WorldWideScience

Sample records for reactor installation alteration

  1. Alteration of installation of reactors (alteration of No.1 and No.2 reactor facilities) in Oi Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Safety Commission reported to the Minister of International Trade and Industry on October 27, 1983, that the technical capability was recognized to be adequate, and the safety after the alteration of the installation of reactors was judged to be ensured. At the time of deliberation, the guidelines for examining the safety design and safety evaluation of LWR facilities for power generation were used. Regarding the change of the degree of enrichment of replacement fuel from 3.2 to 3.4 wt.%, the limiting conditions are satisfied in the replacement core, and the nuclear design is appropriate. Eight test fuel assemblies using UO 2 pellets containing gadolinia are charged in the core of No.2 reactor, and the irradiation of two cycles is carried out. As the result of the safety examination regarding this test, the propriety of the nuclear design and mechanical design of the test fuel assemblies was confirmed. This alteration does not exert influence on the result of safety analysis made so far. This report was decided by the Committee on Examination of Reactor Safety based on the conclusion of No.26 subcommittee. (Kako, I.)

  2. Alteration of installation of nuclear reactors (alteration of No. 1 and No. 2 reactor facilities) in Shimane Nuclear Power Station, Chugoku Electric Power Co. , Inc. (report)

    Energy Technology Data Exchange (ETDEWEB)

    1987-07-01

    The Nuclear Safety Commission reported to the Minister of International Trade and Industry after prudent deliberation on this alteration problem which had been inquired on August 28, 1986. It was recognized that the technical capability of the applicant is appropriate, as the result of deliberation. It was judged that the safety after this alteration of the installation of the reactor facilities can be ensured. As the result of examining new type 8 x 8 zirconium liner fuel, there was no problem in its mechanical design, the analysis of dynamical characteristics, and the analysis of abnormal transient change and accident in operation. As to the change of the average degree of enrichment of replacement fuel, the thermonuclear design of the reactor core was adequate. In the incineration of spent resin and filter sludge, the effect of radioactive substances to the environment was negligible. The safety after abolishing the auxiliary protection function against exhaust radioactivity is ensured with a rare gas holdup equipment. The soundness of fuel and the soundness of reactor coolant pressure boundary are maintained in abnormal transient change and accident. (Kako, I.).

  3. Alteration of installation of nuclear reactors (alteration of No.1 and No.2 reactor facilities) in Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1987-01-01

    The Nuclear Safety Commission reported to the Minister of International Trade and Industry after prudent deliberation on this alteration problem which had been inquired on August 28, 1986. It was recognized that the technical capability of the applicant is appropriate, as the result of deliberation. It was judged that the safety after this alteration of the installation of the reactor facilities can be ensured. As the result of examining new type 8 x 8 zirconium liner fuel, there was no problem in its mechanical design, the analysis of dynamical characteristics, and the analysis of abnormal transient change and accident in operation. As to the change of the average degree of enrichment of replacement fuel, the thermonuclear design of the reactor core was adequate. In the incineration of spent resin and filter sludge, the effect of radioactive substances to the environment was negligible. The safety after abolishing the auxiliary protection function against exhaust radioactivity is ensured with a rare gas holdup equipment. The soundness of fuel and the soundness of reactor coolant pressure boundary are maintained in abnormal transient change and accident. (Kako, I.)

  4. New fast reactor installation concept

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The large size and complexity of fast reactor installations are emphasised and these difficulties will be increased with the advent of fast reactors of higher power. In this connection a new concept of fast reactor installation is described with a view to reducing the size of the installation and enabling most components, including even the primary vessel, to be constructed within the confines of a workshop. Full constructional details are given. (U.K.)

  5. Licensing of away-from-reactor (AFR) installations

    International Nuclear Information System (INIS)

    Gray, P.L.

    1980-01-01

    Storage of spent fuel at Away-From-Reactor (AFR) installations will allow reactors to continue to operate until reprocessing or other fuel disposal means are available. AFR installations must be licensed by the Nuclear Regulatory Commission (NRC). Although wide experience in licensing reactors exists, the licensing of an AFR installation is a relatively new activity. Only one has been licensed to date. This paper delineates the requirements for licensing an AFR installation and projects a licensing schedule. Because the NRC is developing specific AFR requirements, this schedule is based primarily on draft NRC documents. The major documents needed for an AFR license application are similar to those for a reactor. They include: a Safety Analysis Report (SAR), and Environmental Report (ER), safeguards and security plans, decommissioning plans, proposed technical specifications, and others. However, the licensing effort has one major difference in that for AFR installations it will be a one-step effort, with follow-up, rather than the two-step process used for reactors. The projected licensing schedule shows that the elapsed time between filing an application and issuance of a license will be about 32 months, assuming intervention. The legal procedural steps will determine the time schedule and will override considerations of technical complexity. A license could be issued in about 14 months in the absence of intervention

  6. On alteration of reactor installation (additional installation of No.3 and No.4 plants in the Genkai Nuclear Power Station, Kyushu Electric Power Co., Inc.)

    International Nuclear Information System (INIS)

    1985-01-01

    The Nuclear Safty Commission sent the reply to the Minister of International Trade and Industry on October 4, 1984, on this matter after having received the report from the Committee on Examination of Nuclear Reactor Safety and carried out the deliberation. It was judged that the applicant has the technical capability required for installing and operating these reactor facilities. Also it was judged that on the safety after these reactor plants are installed, there is no obstacle in the prevention of disaster due to contaminated substances and reactors. The policy of the investigation and deliberation is reported. The contents of the investigation and deliberation are the condition of location such as site, geological features and ground, earthquake, weather, hydraulic problem and social environments, the safety design of reactor facilities, the evaluation of radiation exposure dose in normal operation, the analysis of abnormal transient change in operation, accident analysis and the evaluation of location. (Kako, I.)

  7. Regulation for installation and operation of marine reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The regulation is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the provisions of the order for execution of the law. The regulation is applied to marine reactors and reactors installed in foreign nuclear ships. Basic concepts and terms are explained, such as: radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area and employee. The application for permission of installation of reactors shall list maximum continuous thermal power, location and general structure of reactor facilities, structure and equipment of reactors and treatment and storage facilities of nuclear fuel materials, etc. The application for permission of reactors installed in foreign ships shall describe specified matters according to the provisions for domestic reactors. The operation program of reactors for three years shall be filed to the Minister of Transportation for each reactor every fiscal year from that year when the operation is expected to start. Records shall be made for each reactor and kept for particular periods on inspection of reactor facilities, operation, fuel assembly, control of radiation, maintenance and others. Exposure doses, inspection and check up of reactor facilities, operation of reactors, transport and storage of nuclear fuel materials, etc. are designated in detail. (Okada, K.)

  8. Nuclear reactor installation

    International Nuclear Information System (INIS)

    Keller, W.

    1976-01-01

    A nuclear reactor installation includes a pressurized-water coolant reactor vessel and a concrete biological shield surrounding this vessel. The shield forms a space between it and the vessel large enough to permit rapid escape of the pressurized-water coolant therefrom in the event the vessel ruptures. Struts extend radially between the vessel and shield for a distance permitting normal radial thermal movement of the vessel, while containing the vessel in the event it ruptures, the struts being interspaced from each other to permit rapid escape of the pressurized-water coolant from the space between the shield and the vessel

  9. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  10. A method of installing a reactor container

    International Nuclear Information System (INIS)

    Hayashi, Kenji; Murakawa, Hisao.

    1975-01-01

    Object: To achieve exact installation of a reactor container at a site. Structure: A pole is set upright at the center of a cylindrical base portion, a plurality of beams are disposed around the pole in a radial fashion to form a cone, a plurality of steel plates are mounted successively around the cone through a ring, and the steel plates are welded to each other to assemble and install a reactor container at the same time. (Kamimura, M.)

  11. Regulation for installation and operation of reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Concerning the description of an application for the approval of installation of a reactor, stipulated in Article 23 paragraph 2 of the Law for Regulation of Nuclear Source Materials, Nuclear Fuel Materials and Reactors (hereinafter referred to as the Law), the following items must be written. Namely, the heat output of the reactor in Article 23 paragraph 2 item 3 of the Law, the position, structure and facilities of the reactor facilities, described according to the stipulated classifications, the work plan, nuclear fuel materials employed, and the disposal of spent fuel. Concerning an application for the approval of a reactor installed aboard a foreign ship, stipulations are made separately. Description of an application for the approval of change of the heat output of a reactor and others should include the stipulated items. When it is wished to undergo inspection of the construction and performance of reactor facilities, an application for that end including the required items should be filed. Various safety measures preventing personnel from being exposed to radiation should be taken. When a foreign atomic-powered ship tries to enter a Japanese port, the stipulated necessary informations should be reported 60 days before such ship actually enters the Japanese port. A chief technician of reactors should take and pass the official examination. (Rikitake, Y.)

  12. Nuclear reactor installation

    International Nuclear Information System (INIS)

    Jungmann, A.

    1976-01-01

    A nuclear reactor metal pressure vessel is surrounded by a concrete wall forming an annular space around the vessel. Thermal insulation is in this space and surrounds the vessel, and a coolant-conductive layer is also in this space surrounding the thermal insulation, coolant forced through this layer reducing the thermal stress on the concrete wall. The coolant-conductive layer is formed by concrete blocks laid together and having coolant passages, these blocks being small enough individually to permit them to be cast from concrete at the reactor installation, the thermal insulation being formed by much larger sheet-metal clad concrete segments. Mortar is injected between the interfaces of the coolant-conductive layer and concrete wall and the interfaces between the fluid-conductive layer and the insulation, a layer of slippery sheet material being interposed between the insulation and the mortar. When the pressure vessel is thermally expanded by reactor operation, the annular space between it and the concrete wall is completely filled by these components so that zero-excursion rupture safeguard is provided for the vessel. 4 claims, 1 figure

  13. Consideration of the opinions and others in the public hearing on the alteration in reactor installation (addition of Unit 2) in the Tsuruga Power Station of the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    1982-01-01

    A public hearing was held in Tsuruga City, Fukui Prefecture, on the alteration in reactor installation, i.e., the addition of Unit 2 in the Tsuruga Power Station, JAPC, on November 20, 1980, by the Nuclear Safety Commission. The opinions and others stated by the local people were taken into consideration in the governmental examinations on the installation, etc. The considerations of such opinions principally in the examinations by NSC are explained in the form of questions (i.e. opinion, etc.) and answers (i.e. consideration) as follows: site conditions (site, earthquakes, ground, meteorology, siting situation, etc.), the safety design of the reactor facilities (overall plant, aseismic design, the teaching by the TMI accident in U.S., ECCS, pre-stressed concrete containment vessel, radioactive waste release, etc.), radioactive waste management, radiation exposure relation, the technical capabilities of personnel (operation, etc.). (J.P.N.)

  14. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  15. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  16. Regulation for installation and operation of experimental-research reactor

    International Nuclear Information System (INIS)

    1979-01-01

    The ordinance is stipulated under the Law for regulation of nuclear raw materials, nuclear fuel materials and reactors and the provisions for installation and operation of reactor in the order for execution of the law. Basic concepts and terms are defined, such as, radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; preserved area; inspected surrounding area and employee. An application for permission of installation of reactor shall list such matters as: the maximum continuous thermal output of reactor; location and general construction of reactor facilities; construction and equipment of the main reactor and other facilities for nuclear fuel materials; cooling and controlling system and radioactive waste, etc. An operation plan of reactor for three years shall be filed till January 31 of the fiscal year preceding that one the operation begins. Records shall be made and kept for specified periods respectively on inspection of reactor facilities, operation, fuel assembly, radiation control, maintenance, accidents of reactor equipment and weather. Detailed rules are settled for entrance limitation to controlled area, exposure dose, inspection, check up and regular independent examination of reactor facilities, operation of reactor, transportation of substances contaminated by nuclear fuel materials within the works and storage, etc. (Okada, K.)

  17. Considerations of the opinions and others in the public hearing on the alteration in reactor installation (addition of Unit 3) in the Hamaoka Nuclear Power Station of the Chubu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1982-01-01

    A public hearing was held in Hamaoka Town, Shizuoka Prefecture, on the alteration in reactor installation, i.e., the addition of Unit 3 in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., on March 19, 1981, by the Nuclear Safety Commission. The opinions and others stated by the local people were taken into consideration in the governmental examinations on the installation, etc. The considerations of such opinions principally in the examinations by NSC are explained in the form of questions (i.e. opinion, etc.) and answers (i.e. considerations) as follows: site conditions (earthquakes, ground, hydraulic features, etc.), the safety design of the reactor facilities (overall plant, aseismic design, the control of inflammable gas concentration, radioactive waste treatment, the reflection of accident experiences, etc.), radioactive waste management, radiation exposure relation, the technical capabilities of personnel (operation, etc.). (J.P.N.)

  18. Manufacture and installation of reactor auxiliary facilities for advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Matsushita, Tadashi

    1977-01-01

    The facilities of reactor auxiliary systems for the advanced thermal prtotype reactor ''Fugen'' were manufactured in factories since 1972, and the installation at the site began in November, 1974. It was almost completed in March, 1977, except a part of the tests and inspections, therefore the outline of the works is reported. The ATR ''Fugen'' is a heavy water-moderated, boiling light water reactor, and its reactor auxiliary systems comprise mainly the facilities for handling heavy water, such as heavy water cooling system, heavy water cleaning system, poison supplying system, helium circulating system, helium cleaning system, and carbon dioxide system. The poison supplying system supplies liquid poison to the heavy water cooling system to absorb excess reactivity in the initial reactor core. The helium circulating system covers heavy water surface with helium to prevent the deterioration of heavy water and maintains heavy water level by pressure difference. The carbon dioxide system flows highly pure CO 2 gas in the space of pressure tubes and carandria tubes, and provides thermal shielding. The design, manufacture and installation of the facilities of reactor auxiliary systems, and the helium leak test, synthetic pressure test and total cleaning are explained. (Kako, I.)

  19. Safety report concerning the reactor Pegase - volume 1 - Description of the installation - volume 2 - Safety of the installations

    International Nuclear Information System (INIS)

    Lacour, J.

    1964-01-01

    In the first volume: This report is a description of the reactor Pegase, given with a view to examine the safety of the installations. The Cadarache site at which they are situated is briefly described, in particular because of the consequences on the techniques employed for building Pegase. A description is also given of the original aspects of the reactor. The independent loops which are designed for full-scale testing of fuel elements used in natural uranium-gas-graphite reactor systems are described in this report, together with their operational and control equipment. In the second volume: In the present report are examined the accidents which could cause damage to the Pegase reactor installation. Among possible causes of accidents considered are the seismicity of the region, an excessive power excursion of the reactor and a fracture in the sealing of an independent loop. Although all possible precautions have been taken to offset the effects of such accidents, their ultimate consequences are considered here. The importance is stressed of the security action and regulations which, added to the precautions taken for the construction, ensure the safety of the installations. (authors) [fr

  20. Safety challenges after the Fukushima accident for operated installations others than EDF reactors

    International Nuclear Information System (INIS)

    Sene, Monique; Rollinger, Francois; Lheureux, Yves; Lizot, Marie-Therese; Kerdelhue, M.; Py, M.E.; Leroyer, Veronique; Pultier, Marc; Kassiotis, Christophe; Chambrette, Pierre; Devaux, Pascal; Baron, Yves; Collinet, Jacques

    2013-12-01

    This document contains Power Point presentations which, within the perspective created by the Fukushima accident, address various aspects of safety issues for installations other than currently operated EDF reactors. These contributions propose: an agenda of additional safety assessments (ECS) performed on these installations and an examination of responses made to prescriptions made on the 16 June 2012; a presentation by the IRSN of ECS performed in Areva plants; a presentation by Areva of arrangements related to these ECS; a presentation of the Manche local information commissions (CLI) and a presentation of their approach according to a white paper for the safety of civil nuclear installations located in the Manche department; a presentation by the IRSN on ECS concerning various basic nuclear installations such as laboratories, experimental reactors and stopped reactors; a presentation by the CEA of ECS of its installations (context, approach, execution and conclusions); a presentation by the ANCCLI about ASN decision and decision projects about the hard core according to ECS (example of the High flux reactor in the ILL in Grenoble)

  1. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    International Nuclear Information System (INIS)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core

  2. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  3. Regulations of local choices for installation of power reactors

    International Nuclear Information System (INIS)

    1969-09-01

    The present regulations specify the criteria under which the Comissao Nacional de Energia Nuclear will approve the local proposed for the installation of power reactors, according to his attributions established in the Law 4118, dated of August 27, 1962

  4. Dimensional control and check of field machining parts for reactor internals installation

    International Nuclear Information System (INIS)

    Zhang Caifang

    2010-01-01

    Some key issues of dimensional control for reactor internals installation are analyzed, and important technical requirements of crucial quality control elements on the measurement, machining, and checking of reactor internals filed machining parts are discussed. Moreover, provisions on quality control and risk prevention of reactor internals filed machining parts are presented in this paper. (author)

  5. Installation of a new type of nuclear reactor in Mexico: advantages and disadvantages

    International Nuclear Information System (INIS)

    Jurado P, M.; Martin del Campo M, C.

    2005-01-01

    In this work the main advantages and disadvantages of the installation of a new type of nuclear reactor different to the BWR type reactor in Mexico are presented. A revision of the advanced reactors is made that are at the moment in operation and of the advanced reactors that are in construction or one has already planned its construction in the short term. Specifically the A BWR and EPR reactors are analyzed. (Author)

  6. Safety report concerning the reactor Pegase - volume 1 - Description of the installation - volume 2 - Safety of the installations; Rapport de surete du reacteur pegase - tome 1 - Description des installations - tome 2 - Surete des installations

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Legoin, P. [S.E.M. Hispano-Suiza, 92 - Colombes (France)

    1964-07-01

    In the first volume: This report is a description of the reactor Pegase, given with a view to examine the safety of the installations. The Cadarache site at which they are situated is briefly described, in particular because of the consequences on the techniques employed for building Pegase. A description is also given of the original aspects of the reactor. The independent loops which are designed for full-scale testing of fuel elements used in natural uranium-gas-graphite reactor systems are described in this report, together with their operational and control equipment. In the second volume: In the present report are examined the accidents which could cause damage to the Pegase reactor installation. Among possible causes of accidents considered are the seismicity of the region, an excessive power excursion of the reactor and a fracture in the sealing of an independent loop. Although all possible precautions have been taken to offset the effects of such accidents, their ultimate consequences are considered here. The importance is stressed of the security action and regulations which, added to the precautions taken for the construction, ensure the safety of the installations. (authors) [French] Dans le volume 1: Ce rapport est une description du reacteur Pegase, afin d'examiner la surete des installations. Le site de CADARACHE ou elles sont situees, a ete sommairement decrit, en particulier, a cause des consequences sur les techniques mises en oeuvre pour la realisation de Pegase. Nous nous sommes egalement attache a decrire les aspects originaux du reacteur. Les boucles autonomes destinees a tester en vraie grandeur des elements combustibles de la filiere uranium naturel graphite-gaz, ainsi que leurs dispositifs de controle et d'exploitation, figurent egalement dans ce rapport. Dans le volume 2: Dans le present rapport, nous examinons des accidents pouvant endommager des installations du reacteur Pegase. Les origines d'accidents examines

  7. Safety report concerning the reactor Pegase - volume 1 - Description of the installation - volume 2 - Safety of the installations; Rapport de surete du reacteur pegase - tome 1 - Description des installations - tome 2 - Surete des installations

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Legoin, P [S.E.M. Hispano-Suiza, 92 - Colombes (France)

    1964-07-01

    In the first volume: This report is a description of the reactor Pegase, given with a view to examine the safety of the installations. The Cadarache site at which they are situated is briefly described, in particular because of the consequences on the techniques employed for building Pegase. A description is also given of the original aspects of the reactor. The independent loops which are designed for full-scale testing of fuel elements used in natural uranium-gas-graphite reactor systems are described in this report, together with their operational and control equipment. In the second volume: In the present report are examined the accidents which could cause damage to the Pegase reactor installation. Among possible causes of accidents considered are the seismicity of the region, an excessive power excursion of the reactor and a fracture in the sealing of an independent loop. Although all possible precautions have been taken to offset the effects of such accidents, their ultimate consequences are considered here. The importance is stressed of the security action and regulations which, added to the precautions taken for the construction, ensure the safety of the installations. (authors) [French] Dans le volume 1: Ce rapport est une description du reacteur Pegase, afin d'examiner la surete des installations. Le site de CADARACHE ou elles sont situees, a ete sommairement decrit, en particulier, a cause des consequences sur les techniques mises en oeuvre pour la realisation de Pegase. Nous nous sommes egalement attache a decrire les aspects originaux du reacteur. Les boucles autonomes destinees a tester en vraie grandeur des elements combustibles de la filiere uranium naturel graphite-gaz, ainsi que leurs dispositifs de controle et d'exploitation, figurent egalement dans ce rapport. Dans le volume 2: Dans le present rapport, nous examinons des accidents pouvant endommager des installations du reacteur Pegase. Les origines d'accidents examines comprennent la seismicite

  8. Selection of persons expressing opinions etc. and attendants in the public hearing concerning the alteration in reactor installations (addition of Unit 3 and 4) in the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Safety Commission has selected 18 persons expressing opinions etc. and 255 (other) attendants for the public hearing on the alteration of reactor installations (addition of Unit 3 and 4) in Kyushu Electric's Genkai Nuclear Power Station to be held on June 18th, 1984. The order of expressing opinions etc., number of reception, names, addresses, ages and occupations are given of the persons expressing opinions etc. For both the groups, against the selected numbers there are given applicants etc. in number by towns and city. (Mori, K.)

  9. Installation method for the steel container and vessel of the nuclear heating reactor

    International Nuclear Information System (INIS)

    Chen Liying; Guo Jilin; Liu Wei

    2000-01-01

    The Nuclear Heating Reactor (NHR) has the advantages of inherent safety and better economics, integrated arrangement, full power natural circulation and dual vessel structure. However, the large thin container presents a new and difficult problem. The characteristics of the dual vessel installation method are analyzed with system engineering theory. Since there is no foreign or domestic experience, a new method was developed for the dual vessel installation for the 5 MW NHR. The result shows that the installation method is safe and reliable. The research on the dual vessel installation method has important significance for the design, manufacture and installation of the NHR dual vessel, as well as the industrialization and standardization of the NHR

  10. Nuclear steam supply system and method of installation

    International Nuclear Information System (INIS)

    Tower, S.N.; Christenson, J.A.; Braun, H.E.

    1989-01-01

    This patent describes a method of providing a nuclear reactor power plant at a predetermined use site accessible by predetermined navigable waterways. The method is practiced with apparatus including a nuclear reactor system. The system has a nuclear steam-supply section. The method consists of: constructing a nuclear reactor system at a manufacturing site remote from the predetermined use site but accessible to the predetermined waterways for transportation from the manufacturing site to the predetermined use site, the nuclear reactor system including a barge with the nuclear steam supply section constructed integrally with the barge. Simultaneously with the construction of the nuclear reactor system, constructing facilities at the use site to be integrated with the nuclear reactor system to form the nuclear-reactor power plant; transporting the nuclear reactor system along the waterways to the predetermined use site; at the use site joining the removal parts of the altered nuclear reactor system to the remainder of the altered nuclear reactor system to complete the nuclear reactor system; and installing the nuclear reactor system at the predetermined use site and integrating the nuclear reactor system to interact with the facilities constructed at the predetermined use site to form the nuclear-reactor power plant

  11. Change of nuclear reactor installation in the first nuclear ship of Japan Nuclear Ship Development Agency

    International Nuclear Information System (INIS)

    1979-01-01

    The written application concerning the change of nuclear reactor installation in the first nuclear ship was presented from the JNSDA to the prime minister on January 10, 1979. The contents of the change are the repair of the primary and secondary shields of the reactor, the additional installation of a storage tank for liquid wastes, and the extension of the period to stop the reactor in cold state. The inquiry from the prime minister to the Nuclear Safety Commission was made on June 9, 1979, through the examination of safety in the Nuclear Safety Bureau, Science and Technology Agency. The Nuclear Safety Commission instructed to the Committee for the Examination of Nuclear Reactor Safety on June 11, 1979, about the application of criteria stipulated in the law. The relevant letters and the drafts of examination papers concerning the technical capability and the safety in case of the change of nuclear reactor installation in the first nuclear ship are cited. The JNSDA and Sasebo Heavy Industries, Ltd. seem to have the sufficient technical capability to carry out this change. As the result of examination, it is recognized that the application presented by the JNSDA is in compliance with the criteria stipulated in the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors. (Kako, I.)

  12. Installation of remote-handling typed EBSD-OIM analyzer for heavy irradiated reactor materials

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Takada, Fumiki; Ohmi, Masao; Nakagawa, Tetsuya; Miwa, Yukio

    2008-06-01

    The remote-handling typed EBSD-OIM analyzer for heavy irradiated reactor materials was installed in the JMTR hot laboratory at the first time in the world. The analyzer is used to study on IASCC (irradiation assisted stress corrosion cracking) or IGSCC (inter granular stress corrosion cracking) in reactor materials. This report describes the measurement procedure, the measured results and the operating experiences on the analyzer in the JMTR hot laboratory. (author)

  13. Safety analysis for K reactor and impact of cooling tower installation

    International Nuclear Information System (INIS)

    Fields, C.C.; Wooten, L.A.; Geeting, M.W.; Morgan, C.E.; Buczek, J.A.; Smith, D.C.

    1993-01-01

    This paper describes the safety analysis of the Savannah River site K-reactor loss-of-cooling-water-supply (LOCWS) event and the impact on the analysis of a natural-draft cooling tower, which was installed in 1992. Historically (1954 to 1992), the K-reactor secondary cooling system [called the cooling water system (CWS)] used water from the Savannah River pumped to a 25-million-gal basin adjacent to the reactor. Approximately 170 000 gal/min were pumped from the basin through heat exchangers to remove heat from the primary cooling system. This water then entered a smaller basin, where it flowed over a weir and eventually returned to the Savannah River. The 25-million-gal basin is at a higher elevation than the heat exchangers and the smaller basin to supply cooling by gravity flow (which is sufficient to remove decay heat) if power to the CWS pumps is interrupted. Small amounts of cooling water are also used for other essential equipment such as diesels, motors, and oil coolers. With the cooling tower installed, ∼85% of the cooling water flows from the small basin by gravity to the cooling tower instead of returning to the Savannah River. After being cooled, it is pumped back to the 25-million-gal basin. River water is supplied only to make up for evaporation and the blowdown stream

  14. Considerations about decommissioning of the IEA-R1 research reactor and the future of its installations after shutdown

    International Nuclear Information System (INIS)

    Frajndlich, Roberto

    2014-01-01

    The IEA-R1 Nuclear Research Reactor, in operation since 1957, in the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), is one of the oldest research reactors in the world. However at some point in time in the future, as example of the other reactors, it will be shutdown definitively. Before that time actually arrives, the operational organization needs to plan the future of its installations and define the final destination of equipment and radioactive as well as non-radioactive material contained inside the installations. These and other questions should be addressed in the so called Preliminary decommissioning plan of the installation, which is the subject of this work. The work initially presents an over view about the theme and defines the general and specific objectives describing, in succession, the directions that the operating organization should consider for the formulation of a decommissioning plan. The present structure of the Brazilian nuclear sector emphasizing principally the norms utilized in the management of radioactive waste is also presented. A description of principle equipment of the IEA-R1 reactor which constitutes its inventory of radioactive and non-radioactive material is given. The work emphasizes the experience of the reactor technicians, acquired during several reforms and modifications of the reactor installations realized during its useful life time. This experience may be of great help for the decommissioning in the future. An experiment using the high resolution gamma spectrometric method and computer calculation using Monte Carlo theory were performed with the objective of obtaining an estimate of the radioactive waste produced from dismantling of the reactor pool walls. The cost of reactor decommissioning for different choices of strategies was determined using the CERREX code. Finally, a discussion about different strategies is presented. On the basis of these discussions it is concluded that the most advantageous

  15. Change in plan for installation of nuclear reactor in No.1 atomic powered vessel of Japan Atomic Energy Research Institute (change in purpose of use and in method for nuclear reactor installation and spent fuel disposal) (report)

    International Nuclear Information System (INIS)

    1987-01-01

    This report, compiled by the Nuclear Safety Commission to be submitted to the Prime Minister, deals with studies concerning some changes in the plan for the installation of a nuclear reactor in the No.1 atomic powered vessel to be constructed under the Japan Atomic Energy Research Institute (changes in the purpose of its use and in the methods for the nuclear reactor installation and spent fuel disposal). The conclusions of and procedures for the examination and evaluation are presented and then detailes of the studies are described. The study on the location requirements for the incidental land facilities at Sekinehama covers various conditions concerning the location, geology, earthquakes, meteorology, hydrology and social environment. The study on the safety design of the nuclear reactor facilities deals with the reactor, fuel handling facilities and other auxiliary facilities, as well as various land facilities to be constructed at Sekinehama including the reactor facilities and other facilities for fuel handling, waste disposal and protection and management of radioactive rays. Evaluation of possible radiation emission is shown and the accident analysis is also addressed. (Nogami, K.)

  16. Wiring installation for electric devices above the roof slab of a nuclear reactor

    International Nuclear Information System (INIS)

    Jahnke, S.

    1986-01-01

    The wiring installation is situated inside the nuclear reactor building. It includes, associated to electric devices, a first cable which extends from the device to a fixed connector arranged above the cover. A second cable is connected to the said fixed connector and to a connector fixed on a plate situated out of the reactor. According to the present invention each second cable has several sections. A first section can be connected to the said fixed connector situated above the cover and to a fixed lead-in connector of a fluid-tight conduit above the reactor core. A second section is inside the conduit. A third section can be connected to a lead-out connector fixed on the plate which is out of the reactor. The invention applies more particularly to pressurized water nuclear reactors [fr

  17. Installation technology of reactor internals on shroud replacement work

    International Nuclear Information System (INIS)

    Miyano, Hiroshi

    1999-01-01

    Since the replacement of large welded reactor internals much as a core shroud did not have a precedent in the world, quite a few technologies had to be developed. Especially for the installation of new core shroud, jet pumps, core plate and top guide, the accurate weld and fit-up techniques for large structures was required to secure their integrity. The vessel shielding system was utilized to reduce general area dose rate such that all replacement work. For jet pump installation, automatic remote welding machines were used for high radiation area. As for the core shroud, shroud support weld prep machining tool with high accuracy, jacking system to support fit-up, new weld machine for small work space and low heat input weld joint were developed. Shroud replacement work in Fukushima Dai-ichi NPS Unit 3 (1F-3) with application of these development techniques, was successfully accomplished. The technology is applied for 1F-2 replacement work also. (author)

  18. Installation of a new type of nuclear reactor in Mexico: advantages and disadvantages; Instalacion de un nuevo tipo de reactor nuclear en Mexico: ventajas y desventajas

    Energy Technology Data Exchange (ETDEWEB)

    Jurado P, M.; Martin del Campo M, C. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: mjp_green@hotmail.com

    2005-07-01

    In this work the main advantages and disadvantages of the installation of a new type of nuclear reactor different to the BWR type reactor in Mexico are presented. A revision of the advanced reactors is made that are at the moment in operation and of the advanced reactors that are in construction or one has already planned its construction in the short term. Specifically the A BWR and EPR reactors are analyzed. (Author)

  19. RESEARCH CONCERNING INSTALATION OF ALTERATIVE PROCESSES IN COW AND BUFFALO BUTTER DURING FREEZING STORAGE

    OpenAIRE

    Andreea Lup Dragomir; Flavia Pop

    2009-01-01

    Physicochemical characteristics and freshness indicators of cow and buffalo butter during freezing (-15 ... -18oC) storage were studied. Changes in freshness parameters and alterative processes installation, when butter becomes improperly for consumption were studied, inducing acidity, peroxide value (PV), iodine value (IV) andthe presence of epyhidrinic aldehyde. There was an increase of titrable acidity during storage, cow butter hydrolysis was installed after 35 days and after 30 days for ...

  20. Membrane bio-reactor - Research, pilot installation and measurement campaign; Membranbioreaktor (MBR) - Forschung, Pilotanlage und Messkampagne - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hersener, J -L [Ingenieurbuero Hersener, Wiesendangen (Switzerland); Meier, U [Meritec GmbH, Guntershausen (Switzerland)

    2007-07-01

    This report for the Swiss Federal Office of Energy (SFOE), takes a look at a project involving a fermenter installation in Eastern Switzerland. Research work is noted, the pilot installation is described and the results of a measurement campaign are presented and commented on. The plant is able to handle about 20,000-25,000 tonnes of slurry and organic waste. The plant is built as a membrane bio-reactor and allows the separation of the digested biomass into fractions of solid and liquid fertilisers and useful water. Furthermore, a part of the separated and digested liquid is returned to the fermenter in order to improve the digestion process. For the production of electricity a 1.1 MW generator is installed. The adaptations made during the measurement period are noted and commented on. According to the authors, the results - although difficult to interpret - show that the concept of a membrane bio-reactor can work successfully.

  1. Concept of an accelerator-driven subcritical research reactor within the TESLA accelerator installation

    International Nuclear Information System (INIS)

    Pesic, Milan; Neskovic, Nebojsa

    2006-01-01

    Study of a small accelerator-driven subcritical research reactor in the Vinca Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology

  2. Reactor installation and maintenance for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Smith, B.R.

    1993-01-01

    Advanced Neutron Source (ANS) reactor assembly components have been modeled in great detail in IGRIP in order to realistically simulate preliminary installation and maintenance processes. Animation of these processes has been captured in a 15-minute video with narration. Approximately 90% of the parts were initially translated from CADAM (a two-dimensional drawing package) to IGRIP and then revolved or extruded. IGRIP's IGES translator greatly reduced the time required to perform this operation. The interfacing of devices in the work cell has identified numerous design inconsistencies. Most of the modeled reactor components are devices with a single degree of freedom (DOF) however, some of the slanted experiments required 6 DOF so that they could be removed at an angle in order to clear the reflector vessel flanges. IGRIP's collision detection feature proved to be extremely helpful in determining interferences when removing the experiments. The combination of three-dimensional visualization and collision detection allows engineers to clearly and easily visualize potential design problems before the construction phase of the project

  3. RA reactor building and installations; Zgrada 'RA' i instalacije

    Energy Technology Data Exchange (ETDEWEB)

    Badrljica, R; Sanovic, V; Skoric, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1985-08-15

    RA reactor building is made of reinforced concrete and bricks. It is closed facility with a limited number of controlled openings, doors and windows. The site of the building is 100 m above the sea level, 20 m above the mean Danube level and 8 m above the level of the neighbouring stream Mlaka. The building consists of three parts: central prismatic part, annex - surrounding the central part and the sanitary corridor. The biggest space is the reactor hall. In addition to the detailed description and drawings of the reactor building this documents includes design specifications of: electrical installation, water supply system, sewage system, ventilation and heating, gas and compressed air systems. A separate chapter is devoted to fire protection. Zgrada reaktora RA izgradjena je od armiranog betona i opeke, kao zatvoreni objekat ogranicenog broja kontolisanih otvora, sa ogranicenim brojem vrata i prozora. Plato na kojem je zgrada izgradjena nalazi se na 100 m nadmorske visine, na 20 m iznad srednjeg vodostaja Dunava i 8 m iznad nivoa obliznjeg potoka Mlaka. Zgrada se sastoji iz tri dela: sredisnjeg prizmaticnog dela, aneksa - prstenastog okvira sredisnog dela i sanitarnog propusnika. Pojedinacno najveci prostor zauzima reaktorska hala. Pored detaljnog opisa i plana zgrade, ovaj dokument sadrzi projekat elektricne instalacije, projekat vodovoda i kanalizacije, ventilacije i grejanja, instalacije gasa i komprimovanog vazduha. Posebno poglavlje posveceno je protivpozarnoj zastiti.

  4. Safety concerning the alteration in fuel material usage (new installation of the uranium enrichment pilot plant) at Ningyo Pass Mine of Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1978-01-01

    A report of the Committee on Examination of Nuclear Fuel Safety was presented to the Atomic Energy Commission of Japan, which is concerned with the safety in the alteration of fuel material usage (new installation of the uranium enrichment pilot plant) at the Ningyo Pass Mine. Its safety was confirmed. The alteration, i.e. installation of the uranium enrichment pilot plant, is as follows. Intended for the overall test of centrifugal uranium enrichment technology, the pilot plant includes a two-storied main building of about 9,000 m 2 floor space, containing centrifuges, UF 6 equipment, etc., a uranium storage of about 1,000 m 2 floor space, and a waste water treatment facility, two-storied with about 300 m 2 floor space. The contents of the examination are safety of the facilities, criticality control, radiation control, waste treatment, and effects of accidents on the surrounding environment. (Mori, K

  5. Installation and evaluation of a nitrogen-16 detector in the Ford nuclear reactor

    International Nuclear Information System (INIS)

    Burn, R.R.

    1995-01-01

    Core differential temperature is the final measure of steady-state power at the Ford nuclear reactor. During some evolutions, such as changing the number of cooling-tower fans in operation, differential temperature undergoes a transient and does not provide an accurate measure of true power. A 16 N detector was installed to provide a more stable measure of power, even under transient conditions

  6. Installation, performance, safety aspects and technical data of the triple axis Spectrometer at TRIGA Reactor of AERE

    International Nuclear Information System (INIS)

    Yunus, S. M.; Kamal, I.; Datta, T. K.; Zakaria, A. K. M.; Ahmed, F. U.

    2004-02-01

    The technical data of the Triple Axis Neutro Spectrometer installed at the 3 MW TRIGA Mark II research reactor has been described. These are the reference data required for the operation, maintenance and use of the spectrometer. The detail information of the installation of the spectrometer has been given. Radiation safety features of the spectrometer and around the radial piercing beam port (where the spectrometer is installed) are described elaborately. The quality test experiments and the performance of the spectrometer as found from these tests are also described

  7. The economic potential of a cassette-type-reactor-installed nuclear ice-breaking container ship

    International Nuclear Information System (INIS)

    Kondo, Koichi; Takamasa, Tomoji

    1999-01-01

    An improved cassette-type marine reactor MRX (Marine Reactor X) which is currently researched and developed by the Japan Atomic Energy Research Institute is designed to be easily removed and transferred to another ship. If the reactor in a nuclear-powered ship, which is the reason for its higher cost, were replaced by the cassette-type-MRX, the reusability of the MRX would reduce the cost difference between nuclear-powered and diesel ships. As an investigation of one aspect of a cassette-type MRX, we attempted in this study to do an economic review of an MRX-installed nuclear-powered ice-breaking container ship sailing via the Arctic Ocean. The transportation cost between the Far East and Europe to carry one TEU (twenty-foot-equivalent container unit) over the entire life of the ship for an MRX (which is used for a 20-year period)-installed container ship sailing via the Arctic Ocean is about 70% higher than the Suez Canal diesel ship, carrying 8,000 TEU and sailing at 25 knots, and about 10% higher than the Suez Canal diesel ship carrying 4,000 TEU and sailing at 34 knots. The cost for a cassette-type-MRX (which is used for a 40-year period, removed and transferred to a second ship after being used for 20 years in the first ship)-installed nuclear-powered container ship is about 7% lower than that for the one operated for 20 years. Considering any loss or reduction in sales opportunities through the extension of the transportation period, the nuclear-powered container ship via the Arctic Sea is a more suitable means of transportation than a diesel ship sailing at 25 knots via the Suez Canal when the value of the commodities carried exceeds 2,800 dollars per freight ton. (author)

  8. Civilian protection and Britain's commercial nuclear installations

    International Nuclear Information System (INIS)

    1981-01-01

    The subject is treated as follows: initial conclusions (major nuclear attack on military installations; nuclear attack including civil nuclear targets; conventional attack on civil nuclear installations); nature of nuclear weapons explosions and power reactor releases (general; dose effects and biologically significant isotopes; nuclear weapon effects; effect of reactors and other fuel-cycle installations in a thermonuclear area; implications of reactor releases due to conventional attack, sabotage, civil disorder or major accident). (U.K.)

  9. Questions for the nuclear installations inspectorate

    International Nuclear Information System (INIS)

    Conroy, C.; Flood, M.; MacRory, R.; Patterson, W.C.

    1976-01-01

    The responsibilities of the Nuclear Installations Inspectorate are considered, and the responsibilities of other bodies for (a) reprocessing and enrichment, and (b) security. Questions for the Nuclear Installations Inspectorate are then set out under the following heads: general (on such topics as vandalism, sabotage, threats, security, reactor incidents); magnox reactors; corrosion; advanced gas-cooled reactor; steam generating heavy water reactor; fast breeder reactor; reproces-sing and waste. Most of the questions are concerned with technical problems that have been reported or might possibly arise during construction or operation, affecting the safety of the reactor or process. (U.K.)

  10. Nuclear reactor installation with outer shell enclosing a primary pressure vessel

    International Nuclear Information System (INIS)

    1975-01-01

    The high temperature nuclear reactor installation described includes a fluid cooled nuclear heat source, a primary pressure vessel containing the heat source, an outer shell enclosing the primary pressure vessel and acting as a secondary means of containment for this vessel against outside projectiles. Multiple auxiliary equipment points are arranged outside the outer shell which comprises a part of a lower wall around the primary pressure vessel, an annular part integrated in the lower wall and extending outwards as from this wall and an upper part integrated in the annular part and extending above this annular part and above the primary pressure vessel. The annular part and the primary pressure vessel are formed with vertical penetrations which can be closed communicating respectively with the auxiliary equipment points and with inside the pressure vessel whilst handling gear is provided in the upper part for vertically raising reactor components through these penetrations and for transporting them over the annular part and over the primary pressure vessel [fr

  11. Outline of design, manufacturing and installation experience of pressure vessel structure for the prototype heavy water moderated boiling light water cooled reactor 'FUGEN'

    International Nuclear Information System (INIS)

    Shibato, Eizo; Oguchi, Isao; Kishi, Toshikazu; Kitagawa, Yuji

    1977-01-01

    After component installation completed in June 1977 and various functional tests to be conducted later, the prototype heavy water moderated, boiling light water cooled reactor ''FUGEN'' is scheduled to reach first criticality in March 1978. Since the pressure vessel of ''FUGEN'' is completely different from that of a light water reactor in structure and materials, through research and development work was carried out prior to fabrication and construction. Based on these studies, installation of the actual pressure vessel was completed. Functional tests are now under way. This article describes examples in which our research and development results are reflected on design, manufacture, and installation of the pressure vessel. Also it introduces noteworthy achievements relevant to production techniques in manufacture and installation. (auth.)

  12. Nuclear reactor installation with outer shell enclosing a primary pressure vessel

    International Nuclear Information System (INIS)

    1975-01-01

    The high temperature nuclear reactor installation described includes a fluid cooled nuclear heat source, a primary pressure vessel and outer shell around the primary pressure vessel and acting as a protection for it against outside projectiles. A floor is provided internally dividing the outside shell into two upper and lower sections and an inside wall dividing the lower section into one part containing the primary pressure vessel and a second part, both made pressure tight with respect to each other and with the outside shell and forming with the latter a secondary means of containment [fr

  13. Installation of foundation fieldbus to KUR

    International Nuclear Information System (INIS)

    Ishihara, Shinji; Fujita, Yoshiaki

    1999-11-01

    The instrumentation and control system for the research reactor in Research Reactor Institute, Kyoto University has been used for the safe and steady operation since the initial critical attainment in 1964. It has been modified and added many devices in the chance of increasing the reactor power from 1 MW to 5 MW, installing new experimental facilities or fitting to modified nuclear regulations. In order to avoid the unscheduled shutdown of the research reactor by cause the failure of the devices, most of instrumentation system was renewed in 1999. Operating the research reactor more safely and reliably, Supervisory Control Automation and Data Acquisition System which employed personal computers with the Windows NT operating system was added to the conventional instrumentation system, and the fieldbus system called Foundation Fieldbus was installed. Compared with conventional instrumentation system, each fieldbus system has some advantages. Many kinds of fieldbus systems have been developed and sold on the markets in some countries. Foundation Fieldbus standardizing international, which was able to use the devices made by multi-vendor was tentatively installed to study particular techniques about Foundation Fieldbus. The primary coolant flow rate, the temperature difference between the reactor tank inlet and outlet temperatures, the calorimetric power and the reactor power in nuclear instrumentation are monitored on human-machine interface devices on the fieldbus. The programmable logic controller is employed to control the information system for the reactor. This paper introduces Foundation Fieldbus installed. (author)

  14. Installation Test of Cold Neutron Soruce In-pool Assembly

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Choi, J.; Wu, S. I.; Kim, Y. K.; Cho, Y. G.; Lee, C. H.; Kim, K. R.

    2006-04-01

    Before installation of the final cold neutron source in-pool assembly (IPA) in the vertical CN hole at the HANARO, the research reactor, the installation test of IPA has been conducted in the CN hole of the reactor using a full-scaled mock-up in-pool assembly. The well-known cold neutron sources, being safely operated or being now constructed, had been constructed together with each research reactor; therefore, there was little limitation to obtain the optimal cold neutron source since a cold neutron source had been decided to be installed in the reactor from the beginning of the design for the reactor construction. Unlikely, the HANARO has been operated for 10 years so that we have got lots of design limitation in terms of the decisions in the optimal shape, size, minimal light-water gap, and adhesion degree to the CN beam tube, IPA installation tools, etc. for the construction of the CNS. Accordingly, the main objective of this test is to understand any potential problem or interference happened inside the reactor by installing the mock-up IPA and installation bracket. The outcomes from this test is reflected on the finalizing process of the IPA detail design

  15. Guideline for examination concerning the evaluation of safety in light water power reactor installations

    International Nuclear Information System (INIS)

    1978-01-01

    This guideline was drawn up as the guide for examination when the safety evaluation of nuclear reactors is carried out at the time of approving the installation of light water power reactors. Accordingly in case of the examination of safety, it must be confirmed that the contents of application are in conformity with this guideline. If they are in conformity, it is judged that the safety evaluation of the policy in the basic design of a reactor facility is adequate, and also that the evaluation concerning the separation from the public in surroundings is adequate as the condition of location of the reactor facility. This guideline is concerned with light water power reactors now in use, but the basic concept may be the reference for the examination of the other types of reactors. If such a case occurs that the safety evaluation does not conform to this guideline, it is not excluded when the appropriate reason is clarified. The purpose of safety evaluation, the scope to be evaluated, the selection of the events to be evaluated, the criteria for judgement, the matters taken into consideration at the time of analysis, the concrete events of abnormal transient change and accident in operation, and the concrete events of serious accident and hypothetic accident are stipulated. The explanation and two appendices are attached. (Kako, I.)

  16. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. H.; Choi, S.; Park, J. S.; Lee, J. S.; Kim, D. O.; Hur, N. S.; Hur, H.; Yu, J. Y

    2008-09-15

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device.

  17. Regulations concerning licensing of nuclear reactor facilities and other nuclear installations, Decree No 7/9141, 6 January 1975

    International Nuclear Information System (INIS)

    1975-01-01

    This Decree lays down the licensing system for nuclear installations in Turkey and also sets up a Nuclear Safety Committee whose duty is to ensure that the requirements of this Decree are met. The Committee is made up of members of the Atomic Energy Commission specialized in reactors, nuclear safety, health physics, reactor physics as well as two experts respectively appointed by the Ministry of Health and Social Welfare and the Ministry of Energy and National Resources. (NEA) [fr

  18. Modular reactor head shielding system

    International Nuclear Information System (INIS)

    Jacobson, E. B.

    1985-01-01

    An improved modular reactor head shielding system is provided that includes a frame which is removably assembled on a reactor head such that no structural or mechanical alteration of the head is required. The shielding system also includes hanging assemblies to mount flexible shielding pads on trolleys which can be moved along the frame. The assemblies allow individual pivoting movement of the pads. The pivoting movement along with the movement allowed by the trolleys provides ease of access to any point on the reactor head. The assemblies also facilitate safe and efficient mounting of the pads directly to and from storage containers such that workers have additional shielding throughout virtually the entire installation and removal process. The flexible shielding pads are designed to interleave with one another when assembled around the reactor head for substantially improved containment of radiation leakage

  19. Concerning installation of reactor at Noto nuclear power plant of Hokuriku Electric Power Co., Inc. (reply to inquiry)

    International Nuclear Information System (INIS)

    1988-01-01

    In response to an inquiry on the conformity of the title issue to the applicable law concerning nuclear material, nuclear fuel and nuclear reactor, the Nuclear Safety Commission ordered the Nuclear Reactor Safety Expert Group to make a study, made an examination after receiving a report from the Group, and submit the findings to the Minister of International Trade and Industry. The study on the site conditions covered the site location, geology, effects or earthquakes, meteorology, hydrology and social environment. The study on the safety design of the reactor covered the design of the facilities as a whole, anti-earthquake design, reactor, instrumentation, reactor shutdown system, reactivity control, protection, cooling system, reactor vessel, fuel handling, fuel storage, and radiation control. The study also included exposure evaluation, abnormal transient state analysis and accident analysis. It is concluded that the relevant company has a technical capability required for the installation and proper operation of the reactor in question, and that the reactor will have adequate safety with no possibility of causing a disaster. (Nogami, K.)

  20. User requirements in the area of safety of innovative nuclear reactors and fuel cycle installations

    International Nuclear Information System (INIS)

    Kuczera, B.; Juhn, P.E.; Fukuda, K.; )

    2002-01-01

    Full text: Against the background of already existing IAEA and INSAC publications in the area of safety, in the framework of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) a set of user requirements for the safety of future nuclear installations has been established. Five top-level requirements are expected to apply to any type of innovative design. They should foster an increased level of safety that is transparent to and fully accepted by the general public. The approach to future reactor safety includes two complementary strategies: increased emphasis on inherent safety characteristics and enhancement of defense in depth. As compared to existing plants, the effectiveness of preventing measures should be highly enhanced, resulting in fewer mitigation measures. The targets and possible approaches of each of the five levels of defense developed for innovative reactor designs are outlined in the paper

  1. Treatment of opinions, etc. in the public hearing on the alteration of reactor installation (addition of Unit 2) in the Shimane Nuclear Power Station of The Chugoku Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1983-01-01

    The Nuclear Safety Commission has acknowledged the governmental policy, and further decided on the treatment of the opinions expressed by the local people in the public hearing held in May, 1983, in Shimane Prefecture on the addition of Unit 2 to the Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. The NSC has directed the Committee on Examination of Reactor Safety to take into consideration the opinions in its later examination. The opinions expressed by the local people in the form of question are given as follows: siting conditions (earthquake, ground, weather, etc.), the safety design for reactor installation (general aspect, aseismatic design, core design, ECCS, the teaching of TMI accident, etc.), radioactive wastes, radiation exposure, site evaluation. (Mori, K.)

  2. Design, manufacture and installation of measuring and control equipments for the advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Hirota, Shigeo; Kawabata, Yoshinori

    1979-01-01

    The advanced thermal prototype reactor ''Fugen'' attained the criticality on March 20, 1978, and 100% output operation on November 13, 1978. On March 20, 1979, it passed the final inspection, and since then, it has continued the smooth operation up to now. The measuring and control equipments are provided for grasping the operational conditions of the plant and operating it safely and efficiently. At the time of designing, manufacturing and installing the measuring and control equipments for Fugen, it was required to clarify the requirements of the plant design, to secure the sufficient functions, and to improve the operational process, maintainability and the reliability and accuracy of the equipments. Many design guidelines and criteria were decided in order to coordinate the conditions among five manufacturers and give the unified state as one plant. The outline of the instrumentations for neutrons, radiation monitoring and process data, the control systems for reactivity, reactor output, pressure and water supply, the safety protection system, and the process computer are described. Finally, the installations and tests of the measuring and control equipments are explained. The aseismatic capability of the equipments was confirmed. (Kako, I.)

  3. Development regulation regarding with licensing of nuclear installation

    International Nuclear Information System (INIS)

    Bambang Riyono; Yudi Pramono; Dahlia Cakrawati Sinaga

    2011-01-01

    Provisions of Article 17 paragraph (3) of Law Number 10 Year 1997 on Nuclear cleary mandates for the establishment of government regulations (GR) on Nuclear licensing containing the requirements and procedure, both from the standpoint of their utilization and installation. To use has been rising GR No.29 Year 2008 on the Use of Ionizing Radiation Sources and Nuclear Materials, while for the installation has been published PP No.43 Year 2006 on Nuclear Reactor Licensing, and BAPETEN Chairman Decree No.3 Year 2006 on Non-reactor Nuclear Installation Licensing. Based on the background of the preparation of both the aforementioned are just regulate the reactor and utilization, not yet fully meet the mandate of Article 17 paragraph (3) of Law No.10 of 1997 on Nuclear, including other nuclear installations. For these reasons, it initiated the need for a separate regulation containing provisions concerning licensing of non-reactor nuclear installations. On the other side from the understanding the legal aspects and interpretations of the Law No.10 of 2004 on the Establishment Regulation Legislation, should be in single mandate of Article 17 paragraph (3) of Law No.10 of 1997 on Nuclear would only produce one of the requirements and procedure for the use or installation, or a maximum of two (2) GR related licensing the use and installation. This is encourages conducted the assessing or studies related to how possible it is according to the legal aspect is justified to combine in one Nuclear licensing regulations regarding both the use and installation, by looking at the complexity of installation and wide scope of utilization of nuclear energy in Indonesia. The results of this paper is expected to provide input in the preparation of GR on licensing of nuclear installations. (author)

  4. Handling of views and opinions by staters and others in a public hearing on alteration in reactor installation (addition of Unit 2) in the Sendai Nuclear Power Station of Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1981-01-01

    A public hearing on the addition of Unit 2 in the Sendai Nuclear Power Station, Kyushu Electric Power Co., Inc., was held on July 17, 1980, in Sendai City, Kagoshima Prefecture. The views and opinions by the local staters and those by the notification of statement were expressed concerning its nuclear safety. The handling of these views and opinions by the Nuclear Safety Commission is explained. The most important in this action is the instruction by the NSC to the Committee on Examination of Reactor Safety to reflect the results of the public hearing to the reactor safety examination of the Unit 2 installation by the CERS. The views and opinions expressed in this connection are summarized as follows: the sitting conditions, the safety design of the reactor plant, and the release of radioactive materials, involving such aspects as earthquakes, accidents and radioactive waste management. (J.P.N.)

  5. Installation and commissioning of operation nuclear power plant reactor protection system modernization project

    International Nuclear Information System (INIS)

    Lu Weiwei

    2010-01-01

    Qinshan Nuclear Power Plant is the first nuclear power plant in mainland China; it is also the first one which realizes the modernization of analog technology based Reactor Protection System in the operation nuclear power plant of China. The implementation schedule is the shortest one which use same digital technology platform (TELEPERM XS of AREVA NP) to modifying the safety class I and C system in the world, the whole project spent 28 months from equipment contract signed to putting system into operation. It open up a era for operation nuclear power plant using mature digital technology to make safety class I and C system modernization in China. The important practical significance of this successful project is very obvious. This article focus on two important project stage--equipment installation and system commissioning, it is based on a large number of engineering implementation fact, it covers the problems and solutions happened during the installation and commission. The purpose of the article is to share the experience and lessons of safety I and C system modernization for other operation nuclear power plant. (authors)

  6. The design and installation of a core discharge monitor for CANDU-type reactors

    International Nuclear Information System (INIS)

    Halbig, J.K.; Monticone, A.C.; Ksiezak, L.; Smiltnieks, V.

    1990-01-01

    A new type of surveillance systems that monitors neutron and gamma radiation in a reactor containment is being installed at the Ontario Hydro Darlington Nuclear Generating Station A, Unit 2. Unlike video or film surveillance that monitors mechanical motion, this system measures fuel-specific radiation emanating from irradiated fuel as it is pushed from the core of CANDU-type reactors. Proof-of-principle measurements have been carried out at Bruce Nuclear Generating Station A, Unit 3. The system uses (γ,n) threshold detectors and ionization detectors. A microprocessor-based electronics package, GRAND-II (Gamma Ray and Neutron Detector electronics package), provides detector bias, preamplifier power, and signal processing. Firmware in the GRAND-2 controls the surveillance activities, including data acquisition and a level of detector authentication, and it handles authenticated communication with a central data logging computer. Data from the GRAND-II are transferred to an MS-DOS-compatible computer and stored. These data are collected and reviewed for fuel-specific radiation signatures from the primary detector and proper ratios of signals from secondary detectors. 5 figs

  7. Hydrodynamic problems of heavy liquid metal coolants technology in loop-type and mono-block-type reactor installations

    International Nuclear Information System (INIS)

    Orlov, Yuri I.; Efanov, Alexander D.; Martynov, Pyotr N.; Gulevsky, Valery A.; Papovyants, Albert K.; Levchenko, Yuri D.; Ulyanov, Vladimir V.

    2007-01-01

    In the report, the influence of hydrodynamics of the loop with heavy liquid metal coolants (Pb and Pb-Bi) on the realization methods and efficiency of the coolant technology for the reactor installations of loop, improved loop and mono-block type of design has been studied. The last two types of installations, as a rule, are characterized by the following features: availability of loop sections with low hydraulic head and low coolant velocities, large squares of coolant free surfaces; absence of stop and regulating valve, auxiliary pumps on the coolant pumping-over lines. Because of the different hydrodynamic conditions in the installation types, the tasks of the coolant technology have specific solutions. The description of the following procedures of coolant technology is given in the report: purification by hydrogen (purification using gas mixture containing hydrogen), regulation of dissolved oxygen concentration in coolant, coolant filtrating, control of dissolved oxygen concentration in coolant. It is shown that change of the loop design made with economic purpose and for improvement of the installation safety cause additional requirements to the procedures and apparatuses of the coolant technology realization

  8. Alteration in reactor installation (addition of Unit 2) in Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. (inquiry)

    International Nuclear Information System (INIS)

    1983-01-01

    An inquiry was made by the Ministry of International Trade and Industry to Nuclear Safety Commission on the addition of Unit 2 in Shimane Nuclear Power Station of The Chugoku Electric Power Co., Inc., concerning the technical capability of Chugoku Electric Power Co., Inc., and the plant safety. The NSC requested the Committee on Examination of Reactor Safety to make a deliberation on this subject. Both the technical capability and the safety of Unit 1 were already confirmed by MITI. Unit 2 to be newly added in the Shimane Nuclear Power Station is a BWR power plant with electric output of 820 MW. The examination made by MITI is described: the technical capability of Chugoku Electric Power Co., Inc., the safety of Unit 2 about its siting, reactor proper, reactor cooling system, radioactive waste management, etc. (J.P.N.)

  9. Decommissioning nuclear installations

    International Nuclear Information System (INIS)

    Dadoumont, J.

    2010-01-01

    When a nuclear installation is permanently shut down, it is crucial to completely dismantle and decontaminate it on account of radiological safety. The expertise that SCK-CEN has built up in the decommissioning operation of its own BR3 reactor is now available nationally and internationally. Last year SCK-CEN played an important role in the newly started dismantling and decontamination of the MOX plant (Mixed Oxide) of Belgonucleaire in Dessel, and the decommissioning of the university research reactor Thetis in Ghent.

  10. Fuel followed control rod installation at AFRRI

    International Nuclear Information System (INIS)

    Moore, Mark; Owens, Chris; Forsbacka, Matt

    1992-01-01

    Fuel Followed Control Rods (FFCRs) were installed at the Armed Forces Radiobiology Research Institute's 1 MW TRIGA Reactor. The procedures for obtaining, shipping, and installing the FFCRs is described. As part of the FFCR installation, the transient rod drive was relocated. Core performance due to the addition of the fuel followed control rods is discussed. (author)

  11. The insurance of nuclear installations

    International Nuclear Information System (INIS)

    Francis, H.W.

    1977-01-01

    A brief account is given of the development of nuclear insurance. The subject is dealt with under the following headings: the need for nuclear insurance, nuclear insurance pools, international co-operation, nuclear installations which may be insured, international conventions relating to the liability of operators of nuclear installations, classes of nuclear insurance, nuclear reactor hazards and their assessment, future developments. (U.K.)

  12. Reactor console replacement at Washington State University

    International Nuclear Information System (INIS)

    Lovas, Thomas A.

    1978-01-01

    A replacement reactor console was installed in 1977 at the W.S.U. 1 MW TRIGA-fueled reactor as the final step in an instrumentation upgrade program. The program was begun circa 1972 with the design, construction and installation of various systems and equipment. Major instruments were installed in the existing console and tested in the course of reactor operation. The culmination of the program was the installation of a cubicle designed and constructed to house the updated instrumentation. (author)

  13. Calculation of anti-seismic design for Xi'an pulsed reactor

    International Nuclear Information System (INIS)

    Li Shuian

    2002-01-01

    The author describes the reactor safety rule, safety regulation and design code that must be observed to anti-seismic design in Xi'an pulsed reactor. It includes the classification of reactor installation, determination of seismic loads, calculate contents, program, method, results and synthetically evaluation. According to the different anti-seismic structure character of reactor installation, an appropriate method was selected to calculate the seismic response. The results were evaluated synthetically using the design code and design requirement. The evaluate results showed that the anti-seismic design function of reactor installation of Xi'an pules reactor is well, and the structure integrality and normal property of reactor installation can be protect under the designed classification of the earthquake

  14. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    This invention relates to an apparatus and method for sealing the cold leg nozzles of a nuclear reactor pressure vessel from a remote location during maintenance and inspection of associated steam generators and pumps while the pressure vessel and refueling canal are filled with water. The apparatus includes a sealing plug for mechanically sealing the cold leg nozzle from the inside of a reactor pressure vessel. The sealing plugs include a primary and a secondary O-ring. An installation tool is suspended within the reactor vessel and carries the sealing plug. The tool telescopes to insert the sealing plug within the cold leg nozzle, and to subsequently remove the plug. Hydraulic means are used to activate the sealing plug, and support means serve to suspend the installation tool within the reactor vessel during installation and removal of the sealing plug

  15. ORPHEE reactor. Upgrade of the installation

    International Nuclear Information System (INIS)

    Farnoux, B.; Maziere, M.

    1995-01-01

    Designed by the end of the seventies, the ORPHEE Reactor is equipped with two hydrogen cold sources, one hot source and six cold neutron guides. The neutron beams are extracted by nine beam ports and used in two experimental halls, the reactor hall and the neutron guide hall. After fourteen years of use, a modernisation programme is in progress. One step concerns the neutron guides, another one the cold sources with the modification of the cell geometry in order to increase the cold neutron flux. This operation requires the use a new cryogenerator to ensure liquefaction capabilities for the new cells. It is also scheduled to replace the Zircaloy core housing in order to avoid difficulties linked to the expansion under irradiation. (author)

  16. Operating experience feedback report: Experience with pump seals installed in reactor coolant pumps manufactured by Byron Jackson

    International Nuclear Information System (INIS)

    Bell, L.G.; O'Reilly, P.D.

    1992-09-01

    This report examines the reactor coolant pump (RCP) seal operating experience through August 1990 at plants with Byron Jackson (B-J) RCPs. ne operating experience examined in this analysis included a review of the practice of continuing operation with a degraded seal. Plants with B-J RCPs that have had relatively good experience with their RCP seals attribute this success to a combination of different factors, including: enhanced seal QA efforts, modified/new seal designs, improved maintenance procedures and training, attention to detail, improved seal operating procedures, knowledgeable personnel involved in seal maintenance and operation, reduction in frequency of transients that stress the seals, seal handling and installation equipment designed to the appropriate precision, and maintenance of a clean seal cooling water system. As more plants have implemented corrective measures such as these, the number of B-J RCP seal failures experienced has tended to decrease. This study included a review of the practice of continued operation with a degraded seal in the case of PWR plants with Byron Jackson reactor coolant pumps. Specific factors were identified which should be addressed in order to safety manage operation of a reactor coolant pump with indications of a degrading seal

  17. First experiences from system integration, installation and commissioning of TELEPERM XS for reactor I and C at the Unterweser NPP

    International Nuclear Information System (INIS)

    Schoerner, O.

    1998-01-01

    The modernization of Reactor I and C, consisting of reactor limitation system, reactor control system and rod control system, at Unterweser NPP is the pilot application of the state-of-the-art safety I and C system TELEPERM XS. The Unterweser system has been integrated and tested from December 1996 to May 1997 in the Siemens Erlangen test field and has been installed at site in July 1997. For the period from July 1997 to Jul 1998 the new TELEPERM XS based Reactor I and C system will be operated online-open-loop in parallel to the existing system, in order to get information about the long term stability of the system and conduct intensive personnel training. For one selected function ''Power distribution control'' the operator has the possibility to choose between the old controller and the new TELEPERM XS function. During the 1998 outage the TELEPERM XS system will be connected to the process and the old I and C system will be dismantled. This document describes the experiences gathered during system integration in the test field. (author)

  18. Treatment and management of opinions stated in and notified to the public hearing on the alteration in reactor installation (addition of Unit 3) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Ltd

    International Nuclear Information System (INIS)

    1981-01-01

    A public hearing was made in Hamaoka Town, Shizuoka Prefecture, on March 19, 1981, on the addition of Unit 3 in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc. Treatment and management of the opinions and others stated and notified by the local people, which are understood and to be carried out by the Nuclear Safety Commission, are: to publish them as the report of the public hearing, to include them in the safety examination report of NSC and to refer to them in the examination by the Committee on Examination of Reactor Safety, etc. The opinions and others stated and notified in the public hearing, to which CERS should refer in its examination, are summarized in the form of the questions on siting conditions, safety design of reactor installation, release of radioactivities, etc. (J.P.N.)

  19. Results of assembly test of HTTR reactor internals

    International Nuclear Information System (INIS)

    Maruyama, S.; Saikusa, A.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    The assembly test of the HTTR actual reactor internals had been carried out at the works, prior to their installation in the actual reactor pressure vessel(RPV) at the construction site. The assembly test consists of several items such as examining fabricating precision of each component and alignment of piled-up structures, measuring circumferential coolant velocity profile in the passage between the simulated RPV and the reactor internals as well as under the support plates, measuring by-pass flow rate through gaps between the reactor internals, and measuring the binding force of the core restraint mechanism. Results of the test showed good performance of the HTTR reactor internals. Installation of the reactor internals in the actual RPV was started at the construction site of HTTR in April, 1995. In the installation process, main items of the assembly test at the works were repeated to investigate the reproducibility of installation. (author). 5 refs, 11 figs

  20. Fuel assembly transfer and storage system for nuclear reactors

    International Nuclear Information System (INIS)

    Allain, Albert; Thomas, Claude.

    1981-01-01

    Transfer and storage system on a site comprising several reactors and at least one building housing the installations common to all these reactors. The system includes: transfer and storage modules for the fuel assemblies comprising a containment capable of containing several assemblies carried on a transport vehicle, a set of tracks for the modules between the reactors and the common installations, handling facilities associated with each reactor for moving the irradiated assemblies from the reactor to a transfer module placed in loading position on a track serving the reactor and conversely to move the new assemblies from the transfer module to the reactor, and at least one handling facility located in the common installation building for loading the modules with new assemblies [fr

  1. Installation modification of the reactor No.2 of Ikata nuclear power plant of Shikoku Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1980-01-01

    The application was made on August 25, 1979, from the president of the Shikoku Electric Power Company, Inc., to the Minister of International Trade and Industry, relating to the installation modification of the reactor No. 2 in the Ikata nuclear power plant. The inquiry was submitted on September 28, 1979, from the Minister of International Trade and Industry to the Nuclear Safety Commission, after the safety evaluation in the Ministry of International Trade and Industry, and the investigation and deliberation were started on October 1, 1979, in the Nuclear Safety Commission. The content of the modification is to add the circuit actuated by the abnormal low pressure signal of the reactor to the actuating circuit of the emergency core cooling system (ECCS) and to increase the new fuel storage capacity from about 1/3 core to about 2/3 core. The additional signal circuit is composed of the logic circuit of ''2 out of 4'' and is multichannel design. The circuit is independent from the reactor control system and the conventional signal circuit of the concurrence of low pressure in the reactor and low level in the pressurizer. With the addition of the circuit of abnormal low pressure signal of the reactor, the countermeasures for preventing ECCS start by mistake are also added. These modifications give no influence to the functions of the reactor control system and reactor protection system. The function and the performance of ECCS were analyzed and evaluated accompanying these modifications assuming the loss of coolant accident. Concerning the new fuel storage capacity, the type of racks is modified from angle type to can type, and the subcriticality is kept even at the time of water flood. (Nakai, Y.)

  2. Some suggestions based on the instrumentation installation experience at RAPP

    International Nuclear Information System (INIS)

    Raghunath, M.R.; Singh, S.; Jain, V.K.

    1977-01-01

    Suggestions regarding installation of reactor instrumentation have been made based on the instrumentation installation experience at the Rajasthan Atomic Power Plant. It has been mentioned that the instrumentation installation work has to proceed simultaneously with that of the heavy equipment and piping errection work, to meet the commissioning target dates. (S.K.K.)

  3. Safety in connection with the request for approval of the installation alteration in the fuel reprocessing facilities of Power Reactor and Nuclear Fuel Development Corporation (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report to the Prime Minister by the Nuclear Safety Commission was presented concerning the safety in the installation alteration of the fuel reprocessing facilities, as PNC had requested its approval to the Prime Minister. The safety was confirmed. The items of examination on the safety made by the committee on Examination of Nuclear Fuel Safety of NSC were the aseismic design of liquid waste storage, uranium denitration facility, intermediate gate and radioactive solid waste storage; the criticality safety design of the denitration facility; the radiation shielding design of the liquid waste storage, denitration facility and solid waste storage; the function of radioactive material containment of the liquid waste storage and denitration facility; the radiation control in the liquid waste storage, denitration facility and solid waste storage; the waste management in the liquid waste storage and denitration facility; fire and explosion prevention in the liquid waste storage; exposure dose from the liquid waste storage and denitration facility. (Mori, K.)

  4. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  5. The Swiss nuclear installations. Annual report 1993

    International Nuclear Information System (INIS)

    1994-08-01

    Surveillance of the Swiss nuclear installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). Five nuclear power plants are operational in Switzerland: the three units Beznau I and II and Muehleberg with electrical capacities in the range of 300 to 400 MWe, and the two units Goesgen and Leibstadt with capacities between 900 and 1200 MWe. These are light water reactors; at Beznau and Goesgen of the PWR type, and at Muehleberg and Leibstadt of the BWR type. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basel. Further subject to HSK's supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut-down experimental reactor of Lucens, the exploration of final disposal facilities for radwaste and the interim radwaste storage facilities in Switzerland. The report first deals with the nuclear power and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK. In chapter 5, the corresponding information is given for research installations. Chapter 6, on radwaste disposal, is dedicated to the treatment of waste, waste from reprocessing, interim storage and exploration by NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants' proximity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into general questions relating to the safety of nuclear installations. All in all, the safety of operation of the Swiss nuclear installations, in the period of 1993, is judged as good by HSK. (author) 10 figs., 11 tabs

  6. The Swiss nuclear installations. Annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Surveillance of the Swiss nuclear installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). Five nuclear power plants are operational in Switzerland: the three units Beznau I and II and Muehleberg with electrical capacities in the range of 300 to 400 MWe, and the two units Goesgen and Leibstadt with capacities between 900 and 1200 MWe. These are light water reactors; at Beznau and Goesgen of the PWR type, and at Muehleberg and Leibstadt of the BWR type. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basel. Further subject to HSK`s supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut-down experimental reactor of Lucens, the exploration, in Switzerland, of final disposal facilities for radwaste and the interim radwaste storage facilities. The report first deals with the nuclear power and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK. In chapter 5, the corresponding information is given for research installations. Chapter 6, on radwaste disposal, is dedicated to the treatment of waste, waste from reprocessing, interim storage and exploration by NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants` proximity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into general questions relating to the safety of nuclear installations. All in all, the safety of operation of the Swiss nuclear installations, in the period of 1994, is judged as good by HSK. (author) 11 figs., 13 tabs.

  7. 46 CFR 176.702 - Installation tests and inspections.

    Science.gov (United States)

    2010-10-01

    ..., machinery, fuel tank, or pressure vessel is installed aboard a vessel after completion of the initial... 100 GROSS TONS) INSPECTION AND CERTIFICATION Repairs and Alterations § 176.702 Installation tests and...

  8. VG-400 atomic power and technological installation. Possible core design

    International Nuclear Information System (INIS)

    Komarov, E.V.; Laptev, F.V.; Lyubivyj, A.G.; Mitenkov, F.M.; Samojlov, O.B.; Sukhachevskij, Yu.B.

    1979-01-01

    The main characteristics, basic circuit and configuration of equipment of the VG-400 atomic power and technological installation are considered. This installation is intended for supplying with highly-potential heat of thermal electrochemical hydrogen production and for power generation in the steam-turbine cycle. The main installation characteristics: HTGR reactor heat power 1100 MW, electric power 300 MW, helium coolant pressure 50 atm, output temperature 950 deg C, steam pressure in the second contour 175 atm, temperature 535 deg C, core diameter and height 6.4 m and 4 m, respectively, number of spherical fuel elements 8.5x10 5 . The installation can ensure hydrogen production of 10 5 Nxm 3 /h. For the VG-400 reactor block the integral arrangement of the first circuit equipment in the reinforced concrete is chosen. Two versions of the reactor core with prismatic and spherical fuel elements are compared. It is shown that taking into account great potentialities of the spherical zone in a case of further temperature increase and its positive qualities with respect to construction and processing of fuel elements and graphite blocks, the utilization of simplier units and mechanisms in the overloading system and in the process of profiling of energy distribution the choice of the spherical configuration for the VG-400 pilot plant installation seems to be valid

  9. Backfitting of the FRG reactors

    Energy Technology Data Exchange (ETDEWEB)

    Krull, W [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht (Germany)

    1990-05-01

    The FRG-research reactors The GKSS-research centre is operating two research reactors of the pool type fueled with MTR-type type fuel elements. The research reactors FRG-1 and FRG-2 having power levels of 5 MW and 15 MW are in operation for 31 year and 27 years respectively. They are comparably old like other research reactors. The reactors are operating at present at approximately 180 days (FRG-1) and between 210 and 250 days (FRG-2) per year. Both reactors are located in the same reactor hall in a connecting pool system. Backfitting measures are needed for our and other research reactors to ensure a high level of safety and availability. The main backfitting activities during last ten years were concerned with: comparison of the existing design with today demands (criteria, guidelines, standards etc.); and probability approach for events from outside like aeroplane crashes and earthquakes; the main accidents were rediscussed like startup from low and full power, loss of coolant flow, loss of heat sink, loss of coolant and fuel plate melting; a new reactor protection system had to be installed, following today's demands; a new crane has been installed in the reactor hall. A cold neutron source has been installed to increase the flux of cold neutrons by a factor of 14. The FRG-l is being converted from 93% enriched U with Alx fuel to 20% enriched U with U{sub 3}Si{sub 2} fuel. Both cooling towers were repaired. Replacement of instrumentation is planned.

  10. Backfitting of the FRG reactors

    International Nuclear Information System (INIS)

    Krull, W.

    1990-01-01

    The FRG-research reactors The GKSS-research centre is operating two research reactors of the pool type fueled with MTR-type type fuel elements. The research reactors FRG-1 and FRG-2 having power levels of 5 MW and 15 MW are in operation for 31 year and 27 years respectively. They are comparably old like other research reactors. The reactors are operating at present at approximately 180 days (FRG-1) and between 210 and 250 days (FRG-2) per year. Both reactors are located in the same reactor hall in a connecting pool system. Backfitting measures are needed for our and other research reactors to ensure a high level of safety and availability. The main backfitting activities during last ten years were concerned with: comparison of the existing design with today demands (criteria, guidelines, standards etc.); and probability approach for events from outside like aeroplane crashes and earthquakes; the main accidents were rediscussed like startup from low and full power, loss of coolant flow, loss of heat sink, loss of coolant and fuel plate melting; a new reactor protection system had to be installed, following today's demands; a new crane has been installed in the reactor hall. A cold neutron source has been installed to increase the flux of cold neutrons by a factor of 14. The FRG-l is being converted from 93% enriched U with Alx fuel to 20% enriched U with U 3 Si 2 fuel. Both cooling towers were repaired. Replacement of instrumentation is planned

  11. Considerations about decommissioning of the IEA-R1 research reactor and the future of its installations after shutdown; Consideracoes sobre o descomissionamento do reator de pesquisa IEA-R1 e futuro de suas instalacoes apos o seu desligamento

    Energy Technology Data Exchange (ETDEWEB)

    Frajndlich, Roberto

    2014-07-01

    The IEA-R1 Nuclear Research Reactor, in operation since 1957, in the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), is one of the oldest research reactors in the world. However at some point in time in the future, as example of the other reactors, it will be shutdown definitively. Before that time actually arrives, the operational organization needs to plan the future of its installations and define the final destination of equipment and radioactive as well as non-radioactive material contained inside the installations. These and other questions should be addressed in the so called Preliminary decommissioning plan of the installation, which is the subject of this work. The work initially presents an over view about the theme and defines the general and specific objectives describing, in succession, the directions that the operating organization should consider for the formulation of a decommissioning plan. The present structure of the Brazilian nuclear sector emphasizing principally the norms utilized in the management of radioactive waste is also presented. A description of principle equipment of the IEA-R1 reactor which constitutes its inventory of radioactive and non-radioactive material is given. The work emphasizes the experience of the reactor technicians, acquired during several reforms and modifications of the reactor installations realized during its useful life time. This experience may be of great help for the decommissioning in the future. An experiment using the high resolution gamma spectrometric method and computer calculation using Monte Carlo theory were performed with the objective of obtaining an estimate of the radioactive waste produced from dismantling of the reactor pool walls. The cost of reactor decommissioning for different choices of strategies was determined using the CERREX code. Finally, a discussion about different strategies is presented. On the basis of these discussions it is concluded that the most advantageous

  12. Upgrading of the triple axis neutron spectrometer TKSN-400 installed at Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Bashir, J; Khan, R.T.A.; Khan, M.M.; Iqbal, N.; Waheed, A.; Hussain, A.; Khan, A.U.; Zaman, Q.

    2000-01-01

    The triple axis neutron spectrometer TKSN-400 installed at 10MW Pakistan Research Reactor has been upgraded. The upgrading included the development of a multi-counter assembly, a PC based spectrometer control and data acquisition system. The multi-counter assembly consists of an embankment of 8 pairs of /sup 3/He counter and 40' collimator. This system is more auspicious than the original arrangement because each of the collimator/counter pair is virtually identical, permitting automatic addition of the intensities and consequently a single high resolution profile as obtained with single counter machine. With these modifications, it has now become possible to measure the complete diffraction pattern in about 24 hours. Finally, the results obtained from the latest system are compared with the results reported in literature. (author)

  13. The Swiss nuclear installations annual report 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report concerns the safety of the Swiss nuclear installations in the period of 1992. Surveillance of these installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). In Switzerland five nuclear power plants are operational: Beznau I and II, Muehleberg, Goesgen and Leibstadt. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basle. Further subject to HSK's supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut down experimental reactor of Lucens, the exploration in Switzerland of final disposal facilities for radwaste and the interim radwaste storage facilities. The present report first deals with the nuclear power plants and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK (chapters 1-4). In chapter 5, the corresponding information is given for the research installations. Chapter 6 on radwaste disposal is dedicated to the waste treatment, waste from reprocessing, interim storage and exploration by the NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants' vicinity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into some general questions relating to the safety of nuclear installations, and in particular covers important events in nuclear installations abroad. In all, the operation of the Swiss nuclear installations in the period of 1992 is rated safe by HSK. (author) 7 figs., 13 tabs

  14. Installation of a second trip system

    International Nuclear Information System (INIS)

    Bessada, E.

    1997-01-01

    Since its first criticality in 1957, the NRU reactor has been operating safely and efficiently supporting the CANDU reactor's research and development programs and producing radioisotopes for medical use. To ensure that the reactor continues to operate safely and effectively, Atomic Energy of Canada Limited (AECL) commissioned a team in 1989 to conduct a systematic review and assessment of the reactor condition. The outcome of the study indicated that the overall condition of the reactor is good and that it is being operated safely. The study also produced recommendations as to where safety can be improved. These recommendations are the basis of the upgrade program currently being implemented in the reactor. The Second Trip System (STS) is part of the upgrade program. It is a stand alone seismically qualified trip system that operates independently from the existing first trip system (FST) to shutdown the reactor. This paper discusses the design, installation and the inactive commissioning of the system, and the process used to ensure that the system can be retrofitted to the reactor without affecting its safety or its operational requirements. (author)

  15. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2001-01-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given

  16. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  17. Shielding design to obtain compact marine reactor

    International Nuclear Information System (INIS)

    Yamaji, Akio; Sako, Kiyoshi

    1994-01-01

    The marine reactors equipped in previously constructed nuclear ships are in need of the secondary shield which is installed outside the containment vessel. Most of the weight and volume of the reactor plants are occupied by this secondary shield. An advanced marine reactor called MRX (Marine Reactor X) has been designed to obtain a more compact and lightweight marine reactor with enhanced safety. The MRX is a new type of marine reactor which is an integral PWR (The steam generator is installed in the pressure vessel.) with adopting a water-filled containment vessel and a new shielding design method of no installation of the secondary shield. As a result, MRX is considerably lighter in weight and more compact in size as compared with the reactors equipped in previously constructed nuclear ships. For instance, the plant weight and volume of the containment vessel of MRX are about 50% and 70% of those of the Nuclear Ship MUTSU, in spite of the power of MRX is 2.8 times as large as the MUTSU's reactor. The shielding design calculation was made using the ANISN, DOT3.5, QAD-CGGP2 and ORIGEN codes. The computational accuracy was confirmed by experimental analyses. (author)

  18. The program of reactors and nuclear power plants; Programa de reactores y centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Carlos R [Comision Nacional de Energia Atomica, General San Martin (Argentina). Centro Atomico Constituyentes

    2001-07-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined.

  19. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  20. The safety of nuclear installations

    International Nuclear Information System (INIS)

    1993-01-01

    This Safety Fundamental publication sets out basic objectives, concepts and principles for ensuring safety that can be used both by the IAEA in its international assistance operations and by Member States in their national nuclear programmes. These Safety Fundamentals apply primarily to those nuclear installations in which the stored energy developed in certain situations could potentially results in the release of radioactive material from its designated location with the consequent risk of radiation exposure of people. These principles are applicable to a broad range of nuclear installations, but their detailed application will depend on the particular technology and the risks posed by it. In addition to nuclear power plants, such installations may include: research reactors and facilities, fuel enrichment, manufacturing and reprocessing plants; and certain facilities for radioactive waste treatment and storage

  1. Study of a new automatic reactor power control for the TRIGA Mark II reactor at University of Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Borio Di Tigliole, A.; Magrotti, G. [Laboratorio Energia Nucleare Applicata (L.E.N.A.), University of Pavia, Via Aselli 41, 27100 (Italy); Cammi, A.; Memoli, V. [Politecnico di Milano, Department of Energy, Nuclear Engineering Division (CeSNEF), Via Ponzio 34/3, 20133 Milano (Italy); Gadan, M. A. [Instrumentation and Control Department, National Atomic Energy Comission of Argentina, University of Pavia (Italy)

    2009-07-01

    The installation of a new Instrumentation and Control (IC) system for the TRIGA Mark-II reactor at University of Pavia has recently been completed in order to assure a safe and continuous reactor operation for the future. The intervention involved nearly the whole IC system and required a channel-by-channel component substitution. One of the most sensitive part of the intervention concerned the Automatic Reactor Power Controller (ARPC) which permits to keep the reactor at an operator-selected power level acting on the control rod devoted to the fine regulation of system reactivity. This controller installed can be set up using different control logics: currently the system is working in relay mode. The main goal of the work presented in this paper is to set up a Proportional-Integral-Derivative (PID) configuration of the new controller installed on the TRIGA reactor of Pavia so as to optimize the response to system perturbations. The analysis have shown that a continuous PID offers generally better results than the relay mode which causes power oscillations with an amplitude of 3% of the nominal power

  2. Improvements in or relating to nuclear reactors

    International Nuclear Information System (INIS)

    Timofeev, A.V.; Batjukov, V.I.; Fadeev, A.I.; Shapkin, A.F.; Shikhiyan, T.G.; Ordynsky, G.V.; Drachev, V.P.; Pogodin, E.N.

    1980-01-01

    A refuelling installation for nuclear reactor complexes is described for recharging the reactor vessels of such complexes with new fuel assemblies and for removing spent fuel assemblies from the reactor vessel. (U.K.)

  3. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  4. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1983-01-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase

  5. Opportunities for TRIGA reactors in neutron radiography

    International Nuclear Information System (INIS)

    Barton, John P.

    1978-01-01

    In this country the two most recent installations of TRIGA reactors have both been for neutron radiography, one at HEDL and the other at ANL. Meanwhile, a major portion of the commercial neutron radiography is performed on a TRIGA fueled reactor at Aerotest. Each of these installations has different primary objectives and some comparative observations can be drawn. Another interesting comparison is between the TRIGA reactors for neutron radiography and other small reactors that are being installed for this purpose such as the MIRENE slow pulse reactors in France, a U-233 fueled reactor for neutron radiography in India and the L88 solution reactor in Denmark. At Monsanto Laboratory, in Ohio, a subcritical reactor based on MTR-type fuel has recently been purchased for neutron radiography. Such systems, when driven by a Van de Graaff neutron source, will be compared with the standard TRIGA reactor. Future demands on TRIGA or competitive systems for neutron radiography are likely to include the pulsing capability of the reactor, and also the extraction of cold neutron beams and resonance energy beams. Experiments recently performed on the Oregon State TRIGA Reactor provide information in each of these categories. A point of particular current concern is a comparison made between the resonance energy beam intensity extracted from the edge of the TRIGA core and from a slot which penetrated to the center of the TREAT reactor. These results indicate that by using such slots on a TRIGA, resonance energy intensities could be extracted that are much higher than previously predicted. (author)

  6. Evaluating usability of the Halden Reactor Large Screen Display. Is the Information Rich Design concept suitable for real-world installations?

    International Nuclear Information System (INIS)

    Braseth, Alf Ove

    2013-01-01

    Large Screen Displays (LSDs) are beginning to supplement desktop displays in modern control rooms, having the potential to display the big picture of complex processes. Information Rich Design (IRD) is a LSD concept used in many real-life installations in the petroleum domain, and more recently in nuclear research applications. The objectives of IRD are to provide the big picture, avoiding keyhole related problems while supporting fast visual perception of larger data sets. Two LSDs based on the IRD concept have been developed for large-scale nuclear simulators for research purposes; they have however suffered from unsatisfying user experience. The new Halden Reactor LSD, used to monitor a nuclear research reactor, was designed according to recent proposed Design Principles compiled in this paper to mitigate previously experienced problems. This paper evaluates the usability of the Halden Reactor LSD, comparing usability data with the replaced analogue panel, and data for an older IRD large screen display. The results suggest that the IRD concept is suitable for use in real-life applications from a user experience point of view, and that the recently proposed Design Principles have had a positive effect on usability. (author)

  7. Concerning partial revision of regulations on installation, operation, etc., of nuclear reactor, etc., for test and research

    International Nuclear Information System (INIS)

    1989-01-01

    To enforce the rules relating to nuclear material protection at nuclear power facilities as covered by the Nuclear Reactor Control Law, which was revised in May last year, orders should be issued by the Prime Minister's Office (or Ministry of International Trade and Industry) to specify the following matters: (1) measures to be carried out by the operators of nuclear facilities to ensure the protection of specially designated nuclear fuel materials, (2) procedures for the application for permission as covered by nuclear material protection rules, and (3) requirements for managers in charge of nuclear material protection. The new regulations should cover the following: (1) rules relating to the business of refining of nuclear fuels, and raw materials for nuclear substances, (2) rules relating to the business of processing of nuclear fuels, (3) rules relating to the installation, operation, etc., of nuclear reactor, etc., for test and research, (4) rules relating to the business of reprocessing of spent fules, (5) rules relating to the business of management of nuclear fuels or waste contaminated with nuclear fuels, and (6) rules relating to the application of nuclear fuels. (N.K)

  8. Regulation concerning installation and operation of reactors for power generation

    International Nuclear Information System (INIS)

    1987-01-01

    This report shows the Ordinance of the Ministry of International Trade and Industry No.77 of December 28, 1978. The ordinance consists of provisions covering application for permission for construction of nuclear reactor (concerning continuous maximum thermal output, location, structure, reactor core, fuel material, moderator, reflector, cooling system, measurement control system, safety circuit, control system, emergency system, radioactive waste proposal facilities, construction plan, meteorology and other environmental conditions, etc.), operation plan (to be submitted every year), application for approval of joint management (name, address, facilities location, conditions for joint management, etc.), cancellation of permission (in five years from the date of permission), record keeping (density and temperature of neutron, temperature and pressure of coolant, purity of mederator, etc.), restriction on access to areas under management (measures to be taken in such areas), measures concerning exposure to radioactive rays (allowable dosage, etc.), patrol and checking in nuclear reactor facilities, self-imposed regular inspection of nuclear reactor facilities, operation of nuclear reactor, transport within plant or business establishment, storage (storing facilities, etc.), waste disposal, etc. (Nogami, K.)

  9. Influence of temperature measurement accuracy and reliability on WWER-440 reactor operation

    International Nuclear Information System (INIS)

    Petenyi, V.; Ricany, J.

    2001-01-01

    The WWER-440 reactor power is controlled by coolant heat-up measurements installed on hot and cold circulation loops (enthalpy rise). For power distribution determination the thermocouples installed in reactor vessel above the fuel assemblies are mainly utilised. The paper shortly presents some interesting observations of temperature measurements influencing the reactor power operation of revealed changes in reactor core behaviour. (Authors)

  10. Industrial installation surveillance acoustic device

    International Nuclear Information System (INIS)

    Marini, Jean; Audenard, Bernard.

    1981-01-01

    The purpose of this invention is the detection of possible impacts of bodies migrating inside the installation, using acoustic sensors of the waves emitted at the time of impact of the migrating bodies. This device makes it possible to take into account only those acoustic signals relating to the impacts of bodies migrating in the area under surveillance, to the exclusion of any other acoustic or electric perturbing phenomenon. The invention has a preferential use in the case of a linear shape installation in which a fluid flows at high rate, such as a section of the primary system of a pressurized water nuclear reactor [fr

  11. The health physics of installations for decladding irradiated fuels or for handling radio-elements at Marcoule; La radioprotection des installations de degainage des combustibles irradies et des radio-elements a Marcoule

    Energy Technology Data Exchange (ETDEWEB)

    Chassany, J; Guillermin, P; Mallet, P [Commissariat a l' Energie Atomique, Centre de Production de Plutonium de Marcoule, 30 - Chusclan (France)

    1966-07-01

    Radiation protection practices for handling reactor fuel elements are described. Elements of considerable specific radioactivity are handled under water. A study was made of water filtration and of ventilation in the building. The installations are divided up into zones depending on the radioactive risks, and the radiation level atmospheric contamination are the object of a systematic control at various points. A description is given of all aspects of health physics which have been encountered during six years: storage, transfer of radioactive material; decladding, rolling, waste disposal, specialized operations, installations in operation and at rest, and transport. In spite of the gradual increase in the activity of these installations, the total doses received by the personnel have hardly altered and the number of cases of physical contamination has diminished. (authors) [French] Dans ces installations, se manipulent sous l'eau des elements a radioactivite specifique considerable. La filtration de l'eau, la ventilation ont ete particulierement etudiees. L'ensemble a ete divise en lieux classes en fonction des risques radioactifs et des appareils controlent en permanence l'irradiation et la contamination atmospherique en certains points. Tous les aspects de la radioprotection resultant de six annees d'experience relatifs: au stockage, au deconteneurage, au degainage, au laminage, a l'evacuation des residus, aux travaux particuliers, installations en marche et a l'arret, et aux transports sont successivement decrits. Malgre l'accroissement progressif de l'activite de cet ensemble, les doses integrees par le personnel n'ont pratiquement pas augmente et le nombre des cas de contamination corporelle a diminue. (auteurs)

  12. FFTF report: FFTF piping installation and welding techniques

    International Nuclear Information System (INIS)

    Gilles, J.

    1975-01-01

    The main sodium piping with a diameter of 16'' or 28 '' is being installed at the FFTF construction site starting in December 1974. The supplier and authority demarcations are: Combustion Engineering supplies the reactor vessel, guard vessel and adjoining pipes and uses the machine welding equipment ''Dimetrics''; for the piping system of the primary and secondary loops the pipes manufactured by Rollmet at HUICO, Pasco, were delivered and prefabricated there, as far as compatible with the installation. ''Astroarc'' welding machines are used by Bechtel for the piping prefabrication in the weld laboratory as well as on site at the construction site. Technical welding problems occurring during the course of the installation at the construction site and several during this time are described. At present 6 weld seams in the reactor and 14 weld seams in the secondary loop are accepted. The requirement exists to carry out as many welds as possible automatically, in order to produce sodium pipe welds of high technical quality and which are reproducible. The welding equipment is described

  13. The effect of heavy water reactors and liquid fuel reactors on the long-term development of nuclear energy

    International Nuclear Information System (INIS)

    Brand, P.; Wiechers, W.K.

    1974-01-01

    The effects of the rates at which various combinations of power reactor types are installed on the long-range (to the year 2040) uranium and plutonium inventory requirements are examined. Consideration is given to light water reactors, fast breeder reactors, high temperature gas-cooled reactors, heavy water reactors, and thermal breeder reactors, in various combinations, and assuming alternatively a 3% and a 5% growth in energy demand

  14. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  15. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  16. The installation of helium auxiliary systems in HTGR

    International Nuclear Information System (INIS)

    Qin Zhenya; Fu Xiaodong

    1993-01-01

    The inert gas Helium was chosen as reactor coolant in high temperature gas coolant reactor, therefore a set of Special and uncomplex helium auxiliary systems will be installed, the safe operation of HTR-10 can be safeguarded. It does not effect the inherent safety of HTR-10 MW if any one of all those systems were damaged during operation condition. This article introduces the design function and the system principle of all helium auxiliary systems to be installed in HTR-10. Those systems include: helium purification and its regeneration system, helium supply and storage system, pressure control and release system of primary system, dump system for helium auxiliary system and fuel handling, gaseous waste storage system, water extraction system for helium auxiliary systems and evacuation system for primary system

  17. Preparing the construction of a school reactor

    International Nuclear Information System (INIS)

    Matejka, K.

    1977-01-01

    The possibilities are discussed of teaching and training nuclear reactor operation and control, teaching experimental reactor physics and investigating reactor lattice parameters using a training reactor to be installed at the Faculty of Nuclear Science and Physical Engineering in Prague. Requirements are indicated for the reactor's technical design and the Faculty's possibilities to contribute to its construction. (J.B.)

  18. Measurement of chimney dimensions and development of special tools for installation of in-chimney bracket in HANARO

    International Nuclear Information System (INIS)

    Cho, Yeong Garp; Ryu, J. S.; Lee, J. H.; Lee, Y. S; Lee, B. H.

    2000-06-01

    The in-chimney bracket is a structure which supports the guide tubes of irradiation facilities at the irradiation sites of CT, IR1, IR2, OR4 and/or OR5 in HANARO core to reduce the flow-induced vibration and the dynamic response to seismic load. It horizontally supports the middle part of lthe irradiation facilities for CT/IR sites in addition to the robot arms which had already been installed at the reactor pool liner to support the top of the facilities, and supports the top of the guide tubes for OR sites. For these purposes, the in-chimney bracket was installed in the chimney using four siphoning holes located at 70 cm below the chimney top. It is necessary to measure the dimensions of chimney before the design of in-chimney bracket because there must be manufacturing tolerances and the deformation of the chimney due to the load of the system pipes. To implement this, various special tools had been developed to measure the as-built dimensions of the chimney at the elevation of the siphoning holes, and measured the chimney dimensions and the eccentricity of the chimney center from the reactor core center. Also, a special tool was developed for the installation of the in-chimney bracket by remote operating at the pool top 10 meters apart from the chimney. The installation procedures were established through the enough installation rehearsal using the installation tool and the dummhy chimney which was fabricated to the same dimensions of the real chimney, and the installation interference problems were resolved through the preliminaly installation to the reactor chimney. Finally, the in-chimey bracket was successfully installed at the reactor chimney and is well being used for the irradiation test since the installation on May 16, 2000

  19. Modification of reactor installation in the Genkai nuclear power plant No. 1 of Kyushu Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    The Nuclear Safety Commission recognized the adequacy concerning the inquiry which was offered from the Minister of International Trade and Industry on July 25, 1979, following the safety evaluation in the Ministry of International Trade and Industry, and decided to submit a report to the Minister of International Trade and Industry on July 26, 1979, about the modification of reactor installation in the Genkai nuclear power plant No. 1 of the Kyushu Electric Power Company, Inc. This is concerned to the application which was made from the president of the Kyushu Electric Power Company, Inc., to the Minister of International Trade and Industry on July 24, 1979. The content of the modification is to add a control circuit which is actuated by the signal of abnormal low pressure in a reactor to the circuit of actuating the emergency core cooling system of the plant. The influences on the safety protection system by the addition of the circuit transmitting safety injection signal and by the additions of an interlock circuit preventing the misoperation of pressurizer spray and of a block circuit of safety injection signal in case of the abnormal low pressure in a reactor were evaluated. The effects on the function and characteristics of the emergency core cooling system due to the addition of the control circuit were investigated, and it was recognized by the analysis that there is no effect in the pipe ruptures of both small and large scales. (Nakai, Y.)

  20. Research and materials irradiation reactors

    International Nuclear Information System (INIS)

    Ballagny, A.; Guigon, B.

    2004-01-01

    Devoted to the fundamental and applied research on materials irradiation, research reactors are nuclear installations where high neutrons flux are maintained. After a general presentation of the research reactors in the world and more specifically in France, this document presents the heavy water cooled reactors and the water cooled reactors. The third part explains the technical characteristics, thermal power, neutron flux, operating and details the Osiris, the RHF (high flux reactor), the Orphee and the Jules Horowitz reactors. The last part deals with the possible utilizations. (A.L.B.)

  1. Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Wilhelm Jan Tic

    2018-03-01

    Full Text Available This study proposes an innovative installation concept for the sustainable utilization of sewage sludge. The aim of the study is to prove that existing devices and technologies allow construction of such an installation by integration of a dryer, torrefaction reactor and gasifier with engine, thus maximizing recovery of the waste heat by the installation. This study also presents the results of drying tests, performed at a commercial scale paddle dryer as well as detailed analysis of the torrefaction process of dried sewage sludge. Both tests aim to identify potential problems that could occur during the operation. The scarce literature studies published so far on the torrefaction of sewage sludge presents results from batch reactors, thus giving very limited data of the composition of the torgas. This study aims to cover that gap by presenting results from the torrefaction of sewage sludge in a continuously working, laboratory scale, isothermal rotary reactor. The study confirmed the feasibility of a self-sustaining installation of thermal utilization of sewage sludge using low quality heat. Performed study pointed out the most favorable way to use limited amounts of high temperature heat. Plasma gasification of the torrefied sewage sludge has been identified that requires further studies.

  2. Liquid-poison type power controlling device for nuclear reactor

    International Nuclear Information System (INIS)

    Horiuchi, Tetsuo; Yamanari, Shozo; Sugisaki, Toshihiko; Goto, Hiroshi.

    1981-01-01

    Purpose: To improve the safety and the operability of a nuclear reactor by adjusting the density of liquid poison. Constitution: The thermal expansion follow-up failure between cladding and a pellet upon abrupt and local variations of the power is avoided by adjusting the density of liquid poison during ordinary operation in combination with a high density liquid poison tank and a filter and smoothly controlling the reactor power through a pipe installed in the reactor core. The high density liquid poison is abruptly charged in to the reactor core under relatively low pressure through the tube installed in the reactor core at the time of control rod insertion failure in an accident, thereby effectively shutting down the reactor and improving the safety and the operability of the reactor. (Yoshihara, H.)

  3. Inquiry relating to modifications of reactor installation in Ikata No. 1 and 2 nuclear power plants of Shikoku Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the Minister of International Trade and Industry for the license relating to the modifications of reactor installation in the Ikata No. 1 and 2 nuclear power plants of the Shikoku Electric Power Company, Inc., on February 13, 1979, from the president of the company. After the safety evaluation was finished by the Ministry of International Trade and Industry, inquiry was conducted to the Atomic Energy Safety Commission (AESC) on June 15, 1979, from the Minister of International Trade and Industry. The investigation and discussion were commenced by the AESC on June 19, 1979. The modifications of the reactor installation are the increase of new fuel storage capacity from about 1/3 to about 2/3 of in-core fuel for No. 1 plant and the modification of driving mechanism from the roller nut type to the magnetic jack type for the control rod cluster for adjusting power distribution in the No. 2 plant. The contents of the safety examination for each item written above are presented. The prevention of criticality is carefully practiced for the new fuel storage by putting fuel assemblies in stainless steel can type racks and locating the fuel assemblies at the proper distance. Relating to the driving mechanism for the control rod cluster adjusting power distribution, the driving speed is not modified and the reliability is kept by carrying out the continuous operation test and the electric power black out test as the demonstration test. The magnetic jack type mechanism has the locking device to prevent reactor tripping at the time of electric power black out, and the cluster is held at the location where the cluster existed at the time of black out. (Nakai, Y.)

  4. Control of reactor coolant flow path during reactor decay heat removal

    International Nuclear Information System (INIS)

    Hunsbedt, A.N.

    1988-01-01

    This patent describes a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating the hot pool and the cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor coolant pumps having a suction on the lower pressure sodium cold pool and an outlet to a reactor core; the reactor core for heating the sodium and discharging the sodium to the reactor hot pool; a heat exchanger for receiving sodium from the hot pool, and removing heat from the sodium and discharging the sodium to the lower pressure cold pool; the improvement across the reactor vessel liner comprising: a jet pump having a venturi installed across the reactor vessel liner, the jet pump having a lower inlet from the reactor vessel cold pool across the reactor vessel liner and an upper outlet to the reactor vessel hot pool

  5. Burnable absorber for the PIK reactor

    International Nuclear Information System (INIS)

    Gostev, V.V.; Smolskii, S.L.; Tchmshkyan, D.V.; Zakharov, A.S.; Zvezdkin, V.S.; Konoplev, K.A.

    1998-01-01

    In the reactor PIK design a burnable absorber is not used and the cycle duration is limited by the rods weight. Designed cycle time is two weeks and seams to be not enough for the 100 MW power research reactor equipped by many neutron beams and experimental facilities. Relatively frequent reloading reduces the reactor time on full power and in this way increases the maintenance expenses. In the reactor core fuel elements well mastered by practice are used and its modification was not approved. We try to find the possibilities of installation in the core separate burnable elements to avoid poison of the fuel. It is possible to replace a part of the fuel elements by absorbers, since the fuel elements are relatively small (diameter 5.15mm, uranium 235 content 7.14g) and there are more then 3800 elements in the core. Nevertheless, replacing decreases the fuel burnup and its consumption. In the PIK fuel assembles a little part of the volume is occupied by the dumb elements to create a complete package of the assembles shroud, that is necessary in the hydraulic reasons. In the presented report the assessment of such a replacement is done. As a burnable material Gadolinium was selected. The measurements or the beginning of cycle were performed on the critical facility PIK. The burning calculation was confirmed by measurements on the 18MW reactor WWR-M. The results give the opportunity to twice the cycle duration. The proposed modification of the fuel assembles does not lead to alteration in the other reactor systems, but it touch the burned fuel reprocessing technology. (author)

  6. Increased SRP reactor power

    International Nuclear Information System (INIS)

    MacAfee, I.M.

    1983-01-01

    Major changes in the current reactor hydraulic systems could be made to achieve a total of about 1500 MW increase of reactor power for P, K, and C reactors. The changes would be to install new, larger heat exchangers in the reactor buildings to increase heat transfer area about 24%, to increase H 2 O flow about 30% per reactor, to increase D 2 O flow 15 to 18% per reactor, and increase reactor blanket gas pressure from 5 psig to 10 psig. The increased reactor power is possible because of reduced inlet temperature of reactor coolant, increased heat removal capacity, and increased operating pressure (larger margin from boiling). The 23% reactor power increase, after adjustment for increased off-line time for reactor reloading, will provide a 15% increase of production from P, K, and C reactors. Restart of L Reactor would increase SRP production 33%

  7. Radiological protection in nucleus reactor; Perlindungan radiologi di reaktor nukleus

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The chapter briefly discussed the following subjects: radiological protection problems of reactor 1. in operation 2. types of reactor i.e. power reactors, research reactors, etc. 3. during maintenance and installation of fuels. 4. nuclear fuels.

  8. Examination policy concerning the additional installation of No. 3 and No. 4 reactors in Takahama Nuclear Power Station and No. 3 and No. 4 reactors in Fukushima No. 2 Nuclear Power Station

    International Nuclear Information System (INIS)

    1980-01-01

    The Nuclear Safety Commission decided the annual examination policy on the modification of reactor installation in Takahama Nuclear Power Station to construct No. 3 and No. 4 reactors inquired under date of November 26, 1979, by the Minister of International Trade and Industry, so that the examination results of the accident in Three Mile Island nuclear power station are reflected to the examination for the purpose of improving reactor safety. The examination results of the accident in Three Mile Island power station are being investigated by the Committee on Examination of Reactor Safety, based on the policy shown in ''On the second report of the special committee examining the accident in a nuclear power station in the U.S.'' determined by the Nuclear Safety Commission under date of September 13, 1979. Though the Committee will further clarify the past guideline about the items concerning the criteria, design and operation management, the Committee decided the tentative policy to reflect it to safety examination. Further, a table is attached, in which 52 items to be reflected to the security measures are classified from the viewpoint of necessity to reflect them to the final examination. This table includes 13 items of criteria and examination, 7 items related to design, 10 items related to operation management, 10 antidisaster items, and 12 items related to safety research. (Wakatsuki, Y.)

  9. Seismic evaluation of nuclear installations

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel

    1997-01-01

    Some considerations regarding extreme external events, natural or man-induce, such as earthquakes, floods, air crashes, etc, shall be done for nuclear facilities to minimizing the potential impact of the installation on the public and the environment. In this paper the main aspects of the seismic evaluation of nuclear facilities (except the nuclear power reactors) will be presented based on different codes and standards. (author). 7 refs., 2 tabs

  10. Quality and safety of nuclear installations: the role of administration, and, nuclear safety and regulatory procedures

    International Nuclear Information System (INIS)

    Queniart, D.

    1979-12-01

    In the first paper the author defines the concepts of safety and quality and describes the means of intervention by the Public Authorities in safety matters of nuclear installations. These include individual authorisations, definition and application of technical rules and surveillance of installations. In the second paper he defines the distinction between radiation protection and safety and presents the legislative and regulatory plan for nuclear safety in France. A central safety service for nuclear installations was created in March 1973 within the Ministry of Industrial and Scientific Development, where, amongst other tasks, it draws up regulatory procedures and organizes inspections of the installations. The main American regulations for light water reactors are outlined and the French regulatory system for different types of reactors discussed

  11. Evaluation of organic endocrine disruptors in water at Brazilian Multipurpose Reactor - RMB installation area

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Larissa L.; Martins, Elâine A.J.; Cotrim, Marycel E.B.; Pires, Maria A.F., E-mail: larissa.limeira07@gmail.com, E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The study of pollutants with organic and inorganic characteristics in groundwater and surface waters of a given region is an important tool in the assessment of pollution. Endocrine interferers are synthetic or natural chemicals that have the ability to act on the endocrine system of humans and animals by mimetizing natural hormones and may produce adverse effects on organisms, even in low concentrations (μg or ng.L{sup -1}). Anthropic activities are the major source of input of endocrine disruptors into the environment. The Brazilian government has a project to construct a multipurpose reactor, Brazilian Multipurpose Reactor (RMB), at the Iperó city, to improve the nuclear research Brazilian capacity. The object of this research in to analyze 14 organic compounds that may be present in the groundwater and surface waters of the RMB installation area. This is an unprecedented and extremely important study for the evaluated region; since it will provide guidance on the degree of contamination of the local waters before the construction begins. The study will also make it possible to verify if the construction of the RMB will offer environmental issues to the place. For the determination of the compounds of interest, a developed and validated analytical method was used. This methodology consists of the concentration of the samples by solid phase extraction (SPE) followed by quantification by gas chromatography coupled to the mass spectrometry detector (GC/MS). The water column particulate was also evaluated by ultrasonic extraction, followed by quantification by GC/MS. The results reveal that some of the compounds were found and it was due to anthropic activities in the vicinity of the regions. By initial analysis it was possible verify river that cross the RMB area present values below 0.05 μg L{sup -1}. (author)

  12. Evaluation of organic endocrine disruptors in water at Brazilian Multipurpose Reactor - RMB installation area

    International Nuclear Information System (INIS)

    Silva, Larissa L.; Martins, Elâine A.J.; Cotrim, Marycel E.B.; Pires, Maria A.F.

    2017-01-01

    The study of pollutants with organic and inorganic characteristics in groundwater and surface waters of a given region is an important tool in the assessment of pollution. Endocrine interferers are synthetic or natural chemicals that have the ability to act on the endocrine system of humans and animals by mimetizing natural hormones and may produce adverse effects on organisms, even in low concentrations (μg or ng.L -1 ). Anthropic activities are the major source of input of endocrine disruptors into the environment. The Brazilian government has a project to construct a multipurpose reactor, Brazilian Multipurpose Reactor (RMB), at the Iperó city, to improve the nuclear research Brazilian capacity. The object of this research in to analyze 14 organic compounds that may be present in the groundwater and surface waters of the RMB installation area. This is an unprecedented and extremely important study for the evaluated region; since it will provide guidance on the degree of contamination of the local waters before the construction begins. The study will also make it possible to verify if the construction of the RMB will offer environmental issues to the place. For the determination of the compounds of interest, a developed and validated analytical method was used. This methodology consists of the concentration of the samples by solid phase extraction (SPE) followed by quantification by gas chromatography coupled to the mass spectrometry detector (GC/MS). The water column particulate was also evaluated by ultrasonic extraction, followed by quantification by GC/MS. The results reveal that some of the compounds were found and it was due to anthropic activities in the vicinity of the regions. By initial analysis it was possible verify river that cross the RMB area present values below 0.05 μg L -1 . (author)

  13. Code on the safety of civilian nuclear fuel cycle installations

    International Nuclear Information System (INIS)

    1996-01-01

    The 'Code' was promulgated by the National Nuclear Safety Administration (NSSA) on June 17, 1993, which is applicable to civilian nuclear fuel fabrication, processing, storage and reprocessing installations, not including the safety requirements for the use of nuclear fuel in reactors. The contents of the 'Code' involve siting, design, construction, commissioning, operation and decommissioning of fuel cycle installation. The NNSA shall be responsible for the interpretation of this 'Code'

  14. Design, fabrication and installation of irradiation facilities

    International Nuclear Information System (INIS)

    Kim, Yong Sung; Lee, C. Y.; Kim, J. Y.; Chi, D. Y.; Kim, S. H.; Ahn, S. H.; Kim, S. J.; Kim, J. K.; Yang, S. H.; Yang, S. Y.; Kim, H. R.; Kim, H.; Lee, K. H.; Lee, B. C.; Park, C.; Lee, C. T.; Cho, S. W.; Kwak, K. K.; Suk, H. C.

    1997-07-01

    The principle contents of this project are to design, fabricate and install the steady-state fuel test loop and non-instrumented capsule in HANARO for nuclear technology development. This project will be completed in 1999, the basic and detail design, safety analysis, and procurement of main equipment for fuel test loop have been performed and also the piping in gallery and the support for IPS piping in reactor pool have been installed in 1994. In the area of non-instrumented capsule for material irradiation test, the fabrication of capsule has been completed. Procurement, fabrication and installation of the fuel test loop will be implemented continuously till 1999. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and safety analysis report has been submitted to KINS to get a license and review of HANARO interface have been performed respectively. (author). 39 refs., 28 tabs., 21 figs

  15. Design, fabrication and installation of irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sung; Lee, C. Y.; Kim, J. Y.; Chi, D. Y.; Kim, S. H.; Ahn, S. H.; Kim, S. J.; Kim, J. K.; Yang, S. H.; Yang, S. Y.; Kim, H. R.; Kim, H.; Lee, K. H.; Lee, B. C.; Park, C.; Lee, C. T.; Cho, S. W.; Kwak, K. K.; Suk, H. C. [and others

    1997-07-01

    The principle contents of this project are to design, fabricate and install the steady-state fuel test loop and non-instrumented capsule in HANARO for nuclear technology development. This project will be completed in 1999, the basic and detail design, safety analysis, and procurement of main equipment for fuel test loop have been performed and also the piping in gallery and the support for IPS piping in reactor pool have been installed in 1994. In the area of non-instrumented capsule for material irradiation test, the fabrication of capsule has been completed. Procurement, fabrication and installation of the fuel test loop will be implemented continuously till 1999. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and safety analysis report has been submitted to KINS to get a license and review of HANARO interface have been performed respectively. (author). 39 refs., 28 tabs., 21 figs.

  16. Reactor inventory monitoring system for Angra-1 reactor

    International Nuclear Information System (INIS)

    S Neto, Joaquim A.; Silva, Marcos C.; Pinheiro, Ronaldo F.M.; Soares, Milton; Martinez, Aquilino; Comerlato, Cesar A.; Oliveira, Eugenio A.

    1996-01-01

    This work describes the project of Reactor Inventory Monitoring System, which will be installed in Angra I Nuclear Power Plant. The inventory information is important to the operators take corrective actions in case of an incident that may cause a failure in the core cooling. (author)

  17. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  18. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    Lu, Hong; Miller, D.W.

    1991-01-01

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  19. Flow measurements in the core of the FRJ-2 research reactor after the installation of flow regulators in the locating bushes in the grid and investigation of the consequences for the safety of reactor operation

    International Nuclear Information System (INIS)

    Wolters, J.P.

    1975-04-01

    Early in June, 1974, radial flow regulators were installed in the locating bushes in the grid of the FRJ-2 reactor in order to reduce the flow irregularities in certain positions and thus to mobilize additional safety reserves. The success of these measures was tested by flow measurements in all 25 fuel element positions. The results are presented in this paper, their consequences for safety engineering are analyzed, and a flexible inlet temperature is proposed. (orig./AK) [de

  20. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    Concerning refining, fabrication and reprocessing operations of such materials as well as the installation and operation of reactors, necessary regulations are carried out. Namely, in case of establishing the business of refining, fabricating and reprocessing nuclear materials as well as installing nuclear reactors, applications for the permission of the Prime Minister and the Minister of International Trade and Industry should be filed. Change of such operations should be permitted after filing applications. These permissions are retractable. As regards the reactors installed aboard foreign ships, it must be reported to enter Japanese waters and the permission by the Prime Minister must be obtained. In case of nuclear fuel fabricators, a chief technician of nuclear fuel materials (qualified) must be appointed per each fabricator. In case of installing nuclear reactors, the design and methods of construction should be permitted by the Prime Minister. The standard for such permission is specified, and a chief engineer for operating reactors (qualified) must be appointed. Successors inherit the positions of ones who have operated nuclear material refining, fabrication and reprocessing businesses or operated nuclear reactors. (Rikitake, Y.)

  1. Installation and testing of an optimized epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Kalef-Ezra, J.; Saraf, S.K.; Fiarman, S.; Ramsey, E.; Wielopolski, L.; Laster, B.; Wheeler, F. (Brookhaven National Lab., Upton, NY (USA); Ioannina Univ. (Greece); Brookhaven National Lab., Upton, NY (USA); State Univ. of New York, Stony Brook, NY (USA). Health Science Center; Brookhaven National Lab., Upton, NY (USA); EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-01-01

    Various calculations indicate that an optimized epithermal neutron beam can be produced by moderating fission neutrons either with a combination of Al and D{sub 2}O, or with Al{sub 2}O{sub 3}. We have designed, installed and tested an Al{sub 2}O{sub 3} moderated epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). The epithermal neutron fluence rate of 1.8 {times} 10{sup 9} n/cm{sup 2}-sec produces a peak thermal neutron fluence rate of 1.9 to 2.8 {times} 10{sup 9} n/cm{sup 2}-sec in a tissue equivalent (TE) phantom head, depending on the configuration. Thus a single therapy treatment of 5 {times} 10{sup 12} n/cm{sup 2} can be delivered in 30--45 minutes. All irradiation times are given for a BMRR power of 3 MW, which is the highest power which can be delivered continuously. 18 refs., 8 figs., 4 tabs.

  2. Probe-holding apparatus for holding a probe for checking steam generator tubes particularly in a nuclear reactor installation

    International Nuclear Information System (INIS)

    Adamowski, A.; Gagny; Gallet, G.; Lhermitte, J.; Monne, M.; Vautherot, G.

    1984-01-01

    Probe-holding apparatus for holding a probe for checking steam generator tubes particularly in a nuclear reactor installation. The apparatus comprises a telescopic arm supported via a ball and socket joint from a support mounted in or near an access aperture in a chamber at one end of the steam generator. A probe guide is carried by a carriage pivotally mounted at the other end of the telescopic arm. The carriage includes an endless belt having a series of spaced projections which engage into the ends of the tubes, the projections being spaced by a distance equal to the tube pitch or a multiple thereof. The belt is driven by a stepping motor in order to move the carriage and place the probe guide opposite different ones of the tubes

  3. A digital controller for the Omega West Reactor

    International Nuclear Information System (INIS)

    Minor, M.M.; Kaufman, M.D.; Smith, T.W.

    1992-05-01

    A new nuclear reactor control system for the Omega West Reactor (OWR) has been designed to replace the aging and hard to maintain controller presently installed. The controller uses single board computers, digital and analog input and output modules, and stepping motor indexers installed on a standard bus (VME bus). The eight poison control rod drive motors are replaced with stepping motors. The control algorithm for the OWR was not changed in order to expedite approval for installation. This report presents the results of the development of the new control system. Included in the report are copies of some of the software that drives the new controller

  4. Nuclear power station with nuclear reactor accommodated largely secure against catastrophes

    International Nuclear Information System (INIS)

    Rosen, O.

    1987-01-01

    If the nuclear reactor is installed underground near the power station unit, then danger to the environment due to radiation contamination can be largely or nearly completely prevented by a covering of constant thickness or by a covering which can be installed by a catastrophic accident. The extinguishing of a burning reactor is also relatively simple for a reactor accommodated in a pit. The above-mentioned measures can be used individually or combined. (orig./HP) [de

  5. Assembly and Installation of the Daya Bay Antineutrino Detectors

    International Nuclear Information System (INIS)

    Band, H R; Heeger, K M; Hinrichs, P; Brown, R L; Gill, R; Carr, R; Dwyer, D A; Chen, X C; Chu, M C; Chen, X H; Heng, Y K; Cherwinka, J J; Greenler, L S; Draeger, E; Edwards, W R; Hoff, M; Goett, J; Gu, W Q; Ho, T H; He, W S

    2013-01-01

    The Daya Bay reactor antineutrino experiment is designed to make a precision measurement of the neutrino mixing angle θ 13 , and recently made the definitive discovery of its non-zero value. It utilizes a set of eight, functionally identical antineutrino detectors to measure the reactor flux and spectrum at baselines of ∼ 300–2000 m from the Daya Bay and Ling Ao Nuclear Power Plants. The Daya Bay antineutrino detectors were built in an above-ground facility and deployed side-by-side at three underground experimental sites near and far from the nuclear reactors. This configuration allows the experiment to make a precision measurement of reactor antineutrino disappearance over km-long baselines and reduces relative systematic uncertainties between detectors and nuclear reactors. This paper describes the assembly and installation of the Daya Bay antineutrino detectors

  6. Installation of the sag compensator for HANARO

    International Nuclear Information System (INIS)

    Kim, Hyung Kyoo; Jung, Hoan Sung; Lim, In Cheol; Ahn, Guk Hoon

    2008-01-01

    Electric power is essential for all industrial plants and also for nuclear facilities. HANARO is a research reactor which produces a 30MW thermal power. HANARO is designed to be tripped automatically when interruptions or some extent of sags occur. HANARO has the reactor regulation system(RRs) and reactor protection system(RPS). HANARO is designed so as to be tripped automatically by insertion of control absorber rods(CAR) and shut off rods(SOR). When voltage sag or momentary interruption occurs, the reactor has an unwanted trip by insertion of CARs and SORs even though the process systems are still in operation. HANARO was experienced in a nuisance trip as often as the unexpected voltage sag and/or momentary interruption occurs. We installed the voltage sag compensator voltage sag assessment of the AC coil contactor which is a component of the power supply unit for the SORs. The compensation time is determined to be less than 1 sec in consideration of the reactor safety. This paper is concerned with the impact of the momentary interruption on the reactor and the effect of the voltage sag compensator

  7. Inquiry relating to modification of reactor installation of Hamaoka No. 2 nuclear power plant of Chubu Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the Minister of International Trade and Industry for the license relating to the modification of reactor installation of the Hamaoka No. 2 nuclear power plant, Chubu Electric Power Company, Inc., on February 8, 1979, from the president of the company. After the safety evaluation in the Ministry of International Trade and Industry was finished, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on May 25, 1979, from the Minister of International Trade and Industry. The investigation and discussion were commenced by the AESC on May 28, 1979. The modification of the reactor installation is the increase of spent fuel storage capacity from about 220% of in-core fuel at present to about 325%. The fundamental philosophy of the safety evaluation includes the following items; 1) the storage capacity of spent fuel is adequate, 2) the design is such that the criticality is prevented under any assumed condition, 3) the sufficient cooling capacity is kept for decay heat removal, 4) and others required for the safety. The contents of the safety examination for each philosophical item written above are presented. The increased spent fuel storage capacity is equivalent to the quantity produced in about eight years. The prevention of criticality in the spent fuel storage is carefully practiced by putting fuel assemblies in the stainless steel racks with large neutron absorption cross section and locating spent fuel assemblies at the proper distances. The effective multiplication factor is less than 0.95 at the most severe arrangement in the fuel pool. The water temperature in the pool is less than 65 deg C at about 325% core storage by operating the spent fuel pool water cooling system. The spent fuel storage racks are designed as the A class aseismatic structure. (Nakai, Y.)

  8. 46 CFR 115.702 - Installation tests and inspections.

    Science.gov (United States)

    2010-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  9. The program of reactors and nuclear power plants

    International Nuclear Information System (INIS)

    Calabrese, Carlos R.

    2001-01-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined

  10. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  11. Change in plan for installation of nuclear reactor in Genkai Nuclear Power Plant of Kyushu Electric Power Co., Inc. (change in plan for No.3 and No.4 nuclear reactor facilities) (report)

    International Nuclear Information System (INIS)

    1987-01-01

    This report, compiled by the Nuclear Safety Commission to be submitted to the Minister of International Trade and Industry, deals with studies on a proposed change in the plan for the installation of nuclear reactors in the Genkai Nuclear Power Plant of Kyushu Electric Power Co., Inc. (change in the plan for the No.3 and No.4 nuclear reactor facilities). The conclusions of and principles for the examination and evaluation are described first. The studies carried out are focused on the safety of the facilities, and it is concluded that part of the proposed change is appropriate with respect to the required technical capability and that part of the change will not have adverse effects on the safety design of the facilities. The examination of the safety design of the reactor facilities cover the reactivity control, new material for the steam generator, design of chemical and volume control systems, design of liquid waste treatment facilities, integration of all confinement vessel spray rings, and design of the diesel power generator. It is confirmed that all of them can meet the safety requirements. Studies and analyses are also made of the emission of radiations to the surrounding environment, abnormal transient changes during operations, and possible accidents. (Nogami, K.)

  12. One piece reactor removal

    International Nuclear Information System (INIS)

    Chia, Wei-Min; Wang, Song-Feng

    1993-01-01

    The strategy of Taiwan Research Reactor Renewal plan is to remove the old reactor block with One Piece Reactor Removal (OPRR) method for installing a new research reactor in original building. In this paper, the engineering design of each transportation works including the work method, the major equipments, the design policy and design criteria is described and discussed. In addition, to ensure the reactor block is safety transported for storage and to guarantee the integrity of reactor base mat is maintained for new reactor, operation safety is drawn special attention, particularly under seismic condition, to warrant safe operation of OPRR. ALARA principle and Below Regulatory Concern (BRC) practice were also incorporated in the planning to minimize the collective dose and the total amount of radioactive wastes. All these activities are introduced in this paper. (J.P.N.)

  13. Reactors of the world

    International Nuclear Information System (INIS)

    1971-01-01

    Basic data relating to 127 power reactors in 15 countries which are expected to be in operation at the end of this year, with a total installed electrical generating capacity of 35 340.15 MW(e), and a listing of 361 research reactors in 46 countries are given in the 1971 edition of the IAEA handbook, Power and Research Reactors in Member States, which has just been published. This edition, the fourth, was prepared especially for the Fourth International Conference on the Peaceful Uses of Atomic Energy. (author)

  14. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  15. Startup of Torrey Pines Mark III and Puerto Rico Nuclear Center reactors with TRIGA-FLIP fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chesworth, R. H. [Gulf E and ES, San Diego, CA (United States)

    1972-07-01

    This paper discusses the characteristics of TRIGA FLIP cores in two different geometries: the normal TRIGA single-rod geometry as typified by the installation in the Torrey Pines Mark III reactor; and the four-rod cluster geometry as typified by the conversion core installed in the Puerto Rico Nuclear Center reactor at Mayaguez. In both reactors the fuel is 8-1/2 wt % uranium, 70% enriched in U-235. The hydrogen to zirconium atom ratio is 1.5 to 1.65 and the cladding material is stainless steel. The basic neutronic characteristics of the fuel in both reactor installations are briefly discussed.

  16. Method for installing a control rod driving device in a reactor

    International Nuclear Information System (INIS)

    Sato, Haruo; Watanabe, Masatoshi.

    1975-01-01

    Object: To install a device using a wire rope, including individually moving up and down a control rod and a control rod driving device thereby enabling to install them within a low house and to reduce time required for installing operation. Structure: The control rod is temporarily attached to a support structure for the control rod driving device, the control rod driving device is suspended on a crane positioned upwardly of the support structure, a rope connected to the control rod driving device is connected to the control rod, a sagged portion of the rope is then wound about a rotary cylinder, the control rod is disconnected from its temporary attachment, and the wound rope is wound back while the rotary cylinder is rotated to move down the control rod. After the rope has been released from the rotary cylinder, the control rod driving device is moved down by the crane. (Kamimura, M.)

  17. Technical Requirements for Fabrication and Installation of Removable Shield for CNRF in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Lee, Jung Hee; Shin, Jin Won

    2008-04-15

    This report details the technical requirements for the fabrication and installation of the removable shield for the Cold Neutron Research Facility (CNRF) in HANARO reactor hall. The removable shield is classified as non-nuclear safety (NNS), seismic category II, and quality class T. The main function of the removable shield is to do the biological shielding of neutrons and gamma from the CN port and the guides. The removable shield consists of block type walls and roofs that can be necessarily assembled, disassembled and moveable. These will be installed between the reactor pool wall and the CNS guide bunker in. This report describes technical requirements for the removable shield such as quality assurance, seismic analysis requirements, configuration, concrete compositions, fabrication and installation requirements, test and inspection, shipping, delivery, etc. Appendix is the technical specification of structural design and analysis. Attachments are composed of the technical specification for the fabrication of the removable shield, shielding design drawings and procurement quality requirements. These technical requirements will be provided to a contract for the manufacturing and installation.

  18. Ageing management experience at NUR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Melllal, Sabrina; Rezig, Mohamed; Zamoun, Rachid; Ameur, Azeddin [Nuclear Research Center of Draria, Algiers (Algeria)

    2013-07-01

    NUR is a 1 MW, open pool reactor moderated and cooled by light water. It was commissioned in 1989. NUR is used for education and training in Nuclear Engineering and related topics for COMENA and National Scientific Community. It is also used to perform R and D works and services at national and regional levels. In this presentation, we describe the methodology and the main development activities related to the ageing management at NUR reactor. These activities include inspection actions and development actions to introduce modifications, to solve obsolescence issues in view to implement the required preventive and curative maintenance programs and to improve the performances of the installation. These actions involved mainly the Operation Assistance System of the Reactor (OAS), the secondary cooling loop, the cooling tower. A new OAS using a new technology and having more possibilities than the older one was introduced in the control system of the reactor. The OAS hardware structure, software structure and the main functions performed are presented. The second loop is entirely refurbished. Two new cooling towers are installed and connected to the main heat exchanger with new piping and valves. The architecture of this new installation is described and the performance assessed. Other actions which involve auxiliary systems like emergency electrical system, air pneumatic system and automatic fire extinguishing are presented.

  19. Experience in installing a microprocessor-based protection system on a UK nuclear power plant

    International Nuclear Information System (INIS)

    Jones, C.D.; Smith, I.C.

    1993-01-01

    This paper describes a recently completed project to install a microprocessor-based reactor protection system on a twin reactor station in the United Kingdom. This represented the first application of digital technology as part of such a system in the UK. The background of the application and details of the chosen solution are provided. The experience gained during the installation, commissioning and early operation of the equipment is reviewed by the operators. Interactions between the utility and the regulatory body are outlined and the impact of the regulatory process on the utility's resources and the project timescales are discussed

  20. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Carneiro Junior, Valdeci

    2008-01-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10 8 ± 0,12.10 8 n/cm 2 s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  1. KS-150 reactor control

    International Nuclear Information System (INIS)

    Wagner, K.

    1974-01-01

    A thorough description is presented of the control and protection system of the Bohunice A-1 reactor. The system including auxiliary facilities was developed, manufactured and installed at the reactor by the SKODA Works, Plzen. The system parameters are listed and a brief account is also given of the development efforts and of the physical and power start-up of the A-1 nuclear power plant. (L.O.)

  2. The 33 years of research reactors in JAERI

    International Nuclear Information System (INIS)

    1990-11-01

    The development and utilization of atomic energy in Japan began with the installation of JRR-1 reactor which attained the criticality in August, 1957, thus the third fire was lighted for the first time in Japan. JRR-2 was constructed as a full scale versatile research reactor, which attained the criticality in October, 1960, and since 1962, it has accomplished the role of the reactor for joint utilization. JRR-3 is the first reactor made in Japan by concentrating Japanese technologies in it, to develop and improve Japanese atomic energy technology. It attained the criticality in September, 1962, and has been used as a versatile research reactor. In 1960, Research Reactor Management Department was founded. JRR-4 was constructed as the research reactor for shielding for developing a nuclear-powered ship, which attained the criticality in January, 1965. The first hot laboratory in Japan for carrying out the post-irradiation test on the fuel and materials irradiated in these research reactors was installed in 1961. The JRR-1 was stopped in September, 1968, and is used as the commemorative exhibition hall. The JRR-3 was reconstructed, and attained the criticality in March, 1990, using 20 % enriched uranium fuel. The course of the research reactors for 33 years is reported. (K.I.)

  3. Planned reliability in the transport and installation of large nuclear components

    International Nuclear Information System (INIS)

    Bieler, L.

    1988-01-01

    The transport and installation of heavy and bulky large components require detailed planning of all jobs and activities, trained and experienced personnel and corresponding technical equipment for reliable and quality-assured implementation. The correct approach to the planning and implementation of such transports and installations has been confirmed by years of successful performance of these jobs e.g. in reactor pressure vessels and steam generators for nuclear power plants. Large components for nuclear power plants are truly extreme examples but will be all the better suited for demonstrating the problems inherent in transport and installation. (orig.) [de

  4. CSNI collective statement on support facilities for existing and advanced reactors. The function of OECD/Nea joint projects Nea committee on the safety of nuclear installations (CSNI)

    International Nuclear Information System (INIS)

    2008-01-01

    The NEA Committee on the Safety of Nuclear Installations (CSNI) has recently completed a study on the availability and utilisation of facilities supporting safety studies for current and advanced nuclear power reactors. The study showed that significant steps had been undertaken in the past several years in support of safety test facilities, mainly by conducting multinational joint projects centered on the capability of unique test facilities worldwide. Given the positive experience of the safety research projects, it has been recommended that efforts be made to prioritize technical issues associated with advanced (Generation IV) reactor designs and to develop options on how to efficiently obtain the necessary data through internationally co-ordinated research, preparing a gradual extension of safety research beyond the needs set by currently operating reactors. This statement constitutes a reference for future CSNI activities and for safety authorities, R and D centres and industry for internationally co-ordinated research initiatives in the nuclear safety research area. (author)

  5. Installation of the sag compensator for HANARO

    International Nuclear Information System (INIS)

    Kim, Hyungkyoo; Jung, Hoansung; Lim, Incheol; Ahn, Gukhoon

    2008-01-01

    Electric power is essential for all industrial plants and also for nuclear facilities. HANARO is a research reactor which produces a 30 MW thermal power. HANARO is designed to be tripped automatically when interruptions or some extent of sags occur. HANARO has the reactor regulation system(RRS) and reactor protection system(RPS). HANARO is designed so as to be tripped automatically by insertion of control absorber rods(CAR) and shut-off rods(SOR). When voltage sag or momentary interruption occurs, the reactor has an unwanted trip by insertion of CARs and SORs even though the process systems are still in operation. HANARO was experienced in a nuisance trip as often as the unexpected voltage sag and/or momentary interruption occurs. We installed the voltage sag compensator on the power supply for CARs and SORs so as to prevent an unwanted trip. We undertook voltage sag assessment of the AC coil contactor which is a component of the power supply unit for the SORs. The compensation time is determined to be less than 1 sec in consideration of the reactor safety. This paper is concerned with the impact of the momentary interruption on the reactor and the effect of the voltage sag compensator. (author)

  6. Installation of the sag compensator for HANARO

    International Nuclear Information System (INIS)

    Kim, H. K.; Jung, H. S.; Ahn, G. H.; Lim, I. C.

    2008-01-01

    Electric power is essential for all industrial plants and also for nuclear facilities. HANARO is a research reactor which produces a 30MW thermal power. HANARO is designed to be tripped automatically when interruptions or some extents of sags occur. HANARO has the reactor regulation system (RRS) and reactor protection system (RPS). HANARO is designed so as to tripped automatically by insertion of control absorber rods (CAR) and shut-off rods (SOR). When voltage or momentary interruption occurs, the reactor has an unwanted trip by insertion of CARs and SORs even though the process systems are still in operation. HANARO was experienced in a nuisance trip as often as the unexpected voltage sag and/or momentary interruption occurs. We installed the voltage sag compensator on the power supply for CARs and SORs so as to prevent an unwanted trip. We undertook voltage sag assessment of the AC coil contactor which is a component of the power supply unit for the SORs. The compensation time is determined to be less than 1 sec in consideration of the reactor safety. This paper is concerned with the impact of the momentary interruption on the reactor and the effect of the voltage sag compensator

  7. Major Refurbishment of the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Joradn, Kelly; Berglund, Matthew; Shea, Brian

    2013-01-01

    The research reactor fleet is aging with few replacements being built. At the same time the technology for refurbishment of the older reactors has advanced well beyond that of currently installed equipment. The disparity between new and old technology results in an inability to find simple replacements for the older, highly integrated components. The lack of comprehensive guidance for digital equipment adds to the technical problems of installing individual replacement parts. Up to this point, no U. S. facilities have attempted a complete modernization effort because of the time commitment, financial burden, and licensing required for a total upgrade. The University of Florida Training Reactor is tackling this problem with a replacement of nearly all of the major facility sub-systems, including electrical distribution, reactor controls, nuclear instrumentation, security, building management, and environmental controls. This approach offers increased flexibility over the piece-by-piece replacement method by leveraging modern control systems based on global standards and capable of good data interchange with higher levels of redundancy. The UFTR reviewed numerous technologies to arrive at the final system architecture and this 'clean-slate' installation methodology. It is this concept of total system replacement and strict use of modular, open-standards technology that has allowed for a facility design that will be easy to install, maintain, and build upon over time

  8. Major Refurbishment of the University of Florida Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joradn, Kelly; Berglund, Matthew; Shea, Brian [Univ., of Florida, Florida (United States)

    2013-07-01

    The research reactor fleet is aging with few replacements being built. At the same time the technology for refurbishment of the older reactors has advanced well beyond that of currently installed equipment. The disparity between new and old technology results in an inability to find simple replacements for the older, highly integrated components. The lack of comprehensive guidance for digital equipment adds to the technical problems of installing individual replacement parts. Up to this point, no U. S. facilities have attempted a complete modernization effort because of the time commitment, financial burden, and licensing required for a total upgrade. The University of Florida Training Reactor is tackling this problem with a replacement of nearly all of the major facility sub-systems, including electrical distribution, reactor controls, nuclear instrumentation, security, building management, and environmental controls. This approach offers increased flexibility over the piece-by-piece replacement method by leveraging modern control systems based on global standards and capable of good data interchange with higher levels of redundancy. The UFTR reviewed numerous technologies to arrive at the final system architecture and this 'clean-slate' installation methodology. It is this concept of total system replacement and strict use of modular, open-standards technology that has allowed for a facility design that will be easy to install, maintain, and build upon over time.

  9. Installation and testing of the ERANOS computer code for fast reactor calculations

    International Nuclear Information System (INIS)

    Gren, Milan

    2010-12-01

    The French ERANOS computer code was acquired and tested by solving benchmark problems. Five problems were calculated: 1D XZ Model, 1D RZ Model, 3D HEX SNR 300 reactor, 2S HEX and 3D HEX VVER 440 reactor. The multi-group diffuse approximation was used. The multiplication coefficients were compared within the first problem, neutron flux density in the calculation points was obtained within the second problem, and powers in the various reactor areas and in the assemblies were calculated within the remaining problems. (P.A.)

  10. Reactor BR2: Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. A safety audit was conduced by the IAEA, the conclusions of which demonstrated the excellent performance of the plant in terms of operational safety. In 1999, the CALLISTO facility was extensively used for various programmes involving LWR pressure vessel materials, IASCC of LWR structural materials, fusion reactor materials and martensic steels for use in ADS systems. In 1999, BR2's commercial programmes were further developed

  11. Feasibility study on the transient fuel test loop installation

    International Nuclear Information System (INIS)

    Kim, J. Y.; Lee, C. Y.

    1997-02-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. The objective of this study is to investigate and analyze the test capsules and loops in research reactors of the other countries and to design preliminarily the eligible transient fuel test facility to be installed in HANARO. The principle subjects of this study are to analyze the contents, kinds and scopes of the irradiation test facilities for nuclear technology development. The guidances for the basic and detail design of the transient fuel test facility in the future are presented. The investigation and analysis of various kinds of test facilities that are now in operation at the research reactors of nuclear advanced countries are carried out. Based on the design data of HANARO the design materials for an eligible transient fuel test facility comprises two pacts : namely, in pile test fuel in reactor core site, and out of pile system regulates the experimental conditions in the in pile test section. Especially for power ramping and cycling selection of the eligible power variation equipment in HANARO is carried out. (author). 13 refs., 4 tabs., 46 figs

  12. Present status of decommissioning in the Musashi Reactor Facility (4)

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Tanzawa, Tomio; Mitsuhashi, Ishi; Morishima, Kayoko; Matsumoto, Tetsuo

    2012-01-01

    The decommissioning of the Musashi reactor was decided in 2003. Permanent shutdown of the reactor and stopping the operational functions were conducted in 2004. Transportation of the spent fuels was finished in 2006. After 2007, the system and equipment stopping the functions were stored as installed in the reactor facility as radioactive wastes. After separating nonradioactive wastes such as concretes from radioactive wastes with a contamination test, stopping the functions of liquid waste management facility was performed with newly installed drainage facility for radioisotope use in 2010. Solid waste management facility was also dismantled and removed in the same way as liquid waste management facility in 2011. Radioactive wastes packed in containers were moved and stored in the reactor facility. (T. Tanaka)

  13. The reactor Phenix - cartridge rupture detection

    International Nuclear Information System (INIS)

    Graftieaux, J.

    1967-01-01

    This report defines the role of cartridge rupture detection in the reactor Phenix. It gives the possible methods, their probable performances, their advantages and disadvantages. The final form of the installation will be determined mainly by the degree of safety required, by the technical possibilities of the reactor design and by the operational flexibility wanted. (author) [fr

  14. Post-Fukushima additional safety assessments: behaviour of French nuclear installations in case of extreme situations and relevance of propositions of improvement. Summary of the IRSN report Nr 679 which has been used as a reference for the permanent Group of experts for reactors and plants held on the 8, 9 and 10 November

    International Nuclear Information System (INIS)

    2011-01-01

    This document summarizes the content of a report made by the IRSN and analysing the additional safety assessments performed and transmitted by operators in September 2011. It evokes the international context after the Fukushima-accident, addresses the analysis approach followed by the IRSN, discusses and comments the installation conditions, the robustness of installations with respect to high level risks and to those retained for their sizing, the behaviour of installations in the case of a total loss of cooling sources or of a long duration loss of energy supplies affecting several installations within a same site (case of EDF reactors, of the high flux reactor of the Laue Langevin Institute, CEA installations, Areva laboratories and plants), the capacity of operators to handle a crisis situation in such conditions, appeal to subcontracting

  15. Modification of reactor installation in the Takahama nuclear power plants No.1 and No.2 of Kansai Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    The Nuclear Safety Commission recognized the adequacy concerning the inquiry which was offered from the Minister of International Trade and Industry on July 24, 1979, following the safety evaluation in the Ministry of International Trade and Industry, and decided to submit a report to the Minister of International Trade and Industry on July 26, 1979, about the modification of reactor installation in the Takahama nuclear power plants No. 1 and No. 2 of the Kansai Electric Power Company, Inc. This is concerned to the application which was made from the president of the Kansai Electric Power Company, Inc., to the Minister of International Trade and Industry on July 23, 1979. The content of the modification is to add a control circuit which is actuated by the signal of abnormal low pressure in a reactor to the circuit of actuating the emergency core cooling system of the plant. The influences on the safety protection system by the addition of the circuit for transmitting safety injection signal and by the additions of an interlock circuit preventing the misoperation of pressurizer spray and of a block circuit of safety injection signal in case of the abnormal low pressure in a reactor were evaluated. The effects on the function and characteristics of the emergency core cooling system due to the addition of the control circuit were investigated, and it was recognized by the analysis that there is no effect in the pipe ruptures of both small and large scales. (Nakai, Y.)

  16. The economic potential of a cassette-type-reactor-installed nuclear ice-breaking container ship

    International Nuclear Information System (INIS)

    Kondo, K.; Takamasa, T.

    2000-01-01

    The design concept of the cassette-type-reactor MRX (Marine Reactor X), being under development in Japan for the nuclear ice-breaker container ship is described. The MRX reactor is the monoblock water-cooled and moderated reactor with passive cooling system of natural circulation. It is shown that application of the reactor being under consideration gives an opportunity to decrease greatly the difference in prices for similar nuclear and diesel ships. Economic estimations for applicability of the nuclear ice-breaker container ship with the MRX reactor in Arctics for transportation of standard containers TEU from Europe to Far East as compared with transportation of the same containers by diesel ships via Suets Canal are made [ru

  17. A comparative evaluation of fuel utilisation by different thermal reactor systems

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1992-10-01

    A comparative assessment of fuel utilization efficiency of pressurised water reactors, pressure tube type pressurised heavy water reactors, pressure vessel type pressurised heavy water reactors and high temperature gas cooled graphite reactors operating on a number of different fuel cycles has been carried out. The fuel utilization efficiency has been defined as the amount of natural uranium consumed for the generation of one unit of electricity averaged over the period covered in the analysis. The comparative evaluation has been done with different projected growth of installed nuclear capacity for a period of 50 years. One of the models used to predict the installed nuclear capacity growth is the Fisher-Pry model. (author). refs., figs., tabs

  18. The control of base nuclear installations; Le controle des installations nucleaires de base (INB)

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-04-15

    The Authority of Nuclear Safety ( A.S.N). presents in this column the current events of the control of the nuclear base installations during november, december 2008 and january 2009, classified by nuclear site. This information is also available in real-time on the A.S.N. web site, www.asn.fr, in the column 'news'. We can consult all the notices of significant incident published as well as the following letters of inspection, the notices of information about the reactors shutdown, press releases and the A.S.N. information notes. (N.C.)

  19. Automated Installation Verification of COMSOL via LiveLink for MATLAB

    International Nuclear Information System (INIS)

    Crowell, Michael W

    2015-01-01

    Verifying that a local software installation performs as the developer intends is a potentially time-consuming but necessary step for nuclear safety-related codes. Automating this process not only saves time, but can increase reliability and scope of verification compared to ''hand'' comparisons. While COMSOL does not include automatic installation verification as many commercial codes do, it does provide tools such as LiveLink"T"M for MATLAB® and the COMSOL API for use with Java® through which the user can automate the process. Here we present a successful automated verification example of a local COMSOL 5.0 installation for nuclear safety-related calculations at the Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR).

  20. Automated Installation Verification of COMSOL via LiveLink for MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Crowell, Michael W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Verifying that a local software installation performs as the developer intends is a potentially time-consuming but necessary step for nuclear safety-related codes. Automating this process not only saves time, but can increase reliability and scope of verification compared to ‘hand’ comparisons. While COMSOL does not include automatic installation verification as many commercial codes do, it does provide tools such as LiveLink™ for MATLAB® and the COMSOL API for use with Java® through which the user can automate the process. Here we present a successful automated verification example of a local COMSOL 5.0 installation for nuclear safety-related calculations at the Oak Ridge National Laboratory’s High Flux Isotope Reactor (HFIR).

  1. Automation of reactor neutron activation analysis

    International Nuclear Information System (INIS)

    Pavlov, S.S.; Dmitriev, A.Yu.; Frontasyeva, M.V.

    2013-01-01

    The present status of the development of a software package designed for automation of NAA at the IBR-2 reactor of FLNP, JINR, Dubna, is reported. Following decisions adopted at the CRP Meeting in Delft, August 27-31, 2012, the missing tool - a sample changer - will be installed for NAA in compliance with the peculiar features of the radioanalytical laboratory REGATA at the IBR-2 reactor. The details of the design are presented. The software for operation with the sample changer consists of two parts. The first part is a user interface and the second one is a program to control the sample changer. The second part will be developed after installing the tool.

  2. Graphite-water steam-generating reactor in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Dollezhal, N A [AN SSSR, Moscow

    1981-10-01

    One of the types of power reactor used in the USSR is the graphite-water steam-generating reactor RBMK. This produces saturated steam at a pressure of 7MPa. Reactors giving 1GWe each have been installed at the Leningrad, Kursk, Chernobyl and other power stations. Further stations using reactors of this type are being built. A description is given of the fuel element design, and of the layout of the plant. The main characteristics of RBMK reactors using fuel of rated and higher enrichment are listed.

  3. Burnup measurements at the RECH-1 research reactor

    International Nuclear Information System (INIS)

    Henriquez, C.; Navarro, G.; Pereda, C.; Torres, H.; Pena, L.; Klein, J.; Calderon, D.; Kestelman, A.J.

    2002-01-01

    The Chilean Nuclear Energy Commission has decided to produce LEU fuel elements for the RECH-1 research reactor. During December 1998, the Fuel Fabrication Plant delivered the first four fuel elements, called leaders, to the RECH-1 reactor. The set was introduced into the reactor's core, following the normal routine, but performing a special follow-up on their behavior inside and outside the core. In order to measure the burn-up of the leader fuel elements, it was decided to develop a burn-up measurements system to be installed into the RECH-1 reactor pool, and to decline the use of a similar system, which operates in a hot cell. The main reason to build this facility was to have the capability to measure the burn-up of fuel elements without waiting for long decay period. This paper gives a brief description of the facility to measure the burn-up of spent fuel elements installed into the reactor pool, showing the preliminary obtained spectra and briefly discussing them. (author)

  4. Reactor PIK construction

    International Nuclear Information System (INIS)

    Konoplev, Kir

    2003-01-01

    The construction work at the 100 MW researches reactor PIK in year 2002 was in progress. The main activity was concentrated on mechanical, ventilation and electrical equipment. Some systems and subsystems are under adjustment. Hydraulic driving gear for beam shutters are finished in installation, rinsing, and adjusting. Regulating rods test assembling was done. On the critical assembly the first reactor fueling was tested to evaluate the starting neutron source intensity and a sufficiency of existing control and instrument board. Mainline of the PIK facility design and neutron parameters are presented. (author)

  5. Substantiation of physical concepts of fast reactors in Russia: experience and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P.N. [Russian Research Center ' Kurchatov Institute' (RRC KI), 1, Kurchatov Sq., Moscow, 123182 (Russian Federation); Vasiliev, B.A. [Experimental Design Bureau of Machine Building (OKBM) 15, Burnakovskiy Pr., N. Novgorod, 603074 (Russian Federation); Kormilitsyn, M.V. [State Scientific Center of Russian Federation - Research Institute of Atomic Reactors (NIIAR) Dimitrovgrad-10, Ulianovsk Reg., 433510 (Russian Federation); Lopatkin, A.V. [N.A. Dollezhal Research and Development Institute of Power Engineering (NIKIET) 2/8, M. Krasnoselskaya Str., Moscow, 107140 (Russian Federation); Seleznev, E.F. [All-Russian Research Institute for Nuclear Power Plant Operation (VNIIAES) 25, Ferganskaya, Moscow, 109507 (Russian Federation); Khomyakov, Yu.S.; Tsybulia, A.M. [State Scientific Center of the Russian Federation - A. I. Leypunsky Institute for Physics and Power Engineering (SSC RF- IPPE) 1, Bondarenko Sq., Obninsk, Kaluga Reg., 249033 (Russian Federation); Tocheny, L.V. [International Science and Technology Center (ISTC) 32-34 Krasnoproletarskaya Ulitsa, Moscow, 127473 (Russian Federation)

    2008-07-01

    The fast reactor concept in Russia has accumulated unique experience, since its advent in the 1950's and up to the present, from the creation of the first experimental installation BR-1, experimental reactors BR-5 and BOR-60, the pilot industrial reactors BN-350 in Kazakhstan and up to the BN-600 at Beloyarsk Atomic Power Station. Investigations on the first experimental installations BR-1 and BR-5/-10 proved the propriety of the idea that it is possible to create nuclear reactors that can produce more nuclear fuel than they consume, i.e. the idea of breeding. The architecture of such reactors was also designed, producing a current leader among fast reactors with sodium coolant and oxide uranium-plutonium fuel. Operational experience of BOR-60, BN-350 and, particularly, BN-600 confirmed the engineering and technical feasibility of the concept of fast reactors, the possibility for its realization both for power production and for certain other purposes as well, such as desalinisation of sea water (BN-350) and for radionuclide production (BN-350, BN-600), and it enabled the development and verification of different models, computer methods and codes. The paper presents a review of experience in the creation of plants with fast reactors, scientific research on these installations, principal results, the current status of experimental data analysis, and prospective directions in the development of fast reactors and the corresponding experimental basis in Russia. (authors)

  6. Actions needed for RA reactor exploitation - I-IV, Part II, Design project VI-SA 1, Experimental loop for testing the EL-4 reactor fuel elements in the central vertical experimental channel of the RA reactor in Vinca

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    The objective of installing the VISA-1 loop was testing the fuel elements of the EL-4 reactor. The fuel elements planned for testing are natural UO 2 with beryllium cladding, cooled by CO 2 under nominal pressure of 60 at and temperature 600 deg C. central vertical experimental channel of the RA reactor was chosen for installing a test loop cooled by CO 2 . This report contains the detailed design project of the testing loop with the control system and safety analysis of the planned experiment

  7. Mobile nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Thompson, R.E.; Spurrier, F.R.; Jones, A.R.

    1978-01-01

    A containment vessel for use in mobile nuclear reactor installations is described. The containment vessel completely surrounds the entire primary system, and is located as close to the reactor primary system components as is possible in order to minimize weight. In addition to being designed to withstand a specified internal pressure, the containment vessel is also designed to maintain integrity as a containment vessel in case of a possible collision accident

  8. Temperature etalon of WWER-440 reactor

    International Nuclear Information System (INIS)

    Stanc, S.; Slanina, M.

    2001-01-01

    The presentation deals with the description, parameters and advantages of use of the temperature etalon. The system ensures temperature measurement of reactor outlet and inlet temperatures with high accuracy. Accuracy of temperature measurement is 0.18 deg C, accuracy of temperature difference measurement is 0.14 deg C, both with probability 0.95. Using the temperature etalon it is possible to increase accuracy of the standard temperature reactor measurements and to check their accuracy in the course of power reactor statuses in every measurement cycle. Temperature reactor etalon was installed in 12 WWER-440 units in Slovakia, Bohemia and Bulgaria. (Authors)

  9. Temperature increases from 55 to 75 C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure

    Energy Technology Data Exchange (ETDEWEB)

    Rademacher, Antje [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik; Technische Univ. Berlin (Germany). Inst. fuer Technischen Umweltschutz; Nolte, Christine; Schoenberg, Mandy; Klocke, Michael [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik

    2012-10-15

    Agricultural biogas plants were operated in most cases below their optimal performance. An increase in the fermentation temperature and a spatial separation of hydrolysis/acetogenesis and methanogenesis are known strategies in improving and stabilizing biogas production. In this study, the dynamic variability of the bacterial and archaeal community was monitored within a two-phase leach bed biogas reactor supplied with rye silage and straw during a stepwise temperature increase from 55 to 75 C within the leach bed reactor (LBR), using TRFLP analyses. To identify the terminal restriction fragments that were obtained, bacterial and archaeal 16S rRNA gene libraries were constructed. Above 65 C, the bacterial community structure changed from being Clostridiales-dominated toward being dominated by members of the Bacteroidales, Clostridiales, and Thermotogales orders. Simultaneously, several changes occurred, including a decrease in the total cell count, degradation rate, and biogas yield along with alterations in the intermediate production. A bioaugmentation with compost at 70 C led to slight improvements in the reactor performance; these did not persist at 75 C. However, the archaeal community within the downstream anaerobic filter reactor (AF), operated constantly at 55 C, altered by the temperature increase in the LBR. At an LBR temperature of 55 C, members of the Methanobacteriales order were prevalent in the AF, whereas at higher LBR temperatures Methanosarcinales prevailed. Altogether, the best performance of this two-phase reactor was achieved at an LBR temperature of below 65 C, which indicates that this temperature range has a favorable effect on the microbial community responsible for the production of biogas. (orig.)

  10. High temperature reactor safety and environment

    International Nuclear Information System (INIS)

    Brisbois, J.; Charles, J.

    1975-01-01

    High-temperature reactors are endowed with favorable safety and environmental factors resulting from inherent design, main-component safety margins, and conventional safety systems. The combination of such characteristics, along with high yields, prove in addition, that such reactors are plagued with few problems, can be installed near users, and broaden the recourse to specific power, therefore fitting well within a natural environment [fr

  11. Siting of research reactors

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of this document is to develop criteria for siting and the site-related design basis for research reactors. The concepts presented in this document are intended as recommendations for new reactors and are not suggested for backfitting purposes for facilities already in existence. In siting research reactors serious consideration is given to minimizing the effects of the site on the reactor and the reactor on the site and the potential impact of the reactor on the environment. In this document guidance is first provided on the evaluation of the radiological impact of the installation under normal reactor operation and accident conditions. A classification of research reactors in groups is then proposed, together with a different approach for each group, to take into account the relevant safety problems associated with facilities of different characteristics. Guidance is also provided for both extreme natural events and for man-induced external events which could affect the safe operation of the reactor. Extreme natural events include earthquakes, flooding for river or coastal sites and extreme meteorological phenomena. The feasibility of emergency planning is finally considered for each group of reactors

  12. An acclerator-based installation of small power with the lead-bismuth coolant

    Energy Technology Data Exchange (ETDEWEB)

    Gorshkov, V.T.; Yefimov, E.I.; Novikova, N.N. [Research and Development Bereau, Podolsk (Russian Federation)] [and others

    1995-10-01

    The structure of the accelerator-based installation is described that includes the subcritical reactor-blanket with power 15 MW(h) cooled with lead-bismuth, the lead-bismuth flow target where a beam of {alpha}-particle is injected, the equipment of a primary and secondary curcuits. Some results of calculations and estimations are discussed that have been carried out to justify the target and blanket constructions. Some main characteristics of the installation are presented.

  13. J.O. no. 10 of the 13 january 2004, page 991, text no. 14. Decrees, orders. General texts. Decree no. 2004-47 of the 12 january 2004 modifying the decree no. 96-978 of the 31 october 1996 relative to the creation of the nuclear installation no. 162 named EL4-D, installation of storage for the Monts d'Arree power plants materials

    International Nuclear Information System (INIS)

    2004-06-01

    The reactor EL4, implemented in december 1966, has definitely shutdown on the 31 july 1985. This reactor was an industrial prototype, built and exploited by Cea and EDF. In the framework of the partial dismantling of the installation, the decree 96-978 of the 31 october 1996 agreed the Cea to modify the installation to become a storage installation. (A.L.B.)

  14. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  15. Nuclear installations: decommissioning and dismantling

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This document is a compilation of seven talks given during the 1995 EUROFORUM conference about decommissioning and dismantling of Nuclear installations in the European Community. The first two papers give a detailed description of the legal, financial and regulatory framework of decommissioning and dismantling of nuclear facilities in the European Union and a review of the currently available decommissioning techniques for inventory, disassembly, decontamination, remote operations and management of wastes. Other papers describe some legal and technical aspects of reactor and plants dismantling in UK, Germany, Spain and France. (J.S.)

  16. Inquiry relating to modifications of reactor installation in Genkai No. 1 and 2 nuclear power plants of Kyushu Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the Minister of International Trade and Industry for the license relating to the modifications of reactor installation in the Genkai No. 1 and 2 nuclear power plants, Kyushu Electric Power Company, Inc., on February 27, 1979, from the president of the company. After the safety evaluation was finished by the Ministry of International Trade and Industry, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on June 15, 1979 from the Minister of International Trade and Industry. The investigation and discussion were commenced by the AESC on June 19, 1979. The modifications of the reactor installation are the increase of new fuel storage capacity from about 1/3 to about 2/3 of in-core fuel for each plant, the new establishment of a miscellaneous solid waste incinerator which is common to both plants, and the enlargement of a solid waste storage which is also common to both plants. The contents of the safety examination for each item written above are presented. The prevention of criticality is carefully practiced for the new fuel storage by putting fuel assemblies in stainless steel can type racks and locating the fuel assemblies at the proper distance. The miscellaneous solid waste incinerator building is designed as the B class aseismatic structure and also as the controlled area with adequate shielding and ventilating facilities. The decontamination factor of the incinerator facility is more than 10 5 , and the necessary monitoring system is provided in the building. Concerning the solid waste storage, the additional storage area is about 1600 m 2 , and the storage capacity is about ten years quantity. This building is designed as the B class aseismatic structure. (Nakai, Y.)

  17. Detection and location of can rupture in reactors cooled by a flow of water

    International Nuclear Information System (INIS)

    Le Meur, R.

    1968-01-01

    This report brings together the principal methods of fission-product detection used for water reactors. The position, type and method of adjustment is given for each detector. The methods for localizing the defective elements are explained, in particular those using water sampling or decreases in the flux. A few installations are briefly described. They correspond to particular types of reactors using boiling, pressurized or cold water. Amongst the many methods used, it can be noted that when the fuel is resistant, the installations are fairly compact. In nuclear super-heated reactors on the other hand, the study of fuel behaviour calls for larger installations. An identification of defective elements exists when the reactor structure allows it. If this is not possible, a localization in a group of elements is obtained by a flux depression. (author) [fr

  18. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  19. Small nuclear reactors for desalination

    International Nuclear Information System (INIS)

    Goldsmith, K.

    1978-01-01

    Small nuclear reactors are considered to have an output of not more than 400MW thermal. Since they can produce steam at much higher conditions than needed by the brine heater of a multi-flash desalination unit, it may be economically advantageous to use small reactors for a dual-purpose installation of appropriate size, producing both electricity and desalted water, rather than for a single-purpose desalination plant only. Different combinations of dual-purpose arrangements are possible depending principally on the ratio of electricity to water output required. The costs of the installation as well as of the products are critically dependent on this ratio. For minimum investment costs, the components of the dual-purpose installation should be of a standardised design based on normal commercial power plant practice. This then imposes some restrictions on the plant arrangement but, on the other hand, it facilitates selection of the components. Depending on the electricity to water ratio to be achieved, the conventional part of the installation - essentially the turbines - will form a combination of back-pressure and condensing machines. Each ratio will probably lead to an optimum combination. In the economic evaluation of this arrangement, a distinction must be made between single-purpose and dual-purpose installations. The relationship between output and unit costs of electricity and water will be different for the two cases, but the relation can be expressed in general terms to provide guidelines for selecting the best dimensions for the plant. (author)

  20. RB research reactor safety report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This new version of the safety report is a revision of the safety report written in 1962 when the RB reactor started operation after reconstruction. The new safety report was needed because reactor systems and components have been improved and the administrative procedures were changed. the most important improvements and changes were concerned with the use of highly enriched fuel (80% enriched), construction of reactor converter outside the reactor vessel, improved control system by two measuring start-up channels, construction of system for heavy water leak detection, new inter phone connection between control room and other reactor rooms. This report includes description of reactor building with installations, rector vessel, reactor core, heavy water system, control system, safety system, dosimetry and alarm systems, experimental channels, neutron converter, reactor operation. Safety aspects contain analyses of accident reasons, method for preventing reactivity insertions, analyses of maximum hypothetical accidents for cores with natural uranium, 2% enriched and 80% enriched fuel elements. Influence of seismic events on the reactor safety and well as coupling between reactor and the converter are parts of this document

  1. Simulation of the TREAT-Upgrade Automatic Reactor Control System

    International Nuclear Information System (INIS)

    Lipinski, W.C.; Kirsch, L.W.; Valente, A.D.

    1984-01-01

    This paper describes the design of the Automatic Reactor Control System (ARCS) for the Transient Reactor Test Facility (TREAT) Upgrade. A simulation was used to facilitate the ARCS design and to completely test and verify its operation before installation at the TREAT facility

  2. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  3. J.O. no. 10 of the 13 january 2004, page 991, text no. 14. Decrees, orders. General texts. Decree no. 2004-47 of the 12 january 2004 modifying the decree no. 96-978 of the 31 october 1996 relative to the creation of the nuclear installation no. 162 named EL4-D, installation of storage for the Monts d'Arree power plants materials; J.O. no. 10 du 13 janvier 2004, page 991, texte no. 14. Decrets, arretes, circulaires. Textes generaux. Decret no. 2004-47 du 12 janvier 2004 modifiant le decret no. 96-978 du 31 octobre 1996 relatif a la creation de l'installation nucleaire de base no. 162 denommee EL4-D, installation d'entreposage de materiels de la centrale nucleaire des monts d'Arree

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    The reactor EL4, implemented in december 1966, has definitely shutdown on the 31 july 1985. This reactor was an industrial prototype, built and exploited by Cea and EDF. In the framework of the partial dismantling of the installation, the decree 96-978 of the 31 october 1996 agreed the Cea to modify the installation to become a storage installation. (A.L.B.)

  4. Report of the reactor Operators Service - Annex F

    International Nuclear Information System (INIS)

    Zivotic, Z.

    1992-01-01

    RA reactor operators service is organized in two groups: permanent staff (chief operator, chief shift operators and operators) and changeable group which is formed according to the particular operation needs for working in shifts. For continuous training of the existing operator staff the Service has prepared and published eleven booklets: Nuclear reactor; RA reactor primary coolant loop; System for purification of heavy water; reactor helium system; system for technical water; electric power system; control and operation; ventilation system in the reactor building; special sewage system; construction properties of the reactor core; reactor building and installations. During the reporting period there have been no accidents nor incidents that could affect the reactor personnel [sr

  5. Characterization of the Three Mile Island Unit-2 reactor building atmosphere prior to the reactor building purge

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Mandler, J.W.; Duce, S.W.; Motes, B.G.

    1981-05-01

    The Three Mile Island Unit-2 reactor building atmosphere was sampled prior to the reactor building purge. Samples of the containment atmosphere were obtained using specialized sampling equipment installed through penetration R-626 at the 358-foot (109-meter) level of the TMI-2 reactor building. The samples were subsequently analyzed for radionuclide concentration and for gaseous molecular components (O 2 , N 2 , etc.) by two independent laboratories at the Idaho National Engineering Laboratory (INEL). The sampling procedures, analysis methods, and results are summarized

  6. SIR - small is safe [in reactor design

    International Nuclear Information System (INIS)

    Hayns, M.

    1989-01-01

    A joint USA-UK venture has been initiated to design a small nuclear reactor which offers low capital cost, greater flexibility and a potentially lower environmental impact. Called Safe Integral Reactor (SIR), the lead unit could be built in the United Kingdom Atomic Energy Authority's (UKAEA's) Winfrith site if the design is accepted by the UK Nuclear Installations Inspectorate (NII). This article describes the 320 MWe reactor unit that is the basis of the design being developed. (author)

  7. Statement on incidents at nuclear installations - second quarter 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The first incident reported occurred at the Sellafield reprocessing plant when a process worker was contaminated on the right knee of his overalls and received a skin dose in excess of the annual dose limit. Following an inquiry, he was allowed to return to normal working within 3 months. The second incident occurred at the Oldbury nuclear power station when reaction-1 tripped following the failure of one of the three phases of the electricity supply to part of the instrumentation. This caused a loss of forced coolant circulating for a short time following the reactor shutdown. However, following safety checks it was allowed to return to power. Improvements in the instrument supply system protection were subsequently installed on reactor-2 and will be, when possible, on reactor-1. (UK)

  8. Reactor Safety Commission Code of Practice for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The Reactor Safety Commission of the Federal German Republic has summarized in the form of Official Guidelines the safety requirements which, in the Commission's view, have to be met in the design, construction and operation of a nuclear power station equipped with a pressurized water reactor. The Third Edition of the RSK Guidelines for pressurized water reactors dated 14.10.81. is a revised and expanded version of the Second Edition dated 24.1.79. The Reactor Safety Commission will with effect from October 1981 use these Guidelines in consultations on the siting of and safety concept for the installation approval of future pressurized water reactors and will assess these nuclear power stations during their erection in the light of these Guidelines. They have not however been immediately conceived for the adaptation of existing nuclear power stations, whether under construction or in operation. The scope of application of these Guidelines to such nuclear power stations will have to be examined for each individual case. The main aim of the Guidelines is to simplify the consultation process within the reactor Safety Commission and to provide early advice on the safety requirements considered necessary by the Commission. (author)

  9. Reactor vessel dismantling at the high flux materials testing reactor Petten

    International Nuclear Information System (INIS)

    Tas, A.; Teunissen, G.

    1986-01-01

    The project of replacing the reactor vessel of the high flux materials testing reactor (HFR) originated in 1974 when results of several research programs confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report describes the dismantling philosophy and organisation, the design of special underwater equipment, the dismantling of the reactor vessel and thermal column, and the conditioning and shielding activities resulting in a working area for the installation of the new vessel with no access limitations due to radiation. Finally an overview of the segmentation, waste disposal and radiation exposure is given. The total dismantling, segmentation and conditioning activities resulted in a total collective radiation dose of 300 mSv. (orig.) [de

  10. Development of an improved installation procedure and schedule of RVI modularization for APR1400

    International Nuclear Information System (INIS)

    Ko, Do Young

    2011-01-01

    The construction technology for reactor vessel internals (RVI) modularization is one of the most important factors to be considered in reducing the construction period of nuclear power plants. For RVI modularization, gaps between the reactor vessel (RV) core-stabilizing lug and the core support barrel (CSB) snubber lug must be measured using a remote method from outside the RV. In order to measure RVI gaps remotely at nuclear power plant construction sites, certain core technologies must be developed and verified. These include a remote measurement system to measure the gaps between the RV core-stabilizing lug and the CSB snubber lug, an RVI mockup to perform the gap measurement tests, and a new procedure and schedule for RVI installation. A remote measurement system was developed previously, and a gap measurement test was completed successfully using the RVI mockup. We also developed a new procedure and schedule for RVI installation. This paper presents the new and improved installation procedure and schedule for RVI modularization. These are expected to become core technologies that will allow us to shorten the construction period by a minimum of two months compared to the existing installation procedure and schedule

  11. Backfitting of research reactors

    International Nuclear Information System (INIS)

    Delrue, R.; Noesen, T.

    1985-01-01

    The backfitting of research reactors covers a variety of activities. 1. Instrumentation and control: Control systems have developed rapidly and many reactor operators wish to replace obsolete equipment by new systems. 2. Pool liners: Some pools are lined internally with ceramic tiles. These may become pervious with time necessitating replacement, e.g. by a new stainless steel liner. 3. Heat removal system: Deficiencies can occur in one or more of the cooling system components. Upgrading may require modifications of the system such as addition of primary loops, introduction of deactivation tanks, pump replacement. Recent experience in such work has shown that renewal, backfitting and upgrading of an existing reactor is economically attractive since the related costs and delivery times are substantially lower than those required to install a new research reactor

  12. Safety studies concerning nuclear power reactors

    International Nuclear Information System (INIS)

    Bailly, Jean; Pelce, Jacques

    1980-01-01

    The safety of nuclear installations poses different technical problems, whether concerning pressurized water reactors or fast reactors. But investigating methods are closely related and concern, on the one hand, the behavior of shields placed between fuel and outside and, on the other, analysis of accidents. The article is therefore in two parts based on the same plan. Concerning light water reactors, the programme of studies undertaken in France accounts for the research carried out in countries where collaboration agreements exist. Concerning fast reactors, France has the initiative of their studies owing to her technical advance, which explains the great importance of the programmes under way [fr

  13. Prospects for inherently safe reactors

    International Nuclear Information System (INIS)

    Barkenbus, J.N.

    1988-01-01

    Public fears over nuclear safety have led some within the nuclear community to investigate the possibility of producing inherently safe nuclear reactors; that is, reactors that are transparently incapable of producing a core melt. While several promising designs of such reactors have been produced, support for large-scale research and development efforts has not been forthcoming. The prospects for commercialization of inherently safe reactors, therefore, are problematic; possible events such as further nuclear reactor accidents and superpower summits, could alter the present situation significantly. (author)

  14. The modification of the Rossendorf Research Reactor

    International Nuclear Information System (INIS)

    Gehre, G.; Hieronymus, W.; Kampf, T.; Ringel, V.; Robbander, W.

    1990-01-01

    The Rossendorf Research Reactor is of the WWR-SM type. It is a heterogeneous water moderated and cooled tank reactor with a thermal power of 10 MW, which was in operation from 1957 to 1986. It was shut down in 1987 for comprehensive modifications to increase its safety and to improve the efficiency of irradiation and experimentals. The modifications will be implemented in two steps. The first one to be finished in 1989 comprises: 1) the replacement of the reactor tank and its components, the reactor cooling system, the ventilation system and the electric power installation; 2) the construction of a new reactor control room and of filtering equipment; 3) the renewal of process instrumentation and control engineering equipment for reactor operation, equipment for radiation protection monitoring, and reactor operation and safety documentation. The second step, to be implemented in the nineties, is to comprise: 1) the enlargement of the capacity for storage of spent fuel; 2) the modernization of reactor operations by computer-aided control; 3) the installation of an automated measuring systems for accident and environmental monitoring. Two objects of the modification, the replacement of the reactor tank and the design of a new and safer one as well as the increase of the redundancy of the core emergency cooling system are described in detail. For the tank replacement the exposure data are also given. Furthermore, the licensing procedures based on national ordinances and standards as well as on international standards and recommendations and the mutual responsibilities and activities of the licensing authority and of the reactor manager are presented. Finally, the present state of the modifications and the schedule up to the reactor recommissioning and test operation at full power is outlined

  15. ADVANCED CONTROL FOR A ETHYLENE REACTOR

    Directory of Open Access Journals (Sweden)

    Dumitru POPESCU

    2017-06-01

    Full Text Available The main objective of this work is the design and implementation of control solutions for petrochemical processes, namely the control and optimization of a pyrolysis reactor, the key-installation in the petrochemical industry. We present the technological characteristics of this petrochemical process and some aspects about the proposed control system solution for the ethylene plant. Finally, an optimal operating point for the reactor is found, considering that the process has a nonlinear multi-variable structure. The results have been implemented on an assembly of pyrolysis reactors on a petrochemical platform from Romania.

  16. 46 CFR 76.17-90 - Installations contracted for prior to November 19, 1952.

    Science.gov (United States)

    2010-10-01

    ... they are maintained in good condition to the satisfaction of the Officer in Charge, Marine Inspection. Minor repairs and alterations may be made to the same standards as the original installation. (2) The... VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-90 Installations contracted...

  17. 46 CFR 76.30-90 - Installations contracted for prior to November 19, 1952.

    Science.gov (United States)

    2010-10-01

    ... and they are maintained in good condition to the satisfaction of the Officer in Charge, Marine Inspection. Minor repairs and alterations may be made to the same standards as the original installation. (2... VESSELS FIRE PROTECTION EQUIPMENT Pneumatic Fire Detecting System, Details § 76.30-90 Installations...

  18. 46 CFR 95.17-90 - Installations contracted for prior to November 19, 1952.

    Science.gov (United States)

    2010-10-01

    ... and they are maintained in good condition to the satisfaction of the Officer in Charge, Marine Inspection. Minor repairs and alterations may be made to the same standards as the original installation. (2... MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-90 Installations...

  19. 46 CFR 76.27-90 - Installations contracted for prior to November 19, 1952.

    Science.gov (United States)

    2010-10-01

    ..., and they are maintained in good condition to the satisfaction of the Officer in Charge, Marine Inspection. Minor repairs and alterations may be made to the same standards as the original installation. (2... VESSELS FIRE PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-90 Installations...

  20. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Smith, James A.; Jewell, James Keith

    2015-01-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  1. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Human Factors, Controls, and Statistics; Smith, James A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design; Jewell, James Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design

    2015-02-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  2. Installation of the water environment irradiation facility for the IASCC research under the BWR irradiation environment (1)

    International Nuclear Information System (INIS)

    Okada, Yuji; Magome, Hirokatsu; Hanawa, Hiroshi; Ohmi, Masao; Kanno, Masaru; Iida, Kazuhiro; Ando, Hitoshi; Shibata, Mitsunobu; Yonekawa, Akihisa; Ueda, Haruyasu

    2013-10-01

    In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material is advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. This material irradiation test facility and power ramping test facility for doing the neutron irradiation test of the fuel and material for light water reactors is scheduled to be manufactured and installed between the 2008 fiscal year and the 2012 fiscal year. This report summarizes manufacture and installation of the material irradiation test facility for IASCC research carried out from the 2008 fiscal year to the 2010 fiscal year. (author)

  3. Design and installation of a hot water layer system at the Tehran research reactor

    Directory of Open Access Journals (Sweden)

    Mirmohammadi Sayedeh Leila

    2013-01-01

    Full Text Available A hot water layer system (HWLS is a novel system for reducing radioactivity under research reactor containment. This system is particularly useful in pool-type research reactors or other light water reactors with an open pool surface. The main purpose of a HWLS is to provide more protection for operators and reactor personnel against undesired doses due to the radio- activity of the primary loop. This radioactivity originates mainly from the induced radioactivity contained within the cooling water or probable minute leaks of fuel elements. More importantly, the bothersome radioactivity is progressively proportional to reactor power and, thus, the HWLS is a partial solution for mitigating such problems when power upgrading is planned. Following a series of tests and checks for different parameters, a HWLS has been built and put into operation at the Tehran research reactor in 2009. It underwent a series of comprehensive tests for a period of 6 months. Within this time-frame, it was realized that the HWLS could provide a better protection for reactor personnel against prevailing radiation under containment. The system is especially suitable in cases of abnormality, e. g. the spread of fission products due to fuel failure, because it prevents the mixing of pollutants developed deep in the pool with the upper layer and thus mitigates widespread leakage of radioactivity.

  4. Fast-reactor fuel reprocessing in the United Kingdom

    International Nuclear Information System (INIS)

    Allardice, R.H.; Buck, C.; Williams, J.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the United Kingdom since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium-based fast-reactor system, and the importance of establishing at an early stage fast-reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high-burnup thermal-reactor oxide fuel. The United Kingdom therefore decided to reprocess irradiated fuel from the 250MW(e) Prototype Fast Reactor (PFR) as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small-scale fully active demonstration plant has been carried out since 1972, and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste-management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant, a parallel development programme has been initiated to provide the basis for the design of a large-scale fast-reactor fuel-reprocessing plant to come into operation in the late 1980s to support the projected UK fast-reactor installation programme. The paper identifies the important differences between fast-reactor and thermal-reactor fuel-reprocessing technologies and describes some of the development work carried out in these areas for the small-scale PFR fuel-reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast-reactor fuel-reprocessing plant is outlined and the current design philosophy discussed. (author)

  5. 46 CFR 76.33-90 - Installations contracted for prior to November 19, 1952.

    Science.gov (United States)

    2010-10-01

    ... maintained in good condition to the satisfaction of the Officer in Charge, Marine Inspection. Minor repairs and alterations may be made to the same standards as the original installation. (2) The details of the... VESSELS FIRE PROTECTION EQUIPMENT Smoke Detecting System, Details § 76.33-90 Installations contracted for...

  6. 46 CFR 76.35-90 - Installations contracted for prior to November 19, 1952.

    Science.gov (United States)

    2010-10-01

    ... maintained in good condition to the satisfaction of the Officer in Charge, Marine Inspection. Minor repairs and alterations may be made to the same standards as the original installation. (2) The details of the... VESSELS FIRE PROTECTION EQUIPMENT Manual Alarm System, Details § 76.35-90 Installations contracted for...

  7. Modernization of turbine control system and reactor control system in Almaraz 1 and 2; MOdernizacion de los sistemas de control de turbina y del reactor en Almaraz 1 y 2

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, C.; Diez, J.; Carrasco, J. A.; Lopez, L.

    2005-07-01

    The replacement of the Turbine Control System and Reactor Control System are part of the Almaraz modernization program for the Instrumentation and Control. For these upgrades Almaraz has selected the Ovation Platform that provides open architecture and easy expansion to other systems, these platforms is highly used in many nuclear and thermal plants around the world. One of the main objective for this project were to minimize the impact on the installation and operation of the plant, for that reason the project is implemented in two phases, Turbine Control upgrade and Reactor Control upgrade. Another important objective was to increase the reliability of the control system making them fully fault tolerant to single failures. The turbine Control System has been installed in Units 1 and 2 while the Reactor Control System will be installed in 2006 and 2007 outages. (Author)

  8. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  9. Regulatory requirements and administrative practice in safety of nuclear installations

    International Nuclear Information System (INIS)

    Servant, J.

    1977-01-01

    This paper reviews the current situation of the France regulatory rules and procedures dealing with the safety of the main nuclear facilities and, more broadly, the nuclear security. First, the author outlines the policy of the French administration which requires that the licensee responsible for an installation has to demonstrate that all possible measures are taken to ensure a sufficient level of safety, from the early stage of the project to the end of the operation of the plant. Thus, the administration performs the assessment on a case-by-case basis, of the safety of each installation before granting a nuclear license. On the other hand, the administration settles overall safety requirements for specific categories of installations or components, which determine the ultimate safety performances, but avoid, as far as possible, to detail the technical specifications to be applied in order to comply with these goals. This approach, which allows the designers and the licensees to rely upon sound codes and standards, gains the advantage of a great flexibility without imparing the nuclear safety. The author outlines the licensing progress for the main categories of installations: nuclear power plants of the PWR type, fast breeders, uranium isotope separation plants, and irradiated fuel processing plants. Emphasis is placed on the most noteworthy points: standardization of projects, specific risks of each site, problems of advanced type reactors, etc... The development of the technical regulations is presented with emphasis on the importance of an internationally concerned action within the nuclear international community. The second part of this paper describes the France operating experience of nuclear installations from the safety point of view. Especially, the author examines the technical and administrative utilization of data from safety significant incidents in reactors and plants, and the results of the control performed by the nuclear installations

  10. Fuel element load/unload machine for the PEC reactor

    International Nuclear Information System (INIS)

    Clayton, K.F.

    1984-01-01

    GEC Energy Systems Limited are providing two fuel element load/unload machines for use in the Italian fast reactor programme. One will be used in the mechanism test facility (IPM) at Casaccia, to check the salient features of the machine operating in a sodium environment prior to the second machine being installed in the PEC Brasimone Reactor. The machine is used to handle fuel elements, control rods and other reactor components in the sodium-immersed core of the reactor. (U.K.)

  11. Aspects of intellectual property related to the TRIGA reactor in Romania

    International Nuclear Information System (INIS)

    Chirita, Ion

    2008-01-01

    Full text: A TRIGA - type research reactor has been operating in Pitesti since 1979. In Romania, the first research reactor - of the WWR-C type - has been operating since 1957. Both these reactors have contributed to the formation of well - trained specialists, whose works constitute an important intellectual and industrial property. Institute for Nuclear Research (formerly INT, then INPR) is the holder of several published patents, such as: Procedure for decontamination of water and primary circuits of irradiation devices; Reconditioning of ion exchangers; Nozzle for flow water gaugers; Oscillating electromagnetic pump; Facility for determining nuclear fuel burnup; Portable monitor for contamination measurements; Cable joints with biological protection; Anti-seismic and thermal connection; Automatic facility for nuclear fuel irradiation testing; Method for determining power distribution specific for research rector fuel elements; Tight end-fittings; Cooling damage facility, etc. Many of these have been applied or can be applied to reactors of the TRIGA family or are already installed or under installation to research reactors of other types. (authors)

  12. The development of ex-core neutron flux monitoring system for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying

  13. The development of ex-core neutron flux monitoring system for integral reactor

    International Nuclear Information System (INIS)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S.

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying the ex

  14. IAEA fast reactor knowledge preservation initiative. Project focus: KNK-II reactor, Karlsruhe, Germany

    International Nuclear Information System (INIS)

    2004-08-01

    This Working Material (including the attached CD-ROM) documents progress made in the IAEA's initiative to preserve knowledge in the fast reactor domain. The brochure describes briefly the context of the initiative and gives an introduction to the contents of the CD-ROM. In 2003/2004 a first focus of activity was concentrated on the preservation of knowledge related to the KNK-II experimental fast reactor in Karlsruhe, Germany. The urgency of this project was given by the impending physical destruction of the installation, including the office buildings. Important KNK-II documentation was brought to safety and preserved just in time. The CD-ROM contains the full texts of 264 technical and scientific documents describing research, development and operating experience gained with the KNK-II installation over a period of time from 1965 to 2002, extending through initial investigations, 17 years of rich operating experience, and final shutdown and decommissioning. The index to the documents on the CD-ROM is printed at the end of this booklet in chronological order and is accessible on the CD by subject index and chronological index. The CD-ROM contains in its root directory also the document 'fr c lassification.pdf' which describes the classification system used for the present collection of documents on the fast reactor KNK-II

  15. Radiation embrittlement in pressure vessels of power reactors

    International Nuclear Information System (INIS)

    Kempf, Rodolfo; Fortis, Ana M.

    2007-01-01

    It is presented the project to study the effect of lead factors on the mechanical behavior of Reactor Pressure Vessel steels. It is described the facility designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. The objective is to obtain the fracture behavior of irradiated specimens with different lead factors and to know their dependence with the diffusion of alloy elements. (author) [es

  16. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  17. Fabrication of nuclear ship reactor MRX model and study on inspection and maintenance of components

    International Nuclear Information System (INIS)

    Kasahara, Yoshiyuki; Nakazawa, Toshio; Kusunoki, Tsuyoshi; Takahashi, Hiroki; Yoritsune, Tsutomu.

    1997-10-01

    The MRX (Marine Reactor X) is an integral type small reactor adopting passive safety systems. As for an integral type reactor, primary system components are installed in the reactor vessel. It is therefor important to establish the appropriate procedure for construction, inspection and maintenance, dismauntling, etc., for all components in the reactor vessel as well as in the reactor containment, because inspection space is limited. To study these subjects, a one-fifth model of the MRX was fabricated and operation capabilities were studied. As a result of studies, the following results are obtained. (1) Manufacturing and installing problems of the reactor pressure vessel, the containment vessel and internal components are basically not abserved. (2) Heat transfer tube structures of the steam generator and the heat exchangers of emergency decay heat removal system and containment water cooler were not seen of any problem for fabrication. However, due consideration is required in the detailed design of supports of heat transfer tubes. (3) Further studies should be needed for designs of flange penetrations and leak countermeasures for pipes instrument cables. (4) Arrangements of equipments in the containment should be taken in consideration in detail because the space is narrow. (5) Further discussion is required for installation methods of instruments and cables. (author)

  18. Development of special tools for the cleaning of reactor's interior in HANARO

    International Nuclear Information System (INIS)

    Cho, Y.-G.; Le, J.-H.; Ryu, J.-S.; Wu, J.-S.; Jung, H.-S.

    1999-01-01

    The HANARO (Hi-flux Advanced Neutron Application Reactor) in Korea has been being operated for 5 years, including one year of non-nuclear system commissioning tests since the installation of the reactor in early 1994. The HANARO is an open-tank-in-pool type reactor which has the advantage of free access from the pool top. The HANARO reactor had special cleaning works twice to remove debris from the inside reactor. This paper summarizes the development of special tools for reactor cleaning and how the reactor's inside had been successfully cleaned within short periods. The first cleaning work, after the initial flushing of the reactor system in early 1994, was the removal of the silica-gel sands, contaminated during installation, from the reactor pool and all equipment in the pool, including the reactor structure, the reactivity control units and the primary cooling system. Water-jet, pump suction, vacuum suction and whirl methods were used in combination with specially designed tools. The second one, occurred in February 1997 after two years of reactor operation was the cleaning work for the reactor's interior to remove several metal pieces broken from the parts of a check valve assembly in the primary cooling system. This work required development of many special tools that are all compact in size and remotely operable to reach all areas of the inlet plenum through very limited access holes. The special tools used for this work were two kinds of underwater cameras equipped with lighting, a debris-picking tool named 'revolving dustpan', two kinds of flow tube replacement tools and many other supplementary tools. All work had been successfully accomplished on the in-pool-platform temporarily installed 9m above the pool bottom to maintain the pool water level required in view of radiation shielding. Finally, the reactor internals were inspected using the underwater cameras to confirm the absence of debris and the surface integrity of the plenum as well as all fuel

  19. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  20. Decree no. 96-978 from October 31, 1996 giving permission to the French atomic energy Commission (CEA) to create a basic nuclear installation intended to maintain under supervision and in an intermediate dismantling state the old basic nuclear installation no. 28, named Monts d'Arree-EL 4 nuclear power plant (a decommissioned reactor), in the Monts d'Arree site of the Loqueffret town (Finistere, Brittany)

    International Nuclear Information System (INIS)

    Borotra, F.; Lepage, C.

    1996-01-01

    This decree from the French ministry of industry and postal services gives permission to the CEA to create a new basic nuclear installation, named EL 4D, which is devoted to the storage of materials from the partially dismantled Monts d'Arree EL 4 reactor. Thus, the CEA is allowed to carry out confining works on the reactor building with the closure of all apertures with the exception of the personnel entry sieve, on the circuits and equipments of the reactor vessel with the plugging of fuel channels, heavy water, helium and demineralized water pipes and of the heads of control rod drive mechanisms and other channels, and on the primary coolant circuit outside the reactor vessel and the steam generators with the installation of welded hatches. The irradiated fuels building, the solid wastes repository, the ventilation building, the heavy water and helium circuits, the fuel handling systems and the effluents treatment plant will be completely dismantled. The other buildings will be pulled down. The rest of the decree enumerates the general technical and safety prescriptions which have to be followed in order to ensure the protection of the personnel against ionizing radiations and of the environment against radioactive pollution. (J.S.)

  1. Apparatus for installing and removing a control rod drive in a nuclear reactor

    International Nuclear Information System (INIS)

    Turner, A.P.L.; Ward, R.

    1989-01-01

    This patent describes an apparatus for installing and removing a control rod drive from beneath the pressure vessel of a nuclear reactor. It consists of elevator carriage for carrying the control rod drive into and out of the region beneath the pressure vessel in a generally horizontal position, an elevator cradle mounted on the carriage for pivotal movement about an axis between horizontal and vertical positions and for vertical movement, when in the vertical position, means for securing the control rod drive to the elevator cradle, and a winch cart movable horizontally between a first position spaced from the pivot axis and a second position near the pivot axis. The cart has a winch cable supporting the lower end of the elevator carriage for moving the elevator carriage and the control rod drive between horizontal and vertical positions on the elevator carriage when the cart is spaced from the pivot axis and for raising and lowering the elevator cradle and the control rod drive when the cart is positioned near the pivot axis. The control rod drive is mounted on the elevator cradle by a bearing permitting rotational and horizontal movement of the control rod drive when the drive is in a vertical position, a swing arm, a pneumatically actuated cylinder in axial alignment with the control rod drive for raising and lowering the control rod drive, and means pivotally mounting the cylinder on the swing arm for movement about an axis spaced from and generally parallel to the vertically extending axis so that the position of the cylinder and the control rod drive can be shifted horizontally about the vertically extending axes

  2. Research nuclear reactor RA, Annual Report 2001

    International Nuclear Information System (INIS)

    Sotic, O.

    2002-01-01

    During 2001, activities at the RA research nuclear reactor in were performed according to the Contract about financing of the RA reactor for the period January-December 2001, signed by the Ministry of Science, technology and development of the Republic of Serbia. RA reactor was not operated since shutdown in August 1984. Although, the most of the planned reconstruction activities were finished until 1991, the most important, which was concerned with exchange of the reactor instrumentation, financed by the IAEA, was interrupted due to international sanctions imposed on the country. Since 1992, all the renewal and reconstruction activities were ceased. Continuous aging and degradation of the equipment and facilities demand decision making about the future status of the Ra reactor. Until this decision is made it is an obligation to maintain control and maintenance of ventilation system, power supply, internal transportation system, spent fuel storage, hot cells, electronic fuel surveillance system, and part of the stationary dosimetry system. In 2001, apart from the mentioned activities, actions were undertaken related to maintenance of the reactor building and installations. The most important tasks fulfilled were: protection of the roof of the ventilation system building, purchase and installing the fire protection system and twelve new battery cells in the reactor building. There were no actions concerned with improvement of the conditions for intermediate spent fuel storage. With the support of IAEA, actions were initiated for possible transport of the spent fuel tu Russia. At the end of 2001, preparations were started for possible future decommissioning of the RA reactor. After, renewal of the membership of our country in the IAEA, the Government of Yugoslavia has declared its attitude about the intention of RA reactor decommissioning at the General Conference in September 2001 [sr

  3. Monitoring and measurement of variables - assurance of observability and controllability of the reactor equipment

    International Nuclear Information System (INIS)

    Durnev, V.N.; Mitelman, M.G.

    2001-01-01

    The presentation presents main conclusions on the basis of analysis of the existing situation with assurance of observability and controllability of the reactor installation. A methodology of classification of variables of the controlled object state and proposals on selection and substantiation of measurement and inspection monitoring techniques is given. Main problems associated with assurance of observability and controllability of the reactor installation are presented for various operation modes. (Authors)

  4. Handling and carrying head for nuclear fuel assemblies and installation including this head

    International Nuclear Information System (INIS)

    Artaud, R.; Cransac, J.P.; Jogand, P.

    1986-01-01

    The present invention proposes a handling and carrying head ensuring efficiently the cooling of the nuclear fuel asemblies it transports so that any storage in liquid metal in a drum within or adjacent the reactor vessel is suppressed. The invention claims also a nuclear fuel handling installation including the head; it allows a longer time between loading and unloading campaigns and the space surrounding the reactor vessel keeps free without occupying a storage zone within the vessel [fr

  5. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2014-07-01

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. The paper describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motorgenerator set.

  6. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    International Nuclear Information System (INIS)

    Loenhout, Gerard van; Hurni, Juerg

    2014-01-01

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. The paper describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motorgenerator set.

  7. Cable handling system for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Crosgrove, R.O.; Larson, E.M.; Moody, E.

    1982-01-01

    A cable handling system for use in an installation such as a nuclear reactor is disclosed herein along with relevant portions of the reactor which, in a preferred embodiment, is a liquid metal fast breeder reactor. The cable handling system provides a specific way of interconnecting certain internal reactor components with certain external components, through an assembly of rotatable plugs. Moreover, this is done without having to disconnect these components from one another during rotation of the plugs and yet without interfering with other reactor components in the vicinity of the rotating plugs and cable handling system

  8. Online monitoring and diagnostic system on RA-6 nuclear reactor

    International Nuclear Information System (INIS)

    Garcia Peyrano, O. A.; Marticorena, M.; Koch, R. G.; Martinez, J. S; Berruti, G. E.; Nunez, W. M.; Gonzales, L. A.; Tarquini, L. D.; Sotelo, J. P

    2009-01-01

    This paper presents the Online Automatic Monitoring and Diagnostic System for mechanical components, installed on RA-6 Nuclear Reactor (San Carlos de Bariloche, Argentina). This system has been designed, installed and set-up by the Vibrations and Mechatronics Laboratory (Centro Atomico Bariloche, Comision Nacional de Energia Atomica) and Sitrack.com Argentina SA. This system provides an online mechanical diagnostic of the main reactor components, allowing incipient failures to be early detected and identified, avoiding unscheduled shut-downs and reducing maintenance times. The diagnostic is accomplished by an online analysis of the vibratory signature of the mechanical components, obtained by vibrations sensors on the main pump and the decay tank. The mechanical diagnostic and the main operational parameters are displayed on the reactor control room and published on the internet. [es

  9. Dynamic problems of power reactors and analogic devices

    International Nuclear Information System (INIS)

    Braffort, P.

    1955-01-01

    The raise of the nuclear physics came with heavy mathematical developments. The analogical installations became especially useful for precise calculations of parameters which depend the running of a reactor. They permit between other to study of kinetic problems and especially ''cybernetics'' of nuclear reactors. It doesn't make a doubt that their use will become widespread, not only in the calculations laboratories, in services for servo-mechanisms study, but also in the control panels of the reactors themselves. (M.B.) [fr

  10. Extension of the technical scope of the Paris and Vienna Conventions: fusion reactors and reactors in means of transport

    International Nuclear Information System (INIS)

    Reye, S.

    1993-01-01

    This paper examines the possibility of extending the technical scope of the Vienna and Paris Conventions to two types of nuclear installation presently excluded. Industrial use of fusion reactors is not expected for several decades, but the present revision of the liability regime provides a useful opportunity to ensure in advance that future industrial reactors will be covered, as well as covering risks arising from existing research reactors. Inclusion of nuclear reactors comprised in means of transport (in practice, in ships) in the liability regime would have certain advantages, but given their almost exclusively military use, such a proposal would be politically controversial. 18 refs

  11. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA) of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with

  12. State-of-the-art incore detector system provides operational and safety benefits: Example, Hanford N Reactor

    International Nuclear Information System (INIS)

    Toffer, H.

    1988-08-01

    A presentation on the operational and safety benefits that can be derived from a state-of-the-art incore neutron monitoring system has been prepared for the DOE/ANL training course on ''The Potential Safety Impact of New and Emerging Technologies on the Operation of DOE Nuclear Facilities.'' Advanced incore neutron flux monitoring systems have been installed in some commercial reactors and should be considered for any new reactor designs or as backfits to existing plants. The recent installation of such a system at the Hanford N Reactor is used as an example in this presentation. Unfortunately, N Reactor has been placed in a cold standby condition and the full core incore system has not been tested under power conditions. Nevertheless, the evaluations that preceded the installation of the full core system provide interesting insight into the operational and safety benefits that could be expected

  13. Uranium redistribution under oxidizing conditions in Oklo natural reactor zone 2, Gabon

    International Nuclear Information System (INIS)

    Isobe, H.; Ohnuki, T.; Murakami, T.; Gauthier-Lafaye, F.

    1995-01-01

    This mineralogical study was completed to elucidate the relationships between uranium distribution and alteration products of the host rock of natural reactor zone clays just below the reactor core. Uraninite is preserved without any alteration in the reactor core. Uranium minerals are found to be present in the fractures in the reactor zone clays associated with iron-mineral veins, galena and Ti-bearing minerals. Uranium, for which the phases could not be identified, occurs in iron-mineral veins and the iron-mineral rim of pyrite grains in the reactor zone clays. Uranium is not associated with granular iron minerals occurring in the illite matrix of the reactor zone clays. The degree of crystallinity and uranium content of the three iron-bearing alteration products suggest that they formed under different conditions; the granular iron minerals, under alteration conditions where uranium was not mobilized while the iron-mineral veins and the iron-mineral rim of pyrite, under conditions in which uranium is mobilized after the formation of the granular iron minerals

  14. Proposal of a dry storage installation in Angra NPP for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz S.; Rzyski, Barbara M.

    2009-01-01

    When nuclear fuel is removed from a power reactor core after the depletion of efficiency in generating energy is called Spent Nuclear Fuel (SNF). After its withdrawal from the reactor core, SNF is temporarily stored in pools usually at the same site of the reactor. During this time, short-living radioactive elements and generated heat undergo decay until levels that allow removing the SNF from the pool and sending it for reprocessing or a temporary storage whether any of its final destinations has not yet been defined. It can be loaded in casks and disposed during years in a dry storage installations until be sent to a reprocessing plant or deep repositories. Before any decision, reprocessing or disposal, the SNF needs to be safely and efficiently isolated in one of many types of storages that exist around the world. Worldwide, the amount of SNF increases annually and in the next years this amount will be higher as a consequence of new Nuclear Power Plants (NPP) construction. In Brazil, that is about to construct the Angra 3 nuclear power reactor, a project about the final destination of the SNF is not yet ready. This paper presents a proposal for a dry storage installation in the Angra NPP site since it can be an initial solution for the Brazilian's SNF, until a final decision is taken. (author)

  15. Modernization of turbine control system and reactor control system in Almaraz 1 and 2

    International Nuclear Information System (INIS)

    Pulido, C.; Diez, J.; Carrasco, J. A.; Lopez, L.

    2005-01-01

    The replacement of the Turbine Control System and Reactor Control System are part of the Almaraz modernization program for the Instrumentation and Control. For these upgrades Almaraz has selected the Ovation Platform that provides open architecture and easy expansion to other systems, these platforms is highly used in many nuclear and thermal plants around the world. One of the main objective for this project were to minimize the impact on the installation and operation of the plant, for that reason the project is implemented in two phases, Turbine Control upgrade and Reactor Control upgrade. Another important objective was to increase the reliability of the control system making them fully fault tolerant to single failures. The turbine Control System has been installed in Units 1 and 2 while the Reactor Control System will be installed in 2006 and 2007 outages. (Author)

  16. Evaluation of an automated struvite reactor to recover phosphorus ...

    African Journals Online (AJOL)

    In the present study we attempted to develop a reactor system to recover phosphorus by struvite precipitation, and which can be installed anywhere in the field without access to a laboratory. A reactor was developed that can run fully automated and recover up to 93% of total phosphorus (total P). Turbidity and conductivity ...

  17. Application of plasma focus installations for a study of the influence ...

    Indian Academy of Sciences (India)

    The appearance of a large number of cracks on the surface of vanadium under the impulse influence of deuterium plasma shows that pure vanadium cannot be used for the construction of thermonuclear fusion reactors. Such PF installations could also be used effectively for the study of other material and construction ...

  18. Environmental Information Document: L-reactor reactivation

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.

    1982-04-01

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program

  19. Environmental Information Document: L-reactor reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. Jr. (comp.)

    1982-04-01

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.

  20. Isotopic methods of investigations of hydrodynamics in installations for hydrometallurgic processing of copper concentrates

    International Nuclear Information System (INIS)

    Stsheletski, M.; Urban'ski, T.S.

    1979-01-01

    Isotope methods have been presented of investigations of hydrodynamics of liquid and solid phases in pilot-scale installations for hydrometallurgic processing of copper concentrates: in the column installation for leaching; in the tubular reactor for copper reduction by hydrogen and in the installation for crystallization of magnesium sulphate under pressure conditions. The column leaching installation has been tested by pulse injection of two radioisotope indicators simultaneously. The copper concentrate was labelled by sorbed colloidal gold-198 and the liquid phase was labelled by solution of sodium chloride containing sodium-24. Measurements of the radiation intensities were registered by scintillation counters, working with a single-channel amplitude analyzer, integrators and counting rate monitors. According to the distribution of time of stay, by the moments method, number of powers of ideal intermixings in the cell model of flow of the both phases. In the tubular reactor process of copper reduction by hydrogen is going on in three phases: gas-liquid-solig phase. Hydrodynamic investigations in this instalation was done in the presence of air, water and copper powder. Water was labelled by sodium-24 and copper powder by copper-64. Changes of intensity of radiation were measured by scintillation counters, located along the installation and were registered by multichannel amplitude analyzer. Peckle number and longitudal dispersion factor were determined. In investigations of the solid phase hydrodynamics during crystallization of magnesium sulphate under elevated temperature and high pressure, as an indicator, isotope gold-198 has been used, by which crystalls of the solid phase were labelled, and isotope sodium-24 was added to a liquid. Simultaneousely were measured and registered by a single-channel analyzer intensity of radiation of both indicators. Mean time of stay and parameters of a mathematical model of the phases flow in this installation were

  1. The safety of the fast reactor

    International Nuclear Information System (INIS)

    Matthews, R.R.

    1977-01-01

    Verbatim of an address by R.R. Matthews, Chief Nuclear Health and Safety Officer, UK Central Electricity Generating Board given on January 15th 1977. The object of this address was to give some opinions on the safety issues of fast reactors as seen from an operational point of view. An outline of the basic responsibilities for nuclear safety is first given, and it is emphasized that the Central Electricity Generating Board has a statutory responsibility for the safe operation of its nuclear plant. The Nuclear Installations Act places absolute responsibility on the operator for ensuring that injury to persons and damage to property do not occur, and the new Health and Safety at Work Act does likewise. In addition the Board has a Nuclear Health and Safety Department that has to ensure that adequate provision for safety is made in the design, construction, and operation of nuclear plant, and safety at operational stations is monitored continuously by inspectors. In addition the requirements of the Nuclear Installations Inspectorate, laid down in the site licence conditions, must be satisfied. All these requirements are here discussed in the light of application to commercial fast reactors. It is considered that the hazards to fast reactor operating personnel are small and little different from those of other types of reactor, and in some respects the fast reactor has advantages, particularly in regard to the use of a Na coolant. The possibility of various types of accident is considered. Radioactive effluent discharge is also considered. The fast reactor as an international problem is discussed, including security matters. The extensive experience gained in operation of the experimental and prototype fast reactors at Dounreay is emphasized. (U.K.)

  2. Proposal of space reactor for nuclear electric propulsion system

    International Nuclear Information System (INIS)

    Nishiyama, Takaaki; Nagata, Hidetaka; Nakashima, Hideki

    2009-01-01

    A nuclear reactor installed in spacecrafts is considered here. The nuclear reactor could stably provide an enough amount of electric power in deep space missions. Most of the nuclear reactors that have been developed up to now in the United States and the former Soviet Union have used uranium with 90% enrichment of 235 U as a fuel. On the other hand, in Japan, because the uranium that can be used is enriched to below 20%, the miniaturization of the reactor core is difficult. A Light-water nuclear reactor is an exception that could make the reactor core small. Then, the reactor core composition and characteristic are evaluated for the cases with the enrichment of the uranium fuel as 20%. We take up here Graphite reactor, Light-water reactor, and Sodium-cooled one. (author)

  3. Flow-induced vibration phenomenon in a Mark III TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C K; Whittemore, W L; Kim, B S; Lee, J B; Blevins, R D; Burton, T E [Korea Atomic Energy Research Institute, Seoul (Korea, Republic of); General Atomic Company, San Diego, CA (United States)

    1976-07-01

    The Mark III TRIGA reactor with hexagonal fuel spacing is capable of operating at 2.0 MW. The Mark III at San Diego operated without core cooling problems or vibration at power levels up to 2.0 MW. All Mark III reactors have operated trouble-free up to 1.0 MW. The Mark III TRIGA in Korea was installed in 1972 and operated many months without trouble at 2.0 MW. During this period core changes including addition of new fuel were made. Eighteen months after startup, a coolant flow-induced vibration was observed for the first time at a power of 1.5 MW. A lengthy series of tests showed that it was not possible to establish a core configuration that permitted vibration-free operation for power levels in the range 1.5 - 2.0 MW. Observations during the tests confirmed that standing waves in the reactor tank water coupled the source within the core to the shield structure and surrounding building. Analysis of the data indicates strongly that the source of the vibration is the creation and collapse of bubbles with the core acting as a resonator. A substantially increased flow of coolant through the upper grid plate is expected to eliminate the vibration phenomenon and permit trouble-free operation at power up to 2.0 MW. In an attempt to seek a remedy, both GAC and KAERI have independently developed designs for upper grid plates. KAERI has constructed and installed an interim version of the standard grid plate which was calculated to provide 25% more coolant flow and mounted high so as to provide less restriction to flow around the upper fittings of the fuel elements. A substantial reduction in vibration was observed. No vibration was observed at any power up to 2.0 MW with cooling water at or below 20 C. A slight vibration at 1.8 MW occurred for higher cooling temperatures. The GAC grid plate design provides not only for increasing the flow area but also for streamlining the flow surfaces on the grid plate and possibly also on the top fittings of the fuel elements. It is

  4. Flow-induced vibration phenomenon in a Mark III TRIGA reactor

    International Nuclear Information System (INIS)

    Lee, C.K.; Whittemore, W.L.; Kim, B.S.; Lee, J.B.; Blevins, R.D.; Burton, T.E.

    1976-01-01

    The Mark III TRIGA reactor with hexagonal fuel spacing is capable of operating at 2.0 MW. The Mark III at San Diego operated without core cooling problems or vibration at power levels up to 2.0 MW. All Mark III reactors have operated trouble-free up to 1.0 MW. The Mark III TRIGA in Korea was installed in 1972 and operated many months without trouble at 2.0 MW. During this period core changes including addition of new fuel were made. Eighteen months after startup, a coolant flow-induced vibration was observed for the first time at a power of 1.5 MW. A lengthy series of tests showed that it was not possible to establish a core configuration that permitted vibration-free operation for power levels in the range 1.5 - 2.0 MW. Observations during the tests confirmed that standing waves in the reactor tank water coupled the source within the core to the shield structure and surrounding building. Analysis of the data indicates strongly that the source of the vibration is the creation and collapse of bubbles with the core acting as a resonator. A substantially increased flow of coolant through the upper grid plate is expected to eliminate the vibration phenomenon and permit trouble-free operation at power up to 2.0 MW. In an attempt to seek a remedy, both GAC and KAERI have independently developed designs for upper grid plates. KAERI has constructed and installed an interim version of the standard grid plate which was calculated to provide 25% more coolant flow and mounted high so as to provide less restriction to flow around the upper fittings of the fuel elements. A substantial reduction in vibration was observed. No vibration was observed at any power up to 2.0 MW with cooling water at or below 20 C. A slight vibration at 1.8 MW occurred for higher cooling temperatures. The GAC grid plate design provides not only for increasing the flow area but also for streamlining the flow surfaces on the grid plate and possibly also on the top fittings of the fuel elements. It is

  5. The fast reactor and energy supply

    International Nuclear Information System (INIS)

    1979-01-01

    The progress made with fast reactor development in many countries is summarised showing that the aim is to provide to the nation concerned an ability to instal fast reactor power stations at the end of this century or early in the next one. Accepting the importance of fast reactors as a potential independent source of energy, problems concerning economics, industrial capability, technical factors, public acceptibility and in particular plutonium management, are discussed. It is concluded that although fast reactors have reached a comparatively advanced stage of development, a number of factors make it likely that their introduction for electricity generation will be a gradual process. Nevertheless it is necessary to complete demonstration and development phases in good time. (U.K.)

  6. Refurbishment of the Primary Cooling System of the Puspati Triga Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, S.; Zakaria, M. F.; Masood, Z. [Malaysian Nuclear Agency, Kajang (Malaysia)

    2014-08-15

    The refurbishment of the 27 year old primary cooling system of the 1 MW PUSPATI TRIGA reactor was completed in April 2010 over an eight month outage. The project was implemented with the dual objective of meeting current user needs as well as a future reactor core power upgrade. Hence the cooling system was partly modernized to cater for a 3 MW{sub th} reactor by installing higher capacity heat exchangers and pumps while maintaining the piping and valve sizes. The old 1 MW tube and shell heat exchanger, which had lost 25% of its heat exchange capacity, was replaced with two 1.5 MW plate type heat exchangers. Several manually operated valves were replaced with motorized units to allow remote operation from the control room. The installed cooling system was flushed with distilled water and then subjected to hydrostatic pressure tests. In the cold run test, the system was operated for an hour for every pump and heat exchanger combination while all operating parameters were checked. In the hot run test, the same was done at four levels of increasing reactor power, and dose measurements were also recorded. The paper gives the design, installation, testing and commissioning details of the project. (author)

  7. Evaluation of PAHs in groundwater and surface waters at Multipurpose Reactor Installation Area

    International Nuclear Information System (INIS)

    Pereira, Karoline P.; Martins, Elâine A.J.; Cotrim, Marycel E.B.; Pires, Maria A.F.

    2017-01-01

    Brazil has four research reactors in operation, all old and low power. The IEA-R1 reactor of IPEN/CNEN-SP has only limited radioisotope production capacity, materials irradiation, and neutron beam utilization. This reactor has been operating for fifty-nine years and has prospects of operation for a maximum period of ten years. It is necessary to implement a new reactor, which will support nuclear activities, and the national strategic objectives related to technological development in the areas of energy and defense; scientific and technological development; training of human resources and the growing production of radioisotopes for medical application. The Brazilian Multipurpose Reactor (RMB) will be a nuclear reactor for research and will be built in the state of São Paulo, in the municipality of Iperó. Its construction may involve the release of effluents into the environment. With monitoring before, during and after construction, it will be possible to verify if the construction itself will harm the environment. Several organics compounds are released daily in water bodies collaborating for environmental imbalance. Many of them have carcinogenic and mutagenic properties, receiving more attention by the scientific community. Most of the organic compounds are not included in environmental legislation and many of them present high toxicity, especially those classified as endocrine disrupters, as some Polycyclic Aromatic Hydrocarbons (PAHs). Only seven of the thirteen PAHs studied in this project are contemplated in Brazilian legislation, and just one is contained in international legislation. The PAHs studied in this work present, considered hazardous chemical compounds due to their toxicity, persistence in the environment, their bioaccumulative potential and their tendency to biomagnify. For the determination of the PAHs, the samples were concentrated by solid phase extraction (SPE) followed by quantification by High Performance Liquid Chromatography (HPLC). It

  8. Evaluation of PAHs in groundwater and surface waters at Multipurpose Reactor Installation Area

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Karoline P.; Martins, Elâine A.J.; Cotrim, Marycel E.B.; Pires, Maria A.F., E-mail: karolinedepaulapereira@usp.br, E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Brazil has four research reactors in operation, all old and low power. The IEA-R1 reactor of IPEN/CNEN-SP has only limited radioisotope production capacity, materials irradiation, and neutron beam utilization. This reactor has been operating for fifty-nine years and has prospects of operation for a maximum period of ten years. It is necessary to implement a new reactor, which will support nuclear activities, and the national strategic objectives related to technological development in the areas of energy and defense; scientific and technological development; training of human resources and the growing production of radioisotopes for medical application. The Brazilian Multipurpose Reactor (RMB) will be a nuclear reactor for research and will be built in the state of São Paulo, in the municipality of Iperó. Its construction may involve the release of effluents into the environment. With monitoring before, during and after construction, it will be possible to verify if the construction itself will harm the environment. Several organics compounds are released daily in water bodies collaborating for environmental imbalance. Many of them have carcinogenic and mutagenic properties, receiving more attention by the scientific community. Most of the organic compounds are not included in environmental legislation and many of them present high toxicity, especially those classified as endocrine disrupters, as some Polycyclic Aromatic Hydrocarbons (PAHs). Only seven of the thirteen PAHs studied in this project are contemplated in Brazilian legislation, and just one is contained in international legislation. The PAHs studied in this work present, considered hazardous chemical compounds due to their toxicity, persistence in the environment, their bioaccumulative potential and their tendency to biomagnify. For the determination of the PAHs, the samples were concentrated by solid phase extraction (SPE) followed by quantification by High Performance Liquid Chromatography (HPLC). It

  9. University Reactor Instrumentation Grant. Final report 08/06/1998 - 08/13/1999

    International Nuclear Information System (INIS)

    Bajorek, S. M.

    2000-01-01

    A noble gas air monitoring system was purchased through the University Reactor Instrumentation Grant Program. This monitor was installed in the Kansas State TRIGA reactor bay at a location near the top surface of the reactor pool according to recommendation by the supplier. This system is now functional and has been incorporated into the facility license

  10. Conceptual design of inherently safe integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Chang, M. H.; Lee, D. J. and others

    1999-03-01

    The design concept of a 300 MWt inherently safe integral reactor(ISIR) for the propulsion of extra large and superhigh speed container ship was developed in this report. The scope and contents of this report are as follows : 1. The state of the art of the technology for ship-mounted reactor 2. Design requirements for ISIR 3. Fuel and core design 4. Conceptual design of fluid system 5. Conceptual design of reactor vessel assembly and primary components 6. Performance analyses and safety analyses. Installation of two ISIRs with total thermal power of 600MWt and efficiency of 21% is capable of generating shaft power of 126,000kW which is sufficient to power a container ship of 8,000TEU with 30knot cruise speed. Larger and speedier ship can be considered by installing 4 ISIRs. Even though the ISIR was developed for ship propulsion, it can be used also for a multi-purpose nuclear power plant for electricity generation, local heating, or seawater desalination by mounting on a movable floating barge. (author)

  11. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  12. Functional approaches: a new view of nuclear reactors management

    International Nuclear Information System (INIS)

    Papin, B.

    2000-01-01

    Since many years a research program on the future reactors command, has been decided by the CEA, in collaboration with EDF and Framatome. This program aims to enhance the reactor safety by a better control of the installation in any exploitation situations. The paper presents the state of the art and the first reflexions. (A.L.B.)

  13. Quality assurance in the project of RECH-2 research reactor

    International Nuclear Information System (INIS)

    Goycolea Donoso, C.; Nino de Zepeda Schele, A.

    1989-01-01

    The implantation of a Quality Assurance Program for the design, supply, construction, installation, and testing of the RECH-2 research reactor, is described in this paper. The obtained results, demonstrate that a Quality Assurance Program constitutes a suitable mean to assure that the installation complies with the safety and reliability requirements. (author)

  14. Installation of the water environment irradiation facility for the IASCC research under the BWR/PWR irradiation environment (2)

    International Nuclear Information System (INIS)

    Magome, Hirokatsu; Okada, Yuji; Hanawa, Hiroshi; Sakuta, Yoshiyuki; Kanno, Masaru; Iida, Kazuhiro; Ando, Hitoshi; Yonekawa, Akihisa; Ueda, Haruyasu; Shibata, Mitsunobu

    2014-07-01

    In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material was advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. The material irradiation test facility was installed from 2008 fiscal year to 2012 fiscal year in JMTR. This report summarizes manufacture and installation of the material irradiation test facility for IASCC research carried out from 2012 to 2014 in the follow-up report reported before (JAEA-Technology 2013-019). (author)

  15. Preliminary Study of Potential Market for Small Reactors

    International Nuclear Information System (INIS)

    Minato, A.; Brown, N. W.

    2008-01-01

    Small reactors are an energy supply for a specific purpose and oriented for a different market than large reactors. Small reactors will provide a local solution for developed and developing countries, such as, in remote areas, on small grids, or for non-electricity applications such as, district heating, seawater desalination and process heat. Single or medium sized power stations with small reactors should be compared with single fissile or renewable energy source and not be compared with large reactors. CRIEPI and LLNL have studied the business opportunities for small reactors. The small reactor concept is planned for initial use in small remote communities and in developing countries with small power distribution grid. Rapid installation and simple operation of the small plants is intended to support use in these communities without requiring development of a substantial nuclear technology infrastructure. In this study, two approaches were used in the assessment of the potential market. The first approach took a global look at the need for small nuclear plants. Then selected countries and sites were identified based on countries expressing interest in small reactors to the IAEA and consideration of sites in the US and Japan. (1) Tunisia, Mexico, Indonesia, Uruguay, Egypt and Argentina have demonstrated interest in nuclear power. Selecting one of these is dependent on political and socioeconomic factors, some of which have been identified, that require direct interaction with the countries to establish if they represent real opportunities. (2) The states of Hawaii and Alaska in the United States have high power cost and remote or island communities that may benefit from small nuclear plants. Alaska has shown greater interest in power alternatives including small than Hawaii and there is clearly less public resistance to nuclear power in Alaska. (3) The countries in Central America are actively expanding their power grids but have not demonstrated great interest

  16. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2002-01-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system

  17. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  18. Radiation-hygienic estimation of training reactors location

    International Nuclear Information System (INIS)

    Konstantinov, Yu.O.; Fedorin, Eh.V.

    1978-01-01

    The radiation exposure conditions are provided during the normal operation (excluding emergency situations) of four training pool type reactors. Radiation monitoring of the environment near the reactors do not show any increase in external irradiation or in radioactive contamination over what is considered normal radiation background in the locality. Therefore it is possible to judge the potential levels of additional exposure of the population to radiation from the reactors only by means of theoretic modeling of the radiation conditions. Tabular data on maximal levels of this additional radiation are presented, and it is concluded from these data that it is permissible to install training and research reactors up to 3000 kilowatts within large cities, including dwelling areas

  19. Modifications and modernization of the Portuguese research reactor (RPI)

    International Nuclear Information System (INIS)

    Cardeira, F.M.; Menezes, J.B.

    1995-01-01

    The Portuguese Research Reactor (RPI) reached its criticality in April 1961 and has successfully operated for more than 30 years without important incidents. Several replacements of equipment and improvements were introduced during this period, the most important occurring in the modernisation period (1987-1991), with the purpose of improving safety and reliability of the reactor exploitation. The reactor has been shut-down during more than two years for important works of replacement and refurbishment of the primary piping and pool lining. The objective of this paper is to describe the main works performed on RPI reactor during its life time concerning replacements, upgrading and modernisation of reactor equipment and installations. (orig.)

  20. Improvement of research reactor sustainability

    International Nuclear Information System (INIS)

    Ciocanescu, M.; Paunoiu, C.; Toma, C.; Preda, M.; Ionila, M.

    2010-01-01

    The Research Reactors as is well known have numerous applications in a wide range of science technology, nuclear power development, medicine, to enumerate only the most important. The requirements of clients and stack-holders are fluctuating for the reasons out of control of Research Reactor Operating Organization, which may ensure with priority the safety of facility and nuclear installation. Sustainability of Research Reactor encompasses several aspects which finally are concentrated on safety of Research Reactor and economical aspects concerning operational expenses and income from external resources. Ensuring sustainability is a continuous, permanent activity and also it requests a strategic approach. The TRIGA - 14 MW Research Reactor detains a 30 years experience of safe utilization with good performance indicators. In the last 4 years the reactor benefited of a large investment project for modernization, thus ensuring the previous performances and opening new perspectives for power increase and for new applications. The previous core conversion from LEU to HEU fuel accomplished in 2006 ensures the utilization of reactor based on new qualified European supplier of TRIGA LEU fuel. Due to reduction of number of performed research reactors, the 14 MW TRIGA modernized reactor will play a significant role for the following two decades. (author)

  1. Nuclear installations abroad the accident risks and their potential consequences

    Energy Technology Data Exchange (ETDEWEB)

    Turvey, F J [Radiological Protection Inst. of Ireland (Ireland)

    1996-10-01

    This paper endeavors to assess the threat to Ireland from severe accidents at civil nuclear installations. Among the various types of nuclear installations worldwide, reactors and reprocessing plants are considered to be the most threatening and so the paper focuses on these. The threat is assumed to be a function of the risk of severe accidents at the above types of installations and the probability of unfavourable weather conditions carrying the radioactive releases to Ireland. Although nuclear installations designed in eastern Europe and Asia are less safe than others, the greatest threat to Ireland arises from nearby installations in the UK. The difficulty of measuring the probabilities and consequences of severe nuclear accidents at nuclear installations in general is explained. In the case of the UK installations, this difficulty is overcome to some degree by using values of `tolerable` risk adopted by the national nuclear regulator to define the radiotoxic releases from nuclear accidents. These are used as input to atmospheric dispersion models in which unfavourable weather conditions for Ireland are assumed and radiation doses are calculated to members of the Irish public. No countermeasures, such as sheltering, are assumed. In the worst cast scenario no deaths would be expected in Ireland in the immediate aftermath of the accident however, an increase in cancers over a period of 25 years or so would be expected assuming present-day models for the effect of low level radiation are valid.

  2. Nuclear installations abroad the accident risks and their potential consequences

    International Nuclear Information System (INIS)

    Turvey, F.J.

    1996-01-01

    This paper endeavors to assess the threat to Ireland from severe accidents at civil nuclear installations. Among the various types of nuclear installations worldwide, reactors and reprocessing plants are considered to be the most threatening and so the paper focuses on these. The threat is assumed to be a function of the risk of severe accidents at the above types of installations and the probability of unfavourable weather conditions carrying the radioactive releases to Ireland. Although nuclear installations designed in eastern Europe and Asia are less safe than others, the greatest threat to Ireland arises from nearby installations in the UK. The difficulty of measuring the probabilities and consequences of severe nuclear accidents at nuclear installations in general is explained. In the case of the UK installations, this difficulty is overcome to some degree by using values of 'tolerable' risk adopted by the national nuclear regulator to define the radiotoxic releases from nuclear accidents. These are used as input to atmospheric dispersion models in which unfavourable weather conditions for Ireland are assumed and radiation doses are calculated to members of the Irish public. No countermeasures, such as sheltering, are assumed. In the worst cast scenario no deaths would be expected in Ireland in the immediate aftermath of the accident however, an increase in cancers over a period of 25 years or so would be expected assuming present-day models for the effect of low level radiation are valid

  3. Reactor cold neutron source facility, the first in Japan

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Maeda, Yutaka; Kawai, Takeshi; Tashiro, Tameyoshi; Sakakibara, Shoji; Katada, Minoru.

    1986-01-01

    In the Research Reactor Institute, Kyoto University, the first cold neutron source facility for the reactor in Japan was installed, and various tests are carried out outside the reactor. Nippon Sanso K.K. had manufactured it. After the prescribed tests outside the reactor, this facility will be installed soon in the reactor, and its outline is described on this occasion. Cold neutrons are those having very small energy by being cooled to about-250 deg C. Since the wavelength of the material waves of cold neutrons is long, and their energy is small, they are very advantageous as an experimental means for clarifying the structure of living body molecules and polymers, the atom configuration in alloys, and atomic and molecular movements by neutron scattering and neutron diffraction. The basic principle of the cold neutron source facility is to irradiate thermal neutrons on a cold moderator kept around 20 K, and to moderate and cool the neutrons by nuclear scattering to convert to cold neutrons. The preparatory research on cold neutrons and hydrogen liquefaction, the basic design to put the cold neutron source facility in the graphite moderator facility, the safety countermeasures, the manufacture and quality control, the operation outside the reactor and the performance are reported. The cold neutron source facility comprises a cold moderator tank and other main parts, a deuterium gas tank, a helium refrigerator and instrumentation. (Kako, I.)

  4. Toxic elements in sediment from two water bodies near Brazilian Multipurpose Reactor: RMB installation area

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tatiane B.S.C. da; Stellato, Thamiris B.; Monteiro, Lucilena R.; Marques, Joyce R.; Faustino, Mainara G.; Santos, Camila F.R.T.T.; Oliveira, Cintia C. de; Miranda, Gabrielle S.; Pires, Maria Aparecida F.; Cotrim, Marycel E.B., E-mail: tatianebscs@live.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Aquatic ecosystems are directly affected by contaminants, such as, toxic elements that do not remain in sediment in a insoluble form. Anthropogenic and natural actions influence sediment dynamics that could lead to a potential contaminant accumulation. Therefore, to evaluate possible environmental impacts is,in many cases, mandatory. Environmental impact assessment studies are a licensing tool that seeks to control degradation activities, taking into account the legal and regulatory provisions and technical standards applicable to the case. The present study aims to evaluate the sediment quality in the area of influence of the Brazilian Multipurpose Nuclear Reactor (RMB) to be installed in the contiguous area of the Experimental Center of Aramar of the Technological Center of the Navy in São Paulo (CTMSP), located in the city of Iperó - SP. The potentially toxic elements As, Cd and Hg were analyzed by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) and Cr, Cu, Ni and Zn by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Results were compared with Canadian Council of Ministers of the Environment (CCME) guideline values (TEL and PEL) and the maximum permitted values of Resolution 454/12. These toxic elements (As, Cd, Hg, Cr, Cu, Ni and Zn) were found below maximum allowed concentrations from national and international legislation. This study provides support for RMB post-completion evaluations, in order to prevent these elements to exceed tolerated levels, ensuring ecological, social and economic values. (author)

  5. Toxic elements in sediment from two water bodies near Brazilian Multipurpose Reactor: RMB installation area

    International Nuclear Information System (INIS)

    Silva, Tatiane B.S.C. da; Stellato, Thamiris B.; Monteiro, Lucilena R.; Marques, Joyce R.; Faustino, Mainara G.; Santos, Camila F.R.T.T.; Oliveira, Cintia C. de; Miranda, Gabrielle S.; Pires, Maria Aparecida F.; Cotrim, Marycel E.B.

    2017-01-01

    Aquatic ecosystems are directly affected by contaminants, such as, toxic elements that do not remain in sediment in a insoluble form. Anthropogenic and natural actions influence sediment dynamics that could lead to a potential contaminant accumulation. Therefore, to evaluate possible environmental impacts is,in many cases, mandatory. Environmental impact assessment studies are a licensing tool that seeks to control degradation activities, taking into account the legal and regulatory provisions and technical standards applicable to the case. The present study aims to evaluate the sediment quality in the area of influence of the Brazilian Multipurpose Nuclear Reactor (RMB) to be installed in the contiguous area of the Experimental Center of Aramar of the Technological Center of the Navy in São Paulo (CTMSP), located in the city of Iperó - SP. The potentially toxic elements As, Cd and Hg were analyzed by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) and Cr, Cu, Ni and Zn by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Results were compared with Canadian Council of Ministers of the Environment (CCME) guideline values (TEL and PEL) and the maximum permitted values of Resolution 454/12. These toxic elements (As, Cd, Hg, Cr, Cu, Ni and Zn) were found below maximum allowed concentrations from national and international legislation. This study provides support for RMB post-completion evaluations, in order to prevent these elements to exceed tolerated levels, ensuring ecological, social and economic values. (author)

  6. Study of cartridge rupture detection installations; Contribution a l'etude des installations de detection de ruptures de gaine

    Energy Technology Data Exchange (ETDEWEB)

    Graftieaux, J; Douet, P; Roguin, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Very numerous physical or technological parameters are involved in the preparation of projects for can rupture detection installations. These parameters are connected essentially with the design of the reactor, the detector used, the disposition of the pneumatic circuits, the type of fuel and the safety required. The present report analyses the main problems arising and their mutual compatibilities; it defines a certain number of ideas which had up till now been accepted implicitly in the design. (authors) [French] De tres nombreux parametres physiques ou technologiques interviennent dans l'etablissement du projet d'une installation de detection de ruptures de gaines. Ces parametres decoulent essentiellement de la conception de la pile, du detecteur utilise, de l'organisation des circuits pneumatiques, du type du combustible et de la securite souhaitee. Le present document analyse les principaux problemes qui se posent ainsi que leurs compatibilites reciproques et precise un certain nombre de notions jusqu'alors admises implicitement lors de l'etablissement des projets. (auteurs)

  7. Heating equipment installation system

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Pomaibo, P.P.

    1991-01-01

    Disclosed is a method for installing a heater unit assembly in a reactor pressure vessel for performance of an annealing treatment on the vessel, the vessel having a vertical axis, being open at the top, being provided at the top with a flange having a horizontal surface, and being provided internally, at a location below the flange, with orientation elements which are asymmetrical with respect to the vertical axis, by the steps of: providing an orientation fixture having an upwardly extending guide member and orientation elements and installing the orientation fixture in the vessel so that the orientation elements of the orientation fixture mate with the orientation elements of the pressure vessel in order to establish a defined position of the orientation fixture in the pressure vessel, and so that the guide member projects above the pressure vessel flange; placing a seal ring in a defined position on the pressure vessel flange with the aid of the guide member; mounting at least one vertical, upwardly extending guide stud upon the seal ring; withdrawing the orientation fixture from the pressure vessel; and moving the heater unit assembly vertically downwardly into the pressure vessel while guiding the heater unit assembly along a path with the aid of the guide stud. 5 figures

  8. Decommissioning of the BR3 pressurized-water reactor

    International Nuclear Information System (INIS)

    Massaut, V.

    1996-01-01

    The dismantling and the decommissioning of nuclear installations at the end of their life-cycle is a new challenge to the nuclear industry. Different techniques and procedures for the dismantling of a nuclear power plant on an existing installation, the BR-3 pressurized-water reactor, are described. The scientific programme, objectives, achievements in this research area at the Belgian Nuclear Research Centre SCK-CEN for 1995 are summarized

  9. Safety management at nuclear installations with research reactors. A comparison of five European installations

    International Nuclear Information System (INIS)

    Troen, H.; Lauridsen, B.

    1997-11-01

    Five European institutions with nuclear research reactors were visited to compare safety management among institutions similar to Risoe. Risoe is a National Laboratory and the main activities are research and development. In 1996 it was decided to look into safety management at Risoe again; the last revision was in 1972. The purpose was to make it more efficient and to emphasise, that the responsibility lies in the operating organisation. Information such as nuclear facilities at the institutions, the safety management organisation, emergency preparedness, and lists of radiation doses to the employees from the years 1995 and 1996 is given in the report. Also international requirements and recommendations are given in short. Furthermore the report contains some reflections on the development in safety management organisations in resent years and the conclusions drawn from the information gathered

  10. Which life expectancy for EDF reactors?

    International Nuclear Information System (INIS)

    Carlier, P.; Fluchere, J.; Giraud, B.; Poizat, F.

    2008-01-01

    After having recalled that the French nuclear reactors have been designed for a 40-year long life with a 30-year depreciation, the authors notice that foreign reactors which are identical or older get a 60 year operation authorization. The authors analyse the age of the nuclear reactors which are currently operating in the world, in terms of age, of country. They also discuss the license renewal process in the USA. In the next part they analyse the conditions of a life extension to 60 years. These conditions concern material monitoring, maintenance strategy for the replacement of components, the condition of installations, personnel management and behaviour. Appendices contain a table of operating reactors which are still being operated and more than 30 year old, the status of license renewal applications to the US NRC

  11. Determination of polycyclic aromatic hydrocarbons (PAHs) in sediment samples of Brazilian Multipurpose Reactor (RMB) installation area

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Juliana C.; Martins, Elâine A.J.; Cotrim, Marycel E.B.; Pires, Maria A.F., E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    RMB will be a nuclear reactor for research and production of radioisotopes. Its applications extend to agriculture, industry and the environment. With the changes that will occur in the study area by its construction, the flow of vehicles will increase. It is known that one of the largest anthropogenic sources of PAHs is from the burning of fossil fuels and biomass. The aim of this research was to identify and quantify 14 of the 16 majorities PAHs in the sediment samples at RMB installations area in a period before the enterprise construction, June 2017, using the methodology developed and validated by Brito, 2009. It was observed individual concentrations from 0.05 to 1.11 μg g{sup -1} in this first evaluation indicating that, although were found some PAHs concentrations above the established values by CONAMA and CETESB, this area still remains preserved. Pyrene was the compound that had the highest concentrations at different collecting points (1.11±0.03 and 1.09±0.02 μg g{sup -1}). Although were observed some PAHs concentrations above the established values by CONAMA and CETESB, the area is preserved. The study will provide previous information on PAHs concentrations in the area of the enterprise, providing information for the environmental impact study after the construction of the enterprise. (author)

  12. Determination of polycyclic aromatic hydrocarbons (PAHs) in sediment samples of Brazilian Multipurpose Reactor (RMB) installation area

    International Nuclear Information System (INIS)

    Silva, Juliana C.; Martins, Elâine A.J.; Cotrim, Marycel E.B.; Pires, Maria A.F.

    2017-01-01

    RMB will be a nuclear reactor for research and production of radioisotopes. Its applications extend to agriculture, industry and the environment. With the changes that will occur in the study area by its construction, the flow of vehicles will increase. It is known that one of the largest anthropogenic sources of PAHs is from the burning of fossil fuels and biomass. The aim of this research was to identify and quantify 14 of the 16 majorities PAHs in the sediment samples at RMB installations area in a period before the enterprise construction, June 2017, using the methodology developed and validated by Brito, 2009. It was observed individual concentrations from 0.05 to 1.11 μg g -1 in this first evaluation indicating that, although were found some PAHs concentrations above the established values by CONAMA and CETESB, this area still remains preserved. Pyrene was the compound that had the highest concentrations at different collecting points (1.11±0.03 and 1.09±0.02 μg g -1 ). Although were observed some PAHs concentrations above the established values by CONAMA and CETESB, the area is preserved. The study will provide previous information on PAHs concentrations in the area of the enterprise, providing information for the environmental impact study after the construction of the enterprise. (author)

  13. Welding of a neutron high-flux reactor made of aluminum

    International Nuclear Information System (INIS)

    Zinser, P.; Schupp, N.

    1996-01-01

    The HFR300 of the Institute ''Max von Laue - Paul Langevin (ILL)'' at Grenoble was found to be damaged by a number of serious defects which could not be made good by repair work, so that a new reactor had to be installed. Some of the welding tasks performed so far in this installation are explained. (orig./MM) [de

  14. BEACON TSM application system to the operation of PWR reactors

    International Nuclear Information System (INIS)

    Lozano, J. A.; Mildrum, C.; Serrano, J. F.

    2012-01-01

    BEACON-TSM is an advanced core monitoring system for PWR reactor cores, and also offers the possibility to perform a wide range of predictive calculation in support of reactor operation. BEACON-TSM is presently installed and licensed in the 5 Spanish PWR reactors of standard Westinghouse design. the purpose of this paper is to describe the features of this software system and to show the advantages obtainable by a nuclear power plant from its use. To illustrate the capabilities and benefits of BEACON-TSM two real case reactor operating situations are presented. (Author)

  15. The human factors and the safety of experimentation reactors

    International Nuclear Information System (INIS)

    Jeffroy, F.; Delaporte-Normier, M.L.

    2007-01-01

    Inside IRSN (Institute for Radiological protection and Nuclear Safety), the mission of the Human Factors Group is to assess the way operators of nuclear installations take into account the risks related to human activities. In the last few years, IRSN has been involved in the safety analysis of different installations where Cea develops research programs, in particular experimental reactors. The first part of this article presents the methodology used by IRSN to evaluate how operators take into account risks related to human activities. This methodology is made up of 4 steps: 1) the identification of the human activities that convey a risk for the installation nuclear safety (safety-sensitive activities), for instance in the case of the Masurca reactor, it has been shown that errors made during the manufacturing of fuel tubes can lead to a criticality accident; 2) listing all the dispositions or arrangements taken to make human safety-sensitive activities more reliable; 3) checking the efficiency of such dispositions or arrangements; and 4) assessing the ability of the operators to generate the adequate dispositions or arrangements. The second part highlights the necessity to develop inside these research installations an organisation that facilitates cooperation between experimenters and operators

  16. Decommissioning of the pool reactor Thetis in Ghent, Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Cortenbosch, Geert; Mommaert, Chantal [Bel V, Brussels (Belgium); Tierens, Hubert; Monsieurs, Myriam; Meierlaen, Isabelle; Strijckmans, Karel [Ghent Univ. (Belgium)

    2016-11-15

    The Thetis research pool reactor (with a nominal power of 150 kW) of the Ghent University was operational from 1967 till December 2003. The first phase of the decommissioning of the reactor, the removal of the spent fuel from the site, took place in 2010. The cumulative dose received was only 404 man . μSv. During the second phase, the transition period between the removal of the spent fuel in 2010 and the start of the decommissioning phase in March 2013, 3-monthly internal inspections and inspections by Bel V, were performed. The third and final decommissioning phase started on March 18, 2013. The total dose received between March 2013 and August 2013 was 1561 man . μSv. The declassification from a Class I installation to a Class II installation was possible by the end of 2015. The activated concrete in the reactor pool will remain under regulatory control until the activation levels are lower than the limits for free release.

  17. Experimental optimization of temperature distribution in the hot-gas duct through the installation of internals in the hot-gas plenum of a high-temperature reactor

    International Nuclear Information System (INIS)

    Henssen, J.; Mauersberger, R.

    1990-01-01

    The flow conditions in the hot-gas plenum and in the adjacent hot-gas ducts and hot-gas pipes for the high-temperature reactor project PNP-1000 (nuclear process heat project for 1000 MW thermal output) have been examined experimentally. The experiments were performed in a closed loop in which the flow model to be analyzed, representing a 60deg sector of the core bottom of the PNP-1000 with connecting hot-gas piping and diverting arrangements, was installed. The model scale was approx. 1:5.6. The temperature and flow velocity distribution in the hot-gas duct was registered by means of 14 dual hot-wire flowmeters. Through structural changes and/or the installation of internals into the hot-gas plenum of the core bottom offering little flow resistance coolant gas temperature differentials produced in the core could be reduced to such an extent that a degree of mixture amounting to over 80% was achieved at the entrance of the connected heat exchanger systems. Thereby the desired goal of an adequate degree of mixture of the hot gas involving an acceptable pressure loss was reached. (orig.)

  18. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won

    2014-01-01

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface

  19. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won [KAERI, Daejeon (Korea, Republic of)

    2014-08-15

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface.

  20. Experimental installations and instruments at the FRM-II

    International Nuclear Information System (INIS)

    Steichele, E.

    1999-01-01

    The new research reactor FRM-II of the Technical University Munich will be the strongest neutron source in Germany when going into operation in 2001/2002. From the beginnings on it was designed as a multipurpose research reactor based on local traditions, recent experience and new ideas. The reactor will be used for neutron scattering and material science, for fundamental physics with cold and ultracold neutrons, for isotope production, fission fragment acceleration, medical tumor treatment and for a manifold of technical and practical applications like computer tomography with fast and cold neutrons. According to the wide spectrum of applications the reactor needs a manifold of special installations and instruments, which will be introduced in the present paper. The reactor will be equipped with a liquid-D 2 cold source for high resolution neutron scattering and a solid-D 2 UCN source for fundamental physics, with a graphite hot source for high-Q neutron diffraction and a 'converter', which is a U-235 target in the thermal flux maximum to produce fast fission neutrons for medical applications and technical tomography. A series of irradiation plants is designed for production and study of radio-isotopes with half-lives as short as seconds and for phosphor-doping of semiconductor silicon crystals with diameters up to 8 inch. The reactor will be equipped with ten horizontal, one vertical and two inclined beam-tubes, one of the latter ones will take up a most intense, newly developed positron source for solid state physics. Three horizontal beam tubes will look onto the cold source, one of which will take up six neutron guides going into a neutron guide hall 50 x 25 m 2 . Most of the neutron guides will be coated with super-mirror which allows to build effective beam switches for many end-position experiments. The first generation of about 20 instruments and experimental installations as recommended by the instruments committee will be financed by the Federal and

  1. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    International Nuclear Information System (INIS)

    Roudier, S.; Badel, D.; Beraha, R.; Champ, M.; Tricot, N.; Tran Dai, P.

    1994-01-01

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: 1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; 2) guidelines for nuclear design and manufacturing requirements related to safety and 3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs

  2. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    Energy Technology Data Exchange (ETDEWEB)

    Roudier, S [Direction de la Surete des Installations Nucleaires, Fontenay-aux-Roses (France); Badel, D; Beraha, R [Direction Regionale de l` Industrie, de la Recherche et de l` Environnement Rhone-Alpes, Lyon (France); Champ, M; Tricot, N; Tran Dai, P [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1994-12-31

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: (1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; (2) guidelines for nuclear design and manufacturing requirements related to safety and (3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs.

  3. Mobile means for the monitoring of atmospheric contamination in a reactor building

    International Nuclear Information System (INIS)

    Marques, S.; Lestang, M.

    2009-01-01

    After having evoked the context and challenges of contamination monitoring when exploiting nuclear reactors, the authors discuss the representativeness of the atmospheric contamination measurement as it depends on the different physicochemical forms of radionuclides present in the circuits. They indicate the different gaseous or aerosol radioactive elements which are monitored within EDF installations. They discuss the incorporation of monitoring means at the installation design level, briefly present the use of beacons inside and outside the reactor building. They describe how monitoring is organized on the basis of alert threshold adjustments: an investigation threshold and an evacuation threshold. They discuss the beacon (or sensor) selection and indicate recommendations for their implementation for optimization purposes. They indicate where these beacons are installed and evoke the experimentation of networked mobile beacons with data remote transmission

  4. Continuous backfitting measures for the FRG-1 and FRG-2 research reactors

    International Nuclear Information System (INIS)

    Blom, K.H.; Falck, K.; Krull, W.

    1990-01-01

    The GKSS-Research Centre Geesthacht GmbH has been operating the research reactors FRG-1 and FRG-2 with power levels of 5 MW and 15 MW for 31 and 26 years respectively. Safe operation at full power levels over so many years with an average utilization between 180 d to 250 d per year is possible only with great efforts in modernization and upgrading of the research reactors. Emphasis has been placed on backfitting since around 1975. At that time within the Federal Republic of Germany many new guidelines, rules, ordinances, and standards in the field of (power) reactor safety were published. Much work has been done on the modernization of the FRG-1 and FRG-2 research reactors therefore within the last ten years. Work done within the last two years and presently underway includes: measures against water leakage through the concrete and along the beam tubes; repair of both cooling towers; modernization of the ventilation system; measures for fire protection; activities in water chemistry and water quality; installation of a double tubing for parts of the primary piping of the FRG-1; replacement of instrumentation, process control systems (operation and monitoring system) and alarm system; renewal of the emergency power supply; installation of internal lightning protection; installation of a cold neutron source; enrichment reduction for FRG-1. These efforts will continue to allow safe operation of our research reactors over their whole operational life

  5. Operational safety and reactor life improvements of Kyoto University Reactor

    International Nuclear Information System (INIS)

    Utsuro, M.; Fujita, Y.; Nishihara, H.

    1990-01-01

    Recent important experience in improving the operational safety and life of a reactor are described. The Kyoto University Reactor (KUR) is a 25-year-old 5 MW light water reactor provided with two thermal columns of graphite and heavy water as well as other kinds of experimental facilities. In the graphite thermal column, noticeable amounts of neutron irradiation effects had accumulated in the graphite blocks near the core. Before the possible release of the stored energy, all the graphite blocks in the column were successfully replaced with new blocks using the opportunity provided by the installation of a liquid deuterium cold neutron source in the column. At the same time, special seal mechanisms were provided for essential improvements to the problem of radioactive argon production in the column. In the heavy-water thermal column we have accomplished the successful repair of a slow leak of heavy water through a thin instrumentation tube failure. The repair work included the removal and reconstructions of the lead and graphite shielding layers and welding of the instrumentation tube under radiation fields. Several mechanical components in the reactor cooling system were also exchanged for new components with improved designs and materials. On-line data logging of almost all instrumentation signals is continuously performed with a high speed data analysis system to diagnose operational conditions of the reactor. Furthermore, through detailed investigations on critical components, operational safety during further extended reactor life will be supported by well scheduled maintenance programs

  6. Dismantling the nuclear research reactor Thetis

    Energy Technology Data Exchange (ETDEWEB)

    Michiels, P. [Belgoprocess, 2480 Dessel (Belgium)

    2013-07-01

    The research reactor Thetis, in service since 1967 and stopped in 2003, is part of the laboratories of the institution of nuclear science of the University of Ghent. The reactor, of the pool-type, was used as a neutron-source for the production of radio-isotopes and for activation analyses. The reactor is situated in a water pool with inner diameter of 3 m. and a depth of 7.5 m. The reactor core is situated 5.3 m under water level. Besides the reactor, the pool contains pneumatic loops, handling tools, graphite blocks for neutron moderation and other experimental equipment. The building houses storage rooms for fissile material and sources, a pneumatic circuit for transportation of samples, primary and secondary cooling circuits, water cleaning resin circuits, a ventilation system and other necessary devices. Because of the experimental character of the reactor, laboratories with glove boxes and other tools were needed and are included in the dismantling program. The building is in 3 levels with a crawl-space. The ground-floor contains the ventilation installation, the purification circuits with tanks, cooling circuits and pneumatic transport system. On the first floor, around the reactor hall, the control-room, visiting area, end-station for pneumatic transport, waste-storage room, fuel storage room and the labs are located. The second floor contains a few laboratories and end stations of the two high speed transfer tubes. The lowest level of the pool is situated under ground level. The reactor has been operated at a power of 150 kW and had a max operating power of 250 kW. Belgoprocess has been selected to decommission the reactor, the labs, storage halls and associated circuits to free release the building for conventional reuse and for the removal of all its internals as legal defined. Besides the dose-rate risk and contamination risk, there is also an asbestos risk of contamination. During construction of the installation, asbestos-containing materials were

  7. Socio-economic impact of nuclear reactor decommissioning at Vandellos I NPP

    International Nuclear Information System (INIS)

    Liliana Yetta Pandi

    2013-01-01

    Currently nuclear reactors in Indonesia has been outstanding for more than 30 years, the possibility of nuclear reactors will be decommissioned. Closure of the operation or decommissioning of nuclear reactors will have socio-economic impacts. The socioeconomic impacts occur to workers, local communities and wider society. In this paper we report on socio-economic impacts of nuclear reactors decommissioning and lesson learned that can be drawn from the socio-economic impacts decommissioning Vandellos I nuclear power plant in Spain. Socio-economic impact due to decommissioning of nuclear reactor occurs at installation worker, local community and wider community. (author)

  8. Nuclear electronic equipment for control and monitoring panel. Procedure guide for on-site tests of nuclear reactor instruments

    International Nuclear Information System (INIS)

    1975-10-01

    By the use of a procedure for on-site testing of nuclear reactor instruments it should be possible to judge their ability to guarantee the reactor safety and availability at the moment of divergence or during operation. Such a procedure must therefore be created as a work implement for the quick and reliable installation of electronic devices necessary for nuclear reactor control and supervision. A standard document is proposed for this purpose, allowing a ''test programme'' to be set up before the equipment is installed on the site [fr

  9. Procedures for permission of installation of nuclear power stations

    International Nuclear Information System (INIS)

    Narita, Yoriaki

    1980-01-01

    The locations of atomic power stations are first selected by electric power enterprises in consultation with the Ministry of International Trade and Industry or under the guidance of authorities concerned. The surveys of the climate, topography, water and plants in the planned sites and the influences of nuclear power generation to the surrounding areas are made by the enterprisers under the administrative guidance of the MITI. Secondly, the basic project shall be submitted to and decided by the Power Resource Development Council headed by the Prime Minister (Article 10, the Power Resource Development Law). The Council shall, if necessary, call for the attendance of the governors of prefectures concerned and hear their opinions (Article 11, the Law). As the third and most complicated phase, various procedures include; (a) permission of the changes of electrical facilities under the Electricity Enterprises Act; (b) authorization of the installation of reactors under the Nuclear Reactor Regulation Law; (c) permission or authorization under other regulations including the Agricultural Land Act, etc.; (d) additional procedures related to the indemnification to fishery and so forth. Finally the reactors are to be operated after receiving the certificates of the Minister of ITI on the inspections of construction works, nuclear fuel materials used for the reactors and welding processes of reactor containment vessels, boilers, turbines, etc. (Okada, K.)

  10. Review of fast reactor activities at OECD (NEA)

    International Nuclear Information System (INIS)

    Stephens, M.

    1981-01-01

    The Committee on the Safety of Nuclear Installations initiated several reports in 1979. Status reports are published on: the role of fission gas release in case of fuel element failure; reactivity monitoring in a LMFBR at shutdown; increasing the reliability of fast reactor shutdown systems. A report is planned on the interactions between sodium and concrete. LMFBR safety issue that were studied are concerned with containment R and D; natural circulation cooling; and fuel failure modelling. Nuclear Development Division was concerned with Gas cooled fast reactors technology. Nuclear Science Division dealt with fast reactor physics and nuclear data for fast reactors. NEA Data Bank provides technical support and acts as a computer code library and nuclear data centre

  11. Experience in operation of heavy water reactors

    International Nuclear Information System (INIS)

    Rotaru, Ion; Bilegan, Iosif; Ghitescu, Petre

    1999-01-01

    The paper presents the main topics of the CANDU owners group (COG) meeting held in Mangalia, Romania on 7-10 September 1998. These meetings are part of the IAEA program for exchange of information related mainly to CANDU reactor operation safety. The first meeting for PHWR reactors took place in Vienna in 1989, followed by those in Argentina (1991), India (1994) and Korea (1996). The topics discussed at the meeting in Romania were: operation experience and recent major events, performances of CANDU reactors and safe operation, nuclear safety and operation procedures of PHWR, programs and strategies of lifetime management of installations and components of NPPs, developments and updates

  12. Pyrometric fuel particle measurements in pressurised reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    A fiberoptic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurized reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverized coal particles at the pressurized entrained flow reactor in Jyvaeskylae was developed and several series of measurements were made. In Orleans a fiberoptic pyrometric device was installed to a pressurised thermogravimetric reactor and the two-colour temperatures of fuel samples were measured. Some results of these measurements are presented. The project belongs to EU`s Joule 2 extension research programme. (author)

  13. Reactor alarm system development and application issues

    Energy Technology Data Exchange (ETDEWEB)

    Drexler, J E; Oicese, G O [INVAP S.E. (Argentina)

    1997-09-01

    The new hardware and software technologies, and the need in research reactors for assistance systems in operation and maintenance, have given an appropriate background to develop a computer based system named ``Reactor Alarm System`` (RAS). RAS is a software package, user oriented, with emphasis on production, experiments and maintenance goals. It is designed to run on distributed systems conformed with microcomputers under QNX operating system. RAS main features are: (a) Alarm Panel Display; (b) Alarm Page; (c) Alarm Masking and Inhibition; (d) Alarms Color and Attributes; (e) Condition Classification; and (f) Arrangement Presentation. RAS design allows it to be installed as a part of a computer based Supervision and Control System in new installations or retrofit existing reactor instrumentation systems. The analysis of human factors during development stage and successive user feedback from different applications, brought out several RAS improvements: (a) Multiple-copy alarm summaries; (b) Improved alarm handling; (c) Extended dictionary; and (d) Enhanced hardware availability. It has proved successful in providing new capabilities for operators, and also has shown the continuous increase of user-demands, reflecting the expectations placed today on computer-based systems. (author). 6 figs, 1 tabs.

  14. Reactor alarm system development and application issues

    International Nuclear Information System (INIS)

    Drexler, J.E.; Oicese, G.O.

    1997-01-01

    The new hardware and software technologies, and the need in research reactors for assistance systems in operation and maintenance, have given an appropriate background to develop a computer based system named ''Reactor Alarm System'' (RAS). RAS is a software package, user oriented, with emphasis on production, experiments and maintenance goals. It is designed to run on distributed systems conformed with microcomputers under QNX operating system. RAS main features are: a) Alarm Panel Display; b) Alarm Page; c) Alarm Masking and Inhibition; d) Alarms Color and Attributes; e) Condition Classification; and f) Arrangement Presentation. RAS design allows it to be installed as a part of a computer based Supervision and Control System in new installations or retrofit existing reactor instrumentation systems. The analysis of human factors during development stage and successive user feedback from different applications, brought out several RAS improvements: a) Multiple-copy alarm summaries; b) Improved alarm handling; c) Extended dictionary; and d) Enhanced hardware availability. It has proved successful in providing new capabilities for operators, and also has shown the continuous increase of user-demands, reflecting the expectations placed today on computer-based systems. (author). 6 figs, 1 tabs

  15. Modeling of the installation with the code MELCOR 1.8.4

    International Nuclear Information System (INIS)

    Pomier Baez, L.E.; Nunez Mc Leod, J.E.

    1998-01-01

    Full text: The calculation code MELCOR 1.8.4 is an integrated program that allow to simulate the development of accidents in nuclear plants with refrigerated reactors with light water. This code can simulate the whole spectrum of phenomenons. This work carried out the validation of the packages of the code MELCOR dedicated to evaluate the behaviour under conditions of two-phase flow, through the comparison of the results of the simulation with the experimental data of the installation TPTF (Two-Phase Test Facility) (ROSA-IV) of the Institute JAERI (Japan Atomic Energy Research Institute) of Japan. The main objective of the experiments TPTF is obtain data on the thermohydraulic behaviour from light water reactors (PWR) during an accident with small loss of coolant (SBLOCA), and the capacity of MELCOR code was evaluated in the simulation of these kind of accidents. Diverse options of the code were studies, in order to analyzing the behaviour of the feigned phenomenon. The effect of the change in the nodalization of the nuclear installation was studies, as well as the management of diverse control functions. The results of the evaluation show a good concordance with the experimental data, especially in the prediction of the behaviour of the steam fraction in relation with the mass flow, the quality of the steam and the mixture level in the exit volume that represent two possibilities state in the vessel reactor during the accidental situation. (author) [es

  16. Safety evaluation report by the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission for U.S. Energy Research and Development Administration Light Water Breeder Reactor. Special project No. 561

    International Nuclear Information System (INIS)

    1976-07-01

    The Safety Evaluation Report is presented for the Light Water Breeder Reactor (LWBR). The LWBR core is to be installed in the Shippingport reactor at the Shippingport Atomic Power Station. The Safety Evaluation Report is the result of an NRC staff review of the LWBR Safety Analysis Report submitted by the Division of Naval Reactors, U. S. Energy Research and Development Administration. As a result of its review, the NRC staff has recommended that: (1) a diverse trip signal, such as containment high pressure, be included in a 2-out-of-3 logic for initiation of safety injection; (2) power be locked out from the pressurizer surge isolation valve during normal operation; and (3) a chlorine monitor be installed in the main control room

  17. Calculations and selection of a TRIGA core for the Nuclear Reactor IAN-R1

    International Nuclear Information System (INIS)

    Castiblanco, L.A.; Sarta, J.A.

    1997-01-01

    The Reactor Group used the code WIMS reduced to five groups of energy, together with the code CITATION, and evaluated four configurations for a core, according to the grid actually installed. The four configurations were taken from the two proposals presented to the Instituto de Ciencias Nucleares y Energias Alternativas by General Atomics Company. In this paper, the Authors selected the best configuration according to the performance of flux distribution and excess reactivity, for a TRIGA core to be installed in the Nuclear Reactor IAN-R1

  18. New neutron and gamma dosimetry equipment at the RB reactor; Nova merna neutronska i gama dozimetrijska oprema na reaktoru RB

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M; Stefanovic, D; Jevremovic, M; Petronijevic, M; Vranic, S; Ilic, I [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1992-07-15

    In the frame of bilateral cooperation between Germany and Yugoslavia, complete control, safety and dosimetry equipment of the shut-down SNEAK reactor was donated to Vinca Institute and transported to be installed at the RB reactor. This report contains detailed description of instrumentation components including detectors, electronic components and electronic circuits. Experimental data which verified correct functioning of the installed devices are part of this document. The objective of the RB reactor staff is to achieve new safety and dosimetry system in order to improve the reliability and availability of the RB reactor for future experiments.

  19. Seismic evaluation of nuclear installations; Avaliacao sismica de instalacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Mattar Neto, Miguel [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1997-10-01

    Some considerations regarding extreme external events, natural or man-induce, such as earthquakes, floods, air crashes, etc, shall be done for nuclear facilities to minimizing the potential impact of the installation on the public and the environment. In this paper the main aspects of the seismic evaluation of nuclear facilities (except the nuclear power reactors) will be presented based on different codes and standards. (author). 7 refs., 2 tabs.

  20. Design and installation of a ferromagnetic wall in tokamak geometry

    International Nuclear Information System (INIS)

    Hughes, P. E.; Levesque, J. P.; Rivera, N.; Mauel, M. E.; Navratil, G. A.

    2015-01-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability

  1. Design and installation of a ferromagnetic wall in tokamak geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P. E., E-mail: peh2109@columbia.edu; Levesque, J. P.; Rivera, N.; Mauel, M. E.; Navratil, G. A. [Columbia University Plasma Physics Laboratory, Columbia University, 102 S.W. Mudd, 500 W. 120th St., New York, New York 10027 (United States)

    2015-10-15

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability.

  2. The differential radiological impact of plutonium recycle in the light-water reactor fuel cycle: effluent discharges during normal operation

    International Nuclear Information System (INIS)

    Bouville, A.; Guetat, P.; Jones, J.A.; Kelly, G.N.; Legrand, J.; White, I.F.

    1980-01-01

    The radiological impact of a light-water reactor fuel cycle utilizing enriched uranium fuel may be altered by the recycle of plutonium. Differences in impact may arise during various operations in the fuel cycle: those which arise from effluents discharged during normal operation of the various installations comprising the fuel cycle are evaluated in this study. The differential radiological impact on the population of the European Communities (EC) of effluents discharged during the recycling of 10 tonnes of fissile plutonium metal is evaluated. The contributions from each stage of the fuel cycle, i.e. fuel fabrication, reactor operation and fuel reprocessing and conversion, are identified. Separate consideration is given to airborne and liquid effluents and account is taken of a wide range of environmental conditions, representative of the EC, in estimating the radiological impact. The recycle of plutonium is estimated to result in a reduction in the radiological impact from effluents of about 30% of that when using enriched uranium fuel

  3. Artificial intelligence program in a computer application supporting reactor operations

    International Nuclear Information System (INIS)

    Stratton, R.C.; Town, G.G.

    1985-01-01

    Improving nuclear reactor power plant operability is an ever-present concern for the nuclear industry. The definition of plant operability involves a complex interaction of the ideas of reliability, safety, and efficiency. This paper presents observations concerning the issues involved and the benefits derived from the implementation of a computer application which combines traditional computer applications with artificial intelligence (AI) methodologies. A system, the Component Configuration Control System (CCCS), is being installed to support nuclear reactor operations at the Experimental Breeder Reactor II

  4. The cryogenic installations for irradiation in the reactors Melusine and Siloe; Les installations cryogeniques pour irradiations des reacteurs Melusine et Siloe

    Energy Technology Data Exchange (ETDEWEB)

    Bochirol, L; Le Calvez, J; Doulat, J; Verdier, J; Lacaze, A; Weil, L [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    The study of defects created in solids by irradiation is of considerable fundamental and practical interest. Low temperature irradiation allows defects to be obtained in their simplest 'primary' state, not being then annihilated or rearranged by thermal motion. In-pile irradiation at low temperature raises a number of technical problems connected to 1) the necessary refrigeration power which may be considerable, 2) chemical processes which may occur under irradiation, 3) the lack of space in a reactor. Furthermore the necessity that all the irradiation and subsequent measurements be done without reheating the samples demands continuous and reliable working of the irradiation device and its being designed so as to permit removal of the samples in the cold condition or their measurement and controlled annealing 'in situ'. The way in which these problems have been solved in Grenoble for irradiation devices at 78 deg. K, 28 deg. K and 4 deg. K in the swimming-pool reactors Melusine and Siloe is described. Some operation results are given about the liquid nitrogen rig, called mark A, which has worked for several years in Melusine. In particular certain observations about chemical reactions which may occur in impure liquid nitrogen under radiation are made. The liquid nitrogen rig, called mark B, which has just been installed in the Siloe reactor, is described with some detail. The essential features of this apparatus are that irradiation can be performed in higher fluxes with it than with the former one, and that its operation is made much easier by a design which allows the samples to be introduced and removed without any disconnection of the apparatus. A liquid hydrogen loop, which has worked for one year in the Melusine reactor, is then analysed. An entirely closed hydrogen refrigerating circuit provides the coldness to the irradiation enclosure, which contains neon. Owing to this solution, the samples may be recovered in the cold condition without hydrogen being

  5. The SPHINX reactor for engineering tests

    International Nuclear Information System (INIS)

    Adamov, E.O.; Artamkin, K.N.; Bovin, A.P.; Bulkin, Y.M.; Kartashev, E.F.; Korneev, A.A.; Stenbok, I.A.; Terekhov, A.S.; Khmel'Shehikov, V.V.; Cherkashov, Y.M.

    1990-01-01

    A research reactor known as SPHINX is under development in the USSR. The reactor will be used mainly to carry out tests on mock-up power reactor fuel assemblies under close-to-normal parameters in experimental loop channels installed in the core and reflector of the reactor, as well as to test samples of structural materials in ampoule and loop channels. The SPHINX reactor is a channel-type reactor with light-water coolant and moderator. Maximum achievable neutron flux density in the experimental channels (cell composition 50% Fe, 50% H 2 O) is 1.1 X 10 15 neutrons/cm 2 · s for fast neutrons (E > 0.1 MeV) and 1.7 X 10 15 for thermal neutrons at a reactor power of 200 MW. The design concepts used represent a further development of the technical features which have met with approval in the MR and MIR channel-type engineering test reactors currently in use in the USSR. The 'in-pond channel' construction makes the facility flexible and eases the carrying out of experimental work while keeping discharges of radioactivity into the environment to a low level. The reactor and all associated buildings and constructions conform to modern radiation safety and environmental protection requirements

  6. Fast reactors: R and D targets and outlook for their introduction

    International Nuclear Information System (INIS)

    Poplavsky, V.; Barre, B.; Aizawa, K.

    1997-01-01

    In this paper the current status of fast reactors development is briefly outlined, including experimental, demonstration, and commercial installations. Data on the experience gained in development and operation of NPPs with reactors of this type are presented. The issues are discussed in connection with possibilities of fast reactor development in the nuclear power structure for the near (up to 2010-2020) and distant future. In the final part of the paper, an analysis is given of possible ways for R and D development in the field of NPPs with fast neutron reactors. (author)

  7. Reactor modification, preparation and operation

    International Nuclear Information System (INIS)

    Weill, J.; Furet, J.; Baillet, J.; Donvez, G.; Duchene, J.; Gras, R.; Mercier, R.; Chenouard, J.; Leconte, J.

    1962-01-01

    In the course of preparations for the dosimetry experiment at the R-B reactor the control and safety equipment of the reactor was found to be inadequate for operation at a constant power level of several watts. After completing the study of control and safety issues by CEA, safety and control were defined for the purpose of the Joint Dosimetry Experiment. Preparations for the Dosimetry Experiment included: installation of equipment for control and safety of the reactor; supplying 6570 Kg of heavy water by UK, reinforcement of the reactor wall on the outside of the building; constructing the protection of the control room; start-up, measuring of the critical heavy water level, and check of control and safety rods worth. After the final check of safety rod mechanisms, eight runs were performed at a power of 5 Watt, and then a 1 k Watt run was carried out and the power stabilized at this power for 30 min by automatic control system

  8. Reactor modification, preparation and operation

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Furet, J; Baillet, J; Donvez, G; Duchene, J; Gras, R; Mercier, R [Electronics Dept., Independent Section of Reactor Electronics, Saclay (France); Chenouard, J; Leconte, J [Dept. of Physical Chemistry, Stable Isotopes Section, Saclay (France)

    1962-03-01

    In the course of preparations for the dosimetry experiment at the R-B reactor the control and safety equipment of the reactor was found to be inadequate for operation at a constant power level of several watts. After completing the study of control and safety issues by CEA, safety and control were defined for the purpose of the Joint Dosimetry Experiment. Preparations for the Dosimetry Experiment included: installation of equipment for control and safety of the reactor; supplying 6570 Kg of heavy water by UK, reinforcement of the reactor wall on the outside of the building; constructing the protection of the control room; start-up, measuring of the critical heavy water level, and check of control and safety rods worth. After the final check of safety rod mechanisms, eight runs were performed at a power of 5 Watt, and then a 1 k Watt run was carried out and the power stabilized at this power for 30 min by automatic control system.

  9. Reactor modification, preparation and operation

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Furet, J; Baillet, J; Donvez, G; Duchene, J; Gras, R; Mercier, R [Electronics Dept., Independent Section of Reactor Electronics, Saclay (France); Chenouard, J; Leconte, J [Dept. of Physical Chemistry, Stable Isotopes Section, Saclay (France)

    1962-03-15

    In the course of preparations for the dosimetry experiment at the R-B reactor the control and safety equipment of the reactor was found to be inadequate for operation at a constant power level of several watts. After completing the study of control and safety issues by CEA, safety and control were defined for the purpose of the Joint Dosimetry Experiment. Preparations for the Dosimetry Experiment included: installation of equipment for control and safety of the reactor; supplying 6570 Kg of heavy water by UK, reinforcement of the reactor wall on the outside of the building; constructing the protection of the control room; start-up, measuring of the critical heavy water level, and check of control and safety rods worth. After the final check of safety rod mechanisms, eight runs were performed at a power of 5 Watt, and then a 1 k Watt run was carried out and the power stabilized at this power for 30 min by automatic control system.

  10. The strategy of experimental power reactor licensing in Indonesia

    International Nuclear Information System (INIS)

    Moch Djoko Birmano

    2015-01-01

    Currently, BATAN has being planned to develop Experimental Power Reactor (EPR), that is the research nuclear reactor that can generate power (electricity or heat). The EPR is planned will be built in the National Center for Research of Science and Technology (Puspiptek) area at Serpong, South Tangerang, Banten Province, with the choice of reactor types is HTGR with the power size of 10 MWth. As stated in the Act No. 10 year 1997 on Nuclear Power, that every construction and operation of nuclear reactors and other nuclear installations and decommissioning of nuclear reactors required to have a permit. Furthermore, the its implementation arrangements is regulated in Government Regulation (GR) No. 2 year 2014 on Licensing of Nuclear Installations and Nuclear Material Utilization, which contains the requirements and procedures for the licensing process since site, construction, commissioning, operation, and decommissioning, it means licensing is implemented during the activity of construction, operation and decommissioning of NPPs.While, for the more detailed licensing arrangements available in the guidelines of BAPETEN Chairman Regulation (BCR). This study was conducted to understand the legal and institutional aspects, types and stages, and the licensing process of RDE, and identify licensing strategy so that timely as planned. Methodologies used include the literature study, consultation with experts in BAPETEN, discussions in the national seminar including FGD. (author)

  11. Technology of nuclear reactors

    International Nuclear Information System (INIS)

    Ravelet, F.

    2016-01-01

    This academic report for graduation in engineering first presents operation principles of a nuclear reactor core. It presents core components, atomic nuclei, the notions of transmutation and radioactivity, quantities used to characterize ionizing radiations, the nuclear fission, statistical aspects of fission and differences between fast and slow neutrons, a comparison between various heat transfer fluids, the uranium enrichment process, and different types of reactor (boiling water, natural uranium and heavy water, pressurized water, and fourth generation). Then, after having recalled the French installed power, the author proposes an analysis of a typical 900 MWe nuclear power plant: primary circuit, reactor, fuel, spent fuel, pressurizer and primary pump, secondary circuit, aspects related to control-command, regulation, safety and exploitation. The last part proposes a modelling of the thermodynamic cycle of a pressurized water plant by using an equivalent Carnot cycle, a Rankine cycle, and a two-phase expansion cycle with drying-overheating

  12. Decommissioning and re-utilization of the Musashi Reactor

    International Nuclear Information System (INIS)

    Tomio Tanzawa; Nobukazu Iijima; Norikazu Horiuchi; Tadashi Yoshida; Tetsuo Matsumoto; Naoto Hagura; Ryouhei Kamiya

    2008-01-01

    The Musashi Institute of Technology Research Reactor (the Musashi Reactor) is a TRIGA-? with maximum thermal power of 100 kW. The decommissioning was decided in May, 2003. The reactor facility is now under decommissioning. The phased decommissioning was selected. Phase 1 consists of permanent shutdown of the reactor and stopping the operational functions, and transportation of the spent nuclear fuels. After completion of the transportation, the reactor facility is characterized as the storage of low level radioactive materials. This is phase 2. Activities of phase 1 were completed and the facility is now under phase 2. Activities of phase 3 consist of dismantling the reactor tank and the shielding, and delivering the radioactive waste to a waste disposal facility. The phase 3 will be started on condition that the undertaking of the waste disposal for research reactors will be established. On the other hand, re-utilization of the facility has being studied, and 'realistic' reactor simulator was turned out by utilizing the reactor installations such as control rod drive and operation console. (authors)

  13. Reactor-specific spent fuel discharge projections, 1987-2020

    International Nuclear Information System (INIS)

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs

  14. Operation experience with the TRIGA Mark II reactor Vienna in the years 1972 through 1974

    International Nuclear Information System (INIS)

    Boeck, H.

    1974-01-01

    Since the last TRIGA Users Conference in Pavia 1972 the TRIGA reactor Vienna was in operation without any larger undesired shut-down. The integral thermal power production by Sept. 1, 1974 was 3420 MWh. The principal work carried out during the last two years on the reactor system was the installation of a new heat exchanger and primary pump both designed for 1 MW steady state operation. Permission was also obtained from the local authority to withdraw up to 90 m 3 /h secondary cooling water from the well. Some troubles were observed with the pulse rod. After nearly 12 years of operation the connection between the piston rod and control rod broke off just below the water surface. Therefore the piston was shot out without withdrawing the pulse rod itself. After locating the trouble the damage was repaired within one day. The SST fuel elements type 110 were received by the end of 1972 for the purpose of power upgrading. All other fuel elements except one are still located in the reactor core and shifted periodically in order to obtain an optimal burnup. A new alarm system was ordered from Hartmann and Braun and is under installation at the moment. In order to facilitate cooperation with the reactor operation personnel and the experimenters in the reactor hall an accurate power indicator has been installed in the reactor hall which allows all experimenters to read the reactor power as accurately as in the control room itself. (U.S.)

  15. Core monitoring at the WNP-2 reactor

    International Nuclear Information System (INIS)

    Skeen, D.R.; Torres, R.H.; Burke, W.J.; Jenkins, I.; Jones, S.W.

    1992-01-01

    The WNP-2 reactor is a 3,323-MW(thermal) boiling water reactor (BWR) that is operated by the Washington Public Power Supply System. The WNP-2 reactor began commercial operation in 1984 and is currently in its eighth cycle. The core monitoring system used for the first cycle of operation was supplied by the reactor vendor. Cycles 2 through 6 were monitored with the POWERPLEX Core Monitoring Software System (CMSS) using the XTGBWR simulation code. In 1991, the supply system upgraded the core monitoring system by installing the POWERPLEX 2 CMSS prior to the seventh cycle of operation for WNP-2. The POWERPLEX 2 CMSS was developed by Siemens Power Corporation (SPC) and is based on SPC's advanced state-of-the-art reactor simulator code MICROBURN-B. The improvements in the POWERPLEX 2 system are possible as a result of advances in minicomputer hardware

  16. Developments in the regulation of research reactors

    International Nuclear Information System (INIS)

    Loy, J.

    2003-01-01

    The International Atomic Energy Agency (IAEA) has data on over 670 research reactors in the world. Fewer than half of them are operational and a significant number are in a shutdown but not decommissioned state. The International Nuclear Safety Advisory Group (INSAG) has expressed concerns about the safety of many research reactors and this has resulted in a process to draw up an international Code of Conduct on the Safety of Research Reactors. The IAEA is also reviewing its safety standards applying to research reactors. On the home front, regulation of the construction of the Replacement Research Reactor continues. During the construction phase, regulation has centred around the consideration of Requests for Approval (RFA) for the manufacture and installation of systems, structures and components important for safety. Quality control of construction of systems, structures and components is the central issue. The process for regulation of commissioning is under consideration

  17. Delivery and installation of PC/FRAM at the PNC Tokai Works

    International Nuclear Information System (INIS)

    Sampson, T.E.; Kelley, T.A.; Kroncke, K.E.; Menlove, H.O.; Baca, J.; Asano, Takashi; Terakado, Shigeru; Goto, Yasushi; Kogawa, Noboru

    1997-11-01

    The authors report on the assembly, testing, delivery, installation, and initial testing of three PC/FRAM plutonium isotopic analysis systems at the Power Reactor and Nuclear Fuel Development Corporation's Tokai Works. These systems are intended to measure the isotopic composition and 235 U/plutonium of mixed oxide (MOX) waste in 200-L waste drums. These systems provide capability for performing measurements on lead-lined drums

  18. Maintenance of reactor recirculation pumps [Paper No.: II-1

    International Nuclear Information System (INIS)

    Ansari, M.A.; Bhat, K.P.

    1981-01-01

    At Tarapur Atomic Power Station (TAPS), two reactor recirculation pumps are provided, one each for the two reactor units. The performance of pumps has been uniformly good; however, leakage through the cartridge type, two stage, mechanical seals which are installed on these pumps was encountered on few occasions. The paper describes the leakage problems, identification of certain design deficiencies and rectification carried out at TAPS for overcoming these problems. (author)

  19. Present status of research reactor and future prospects

    International Nuclear Information System (INIS)

    Nakajima, Ken

    2013-01-01

    Research reactors have been playing an important role in the research and development of the various fields, such as physics, chemistry, biology, engineering, agriculture, medicine, etc. as well as human resource development. However, the most of them are older than 40 years, and the ageing management is an important issue. In Japan, only two research reactors are operational after the Great East Japan Earthquake in 2011. JAEA's reactors suffered from the quake and they are under inspections. Kyoto University Research Reactor, one of the operational reactors, has been widely used for research and human resource development, and the additional safety measures against the station blackout were installed. Besides the affect of the quake, the disposal or treatment of spent fuel becomes an inevitable problem for research reactors. The way of spent fuel disposal or treatment should be determined with the nation-wide and/or international coalition. (author)

  20. Establishment of the nuclear regulatory framework for the process of decommissioning of nuclear installations in Mexico

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.

    2015-09-01

    Today has not managed any process of decommissioning of nuclear installations in the country; however because of the importance of the subject and the actions to be taken to long term, the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) in Mexico, accordance with its objectives is developing a National Nuclear Regulatory Framework and defined requirements to ensure the implementation of appropriate safety standards when such activities are performed. In this regard, the national nuclear regulatory framework for nuclear installations and the particular case of nuclear power reactors is presented, as well as a proposed licensing process for the nuclear power plant of Laguna Verde based on international regulations and origin country regulations of the existing reactors in nuclear facilities in accordance with the license conditions of operation to allow to define and incorporate such regulation. (Author)

  1. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield

    International Nuclear Information System (INIS)

    Merz, Stefan; Djuricic, Mile; Villa, Mario; Boeck, Helmuth; Steinhauser, Georg

    2011-01-01

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10 9 cm -2 s -1 at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. - Highlights: → Neutron activation is an important process for the waste management of nuclear facilities. → Biological shield of the TRIGA reactor Vienna has been topic of investigation. → Flux values allow a categorization of the concrete concerning radiation protection legislation. → Reactor installations are of great importance as neutron sources into the biological shield. → Every installation shows distinguishable flux profiles.

  2. Operating experience of TRIGA MK-II Research Reactor in Bangladesh

    International Nuclear Information System (INIS)

    Mannan, M.A.; Ahmed, K.

    1992-01-01

    A 3 MW TRIGA MK II Research Reactor was installed in Bangladesh in 1986. The reactor is being utilized for research, training and for production of radioisotopes. Recently two faults were detected, one in the Emergency Core Cooling System and the other in the Primary Coolant Loop, which hindered the operation of the reactor partially. The faults were investigated by a team of local experts. Results of analyses of possible initiating events of the faults and the remedial steps are briefly discussed in the paper. (author)

  3. Reliability database of IEA-R1 Brazilian research reactor: Applications to the improvement of installation safety

    International Nuclear Information System (INIS)

    Oliveira, P.S.P.; Tondin, J.B.M.; Martins, M.O.; Yovanovich, M.; Ricci Filho, W.

    2010-01-01

    In this paper the main features of the reliability database being developed at Ipen-Cnen/SP for IEA-R1 reactor are briefly described. Besides that, the process for collection and updating of data regarding operation, failure and maintenance of IEA-R1 reactor components is presented. These activities have been conducted by the reactor personnel under the supervision of specialists in Probabilistic Safety Analysis (PSA). The compilation of data and subsequent calculation are based on the procedures defined during an IAEA Coordinated Research Project which Brazil took part in the period from 2001 to 2004. In addition to component reliability data, the database stores data on accident initiating events and human errors. Furthermore, this work discusses the experience acquired through the development of the reliability database covering aspects like improvements in the reactor records as well as the application of the results to the optimization of operation and maintenance procedures and to the PSA carried out for IEA-R1 reactor. (author)

  4. Post-Fukushima additional safety assessments: behaviour of French nuclear installations in case of extreme situations and relevance of improvement propositions

    International Nuclear Information System (INIS)

    2011-01-01

    After the Fukushima accident, additional safety assessments (ECS, evaluation complementaire de securite) have been commissioned to assess the resistance of French nuclear installations to extreme scenarios (earthquake, loss of electricity supply, and loss of cooling sources). This report is a synthesis of a more important one. It briefly describes the international context and notices that, in foreign countries, only power reactors are submitted to such additional safety assessments. It describes the approach adopted by the IRSN by considering that severe accidental situation are possible and may have characteristics exceeding the current referential. This approach enables the identification of safety functions which must maintained in these situations, and of some limitations of the current safety referential. The report then discusses the current status of installations, notices that actions are to be performed. It comments the results obtained in terms of installation robustness with respect to risks of earthquake or flooding, or those associated with other external hazards. It comments the analysis performed in case of total loss of cooling sources or of energy supplies in power reactors, in the EPR, and in some other nuclear installations (ILL, CEA's installations, AREVA's laboratories and factories). It finally comments the ability of operators in managing a crisis situation under these conditions, and briefly evokes the subcontracting issue

  5. Reactor-specific spent fuel discharge projections: 1985 to 2020

    International Nuclear Information System (INIS)

    Heeb, C.M.; Libby, R.A.; Walling, R.C.; Purcell, W.L.

    1986-09-01

    The creation of four spent-fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No New Orders with Extended Burnup, (2) No New Orders with Constant Burnup, (3) Middle Case with Extended Burnup, and (4) Middle Case with Constant Burnup. Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel

  6. Related activities on management of ageing of Dalat Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Pham Van [Reactor Dept., Nuclear Research Institute, Dalat (Viet Nam)

    1998-10-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the previous 250 kW TRIGA-MARK II reactor. The reactor core, the control and instrumentation system, the primary and secondary cooling systems as well as other associated systems were newly designed and installed. The renovated reactor reached its initial criticality in November 1983 and attained its nominal power of 500 kW in February 1984. Since then DNRR has been operated safely. Retained structures of the former reactor such as the reactor aluminum tank, the graphite reflector, the thermal column, the horizontal beam tubes and the radiation concrete shielding are 35 years old. During the recent years, in-service inspection has been carried out, the reactor control and instrumentation system were renovated due to ageing and obsolescence of its components, reactor general inspection and refurbishment were performed. Efforts are being made to cope with ageing of old reactor components to maintain safe operation of the DNRR. (author)

  7. Alteration in fuel processing at Tokai Works of Mitsubishi Nuclear Fuel Co., Ltd

    International Nuclear Information System (INIS)

    1977-01-01

    The report of the Committee on Examination of Nuclear Fuel Safety to the Atomic Energy Commission of Japan concerning the alteration is given, which is attached to the reply from the commission to the prime minister, and its safety was confirmed. The alterations are installation of the storage for transport containers containing fuel assemblies, construction of radiation control and other buildings; and improvement and installation of the facilities for chemical-processing, pellet fabrication, fuel assembling, and storage. (Mori, K.)

  8. After-installation service, a contribution to enhanced economic efficiency of reactors

    International Nuclear Information System (INIS)

    Bilger, H.

    1996-01-01

    After-installation service agreements are concluded in general for the following plant systems or tasks: power operation, inspection and repair during outages, plant enhancements (retrofitting), instrumentation and control (software). The paper gives various examples selected from power plant practice in Germany, showing that service contracts are a major factor contributing to maintaining economic efficiency, or enhancing it. Examples of nuclear power plant management abroad relying on service contracts are also given (USA, France, Japan). (orig./HP) [de

  9. Data acquisition and control system in a heavy water detritiation installation

    International Nuclear Information System (INIS)

    Stefan, Iuliana; Balteanu, Ovidiu; Retevoi, Carmen; Stefan, Liviu

    2002-01-01

    The experimental installation for extracting tritium and deuterium from the tritiated heavy water used as moderator in CANDU type nuclear reactors is described. The separated tritium of high purity can be used in the fusion reactors of the future or in various laboratory researches. The fluids implied in operating this installation require special safety measures to be taken to protect both the operational personnel and the environment. Accordingly, in the technologic room no personnel is allowed and hence parameter monitoring, analyses and the testing must be done by remote control equipment. The computers for monitoring, warning and testing, as well as the sensors are housed in the data acquisition room, separated from the control room. The values generated by the process variables are converted in electrical or pneumatic signals and subsequently transmitted to the subsystems of monitoring, control and protection. Data acquisition in the control room is ensured by a computer provided with a FieldPoint interface. So, the connection between I/O modules from the data acquisition room and the computer ensures a 115.2 kb/s speed. Measured values of the parameters are recorded and displayed in the control room. Here these are compared with preset limits of the process parameters and in case of abnormal behavior, an alarm is triggered both optically and acoustically. At the same time, the program which controls the inputs and the outputs makes decisions and issues corrective or preventive commands for the technological process or installation protection, respectively. A diagram illustrating the monitoring, using a LabView platform is presented

  10. BWR reactor management system

    International Nuclear Information System (INIS)

    Makino, Kakuji; Kawamura, Atsuo; Yoshioka, Ritsuo; Neda, Toshikatsu.

    1979-01-01

    It is necessary to grasp the delicate state of operation in reactor cores in view of the control of burn-up and power output at the time of the operation management of BWRs. Enormous labor has been required for the collection, processing and evaluation of the data. It is desirable to obtain the safer, more efficient and faster method of operation control by predicting the states in cores including the change of xenon and reflecting them to operation plans as well as by tracing with high accuracy the past burn-up history for a long period. At present, the on-line evaluation of the states in cores is carried out with the process computers attached to respective units, but the amount of data required for core operation management of high degree far exceeds their capacity. From such viewpoints, the research and development on the reactor management system were carried out. The data processing concerning core operation management is performed with newly installed computers utilizing the data from existing process computers, and the operation of reactor cores, the qualitative improvement of management works, labor saving, and fast, efficient operation control are feasible with it. This system was installed in an actual plant in October, 1977. The composition of the system, the prediction of the change in local output distribution accompanying control rod operation, the prediction of the change in the states in cores due to the flow rate of coolant, and the function of collecting plant data are explained. (Kako, I.)

  11. Order for execution of the law concerning regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This ordinance is stipulated under the law concerning the regulation of nuclear raw materials, nuclear fuel materials and reactors. The designation for refining and processing businesses under the law shall be obtained for each works or enterprise where these operations are to be practiced. Persons who intend to accept the designation shall file applications attaching business plans and the other documents specified by the ordinances of the Prime Minister's Office and other ministry orders. The permission for the installation of nuclear reactors under the law shall be received for each works or enterprise where reactors are to be set up. Persons who intend to get the permission shall file applications attaching the financing plans required for the installation of reactors and the other documents designated by the orders of the competent ministry. The permission concerning the reactors installed on foreign ships shall be obtained for each ship which is going to enter into the Japanese waters. Persons who ask for the permission shall file applications attaching the documents which explain the safety of reactor facilities and the other documents defined by the orders of the Ministry of Transportation. The designation for reprocessing business and the application for it are provided for, respectively. The usage of nuclear fuel materials, nuclear raw materials and internationally regulated goods is ruled in detail. (Kubozone, M.)

  12. Order for execution of the law concerning regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1981-01-01

    This ordinance is stipulated under the law concerning the regulation of nuclear raw materials, nuclear fuel materials and reactors. The designation for refining and processing businesses under the law shall be obtained for each works or enterprise where these operations are to be practiced. Persons who intend to accept the designation shall file applications attaching business plans and the other documents specified by the ordinances of the Prime Minister's Office and other ministry orders. The permission for the installation of nuclear reactors under the law shall be received for each works or enterprise where reactors are to be set up. Persons who intend to get the permission shall file applications attaching the financing plans required for the installation of reactors and the other documents designated by the orders of the competent ministry. The permission concerning the reactors installed on foreign ships shall be obtained for each ship which is going to enter into the Japanese waters. Persons who ask for the permission shall file applications attaching the documents which explain the safety of reactor facilities and the other documents defined by the orders of the Ministry of Transportation. The designation for reprocessing business and the application for it are provided for, respectively. The usage of nuclear fuel materials, nuclear raw materials and internationally regulated goods is ruled in detail.(Okada, K.)

  13. Experimental and numerical validation of a two-region-designed pebble bed reactor with dynamic core

    International Nuclear Information System (INIS)

    Jiang, S.Y.; Yang, X.T.; Tang, Z.W.; Wang, W.J.; Tu, J.Y.; Liu, Z.Y.; Li, J.

    2012-01-01

    Highlights: ► The experimental installation has been built to investigate the pebble flow. ► The feasibility of two-region pebble bed reactor has been verified. ► The pebble flow is more uniform in a taller vessel than that in a lower vessel. ► Larger base cone angle will decrease the scale of the stagnant zone. - Abstract: The pebble flow is the principal issue for the design of the pebble bed reactor. In order to verify the feasibility of a two-region-designed pebble bed reactor, the experimental installation with a taller vessel has been built, which is proportional to the real pebble bed reactor. With the aid of the experimental installation, the stable establishment and maintenance of the two-region arrangement has been verified, at the same time, the applicability of the DEM program has been also validated. Research results show: (1) The pebble's bouncing on the free surface is an important factor for the mixing of the different colored pebbles. (2) Through the guide plates installed in the top of the pebble packing, the size of the mixing zone can be reduced from 6–7 times to 3–4 times the pebble diameter. (3) The relationship between the width of the central region and the ratio of loading pebbles is approximately linear in the taller vessel. (4) The heighten part of the pebble packing can improve the uniformity of the flowing in the lower. (5) To increase the base cone angle can decrease the scale of the stagnant zone. All of these conclusions are meaningful to the design of the real pebble reactor.

  14. Principles elaboration and creation of information-analytical system ''RI Operation Safety with SSC RIAR Research Reactors''

    International Nuclear Information System (INIS)

    Ivanov, V.B.; Grachev, A.F.; Kinsky, O.M.; Makin, P.S.; Okhrimenko, A.I.; Demidov, L.I.; Karpyuk, V.I.; Afonin, V.K.; Iskanderov, R.G.

    1995-01-01

    In this paper an approach is described, which is accepted at elaboration and creation of computer-aided control system of technological process (CCS TP) at the installations with research reactors. The tasks and the main technological requirements to elaborated information-analytical system, are formulated, based on the accepted approach, experience of computer-aided systems and analysis of technological processes at reactor installations (RI) of SSC RIAR. The system includes the following installations: the SM-3, the VK-50, the RBT-10, the BOR-60 and the MIR. Based on the given example there is a classification and the purposes of the modern system of information personnel support of research reactors are formulated as well as approaches to its creation, including creation of determined models of the processes, which are realized in simulators and statistic methods of time series. According to the accepted approaches the results of systematic-technical synthesis and modern states with system simulation are described. (author). 17 refs, 3 figs, 4 tabs

  15. Nuclear reactor containment device

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu.

    1980-01-01

    Purpose: To reduce the volume of a containment shell and decrease the size of a containment equipment for BWR type reactors by connecting the containment shell and a suppression pool with slanted vent tubes to thereby shorten the vent tubes. Constitution: A pressure vessel containing a reactor core is installed at the center of a building and a containment vessel for the nuclear reactor that contains the pressure vessel forms a cabin. To a building situated below the containment shell, is provided a suppression chamber in which cooling water is charged to form a suppression pool. The suppression pool is communicated with vent tubes that pass through the partition wall of the containment vessel. The vent tubes are slanted and their lower openings are immersed in coolants. Therefore, if accident is resulted and fluid at high temperature and high pressure is jetted from the pressure vessel, the jetting fluid is injected and condensated in the cooling water. (Moriyama, K.)

  16. Natural convection type reactor

    International Nuclear Information System (INIS)

    Nakayama, Takafumi; Horiuchi, Tetsuo; Moriya, Kimiaki; Matsumoto, Masayoshi; Akita, Minoru.

    1988-01-01

    Purpose: To improve the reliability by decreasing the number of dynamic equipments and safely shutdown the reactor core upon occurrence of accidents. Constitution: A pressure relief valve and a pressurizing tank or gravitational water falling tank disposed to the main steam pipe of a reactor are installed in combination. Upon loss-of-coolant accident, the pressure relief valve is opened to reduce the pressure in the reactor pressure vessel to the operation pressure for each of the tanks, thereby enabling to inject water in the pressurizing tank at first and, thereafter, water in the gravitational water falling tank successively to the inside of the pressure vessel. By utilizing the natural force in this way, the reliability can be improved as compared with the case of pumped water injection. Further, by injecting an aqueous boric acid to a portion of a plurality of tanks, if the control rod insertion becomes impossible, aqueous boric acid can be injected. (Takahashi, M.)

  17. As-built measurement of the in-pool structure for the installation of In-Pile Test Section in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. N.; Cho, Y. G.; Lee, Y. S.; Sim, B. S.; Lee, J. M.; Chi, D. Y.; Park, S. K.; Lee, H. H.; Whang, D. K.; Lee, C. Y. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Fuel Test Loop (FTL) is designed at the operation condition of power reactor such as high temperature, high pressure and neutron flux etc. As the design of the FTL has been completed, purchasing and manufacturing hardware are underway at present. Installation of the facility is going to do during reactor shutdown period in 2006. This paper describes the preparation of measurement and as-built measurement about in pool structure.

  18. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  19. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  20. Lightning protection system analysis at Multipurpose Reactor G A. Siwabessy building

    International Nuclear Information System (INIS)

    Teguh-Sulistyo

    2003-01-01

    Analysis to the part of lightning protection system at Multi Purpose Reactor GA Siwabessy (RSG-GAS) have been done. Observation examined the damage of some part of the earthing system caused by human error of chemically system. The analysis performed some assumptions and simulations to the points of lightning stroke. From this analysis obtained that the reactor building do not have vertical finial which can protect effectively to the whole reactor building and auxiliary building. Installing some new finials at some places are needed to protect building therefore the reactor building and auxiliary building well safe from lighting stroke

  1. Thermal hydraulic analysis of the IPR-R1 TRIGA reactor

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio; Fortini, Maria Auxiliadora

    2002-01-01

    The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)

  2. The plutonium recycle for PWR reactors from brazilian nuclear program

    International Nuclear Information System (INIS)

    Rubini, L.A.

    1978-01-01

    The purpose of this thesis is to evaluate the material requirements of the nuclear fuel cycle with plutonium recycle. The study starts with the calculation of a reference reactor and has flexibility to evaluate the demand under two alternatives of nuclear fuel cycle for Pressurized Water Reactors (PWR): Without plutonium recycle; and with plutonium recycle. Calculations of the reference reactor have been carried out with the CELL-CORE codes. Variations in the material requirements were studied considering changes in the installed nuclear capacity of PWR reactors, the capacity factor of these reactors, and the introduction of fast breeders. Recycling plutonium produced inside the system can reach economies of about 5% U 3 O 8 and 6% separative work units if recycle is assumed only after the fifth operation cycle of the thermal reactors. (author)

  3. Fast Reactors and Nuclear Nonproliferation

    International Nuclear Information System (INIS)

    Avrorina, E.N.; Chebeskovb, A.N.

    2013-01-01

    Conclusion remarks: 1. Fast reactor start-up with U-Pu fuel: – dependent on thermal reactors, – no needs in U enrichment, – needs in SNF reprocessing, – Pu is a little suitable for NED, – practically impossible gun-type NED, – difficulties for implosion-type NED: necessary tests, advanced technologies, etc. – Pu in blankets is similar to WPu by isotopic composition, – Use of blanket for production isotopes (e.g. 233 U), – Combined reprocessing of SNF: altogether blanket and core, – Blanket elimination: decrease in Pu production – No pure Pu separation. 2. Fast reactor start-up with U fuel: - Needs in both U enrichment and SNF reprocessing, - Independent of thermal reactors, - Good Pu bred in the core let alone blankets, - NED of simple gun-type design, - Increase of needs in SWU, - Increased demands in U supply. 3. Fast reactors for export: - Uranium shortage, - To replace thermal reactors in future, - No blankets (depends on the country, though), - Fuel supply and SNF take back, - International centers for rendering services of NFC. Time has come to remove from FRs and their NFC the label unfairly identifying them as the most dangerous installations of nuclear power from the standpoint of being a proliferation problem

  4. Nuclear reactor PBMR and cogeneration

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.

    2013-10-01

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  5. The experiences of research reactor accident to safety improvement

    International Nuclear Information System (INIS)

    Wiranto, S.

    1999-01-01

    The safety of reactor operation is the main factor in order that the nuclear technology development program can be held according the expected target. Several experience with research reactor incidents must be learned and understood by the nuclear program personnel, especially for operators and supervisors of RSG-GA. Siwabessy. From the incident experience of research reactor in the world, which mentioned in the book 'Experience with research reactor incidents' by IAEA, 1995, was concluded that the main cause of research reactor accidents is understandless about the safety culture by the nuclear installation personnel. With learn, understand and compare between this experiences and the condition of RSG GA Siwabessy is expended the operators and supervisors more attention about the safety culture, so that RSG GA Siwabessy can be operated successfull, safely according the expected target

  6. Occupational analysis for the Angra-1 reactor

    International Nuclear Information System (INIS)

    Moraes, A.

    1991-01-01

    Due to several modifications which were imposed to its time schedule during construction, the Angra-1 reactor did not enter to the grid in 1982 as it was initially foreseen. These modifications occurred due to an unforeseen scenario that was verified in steam generators (serie D-3, Westinghouse) of power stations with similar configurations which had been installed in other countries such as Ringhals-3 (Sweden), Almaraz-1 (Spain) and McGuine-1 (USA). So, among the main events that occurred in the Angra-1 reactor, which were of interest from the point of view of radiation protection, it could be pointed out the personnel monitoring, and the occupational exposure measurements at different reactor power, during the reactor fueling and during modification and tests performed at the steam generators and at ducts of the primary coolant circuit. (author)

  7. Order of 6 October 1977 defining the characteristics of each type of large nuclear installation

    International Nuclear Information System (INIS)

    1978-01-01

    This Order, made by the French Minister of Industry, Commerce and Crafts and the Minister of Labour, lays down the characteristics of large nuclear installations which should be included in the document provided for under Section 10 of decree No. 75-306 of 28 April 1975 on the protection of workers against the hazards of ionizing radiation in large nuclear installations. These include inter alia the reactor type, its nominal power, the nature and cladding of the fuel, the rate of loading/unloading of the fuel, provisions to prevent criticality risks outside normal operation of the reactor, controlled areas and the measures for protection against ionizing radiation. The Order also lays down the characteristics for plants for the preparation and treatment of irradiated nuclear fuels as well as the characteristics of facilities for the storage, use, manufacture and transformation of radioactive substances, and the maximum permissible annual quantities of radioactive releases. (NEA) [fr

  8. Reactor physics needs in developing countries

    International Nuclear Information System (INIS)

    Solanilla, R.

    1980-01-01

    The aim of this paper the identification of needs on Reactor Physics in developing countries embarked in the installation and later on in the operation of Commercial Nuclear Power Plants. In this context the main task of Reactor Physics should be focused in the application of Physical models with inclusion of thermohydraulic process to solve the various realistic problems which appear to ensure a safe, economical and reliable core design and reactor operation. The first part of the paper deals with the scope of Reactor Physics and its interrelation with other disciplines as seen from the view point of developing countries possibilities. Needs requiring a quick response, i.e., those demands coming during the development of a specific Nuclear Power Plant Project, are summarized in the second part of the lecture. Plant startup has been chosen as reference to separate two categories of requirements: Requirements prior to startup phase include reactor core verification, licensing aspects review and study of fuel utilization alternatives; whereas the period during and after startup mainly embraces codes checkup and normalization, core follow-up and long term prediction

  9. Some corrosion effects of the aluminum tank surface of Dalat research reactor

    International Nuclear Information System (INIS)

    Nguyen Mong Sinh

    1995-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the TRIGA-MARK-II reactor installed in 1963 with a nominal power of 250 kW. Reconstruction and upgrading of this reactor to nominal power of 500 kW had been completed in the end of 1983. The reactor was commissioned in the beginning of March 1984. The aluminum reactor tank and some components of the former reactor are more than 30 year old. The good quality of reactor water minimized the total corrosion rate of reactor material surface. But some local corrosion had been found out at the tank bottom especially in water stagnant areas. The corrosion processes could be due to the electrochemical reactions associated with different metals and alloys in the reactor water and keeping in touch with the surface of aluminum reactor tank. (orig.)

  10. Computational model for real-time determination of tritium inventory in a detritiation installation

    International Nuclear Information System (INIS)

    Bornea, Anisia; Stefanescu, Ioan; Zamfirache, Marius; Stefan, Iuliana; Sofalca, Nicolae; Bidica, Nicolae

    2008-01-01

    Full text: At ICIT Rm.Valcea an experimental pilot plant was built having as main objective the development of a technology for detritiation of heavy water processed in the CANDU-type reactors of the nuclear power plant at Cernavoda, Romania. The aspects related to safeguards and safety for such a detritiation installation being of great importance, a complex computational model has been developed. The model allows real-time calculation of tritium inventory in a working installation. The applied detritiation technology is catalyzed isotopic exchange coupled with cryogenic distillation. Computational models for non-steady working conditions have been developed for each process of isotopic exchange. By coupling these processes tritium inventory can be determined in real-time. The computational model was developed based on the experience gained on the pilot installation. The model uses a set of parameters specific to isotopic exchange processes. These parameters were experimentally determined in the pilot installation. The model is included in the monitoring system and uses as input data the parameters acquired in real-time from automation system of the pilot installation. A friendly interface has been created to visualize the final results as data or graphs. (authors)

  11. State of development of gas cooled reactors in the Union of Soviet Socialist Republics

    International Nuclear Information System (INIS)

    Grebennik, V.N.; Mosevitskij, I.S.

    1991-01-01

    In the context of the programme for the development of gas-cooled reactors in the USSR it is reported that pilot plants with VGR-50 MW(el) and VG-400 MW(el) have been developed up to the stage of engineering design and that now the efforts are concentrated on the project of pilot-commercial reactor plant VGM (PCRP VGM) of a modular type with unit thermal power of 200-250 MW. The installation is designed to solve the main scientific and engineering problems of construction of high-temperature gas-cooled reactors, to test equipment components, and to show advantages of the given type of installations having the enhanced safety and capability to generate high-potential heat. The status of work on the PCRP VGM project is described. 3 refs, 1 fig., 1 tab

  12. Reactor-specific spent fuel discharge projections: 1986 to 2020

    International Nuclear Information System (INIS)

    Heeb, C.M.; Walling, R.C.; Purcell, W.L.

    1987-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No new orders with extended burnup, (2) No new orders with constant burnup, (3) Upper reference (which assumes extended burnup), (4) Upper reference with constant burnup, and (5) Lower reference (which assumes extended burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel. 6 refs., 8 figs., 8 tabs

  13. Construction work for prototype fast breeder reactor MONJU

    International Nuclear Information System (INIS)

    Suzuki, Yasuyuki; Tsuji, Koichi; Shimizu, Hisashi

    1991-01-01

    The main construction work of MONJU was started from the excavation for building foundation in October 1985, the containment vessel was prepared in April 1987, the reactor vessel was installed in October 1988, and the installation of the whole equipment was completed in April 1991. Fuji Electric made preparations for construction matching the above master schedule in consideration of construction schedule quality assurance and safety and accomplished the work within the scheduled time without personal injury as long as 2.35 million hours. (author)

  14. Safeguards by Design - Experiences from New Nuclear Installation

    International Nuclear Information System (INIS)

    Okko, O.; Honkamaa, T.; Kuusi, A.; Rautjaervi, J.

    2010-01-01

    The experiences obtained from the current construction projects at Olkiluoto clearly point out the need to introduce the safeguards requirements into facility design process at an early stage. The early Design Information is completed, in principle, before the construction. However, during the design of containment, surveillance systems, and non-destructive assay equipment and their cabling, the design requirements for safeguards systems were not available either for the new reactor unit or for the disposal plant with a geological repository. Typically, the official Design Information documents are not available early enough for efficient integration of safeguards systems into new facilities. In case of the Olkiluoto projects, this was due to understandable reasons: at the new reactor unit the design acceptance by the ordering company and by the nuclear safety authorities was a long process, ongoing simultaneously with parts of the construction; and at the geological repository the national legislation assigns the repository the status of a nuclear facility only after the initial construction and research phase of the repository when the long-term safety of the disposal concept is demonstrated. As similar factors are likely to delay the completion of the official Design Information documents with any new reactor projects until the construction is well underway and efficient integration of safeguards systems is impossible. Therefore, the proliferation resistance of new nuclear installations should be addressed in the design phase before the official Design Information documents are finished. This approach was demonstrated with the enlargement of the Olkiluoto spent fuel storage building. For this approach to work, strong national contribution is needed to facilitate the early communication and exchange of information between the IAEA and the other stakeholders to enable the design of facilities that can be efficiently safeguarded. With the renaissance of nuclear

  15. Status of work on gas-cooled reactors in the USSR

    International Nuclear Information System (INIS)

    Grebennik, V.N.

    1988-01-01

    The report presents the status of work on the following concepts for HTGRs: the modular VTR-265 reactor with integrated arrangement of the primary equipment in a single prestressed vessel; the modular VTR-250 reactor with the core and heat exchanging equipment accommodated in separate vessels. The pilot energotechnological installation VG-400 is intended for co-generation of heat, steam and electricity for large power-consuming industries. 5 refs

  16. Improvement of the greenhouse effect accounting of the waste storage installations; Ameliorer le bilan effet de serre des installations de stockage des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Ch.

    2003-07-01

    The wastes storage installations are responsible of 3 to 4 % of the greenhouse gases emissions in France and Europe. In spite of the decrease since ten years of the emissions hopeful the gas collect on the main sites, it is still possible to improve the greenhouse gases emission in the wastes disposals. The possible measures are presented: the bio-reactor, the improvement of the gas extraction systems, the choice of exploitation modes to limit the fill in times, the biogas valorization. (A.L.B.)

  17. The overpressure protection for the chemical reactors: the batch-size approach

    International Nuclear Information System (INIS)

    Dellavedova, M.; Gigante, L.; Lunghi, A.; Pasturenzi, C.; Cardillo, P.; Gerosa, N.P.; Rota, R.

    2008-01-01

    Small and medium enterprises (SMEs) main feature is to run batch and semi-batch processes, working on job orders. They generally have multi propose reactors with an emergency relief system (ERS) already installed. These are normally sized when the reactor is designed, assuming as worst incidental scenario a single phase vapour flow generated by a fire developed outside the apparatus. These assumptions can lead to a big underestimation of the vent area if the actual flow is two-phase and besides generated by a runaway reaction. ERS sizing is particularly hazardous and complex for small mills, as for example fine chemicals and pharmaceutical companies. These factories have usually narrow financial and personal resources, moreover they often use fast processes turnovers. In many cases a complete safety study or the replacement of the ERS is not possible and it can lead to not sustainable costs. The batch-size approach is focused on discontinuous process conditions: aim of this approach is to find the reactor fill level that can lead a vapour single phase flow whether an incident occurs, this condition is considered safe that the ERS installed on the reactor can protect the plant from explosions [it

  18. Proceedings of the seminar on optimization technology of the use of G.A. Siwabessy Research Reactor

    International Nuclear Information System (INIS)

    1999-01-01

    Seminar on optimization technology of the use of G.A. Siwabessy research reactor was held on March 16, 1999 at the Multipurpose Reactor Center, Serpong, Indonesia. During the seminar, have presented 14 papers about activities or researches on reactor operation technology, use of G.A. Siwabessy research reactor, engineering and nuclear installation development, maintenance and quality assurances. The seminar was held as a tool for developing non-researcher functional workers

  19. Proceedings of the seminar on optimization technology of the use of G.A. Siwabessy Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Seminar on optimization technology of the use of G.A. Siwabessy research reactor was held on March 16, 1999 at the Multipurpose Reactor Center, Serpong, Indonesia. During the seminar, have presented 14 papers about activities or researches on reactor operation technology, use of G.A. Siwabessy research reactor, engineering and nuclear installation development, maintenance and quality assurances. The seminar was held as a tool for developing non-researcher functional workers.

  20. Reactor inventory monitoring system for Angra-1 reactor; Sistema de monitoracao de inventario do reator para usina nuclear Angra I

    Energy Technology Data Exchange (ETDEWEB)

    S Neto, Joaquim A.; Silva, Marcos C.; Pinheiro, Ronaldo F.M. [Furnas Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil); Soares, Milton [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Martinez, Aquilino; Comerlato, Cesar A.; Oliveira, Eugenio A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Monitoracao de Processos

    1996-07-01

    This work describes the project of Reactor Inventory Monitoring System, which will be installed in Angra I Nuclear Power Plant. The inventory information is important to the operators take corrective actions in case of an incident that may cause a failure in the core cooling. (author)

  1. Development of research reactor simulator and its application to dynamic test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Baang, Dane; Park, Jae-Chang; Lee, Seung-Wook; Bae, Sung Won

    2014-01-01

    We developed a real-time simulator for 'High-flux Advanced Neutron Application ReactOr (HANARO), and the Jordan Research and Training Reactor (JRTR). The main purpose of this simulator is operator training, but we modified this simulator into a dynamic test-bed (DTB) to test the functions and dynamic control performance of reactor regulating system (RRS) in HANARO or JRTR before installation. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The software includes a mathematical model that implements plant dynamics in real-time, an instructor station module that manages user instructions, and a human machine interface module. The developed research reactor simulators are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. The test result shows that the developed DTB and actual RRS cabinet works together simultaneously resulting in quite good dynamic control performances. (author)

  2. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  3. Experimental Equipment for Physics Studies in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G; Blomberg, P E; Dubois, P O

    1967-03-15

    Comprehensive physics measurements were carried out in connection with the start up of the Agesta reactor. For this purpose special experimental equipment was constructed and installed in the reactor. Parts of this were indispensable and/or time-saving for the reactivity control during the core build-up period and during the first criticality studies. This report gives mainly a detailed description of the experimental equipment used, but also the relevant physics background and the experience gained during the performance.

  4. TREAT [Transient Reactor Test Facility] reactor control rod scram system simulations and testing

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Stevens, W.W.

    1990-01-01

    Air cylinders moving heavy components (100 to 300 lbs) at high speeds (above 300 in/sec) present a formidable end-cushion-shock problem. With no speed control, the moving components can reach over 600 in/sec if the air cylinder has a 5 ft stroke. This paper presents an overview of a successful upgrade modification to an existing reactor control rod drive design using a computer model to simulate the modified system performance for system design analysis. This design uses a high speed air cylinder to rapidly insert control rods (278 lb moved 5 ft in less than 300 msec) to scram an air-cooled test reactor. Included is information about the computer models developed to simulate high-speed air cylinder operation and a unique new speed control and end cushion design. A patent application is pending with the US Patent ampersand Trade Mark Office for this system (DOE case number S-68,622). The evolution of the design, from computer simulations thru operational testing in a test stand (simulating in-reactor operating conditions) to installation and use in the reactor, is also described. 6 figs

  5. Description of a research reactor control system using a programmable controller

    International Nuclear Information System (INIS)

    Battle, R.E.

    1986-01-01

    This paper describes the design features, testing methods, and operational experience of a programmable controller (PC) installed as a neutron flux controller in the Oak Ridge Research Reactor (ORR) at Oak Ridge National Laboratory (ORNL). The PC was designed to control neutron flux from 1 to 105% for three selectable ranges. The PC generates a flux setpoint under operator control, calculates the reactor heat power from flow and temperature signals, calculates a neutron flux calibration factor based on the heat power, and positions a control rod based on the flux-setpoint difference. The programmable controller was tested by controlling an analog computer model of the ORR. The equipment was installed in August 1985, and except for some startup problems, the system has performed well

  6. The OPERA loop in the OSIRIS reactor core. Pressurized-water irradiation device to study Advanced Reactor Fuels

    International Nuclear Information System (INIS)

    Lucot, M.; Roche, M.

    1986-09-01

    This loop is designed to allow fuel qualification test, i.d. to allow irradiation of representative parts fuel assemblies operating in thermohydraulic and chemical conditions representative of these of present pressurized water reactors or in development. This paper presents the aims of the installation, the general design and the main specifications with a brief detailed description [fr

  7. Characterization of the neutron flow for the implementation of an experimental analysis installation for rapid gamma activation in the Argentine Research Reactor RA-6

    International Nuclear Information System (INIS)

    Henriquez, C.; Gennuso, G.

    2000-01-01

    This is the final work to obtain a Diploma on Specialization in Application of Nuclear Technological Energy, carried out at the Research Reactor RA-6, from March to December 1999. Different work has been realized on the Tangential Tube N of the 500 KW Argentine RA-6 research reactor, in order to add a new technique to the present existing analytical methods. This Prompt Gamma Neutron Activation Analysis technique (PGNAA) requires a beam of collimated thermal neutrons, a lowest possible gamma radiation, and a thermal component of the biggest possible cadmium rate. It also must have a high resolution detection system for the measurement of the gamma radiation emitted after the capture of the neutron produced in the study sample. Continuing with the facility's technical requirements, a collimator was installed inside the N passing tube, in order to concentrate the neutrons coming from the nuclear core and also to compensate possible losses during the path. This collimator is 440mm long and 200 mm in diameter and consists of lead and steel cylinders with different size holes on the inside, so that it can deliver a 50 mm diameter beam of thermal collimated neutrons. Two 100 mm thick bismuth filters are inside the passing tube, to reduce the gamma component inside de beam, coming from the reactor core. This work aims to the characterization of the thermal and epithermal component of the neutron beam in the collimator and at the exit of it , and also to prove experimentally that the collimator achieves the technical specifications for which it was designed and built, specifically by verifying its functioning (degree of convergence of the beam obtained). On the other hand, it is necessary to learn about the PGNAA technique in order to define the technical requirements for its adequate operation. (author)

  8. Installation and method for handling fuel assemblies of fast nuclear reactors

    International Nuclear Information System (INIS)

    Aubert, Michel; Renaux, Charley.

    1982-01-01

    This invention concerns an installation and a method for handling the assemblies which makes it possible to have a large revolving plug smaller in diameter than that of the presently known solutions. This large, coaxial to the core, revolving plug has a handling arm enabling a fraction of the assemblies to be reached and deposited in a handling well. Through a small offset revolving plug the remainder of the assemblies can be reached and deposited in a pick-up well accessible to the arm of the large revolving plug [fr

  9. Design innovation and service works after twenty years operation period at the 250 kW TRIGA reactor

    International Nuclear Information System (INIS)

    Hammer, J.; Boeck, H.

    1986-01-01

    In 1967 the thermalizing column of the TRIGA Reactor Vienna which was originally composed of graphite blocks was converted to a cold neutron source and the empty experimental tank was covered with heavy concrete shielding blocks. Since during the last decade this cold neutron source was not used and possible disintegration and corrosion of this system was to be expected it was decided to remove this installation and to replace it with a new designed two component collimator to be used for neutron radiography. The replacement of the cold neutron source required close access to the reactor core, therefore due to radiation protection aspects all fuel elements had to be removed from the reactor pool. As a consequence this situation was used to inspect visually two beam tubes and the reactor tank and to replace the two electromechanical control rod drives. Further, a new purification circuit was installed, replacing the old bypass system. Many other reactor components or systems were improved and serviced as described

  10. Progress report on fast breeder reactor development at PNC, Japan, October - December, 1974

    International Nuclear Information System (INIS)

    1975-03-01

    Following the completion of building construction and equipment installation for the experimental fast breeder reactor ''Joyo'' at PNC's Oarai Engineering Center, hydrostatic pressure and leak tests were conducted on the reactor vessel. For the prototype fast breeder reactor ''Monju'', specification was finalized after the design adjustment. For the period from October to December, 1974, the following matters are described: construction of the Joyo, design of the Monju, reactor physics, components and equipments, instruments and control, sodium technology, fuel and material research and development, safety research and development, and steam generator. (Mori, K.)

  11. Automation of the radiation protection monitoring system in the RP-10 reactor

    International Nuclear Information System (INIS)

    Anaya G, Olgger; Castillo Y, Walter; Ovalle S, Edgar

    2002-01-01

    During the reactor operation, it is necessary to carry out the radiological control in the different places of the reactor, in periodic form and to take a registration of these values. For it the radioprotection official, makes every certain periods, settled down in the procedures, to verify and to carry out the registration of those values in manual form of each one of the radiation monitors. For this reason it was carried out the design and implementation of an automatic monitoring system of radioprotection in the reactor. In the development it has been considered the installation of a acquisition data system for 27 radiation gamma monitors of the type Geiger Mueller, installed inside the different places of the reactor and in the laboratories where they are manipulated radioactive material, using as hardware the FieldPoint for the possessing and digitalization of the signs which are correspondents using the communication protocol RS-232 to a PC in which has settled a program in graphic environment that has been developed using the tools of the programming software LabWindows/CVI. Then, these same signs are sent 'on line' to another PC that is in the Emergency Center of Coordination to 500 m of the reactor, by means of a system of radiofrequency communication. (author)

  12. Calculation and experimental measurements in the Argonauta reactor subcritical and exponential facility

    International Nuclear Information System (INIS)

    Voi, Dante L.; Furieri, Rosane C.A.A.; Renke, Carlos A.C.; Bastos, Wilma S.; Ferreira, Francisco J.O.

    1997-01-01

    Initial measurements were performed on the exponential and subcritical facility installed on the internal thermal column of the Argonauta reactor at IEN-CNEN-Rio de Janeiro, Brazil. The measurements are include in the reactor physics experimental program for integral parameters determination, for both valid and confirmed theoretical models for reactor calculation. Gamma doses and neutron fluxes were measured with telescopic, proportional counters, wire and foil detectors. Experimental data were compared with results obtained by application of CITATION code. (author). 4 refs., 8 figs

  13. Nuclear reactor (1960); Reacteurs nucleaires (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Maillard, M L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Leo, M B [Electricite de France (EDF), 75 - Paris (France)

    1960-07-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [French] Les premiers reacteurs industriels plutonigenes francais G1 - G2 - G3 du Centre de Marcoule comportent une installation de recuperation d'energie. La production d'electricite de G1 ne compense pas l'energie depensee par ailleurs pour le fonctionnement de l'ensemble, par contre, G2 et G3 doivent fournir chacun une puissance de 25 a 30 MW au reseau national d'Electricite de France. Cette puissance est modeste, mais l'experience acquise grace a ces reacteurs est tres grande et c'est grace a elle qu'il nous sera possible de mettre en exploitation les reacteurs energetiques EDF1 - EDF2 - EDF3. Le memoire decrit comment, avant tout demarrage du reacteur, les essais effectues, en particulier ceux concernant l'installation de recuperation d'energie et le caisson, ont permis d'abreger la phase de montee en puissance. (auteur)

  14. Analysis of radiological accident emissions of a lead-cooled experimental reactor. LEADER Project; Analisis radiologico de las emisiones en caso de accidente de un reactor experimental refrigerado por plomo. Proyecto LEADER

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Salcedo, F.; Cortes Martin, A.

    2013-07-01

    The LEADER project develops a conceptual level industrial size reactor cooled lead and a demonstration plant of this technology. The project objectives are to define the characteristics and design to installation scale reactor using available technologies and short-term components and assess safety aspects conducting a preliminary analysis of the impact of the facility.

  15. Education for university students, high school teachers and the general public using the Kinki University Reactor

    International Nuclear Information System (INIS)

    Tsuruta, T.

    2007-01-01

    Atomic Energy Research Institute of Kinki University is equipped with a nuclear reactor which is called UTR-KINKI. UTR is the abbreviation for University Teaching and Research Reactor. The reactor is the first one installed in Japanese universities. Though the reactor is owned and operated by Kinki University, its use is widely open to scientists and students from other universities and research institutions. The reactor is made the best of teaching instrument for the training of high school teachers. In addition, the reactor is utilized for general public education concerning atomic energy. (author)

  16. Installation and Commissioning of the Helium Refrigeration System for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Young Ki; Wu, Sang Ik; Son, Woo Jung

    2009-11-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system. For the maintenance of liquid hydrogen in the IPA, the CNS system is mainly consisted of the hydrogen system to supply the hydrogen to the IPA, the vacuum system to keep the cryogenic liquid hydrogen in the IPA, and the helium refrigeration system to liquefy the hydrogen gas. The helium refrigeration system can be divided into two sections: one is the helium compression part from the low pressure gas to the high pressure gas and the other is the helium expansion part from the high temperature gas and pressure to low temperature and pressure gas by the expansion turbine. The helium refrigeration system except the warm helium pipe and the helium buffer tank has been manufactured by Linde Kryotechnik, AG in Switzerland and installed in the research reactor hall, HANARO. Other components have been manufactured in the domestic company. This technical report deals with the issues, its solutions, and other particular points while the helium refrigeration system was installed at site, verified its performance, and conducted its commissioning along the reactor operation. Furthermore, the operation procedure of the helium refrigeration system is included in here for the normal operation of the CNS

  17. Demolition of the FRJ-1 research reactor (MERLIN)

    International Nuclear Information System (INIS)

    Stahn, B.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

    2003-01-01

    FRJ-2 (MERLIN), the swimming pool reactor cooled and moderated by light water, was built at the then Juelich Nuclear Research Establishment (KFA) between 1958 and 1962. In the period between 1964 and 1985, it was used for. The reactor was decommissioned in 1985. Since 1996, most of the demolition work has been carried out under the leadership of a project team. The complete secondary cooling system was removed by late 1998. After the cooling loops and experimental installations had been taken out, the reactor vessel internals were removed in 2000 after the water had been drained from the reactor vessel. After the competent authority had granted a license, demolition of the reactor block, the central part of the research reactor, was begun in October 2001. In a first step, the reactor operating floor and the reactor attachment structures were removed by the GNS/SNT consortium charged with overall planning and execution of the job. This phase gave rise to approx. The reactor block proper is dismantled in a number of steps. A variety of proven cutting techniques are used for this purpose. Demolition of the reactor block is to be completed in the first half of 2003. (orig.) [de

  18. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    Science.gov (United States)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  19. A TRIGA reactor in an industrial laboratory

    International Nuclear Information System (INIS)

    Anders, Oswald U.

    1980-01-01

    The Dow TRIGA Reactor is a well established facility in its industrial environment. It is used extensively for internal Dow projects. The primary use of the TRIGA is as neutron source for NAA. It faces similar technical and organizational challenges as other TRIGA installations and over the years developed its own solutions

  20. Modification of the IAN-R1 reactor

    International Nuclear Information System (INIS)

    Jaime, J.; Ahumada, S.; Spin, R.A.

    1990-01-01

    The IAN-R1 reactor is the only nuclear reactor operating in Colombia; it is installed at the Institute of Nuclear Affairs (AIN) in Bogota, which is an official body coming under the Ministry of Mining and Energy. This reactor started operation in January 1965 with a rated power of 10 kW and was modified a year later to operate at 20 kW, which has been its rated power up to the present. Given its importance for the application of nuclear technology in Columbia for various purposes, principally in the areas of neutron activation analysis, determination of uranium content in minerals using the delayed neutron counting method, production of certain radioisotopes such as 198 Au and 82 Br for engineering applications, and production of radioactive material for teaching and research purposes, research has been in progress for some years into ways of increasing its power. The study on experimental requirements and on the demand for locally produced radioisotopes came to the conclusion that its power should be increased to 1000 kW, which would allow the facility to remain on the same site. The modification includes conversion of the core to low-enriched fuel, operation up to 1 MW, modification of the shielding, renovation of instrumentation and installation of a radioisotope processing plant. When the reactor is modified we will be able to produce other radioisotopes for applications in nuclear medicine, industry and engineering; at the same time, the safety of the facility will be optimized and the experimental facilities improved

  1. Determination of permissible doses under the provisions of the regulations on installation and operation of reactors for power generation

    International Nuclear Information System (INIS)

    1979-01-01

    The determination is defined under the regulations on installation and operation of reactors for power generation. In the controlled area exterior radiation dose shall be 30 mili-rem for a week by the Minister of International Trade and Industry. The concentrations of radioactive materials in the air or under the water shall be permissible concentrations specified for the employees multiplied by 0.75 in average for a week. The densities of radioactive materials on the surface of the things contaminated by such materials shall be 1/10 of permissible surface densities stipulated in the table attached. Permissible exposure dose outside the inspected surrounding area is 0.5 rem for a year. Permissible surface densities are included in the table attached. Permissible accumulative dose for the employees is the figure (unit rem) calculated by the formula D = 5(N-18), when D means permissible accumulative dose and N number of the age. Permissible exposure dose is 3 rem for 3 months for the employees, 1.5 rem for a year for persons other than the employees and 12 rem for the urgent work. Permissible concentrations are defined in detail for the employees and outside the inspected surrounding area. Calculation of exposure dose in the case of interior exposure is particularly provided for. (Okada, K.)

  2. Safety aspects of spent nuclear fuel interim storage installations

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade. Div. de Sistemas da Qualidade]. E-mail: romanato@ctmsp.mar.mil.br; Rzyski, Barbara Maria [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Div. de Ensino]. E-mail: bmrzyski@ipen.br

    2007-07-01

    Nowadays safety and security of spent nuclear fuel (SNF) interim storage installations are very important, due to a great concentration of fission products, actinides and activation products. In this kind of storage it is necessary to consider the physical security. Nuclear installations have become more vulnerable. New types of accidents must be considered in the design of these installations, which in the early days were not considered like: fissile material stolen, terrorists' acts and war conflicts, and traditional accidents concerning the transport of the spent fuel from the reactor to the storage location, earthquakes occurrence, airplanes crash, etc. Studies related to airplane falling had showed that a collision of big commercials airplanes at velocity of 800 km/h against SNF storage and specially designed concrete casks, do not result in serious structural injury to the casks, and not even radionuclides liberation to the environment. However, it was demonstrated that attacks with modern military ammunitions, against metallic casks, are calamitous. The casks could not support a direct impact of this ammo and the released radioactive materials can expose the workers and public as well the local environment to harmful radiation. This paper deals about the main basic aspects of a dry SNF storage installation, that must be physically well protected, getting barriers that difficult the access of unauthorized persons or vehicles, as well as, must structurally resist to incidents or accidents caused by unauthorized intrusion. (author)

  3. Safety aspects of spent nuclear fuel interim storage installations

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2007-01-01

    Nowadays safety and security of spent nuclear fuel (SNF) interim storage installations are very important, due to a great concentration of fission products, actinides and activation products. In this kind of storage it is necessary to consider the physical security. Nuclear installations have become more vulnerable. New types of accidents must be considered in the design of these installations, which in the early days were not considered like: fissile material stolen, terrorists' acts and war conflicts, and traditional accidents concerning the transport of the spent fuel from the reactor to the storage location, earthquakes occurrence, airplanes crash, etc. Studies related to airplane falling had showed that a collision of big commercials airplanes at velocity of 800 km/h against SNF storage and specially designed concrete casks, do not result in serious structural injury to the casks, and not even radionuclides liberation to the environment. However, it was demonstrated that attacks with modern military ammunitions, against metallic casks, are calamitous. The casks could not support a direct impact of this ammo and the released radioactive materials can expose the workers and public as well the local environment to harmful radiation. This paper deals about the main basic aspects of a dry SNF storage installation, that must be physically well protected, getting barriers that difficult the access of unauthorized persons or vehicles, as well as, must structurally resist to incidents or accidents caused by unauthorized intrusion. (author)

  4. Installation for the study of heat transfer with high flux density

    International Nuclear Information System (INIS)

    Robin, M.; Schwab, B.

    1957-01-01

    As a result of their very low vapor pressure, metals with a low fusion point (sodium, sodium-potassium alloys, etc.) can be used at high temperature, as heating fluids, in installations whose internal pressure is close to atmospheric pressure. Owing to the very high convection coefficients which can be reached with these fluids and to the large temperature differences utilizable, it is possible to produce through the exchange surfaces considerable heat flux densities, of the order of those which exist through the canning of fuel elements in nuclear reactors. The installation described allowed a flux density of more than 200 W/cm 2 to be obtained, the heating fluid being a Na-K alloy (containing 56 per cent by weight of potassium) brought to a temperature around 550 deg. C. (author) [fr

  5. Backfitting swimming pool reactors

    International Nuclear Information System (INIS)

    Roebert, G.A.

    1978-01-01

    Calculations based on measurements in a critical assembly, and experiments to disclose fuel element surface temperatures in case of accidents like stopping of primary coolant flow during full power operation, have shown that the power of the swimming pool type research reactor FRG-2 (15 MW, operating since 1967) might be raised to 21 MW within the present rules of science and technology, without major alterations of the pool buildings and the cooling systems. A backfitting program is carried through to adjust the reactor control systems of FRG-2 and FRG-1 (5 MW, housed in the same reactor hall) to the present safety rules and recommendations, to ensure FRG-2 operation at 21 MW for the next decade. (author)

  6. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  7. In-situ inspection of grooves in reactor tube sheet using a remotely operated cast impression taking device

    International Nuclear Information System (INIS)

    Rajendran, S.; Ramakumar, M.S.

    1996-01-01

    Utmost importance is given to the in-service inspection of critical components of a reactor to ensure its reliable performance during the reactor operation. This paper describes a cast taking device using cold setting resin to take impression of the grooves being made in the tube sheet for sparger tube installation in pressurised heavy water reactor. (author)

  8. State of exposure control for workers engaging in radiation works and state of radioactive waste management in nuclear reactor facilities for test and research and nuclear reactor facilities at research and development stage, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This is the summary of the reports submitted in fiscal year 1995 by the installers of the nuclear reactor facilities for test and research or at research and development stage, conforming to the related law. The individual dose equivalent of the workers engaging in radiation works in fiscal year 1995 was sufficiently lower than the prescribed limit in all reactor facilities. As for the released quantities of gaseous and liquid wastes, the radioactive substances in the air and water outside the monitor zones never exceeded the prescribed concentration limit in all reactor facilities. In the reactor facilities, for which the target values of release control have been determined, the values were less than the targets in all cases. The increase of stored radioactive solid waste decreased as the dismantling works of the reactor auxiliary system of the nuclear powered ship 'Mutsu' were finished in fiscal year 1994. As the amount of stored radioactive solid waste approaches the installed capacity, the preservation capacity of the existing waste preservation building was increased. (K.I.)

  9. Process Stability Identification Through Dynamic Study of Single-bed Ammonia Reactor with Feed-Effluent Heat Exchanger (FEHE

    Directory of Open Access Journals (Sweden)

    Adhi Tri Partono

    2018-01-01

    Full Text Available In ammonia reactor system, a feed-effluent heat exchanger (FEHE is typically installed to utilize reaction-generated heat to heat the reactor’s feed. Utilizing energy from exothermic reaction to the incoming feed stream is often called “autothermic operation”. Despite the advantage of FEHE, there is a risk of utilizing FEHE in a reactor system such as instability of process temperature or known as hysteresis. Hysteresis phenomena in chemical process could cause operational problems, for example it could damage the integrity of the equipment’s material. This paper aims to evaluate the dynamic behavior of a single-bed ammonia reactor with FEHE, particularly to propose a way to prevent instability within the system. The dynamic simulation of the single-bed ammonia reactor with FEHE was performed with Aspen HYSYS v8.8. The result of the simulation result shows that hysteresis phenomenon in the ammonia reactor system occurs when the feed’s temperature is below a certain value. If the feed temperature reaches that value, the temperature of the reactor’s outlet oscillates. One of the solution to keep the feed temperature above that critical value is by installing a trim heater within the system. Based on the simulation, trim heater installation within the system is able to prevent hysteresis in the system evaluated.

  10. 105-H Reactor Interim Safe Storage Project Final Report

    International Nuclear Information System (INIS)

    Ison, E.G.

    2008-01-01

    The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D and D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

  11. Radiation protection personnel training in Research Reactors

    International Nuclear Information System (INIS)

    Fernandez, Carlos Dario; Lorenzo, Nestor Pedro de

    1996-01-01

    The RA-6 research reactor is considering the main laboratory in the training of different groups related with radiological protection. The methodology applied to several courses over 15 years of experience is shown in this work. The reactor is also involved in the construction, design, start-up and sell of different installation outside Argentina for this reason several theoretical and practical courses had been developed. The acquired experience obtained is shown in this paper and the main purpose is to show the requirements to be taken into account for every group (subjects, goals, on-job training, etc) (author)

  12. ASTEC applications to VVER-440/V213 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Matejovic, Peter, E-mail: ivstt@nextra.sk; Barnak, Miroslav; Bachraty, Milan; Vranka, Lubomir

    2014-06-01

    Since the beginning of ASTEC development by IRSN and GRS the code was widely applied to VVER reactors. In this paper, at first specific features of VVER-440/V213 reactor design that are important from the modelling point of view are briefly described. Then the validation of ASTEC code with focus on its applicability to VVER reactors is briefly summarised and the results obtained with the ASTEC V2.0-rev1 version for the ISP-33 PACTEL natural circulation experiment are presented. In the next section the application of ASTEC V2.0-rev1 code in upgrade of VVER-440/V213 NPPs to cope with consequences of severe accidents is described. This upgrade includes adoption of in-vessel retention via external reactor vessel cooling and installation of large capacity passive autocatalytic recombiners. Results of analysis with focus on corium localisation and stabilisation inside reactor vessel, hydrogen control in confinement and prevention of long-term confinement pressurisation are presented.

  13. A simple setup for neutron tomography at the Portuguese nuclear research reactor

    International Nuclear Information System (INIS)

    Pereira, M.A. Stanojev; Marques, J.G.; Pugliesi, R.

    2012-01-01

    A simple setup for neutron radiography and tomography was recently installed at the Portuguese Research Reactor. The objective of this work was to determine the operational characteristics of the installed setup, namely the irradiation time to obtain the best dynamic range for individual images and the spatial resolution. The performance of the equipment was demonstrated by imaging a fragment of a seventeenth-century decorative tile. (author)

  14. Modular nuclear reactor for a land-based power plant and method for the fabrication installation and operation thereof

    International Nuclear Information System (INIS)

    Craig, E. R.; Blumberg, B. Jr.

    1985-01-01

    A self-contained modular nuclear reactor which can be prefabricated at a factory location, nuclear-certified at the factory, transported to a field location for final assembly and connection to a large-scale electric-power generating facility. The modular reactor includes a prefabricated nuclear heat supply module and a plurality of shell segments which can be assembled about the heat supply module and which provide a form for the pouring and curing of a cementatious biological shield about the heat supply module. The modular reactor includes passive shutdown heat removal systems sufficient to render the reactor safe in an emergency. A large-scale power plant arrangement is disclosed which incorporates a plurality of the modular reactors

  15. Fast neutron reactors: the safety point of view

    International Nuclear Information System (INIS)

    Laverie, M.; Avenas, M.

    1984-01-01

    All versions of nuclear reactors present favourable and unfavourable characteristics from the point of view of safety. The safety of the installations is obtained by making efforts to utilize in the best possible way those which are favourable and by taking proper steps in the face of those which are unfavourable. The present article shows how this general principle has been applied as regards the fast neutron reactors of integrated design which have been developped in France, taking into account the specific features of this version. A qualitative method to compare the safety of this version with that of pressurized water reactors which has been widely put to the test commercially all over the world is presented. These analyses make, generally speaking, several positive characteristics stand out for these fast neutron reactors from the safety aspects [fr

  16. FBR type reactors

    International Nuclear Information System (INIS)

    Otsuka, Masaya; Yamakawa, Masanori; Goto, Tadashi; Ikeuchi, Toshiaki; Yamaki, Hideo.

    1986-01-01

    Purpose: To prevent thermal deformation and making the container compact by improving the cooling performance of main container walls. Constitution: A pipeway is extended from a high pressure plenum below the reactor core and connected to the lower side of the flow channel at the inside of a thermal shielding layer disposed to the inside of the main container wall. Low pressure sodium sent from the low temperature plenum into the high pressure plenum is introduced to the pipeway, caused to uprise in the inside flow channel, then turned for the direction, caused to descend in the outer side flow channel between the main container and the inside flow channel and then returned to the low temperature plenum. A heat insulating layer disposed with argon gas is installed to the inside of the flow channel to reduce the temperature change applied upon reactor scram. An annular linear induction pump capable of changing the voltage polarity is disposed at the midway of the pipeway and the polarity is switched such that the direction of flow of the liquid sodium is exerted as a braking force upon rated operation, whereas exerted as a pumping force upon reactor scram. (Sekiya, K.)

  17. The Chernobyl reactor accident. Pt. 1 and 2

    International Nuclear Information System (INIS)

    1986-06-01

    The report first summarizes the available information on the various incidents of the whole accident scenario, and combines the information to present a first general outline and a basis for appraisal. The most significant incidents reported, namely power excursion, core meltdown, and fire, are discussed with a view to the reactor design and safety of reactors installed in the FRG. The main differences and advantages of German reactor designs are shown, as e.g.: Power excursions are mastered by inherent physical conditions; far better redundancy of engineered safety systems; enclosure of the complete reactor cooling system in a pressure-retaining steel containment; reactor buildings being made of reinforced concrete. The second part of the report deals with the radiological effects to be expected for our country. Data are given on the varying radiological exposure of the different regions. The fate and uptake of radioactivity in the human body are discussed. The conclusion drawn from the data presented is that the individual exposure due to the reactor accident will remain within the variations and limits of natural radioactivity and effects. (orig./HP) [de

  18. Facilities of fuel transfer for nuclear reactors

    International Nuclear Information System (INIS)

    Wade, E.E.

    1977-01-01

    This invention relates to sodium cooled fast breeder reactors. It particularly concerns facilities for the transfer of fuel assemblies between the reactor core and a fuel transfer area. The installation is simple in construction and enables a relatively small vessel to be used. In greater detail, the invention includes a vessel with a head, fuel assemblies housed in this vessel, and an inlet and outlet for the coolant covering these fuel assemblies. The reactor has a fuel transfer area in communication with this vessel and gear inside the vessel for the transfer of these fuel assemblies. These facilities are borne by the vessel head and serve to transfer the fuel assemblies from the vessel to the transfer area; whilst leaving the fuel assemblies completely immersed in a continuous mass of coolant. A passageway is provided between the vessel and this transfer area for the fuel assemblies. Facilities are provided for closing off this passageway so that the inside of the reactor vessel may be isolated as desired from this fuel transfer area whilst the reactor is operating [fr

  19. New training reactor at Dresden Technical University

    International Nuclear Information System (INIS)

    Hansen, W.; Knorr, J.; Wolf, T.

    2006-01-01

    A total of 14 low-power (up to 10 W) training reactors have been operated at German universities, 9 of them officially classified as being operational in 2004, though for very different uses. This number is expected to drop sharply. The only comprehensive upgrading of a training reactor took place at Dresden Technical University: AKR-2, the most modern facility in Germany, started routine operation in April 2005, under a newly granted license pursuant to Sec. 7, Subsec. 1 of the German Atomic Energy Act, for training students in nuclear technology, for suitable research projects, and a a center of information about reactor technology and nuclear technology for the interested public. One special aspect of this refurbishment was the installation of digital safety I and C systems of the TELEPERM XS line, which are used also in other modern plants. This fact, plus the easy possibility to use the plant for many basic experiments in reactor physics and radiation protection, make the AKR-2 attractive also to other users (e.g. for training reactor personnel or other persons working in nuclear technology). (orig.)

  20. Application and development of dismantling technologies for decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Bach, W.; Kremer, G.; Ruemenapp, T.

    2006-01-01

    The decommissioning of nuclear installations poses a challenge to high performance underwater cutting technologies because of complex limiting conditions, like radioactive contamination, accessibility, geometry of work piece, material thickness and composition. For the safe dismantling of the moderator tank and the thermal shield of the Multi-purpose Research Reactor (MZFR) Karlsruhe the development and the use of thermal cutting tools will be demonstrated, in this case the underwater plasma arc cutting and the contact arc metal cutting (CAMC). (orig.)

  1. Practical decommissioning experience with nuclear installations in the European Community

    International Nuclear Information System (INIS)

    Skupinski, E.

    1992-01-01

    Initiated by the Commission of the European Communities (CEC), this seminar was jointly organized by the AEA, BNFL and the CEC at Windermere and the sites of Windscale/Sellafield, where the former Windscale advanced gas-cooled reactor and the Windscale piles are currently being dismantled. The meeting aimed at gathering a limited number of European experts for the presentation and discussion of operations, results and conclusions on techniques and procedures currently applied in the dismantling of large scale nuclear installations in the European Community

  2. Dismantling method for reactor pressure vessel and system therefor

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Enomoto, Kunio; Kurosawa, Koichi; Saito, Hideyo.

    1994-01-01

    Upon dismantling of a reactor pressure vessel, a containment building made of concretes is disposed underground and a spent pressure vessel is contained therein, and incore structures are contained in the spent pressure vessel. Further, a plasma-welder and a pressing machine are disposed to a pool for provisionally placing reactor equipments in the reactor building for devoluming the incore structures by welding and compression. An overhead-running crane and rails therefor are disposed on the roof and the outer side of the reactor building for transporting the pressure vessel from the reactor building to the containment building. They may be contained in the containment building after incorporation of the incore structures into the pressure vessel at the outside of the reactor building. For the devoluming treatment, a combination of cutting, welding, pressing and the like are optically conducted. A nuclear power plant can be installed by using a newly manufactured nuclear reactor, with no requirement for a new site and it is unnecessary to provide a new radioactive waste containing facility. (N.H.)

  3. Process for changing fuel elements of a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Fleischmann, R.; Rau, P.

    1986-01-01

    In order to change fuel elements, a water-filled duct can be installed between the rector pressure vessel and a space for accommodating the fuel elements. The fuel elements are transported there under water by a fuelling machine. The duct is installed as watertight connection closed on all sides between the reactor pressure vessel and a fuel element transport container brought close to it. The fuelling machine works in this duct. (orig./HP) [de

  4. Hydrogen determination in magnesium, zirconium, sodium and lithium using installation, C2532

    International Nuclear Information System (INIS)

    Malikova, E.D.; Velyukhanov, V.P.; Makhinova, L.O.; Kunin, L.L.

    1980-01-01

    Techniques of hydrogen determination in magnesium, lithium, sodium and zirconium using the S 2532 installation are developed. The method of oxidizing melting using lead borate has been used for hydrogen determination in lithium and sodium and the method of vacuum extraction - for hydrogen determination in zirconium and magnesium. Zr and Mg extraction has been carried out in steel reactor at the temperatures of 1000 and 650 deg C, the time of extraction being 30 and 10 minutes respectively. A quartz reactor, temperatures of oxidizing melting of 700-800 deg C, the time of analysis 10 and 20 minutes have been used for sodium and lithium. A possibility to determine volumetric content of hydrogen in magnesium at the existing surface contaminations with hydrogen-containing compounds is shown [ru

  5. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  6. CRNL research reactor retrofit Emergency Filtration System

    International Nuclear Information System (INIS)

    Philippi, H.M.

    1990-01-01

    This paper presents a brief history of NRX and NRU research reactor effluent air treatment systems before describing the selection and design of an appropriate retrofit Emergency Filtration System (EFS) to serve these reactors and the future MX-10 isotope production reactor. The conceptual design of the EFS began in 1984. A standby concrete shielding filter-adsorber system, sized to serve the reactor with the largest exhaust flow, was selected. The standby system, bypassed under normal operating conditions, is equipped with normal exhaust stream shutoff and diversion valves to be activated manually when an emergency is anticipated, or automatically when emergency levels of gamma radiation are detected in the exhaust stream. The first phase of the EFS installation, that is the construction of the EFS and the connection of NRU to the system, was completed in 1987. The second phase of construction, which includes the connection of NRX and provisions for the future connection of MX-10, is to be completed in 1990

  7. PIK reactor construction status

    International Nuclear Information System (INIS)

    Konoplev, K.A.; Smolsky, S.L.

    2001-01-01

    The 100MW reactor PIK for fundamental researches has a thermal neutron flux of more than 10 15 n/cm 2 sec. This presentation outlines the construction state as of 2001, its prospects and completion tactics in the conditions of unstable finance. Construction of the reactor started in 1976. In 1986 construction of the building was completed and significant part of the installation work fulfilled. Construction of cooling systems was finished, the control panel assembled, and adjustment of the pump and gate valve control circuits started. After Chernobyl catastrophe, the USSR nuclear reactor safety requirements were revised. The PIK design did not meet these requirements and underwent considerable revision. The reconstruction design resulted in double the initial cost. Creation of the containment was the bulkiest part of the reconstruction. It brought about the need to disassemble the roofing of the building, dismantle all the equipment of the two upper floors, and lay up the equipment of the lower floors. As of 2001, construction in accordance with the revised design is at the stage of assemblage of the most important units, i.e. reactor itself, cooling system, heavy water system, and a number of auxiliary systems, such as depleted fuel storage, emergency cooling system etc. (orig.)

  8. Methods and means of the radioisotope flaw detection of the nuclear power reactors components

    International Nuclear Information System (INIS)

    Dekopov, A.S.; Majorov, A.N.; Firsov, V.G.

    1979-01-01

    Methods and means are considered for the radioisotopic flaw detection of the nuclear reactors pressure vessels and structural components of the reactor circuit. Methods of control are described as in the technological process of fabrication of the power reactors assemblies as during the systematic-preventive repair of the nuclear power station equipment during exploitation. Methodological base is given of the technology of radiation control of welded joints of the pressure vessel branch piper of the WWER-440 and WWER-1000 reactors in the process of assembling and exploitation and joining pipes with the pipe-plate of the steamgenerator in the process of fabrication. Methods of the radioisotope flaw detection in the process of exploitation take into consideration the influence of the radioisotope background, and ensure obtaining of the demanded by the rules of control, sensitivity. Methods of control of welded joints of the steamgenerator of nuclear power plants are based on the simultaneous examination of all joints with application of the shaped radiographic plate-holders. Special gamma-flaw-detection equipment is developed for control of the welded joints of the main branch-pipes. Design peculiarities are given of the installation for flaw detection. These installations are equipped with the system for emergency return of the radiation source into the storage position from the position for exposure. They have automatic exposure-meters for determination of the exposure time. Successfull exploitation of such installations in the Finland during assembling equipment for the nuclear reactor of the nuclear power plant ''Loviisa-1'' and in the USSR on the Novovoronezh nuclear power plant has shown possibility for detection of flaws having dimensions about 1% of the equipment used. For control of welded joints of pipes with pipe-plates at the steam generators, portable flaw-detectors are used. Sensitivity of these flaw-detectors towards detection of the wire standards has

  9. Decontamination of Belarus research reactor installation by strippable coatings

    International Nuclear Information System (INIS)

    Voronik, N.I.; Shatilo, N.N.

    2002-01-01

    The goal of this study was to develop new strippable coatings using water-based solutions of polyvinyl alcohol and active additives for decontamination of research reactor equipment. The employment of strippable coatings makes it possible to minimize the quantity of liquid radioactive waste. The selection of strippable decontaminating coatings was carried out on the basis of general requirements to decontaminating solutions: successfully dissolve corrosion deposits; ensure the desorption of radionuclides from the surfaces and the absence of resorption; introduce minimal corrosion effect of construction materials; to be relatively cheap and available in reagents. The decontaminating ability and adhesion properties of these coatings depending on metal and deposit sorts were investigated. Research on the chemical stability of solid wastes was carried out. The data obtained were the base for recommendations on waste management procedure for used films and pastes. A full-scale case-study analysis was performed for comparing strippable coatings with decontaminating solutions. (author)

  10. RB research reactor safety report; Izvestaj o sigurnsti istrazivackog reaktora RB

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Pesic, M; Vranic, S [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1979-04-15

    This new version of the safety report is a revision of the safety report written in 1962 when the RB reactor started operation after reconstruction. The new safety report was needed because reactor systems and components have been improved and the administrative procedures were changed. the most important improvements and changes were concerned with the use of highly enriched fuel (80% enriched), construction of reactor converter outside the reactor vessel, improved control system by two measuring start-up channels, construction of system for heavy water leak detection, new inter phone connection between control room and other reactor rooms. This report includes description of reactor building with installations, rector vessel, reactor core, heavy water system, control system, safety system, dosimetry and alarm systems, experimental channels, neutron converter, reactor operation. Safety aspects contain analyses of accident reasons, method for preventing reactivity insertions, analyses of maximum hypothetical accidents for cores with natural uranium, 2% enriched and 80% enriched fuel elements. Influence of seismic events on the reactor safety and well as coupling between reactor and the converter are parts of this document.

  11. The direct conversion of heat into electricity in reactors

    International Nuclear Information System (INIS)

    Devin, B.; Bliaux, J.; Lesueur, R.

    1964-01-01

    The direct conversion of heat into electricity by thermionic emission in an atomic reactor has been studied with the triple aim of its utilisation: as an energy source for a space device, at the head of a conventional conversion system in power installations, or finally in association with the thermoelectric conversion in very low power installations. The laboratory experiments were mainly orientated towards the electron extraction of metals and compounds and their behaviour at high temperatures. Converters furnishing up to 50 amps at 0. 4 volts with an efficiency close to 10 p. 100 have been constructed in the laboratory; the emitters were heated by electron bombardment and were composed of tungsten covered with an uranium carbide deposit or molybdenum covered with cesium. The main aspects of the coupling between the converter and the reactor have been covered from the point of view of electronics: the influence of the mismatching of the load on the temperature of the emitter and the influence of thermal flux density on the temperature of the emitter and the stability of the converter. Converters using uranium carbide as the electron emitter have been tested in reactors. Tests have been made under dynamic conditions in order to determine the dynamic characteristics. The load matching curves have been constructed and the overall performances of several cells coupled in such a way as to form a reactor rod have been deduced. This information is fundamental to the design of a control system for a thermionic conversion reactor. The problems associated with the reliability of thermionic converters connected in series in the same reactor rod have been examined theoretically. Finally, the absorption isotherms have been drawn at the ambient temperatures for krypton and xenon on activated carbon with the aim of investigating the escape of fission products in a converter. (author) [fr

  12. Experiments prior to construction of the Rapsodie reactor (1962)

    International Nuclear Information System (INIS)

    Vautrey, L.; Zaleski, C.P.

    1962-01-01

    Before proceeding to the construction of the various reactor components described in the paper 'Fast Breeder Reactor Rapsodie', many experimental studies of a hydraulic, thermal and mechanical character have been carried out, or are under consideration, to test the validity of the principles adopted in the Preliminary Project. This paper deals with the most important of these: 1. Studies of coolant circuit components: sodium pumps (mechanical or electromagnetic), Na-NaK and NaK ir heat exchangers, measuring instruments (flow rates, temperatures), sodium purification circuits, etc. 2. Studies in cooling of fuel and fertile assemblies: a) study of the sodium cooling carried out by means of hydraulic mockups (scale of 1: 1 or over) reproducing the flow of the coolant fluid in the piping, upstream from and inside the fuel and fertile elements. b) study of the cooling by gas and by immersion in lead, employed during handling and storage operations. 3. Studies of special reactor devices: fusible rotating linkage, parts of the control rod mechanisms. 4. Study of the reactor block and coolant circuits as a whole. This study is to begin at the end of the year. The mock-up, now nearing completion, reproduces on a scale of 1: 1 the installation provided in the Preliminary Project and includes: the reactor block, to which is connected a high flow ate sodium circuit, permitting of long-term tests and thermal shocks, and also, a control rod testing circuit; complete installation of the 1 MW and 10 MW coolant circuits, the performances of which it will be possible to check under various operational conditions. 5. A safety study carried out on a 3: 10 scale mock p comprising the whole of the reactor block and shielding, with the object of limiting the effects of any accidental liberation of energy of an explosive character. (authors) [fr

  13. Study on statistical analysis of nonlinear and nonstationary reactor noises

    International Nuclear Information System (INIS)

    Hayashi, Koji

    1993-03-01

    For the purpose of identification of nonlinear mechanism and diagnosis of nuclear reactor systems, analysis methods for nonlinear reactor noise have been studied. By adding newly developed approximate response function to GMDH, a conventional nonlinear identification method, a useful method for nonlinear spectral analysis and identification of nonlinear mechanism has been established. Measurement experiment and analysis were performed on the reactor power oscillation observed in the NSRR installed at the JAERI and the cause of the instability was clarified. Furthermore, the analysis and data recording methods for nonstationary noise have been studied. By improving the time resolution of instantaneous autoregressive spectrum, a method for monitoring and diagnosis of operational status of nuclear reactor has been established. A preprocessing system for recording of nonstationary reactor noise was developed and its usability was demonstrated through a measurement experiment. (author) 139 refs

  14. The status of the PIK reactor

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu V [Academy of Sciences of Russia, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation)

    1992-07-01

    This report describes the 100 MW research reactor PIK which is now under construction. The thermal neutron flux in the heavy water reflector exceeds 10{sup 15} cm{sup -2}s{sup -1}; in the light water trap, it is about 4{center_dot}10{sup 15} cm{sup -2}s{sup -1}. The replaceable core vessel allows to vary the parameters of the core over a wide range. The reactor provides sources of hot, cold and ultracold neutrons for 10 horizontal, 6 inclined neutron beams, and 8 neutron guides. At the ends of the beam tubes, the neutron flux is 10{sup 10} - 10{sup 11} cm{sup -2}s{sup -1}. The flux of the long wave neutrons exceeds 10{sup 9} cm{sup -2}s{sup -1}. To ensure precise measurements, the experimental hall is protected against vibrations. The project meets all modern safety requirements. The calculated parameters of the reactor were verified using a full-scale mock-up. Seventy percent of the reactor construction and installation were completed in the beginning of 1992. (author)

  15. Quantities of actinides in nuclear reactor fuel cycles

    International Nuclear Information System (INIS)

    Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000 MW reactors of the following types: water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breeder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium, and recycled uranium. The radioactivity levels of plutonium, americium, and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the United States nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium processed in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing and fuel fabrication to eliminate the off-site transport of separated plutonium. (U.S.)

  16. Nondestructive testing of PWR type fuel rods by eddy currents and metrology in the OSIRIS reactor pool

    International Nuclear Information System (INIS)

    Faure, M.; Marchand, L.

    1985-02-01

    The Saclay Reactor Department has developed a nondestructive test bench, now installed above channel 1 of the OSIRIS reactor. As part of investigations into the dynamics of PWR fuel degradation, a number of fuel rods underwent metrological and eddy current inspection, after irradiation [fr

  17. The Budapest research reactor as an advanced research facility for the early 21st century

    International Nuclear Information System (INIS)

    Vidovszky, I.

    2001-01-01

    The Budapest Research Reactor, Hungary's first nuclear facility was originally put into operation in 1959. The reactor serves for: basic and applied research, technological and commercial applications, education and training. The main goal of the reactor is to serve neutron research. This unique research possibility is used by a broad user community of Europe. Eight instruments for neutron scattering, radiography and activation analyses are already used, others (e.g. time of flight spectrometer, neutron reflectometer) are being installed. The majority of these instruments will get a much improved utilization when the cold neutron source is put into operation. In 1999 the Budapest Research Reactor was operated for 3129 full power hours in 14 periods. The normal operation period took 234 hours (starting Monday noon and finishing Thursday morning). The entire production for the year 1999 was 1302 MW days. This is a slightly reduced value, due to the installation of the cold neutron source. For the year 2000 a somewhat longer operation is foreseen (near to 4000 hours), as the cold neutron source will be operational. The operation of the reactor is foreseen at least up to the end of the first decade of the 21 st century. (author)

  18. Code of practice and design principles for installed radiological protection systems

    International Nuclear Information System (INIS)

    Powell, R.G.

    1979-03-01

    For some years there has been comprehensive guidance documentation for Nuclear Reactor Instrumentation, but apparently no corresponding guide for designers and installers of Radiological Protection Instrumentation. A small group of instrumentation engineers discussed this lack of a suitable guide, and they examined the main points on which it should be based. This document attempts to present a comprehensive and detailed review of these points. It is intended to give an overall coverage and serve as a reference document for specific points; it should also be of value to the newcomer to the Radiological Protection Instrumentation field. This Code of Practice represents a standard of good practice and takes the form of recommendations only. Each installation must be assessed individually, and agreement on its suitability must be reached locally by the designers and the officers responsible for safety and operation. (author)

  19. International Harmonization of Reactor Licensing Regulations

    International Nuclear Information System (INIS)

    Kuhnt, Dietmar.

    1977-01-01

    The purpose of a harmonization policy for reactor licensing regulations on the basis of already considerable experience is to attain greater rationalisation in this field, in the interest of economic policy and healthy competition, and most important, radiation protection and safety of installations. This paper considers the legal instruments for such harmonization and the conditions for their implementation, in particular within the Communities framework. (NEA) [fr

  20. Disposal of control elements from the VAK reactor

    International Nuclear Information System (INIS)

    Eickelpasch, N.

    1996-01-01

    From the 25 years of operation there were available in the VAK fuel cooling installation 22 control elements which had to be dismantled and packed ready for disposal. The design of the control elements was already that which was later used in other boiling water reactors, so that the procedure took on a pioneering character. The technique of a remote controlled underwater scissors was suitable for the dismantling. By means of an accompanying measuring programme, it was confirmed that the released tritium posed no radiological problem for the working place and the waste values of the installation. (author) 1 fig

  1. Experience from and research activities at the Otaniemi TRIGA reactor

    International Nuclear Information System (INIS)

    Bars, Bruno

    1976-01-01

    Experience from the Finnish TRIGA Reactor is reported, small changes and improvements in the control console of the Fir-1 reactor have been made. A minicomputer based data collecting system is planned and installed. It will be used for collecting data from operation and radiation monitors including the new isotope laboratory, and also simultaneously smaller experiments such as control rod calibration. A minicomputer is used for on-line reactor noise studies. The automatic uranium analyzer has a maximum sensitivity of 0.03 μg U 235 and 1.2 Th 232 . The system is now used at a sampling rate of about one sample per minute. (author)

  2. An aqueous lithium salt blanket option for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, D.; Varsamis, G. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Nuclear Engineering and Engineering Physics); Deutsch, L.; Rathke, J. (Grumman Corp., Bethpage, NY (USA). Advanced Energy Systems); Gierszewski, P. (Canadian Fusion Fuels Technology Project (CFFTP), Mississauga, ON (Canada))

    1989-04-01

    An aqueous lithium salt blanket (ALSB) concept is proposed which could be the basis for either a power reactor blanket or a test module in an engineering test reactor. The design is based on an austenitic stainless steel structure, a beryllium multiplier, and a salt breeder concentration of about 32 g LiNO/sub 3/ per 100 cm/sup 3/ of H/sub 2/O. To limit tritium release rates, the salt breeder solution is separated from the water coolant circuit. The overall tritium system cost for a 2400 MW (fusion power) reactor is estimated to be 180 million Dollar US87 installed. (orig.).

  3. Nuclear Reactor RA Safety Report, Format and Contents

    International Nuclear Information System (INIS)

    1986-11-01

    This is a new complete version of the safety report of nuclear reactor RA is made according to the recommendations of the IAEA. Report includes all the relevant data needed for evaluation of safe operation of this nuclear facility. Each of seven volumes of this report cover separate topics as follows: (1) introduction; (2) Site characteristics; (3) description of the reactor building and installations; (4) description of the reactor; (5) description of the coolant system; (6) description of the regulation and safety instrumentation; (7) description of the power supply system; (8) description of the auxiliary systems; (9) radiation protection issues; (10) radioactive waste management (11) reactor operation; (12) accident analysis during previous operation; (13) analysis of possible accident causes; (14) safety analysis and preventive actions: (15) analysis of significant accidents; (16) analysis of maximum possible accident; (17) environmental impact analysis in case of accident [sr

  4. Environmental impact assessment of Ar-41 released by the normal operation of TRIGA-Mark 2 research reactor

    International Nuclear Information System (INIS)

    Qassoud, D.; Soufi, I.; Ziagos, J.; Demir, Z

    2007-01-01

    Full text: In accordance with the international regulation of nuclear safety and radiological protection of the environment applicable to the basic nuclear installations, category in which the Triga-Mark 2 research reactor is considered, an assesment of the impact in to the environment of the Ar-41 radioelement is accomplished. This radioelement is released by the normal operation of this reactor. The assessment is based on the characteristics of a Moroccan site (where the reactor is installed). It is carried out using CEA Gaussian models and mathematical models developed in LLNL. Considering the assumptions of impact assessments of the radioactivity in the atmosphere, the most important exposure is relatively corresponding to 1 Km from the reactor. This exposure is approximately 0,07% of the lawful limit. Beyond this locality, the exposure becomes lower than 0,02% of this limit. Beyond 5 Km, it becomes lower than ten nono-Sivert. In the basis of the site radiological baseline, the environmental impact of Ar-41 released in normal operation of the reactor is negligible in the studied case. [fr

  5. Design of reactor internals in larger high-temperature reactors with spherical fuel elements

    International Nuclear Information System (INIS)

    Elter, C.

    1981-01-01

    In his paper, the author analyzes and summarizes the present state of the art with emphasis on the prototype reactor THTR 300 MWe, because in addition to spherical fuel elements, this type includes other features of future HTR design such as the same flow direction of cooland gas through the core. The paper on hand also elaborates design guidelines for reactor internals applicable with large HTR's of up to 1200 MWe. Proved designs will be altered so as to meet the special requirements of larger cores with spherical elements to be reloaded according to the OTTO principle. This paper is furthermore designed as a starting point for selective and swift development of reactor internals for large HTR's to be refuelled according to the OTTO principle. (orig./GL) [de

  6. Gas turbine installations in nuclear power plants in Sweden

    International Nuclear Information System (INIS)

    Sevestedt, Lars

    1986-01-01

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  7. Gas turbine installations in nuclear power plants in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sevestedt, Lars [Electrical Equipment and Gas Turbines, Swedish State Power Board, Ringhals Nuclear Power Plant, S-430 22 Vaeroebacka (Sweden)

    1986-02-15

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  8. RETRAN-02 installation and verification for the CRAY computer

    International Nuclear Information System (INIS)

    1990-03-01

    The RETRAN-02 transient thermal-hydraulic analysis program developed by the Electric Power Research Institute (EPRI) has been selected as a tool for use in assessing the operation and safety of the SP-100 space reactor system being developed at Los Alamos National Laboratory (LANL). The released versions of RETRAN-02 are not operational on CRAY computer systems which are the primary mainframes in use at LANL requiring that the code be converted to the CRAY system. This document describes the code conversion, installation, and validation of the RETRAN-02/MOD004 code on the LANL CRAY computer system

  9. Reactor core

    International Nuclear Information System (INIS)

    Matsuura, Tetsuaki; Nomura, Teiji; Tokunaga, Kensuke; Okuda, Shin-ichi

    1990-01-01

    Fuel assemblies in the portions where the gradient of fast neutron fluxes between two opposing faces of a channel box is great are kept loaded at the outermost peripheral position of the reactor core also in the second operation cycle in the order to prevent interference between a control rod and the channel box due to bending deformation of the channel box. Further, the fuel assemblies in the second row from the outer most periphery in the first operation cycle are also kept loaded at the second row in the second operation cycle. Since the gradient of the fast neutrons in the reactor core is especially great at the outer circumference of the reactor core, the channel box at the outer circumference is bent such that the surface facing to the center of the reactor core is convexed and the channel box in the second row is also bent to the identical direction, the insertion of the control rod is not interfered. Further, if the positions for the fuels at the outermost periphery and the fuels in the second row are not altered in the second operation cycle, the gaps are not reduced to prevent the interference between the control rod and the channel box. (N.H.)

  10. Extension of TRIGA reactor capabilities

    International Nuclear Information System (INIS)

    Gietzen, A.J.

    1980-01-01

    The first TRIGA reactor went into operation at 10 kW about 22 years ago. Since that time 55 TRIGAs have been put into operation including steady-state powers up to 14,000 kW and pulsing reactors that pulse to 20,000,000 kW. Five more are under construction and a proposal will soon be submitted for a reactor of 25,000 kW. Along with these increases in power levels (and the corresponding fluxes) the experimental facilities have also been expanded. In addition to the installation of new TRIGA reactors with enhanced capabilities many of the older reactors have been modified and upgraded. Also, a number of reactors originally fueled with plate fuel were converted to TRIGA fuel to take advantage of the improved technical and safety characteristics, including the ability for pulsed operation. In order to accommodate increased power and performance the fuel has undergone considerable evolution. Most of the changes have been in the geometry, enrichment and cladding material. However, more recently further development on the UZrH alloy has been carried out to extend the uranium content up to 45% by weight. This increased U content is necessary to allow the use of less than 20% enrichment in the higher powered reactors while maintaining longer core lifetime. The instrumentation and control system has undergone remarkable improvement as the electronics technology has evolved so rapidly in the last two decades. The information display and the circuitry logic has also undergone improvements for enhanced ease of operation and safety. (author)

  11. Accident on the TEPCO reactors of Fukushima-Daiichi. A focus on the situation in January 2013

    International Nuclear Information System (INIS)

    2013-01-01

    After a brief recall of the accident of the Fukushima-Daiichi nuclear power station and a brief description of the general condition of the installations after the accident, this report proposes an overview of actions performed by TEPCO to control the installations, the actions performed to control effluents and releases. It presents the action plan for the control's recovery of installations, and briefly evokes the situation for other electronuclear reactors in Japan

  12. A Study on Dismantling of Westinghouse Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Lee, Sang-Guk

    2014-01-01

    KHNP started a research project this year to develop a methodology to dismantle nuclear reactors and internals. In this paper, we reviewed 3D design model of the reactor and suggested feasible cutting scheme.. Using 3-D CAD model of Westinghouse type nuclear reactor and its internals, we reviewed possible options for disposal. Among various options of dismantling the nuclear reactor, plasma cutting was selected to be the best feasible and economical method. The upper internals could be segmented by using a band saw. It is relatively fast, and easily maintained. For cutting the lower internals, plasma torch was chosen to be the best efficient tool. Disassembling the baffle and the former plate by removing the baffle former bolts was also recommended for minimizing storage volume. When using plasma torch for cutting the reactor vessel and its internal, installation of a ventilation system for preventing pollution of atmosphere was recommended. For minimizing radiation exposure during the cutting operation, remotely controlled robotic tool was recommended to be used

  13. Well Completion Report for the Fiscal Year 1999 Drilling Within the Chromium Plume West of the 100-D/DR Reactors

    International Nuclear Information System (INIS)

    Ford, B. H.

    1999-01-01

    This report describes the fiscal year (FY) 1999 field activities associated with installing 12 groundwater monitoring wells in the vicinity of the 100-D Area chromium plume west of the 100-D/DR Reactors (100-HR-3 Operable Unit [OU]). The wells were installed to further investigate the extent of the hexavalent chromium hot spot west of the 100-D/DR Reactors and to support future remedial action decisions associated with the 100-HR-3 OU. These wells were designed for multi-purpose use (i.e., monitoring, extraction, and injection). In addition, one of the wells was installed to support the initial deployment of the In Situ Redox Manipulation (ISRM) technology to remediate the chromium plume

  14. Marine reactor pressure vessels dumped in the Kara Sea

    International Nuclear Information System (INIS)

    Mount, M.E.

    1997-01-01

    Between 1965 and 1988, 16 marine reactors from seven Russian submarines and the icebreaker Lenin, each of which suffered some form of reactor accident, were dumped in a variety of containments, using a number of sealing methods, at five sites in the Kara Sea. All reactors were dumped at sites that varied in depth from 12 to 300 m and six contained their spent nuclear fuel (SNF). This paper examines the breakdown of the reactor pressure vessel (RPV) barriers due to corrosion, with specific emphasis on those RPVs containing SNF. Included are discussions of the structural aspects of the steam generating installations and their associated RPVs, a summary of the disposal operations, assumptions on corrosion rates of structural and filler materials, and an estimate of the structural integrity of the RPVs at the present time (1996) and in the year 2015

  15. Development of automated controller system for controlling reactivity by using FPGA in research reactor application

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Mohd Idris Taib

    2012-01-01

    The scope for this research paper is to produce a detail design for Development of Automated Controller System for Controlling Reactivity by using FPGA in Research Reactor Application for high safety nuclear operation. The development of this project including design, purchasing, fabrication, installation, testing and validation and verification for one prototype automated controller system for controlling reactivity in industry local technology for human capacity and capability development towards the first Nuclear Power Programme (NPP) in Malaysia. The specific objectives of this research paper are to Development of Automated Controller System for Controlling Reactivity (ACSCR) in Research Reactor Application (PUSPATI TRIGA Reactor) by using simultaneous movement method; To design, fabricate and produce the accuracy of Control Rods Drive Mechanism to 0.1 mm resolution using a stepper motor as an actuator; To design, install and produce the system response to be more faster by using Field Programmable Gate Array (FPGA) and High Speed Computer; and to improve the Safety Level of the Research Reactor in high safety nuclear operation condition. (author)

  16. Study of a brazilian cask and its installation for PWR spent nuclear fuel dry storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2009-01-01

    Spent nuclear fuel (SNF) is removed from the nuclear reactor after the depletion on efficiency in generating energy. After the withdrawal from the reactor core, the SNF is temporarily stored in pools at the same site of the reactor. At this time, the generated heat and the short and medium lived radioactive elements decay to levels that allow removing SNF from the pool and sending it to temporary dry storage. In that phase, the fuel needs to be safely and efficiently stored, and then, it can be retrieved in a future, or can be disposed as radioactive waste. The amount of spent fuel increases annually and, in the next years, will still increase more, because of the construction of new nuclear plants. Today, the number of new facilities back up to levels of the 1970's, since it is greater than the amount of decommissioning in old installations. As no final decision on the back-end of the nuclear fuel cycle is foreseen in the near future in Brazil, either to recover the SNF or to consider it as radioactive waste, this material has to be isolated in some type of storage model existing around the world. In the present study it is shown that dry SNF storage is the best option. A national cask model for SNF as well these casks storage installation are proposed. It is a multidisciplinary study in which the engineering conceptual task was developed and may be applied to national SNF removed from the Brazilian power reactors, to be safely stored for a long time until the Brazilian authorities will decide about the site for final disposal. (author)

  17. Operation of the High Flux Reactor. Annual report 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This year was characterized by the end of a major rebuilding of the installation during which the reactor vessel and its peripheral components were replaced by new and redesigned equipment. Both operational safety and experimental use were largely improved by the replacement. The reactor went back to routine operation on February 14, 1985, and has been operating without problem since then. All performance parameters were met. Other upgrading actions started during the year concerned new heat exchangers and improvements to the reactor building complex. The experimental load of the High Flux Reactor reached a satisfactory level with an average of 57%. New developments aimed at future safety related irradiation tests and at novel applications of neutrons from the horizontal beam tubes. A unique remote encapsulation hot cell facility became available adding new possibilities for fast breeder fuel testing and for intermediate specimen examination. The HFR Programme hosted an international meeting on development and use of reduced enrichment fuel for research reactors. All aspects of core physics, manufacture technology, and licensing of novel, proliferation-free, research reactor fuel were debated

  18. IAEA activities in the field of research reactors safety

    International Nuclear Information System (INIS)

    Ciuculescu, C.; Boado Magan, H.J.

    2004-01-01

    IAEA activities in the field of research reactor safety are included in the programme of the Division of Nuclear Installations Safety. Following the objectives of the Division, the results of the IAEA missions and the recommendations from International Advisory Groups, the IAEA has conducted in recent years a certain number of activities aiming to enhance the safety of research reactors. The following activities will be presented: (a) the new Requirements for the Safety of Research Reactors, main features and differences with previous standards (SS-35-S1 and SS-35-S2) and the grading approach for implementation; (b) new documents being developed (safety guides, safety reports and TECDOC's); (c) activities related to the Incident Reporting System for Research Reactor (IRSRR); (d) the new features implemented for the INSARR missions; (e) the Code of Conduct on the Safety of Research Reactors adopted by the Board of Governors on 8 March 2004, following the General Conference Resolution GC(45)/RES/10; and (f) the survey on the safety of research reactors published on the IAEA website on February 2003 and the results obtained. (author)

  19. On-off controller for installation to test the pressurized water reactor material

    International Nuclear Information System (INIS)

    Zauq, M.H.

    1982-05-01

    This report describes the design of an ON-OFF controller based on the 6800 microprocessor in its assembly language and its interfacing with its environment (sensors, periphery, etc). The controller is meant to control the temperature and the pressure inside an experimental chamber in which the material under test is placed. The ''Design basis accident'' conditions (e.g., LOCA) for a pressurized water reactor are simulated in the experimental chamber [fr

  20. Aging of reactor vessels in LWR type reactors

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Serrano, M.

    2004-01-01

    Most of the degradation mechanisms of nuclear components were not included on the design so they have to be treated a posteriori, and that imply a loss of capacity. In this paper the state of the art on the reactor pressure vessel neutron embrittlement and on the irradiation assisted stress corrosion cracking that affects internal components, are explained. Special attention is devoted on the influence of the neutron fluence on IASCC process, on the material alterations promoted by irradiation and their consequences on the susceptibility to this phenomenon. Regarding the reactor pressure vessel degradation, this paper discuss the application of the Master Curve on the structural integrity evaluation of the vessel. Other aspects related to further developments are also mentioned and the importance of a good materials ageing management on the operation of the plant is pointed out. (Author) 12 refs

  1. Reactivity requirements and safety systems for heavy water reactors

    International Nuclear Information System (INIS)

    Kati, S.L.; Rustagi, R.S.

    1977-01-01

    The natural uranium fuelled pressurised heavy water reactors are currently being installed in India. In the design of nuclear reactors, adequate attention has to be given to the safety systems. In recent years, several design modifications having bearing on safety, in the reactor processes, protective and containment systems have been made. These have resulted either from new trends in safety and reliability standards or as a result of feed-back from operating reactors of this type. The significant areas of modifications that have been introduced in the design of Indian PHWR's are: sophisticated theoretical modelling of reactor accidents, reactivity control, two independent fast acting systems, full double containment and improved post-accident depressurisation and building clean-up. This paper brings out the evolution of design of safety systems for heavy water reactors. A short review of safety systems which have been used in different heavy water reactors, of varying sizes, has been made. In particular, the safety systems selected for the latest 235 MWe twin reactor unit station in Narora, in Northern India, have been discussed in detail. Research and Development efforts made in this connection are discussed. The experience of design and operation of the systems in Rajasthan and Kalpakkam reactors has also been outlined

  2. Monochromatic neutron beam production at Brazilian nuclear research reactors

    Science.gov (United States)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  3. 46 CFR 193.10-90 - Installations contracted for prior to March 1, 1968.

    Science.gov (United States)

    2010-10-01

    ... service so long as they are maintained in good condition to the satisfaction of the Officer in Charge, Marine Inspection. Minor repairs, alterations, and replacements may be permitted to the same standards as...) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 193.10-90 Installations...

  4. A personal computer based console monitor for a TRIGA reactor

    International Nuclear Information System (INIS)

    Rieke, Phillip E.; Hood, William E.; Razvi, Junaid

    1990-01-01

    Numerous improvements have been made to the Mark F facility to provide a minimum reactor down time, giving a high reactor availability. A program was undertaken to enhance the monitoring capabilities of the instrumentation and control system on this reactor. To that end, a personal computer based console monitoring system has been developed, installed in the control room and is operational to provide real-time monitoring and display of a variety of reactor operating parameters. This system is based on commercially available hardware and an applications software package developed internally at the GA facility. It has (a) assisted the operator in controlling reactor parameters to maintain the high degree of power stability required during extended runs with thermionic devices in-core, and (b) provided data trending and archiving capabilities on all monitored channels to allow a post-mortem analysis to be performed on any of the monitored parameters

  5. Interim waste storage for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Benedict, R.W.; Phipps, R.D.; Condiff, D.W.

    1991-01-01

    The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes that are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig

  6. Research reactors; Les piles de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Kowarski, L. [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires]|[Organisation europeenne pour la Recherche Nucleaire, Geneve (Switzerland)

    1955-07-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  7. Research reactors; Les piles de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Kowarski, L [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires; [Organisation europeenne pour la Recherche Nucleaire, Geneve (Switzerland)

    1955-07-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  8. Installing Omeka

    Directory of Open Access Journals (Sweden)

    Jonathan Reeve

    2016-07-01

    Full Text Available Omeka.net is a useful service for Omeka beginners, but there are a few reasons why you might want to install your own copy of Omeka. Reasons include: * Upgrades. By installing Omeka yourself, you can use the latest versions of Omeka as soon as they’re released, without having to wait for Omeka.net to upgrade their system. * Plugins and themes. You can install any plugin or theme you want, without being restricted to those provided by Omeka.net. * Customizations. You can buy a custom domain name, and customize your code to achieve your desired functionality. * Control. You have control over your own backups, and you can update the server yourself so that its security is always up-to-date. * Price. There are many low-cost Virtual Private Servers (VPSs now, some of which cost only $5 per month. * Storage. Many shared hosting providers now offer unlimited storage. This is useful if you have a large media library. In this tutorial, we’ll be entering a few commands on the command line. This tutorial assumes no prior knowledge of the command line, but if you want a concise primer, consult the Programming Historian introduction to BASH. There are other ways of installing Omeka, of course, some using exclusively GUI tools. Some hosting providers even offer “one-click installs” via their control panels. Many of those methods, however, will install older versions of Omeka which are then harder to upgrade and maintain. The method outlined below may not be the easiest way to install Omeka, but it will give you some good practice with using the command line, which is a skill that will be useful if you want to manually upgrade your install, or manually install other web frameworks. (For example, this installation method is very similar to WordPress’s “Five-Minute Install”. There are four steps to this process, and it should take about an hour.

  9. Feasibility study to develop BNCT facility at the Indonesian research reactor

    International Nuclear Information System (INIS)

    Hastowo, H.

    2001-01-01

    A survey on the Indonesian research reactors and its supporting facilities has been done in order to check the possibility to install BNCT facility. Oncologists from several hospitals have been informing about the BNCT treatment for tumours and they give a positive response to support utilisation of the BNCT facility. Several aspects required to support the BNCT treatment have also been identified and related activities on that matter soon will be initiated. The interim result in our survey indicated that utilisation of the 30 MW Multipurpose reactor would not be possible from the technical point of view. Further study will be concentrated on the TRIGA reactor and an epithermal neutron beam facility at the thermal column of this reactor will be designed for further work. (author)

  10. The Osiris reactor. Descriptive report - Volume 1 - text

    International Nuclear Information System (INIS)

    1969-05-01

    Osiris is a pool type reactor with a 70 MW thermal power. Its main purpose is to irradiate under high flows of neutrons the materials of which future nuclear power stations are made. This report proposes a description of this pool reactor. A first part describes the functional aspects and general characteristics of all installations which are in principle definitely defined (premises, irradiation and experimentation equipment, water circuits, power supply, venting, controls). The second part addresses elements which are likely to be changed, and more particularly the reactor core: fuel elements and controls (uranium and boron load in different fuel element generations, experimental locations within the core), neutron transport aspects (calculation and experiment), and thermal aspects (power generation and removal) of the pile). The third part addresses the operation: operation cycles, stops, exploitation organisation [fr

  11. Diamond Ordinance Radiation Facility (DORF) reactor operating experiences

    International Nuclear Information System (INIS)

    Gieseler, Walter

    1970-01-01

    The Diamond Ordnance Radiation Facility Mark F Reactor is described and some of the problems encountered with its operation are discussed. In a period from reactor startup in September 1961 to June 1964, when the aluminum-clad core was changed to a stainless-steel clad core, a total of 30 fuel elements were removed from reactor service because of excessive growth. One leaking fuel element was detected during the lifetime of the aluminum- clad core. In June 1964, the core was changed to the stainless-steel-clad high hydride fuel elements. Since the installation of the stainless-steel-clad fuel element core, there has been a gradual decline of excess reactivity. Various theories were discussed as the cause but the investigations have resulted in no definitive conclusion that could account for the total reactivity loss

  12. Enhancements to the SLOWPOKE-2 nuclear research reactor at the Royal Military College of Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hungler, P.C.; Andrews, M.T.; Weir, R.D.; Nielson, K.S.; Chan, P.K.; Bennett, L.G.I., E-mail: paul.hungler@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2014-07-01

    In 1985 a Safe Low Power C(K)ritical Experiment (SLOWPOKE) nuclear research reactor was installed at the Royal Military College of Canada (RMCC). The reactor at nominally 20 kW thermal was named SLOWPOKE-2 and the core was designed to have a total of 198 fuel pins with Low Enriched Uranium (LEU) fuel (19.89% U-235). Installation of the reactor was intended to provide an education tool for members of the Canadian Armed Forces (CAF) and an affordable neutron source for the application of neutron activation analysis (NAA) and radioisotope production. Today, the SLOWPOKE-2 at RMCC continues to be a key education tool for undergraduate and post-graduate students and successfully conducts NAA and isotope production as per its original design intent. RMCC has significantly upgraded the facility and instruments to develop capabilities such as delayed neutron and gamma counting (DNGC) and neutron imaging, including 2D thermal neutron radiography and 3D thermal neutron tomography. These unique nuclear capabilities have been applied to relevant issues in the CAF. The analog control system originally installed in 1985 has been removed and replaced in 2001 by the SLOWPOKE Integrated Reactor Control and Instrumentation System (SIRCIS) which is a digital controller. This control system continues to evolve with SIRCIS V2 currently in operation. The continual enhancement of the facility, instruments and systems at the SLOWPOKE-2 at RMCC will be discussed, including an update on RMCC's refueling plan. (author)

  13. Enhancements to the SLOWPOKE-2 nuclear research reactor at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Hungler, P.C.; Andrews, M.T.; Weir, R.D.; Nielson, K.S.; Chan, P.K.; Bennett, L.G.I.

    2014-01-01

    In 1985 a Safe Low Power C(K)ritical Experiment (SLOWPOKE) nuclear research reactor was installed at the Royal Military College of Canada (RMCC). The reactor at nominally 20 kW thermal was named SLOWPOKE-2 and the core was designed to have a total of 198 fuel pins with Low Enriched Uranium (LEU) fuel (19.89% U-235). Installation of the reactor was intended to provide an education tool for members of the Canadian Armed Forces (CAF) and an affordable neutron source for the application of neutron activation analysis (NAA) and radioisotope production. Today, the SLOWPOKE-2 at RMCC continues to be a key education tool for undergraduate and post-graduate students and successfully conducts NAA and isotope production as per its original design intent. RMCC has significantly upgraded the facility and instruments to develop capabilities such as delayed neutron and gamma counting (DNGC) and neutron imaging, including 2D thermal neutron radiography and 3D thermal neutron tomography. These unique nuclear capabilities have been applied to relevant issues in the CAF. The analog control system originally installed in 1985 has been removed and replaced in 2001 by the SLOWPOKE Integrated Reactor Control and Instrumentation System (SIRCIS) which is a digital controller. This control system continues to evolve with SIRCIS V2 currently in operation. The continual enhancement of the facility, instruments and systems at the SLOWPOKE-2 at RMCC will be discussed, including an update on RMCC's refueling plan. (author)

  14. RELAP5-3D version 4.0.3: installation and tests for applications to space reactors

    International Nuclear Information System (INIS)

    Lobo, Paulo D.C.; Braz Filho, Francisco A.; Borges, Eduardo M.; Guimaraes, Lamartine N.F.; Sabundjian, Gaiane

    2013-01-01

    To attend the TERRA project (Tecnologia de Reatores Rapidos Avancados), currently conducted by the Nuclear Energy Division (ENU) of the IEAv, this work presents the RELAP5-3D, Version 4.0.3, prepared in July 12, 2012, also known as r3d403is, received recently by the IEAv from the Idaho National Laboratory (INL). This version of RELAP5-3D is configured for the International User Group source Code Group and is developed and maintained at the INL for the US Department of Energy. RELAP5-3D, the latest in the series of RELAP5 codes, is a highly generic code that, in addition to calculating the behavior of a reactor coolant system during a transient, can be used for simulation of a wide variety of hydraulic and thermal transients in both nuclear and nonnuclear systems involving mixtures of vapor, liquid, noncondensable gases, and nonvolatile solute. Enhancements include all features and models previously available in the ATHENA configuration version of the code which are as follows: addition of new work fluids and a magneto-hydrodynamic mode. Following the instructions from the README file, the RELAP5-3D, version 4.0.3 was installed creating the necessaries subdirectories, by using the LINUX platform and applying both Intel Fortran 95 and C-language compilers. Many input examples were executed and the same results were observed as compared to the received documentation. A sample of the Edwards-O'Brien test was evaluated to verify if the code could simulate a LOCA type accident properly. The test executed by the RELAP5-3D demonstrated good agreement with test data including a new output involving the mass flow during the test. (author)

  15. RELAP5-3D version 4.0.3: installation and tests for applications to space reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Paulo D.C.; Braz Filho, Francisco A.; Borges, Eduardo M.; Guimaraes, Lamartine N.F., E-mail: plobo.a@uol.com.br, E-mail: fbraz@ieav.cta.br, E-mail: eduardo@ieav.cta.br, E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil); Sabundjian, Gaiane, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    To attend the TERRA project (Tecnologia de Reatores Rapidos Avancados), currently conducted by the Nuclear Energy Division (ENU) of the IEAv, this work presents the RELAP5-3D, Version 4.0.3, prepared in July 12, 2012, also known as r3d403is, received recently by the IEAv from the Idaho National Laboratory (INL). This version of RELAP5-3D is configured for the International User Group source Code Group and is developed and maintained at the INL for the US Department of Energy. RELAP5-3D, the latest in the series of RELAP5 codes, is a highly generic code that, in addition to calculating the behavior of a reactor coolant system during a transient, can be used for simulation of a wide variety of hydraulic and thermal transients in both nuclear and nonnuclear systems involving mixtures of vapor, liquid, noncondensable gases, and nonvolatile solute. Enhancements include all features and models previously available in the ATHENA configuration version of the code which are as follows: addition of new work fluids and a magneto-hydrodynamic mode. Following the instructions from the README file, the RELAP5-3D, version 4.0.3 was installed creating the necessaries subdirectories, by using the LINUX platform and applying both Intel Fortran 95 and C-language compilers. Many input examples were executed and the same results were observed as compared to the received documentation. A sample of the Edwards-O'Brien test was evaluated to verify if the code could simulate a LOCA type accident properly. The test executed by the RELAP5-3D demonstrated good agreement with test data including a new output involving the mass flow during the test. (author)

  16. Load bearing capacities and elastic-plastic behavior of reactor vessel internals

    International Nuclear Information System (INIS)

    Watanabe, Keita; Nagase, Ryuichi

    2017-01-01

    Radial Support Keys (RSKs) are installed at the bottom of Reactor Vessel Internal (RVI) of Pressurized Water Reactor (PWR) and fit into Core Support Lugs of Reactor Pressure Vessel (RPV). This structure provides reactor core horizontal support and transmits the loads between RVI and RPV. RSK is one of the critical parts of RVI from the view point of earthquake-proof safety. In order to assure the structural integrity of Nuclear Reactor in case of massive earthquake, load bearing capacities of RSK are confirmed by static loading tests with reduced-scale mockups. In addition, collapse loads of actual components calculated by Limit Analyses are conservative enough compared to the load bearing capacities confirmed by the test. Thus, the methodology to calculate collapse load by Limit Analysis is applicable to evaluation of structural integrity for RSK. (author)

  17. Systemic model for the aid for operating of the reactor Siloe

    International Nuclear Information System (INIS)

    Royer, J.C.; Moulin, V.; Monge, F.

    1995-01-01

    The Service of the Reactor Siloe (CEA/DRN/DRE/SRS), fully aware of the abilities and knowledge of his teams in the field of research reactor operating, has undertaken a project of knowledge engineering in this domain. The following aims have been defined: knowledge capitalization for the installation in order to insure its perenniality and valorization, elaboration of a project for the aid of the reactor operators. This article deals with the different actions by the SRS to reach the aims: realization of a technical model for the operation of the Siloe reactor, development of a knowledge-based system for the aid for operating. These actions based on a knowledge engineering methodology, SAGACE, and using industrial tools will lead to an amelioration of the security and the operating of the Siloe reactor. (authors). 13 refs., 7 figs

  18. Over Twenty Years Of Experience In ITU TRIGA MARK-II Reactor

    International Nuclear Information System (INIS)

    Yavuz, Hasbi

    2008-01-01

    I.T.U. TRIGA MARK-II Training and Research Reactor, rated at 250 kW steady-state and 1200 MW pulsing power is the only research and training reactor owned and operated by a university in Turkey. Reactor has been operating since March 11, 1979; therefore the reactor has been operating successfully for more than twenty years. Over the twenty years of operation: - The tangential beam tube was equipped with a neutron radiography facility, which consists of a divergent collimator and exposure room; - A computerized data acquisition system was designed and installed such that all parameters of the reactor, which are observed from the console, could be monitored both in normal and pulse operations; - An electrical power calibration system was built for the thermal power calibration of the reactor; - Publications related with I.T.U. TRIGA MARK-II Training and Research Reactor are listed in Appendix; - Two majors undesired shutdown occurred; - The I.T.U. TRIGA MARK-II Training and Research Reactor is still in operation at the moment. (authors)

  19. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2015-05-15

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core by feeding into multiple stationary jet pumps inside the vessel. Together with the jet pumps, they allow station operators to vary coolant flow and variable pump speed provides the best and most stable reactor power control. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. This article describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motor-generator set. This article will also discuss the 2,500 hour laboratory test results conducted under reactor recirculation pump sealing conditions using a newly developed seal face technology recently implemented to overcome challenges when sealing neutral, ultra-pure water. In addition, the article will describe the elaborate shaft grounding arrangement and the preliminary measurement results achieved in order to eliminate potential damages to both pump and mechanical seal.

  20. Actions needed for RA reactor exploitation - I-IV, Part II, Design project VI-SA 1, Experimental loop for testing the EL-4 reactor fuel elements in the central vertical experimental channel of the RA reactor in Vinca; Radovi za potrebe eksploatacije reaktora RA - I-IV, II Deo, Predprojekat VI-SA 1, Petlja za ispitivanje gorivnih elemenata reaktora EL-4 u centralnom vertikalnom eksperimentalnom kanalu reaktora RA u Vinci

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The objective of installing the VISA-1 loop was testing the fuel elements of the EL-4 reactor. The fuel elements planned for testing are natural UO{sub 2} with beryllium cladding, cooled by CO{sub 2} under nominal pressure of 60 at and temperature 600 deg C. central vertical experimental channel of the RA reactor was chosen for installing a test loop cooled by CO{sub 2}. This report contains the detailed design project of the testing loop with the control system and safety analysis of the planned experiment.

  1. Innovative designs of nuclear reactors

    International Nuclear Information System (INIS)

    Gabaraev, B.A.; Cherepnin, Y.S.

    2010-01-01

    The world development scenarios predict at least a 2.5 time increase in the global consumption of primary energy in the first half of the twenty-first century. Much of this growth can be provided by the nuclear power which possesses important advantages over other energy technologies. However, the large deployment of nuclear sources may take place only when the new generation of reactors appears on the market and will be free of the shortcomings found in the existing nuclear power installations. The public will be more inclined to accept nuclear plants that have better economics; higher safety; more efficient management of the radioactive waste; lower risk of nuclear weapons proliferation, and provided that the focus is made on the energy option free of ∇ e 2 generation. Currently, the future of nuclear power is trusted to the technology based on fast reactors and closed fuel cycle. The latter implies reprocessing of the spent nuclear fuel of the nuclear plants and re-use of plutonium produced in power reactors

  2. Nuclear reactor vessel decontamination systems

    International Nuclear Information System (INIS)

    McGuire, P. J.

    1985-01-01

    There is disclosed in the present application, a decontamination system for reactor vessels. The system is operatable without entry by personnel into the contaminated vessel before the decontamination operation is carried out and comprises an assembly which is introduced into the vertical cylindrical vessel of the typical boiling water reactor through the open top. The assembly includes a circular track which is centered by guideways permanently installed in the reactor vessel and the track guides opposed pairs of nozzles through which water under very high pressure is directed at the wall for progressively cutting and sweeping a tenacious radioactive coating as the nozzles are driven around the track in close proximity to the vessel wall. The whole assembly is hoisted to a level above the top of the vessel by a crane, outboard slides on the assembly brought into engagement with the permanent guideways and the assembly progressively lowered in the vessel as the decontamination operation progresses. The assembly also includes a low pressure nozzle which forms a spray umbrella above the high pressure nozzles to contain radioactive particles dislodged during the decontamination

  3. Design of Seismic Test Rig for Control Rod Drive Mechanism of Jordan Research and Training Reactor

    International Nuclear Information System (INIS)

    Sun, Jongoh; Kim, Gyeongho; Yoo, Yeonsik; Cho, Yeonggarp; Kim, Jong In

    2014-01-01

    The reactor assembly is submerged in a reactor pool filled with water and its reactivity is controlled by locations of four control absorber rods(CARs) inside the reactor assembly. Each CAR is driven by a stepping motor installed at the top of the reactor pool and they are connected to each other by a tie rod and an electromagnet. The CARs scram the reactor by de-energizing the electromagnet in the event of a safe shutdown earthquake(SSE). Therefore, the safety function of the control rod drive mechanism(CRDM) which consists of a drive assembly, tie rod and CARs is to drop the CAR into the core within an appropriate time in case of the SSE. As well known, the operability for complex equipment such as the CRDM during an earthquake is very hard to be demonstrated by analysis and should be verified through tests. One of them simulates the reactor assembly and the guide tube of the CAR, and the other one does the pool wall where the drive assembly is installed. In this paper, design of the latter test rig and how the test is performed are presented. Initial design of the seismic test rig and excitation table had its first natural frequency at 16.3Hz and could not represent the environment where the CRDM was installed. Therefore, experimental modal analyses were performed and an FE model for the test rig and table was obtained and tuned based on the experimental results. Using the FE model, the design of the test rig and table was modified in order to have higher natural frequency than the cutoff frequency. The goal was achieved by changing its center of gravity and the stiffness of its sliding bearings

  4. Design of Seismic Test Rig for Control Rod Drive Mechanism of Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jongoh; Kim, Gyeongho; Yoo, Yeonsik; Cho, Yeonggarp; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The reactor assembly is submerged in a reactor pool filled with water and its reactivity is controlled by locations of four control absorber rods(CARs) inside the reactor assembly. Each CAR is driven by a stepping motor installed at the top of the reactor pool and they are connected to each other by a tie rod and an electromagnet. The CARs scram the reactor by de-energizing the electromagnet in the event of a safe shutdown earthquake(SSE). Therefore, the safety function of the control rod drive mechanism(CRDM) which consists of a drive assembly, tie rod and CARs is to drop the CAR into the core within an appropriate time in case of the SSE. As well known, the operability for complex equipment such as the CRDM during an earthquake is very hard to be demonstrated by analysis and should be verified through tests. One of them simulates the reactor assembly and the guide tube of the CAR, and the other one does the pool wall where the drive assembly is installed. In this paper, design of the latter test rig and how the test is performed are presented. Initial design of the seismic test rig and excitation table had its first natural frequency at 16.3Hz and could not represent the environment where the CRDM was installed. Therefore, experimental modal analyses were performed and an FE model for the test rig and table was obtained and tuned based on the experimental results. Using the FE model, the design of the test rig and table was modified in order to have higher natural frequency than the cutoff frequency. The goal was achieved by changing its center of gravity and the stiffness of its sliding bearings.

  5. Installation report - Lidar

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Villanueva, Héctor

    The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project.......The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project....

  6. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Moe

    2013-10-01

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license

  7. Robotic dismantlement systems at the CP-5 reactor D and D project

    International Nuclear Information System (INIS)

    Seifert, L. S.

    1998-01-01

    The Chicago Pile 5 (CP-5) Research Reactor Facility is currently undergoing decontamination and decommissioning (D and D) at the Argonne National Laboratory (ANL) Illinois site. CP-5 was the principle nuclear reactor used to produce neutrons for scientific research at Argonne from 1954 to 1979. The CP-5 reactor was a heavy-water cooled and moderated, enriched uranium-fueled reactor with a graphite reflector. The CP-5 D and D project includes the disassembly, segmentation and removal of all the radioactive components, equipment and structures associated with the CP-5 facility. The Department of Energy's Robotics Technology Development Program and the Federal Energy Technology Center, Morgantown Office provided teleoperated, remote systems for use in the dismantlement of the CP-5 reactor assembly for tasks requiring remote dismantlement as part of the EM-50 Large-Scale Demonstration Program (LSDP). The teleoperated systems provided were the Dual Arm Work Platform (DAWP), the Rosie Mobile Teleoperated Robot Work System (ROSIE), and a remotely-operated crane control system with installed swing-reduction control system. Another remotely operated apparatus, a Brokk BM250, was loaned to ANL by the Princeton Plasma Physics Laboratory (PPPL). This machine is not teleoperated and was not part of the LSDP, but deserves some mention in this discussion. The DAWP is a robotic dismantlement system that includes a pair of Schilling Robotic Systems Titan III hydraulic manipulator arms mounted to a specially designed support platform: a hydraulic power unit (HPU) and a remote operator console. The DAWP is designed to be crane-suspended for remote positioning. ROSIE, developed by RedZone Robotics, Inc. is a mobile, electro-hydraulic, omnidirectional platform with a heavy-duty telescoping boom mounted to the platform's deck. The work system includes the mobile platform (locomotor), a power distribution unit (PDU) and a remote operator console. ROSIE moves about the reactor building

  8. Improvement of pulsing operation performance in the Nuclear Safety Research Reactor (NSRR)

    International Nuclear Information System (INIS)

    Kobayasi, S.; Ishijima, K.; Tanzawa, S.; Fujishiro, T.; Horiki, O.

    1990-01-01

    The Nuclear Safety Research Reactor (NSRR) is one of the TRIGA-type research reactors widely used in the world, and has mainly been used for studying reactor fuel behaviour during postulated reactivity-initiated accidents (RIAs). Its limited pulsing operation capability, however, could produce only a power burst from low power level simulating an RIA event from essentially zero power level. A computerized automatic reactor control system was developed and installed in the NSRR to simulate a wide range of abnormal events in nuclear power plants. This digitalized reactor control system requires no manipulation of the control rods by reactor operators during the course of the pulsing operation. Using this fully automated operation system, a variety of power transients such as power ramping, power bursts from high power level, and so on were made possible with excellent stability and safety. The present modification work in the NSRR and its fruitful results indicate new possibilities in the utilization of the TRIGA type research reactor

  9. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    Full text: The Australian federal government gave ANSTO final approval to build a research reactor to replace HIFAR on August 25th 1999. The replacement reactor is to be a multipurpose reactor with a thermal neutron flux of 3 x 10 14 n.cm -2 .s -1 and having improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The replacement reactor will commence operation in 2005 and will cater for Australian scientific, industrial and medical needs well into the 21st century. The scientific capabilities of the neutron beams at the replacement reactor are being developed in consultation with representatives from academia, industry and government research laboratories to provide a facility for condensed matter research in physics, chemistry, materials science, life sciences, engineering and earth sciences. Cold, thermal and hot neutron sources are to be installed, and neutron guides will be used to position most of the neutron beam instruments in a neutron guide hall outside the reactor confinement building. Eight instruments are planned for 2005, with a further three to be developed by 2010. A conceptual layout for the neutron beam facility is presented including the location of the planned suite of neutron beam instruments. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by an accredited reactor builder in a turnkey contract. Tenders have been called for December 1999, with selection of contractor planned by June 2000. The neutron beam instruments will be developed by ANSTO and other contracted organisations in consultation with the user community and interested overseas scientists. The facility will be based, as far as possible, around a neutron guide hall that is be served by three thermal and three cold neutron guides. Efficient transportation of thermal and cold neutrons to the guide hall requires the use of modern super

  10. Proceedings of the third CSNI workshop on iodine chemistry in reactor safety

    International Nuclear Information System (INIS)

    Ishigure, Kenkichi; Saeki, Masakatsu; Soda, Kunihisa; Sugimoto, Jun

    1992-03-01

    This issue is the collection of the papers presented at the CSNI (Committee on the Safety of Nuclear Installations) workshop on iodine chemistry in reactor safety. The 31 of the presented papers are indexed individually. (J.P.N.)

  11. Recovery of a broken inspection lance from the reactor vessel of the German sodium cooled fast breeder reactor SNR 300

    International Nuclear Information System (INIS)

    Menck, J.W.; Hoeft, E.; Kirchner, G.

    1988-01-01

    An inspection lance for flow and vibration measurements was installed into the SNR-300 rotating plug. Centering and guiding of the lower end of the lance was effected in the central grid plate insert. The lance was torn off due to handling problems. The task consisted in recovering all defective parts from the reactor vessel and re-establishing the intact initial state. (author)

  12. Research projects at the TRIGA-reactor Vienna

    International Nuclear Information System (INIS)

    Boeck, H.; Buchberger, T.; Buchtela, K.; Hammer, J.; Miksovsky, A.; Veider, A.; Weber, H.W.; Zugarek, G.

    1986-01-01

    In 1985 the thermalizing column was modified to a beam tube with a conical collimator for neutron radiography. A highly sophisticated sample and cassette changer will be constructed in the next months. The central channel of the thermal column is also used for neutron radiography especially for small objects. The four beam tubes of the TRIGA-reactor are intensively used for neutron spectroscopy, small angle scattering, neutron interferometry and investigations of magnetic structures with polarized neutrons. The neutron activation installation in the piecing beam tube is permanently used for various sample analysis using a ultrafast pneumatic transfer system. In addition to these experiments directly related to the TRIGA-reactor other research projects are carried out, some of them under an IAEA research contract which are mostly focused towards nuclear safeguards such as the magnetic scanning of power reactor fuel assemblies or the laser surveillance system of spent fuel pools. (author)

  13. Concept of automated system for spent fuel utilization ('Reburning') from compact nuclear reactors

    International Nuclear Information System (INIS)

    Ianovski, V.V.; Lozhkin, O.V.; Nesterov, M.M.; Tarasov, N.A.; Uvarov, V.I.

    1997-01-01

    On the basic concept of an automated system of nuclear power installation safety is developed the utilization project of spent fuel from compact nuclear reactors. The main features of this project are: 1. design and creation of the mobile model-industrial installation; 2. development of the utilization and storage diagram of the spent fuel from compact nuclear reactors, with the specific recommendation for the natatorial means using both for the nuclear fuel reburning, for its transportation in places of the storage; 3. research of an opportunity during the utilization process to obtain additional power resources, ozone and others to increase of justifying expenses at the utilization; 4. creation of new generation engineering for the automation of remote control processes in the high radiation background conditions. 7 refs., 1 fig

  14. Surface and ground waters evaluation at Brazilian Multiproposed Reactor installation area

    International Nuclear Information System (INIS)

    Stellato, Thamiris B.; Silva, Tatiane B.S.C.da; Soares, Sabrina M.V.; Faustino, Mainara G.; Marques, Joyce R.; Oliveira, Cintia C. de; Monteiro, Lucilena R.; Pires, Maria A.F.; Cotrim, Marycel E.B.

    2017-01-01

    This study evaluates six surface and ground waters physicochemical characteristics on the area of the future Brazilian Multipurpose Reactor (RMB), at Iperó/SP. One of the main goals is to establish reference values for future operation monitoring programs, as well as for environmental permits and regulation. Considering analyzed parameters, all collection points presented values within CONAMA Resolution 396/08 and 357/05 regulation limits, showing similar characteristics among collection points.Only two points groundwater (RMB-005 and RMB-006) presented higher alkalinity, total dissolved solids and conductivity. The studied area was considered in good environmental conservation condition, as far as water quality is concerned. (author)

  15. The Effect of Flow Swirling on the Safety and Reliability of Nuclear Power Installations of New Generation

    Science.gov (United States)

    Mitrofanova, O. V.; Ivlev, O. A.; Urtenov, D. S.

    2018-03-01

    Hydrodynamics and heat exchange in the elements of thermal hydraulic tracts of ship nuclear reactors of the new generation were numerically simulated in this work. Parts of the coolant circuit in the collector and piping systems with geometries that may lead to generation of stable large-scale vortexes, causing a wide range of acoustic oscillations of the coolant, were selected as modeling objects. The purpose of the research is to develop principles of physical and mathematical modeling for scientific substantiation of optimal layout solutions that ensure enhanced operational life of icebreaker’s nuclear power installations of new generation with reactors of integral type.

  16. The Intense Slow Positron Beam Facility at the NC State University PULSTAR Reactor

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Moxom, Jeremy; Hathaway, Alfred G.; Brown, Benjamin; Gidley, David W.; Vallery, Richard; Xu, Jun

    2009-01-01

    An intense slow positron beam is in its early stages of operation at the 1-MW open-pool PULSTAR research reactor at North Carolina State University. The positron beam line is installed in a beam port that has a 30-cmx30-cm cross sectional view of the core. The positrons are created in a tungsten converter/moderator by pair-production using gamma rays produced in the reactor core and by neutron capture reactions in cadmium cladding surrounding the tungsten. Upon moderation, slow (∼3 eV) positrons that are emitted from the moderator are electrostatically extracted, focused and magnetically guided until they exit the reactor biological shield with 1-keV energy, approximately 3-cm beam diameter and an intensity exceeding 6x10 8 positrons per second. A magnetic beam switch and transport system has been installed and tested that directs the beam into one of two spectrometers. The spectrometers are designed to implement state-of-the-art PALS and DBS techniques to perform positron and positronium annihilation studies of nanophases in matter.

  17. Control program of the neutron four-circle-diffractometer P32 at the SILOE reactor/CEN Grenoble

    International Nuclear Information System (INIS)

    Guth, H.; Paulus, H.; Reimers, W.; Heger, G.

    1983-09-01

    The four-circle diffractometer P32 for elastic neutron scattering on single crystals was installed at the SILOE reactor/CEN Grenoble in 1981. The control program, presented here, is a new update of the former program versions used at the FR2 reactor/Kernforschungszentrum Karlsruhe. Important improvements concerning reliability and handling of the diffractometer are added. (orig.) [de

  18. Control program of the neutron four-circle-diffractometer P110 at the ORPHEE reactor/CEN Saclay

    International Nuclear Information System (INIS)

    Guth, H.; Paulus, H.; Reimers, W.; Heger, G.

    1984-05-01

    The four-circle diffractometer P110 for elastic neutron scattering on single crystals was installed at the ORPHEE reactor/CEN Saclay in 1982. The control progam, presented here, is a new update of the former program versions used at the FR2 reactor. Important improvements concerning reliability and handling of the diffractometer are added. (orig./HP) [de

  19. Installation for the study of heat transfer with high flux density; Installation d'etude de transmission de chaleur a densite de flux elevee

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M; Schwab, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    As a result of their very low vapor pressure, metals with a low fusion point (sodium, sodium-potassium alloys, etc.) can be used at high temperature, as heating fluids, in installations whose internal pressure is close to atmospheric pressure. Owing to the very high convection coefficients which can be reached with these fluids and to the large temperature differences utilizable, it is possible to produce through the exchange surfaces considerable heat flux densities, of the order of those which exist through the canning of fuel elements in nuclear reactors. The installation described allowed a flux density of more than 200 W/cm{sup 2} to be obtained, the heating fluid being a Na-K alloy (containing 56 per cent by weight of potassium) brought to a temperature around 550 deg. C. (author) [French] Par suite de leur tres faible pression de vapeur, les metaux a bas point de fusion (sodium, alliages sodium-potassium, etc.) peuvent etre utilises a haute temperature, comme fluides de chauffage, dans des installations dont la pression interne est voisine de la pression atmospherique. Grace aux coefficients de convection tres eleves que ces fluides permettent d'atteindre et aux importantes differences de temperature utilisables, il est possible de produire, a travers les surfaces d'echange, des densites de flux de chaleur considerables, de l'ordre de celles qui existent a travers les gaines des elements combustibles des reacteurs nucleaires. L'installation decrite a permis l'obtention d'une densite de flux de plus, de 200 W/cm{sup 2}, le fluide chauffant etant de l'alliage Na-K (a 56 pour cent en poids de potassium) porte a une temperature voisine de 550 deg. C. (auteur)

  20. Experiments in power distribution control on the IRT-2000 reactor

    International Nuclear Information System (INIS)

    Filipchuk, E.V.; Potapenko, P.T.; Trofimov, A.P.; Kosilov, A.N.; Neboyan, V.T.; Timokhin, E.S.

    1975-01-01

    The results from the experimental investigations of a system for regulating the neutron field on a research reactor IRT-2000 are shown. The right of such experiments on a reactor with a little active zone is substantiated. A successful attempt was made in this work to apply primary elements of straight charging in the neutron field regulating system. A system with independent instrumentally local regulators, a system with hard cross connections and a structure with a ''floating'' installation are studied. Serial common industrial regulators BRT-2 were used