytic reactor: design, use and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Casanave, D.

    1996-01-26

    The aim of this study was to set up and model a catalytic fixed-bed membrane reactor for the isobutane dehydrogenation. The catalyst, developed at Catalysis Research Institute (IRC), was a silicalite-supported Pt-based catalyst. Their catalytic performances (activity, selectivity, stability) where found better adapted to the membrane reactor, when compared with commercial Pt or Cr based catalysts. The kinetic study of the reaction has been performed in a differential reactor and led to the determination of a kinetic law, suitable when the catalyst is used near thermodynamic equilibrium. The mass transfer mechanisms were determined in meso-porous and microporous membranes through both permeability and gas mixtures (iC{sub 4}/H{sub 2}/N{sub 2}) separation measurements. For the meso-porous {gamma}-alumina, the mass transfer is ensured by a Knudsen diffusion mechanism which can compete with surface diffusion for condensable gas like isobutane. The resulting permselectivity H{sub 2}/iC4 of this membrane is low ({approx} 4). For the microporous zeolite membrane, molecular sieving occurs due to steric hindrance, leading to higher permselectivity {approx}14. Catalyst/membrane associations were compared in terms of isobutane dehydrogenation performances, for both types of membranes (meso-porous and microporous) and for two different reactor configurations (co-current and counter-current sweep gas flow). The best experimental results were obtained with the zeolite membrane, when sweeping the outer compartment in a co-current flow. The equilibrium displacement observed with the {gamma}-alumina membrane was lower and mainly due to a dilution effect of the reaction mixture by the sweep gas. A mathematical model was developed, which correctly describes all the experimental results obtained with the zeolite membrane, when the co-current mode is used. (Abstract Truncated)

  13. Development of a Scale Model for High Flux Isotope Reactor Cycle 400

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Dan [ORNL

    2012-03-01

    The development of a comprehensive SCALE computational model for the High Flux Isotope Reactor (HFIR) is documented and discussed in this report. The SCALE model has equivalent features and functionality as the reference MCNP model for Cycle 400 that has been used extensively for HFIR safety analyses and for HFIR experiment design and analyses. Numerical comparisons of the SCALE and MCNP models for the multiplication constant, power density distribution in the fuel, and neutron fluxes at several locations in HFIR indicate excellent agreement between the results predicted with the two models. The SCALE HFIR model is presented in sufficient detail to provide the users of the model with a tool that can be easily customized for various safety analysis or experiment design requirements.

  14. Application of a novel type impinging streams reactor in solid-liquid enzyme reactions and modeling of residence time distribution using GDB model.

    Science.gov (United States)

    Fatourehchi, Niloufar; Sohrabi, Morteza; Dabir, Bahram; Royaee, Sayed Javid; Haji Malayeri, Adel

    2014-02-05

    Solid-liquid enzyme reactions constitute important processes in biochemical industries. The isomerization of d-glucose to d-fructose, using the immobilized glucose isomerase (Sweetzyme T), as a typical example of solid-liquid catalyzed reactions has been carried out in one stage and multi-stage novel type of impinging streams reactors. Response surface methodology was applied to determine the effects of certain pertinent parameters of the process namely axial velocity (A), feed concentration (B), nozzles' flow rates (C) and enzyme loading (D) on the performance of the apparatus. The results obtained from the conversion of glucose in this reactor were much higher than those expected in conventional reactors, while residence time was decreased dramatically. Residence time distribution (RTD) in a one-stage impinging streams reactor was investigated using colored solution as the tracer. The results showed that the flow pattern in the reactor was close to that in a continuous stirred tank reactor (CSTR). Based on the analysis of flow region in the reactor, gamma distribution model with bypass (GDB) was applied to study the RTD of the reactor. The results indicated that RTD in the impinging streams reactor could be described by the latter model. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Validation of High-Fidelity Reactor Physics Models for Support of the KJRR Experimental Campaign in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nielsen, Joseph W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Norman, Daren R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-01

    The Korea Atomic Energy Research Institute is currently in the process of qualifying a Low-Enriched Uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the Northeast Flux Trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618g 235U) in comparison with historical ATR experiment standards (<1g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be well outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations. Accordingly it was necessary, prior to high-power irradiation of the KJRR fuel element in the ATR, to conduct an extensive set of new low-power physics measurements with the KJRR fuel element installed in the ATR Critical Facility (ATRC), a companion facility to the ATR that is located in an immediately adjacent building, sharing the same fuel handling and storage canal. The new measurements had the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future. The computational and experimental results demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well-understood, both in terms of its general effects on core excess reactivity and fission power distributions, its effects on the calibration of the core lobe power measurement system, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.

  16. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    of the mixture was varied from oxidizing to reducing conditions. Moreover, a series of experiments in an oxygen atmosphere instead of a nitrogen atmosphere has been done. A reaction mechanism based on a recent work by Burke et al. has been developed. In addition to modeling of the present experiments......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  17. Selective hydrogenation in trickle-bed reactor. Experimental and modelling including partial wetting.

    OpenAIRE

    Dietz, Adrian; Julcour-Lebigue, Carine; Wilhelm, Anne-Marie; Delmas, Henri

    2003-01-01

    International audience; A steady state model of a trickle bed reactor is developed for the consecutive hydrogenation of 1,5,9-cyclododecatriene on a Pd/Al2O3 catalyst. Various experiments have shown that the selectivity of this reaction towards the product of interest is much lower in co-current down-flow (trickle-bed) than in up-flow. This is due to uneven liquid distribution and to partial wetting of the catalyst surface at low liquid flow rates. The non-isothermal heterogeneous model propo...

  18. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-15

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  19. A plug flow reactor model of a vanadium redox flow battery considering the conductive current collectors

    Science.gov (United States)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2017-08-01

    A lumped-parameter model for vanadium redox flow batteries, which use metallic current collectors, is extended into a one-dimensional model using the plug flow reactor principle. Thus, the commonly used simplification of a perfectly mixed cell is no longer required. The resistances of the cell components are derived in the in-plane and through-plane directions. The copper current collector is the only component with a significant in-plane conductance, which allows for a simplified electrical network. The division of a full-scale flow cell into 10 layers in the direction of fluid flow represents a reasonable compromise between computational effort and accuracy. Due to the variations in the state of charge and thus the open circuit voltage of the electrolyte, the currents in the individual layers vary considerably. Hence, there are situations, in which the first layer, directly at the electrolyte input, carries a multiple of the last layer's current. The conventional model overestimates the cell performance. In the worst-case scenario, the more accurate 20-layer model yields a discharge capacity 9.4% smaller than that computed with the conventional model. The conductive current collector effectively eliminates the high over-potentials in the last layers of the plug flow reactor models that have been reported previously.

  20. TLEM 2.0 - a comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity.

    Science.gov (United States)

    Carbone, V; Fluit, R; Pellikaan, P; van der Krogt, M M; Janssen, D; Damsgaard, M; Vigneron, L; Feilkas, T; Koopman, H F J M; Verdonschot, N

    2015-03-18

    When analyzing complex biomechanical problems such as predicting the effects of orthopedic surgery, subject-specific musculoskeletal models are essential to achieve reliable predictions. The aim of this paper is to present the Twente Lower Extremity Model 2.0, a new comprehensive dataset of the musculoskeletal geometry of the lower extremity, which is based on medical imaging data and dissection performed on the right lower extremity of a fresh male cadaver. Bone, muscle and subcutaneous fat (including skin) volumes were segmented from computed tomography and magnetic resonance images scans. Inertial parameters were estimated from the image-based segmented volumes. A complete cadaver dissection was performed, in which bony landmarks, attachments sites and lines-of-action of 55 muscle actuators and 12 ligaments, bony wrapping surfaces, and joint geometry were measured. The obtained musculoskeletal geometry dataset was finally implemented in the AnyBody Modeling System (AnyBody Technology A/S, Aalborg, Denmark), resulting in a model consisting of 12 segments, 11 joints and 21 degrees of freedom, and including 166 muscle-tendon elements for each leg. The new TLEM 2.0 dataset was purposely built to be easily combined with novel image-based scaling techniques, such as bone surface morphing, muscle volume registration and muscle-tendon path identification, in order to obtain subject-specific musculoskeletal models in a quick and accurate way. The complete dataset, including CT and MRI scans and segmented volume and surfaces, is made available at http://www.utwente.nl/ctw/bw/research/projects/TLEMsafe for the biomechanical community, in order to accelerate the development and adoption of subject-specific models on large scale. TLEM 2.0 is freely shared for non-commercial use only, under acceptance of the TLEMsafe Research License Agreement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Radiotherapy and chemotherapy change vessel tree geometry and metastatic spread in a small cell lung cancer xenograft mouse tumor model.

    Directory of Open Access Journals (Sweden)

    Thorsten Frenzel

    Full Text Available Tumor vasculature is critical for tumor growth, formation of distant metastases and efficiency of radio- and chemotherapy treatments. However, how the vasculature itself is affected during cancer treatment regarding to the metastatic behavior has not been thoroughly investigated. Therefore, the aim of this study was to analyze the influence of hypofractionated radiotherapy and cisplatin chemotherapy on vessel tree geometry and metastasis formation in a small cell lung cancer xenograft mouse tumor model to investigate the spread of malignant cells during different treatments modalities.The biological data gained during these experiments were fed into our previously developed computer model "Cancer and Treatment Simulation Tool" (CaTSiT to model the growth of the primary tumor, its metastatic deposit and also the influence on different therapies. Furthermore, we performed quantitative histology analyses to verify our predictions in xenograft mouse tumor model.According to the computer simulation the number of cells engrafting must vary considerably to explain the different weights of the primary tumor at the end of the experiment. Once a primary tumor is established, the fractal dimension of its vasculature correlates with the tumor size. Furthermore, the fractal dimension of the tumor vasculature changes during treatment, indicating that the therapy affects the blood vessels' geometry. We corroborated these findings with a quantitative histological analysis showing that the blood vessel density is depleted during radiotherapy and cisplatin chemotherapy. The CaTSiT computer model reveals that chemotherapy influences the tumor's therapeutic susceptibility and its metastatic spreading behavior.Using a system biological approach in combination with xenograft models and computer simulations revealed that the usage of chemotherapy and radiation therapy determines the spreading behavior by changing the blood vessel geometry of the primary tumor.

  2. Comparison of applicability of current transition temperature shift models to SA533B-1 reactor pressure vessel steel of Korean nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Hyun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-08-15

    The precise prediction of radiation embrittlement of aged reactor pressure vessels (RPVs) is a prerequisite for the long-term operation of nuclear power plants beyond their original design life. The expiration of the operation licenses for Korean reactors the RPVs of which are made from SA533B-1 plates and welds is imminent. Korean regulatory rules have adopted the US Nuclear Regulatory Commission's transition temperature shift (TTS) models to the prediction of the embrittlement of Korean reactor pressure vessels. The applicability of the TTS model to predict the embrittlement of Korean RPVs made of SA533B-1 plates and welds was investigated in this study. It was concluded that the TTS model of 10 CFR 50.61a matched the trends of the radiation embrittlement in the SA533B-1 plates and welds better than did that of Regulatory Guide (RG) 1.99 Rev. 2. This is attributed to the fact that the prediction performance of 10 CFR 50.61a was enhanced by considering the difference in radiation embrittlement sensitivity among the different types of RPV materials.

  3. Estimation of turbulent mixing model for the application to liquid metal-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H. Y.; Ha, K. S.; Chang, W. P.; Lee, Y. B.; Heo, S

    2003-12-01

    It is required to model accurately the inter-subchannel mixing phenomenon for the improved prediction in the subchannel analysis and the flow blockage analysis of a Liquid Metal-cooled Reactor (LMR). When there exists a single-phase flow in the subchannels, the mixing of mass, energy and momentum between the subchannels can be divided into two parts, the diversion flow due to the pressure gradient and the cross flow mainly due to the turbulent mixing. To enlarge the understanding on turbulent mixing, the general turbulent models of zero-equation model, one-equation model and two-equation model are briefly introduced. Further, the turbulent mixing models, which are used in the subchannel codes such as MATRA-LMR, COBRA-IV, SABRE and ASFRE-III, are summarized. The bases of the turbulent mixing models in most subchannel codes are the mixing-length theory and the research results obtained before 1980's. The SABRE code includes the forms of one-equation model and two-equation model, but some experimental constants are essential to use those models. The recent experimental and analytical studies on turbulent mixing are surveyed and the important results are summarized. Some state-of-the-art turbulent mixing models are implemented in MATRA-LMR code and the effect of the models was evaluated for ORNL 19-pin data. The results imply the correlation by Rehme is the most suitable as a turbulent model for liquid metal-cooled reactors for wide range of fluidic conditions. To get more accurate distributions of flow and temperature for low flow conditions, it is recommended to have more accurate thermal conduction correction factor.

  4. Neutronic and Thermal-hydraulic Modelling of High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, Malla [VTT Technical Research Centre of Finland, P.O.Box 1000, FI02044 VTT (Finland)

    2008-07-01

    High Performance Light Water Reactor (HPLWR), which is studied in EU project 'HPLWR2', uses water at supercritical pressures as coolant and moderator to achieve higher core outlet temperature and thus higher efficiency compared to present reactors. At VTT Technical Research Centre of Finland, functionality of the thermal-hydraulics in the coupled reactor dynamics code TRAB3D/ SMABRE was extended to supercritical pressures for the analyses of HPLWR. Input models for neutronics and thermal-hydraulics were made for TRAB3D/ SMABRE according to the latest HPLWR design. A preliminary analysis was performed in which the capability of SMABRE in the transition from supercritical pressures to subcritical pressures was demonstrated. Parameterized two-group cross sections for TRAB3D neutronics were received from Hungarian Academy of Sciences KFKI Atomic Energy Research Institute together with a subroutine for handling them. PSG, a new Monte Carlo transport code developed at VTT, was also used to generate two-group constants for HPLWR and comparisons were made with the KFKI cross sections and MCNP calculations. (author)

  5. Modeling of adsorber/desorber/catalytic reactor system for ethylene oxide removal

    Directory of Open Access Journals (Sweden)

    ZELJKO B. GRBAVCIC

    2004-12-01

    Full Text Available The removal of ethylene oxide (EtO in a combined system adsorber/desorber/catalytic reactor has been investigated. The combined system was a modified draft tube spouted bed reactor loaded with Pt/Al2O3 catalyst. The annular region was divided into two sectons, the “hot” section contained about 7 % of catalyst and it behaved as a desorber and catalytic incinerator, while the “cold” section, with the rest of the catalyst, behaved as a sorber. The catalyst particles were circulated between the two sections by use of a draft tube riser. The Computational Fluid Dynamics (CFD program package FLUENT was used for simulations of the operation of the combined system. In addition, a one-dimensional numerical model for the operation of the packed bed reactor was compared with the corresponding FLUENT calculations. The results of the FLUENT simulations are in very good agreement with the experimental observations, as well as with the results of the one-dimensional numerical simulations.

  6. CFD Model