WorldWideScience

Sample records for reactor ii ebr-ii

  1. Experience with automatic reactor control at EBR-II

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Christensen, L.J.

    1985-01-01

    Satisfactory operation of the ACRDS has extended the capabilities of EBR-II to a transient test facility, achieving automatic transient control. Test assemblies can now be irradiated in transient conditions overlapping the slower transient capability of the TREAT reactor

  2. Experience with EBR-II [Experimental Breeder Reactor] driver fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Porter, D.L.; Walters, L.C.; Hofman, G.L.

    1986-01-01

    The exceptional performance of Experimental Breeder Reactor-II (EBR-II) metallic driver fuel has been demonstrated by the irradiation of a large number of elements under steady-state, transient overpower, and loss-of-flow conditions. High burnup with high reliability has been achieved by a close coupling of element design and materials selection. Quantification of reliability has allowed full utilization of element lifetime. Improved design and duct materials currently under test are expected to increase the burnup from 8 to 14 at.%

  3. Data handling at EBR-II [Experimental Breeder Reactor II] for advanced diagnostics and control work

    International Nuclear Information System (INIS)

    Lindsay, R.W.; Schorzman, L.W.

    1988-01-01

    Improved control and diagnostics systems are being developed for nuclear and other applications. The Experimental Breeder Reactor II (EBR-II) Division of Argonne National Laboratory has embarked on a project to upgrade the EBR-II control and data handling systems. The nature of the work at EBR-II requires that reactor plant data be readily available for experimenters, and that the plant control systems be flexible to accommodate testing and development needs. In addition, operational concerns require that improved operator interfaces and computerized diagnostics be included in the reactor plant control system. The EBR-II systems have been upgraded to incorporate new data handling computers, new digital plant process controllers, and new displays and diagnostics are being developed and tested for permanent use. In addition, improved engineering surveillance will be possible with the new systems

  4. Current status of experimental breeder reactor-II [EBR-II] shutdown planning

    International Nuclear Information System (INIS)

    McDermott, M. D.; Griffin, C. D.; Michelbacher, J. A.; Earle, O. K.

    2000-01-01

    The Experimental Breeder Reactor--II (EBR-II) at Argonne National Laboratory--West (ANL-W) in Idaho, was shutdown in September, 1994 as mandated by the US Department of Energy. This sodium cooled reactor had been in service since 1964, and was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the Sodium Process Facility. The sodium environment and the EBR-II configuration, combined with the radiation and contamination associated with thirty years of reactor operation, posed problems specific to liquid metal reactor deactivation. The methods being developed and implemented at EBR-II can be applied to other similar situations in the US and abroad

  5. EBR-II Data Digitization

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sackett, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    1. Objectives To produce a validation database out of those recorded signals it will be necessary also to identify the documents need to reconstruct the status of reactor at the time of the beginning of the recordings. This should comprehends the core loading specification (assemblies type and location and burn-up) along with this data the assemblies drawings and the core drawings will be identified. The first task of the project will be identify the location of the sensors, with respect the reactor plant layout, and the physical quantities recorded by the Experimental Breeder Reactor-II (EBR-II) data acquisition system. This first task will allow guiding and prioritizing the selection of drawings needed to numerically reproduce those signals. 1.1 Scopes and Deliverables The deliverables of this project are the list of sensors in EBR-II system, the identification of storing location of those sensors, identification of a core isotopic composition at the moment of the start of system recording. Information of the sensors in EBR-II reactor system was summarized from the EBR-II system design descriptions listed in Section 1.2.

  6. The physics design of EBR-II; Physique du reacteur EBR-II; Fizicheskij raschet ehksperimental'nogo reaktora - razmnozhitelya EVR-II; Aspectos fisicos del reactor EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, W. B. [Argonne National Laboratory, Argonne, IL (United States)

    1962-03-15

    The physics design oi EBR-II. Calculations of the static, dynamic and long-term reactivity behaviour of EBR-II are reported together with results and analysis of EBR-II dry critical and ZPR-III mock-up experiments. Particular emphasis is given to reactor-physics design problems which arise after the conceptual design is established and before the reactor is built or placed into operation. Reactor-safety analyses and hazards-evaluation considerations are described with their influence on the reactor design. The manner of utilizing the EBR-II mock-up on ZPR-III data and the EBR-II dry critical data is described. These experiments, their analysis and theoretical predictions are the basis for predetermining the physics behaviour of the reactor system. The limitations inherent in applying the experimental data to the performance of the power-reactor system are explored in some detail. This includes the specification of reactor core size and/or fuel-alloy enrichment, provisions for adequate operating and shut-down reactivity, determination of operative temperature and power coefficients of reactivity, and details of power- and flux-distribution as a function of position within the reactor structure. The overall problem of transferring information from simple idealized analytical or experimental geometry to actual hexagonal reactor geometry is described. Nuclear performance, including breeding, of the actual reactor system is compared with that of the idealized conceptual system. The long-term reactivity and power behaviour of the reactor blanket is described within the framework of the proposed cycling of the fuel and blanket alloy. Safety considerations, including normal and abnormal rates of reactivity-insertion, the implication of postulated reactivity effects based on the physical behaviour of the fuel alloy and reactor structure as well as extrapolation of TREAT experiments to the EBR-II system are analysed. The EBR-II core melt-down problem is reviewed. (author

  7. The roles of EBR-II and TREAT [Transient Reactor Test] in establishing liquid metal reactor safety

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Solbrig, C.W.

    1990-01-01

    This paper examines the role of the Experimental Breeder Reactor II (EBR-II) and Transient Reactor Test (TREAT) facilities in contributing to the understanding and resolution of key safety issues in liquid metal reactor safety during the decade of the 80's. Fuels and materials testing has been carried out to address questions on fuels behavior during steady-state and upset conditions. In addition, EBR-II has conducted plant tests to demonstrate passive response to ATWS events and to develop control and diagnostic strategies for safe operation of advanced LMRs. TREAT and EBR-II complement each other and between them provide a transient testing capability that covers the whole range of concerns during overpower conditions. EBR-II, with use of the special Automatic Control Rod Drive System, can generate power change rates that overlap the lower end of the TREAT capability. 21 refs

  8. Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning

    International Nuclear Information System (INIS)

    Eberle, C.S.; Dean, E.M.; Angelo, P.L.

    1995-01-01

    A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations

  9. EBR-II Reactor Physics Benchmark Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Chad L. [Idaho State Univ., Pocatello, ID (United States); Lum, Edward S [Idaho State Univ., Pocatello, ID (United States); Stewart, Ryan [Idaho State Univ., Pocatello, ID (United States); Byambadorj, Bilguun [Idaho State Univ., Pocatello, ID (United States); Beaulieu, Quinton [Idaho State Univ., Pocatello, ID (United States)

    2017-12-28

    This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.

  10. Thermal-structural response of EBR-II major components under reactor operational transients

    International Nuclear Information System (INIS)

    Chang, L.K.; Lee, M.J.

    1983-01-01

    Until recently, the LMFBR safety research has been focused primarily on severe but highly unlikely accident, such as hypothetical-core-disruptive accidents (HCDA's), and not enough attention has been given to accident prevention, which is less severe but more likely sequence. The objective of the EBR-II operational reliability testing (ORT) is to demonstrate that the reactor can be designed and operated to prevent accident. A series of mild duty cycles and overpower transients were designed for accident prevention tests. An assessment of the EBR-II major plant components has been performed to assure structural integrity of the reactor plant for the ORT program. In this paper, the thermal-structural response and structural evaluation of the reactor vessel, the reactor-vessel cover, the intermediate heat exchanger (IHX) and the superheater are presented

  11. Time constants and feedback transfer functions of EBR-II [Experimental Breeder Reactor] subassembly types

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1986-09-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel

  12. The physics design of EBR-II

    International Nuclear Information System (INIS)

    Loewenstein, W.B.

    1962-01-01

    The physics design oi EBR-II. Calculations of the static, dynamic and long-term reactivity behaviour of EBR-II are reported together with results and analysis of EBR-II dry critical and ZPR-III mock-up experiments. Particular emphasis is given to reactor-physics design problems which arise after the conceptual design is established and before the reactor is built or placed into operation. Reactor-safety analyses and hazards-evaluation considerations are described with their influence on the reactor design. The manner of utilizing the EBR-II mock-up on ZPR-III data and the EBR-II dry critical data is described. These experiments, their analysis and theoretical predictions are the basis for predetermining the physics behaviour of the reactor system. The limitations inherent in applying the experimental data to the performance of the power-reactor system are explored in some detail. This includes the specification of reactor core size and/or fuel-alloy enrichment, provisions for adequate operating and shut-down reactivity, determination of operative temperature and power coefficients of reactivity, and details of power- and flux-distribution as a function of position within the reactor structure. The overall problem of transferring information from simple idealized analytical or experimental geometry to actual hexagonal reactor geometry is described. Nuclear performance, including breeding, of the actual reactor system is compared with that of the idealized conceptual system. The long-term reactivity and power behaviour of the reactor blanket is described within the framework of the proposed cycling of the fuel and blanket alloy. Safety considerations, including normal and abnormal rates of reactivity-insertion, the implication of postulated reactivity effects based on the physical behaviour of the fuel alloy and reactor structure as well as extrapolation of TREAT experiments to the EBR-II system are analysed. The EBR-II core melt-down problem is reviewed. (author

  13. Adaptive robust control of the EBR-II reactor

    International Nuclear Information System (INIS)

    Power, M.A.; Edwards, R.M.

    1996-01-01

    Simulation results are presented for an adaptive H ∞ controller, a fixed H ∞ controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H ∞ controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H ∞ and classical controllers. This makes for a superior and more robust controller

  14. Multifrequency tests in the EBR-II reactor plant

    International Nuclear Information System (INIS)

    Feldman, E.E.; Mohr, D.; Gross, K.C.

    1989-01-01

    A series of eight multifrequency tests was conducted on the Experimental Breeder Reactor II. In half of the tests a control rod was oscillated and in the other half the controller input voltage to the intermediate-loop-sodium pump was perturbed. In each test the input disturbance consisted of several superimposed single-frequency sinusoidal harmonics of the same fundamental. The tests are described along with the theoretical and practical aspects of their development and design. Samples of measured frequency responses are also provided for both the reactor and the power plant. 22 refs., 5 figs., 2 tabs

  15. EBR-II [Experimental Breeder Reactor-II] system surveillance using pattern recognition software

    International Nuclear Information System (INIS)

    Mott, J.E.; Radtke, W.H.; King, R.W.

    1986-02-01

    The problem of most accurately determining the Experimental Breeder Reactor-II (EBR-II) reactor outlet temperature from currently available plant signals is investigated. Historically, the reactor outlet pipe was originally instrumented with 8 temperature sensors but, during 22 years of operation, all these instruments have failed except for one remaining thermocouple, and its output had recently become suspect. Using pattern recognition methods to compare values of 129 plant signals for similarities over a 7 month period spanning reconfiguration of the core and recalibration of many plant signals, it was determined that the remaining reactor outlet pipe thermocouple is still useful as an indicator of true mixed mean reactor outlet temperature. Application of this methodology to investigate one specific signal has automatically validated the vast majority of the 129 signals used for pattern recognition and also highlighted a few inconsistent signals for further investigation

  16. EBR-II: summary of operating experience

    International Nuclear Information System (INIS)

    Perry, W.H.; Leman, J.D.; Lentz, G.L.; Longua, K.J.; Olson, W.H.; Shields, J.A.; Wolz, G.C.

    1978-01-01

    Experimental Breeder Reactor II (EBR-II) is an unmoderated, sodium-cooled reactor with a design power of 62.5 MWt. The primary cooling system is a submerged-pool type. The early operation of the reactor successfully demonstrated the feasibility of a sodium-cooled fast breeder reactor operating as an integrated reactor, power plant, and fuel-processing facility. In 1967, the role of EBR-II was reoriented from a demonstration plant to an irradiation facility. Many changes have been made and are continuing to be made to increase the usefulness of EBR-II for irradiation and safety tests. A review of EBR-II's operating history reveals a plant that has demonstrated high availability, stable and safe operating characteristics, and excellent performance of sodium components. Levels of radiation exposure to the operating and maintenance workers have been low; and fission-gas releases to the atmosphere have been minimal. Driver-fuel performance has been excellent. The repairability of radioactive sodium components has been successfully demonstrated a number of times. Recent highlights include installation and successful operation of (1) the hydrogen-meter leak detectors for the steam generators, (2) the cover-gas-cleanup system and (3) the cesium trap in the primary sodium. Irradiations now being conducted in EBR-II include the run-beyond-cladding breach fuel tests for mixed-oxide and carbide elements. Studies are in progress to determine EBR-II's capability for conducting important ''operational safety'' tests. These tests would extend the need and usefulness of EBR-II into the 1980's

  17. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium

  18. Power and power-to-flow reactivity transfer functions in EBR-II [Experimental Breeder Reactor II] fuel

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1989-01-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations

  19. Considerations for advanced reactor design based on EBR-II experience

    International Nuclear Information System (INIS)

    King, R. W.

    1999-01-01

    The long-term success of the Experimental Breeder Reactor-II (EBR-II) provides several insights into fundamental characteristics and design features of a nuclear generating station that enhance safety, operability, and maintainability. Some of these same characteristics, together with other features, offer the potential for operational lifetimes well beyond the current licensing time frame, and improved reliability that could potentially reduce amortized capital costs as well as overall operation and maintenance costs if incorporated into advanced plant designs. These features and characteristics are described and the associated benefits are discussed

  20. Seventeen years of LMFBR experience: Experimental Breeder Reactor II (EBR-II)

    International Nuclear Information System (INIS)

    Perry, W.H.; Lentz, G.L.; Richardson, W.J.; Wolz, G.C.

    1982-01-01

    Operating experience at EBR-II over the past 17 years has shown that a sodium-cooled pool-type reactor can be safely and efficiently operated and maintained. The reactor has performed predictably and benignly during normal operation and during both unplanned and planned plant upsets. The duplex-tube evaporators and superheaters have never experienced a sodium/water leak, and the rest of the steam-generating system has operated without incident. There has been no noticeable degradation of the heat transfer efficiency of the evaporators and superheaters, except for the one superheater replaced in 1981. There has been no need to perform any chemical cleaning of steam-system components

  1. EBR-II: search for the lost subassembly

    International Nuclear Information System (INIS)

    King, R.W.; Buschman, H.W.; Poloncsik, J.; Remsburg, J.S.; Sine, H.W.

    1983-01-01

    Experimental Breeder Reactor II (EBR-II) has been operating for nearly 20 years as part of the foundation of the US Department of Energy's LMFBR development program. During that time, the EBR-II fuel-handling system has performed extremely well, especially considering the conditions under which much of the system operates and the reliability required to maintain the high plant factor routinely demonstrated by EBR-II. Since EBR-II is a pool-type reactor, much of the fuel handling is done remotely within the sodium-filled primary tank at 371 0 C. Activities involved in locating a misplaced fuel subassembly in the primary tank are described

  2. EBR-II high-ramp transients under computer control

    International Nuclear Information System (INIS)

    Forrester, R.J.; Larson, H.A.; Christensen, L.J.; Booty, W.F.; Dean, E.M.

    1983-01-01

    During reactor run 122, EBR-II was subjected to 13 computer-controlled overpower transients at ramps of 4 MWt/s to qualify the facility and fuel for transient testing of LMFBR oxide fuels as part of the EBR-II operational-reliability-testing (ORT) program. A computer-controlled automatic control-rod drive system (ACRDS), designed by EBR-II personnel, permitted automatic control on demand power during the transients

  3. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II [Experimental Breeder Reactor

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs

  4. In-reactor cladding breach of EBR-II driver-fuel elements

    International Nuclear Information System (INIS)

    Seidel, B.R.; Einziger, R.E.

    1977-01-01

    Knowledge of performance and minimum useful element lifetime of Mark-II driver-fuel elements is required to maintain a high plant operating capacity factor with maximum fuel utilization. To obtain such knowledge, intentional cladding breach has been obtained in four run-to-cladding-breach Mark-II experimental driver-fuel subassemblies operating under normal conditions in EBR-II. Breach and subsequent fission-product release proved benign to reactor operations. The breaches originated on the outer surface of the cladding in the root of the restrainer dimples and were intergranular. The Weibull distribution of lifetime accurately predicts the observed minimum useful element lifetime of 10 at.% burnup, with breach ensuing shortly thereafter

  5. Off-normal performance of EBR-II [Experimental Breeder Reactor] driver fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Batte, G.L.; Lahm, C.E.; Fryer, R.M.; Koenig, J.F.; Hofman, G.L.

    1986-09-01

    The off-normal performance of EBR-II Mark-II driver fuel has been more than satisfactory as demonstrated by robust reliability under repeated transient overpower and undercooled loss-of-flow tests, by benign run-beyond-cladding-breach behavior, and by forgiving response to fabrication defects including lack of bond. Test results have verified that the metallic driver fuel is very tolerant of off-normal events. This behavior has allowed EBR-II to operate in a combined steady-state and transient mode to provide test capability without limitation from the metallic driver fuel

  6. Embedded computer systems for control applications in EBR-II

    International Nuclear Information System (INIS)

    Carlson, R.B.; Start, S.E.

    1993-01-01

    The purpose of this paper is to describe the embedded computer systems approach taken at Experimental Breeder Reactor II (EBR-II) for non-safety related systems. The hardware and software structures for typical embedded systems are presented The embedded systems development process is described. Three examples are given which illustrate typical embedded computer applications in EBR-II

  7. EBR-II: twenty years of operating experience

    International Nuclear Information System (INIS)

    Lentz, G.L.; Buschman, H.W.; Smith, R.N.

    1985-01-01

    Experimental Breeder Reactor No. 2 (EBR-II) is an unmoderated, sodium-cooled reactor with a design power of 62.5 MWt. For the last 20 years EBR-II has operated safely, has demonstrated stable operating characteristics, has shown excellent performance of its sodium components, and has had an excellent plant factor. These years of operating experience provide a valuable resource to the nuclear community for the development and design of future liquid metal fast reactors. This report provides a brief description of the EBR-II plant and its early operating experience, describes some recent problems of interest to the nuclear community, and also mentions some of the significant operating achievements of EBR-II. Finally, a few words and speculations on EBR-II's future are offered. 4 figs., 1 tab

  8. Reliability and extended-life potential of EBR-II

    International Nuclear Information System (INIS)

    King, R.W.

    1985-01-01

    Although the longlife potential of liquid-metal-cooled reactors (LMRs) has been only partially demonstrated, many factors point to the potential for exceptionally long life. EBR-II has the opportunity to become the first LMR to achieve an operational lifetime of 30 years or more. In 1984 a study of the extended-life potential of EBR-II identified the factors that contribute to the continued successful operation of EBR-II as a power reactor and experimental facility. Also identified were factors that could cause disruptions in the useful life of the facility. Although no factors were found that would inherently limit the life of EBR-II, measures were identified that could help ensure continued plant availability. These measures include the implementation of more effective surveillance, diagnostic, and control systems to complement the inherent safety and reliability features of EBR-II. An operating lifetime of well beyond 30 years is certainly feasible

  9. The EBR-II fuel cycle story

    International Nuclear Information System (INIS)

    Stevenson, C.E.

    1987-01-01

    This volume on the history of the Experimental Breeder Reactor (EBR) program and the Fuel Cycle Facility (FCF) offers both the historical perspective and ''reasons why'' the project was so successful. The operation of the FCF in conjunction with the EBR-II was prepared because of the unique nature of the pyrmetallurgical processing system that was demonstrated at the time. Following brief descriptions and histories of the EBR-I and EBR-II reactors, the FCF and its process requirements are described. The seven principal process steps are presented, including for each one, the development, equipment used, operating procedures, results, problems and other data. Scrap and waste disposition, analytical control, safety, management, and cost of the FCF are also included

  10. Experimental Breeder Reactor II (EBR-II) Fuel-Performance Test Facility (FPTF)

    International Nuclear Information System (INIS)

    Pardini, J.A.; Brubaker, R.C.; Veith, D.J.; Giorgis, G.C.; Walker, D.E.; Seim, O.S.

    1982-01-01

    The Fuel-Performance Test Facility (FPTF) is the latest in a series of special EBR-II instrumented in-core test facilities. A flow control valve in the facility is programmed to vary the coolant flow, and thus the temperature, in an experimental-irradiation subassembly beneath it and coupled to it. In this way, thermal transients can be simulated in that subassembly without changing the temperatures in surrounding subassemblies. The FPTF also monitors sodium flow and temperature, and detects delayed neutrons in the sodium effluent from the experimental-irradiation subassembly beneath it. This facility also has an acoustical detector (high-temperature microphone) for detecting sodium boiling

  11. LMFBR operational safety: the EBR-II experience

    International Nuclear Information System (INIS)

    Sackett, J.I.; Allen, N.L.; Dean, E.M.; Fryer, R.M.; Larson, H.A.; Lehto, W.K.

    1978-01-01

    The mission of the Experimental Breeder Reactor II (EBR-II) has evolved from that of a small LMFBR demonstration plant to a major irradiation-test facility. Because of that evolution, many operational-safety issues have been encountered. The paper describes the EBR-II operational-safety experience in four areas: protection-system design, safety-document preparation, tests of off-normal reactor conditions, and tests of elements with breached cladding

  12. Swelling and tensile properties of EBR-II-irradiated tantalum alloys for space reactor applications

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Wiffen, F.W.

    1985-01-01

    The tantalum alloys T-111, ASTAR-811C, Ta-10 W, and unalloyed tantalum were examined following EBR-II irradiation to a fluence of 1.7 x 10 26 neutrons/m 2 (E > 0.1 MeV) at temperatures from 650 to 950 K. Swelling was found to be negligible for all alloys; only tantalum was found to exhibit swelling, 0.36%. Tensile testing revealed that irradiated T-111 and Ta-10 W are susceptible to plastic instability, but ASTAR-811C and tantalum were not. The tensile properties of ASTAR-811C appeared adequate for current SP-100 space nuclear reactor designs. Irradiated, oxygen-doped T-111 exhibited no plastic deformation, and the abrupt failure was intergranular in nature. The absence of plastic instability in ASTAR-811C is encouraging for alloys containing carbide precipitates. These fine precipitates might prevent dislocation channeling, which leads to plastic instability in many bcc metals after irradiation. 10 refs., 13 figs., 8 tabs

  13. Deactivation of the EBR-II complex

    Energy Technology Data Exchange (ETDEWEB)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P. [and others

    1997-12-31

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D&D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D&D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively {open_quotes}solder{close_quotes} components in place, making future operation or removal unfeasible.

  14. Deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.

    1997-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D ampersand D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D ampersand D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively open-quotes solderclose quotes components in place, making future operation or removal unfeasible

  15. Interaction of CREDO [Centralized Reliability Data Organization] with the EBR-II [Experimental Breeder Reactor II] PRA [probabilistic risk assessment] development

    International Nuclear Information System (INIS)

    Smith, M.S.; Ragland, W.A.

    1989-01-01

    The National Academy of Sciences review of US Department of Energy (DOE) class 1 reactors recommended that the Experimental Breeder Reactor II (EBR-II), operated by Argonne National Laboratory (ANL), develop a level 1 probabilistic risk assessment (PRA) and make provisions for level 2 and level 3 PRAs based on the results of the level 1 PRA. The PRA analysis group at ANL will utilize the Centralized Reliability Data Organization (CREDO) at Oak Ridge National Laboratory to support the PRA data needs. CREDO contains many years of empirical liquid-metal reactor component data from EBR-II. CREDO is a mutual data- and cost-sharing system sponsored by DOE and the Power Reactor and Nuclear Fuels Development Corporation of Japan. CREDO is a component based data system; data are collected on components that are liquid-metal specific, associated with a liquid-metal environment, contained in systems that interface with liquid-metal environments, or are safety related for use in reliability/availability/maintainability (RAM) analyses of advanced reactors. The links between the EBR-II PRA development effort and the CREDO data collection at EBR-II extend beyond the sharing of data. The PRA provides a measure of the relative contribution to risk of the various components. This information can be used to prioritize future CREDO data collection activities at EBR-II and other sites

  16. EBR-II and TREAT Digitization Project

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, George W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Digitizing the technical drawings for EBR-II and TREAT provides multiple benefits. Moving the scanned or hard copy drawings to modern 3-D CAD (Computer Aided Drawing) format saves data that could be lost over time. The 3-D drawings produce models that can interface with other drawings to make complex assemblies. The 3-D CAD format can also include detailed material properties and parametric coding that can tie critical dimensions together allowing easier modification. Creating the new files from the old drawings has found multiple inconsistencies that are being flagged or corrected improving understanding of the reactor(s).

  17. EBR-II and TREAT Digitization Project

    International Nuclear Information System (INIS)

    Griffith, George W.; Rabiti, Cristian

    2015-01-01

    Digitizing the technical drawings for EBR-II and TREAT provides multiple benefits. Moving the scanned or hard copy drawings to modern 3-D CAD (Computer Aided Drawing) format saves data that could be lost over time. The 3-D drawings produce models that can interface with other drawings to make complex assemblies. The 3-D CAD format can also include detailed material properties and parametric coding that can tie critical dimensions together allowing easier modification. Creating the new files from the old drawings has found multiple inconsistencies that are being flagged or corrected improving understanding of the reactor(s).

  18. Deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.; Wells, P.B.; Zahn, T.P.

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action

  19. Deactivation of the EBR-II complex

    Energy Technology Data Exchange (ETDEWEB)

    Michelbacher, J A; Earle, O K; Henslee, S P; Wells, P B; Zahn, T P

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action.

  20. Operating and test experience of EBR-II

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    EBR-II has operated for 27 years, the longest for any Liquid Metal Reactor (LMR) power plant. During that time, much has been learned about successful LMR operation and design. The basic lesson is that conservatism in design can pay significant dividends in operating reliability. Furthermore, such conservatism need not mean high cost. The EBR-II system emphasizes simplicity, minimizing the number of valves in the heat transport system, for example, and simplifying the primary heat-transport-system layout. Another lesson is that emphasizing reliability of the steam generating system at the sodium-water interface (by using duplex tubes in the case of EBR-II) has been well worth the higher initial costs; no problems with leakage have been encountered in EBR-II's operating history. Locating spent fuel storage in the primary tank and providing for decay heat removal by natural connective flow have also been contributors to EBR-II's success. The ability to accommodate loss of forced cooling or loss of heat sink passively has resulted in benefits for simplification, primarily through less reliance on emergency power and in not requiring the secondary sodium or steam systems to be safety grade. Also, the 'piped-pool' arrangement minimizes thermal stress to the primary tank and enhances natural convective flow. These benefits have been realized through a history of operation that has seen EBR-II evolve through four major phases in its test programs, culminating in its present mission as the Integral Fast Reactor (IFR) prototype. (author)

  1. Experience with lifetime limits for EBR-II core components

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Smith, R.N.; Golden, G.H.

    1987-01-01

    The Experimental Breeder Reactor No. 2 (EBR-II) is operated for the US Department of Energy by Argonne National Laboratory and is located on the Idaho National Engineering Laboratory where most types of American reactor were originally tested. EBR-II is a complete electricity-producing power plant now in its twenty-fourth year of successful operation. During this long history the reactor has had several concurrent missions, such as demonstration of a closed Liquid-Metal Reactor (LMR) fuel cycle (1964-69); as a steady-state irradiation facility for fuels and materials (1970 onwards); for investigating effects of operational transients on fuel elements (from 1981); for research into the inherent safety aspects of metal-fueled LMR's (from 1983); and, most recently, for demonstration of the Integral Fast Reactor (IFR) concept using U-Pu-Zr fuels. This paper describes experience gained at EBR-II in defining lifetime limits for LMR core components, particularly fuel elements

  2. Evolution of thermal-hydraulics testing in EBR-II

    International Nuclear Information System (INIS)

    Golden, G.H.; Planchon, H.P.; Sackett, J.I.; Singer, R.M.

    1987-01-01

    A thermal-hydraulics testing and modeling program has been underway at the Experimental Breeder Reactor-II (EBR-II) for 12 years. This work culminated in two tests of historical importance to commercial nuclear power, a loss of flow without scram and a loss of heat sink wihout scram, both from 100% initial power. These tests showed that natural processes will shut EBR-II down and maintain cooling without automatic control rod action or operator intervention. Supporting analyses indicate that these results are characteristic of a range of sizes of liquid metal cooled reactors (LMRs), if these reactors use metal driver fuel. This type of fuel is being developed as part of the Integral Fast Reactor Program at Argonne National Laboratory. Work is now underway at EBR-II to exploit the inherent safety of metal-fueled LMRs with regard to development of improved plant control strategies. (orig.)

  3. Demonstration of passive safety features in EBR-II

    International Nuclear Information System (INIS)

    Planchon, H.P. Jr.; Golden, G.H.; Sackett, J.I.

    1987-01-01

    Two tests of great importance to the design of future commercial nuclear power plants were carried out in the Experimental Breeder Reactor-II on April 3, 1986. These tests, (viewed by about 60 visitors, including 13 foreign LMR specialists) were a loss of flow without scram and a loss of heat sink without scram, both from 100% initial power. In these tests, inherent feedback shut the reactor down without damage to the fuel or other reactor components. This resulted primarily from advantageous characteristics of the metal driver fuel used in EBR-II. Work is currently underway at EBR-II to develop a control strategy that promotes inherent safety characteristics, including survivability of transient overpower accidents. In parallel, work is underway at EBR-II on the development of state-of-the-art plant diagnostic techniques

  4. Tightly coupled transient analysis of EBR-II

    International Nuclear Information System (INIS)

    Makowitz, H.; Lehto, W.K.; Sackett, J.I.

    1988-01-01

    A Tightly Coupled transient analysis system for the Experimental Breeder Reactor-II (EBR-II) is currently being tested. The system consists of a faster than real time high fidelity reactor simulation, advanced graphics displays, expert system coupling, and real time data coupling via the EBR-II data acquisition system to and from the plant and the control system. The base, first generation software has been developed and is presently being tested. Various subsystem couplings and the total system integration are being checked out. This system should enhance the diagnostic and prognostic capability of EBR-II in the near term and provide automatic control during startup and power maneuvering in the future, as well as serve as a testbed for new control system development for advanced reactors

  5. Sodium technology at EBR-II

    International Nuclear Information System (INIS)

    Holmes, J.T.; Smith, C.R.F.; Olson, W.H.

    1976-01-01

    Since the installation of purity monitoring systems in 1967, the control of the purity of the primary and secondary sodium and cover gas systems at the Experimental Breeder Reactor II (EBR-II) has been excellent. A rigorous monitoring program is being used to assure that operating limits for more than 25 chemical and radioactive impurities are not exceeded. The program involves the use of sophisticated sampling and analysis techniques and on-line monitors for both sodium and cover gas systems. Sodium purity control is accomplished by essentially continuous cold trapping of a small side stream of the total circulating sodium. The cold traps have been found to be very effective for the removal of the major chemical impurities (oxygen and hydrogen) and tritium but are almost ineffective for 131 I and 137 Cs that enter the sodium from fuel cladding breaks. Purging with pure argon maintains the cover gas purity

  6. Use of EBR-II as a principal fast breeder reactor irradiation test facility in the U.S

    International Nuclear Information System (INIS)

    Staker, R.G.; Seim, O.S.; Beck, W.N.; Golden, G.H.; Walters, L.C.

    1975-01-01

    The EBR-II as originally designed and operated by the Argonne National Laboratory was successful in demonstrating the operation of a sodium-cooled fast breeder power plant with a closed fuel reprocessing cycle. Subsequent operation has been as an experimental facility where thousands of irradiation tests have been performed. Conversion to this application entailed the design and fabrication of special irradiation subassemblies for in-core irradiations, additions to existing facilities for out-of-core irradiations, and additions to existing facilities for out-of-core experiments. Experimental subassemblies now constitute about one third of the core, and changes in the core configuration occur about monthly, requiring neutronic and thermal-hydraulics analyses and monitoring of the reactor dynamic behavior. The surveillance programs provided a wealth of information on irradiation induced swelling and creep, in-reactor fracture behavior, and the compatibility of materials with liquid sodium. (U.S.)

  7. System modeling and simulation at EBR-II

    International Nuclear Information System (INIS)

    Dean, E.M.; Lehto, W.K.; Larson, H.A.

    1986-01-01

    The codes being developed and verified using EBR-II data are the NATDEMO, DSNP and CSYRED. NATDEMO is a variation of the Westinghouse DEMO code coupled to the NATCON code previously used to simulate perturbations of reactor flow and inlet temperature and loss-of-flow transients leading to natural convection in EBR-II. CSYRED uses the Continuous System Modeling Program (CSMP) to simulate the EBR-II core, including power, temperature, control-rod movement reactivity effects and flow and is used primarily to model reactivity induced power transients. The Dynamic Simulator for Nuclear Power Plants (DSNP) allows a whole plant, thermal-hydraulic simulation using specific component and system models called from libraries. It has been used to simulate flow coastdown transients, reactivity insertion events and balance-of-plant perturbations

  8. EBR-II experience with sodium cleaning and radioactivity decontamination

    International Nuclear Information System (INIS)

    Ruther, W.E.; Smith, C.R.F.

    1978-01-01

    The EBR-II is now in Its 13th year of operation. During that period more than 2400 subassemblies have been cleaned of sodium without a serious incident of any kind by a two-step process developed at Argonne. Sodium cleaning and decontamination of other reactor components has been performed only on the relatively few occasions in which a repair or replacement has been required. A summary of the EBR-II experience will be presented. A new facility will be described for the improved cleaning and maintenance of sodium-wetted primary components

  9. EBR-II experience with sodium cleaning and radioactivity decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, W E; Smith, C R.F. [Argonne National Laboratory, Argonne (United States)

    1978-08-01

    The EBR-II is now in Its 13th year of operation. During that period more than 2400 subassemblies have been cleaned of sodium without a serious incident of any kind by a two-step process developed at Argonne. Sodium cleaning and decontamination of other reactor components has been performed only on the relatively few occasions in which a repair or replacement has been required. A summary of the EBR-II experience will be presented. A new facility will be described for the improved cleaning and maintenance of sodium-wetted primary components.

  10. Alternate form and placement of short lived reactor waste and associated fuel hardware for decommissioning of EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Planchon, H.P.; Singleterry, R.C. Jr.

    1995-12-01

    Upon the termination of EBR-II operation in 1994, the mission has progressed to decommissioning and waste cleanup of the facility. The simplest method to achieve this goal is to bury the raw fuel and activated steel in an approved burial ground or deep geologic repository. While this might be simple, it could be very expensive, consume much needed burial space for other materials, and leave large amounts of fissile easily available to future generations. Also, as with any operation, an associated risk to personnel and the public from the buried waste exists. To try and reduce these costs and risks, alternatives to burial are sought. One alternative explored here for EBR-II is to condition the fuel and store the fission products and steel either permanently or temporarily in the sealed primary boundary of the decommissioned reactor. The first problem is to identify which subassemblies are going to be conditioned and their current composition and decay time. The next problem is to identify the conditioning process and determine the composition and form of the waste streams. The volume, mass, heat, and curie load of the waste streams needs to be determined so a waste-assembly can be designed. The reactor vessel and internals need to be analyzed to determine if they can handle these loads. If permanent storage is the goal, then mechanisms for placing the waste-assembly in the reactor vessel and sealing the vessel are needed. If temporary storage is the goal, then mechanisms for waste-assembly placement and retrieval are needed. This paper answers the technical questions of volume, mass, heat, and curie loads while just addressing the other questions found in a safety analysis. The final conclusion will compare estimated risks from the burial option and this option.

  11. Irradiation of microphones in the EBR-II core

    International Nuclear Information System (INIS)

    Gavin, A.P.; Anderson, T.T.; Bobis, J.P.

    1976-06-01

    Six ANL developed high temperature microphone (acoustic detectors) have been exposed in flowing sodium in the In-Core Instrument Test Facility (INCOT) in the Experimental Breeder Reactor-II (EBR-II) for seven months without any indications of serious degradation of signal output due to the exposure. The YY05 experiment (EBR-II INCOT experiment designation) was performed to obtain data which would be useful in evaluating the ability of the microphones whose active elements are lithium niobate to serve as sensors for acoustic surveillance of fast breeder reactors. The reactor was at full power for 136 days of the experiment exposure period. The microphone temperatures varied from 371 0 C (700 0 F) to 621 0 C (1150 0 F). Neutron exposure varied from 2.64 x 10 22 nvt for the microphone at the elevation of the bottom of the EBR-II core to 0.24 x 10 22 nvt for the microphone at the elevation of the top of an EBR-II fuel assembly. The maximum gamma dose was 5 x 10 12 rads

  12. The EBR-II Probabilistic Risk Assessment: Results and insights

    International Nuclear Information System (INIS)

    Hill, D.J.; Ragland, W.A.; Roglans, J.

    1993-01-01

    This paper summarizes the results from the recently completed EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1. 6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The probability of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquake) is 3.6 10 -6 yr -1 . overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double, vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability

  13. EBR-II operating experience

    International Nuclear Information System (INIS)

    Smith, C.R.F.

    1978-07-01

    Operation of the EBR-2 reactor is presented concerning the performance of the heat removal system; reactor materials; fuel handling system; sodium purification and sampling system; cover-gas purification; plant diagnostics and instrumentation; recent improvements in identifying fission product sources in EBR-2; and EBR-2 safety

  14. Operating experience of the EBR-II steam generating system

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Quilici, M.D.; Radtke, W.H.

    1981-01-01

    The Experimental Breeder Reactor II (EBR-II) is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C (820 F) and 8.62 MPa (1250 psi). The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. Safety and reliability are maximized by using duplex tubes and tubesheets. The performance of the system has been excellent and essentially trouble free. The operating experience of EBR-II provides confidence that the technology can be applied to commercial LMFBR's for an abundant supply of energy for the future. 5 refs

  15. Recent operating experiences and programs at EBR-II

    International Nuclear Information System (INIS)

    Lentz, G.L.

    1984-01-01

    Experimental Breeder Reactor No. II (EBR-II) is a pool-type, unmoderated, sodium-cooled reactor with a design power of 62.5 MWt and an electrical generation capability of 20 MW. It has been operated by Argonne National Laboratory for the US government for almost 20 years. During that time, it has operated safely and has demonstrated stable operating characteristics, high availability, and excellent performance of its sodium components. The 20 years of operating experience of EBR-II is a valuable resource to the nuclear community for the development and design of future LMFBR's. Since past operating experience has been extensively reported, this report will focus on recent programs and events

  16. Experience with advanced driver fuels in EBR-II

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Pahl, R.G.; Porter, D.L.; Crawford, D.C.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) is a complete nuclear power plant, incorporating a pool-type liquid-metal reactor (LMR) with a fuel-power thermal output of 62.5 MW and an electrical output of 20 MW. Initial criticality was in 1961, utilizing a metallic driver fuel design called the Mark-I. The fuel design has evolved over the last 30 yr, and significant progress has been made on improving performance. The first major innovations were incorporated into the Mark-II design, and burnup then increased dramatically. This design performed successfully, and fuel element lifetime was limited by subassembly hardware performance rather than the fuel element itself. Transient performance of the fuel was also acceptable and demonstrated the ability of EBR-II to survive severe upsets such as a loss of flow without scram. In the mid 1980s, with renewed interest in metallic fuels and Argonne's integral fast reactor (IFR) concept, the Mark-II design was used as the basis for new designs, the Mark-III and Mark-IV. In 1987, the Mark-III design began qualification testing to become a driver fuel for EBR-II. This was followed in 1989 by the Mark-IIIA and Mark-IV designs. The next fuel design, the Mark-V, is being planned to demonstrate the utilization of recycled fuel. The fuel cycle facility attached to EBR-II is being refurbished to produce pyroprocessed recycled fuel as part of the demonstration of the IFR

  17. EBR-II rotating plug seal maintenance

    International Nuclear Information System (INIS)

    Allen, K.J.

    1986-01-01

    The EBR-II rotating plug seals require frequent cleaning and maintenance to keep the plugs from sticking during fuel handling. Time consuming cleaning on the cover gas and air sides of the dip ring seal is required to remove oxidation and sodium reaction products that accumulate and stop plug rotation. Despite severely limited access, effective seal cleaning techniques have removed 11 800 lb (5 352 kg) of deposits from the seals since 1964. Temperature control modifications and repairs have also required major maintenance work. Suggested seal design recommendations could significantly reduce maintenance on future similar seals

  18. Advances in criticality predictions for EBR-II

    International Nuclear Information System (INIS)

    Schaefer, R.W.; Imel, G.R.

    1994-01-01

    Improvements to startup criticality predictions for the EBR-II reactor have been made. More exact calculational models, methods and data are now used, and better procedures for obtaining experimental data that enter into the prediction are in place. Accuracy improved by more than a factor of two and the largest ECP error observed since the changes is only 18 cents. An experimental method using subcritical counts is also being implemented

  19. Operating limits for subassembly deformation in EBR-II

    International Nuclear Information System (INIS)

    Bottcher, J.H.

    1977-01-01

    The deformation of a subassembly in response to the core environment is frequently the life limiting factor for that component in an LMFBR. Deformation can occur as diametral and axial growth or bowing of the subassembly. Such deformation has caused several handling problems in both the core and the storage basket of EBR-II and may also have contributed to reactivity anomalies during reactor operation. These problems generally affect plant availability but the reactivity anomalies could lead to a potential safety hazard. Because of these effects the deformation mechanisms must be understood and modeled. Diametral and axial growth of subassembly ducts in EBR-II is due to swelling and creep and is a function of temperature, neutron fluence and stress. The source of stress in a duct is the hydraulic pressure difference across the wall. By coupling the calculated subassembly growth rate to the available clearance in the core or storage basket a limiting neutron fluence, or exposure, can be established

  20. Review process and quality assurance in the EBR-II probabilistic risk assessment

    International Nuclear Information System (INIS)

    Roglans, J.; Hill, D.J.; Ragland, W.A.

    1992-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A reactor, has recently been completed at Argonne National Laboratory (ANL). Within the scope of the ANL QA Programs, a QA Plan specifically for the EBR-II PRA was developed. The QA Plan covered all aspects of the PRA development, with emphasis on the procedures for document and software control, and the internal and external review process. The effort spent in the quality assurance tasks for the EBR-II PRA has reciprocated by providing acceptance of the work and confidence in the quality of the results

  1. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    International Nuclear Information System (INIS)

    Yingling, G.E.; Curran, R.N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II

  2. Surveillance application using patten recognition software at the EBR-II Reactor Facility

    International Nuclear Information System (INIS)

    Olson, D.L.

    1992-01-01

    The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory's Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodium Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller

  3. A transient overpower experiment in EBR-II

    International Nuclear Information System (INIS)

    Herzog, J.P.; Tsai, H.; Dean, E.M.; Aoyama, T.; Yamamoto, K.

    1994-01-01

    The TOPI-IE test was a transient overpower test on irradiate mixed-oxide fuel pins in the Experimental Breeder Reactor-II (EBR-II). The test, the fifth in a series, was part of a cooperative program between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan to conduct operational transient testing on mixed-oxide fuel pins in the metal-fueled EBR-II. The principle objective of the TOPI-1E test was to assess breaching margins for irradiated mixed-oxide fuel pins over the Plant Protection System (PPS) thresholds during a slow, extended overpower transient. This paper describes the effect of the TOPI-1E experiment on reactor components and the impact of the experiment on the long-term operability of the reactor. The paper discusses the role that SASSYS played in the pre-test safety analysis of the experiment. The ability of SASSYS to model transient overpower events is detailed by comparisons of data from the experiment with computed reactor variables from a SASSYS post-test simulation of the experiment

  4. Component configuration control system development at EBR-II

    International Nuclear Information System (INIS)

    Monson, L.R.; Stratton, R.C.

    1984-01-01

    One ofthe major programs being pursued by the EBR-II Division of Argonne National Laboratory is to improve the reliability of plant control and protection systems. This effort involves looking closely at the present state of the art and needs associated with plant diagnostic, control and protection systems. One of the areas of development at EBR-II involves a component configuration control system (CCCS). This system is a computerized control and planning aid for the nuclear power operator

  5. Performance of advanced oxide fuel pins in EBR-II

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Jensen, S.M.; Hales, J.W.; Karnesky, R.A.; Makenas, B.J.

    1986-05-01

    The effects of design and operating parameters on mixed-oxide fuel pin irradiation performance were established for the Hanford Engineering Development Laboratory (HEDL) advanced oxide EBR-II test series. Fourteen fuel pins breached in-reactor with reference 316 SS cladding. Seven of the breaches are attributed to FCMI. Of the remaining seven breached pins, three are attributed to local cladding over-temperatures similar to the breach mechanism for the reference oxide pins irradiated in EBR-II. FCCI was found to be a contributing factor in two high burnup, i.e., 11.7 at. % breaches. The remaining two breaches were attributed to mechanical interaction of UO 2 fuel and fission products accumulated in the lower cladding insulator gap, and a loss of cladding ductility possibly due to liquid metal embrittlement. Fuel smear density appears to have the most significant impact on lifetime. Quantitative evaluations of cladding diameter increases attributed to FCMI, established fuel smear density, burnup, and cladding thickness-to-diameter ratio as the major parameters influencing the extent of cladding strain

  6. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    International Nuclear Information System (INIS)

    Demmer, R.; Heintzelman, J.; Squires, L.; Meservey, R.

    2009-01-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in about 100,000 gallons of wash water. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to evaluate alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The workshop was conducted by a trained facilitator using Value Engineering techniques to elicit the most technically sound solutions from the workshop participants. A brainstorming session was held to identify possible alternative treatment methods that would meet the primary functions and criteria of neutralizing the hazards, maximizing byproduct removal and minimizing waste generation. An initial list of some 20 probable alternatives was evaluated and refined down

  7. Experience with advanced driver fuels in EBR-II

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Pahl, R.G.; Porter, D.L.; Crawford, D.C.

    1992-01-01

    This paper discusses several metallic fuel element designs which have been tested and used as driver fuel in Experimental Breeder Reactor II (EBR-II). The most recent advanced designs have all performed acceptably in EBR-H and can provide reliable performance to high burnups. Fuel elements tested have included use of U-l0Zr metallic fuel with either D9, 316 or HT9 stainless steel cladding; the D9 and 316-clad designs have been used as standard driver fuel. Experimental data indicate that fuel performance characteristics are very similar for the various designs tested. Cladding materials can be selected that optimize performance based on reactor design and operational goals

  8. Computer imaging of EBR-II handling equipment

    International Nuclear Information System (INIS)

    Hansen, L.H.; Peters, G.G.

    1994-10-01

    This paper describes a three-dimensional graphics application used to visualize the positions of remotely operated fuel handling equipment in the EBR-II reactor. The system described in this paper uses actual signals to move a three-dimensional graphics model in real-time in response to movements of equipment in the plant. A three-dimensional (3D) visualization technique is necessary to simulate direct visual observation of the transfers of fuel and experiments into and out of the reactor because the fuel handling equipment is submerged in liquid sodium and therefore is not visible to the operator. This paper will present details on how the 3D model was created and how real-time dynamic behavior was added to each of the moving components

  9. Computer imaging of EBR-II fuel handling equipment

    International Nuclear Information System (INIS)

    Peters, G.G.; Hansen, L.H.

    1995-01-01

    This paper describes a three-dimensional graphics application used to visualize the positions of remotely operated fuel handling equipment in the EBR-II reactor. A three-dimensional (3D) visualization technique is necessary to simulate direct visual observation of the transfers of fuel and experiments into and out of the reactor because the fuel handling equipment is submerged in liquid sodium and therefore is not visible to the operator. The system described in this paper uses actual signals to drive a three-dimensional computer-generated model in real-time in response to movements of equipment in the plant This paper will present details on how the 3D model of the intank equipment was created and how real-time dynamic behavior was added to each of the moving components

  10. EBR-II fuel handling console digital upgrade

    International Nuclear Information System (INIS)

    Peters, G.G.; Wiege, D.D.; Christensen, L.J.

    1995-01-01

    The main fuel handling console and control system at the Experimental Breeder Reactor II (EBR-II) are being upgraded to a computerized system using high-end workstations for the operator interface and a programmable logic controller (PLC) for the control system. Two-dimensional (2D) and three-dimensional (3D) computer graphics will be provided for the operator which will show the relative position of under-sodium fuel handling equipment. This equipment is operated remotely with no means of directly viewing the transfer. This paper describes various aspects of the modification including reasons for the upgrade, capabilities the new system provides over the old control system, philosophies and rationale behind the new design, testing and simulation work, diagnostic features, and the advanced graphics techniques used to display information to the operator

  11. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The

  12. Degradation of EBR-II driver fuel during wet storage

    International Nuclear Information System (INIS)

    Pahl, R. G.

    2000-01-01

    Characterization data are reported for sodium bonded EBR-II reactor fuel which had been stored underwater in containers since the 1981--1982 timeframe. Ten stainless steel storage containers, which had leaked water during storage due to improper sealing, were retrieved from the ICPP-603 storage basin at the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. In the container chosen for detailed destructive analysis, the stainless steel cladding on the uranium alloy fuel had ruptured and fuel oxide sludge filled the bottom of the container. Headspace gas sampling determined that greater than 99% hydrogen was present. Cesium 137, which had leached out of the fuel during the aqueous corrosion process, dominated the radionuclide source term of the water. The metallic sodium from the fuel element bond had reacted with the water, forming a concentrated caustic solution of NaOH

  13. Systematic variation of threshold reaction rates in EBR-II

    International Nuclear Information System (INIS)

    Lippincott, E.P.; Combs, B.L.; Davis, A.I.

    1976-01-01

    Characterization of neutron flux, fluence, and spectra in fast reactor irradiation environments is presently being carried out at HEDL utilizing the multiple foil technique. These fluences and spectra are then used to correlate damage effects data to produce damage functions or equations to predict materials effects under future irradiation conditions. The neutron flux and spectrum, then, act as a transfer function to relate present observations to future effects in the same or different environments and thus consistent fluence evaluations are of utmost importance. As part of a continuing program to establish the data base to meet consistency requirements, a systematic correlation of data from a recent dosimetry test in EBR-II is being made. The paper presents preliminary results of some of these correlations involving threshold reactions

  14. Remote, under-sodium fuel handling experience at EBR-II

    International Nuclear Information System (INIS)

    King, R.W.; Planchon, H.P.

    1995-01-01

    The EBR-II is a pool-type design; the reactor fuel handling components and entire primary-sodium coolant system are submerged in the primary tank, which is 26 feet in diameter, 26 feet high, and contains 86,000 gallons of sodium. Since the reactor is submerged in sodium, fuel handling operations must be performed blind, making exact positioning and precision control of the fuel handling system components essential. EBR-II operated for 30 years, and the fuel handling system has performed approximately 25,000 fuel transfer operations in that time. Due to termination of the IFR program, EBR-II was shut down on September 30, 1994. In preparation for decommissioning, all fuel in the reactor will be transferred out of EBR-II to interim storage. This intensive fuel handling campaign will last approximately two years, and the number of transfers will be equivalent to the fuel handling done over about nine years of normal reactor operation. With this demand on the system, system reliability will be extremely important. Because of this increased demand, and considering that the system has been operating for about 32 years, system upgrades to increase reliability and efficiency are proceeding. Upgrades to the system to install new digital, solid state controls, and to take advantage of new visualization technology, are underway. Future reactor designs using liquid metal coolant will be able to incorporate imaging technology now being investigated, such as ultraviolet laser imaging and ultrasonic imaging

  15. EBR-II spent fuel treatment demonstration project

    International Nuclear Information System (INIS)

    Benedict, R.W.; Henslee, S.P.

    1997-01-01

    For approximately 10 years, Argonne National Laboratory was developed a fast reactor fuel cycle based on dry processing. When the US fast reactor program was canceled in 1994, the fuel processing technology, called the electrometallurgical technique, was adapted for treating unstable spent nuclear fuel for disposal. While this technique, which involves electrorefining fuel in a molten salt bath, is being developed for several different fuel categories, its initial application is for sodium-bonded metallic spent fuel. In June 1996, the Department of Energy (DOE) approved a radiation demonstration program in which 100 spent driver assemblies and 25 spent blanket assemblies from the Experimental Breeder Reactor-II (EBR-II) will be treated over a three-year period. This demonstrated will provide data that address issues in the National Research Council's evaluation of the technology. The planned operations will neutralize the reactive component (elemental sodium) in the fuel and produce a low enriched uranium product, a ceramic waste and a metal waste. The fission products and transuranium elements, which accumulate in the electrorefining salt, will be stabilized in the glass-bonded ceramic waste form. The stainless steel cladding hulls, noble metal fission products, and insoluble residues from the process will be stabilized in a stainless steel/zirconium alloy. Upon completion of a successful demonstration and additional environmental evaluation, the current plans are to process the remainder of the DOE sodium bonded fuel

  16. The influence of mechanical deformation on the irradiation creep of AISI 316 stainless steel irradiated in the EBR-II and FFTF fast reactors

    International Nuclear Information System (INIS)

    Garner, F.A.; Gilbert, E.R.

    2007-01-01

    Irradiation creep of stainless steels is thought not to be very responsive to material and environmental variables. To test this perception earlier unpublished experiments conducted in the EBR-II reactor on AISI 316 have been analyzed. While swelling is dependent on the cold-work level at 400-480 o C, the post-transient irradiation creep rate, often called the creep compliance B0, is not dependent on cold-work level. If the tube reaches pressures on reactor start-up that generate above-yield stresses in unirradiated steel, then plastic strains occur prior to significant irradiation, but the post-transient strain rate is identical to that of material that did not exceed the yield stress on start-up. It is shown that both stress-free and stress-affected swelling are isotropic and that the Soderberg relationship is maintained. At temperatures above ∼540 o C thermal creep and stored energy begin to assert themselves, with creep rates accelerating with cold-work and becoming non-linear with stress. These results are in agreement with a similar study on titanium-modified 316 steel in FFTF. (author)

  17. Automated start-up of EBR-II

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1989-01-01

    Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL) are undertaking a joint project to develop control philosophies, strategies, and algorithms for computer control of the start-up mode of the Experimental Breeder Reactor II (EBR-II). The major objective of this project is to show that advanced liquid-metal reactor (LMR) plants can be operated from low power to full power using computer control. Development of an automated control system with this objective in view will help resolve specific issues and provide proof through demonstration that automatic control for plant start-up is feasible. This paper describes the approach that will be used to develop such a system and some of the features it is expected to have. Structured, rule-based methods, which will provide start-up capability from a variety of initial plant conditions and degrees of equipment operability, will be used for accomplishing mode changes during plant start-up. Several innovative features will be incorporated such as signal, command, and strategy validation to maximize reliability, flexibility to accommodate a wide range of plant conditions, and overall utility. Continuous control design will utilize figures of merit to evaluate how well the controller meets the mission requirements. The operator interface will have unique ''look ahead'' features to let the operator see what will happen next. 15 refs., 7 figs., 1 tab

  18. Characterization of spent EBR-II driver fuel

    International Nuclear Information System (INIS)

    McKnight, R. D.

    1998-01-01

    Operations and material control and accountancy requirements for the Fuel Conditioning Facility demand accurate prediction of the mass flow of spent EBR-II driver fuel into the facility. This requires validated calculational tools that can predict the burnup and isotopic distribution in irradiated Zr-alloy fueled driver assemblies. Detailed core-follow depletion calculations have been performed for an extensive series of EBR-II runs to produce a database of material inventories for the spent fuel to be processed. As this fuel is processed, comparison of calculated values with measured data obtained from samples of this fuel is producing a growing set of validation data. A more extensive set of samples and measurements from the initial processing of irradiated driver fuel has produced valuable estimates of the biases and uncertainties in both the measured and calculated values. Results of these comparisons are presented herein and indicate the calculated values adequately predict the mass flows

  19. EBR-II water-to-sodium leak detection system

    International Nuclear Information System (INIS)

    Wrightson, M.M.; McKinley, K.; Ruther, W.E.; Holmes, J.T.

    1976-01-01

    The water-to-sodium leak detection system installed at EBR-II in April, 1975, is described in detail. Topics covered include operational characteristics, maintenance problems, alarm functions, background hydrogen level data, and future plans for refinements to the system. Particular emphasis is given to the failures of eight of the ten leak detectors due to sodium-to-vacuum leakage, and the program anticipated for complete recovery of the system

  20. The EBR-II Probabilistic Risk Assessment: lessons learned regarding passive safety

    International Nuclear Information System (INIS)

    Hill, D.J.; Ragland, W.A.; Roglans, J.

    1998-01-01

    This paper summarizes the results from the EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10 -6 yr -1 and the contribution of seismic events is 1.7 10 -5 yr -1 . Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability

  1. The EBR-II Probabilistic Risk Assessment: lessons learned regarding passive safety

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D J; Ragland, W A; Roglans, J

    1998-11-01

    This paper summarizes the results from the EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10{sup -6} yr{sup -1}, even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10{sup -6} yr{sup -1} and the contribution of seismic events is 1.7 10{sup -5} yr{sup -1}. Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability.

  2. The EBR-II probabilistic risk assessment lessons learned regarding passive safety

    International Nuclear Information System (INIS)

    Hill, D.J.; Ragland, W.A.; Roglans, J.

    1994-01-01

    This paper summarizes the results from the recently completed EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10 -6 yr -1 and the contribution of seismic events is 1.7 10 -5 yr -1 . Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability

  3. Application of PCT to the EBR II ceramic waste form

    International Nuclear Information System (INIS)

    Ebert, W. L.; Lewis, M. A.; Johnson, S. G.

    2002-01-01

    We are evaluating the use of the Product Consistency Test (PCT) developed to monitor the consistency of borosilicate glass waste forms for application to the multiphase ceramic waste form (CWF) that will be used to immobilize waste salts generated during the electrometallurgical conditioning of spent sodium-bonded nuclear fuel from the Experimental Breeder Reactor No. 2 (EBR II). The CWF is a multiphase waste form comprised of about 70% sodalite, 25% borosilicate glass binder, and small amounts of halite and oxide inclusions. It must be qualified for disposal as a non-standard high-level waste (HLW) form. One of the requirements in the DOE Waste Acceptance System Requirements Document (WASRD) for HLW waste forms is that the consistency of the waste forms be monitored.[1] Use of the PCT is being considered for the CWF because of the similarities of the dissolution behaviors of both the sodalite and glass binder phases in the CWF to borosilicate HLW glasses. This paper provides (1) a summary of the approach taken in selecting a consistency test for CWF production and (2) results of tests conducted to measure the precision and sensitivity of the PCT conducted with simulated CWF

  4. The EBR-II X501 Minor Actinide Burning Experiment

    Energy Technology Data Exchange (ETDEWEB)

    W. J. Carmack; M. K. Meyer; S. L. Hayes; H. Tsai

    2008-01-01

    The X501 experiment was conducted in EBR II as part of the Integral Fast Reactor program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few MA bearing fuel irradiation tests conducted worldwide, and knowledge can be gained by understanding the changes in fuel behavior due to addition of MAs. Of primary interest are the effect of the MAs on fuel cladding chemical interaction and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995–1996 and, currently, represents a set of observations rather than a complete understanding of fuel behavior. This report provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

  5. Results and implications of the EBR-II inherent safety demonstration tests

    International Nuclear Information System (INIS)

    Planchon, H.P.; Golden, G.H.; Sackett, J.I.; Mohr, D.; Chang, L.K.; Feldman, E.E.; Betten, P.R.

    1987-01-01

    On April 3, 1986 two milestone tests were conducted in Experimental Breeder Reactor-2 (EBR-II). The first test was a loss of flow without scram and the second was a loss of heat sink without scram. Both tests were initiated from 100% power and in both tests the reactor was shut down by natural processes, principally thermal expansion, without automatic scram, operator intervention or the help of special in-core devices. The temperature transients during the tests were mild, as predicted, and there was no damage to the core or reactor plant structures. In a general sense, therefore, the tests plus supporting analysis demonstrated the feasibility of inherent passive shutdown for undercooling accidents in metal-fueled LMRs. The results provide a technical basis for future experiments in EBR-II to demonstrate inherent safety for overpower accidents and provide data for validation of computer codes used for design and safety analysis of inherently safe reactor plants

  6. System modeling of spent fuel transfers at EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.; Houshyar, A.

    1994-01-01

    The unloading of spent fuel from the Experimental Breeder Reactor-II (EBR-II) for interim storage and subsequent processing in the Fuel Cycle Facility (FCF) is a multi-stage process, involving complex operations at a minimum of four different facilities at the Argonne National Laboratory-West (ANL-W) site. Each stage typically has complicated handling and/or cooling equipment that must be periodically maintained, leading to both planned and unplanned downtime. A program was initiated in October, 1993 to replace the 330 depleted uranium blanket subassemblies (S/As) with stainless steel reflectors. Routine operation of the reactor for fuels performance and materials testing occurred simultaneously in FY 1994 with the blanket unloading. In the summer of 1994, Congress dictated the October 1, 1994 shutdown of EBR-2. Consequently, all blanket S/As and fueled drivers will be removed from the reactor tank and replaced with stainless steel assemblies (which are needed to maintain a precise configuration within the grid so that the under sodium fuel handling equipment can function). A system modeling effort was conducted to determine the means to achieve the objective for the blanket and fuel unloading program, which under the current plan requires complete unloading of the primary tank of all fueled assemblies in 2 1/2 years. A simulation model of the fuel handling system at ANL-W was developed and used to analyze different unloading scenarios; the model has provided valuable information about required resources and modifications to equipment and procedures. This paper reports the results of this modeling effort

  7. Evidence of fast non-linear feedback in EBR-II rod-drop measurements

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1987-06-01

    Feedback reactivities determine the time dependence of a reactor during and after a transient initiating event. Recent analysis of control-rod drops in the Experimental Breeder Reactor II (EBR-II) Reactor has indicated that some relatively fast feedback may exist which cannot be accounted for by the linear feedback mechanisms. The linear and deduced non-linear feedback reactivities from a control-rod drop in EBR-II run 93A using detailed temperature coefficients of reactivity in the EROS kinetics code have been reported. The transient analyses have now been examined in more detail for times close to the drop to ascertain if additional positive reactivity is being built-in early in the drop which could be gradually released later in the drop

  8. Time constants and feedback transfer functions of EBR-II subassembly types

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1986-01-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel

  9. Time constants and feedback transfer functions of EBR-II subassembly types

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel. (author)

  10. Tightly coupled transient analysis of EBR-II: An INEL [Idaho National Engineering Laboratory] Engineering Simulation Center Project

    International Nuclear Information System (INIS)

    Makowitz, H.; Barber, D.G.; Dean, E.M.

    1989-01-01

    A ''Tightly Coupled'' transient analysis system for the Experimental Breeder Reactor-II (FBR-II) is presently under development. The system consists of a faster-than-real-time high fidelity reactor simulation, advanced graphics displays, expert system coupling, and real-time data coupling via the EBR-II data acquisition system to and from the plant and the control system. The first generation software has been developed and tested. Various subsystem couplings and the total system integration have been checked out. A ''Lightly Coupled'' EBR-II reactor startup was conducted in August of 1988 as a demonstration of the system. This system should enhance the diagnostic and prognostic capability of EBR-II in the near term and provide automatic control during startup and power maneuvering in the future, as well as serve as a testbed for new control system development for advanced reactors. 8 refs., 7 figs., 1 tab

  11. Simulation and operation of the EBR-II automatic control rod drive system

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Dean, E.M.; Christensen, L.J.

    1985-01-01

    An automatic control rod drive system (ACRDS) installed at EBR-II produces shaped power transients from 40% to full reactor power at a linear ramp rate of 4 MWt/s. A digital computer and modified control-rod-drive provides this capability. Simulation and analysis of ACRDS experiments establish the safety envelope for reactor transient operation. Tailored transients are required as part of USDOE Operational Reliability Testing program for prototypic fast reactor fuel cladding breach behavior studies. After initial EBR-II driver fuel testing and system checkout, test subassemblies were subjected to both slow and fast transients. In addition, the ACRDS is used for steady-state operation and will be qualified to control power ascent from initial critical to full power

  12. Simulation and operation of the EBR-II automatic control rod drive system

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Dean, E.M.; Christensen, L.J.

    1985-01-01

    An automatic control rod drive system (ACRDS) installed at EBR-II produces shaped power transients from 40% to full reactor power at a linear ramp rate of 4 MWt/s. A digital computer and modified control-rod-drive provides this capability. Simulation and analysis of ACRDS experiments establish the safety envelope for reactor transient operation. Tailored transients are required as part of USDOE Operational Reliability Testing program for prototypic fast reactor fuel cladding breach behavior studies. After initial EBR-II driver fuel testing and system checkout, test subassemblies were subjected to both slow and fast transients. In additions, the ACRDS is used for steady-state operation and will be qualified to control power ascent from initial critical to full power

  13. EBR-II argon cooling system restricted fuel handling I and C upgrade

    International Nuclear Information System (INIS)

    Start, S.E.; Carlson, R.B.; Gehrman, R.L.

    1995-01-01

    The instrumentation and control of the Argon Cooling System (ACS) restricted fuel handling control system at Experimental Breeder Reactor II (EBR-II) is being upgraded from a system comprised of many discrete components and controllers to a computerized system with a graphical user interface (GUI). This paper describes the aspects of the upgrade including reasons for the upgrade, the old control system, upgrade goals, design decisions, philosophies and rationale, and the new control system hardware and software

  14. Studies related to emergency decay heat removal in EBR-II

    International Nuclear Information System (INIS)

    Singer, R.M.; Gillette, J.L.; Mohr, D.; Tokar, J.V.; Sullivan, J.E.; Dean, E.M.

    1979-01-01

    Experimental and analytical studies related to emergency decay heat removal by natural circulation in the EBR-II heat transport circuits are described. Three general categories of natural circulation plant transients are discussed and the resultant reactor flow and temperature response to these events are presented. these categories include the following: (1) loss of forced flow from decay power and low initial flow rates; (2) reactor scram with a delayed loss of forced flow; and (3) loss of forced flow with a plant protective system activated scram. In all cases, the transition from forced to natural convective flow was smooth and the peak in-core temperature rises were small to moderate. Comparisons between experimental measurements in EBR-II and analytical predictions of the NATDEMO code are included

  15. Parametric investigation of fracture of EBR-II ducts

    International Nuclear Information System (INIS)

    Chopra, P.S.; Moustakakis, B.

    1977-01-01

    Results of preliminary static and dynamic finite element fracture mechanics analyses that were conducted to analytically simulate the dynamic fracture behavior of EBR-II ducts are presented. The loads considered are those that may arise because of rapid release of fission gases from a failed fuel element inside a duct, obtained from some previous tests and a recent analytical model. In spite of the motivation for the present work, the analytical procedures described may have a wider general application in the fail-safe design of structures

  16. Data systems in FFTF and EBR-II

    International Nuclear Information System (INIS)

    Warrick, R.P.; Ritter, W.M.

    1980-02-01

    This paper describes the Data System used to monitor operation and collect experimental data in FFTF. This data system has evolved since initial inception from a relatively simple, single computer system monitoring a relatively few (approx. 1000) instrument channels important for operation to one which has increased capability to support the long-range testing needs in FFTF. The system, while still relatively simple, now contains multiple computers which normally perform independent functions. The computers, however, provide backup processing for certain simple tasks. Operator interfacing is provided through CRT's. The output capabilities of the system are described. A description of the Data System in EBR-II is also included

  17. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D.; Herceg, J.E.; Holtz, R.E.

    1991-01-01

    The next major milestone of the IFR (Integral Fast Reactor) program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. (author)

  18. Planning for closure and deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; Poland, H.F.; Wells, P.B.

    1997-01-01

    In January 1994, DOE terminated the Integral Fast Reactor (IFR) Program. Argonne National Laboratory-West (ANL-W) prepared a detailed plan to put Experimental Breeder Reactor-II (EBR-II) in a safe condition, including removal of irradiated fueled subassemblies from the plant, transfer of subassemblies, and removal and stabilization of primary and secondary sodium liquid heat transfer metal. The goal of deactivation is to stabilize the EBR-II complex until decontamination and decommissioning (D ampersand D) is implemented, thereby minimizing maintenance and surveillance. Deactivation of a sodium cooled reactor presents unique concerns. Residual sodium in the primary and secondary systems must be either reacted or inerted to preclude concerns with explosive sodium-air reactions. Also, residual sodium on components will effectively solder these items in place, making removal unfeasible. Several special cases reside in the primary system, including primary cold traps, a cesium trap, a cover gas condenser, and systems containing sodium-potassium alloy. The sodium or sodium-potassium alloy in these components must be reacted in place or the components removed. The Sodium Components Maintenance Shop at ANL-W provides the capability for washing primary components, removing residual quantities of sodium while providing some decontamination capacity. Considerations need to be given to component removal necessary for providing access to primary tank internals for D ampersand D activities, removal of hazardous materials, and removal of stored energy sources. ANL-W's plan for the deactivation of EBR-II addresses these issues, providing for an industrially and radiologically safe complex, requiring minimal surveillance during the interim period between deactivation and D ampersand D. Throughout the deactivation and closure of the EBR-II complex, federal environmental concerns will be addressed, including obtaining the proper permits for facility condition and waste processing

  19. Analysis of carbon transport in the EBR-II and FFTF primary sodium systems

    International Nuclear Information System (INIS)

    Snyder, R.B.; Natesan, K.; Kassner, T.F.

    1976-01-01

    An analysis of the carburization-decarburization behavior of austenitic stainless steels in the primary heat-transport systems of the EBR-II and FFTF has been made that is based upon a kinetic model for the diffusion process and the surface area of steel in contact with flowing sodium at various temperatures in the two systems. The analysis was performed for operating conditions that result in sodium outlet temperatures of 474 and 566 0 C in the FFTF and 470 0 C in the EBR-II. If there was no external source of carbon to the system, i.e., other than the carbon initially present in the steel and the sodium, the dynamic-equilibrium carbon concentrations calculated for the FFTF primary sodium were approximately 0.025 and approximately 0.065 ppm for the 474 and 566 0 C outlet temperatures, respectively, and approximately 0.018 ppm for the EBR-II primary system. The analysis indicated that a carbon-source rate of approximately 250 g/y would be required to increase the carbon concentration of the EBR-II sodium to the measured range of approximately 0.16--0.19 ppm. An evaluation of possible carbon sources and the amount of carbonaceous material introduced into the reactor cover gas and sodium suggests that the magnitude of the calculated contamination rate is reasonable. For a 566 0 C outlet temperature, carbonaceous material would have to be introduced into the FFTF primary system at a rate approximately 4--6 times higher than in EBR-II to achieve the same carbon concentration in the sodium in the two systems. Since contamination rates of approximately 1500 g/y are unlikely, high-temperature fuel cladding in the FFTF should exhibit decarburization similar to that observed in laboratory loop systems, in contrast to the minimal compositional changes that result after exposure of Type 316 stainless steel to EBR-II sodium at temperatures between approximately 625 and 650 0 C

  20. The EBR-II steam generating system - operation, maintenance, and inspection

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Longua, K.J.

    2002-01-01

    The Experimental Breeder Reactor II (EBR-II) has operated for 20 years at the Idaho National Engineering Laboratory near Idaho Falls. EBR-II is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. EBR-II has operated at a capacity factor over 70% in the past few years. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C and 8.62 MPa. The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. During the 20 years of operation, components of the steam generator have been subjected to a variety of inspections including visual, dimensional, and ultrasonic. One superheater was removed from service because of anomalous performance and was replaced with an evaporator which was removed, examined, and converted into a superheater. Overall operating experience of the system has been excellent and essentially trouble free. Inspections have not revealed any conditions that are performance or life limiting. (author)

  1. Safety aspects of advanced fuels irradiations in EBR-II

    International Nuclear Information System (INIS)

    Lehto, W.K.

    1975-09-01

    Basic safety questions such as MFCI, loss-of-Na bond, pin behavior during design basis transients, and failure propagation were evaluated as they pertain to advanced fuels in EBR-II. With the exception of pin response to the unlikely loss-of-flow transient, the study indicates that irradiation of significant numbers of advanced fueled subassemblies in EBR-II should pose no safety problems. The analysis predicts, however, that Na boiling may occur during the postulated design basis unlikely loss-of-flow transient in subassemblies containing He-bonded fuel pins with the larger fuel-clad gaps. The calculations indicate that coolant temperatures at top of core in the limiting S/A's, containing the He bonded pins, would reach approximately 1480 0 F during the transient without application of uncertainty factors. Inclusion of uncertainties could result in temperature predictions which approach coolant boiling temperatures (1640 0 F). Further analysis of He-bonded pins is being done in this potential problem area, e.g., to apply best estimates of uncertainty factors and to determine the sensitivity of the preliminary results to gap conductance

  2. Water treatment in the EBR-II steam system

    International Nuclear Information System (INIS)

    Klein, M.A.; Hurst, H.

    1975-01-01

    Boiler-water treatment in the EBR-II steam system consists of demineralizing makeup water and using hydrazine to remove traces of oxygen and morpholine to adjust pH to 8.8-9.2. This treatment is called a ''zero-solids'' method, because the chemical agents and reaction products are either volatile or form water and do not contribute solids to the boiler water. A continuous blowdown is cooled, filtered, and deionized to remove impurities and maintain high purity of the water. If a cooling-water leak occurs, phosphate is added to control scaling, and the ''zero-solids'' eatment is suspended until the leak is repaired. Water streams are sampled at six points to control water purity. Examination of the steam drum and an evaporator show the metal surfaces to be in excellent condition with minimal corrosion. The EBR-II steam-generating plant has accumulated over 85,000 hours of in-service operation and has operated successfully for over ten years with the ''zero-solids'' treatment. (auth)

  3. Operational reliability testing of FBR fuel in EBR-II

    International Nuclear Information System (INIS)

    Asaga, Takeo; Ukai, Shigeharu; Nomura, Shigeo; Shikakura, Sakae

    1991-01-01

    The operational reliability testing of FBR fuel has been conducting in EBR-II as a DOE/PNC collaboration program. This paper reviews the achieved summary of Phase-I test as well as outline of progressing Phase-II test. In Phase-I test, the reliability of FBR fuel pins including 'MONJU' fuel was demonstrated at the event of operational transient. Continued operation of the failed pins was also shown to be feasible without affecting the plant operation. The objectives of the Phase-II test is to extend the data base relating with the operational reliability for long life fuel, and to supply the highly quantitative evaluation. The valuable insight obtained in Phase-II test are considerably expected to be useful toward the achievement of commercial FBR. (author)

  4. X447 EBR-II Experiment Benchmark for Verification of Audit Code of SFR Metal Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Won; Bae, Moo-Hoon; Shin, Andong; Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    In KINS (Korea Institute of Nuclear Safety), to prepare audit calculation of PGSFR licensing review, the project has been started to develop the regulatory technology for SFR system including a fuel area. To evaluate the fuel integrity and safety during an irradiation, the fuel performance code must be used for audit calculation. In this study, to verify the new code system, the benchmark analysis is performed. In the benchmark, X447 EBR-II experiment data are used. Additionally, the sensitivity analysis according to mass flux change of coolant is performed. In case of LWR fuel performance modeling, various and advanced models have been proposed and validated based on sufficient in-reactor test results. However, due to the lack of experience of SFR operation, the current understanding of SFR fuel behavior is limited. In this study, X447 EBR-II Experiment data are used for benchmark. The fuel composition of X447 assembly is U-10Zr and PGSFR also uses this composition in initial phase. So we select X447 EBR-II experiment for benchmark analysis. Due to the lack of experience of SFR operation and data, the current understanding of SFR fuel behavior is limited. However, in order to prepare the licensing of PGSFR, regulatory audit technologies of SFR must be secured. So, in this study, to verify the new audit fuel performance analysis code, the benchmark analysis is performed using X447 EBR-II experiment data. Also, the sensitivity analysis with mass flux change of coolant is performed. In terms of verification, it is considered that the results of benchmark and sensitivity analysis are reasonable.

  5. X447 EBR-II Experiment Benchmark for Verification of Audit Code of SFR Metal Fuel

    International Nuclear Information System (INIS)

    Choi, Yong Won; Bae, Moo-Hoon; Shin, Andong; Suh, Namduk

    2016-01-01

    In KINS (Korea Institute of Nuclear Safety), to prepare audit calculation of PGSFR licensing review, the project has been started to develop the regulatory technology for SFR system including a fuel area. To evaluate the fuel integrity and safety during an irradiation, the fuel performance code must be used for audit calculation. In this study, to verify the new code system, the benchmark analysis is performed. In the benchmark, X447 EBR-II experiment data are used. Additionally, the sensitivity analysis according to mass flux change of coolant is performed. In case of LWR fuel performance modeling, various and advanced models have been proposed and validated based on sufficient in-reactor test results. However, due to the lack of experience of SFR operation, the current understanding of SFR fuel behavior is limited. In this study, X447 EBR-II Experiment data are used for benchmark. The fuel composition of X447 assembly is U-10Zr and PGSFR also uses this composition in initial phase. So we select X447 EBR-II experiment for benchmark analysis. Due to the lack of experience of SFR operation and data, the current understanding of SFR fuel behavior is limited. However, in order to prepare the licensing of PGSFR, regulatory audit technologies of SFR must be secured. So, in this study, to verify the new audit fuel performance analysis code, the benchmark analysis is performed using X447 EBR-II experiment data. Also, the sensitivity analysis with mass flux change of coolant is performed. In terms of verification, it is considered that the results of benchmark and sensitivity analysis are reasonable

  6. Behavior of EBR-II Mk-V-type fuel elements in simulated loss-of-flow tests

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.; Billone, M.C.; Holland, J.W.; Kramer, J.M.

    1993-01-01

    Three furnace heating tests were conducted with irradiated, HT9-clad and U-19wt%Pu-10wt%Zr-alloy, EBR-II Mk-V-type fuel elements to evaluate the behavior that could be expected during a loss-of-flow event in the reactor. In general, very significant safety margins for cladding breaching have been demonstrated in these tests, under conditions that would envelop a bounding unlikely loss-of-flow event in EBR-II. Highlights of the test results are presented, as are discussions of the cladding breaching mechanisms, axial fuel motion, and fuel surface liquefaction that were found in these tests. (orig.)

  7. Transient performance of EBR-II driver fuel

    International Nuclear Information System (INIS)

    Buzzell, J.A.; Hudman, G.D.; Porter, D.L.

    1981-01-01

    The first phases of qualification of the EBR-II driver fuel for repeated transient overpower operation have recently been completed. The accomplishments include prediction of the transient fuel and cladding performance through ex-core testing and fuel-element modeling studies, localized in-core power testing during steady-state operation, and whole-core multiple transient testing. The metallic driver fuel successfully survived 56 transients, spaced over a 45-day period, with power increases of approx. 160% at rates of approx. 1%/s with a 720-second hold at full power. The performance results obtained from both ex-core and n-core tests indicate that the fuel is capable of repeated transient operation

  8. Safety philosophy in upgrading the EBR-II plant protection system

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1976-01-01

    The EBR-II plant protection system (PPS) has been substantially modified, upgrading its performance to more fully comply with modern safety philosophy and criteria. The upgrading effort required that the total reactor system be evaluated for possible faults and that a PPS be designed to accommodate them. The result was deletion of a number of existing trip functions and upgrading of others. Particular attention was given to loss of primary pumping power and reactivity insertion events. The design and performance criteria for the PPS has been more firmly established, understanding of the PPS function has been improved and the reactor has been subjected to fewer spurious trips, improving operational reliability

  9. EBR-II Cover Gas Cleanup System upgrade process control system structure

    International Nuclear Information System (INIS)

    Carlson, R.B.; Staffon, J.D.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; describes the main control computer hardware and system software features in more detail; and, then, describes the real-time control tasks, and how they interact with each other, and how they interact with the operator interface task

  10. Bowing-reactivity trends in EBR-II assuming zero-swelling ducts

    International Nuclear Information System (INIS)

    Meneghetti, D.

    1994-01-01

    Predicted trends of duct-bowing reactivities for the Experimental Breeder Reactor II (EBR-II) are correlated with predicted row-wise duct deflections assuming use of idealized zero-void-swelling subassembly ducts. These assume no irradiation induced swellings of ducts but include estimates of the effects of irradiation-creep relaxation of thermally induced bowing stresses. The results illustrate the manners in which at-power creeps may affect subsequent duct deflections at zero power and thereby the trends of the bowing component of a subsequent power reactivity decrement

  11. EBR-II Cover Gas Cleanup System upgrade distributed control and front end computer systems

    International Nuclear Information System (INIS)

    Carlson, R.B.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; gives reasons behind the computer system structure; and then gives a detailed description of the distributed control computer, the front end computer, and how these computers interact with the main control computer. The descriptions cover both hardware and software

  12. Dynamic modeling and simulation of EBR-II steam generator system

    International Nuclear Information System (INIS)

    Berkan, R.C.; Upadhyaya, B.R.

    1989-01-01

    This paper presents a low order dynamic model of the Experimental breeder Reactor-II (EBR-II) steam generator system. The model development includes the application of energy, mass and momentum balance equations in state-space form. The model also includes a three-element controller for the drum water level control problem. The simulation results for low-level perturbations exhibit the inherently stable characteristics of the steam generator. The predictions of test transients also verify the consistency of this low order model

  13. Pattern-recognition system application to EBR-II plant-life extension

    International Nuclear Information System (INIS)

    King, R.W.; Radtke, W.H.; Mott, J.E.

    1988-01-01

    A computer-based pattern-recognition system, the System State Analyzer (SSA), is being used as part of the EBR-II plant-life extension program for detection of degradation and other abnormalities in plant systems. The SSA is used for surveillance of the EBR-II primary system instrumentation, primary sodium pumps, and plant heat balances. Early results of this surveillance indicate that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals, and can provide derived signal values to replace signals from failed critical sensors. These results are being used in planning for extended-life operation of EBR-II

  14. Pyroprocessing of oxidized sodium-bonded fast reactor fuel - An experimental study of treatment options for degraded EBR-II fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, S.D.; Gese, N.J. [Separations Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Wurth, L.A. [Zinc Air Inc., 5314-A US Hwy 2 West, Columbia Falls, MT 59912 (United States)

    2013-07-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.

  15. System modelling to support accelerated fuel transfer rate at EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.; Houshyar, A.; Planchon, H.P.; Cutforth, D.C.

    1995-01-01

    The Experimental Breeder Reactor-II (EBR-II) ia a 62.5 MW(th) liquid metal reactor operated by Argonne National Laboratory for The United States Department of Energy. The reactor is located near Idaho Falls, Idaho at the Argonne-West site (ANL-W). Full power operation was achieved in 1964,- the reactor operated continuously since that time until October 1994 in a variety of configurations depending on the programmatic mission. A three year program was initiated in October, 1993 to replace the 330 depleted uranium blanket subassemblies (S/As) with stainless steel reflectors. It was intended to operate the reactor during the three year blanket unloading program, followed by about a half year of driver fuel unloading. However, in the summer of 1994, Congress dictacted that EBR-II be shut down October 1, and complete defueling without operation. To assist in the planning for resources needed for this defueling campaign, a mathematical model of the fuel handling sequence was developed utilizing the appropriate reliability factors and inherent mm constraints of each stage of the process. The model allows predictions of transfer rates under different scenarios. Additionally, it has facilitated planning of maintenance activities, as well as optimization of resources regarding manpower and modification effort. The model and its application is described in this paper

  16. Seismic response of the EBR-II to the Mt. Borah earthquake

    International Nuclear Information System (INIS)

    Gale, J.G.; Lehto, W.K.

    1985-01-01

    On October 28, 1983, an earthquake of magnitude 7.3 occurred in the mountains of central Idaho at a distance of 114-km from the ANL-West site. The earthquake tripped the seismic sensors in the EBR-II reactor shutdown system causing a reactor scram. Visual and operability checks of structures, components, and systems showed no indication of damage or system abnormalities and reactor restart was initiated. As a result of the earthquake, questions arose as to the magnitude of the actual stress levels in critical components and what value of ground acceleration could be experienced without damage to reactor structures. EBR-II was designed prior to implementation of present day requirements for seismic qualification and appropriate analyses had not been conducted. A lumped-mass, finite element model of the primary tank, support structure, and the reactor was generated and analyzed using the response spectrum technique. The analysis showed that the stress levels in the primary tank system were very low during the Mount Borah earthquake and that the system could experience seismic loadings three to four times those of the Mount Borah earthquake without exceeding yield stresses in any of the components

  17. SASSYS validation with the EBR-II shutdown heat removal tests

    International Nuclear Information System (INIS)

    Herzog, J.P.

    1989-01-01

    SASSYS is a coupled neutronic and thermal hydraulic code developed for the analysis of transients in liquid metal cooled reactors (LMRs). The code is especially suited for evaluating of normal reactor transients -- protected (design basis) and unprotected (anticipated transient without scram) transients. Because SASSYS is heavily used in support of the IFR concept and of innovative LMR designs, such as PRISM, a strong validation base for the code must exist. Part of the validation process for SASSYS is analysis of experiments performed on operating reactors, such as the metal fueled Experimental Breeder Reactor -- II (EBR-II). During the course of a series of historic whole-plant experiments, EBR-II illustrated key safety features of metal fueled LMRs. These experiments, the Shutdown Heat Removal Tests (SHRT), culminated in unprotected loss of flow and loss of heat sink transients from full power and flow. Analysis of these and earlier SHRT experiments constitutes a vital part of SASSYS validation, because it facilitates scrutiny of specific SASSYS models and of integrated code capability. 12 refs., 11 figs

  18. Reactivity-induced time-dependencies of EBR-II linear and non-linear feedbacks

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1988-01-01

    Time-dependent linear feedback reactivities are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a kinetic code analysis of an experiment in which the change in power resulted from the dropping of a control rod. Shown with these linear reactivities are the reactivity associated with the control-rod shaft contraction and also time-dependent non-linear (mainly bowing) component deduced from the inverse kinetics of the experimentally measured fission power and the calculated linear reactivities. (author)

  19. Safety and operating experience at EBR-II: lessons for the future

    International Nuclear Information System (INIS)

    Sackett, J.I.; Golden, G.H.

    1981-01-01

    EBR-II is a small LMFBR power plant that has performed safely and reliably for 16 years. Much has been learned from operating it to facilitate the design, licensing, and operation of large commercial LMFBR power plants in the US. EBR-II has been found relatively easy to keep in conformity with evolving safety requirements, largely because of inherent safety features of the plant. Such features reduce dependence on active safety systems to protect against accidents. EBR-II has experienced a number of plant-transient incidents, some planned, others inadvertent; none has resulted in any significant plant damage. The operating experience with EBR-II has led to the formulation of an Operational Reliability Test Program (ORTP), aimed at showing inherently safe performance of fuel and plant systems

  20. Technical assessment of continued wet storage of EBR-II fuel

    International Nuclear Information System (INIS)

    Pahl, R.G.; Franklin, E.M.; Ebner, M.A.

    1996-01-01

    A technical assessment of the continued wet storage of EBR-II fuel has been made. Previous experience has shown that in-basin cladding failure occurs by intergranular attack of sensitized cladding, likely assisted by basin water chlorides. Subsequent fuel oxidation is rapid and leads to loss of configuration and release of fission products. The current inventory of EBR-II fuel stored in the ICPP basins is at risk from similar corrosion reactions

  1. Breached fuel pin contamination from Run Beyond Cladding Breach (RBCB) tests in EBR-II

    International Nuclear Information System (INIS)

    Colburn, R.P.; Strain, R.V.; Lambert, J.D.B.; Ukai, S.; Shibahara, I.

    1988-09-01

    Studies indicate there may be a large economic incentive to permit some continued reactor operation with breached fuel pin cladding. A major concern for this type of operation is the potential spread of contamination in the primary coolant system and its impact on plant maintenance. A study of the release and transport of contamination from naturally breached mixed oxide Liquid Metal Reactor (LMR) fuel pins was performed as part of the US Department of Energy/Power Reactor and Nuclear Fuel Development Corporation (DOE/PNC) Run Beyond Cladding Breach (RBCB) Program at EBR-II. The measurements were made using the Breached Fuel Test Facility (BFTF) at EBR-II with replaceable deposition samplers located approximately 1.5 meters from the breached fuel test assemblies. The effluent from the test assemblies containing the breached fuel pins was routed up through the samplers and past dedicated instrumentation in the BFTF before mixing with the main coolant flow stream. This paper discusses the first three contamination tests in this program. 2 refs., 5 figs., 2 tabs

  2. The EBR-II materials-surveillance program. 4: Results of SURV-4 and SURV-6

    International Nuclear Information System (INIS)

    Ruther, W.E.; Hayner, G.O.; Carlson, B.G.; Ebersole, E.R.; Allen, T.R.

    1998-01-01

    In March of 1965, a set of surveillance (SURV) samples was placed in the EBR-II reactor to determine the effect of irradiation, thermal aging, and sodium corrosion on reactor materials. Eight subassemblies were placed into row 12 positions of EBR-II to determine the effect of irradiation at 370 C. Two subassemblies were placed into the primary sodium basket to determine the effect of thermal aging at 370 C. For both the irradiated and thermally aged samples, one half of all samples were exposed to primary system sodium while one half were sealed in capsules with a helium atmosphere. Fifteen different structural materials were tested in the SURV program. In addition to the fifteen types of metal samples, graphite blocks were irradiated in the SURV subassemblies to determine the effect of irradiation on the graphite neutron shield. In this report, the properties of these materials irradiated at 370 C to a total fluence of 2.2 x 10 22 n/cm 2 (over 2,994 days) are compared with those of similar specimens thermally aged at 370 C for 2,994 days in the storage basket of the reactor. The properties analyzed were weight, density, microstructure, hardness, tensile and yield strength, impact strength, and creep

  3. Expert system applications in support of system diagnostics and prognostics at EBR-II

    International Nuclear Information System (INIS)

    Lehto, W.K.; Gross, K.C.

    1989-01-01

    Expert systems have been developed to aid in the monitoring and diagnostics of the Experimental Breeder Reactor-II (EBR-II) at the Idaho National Engineering Laboratory (INEL) in Idaho Falls, Idaho. Systems have been developed for failed fuel surveillance and diagnostics and reactor coolant pump monitoring and diagnostics. A third project is being done jointly by ANL-W and EG ampersand G Idaho to develop a transient analysis system to enhance overall plant diagnostic and prognostic capability. The failed fuel surveillance and diagnosis system monitors, processes, and interprets information from nine key plant sensors. It displays to the reactor operator diagnostic information needed to make proper decisions regarding technical specification conformance during reactor operation with failed fuel. 8 refs., 9 figs., 2 tabs

  4. On-line sodium and cover as purity monitors gas operating tools at EBR-II

    International Nuclear Information System (INIS)

    Smith, C.R.F.; Richardson, W.J.; Holmes, J.T.

    1976-01-01

    Plugging temperature indicators, electrochemical oxygen meters and hydrogen diffusion meters are the on-line sodium purity monitors now in use at EBR-II. On-line gas chromatographs are used to monitor helium, hydrogen, oxygen and nitrogen impurities in the argon cover gases. Monitors for tritium-in-sodium and for hydrocarbons-in-cover gas have been developed and are scheduled for installation in the near future. An important advantage of on-line monitors over the conventional grab-sampling techniques is the speed of response to changing reactor conditions. This helps us to identify the source of the impurity, whether the cause may be transient or constant, and take corrective action as necessary. The oxygen meter is calibrated monthly against oxygen in sodium determined by the vanadium wire equilibration method. The other instruments either do not require calibration or are self-calibrating. The ranges, sensitivity and response times of all of the on-line purity monitors has proven satisfactory under EBR-II operating conditions

  5. EBR-II Static Neutronic Calculations by PHISICS / MCNP6 codes

    Energy Technology Data Exchange (ETDEWEB)

    Paolo Balestra; Carlo Parisi; Andrea Alfonsi

    2016-02-01

    The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the Shutdown Heat Removal Tests (SHRT) performed in the '80s at the Experimental fast Breeder Reactor EBR-II, USA. The scope of the CRP is to improve and validate the simulation tools for the study and the design of the liquid metal cooled fast reactors. Moreover, training of the next generation of fast reactor analysts is being also considered the other scope of the CRP. In this framework, a static neutronic model was developed, using state-of-the art neutron transport codes like SCALE/PHISICS (deterministic solution) and MCNP6 (stochastic solution). Comparison between both solutions is briefly illustrated in this summary.

  6. Comparisons of PRD [power-reactivity-decrements] components for various EBR-II configurations

    International Nuclear Information System (INIS)

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    Comparison of detailed calculations of contributions by region and component of the power-reactivity-decrements (PRD) for four differing loading configurations of the Experimental Breeder Reactor-II (EBR-II) are given. The linear components and Doppler components are calculated. The non-linear (primarily subassembly bowing) components are deduced by differences relative to measured total PRD values. Variations in linear components range from about 10% to as much as about 100% depending upon the component. The deduced non-linear components differ both in magnitude and sign as functions of reactor power. Effects of differing assumptions of the nature of the fuel-to-clad interactions upon the PRD components are also calculated

  7. Safety related considerations for operation with defected elements in EBR-II

    International Nuclear Information System (INIS)

    Fryer, R.M.; Sackett, J.I.; Lambert, J.D.B.

    1976-01-01

    Traditionally, EBR-II has employed the 'shutdown and remove' philosophy when breached fuel elements are encountered. This mode of operation maintained in-plant inventories of fission products at low levels and allowed certain fission product detection systems to be employed as automatic plant shutdown devices. Information from fuel failure propagation studies and fast reactor operation indicates that shutdown under these conditions is unwarranted. Analytical studies, as well as fast reactor experience, further indicate that failure propagation, if it occurs at all, will not cross adjacent subassembly boundaries. Therefore, the 'shutdown and remove' philosophy can be liberalized to allow the demonstration of safety during a run-beyond-clad-breach mode of operation. This mode of operation is essential to the demonstration of the economics of commercial LMFBR systems

  8. Potential safety enhancements to nuclear plant control: proof testing at EBR-II

    International Nuclear Information System (INIS)

    Lindsay, R.W.; Chisholm, G.H.

    1984-01-01

    Future changes in nuclear plant control and protective systems will reflect an evolutionary improvement through increased use of computers coupled with a better integration of man and machine. Before improvements can be accepted into the licensed commercial plant environment, significant testing must be accomplished to answer safety questions and to prove the worth of new ideas. The Experimental Breeder Reactor-II (EBR-II) is being used as a test-bed for both in-house development and testing for others in a DOE sponsored Man-Machine Integration program. The ultimate result of the development and testing would be a control system for which safety credit could be taken in the licensing process

  9. Software engineering for the EBR-II data acquisition system conversion

    International Nuclear Information System (INIS)

    Schorzman, W.

    1988-01-01

    The original data acquisition system (DAS) for the Experimental Breeder Reactor II (EBR-II) was placed into service with state-of-the-art computer and peripherals in 1970. Software engineering principles for real-time data acquisition were in their infancy, and the original software design was dictated by limited hardware resources. The functional requirements evolved from creative ways to gather and display data. This abstract concept developed into an invaluable tool for system analysis, data reporting, and as a plant monitor for operations. In this paper the approach is outlined to the software conversion project with the restraints of operational transparency and 6 weeks for final conversion and testing. The outline is then compared with the formal principles of software engineering to show the way that bridge the gap can be bridged between the theoretical and real world by analyzing the work and listing the lessons learned

  10. EBR-II secondary sodium loop Plugging Temperature Indicator control system upgrade

    International Nuclear Information System (INIS)

    Carlson, R.B.; Gehrman, R.L.

    1995-01-01

    The Experimental Breeder Reactor II (EBR-II) secondary sodium coolant loop Plugging Temperature Indicator (PTI) control system was upgraded in 1993 to a real-time computer based system. This was done to improve control, to remove obsolete and high maintenance equipment, and to provide a graphical CRT based operator interface. A goal was to accomplish this inexpensively using small, reliable computer and display hardware with a minimum of purchased software. This paper describes the PTI system, the upgraded control system and its operator interface, and development methods and tools. The paper then assesses how well the system met its goals, discusses lessons learned and operational improvements noted, and provides some recommendations and suggestions on applying small real-time control systems of this type

  11. Comparison of measured and calculated composition of irradiated EBR-II blanket assemblies

    International Nuclear Information System (INIS)

    Grimm, K. N.

    1998-01-01

    In anticipation of processing irradiated EBR-II depleted uranium blanket subassemblies in the Fuel Conditioning Facility (FCF) at ANL-West, it has been possible to obtain a limited set of destructive chemical analyses of samples from a single EBR-II blanket subassembly. Comparison of calculated values with these measurements is being used to validate a depletion methodology based on a limited number of generic models of EBR-II to simulate the irradiation history of these subassemblies. Initial comparisons indicate these methods are adequate to meet the operations and material control and accountancy (MC and A) requirements for the FCF, but also indicate several shortcomings which may be corrected or improved

  12. Microstructural comparison of HT-9 irradiated in HFIR and EBR-II

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1985-05-01

    A series of specimens of HT-9 heat 91354 have been examined following irradiation in HFIR to 39 dpa at 300, 400, 500 and 600 0 C and following irradiation in EBR-II to 29 dpa at 390 and 500 0 C. HFIR irradiation was found to have promoted helium bubble formation at all temperatures and voids at 400 0 C. Cavitation had not been observed at lower fluence, nor was it found in EBR-II irradiated specimens. The onset of void swelling in HFIR is attributed to helium generation. The observations provide an explanation for saturation of ductile-brittle transition temperature shifts with increasing fluence

  13. Proof tests of irradiated and unirradiated EBR-II subassembly ducts

    International Nuclear Information System (INIS)

    Ruther, W.E.; Chopra, P.S.; Lambert, J.D.B.

    1977-01-01

    A series of dynamic pressure tests have been conducted within EBR-II subassembly ducts. The tests were designed to simulate bursting of a driver-fuel element in a cluster of such elements at their burnup limit during off-normal conditions in EBR-II. The major objective of the tests was to assure that such failure, which might cause rapid release of stored fission gas, would not deform or otherwise damage subassembly ducts in a way that would hinder movement of a control rod. The test results are described

  14. Whole-core damage analysis of EBR-II driver fuel elements following SHRT program

    International Nuclear Information System (INIS)

    Chang, L.K.; Koenig, J.F.; Porter, D.L.

    1987-01-01

    In the Shutdown Heat Removal Testing (SHRT) program in EBR-II, fuel element cladding temperatures of some driver subassemblies were predicted to exceed temperatures at which cladding breach may occur. A whole-core thermal analysis of driver subassemblies was performed to determine the cladding temperatures of fuel elemnts, and these temperatures were used for fuel element damage calculation. The accumulated cladding damage of fuel element was found to be very small and fuel element failure resulting from SHRT transients is unlikely. No element breach was noted during the SHRT transients. The reactor was immediately restarted after the most severe SHRT transient had been completed and no driver fuel breach has been noted to date. (orig.)

  15. Tensile and fracture properties of EBR-II-irradiated V-15Cr-5Ti containing helium

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; Horak, J.A.

    1986-01-01

    The alloy V-15Cr-5Ti was cyclotron-implanted with 80 appM He and subsequently irradiated in the Experimental Breeder Reactor (EBR-II) to 30 dpa. The same alloy was also irradiated in the 10, 20, and 30% cold-worked conditions. Irradiation temperatures ranged from 400 to 700/sup 0/C. No significant effects of helium on mechanical properties were found in this temperature range although the neutron irradiation shifted the temperature of transition from cleavage to ductile fracture to about 625/sup 0/C. Ten percent cold work was found to have a beneficial effect in reducing the tendency for cleavage fracture following irradiation, but high levels (20%) were observed to reduce ductility. Still higher levels (30%) improved ductility by inducing recovery during the elevated-temperature irradiation. Swelling was found to be negligible, but precipitates - titanium oxides or carbonitrides - contained substantial cavities.

  16. Tensile and fracture properties of EBR-II-irradiated V-15Cr-5Ti containing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Horak, J.A.

    1986-01-01

    The alloy V-15Cr-5Ti was cyclotron-implanted with 80 appM He and subsequently irradiated in the Experimental Breeder Reactor (EBR-II) to 30 dpa. The same alloy was also irradiated in the 10, 20, and 30% cold-worked conditions. Irradiation temperatures ranged from 400 to 700 0 C. No significant effects of helium on mechanical properties were found in this temperature range although the neutron irradiation shifted the temperature of transition from cleavage to ductile fracture to about 625 0 C. Ten percent cold work was found to have a beneficial effect in reducing the tendency for cleavage fracture following irradiation, but high levels (20%) were observed to reduce ductility. Still higher levels (30%) improved ductility by inducing recovery during the elevated-temperature irradiation. Swelling was found to be negligible, but precipitates - titanium oxides or carbonitrides - contained substantial cavities

  17. The EBR-II materials-surveillance program. 5: Results of SURV-5

    International Nuclear Information System (INIS)

    Ruther, W.E.; Staffon, J.D.; Carlson, B.G.; Allen, T.R.

    1998-01-01

    In March of 1965, a set of surveillance (SURV) samples was placed in the EBR-II reactor to determine the effect of irradiation, thermal aging, and sodium corrosion on reactor materials. Eight subassemblies were placed into row 12 positions of EBR-II to determine the effect of irradiation at 370 C. Two subassemblies were placed into the primary sodium basket to determine the effect of thermal aging at 370 C. One half of all samples were exposed to primary system sodium while one half were sealed in capsules with a helium atmosphere. Fifteen different structural materials were tested in the SURV program. In this work, the properties of these materials irradiated at 370 C to a total fluence of 3.2 x 10 22 n/cm 2 were determined. These materials are the fifth set of irradiated subassemblies to be examined as part of the SURV program (SURV-5). The properties analyzed were weight, density, microstructure, hardness, tensile and yield strength, and fracture resistance. Of all the alloys examined in SURV-5, only Berylco-25 showed any significant weight loss. Stainless steel (both 304 and 347) had the largest density decrease, although the density decrease from irradiation for all alloys was less than 0.4 percent. The microstructure of both Berylco-25 and the aluminum-bronze alloy was altered significantly. Iron- and nickel-base alloys showed little change in microstructure. Austenitic steels (304 and 347) harden with irradiation. The hardness of Inconel X750 did not change significantly with irradiation. The ultimate tensile strength of Inconel X750, 304 stainless steel, 420 stainless steel and welded 304 changed little due to a fluence increase from 2.2 x 10 22 n/cm 2 (the maximum fluence of the SURV-4 samples) to 3.2 x 10 22 n/cm 2

  18. Feedback components of a U20Pu10Zr-fueled compared to a U10Zr-fueled EBR-II

    International Nuclear Information System (INIS)

    Meneghetti, D.; Kucera, D.A.

    1988-01-01

    Calculated feedback components of the regional contributions of the power reactivity decrements (PRDs) and of the temperature coefficients of reactivity of a U20Pu10Zr-fueled and of a U10Zr-fueled Experimental Breeder Reactor II (EBR-II) are compared. The PRD components are also separated into power-to-flow dependent and solely power dependent parts. The effects of these values upon quantities useful for indicating the comparative potential inherent safety characteristics of these EBR-II loadings are presented

  19. Modification of EBR-II plant to conduct loss-of-flow-without-scram tests

    Energy Technology Data Exchange (ETDEWEB)

    Messick, N C; Betten, P R; Booty, W F; Christensen, L J; Fryer, R M; Mohr, D; Planchon, H P; Radtke, W H

    1987-04-01

    This paper describes the details of and the philosophy behind changes made to the EBR-II plant in order to conduct loss-of-flow-without-scram tests. No changes were required to conduct loss-of-heat-sink-without-scram tests.

  20. Modification of EBR-II plant to conduct loss-of-flow-without-scram tests

    International Nuclear Information System (INIS)

    Messick, N.C.; Betten, P.R.; Booty, W.F.; Christensen, L.J.; Fryer, R.M.; Mohr, D.; Planchon, H.P.; Radtke, W.H.

    1987-01-01

    This paper describes the details of and the philosophy behind changes made to the EBR-II plant in order to conduct loss-of-flow-without-scram tests. No changes were required to conduct loss-of-heat-sink-without-scram tests. (orig.)

  1. Experimental study of the transition from forced to natural circulation in EBR-II at low power and flow

    International Nuclear Information System (INIS)

    Gillette, J.L.; Singer, R.M.; Tokar, J.V.; Sullivan, J.E.

    1979-01-01

    A series of tests have been conducted in EBR-II which studied the dynamics of the transition from forced to natural circulation flow in a liquid-metal-cooled fast breeder reactor (LMFBR). Each test was initiated by abruptly tripping an electromagnetic pump which supplies 5 to 6% of the normal full operational primary flow rate. The ensuing flow coast-down reached a minimum value after which the flow increased as natural circulation was established. The effects of secondary system flow through the intermediate heat exchanger and reactor decay power level on the minimum in-core flow rates and maximum in-core temperatures were examined

  2. SASSYS-1 computer code verification with EBR-II test data

    International Nuclear Information System (INIS)

    Warinner, D.K.; Dunn, F.E.

    1985-01-01

    The EBR-II natural circulation experiment, XX08 Test 8A, is simulated with the SASSYS-1 computer code and the results for the latter are compared with published data taken during the transient at selected points in the core. The SASSYS-1 results provide transient temperature and flow responses for all points of interest simultaneously during one run, once such basic parameters as pipe sizes, initial core flows, and elevations are specified. The SASSYS-1 simulation results for the EBR-II experiment XX08 Test 8A, conducted in March 1979, are within the published plant data uncertainties and, thereby, serve as a partial verification/validation of the SASSYS-1 code

  3. An evaluation of multigroup flux predictions in the EBR-II core

    International Nuclear Information System (INIS)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-01-01

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required

  4. Analysis of EBR-II neutron and photon physics by multidimensional transport-theory techniques

    International Nuclear Information System (INIS)

    Jacqmin, R.P.; Finck, P.J.; Palmiotti, G.

    1994-01-01

    This paper contains a review of the challenges specific to the EBR-II core physics, a description of the methods and techniques which have been developed for addressing these challenges, and the results of some validation studies relative to power-distribution calculations. Numerical tests have shown that the VARIANT nodal code yields eigenvalue and power predictions as accurate as finite difference and discrete ordinates transport codes, at a small fraction of the cost. Comparisons with continuous-energy Monte Carlo results have proven that the errors introduced by the use of the diffusion-theory approximation in the collapsing procedure to obtain broad-group cross sections, kerma factors, and photon-production matrices, have a small impact on the EBR-II neutron/photon power distribution

  5. Operational-safety advantages of LMFBR's: the EBR-II experience and testing program

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lindsay, R.W.; Golden, G.H.

    1982-01-01

    LMFBR's contain many inherent characteristics that simplify control and improve operating safety and reliability. The EBR-II design is such that good advantage was taken of these characteristics, resulting in a vary favorable operating history and allowing for a program of off-normal testing to further demonstrate the safe response of LMFBR's to upsets. The experience already gained, and that expected from the future testing program, will contribute to further development of design and safety criteria for LMFBR's. Inherently safe characteristics are emphasized and include natural convective flow for decay heat removal, minimal need for emergency power and a large negative reactivity feedback coefficient. These characteristics at EBR-II allow for ready application of computer diagnosis and control to demonstrate their effectiveness in response to simulated plant accidents. This latter testing objective is an important part in improvements in the man-machine interface

  6. An evaluation of multigroup flux predictions in the EBR-II core

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-12-31

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required.

  7. An evaluation of multigroup flux predictions in the EBR-II core

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-01-01

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required.

  8. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D.; Herceg, J.E.; Holtz, R.E.

    1991-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. 5 refs., 4 figs

  9. Visual imagery and the user model applied to fuel handling at EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-06-01

    The material presented in this paper is based on two studies involving visual display designs and the user`s perspective model of a system. The studies involved a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices which included the ``comfort parameters`` and ``perspective reality`` of the user`s model of the world. In developing visual displays for the EBR-II fuel handling system, the focus would be to incorporate the comfort parameters that overlap from each of the representation systems: visual, auditory and kinesthetic then incorporate the comfort parameters of the most prominent group of the population, and last, blend in the other two representational system comfort parameters. The focus of this informal study was to use the techniques of meta-modeling and synesthesia to develop a virtual environment that closely resembled the operator`s perspective of the fuel handling system of Argonne`s Experimental Breeder Reactor - II. An informal study was conducted using NLP as the behavioral model in a v reality (VR) setting.

  10. Visual imagery and the user model applied to fuel handling at EBR-II

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.

    1995-01-01

    The material presented in this paper is based on two studies involving visual display designs and the user's perspective model of a system. The studies involved a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices which included the ''comfort parameters'' and ''perspective reality'' of the user's model of the world. In developing visual displays for the EBR-II fuel handling system, the focus would be to incorporate the comfort parameters that overlap from each of the representation systems: visual, auditory and kinesthetic then incorporate the comfort parameters of the most prominent group of the population, and last, blend in the other two representational system comfort parameters. The focus of this informal study was to use the techniques of meta-modeling and synesthesia to develop a virtual environment that closely resembled the operator's perspective of the fuel handling system of Argonne's Experimental Breeder Reactor - II. An informal study was conducted using NLP as the behavioral model in a v reality (VR) setting

  11. Metal waste forms from treatment of EBR-II spent fuel

    International Nuclear Information System (INIS)

    Abraham, D. P.

    1998-01-01

    Demonstration of Argonne National Laboratory's electrometallurgical treatment of spent nuclear fuel is currently being conducted on irradiated, metallic driver fuel and blanket fuel elements from the Experimental Breeder Reactor-II (EBR-II) in Idaho. The residual metallic material from the electrometallurgical treatment process is consolidated into an ingot, the metal waste form (MWF), by employing an induction furnace in a hot cell. Scanning electron microscopy (SEM) and chemical analyses have been performed on irradiated cladding hulls from the driver fuel, and on samples from the alloy ingots. This paper presents the microstructures of the radioactive ingots and compares them with observations on simulated waste forms prepared using non-irradiated material. These simulated waste forms have the baseline composition of stainless steel - 15 wt % zirconium (SS-15Zr). Additions of noble metal elements, which serve as surrogates for fission products, and actinides are made to that baseline composition. The partitioning of noble metal and actinide elements into alloy phases and the role of zirconium for incorporating these elements is discussed in this paper

  12. Time series analysis of nuclear instrumentation in EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.

    1996-01-01

    Results of a time series analysis of the scaler count data from the 3 wide range nuclear detectors in the Experimental Breeder Reactor-II are presented. One of the channels was replaced, and it was desired to determine if there was any statistically significant change (ie, improvement) in the channel's response after the replacement. Data were collected from all 3 channels for 16-day periods before and after detector replacement. Time series analysis and statistical tests showed that there was no significant change after the detector replacement. Also, there were no statistically significant differences among the 3 channels, either before or after the replacement. Finally, it was determined that errors in the reactivity change inferred from subcritical count monitoring during fuel handling would be on the other of 20-30 cents for single count intervals

  13. Behavior of EBR-II Mk-V-type fuel elements in simulated loss-of-flow tests

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.; Billone, M.C.; Kramer, J.M.

    1992-01-01

    The next step in the development of metal fuels for the integral fast reactor (IFR) is the conversion of the Experimental Breeder Reactor II (EBR-II) core to one containing the ternary U-20 Pu-10 Zr alloy clad with HT-9 cladding, i.e., the Mk-V core. This paper presents results of three hot-cell furnace simulation tests on irradiated Mk-V-type fuel elements (U-19 Pu-10 Zr/HT-9), which were performed to support the safety case for the Mk-V core. These tests were designed to envelop an umbrella (bounding) unlikely loss-of-flow (LOF) event in EBR-II during which the calculated peak cladding temperature would reach 776 degree C for < 2 min. The principal objectives of these tests were (a) demonstration of the safety margin of the fuel element, (b) investigation of cladding breaching behavior, and (c) provision of data for validation of the FPIN2 and LIFE-METAL codes

  14. EBR-II blanket fuel leaching test using simulated J-13 well water

    International Nuclear Information System (INIS)

    Fonnesbeck, J. E.

    1999-01-01

    This paper discusses the results of a pulsed-flow leaching test using simulated J-13 well water leachant. This test was performed on three blanket fuel segments from the ANL-W EBR-II nuclear reactor which were originally made up of depleted uranium (DU). This experiment was designed to mimic conditions which would exist if, upon disposal of this material in a geological repository, it came in direct contact with groundwater. These segments were contained in pressure vessels and maintained at a constant temperature of 90 C. Weekly aliquots of leachate were taken from the three vessels and replaced with an equal volume of fresh leachant. These weekly aliquots were analyzed for both 90 Sr and 137 Cs. The results of the pulsed-flow leach test showed the formation of uranium oxide (UO 2 ) and uranium hydride (UH 3 ) particulate with rapid release of the 137 Cs and 90 Sr to the leachant. On the fifth week of sampling, one of the vessels became over pressurized and vented gas when opened. The most reasonable explanation for the presence of gas in this vessel is that the unoxidized uranium metal in the blanket segment could have reacted with the surrounding water leachant to form hydrogen. However, an investigation is currently being undertaken to both qualify and quantify H 2 formation during uranium spent nuclear fuel corrosion in water

  15. Assessment calculation of MARS-LMR using EBR-II SHRT-45R

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.; Ha, K.S.

    2016-10-15

    Highlights: • Neutronic and thermal-hydraulic behavior predicted by MARS-LMR is validated with EBR-II SHRT-45R test data. • Decay heat model of ANS-94 give better prediction of the fission power. • The core power is well predicted by reactivity feedback during initial transient, however, the predicted power after approximately 200 s is over-estimated. The study of the reactivity feedback model of the EBR-II is necessary for the better calculation of the power. • Heat transfer between inter-subassemblies is the most important parameter, especially, a low flow and power subassembly, like non-fueled subassembly. - Abstract: KAERI has designed a prototype Gen-IV SFR (PGSFR) with metallic fuel. And the safety analysis code for the PGSFR, MARS-LMR, is based on the MARS code, and supplemented with various liquid metal related features including sodium properties, heat transfer, pressure drop, and reactivity feedback models. In order to validate the newly developed MARS-LMR, KAERI has joined the International Atomic Energy Agency (IAEA) coordinated research project (CRP) on “Benchmark Analysis of an EBR-II Shutdown Heat Removal Test (SHRT)”. Argonne National Laboratory (ANL) has technically supported and participated in this program. One of benchmark analysis tests is SHRT-45R, which is an unprotected loss of flow test in an EBR-II. So, sodium natural circulation and reactivity feedbacks are major phenomena of interest. A benchmark analysis was conducted using MARS-LMR with original input data provided by ANL. MARS-LMR well predicts the core flow and power change by reactivity feedbacks in the core. Except the results of the XX10, the temperature and flow in the XX09 agreed well with the experiments. Moreover, sensitivity tests were carried out for a decay heat model, reactivity feedback model, inter-subassembly heat transfer, internal heat structures and so on, to evaluate their sensitivity and get a better prediction. The decay heat model of ANS-94 shows

  16. Assessment calculation of MARS-LMR using EBR-II SHRT-45R

    International Nuclear Information System (INIS)

    Choi, C.; Ha, K.S.

    2016-01-01

    Highlights: • Neutronic and thermal-hydraulic behavior predicted by MARS-LMR is validated with EBR-II SHRT-45R test data. • Decay heat model of ANS-94 give better prediction of the fission power. • The core power is well predicted by reactivity feedback during initial transient, however, the predicted power after approximately 200 s is over-estimated. The study of the reactivity feedback model of the EBR-II is necessary for the better calculation of the power. • Heat transfer between inter-subassemblies is the most important parameter, especially, a low flow and power subassembly, like non-fueled subassembly. - Abstract: KAERI has designed a prototype Gen-IV SFR (PGSFR) with metallic fuel. And the safety analysis code for the PGSFR, MARS-LMR, is based on the MARS code, and supplemented with various liquid metal related features including sodium properties, heat transfer, pressure drop, and reactivity feedback models. In order to validate the newly developed MARS-LMR, KAERI has joined the International Atomic Energy Agency (IAEA) coordinated research project (CRP) on “Benchmark Analysis of an EBR-II Shutdown Heat Removal Test (SHRT)”. Argonne National Laboratory (ANL) has technically supported and participated in this program. One of benchmark analysis tests is SHRT-45R, which is an unprotected loss of flow test in an EBR-II. So, sodium natural circulation and reactivity feedbacks are major phenomena of interest. A benchmark analysis was conducted using MARS-LMR with original input data provided by ANL. MARS-LMR well predicts the core flow and power change by reactivity feedbacks in the core. Except the results of the XX10, the temperature and flow in the XX09 agreed well with the experiments. Moreover, sensitivity tests were carried out for a decay heat model, reactivity feedback model, inter-subassembly heat transfer, internal heat structures and so on, to evaluate their sensitivity and get a better prediction. The decay heat model of ANS-94 shows

  17. Benchmark Analysis of EBR-II Shutdown Heat Removal Tests

    International Nuclear Information System (INIS)

    2017-08-01

    This publication presents the results and main achievements of an IAEA coordinated research project to verify and validate system and safety codes used in the analyses of liquid metal thermal hydraulics and neutronics phenomena in sodium cooled fast reactors. The publication will be of use to the researchers and professionals currently working on relevant fast reactors programmes. In addition, it is intended to support the training of the next generation of analysts and designers through international benchmark exercises

  18. Applications of the EBR-II Probabilistic Risk Assessment

    International Nuclear Information System (INIS)

    Roglans, J.: Ragland, W.A.; Hill, D.J.

    1993-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor 11 (EBR-11), a Department of Energy (DOE) Category A research reactor, has recently been completed at Argonne National Laboratory (ANL), and has been performed with close collaboration between PRA analysts and engineering and operations staff. A product of this Involvement of plant personnel has been a excellent acceptance of the PRA as a tool, which has already resulted In a variety of applications of the EBR-11 PRA. The EBR-11 has been used in support of plant hardware and procedure modifications and In new system design work. A new application in support of the refueling safety analysis will be completed in the near future

  19. Experimental and theoretical investigations on the dynamic response of EBR-II ducts under pressure pulse loading

    International Nuclear Information System (INIS)

    Chopra, P.S.; Srinivas, S.

    1975-01-01

    In order to assess the potential damage to hexagonal subassembly ducts (cans) that may result from rapid gas release from a failed element the EBR-II project has conducted experiments and analyses. Additional experimental and analytical investigations are now being conducted to assure fail-safety of the ducts. Fail-safety is defined as the ability of a duct to withstand pressure pulses from failed elements during all reactor conditions without damage to adjacent ducts or any other problems in fuel handling. The results of 93 EBR-II duct tests conducted primarily by Koenig have been reported previously. The results of empirical correlations of some of these tests to determine the influence of several variables on the pressure pulse experienced by a duct and on the duct deformation are presented. The variables include the type of gas contained in the simulated element (tube), the element and duct materials, the presence or absence of flow restrictors in the element, and the way gas was released. 8 references. (auth)

  20. The EBR-II spent fuel treatment program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; McFarlane, H.F.

    1995-01-01

    Argonne National Laboratory has refurbished and equipped an existing hot cell facility for demonstrating a high-temperature electrometallurgical process for treating spent nuclear fuel from the Experimental Breeder Reactor-11. Two waste forms will be produced and qualified for geologic disposal of the fission and activation products. Relatively pure uranium will be separated for storage. Following additional development, transuranium elements will be blended into one of the high-level waste streams. The spent fuel treatment program will help assess the viability of electrometallurgical technology as a spent fuel management option

  1. Operating and test experience of EBR-II

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    EBR-2 has operated for 27 years, the longest for any Liquid Metal Reactor (LMR) power plant. During that time, much has been learned about successful LMR operation and design. The basic lesson is that conversatism in design can pay significant dividends in operating reliability. Furthermore, such conservatism need not mean high cost. The EBR-2 system emphasizes simplicity, minimizing the number of valves in the heat transport system, for example, and simplifying the primary heat-transport-system layout. Another lesson is that emphasizing reliability of the steam generating system at the sodium-water interface (by using duplex tubes in the case of EBR-2) has been well worth the higher initial costs; no problems with leakage have been encountered in EBR-2's operating history. Locating spent fuel storage in the primary tank and providing for decay heat removal by natural connective flow have also been contributors to EBR-2's success. The ability to accommodate loss of forced cooling or loss of heat sink passively has resulted in benefits for simplification, primarily through less reliance on emergency power and in not requiring the secondary sodium or steam systems to be safety grade. Also, the ''piped-pool '' arrangement minimizes thermal stress to the primary tank and enhances natural convective flow. These benefits have been realized through a history of operation that has seen EBR-2 evolve through four major phases in its test programs, culminating in its present mission as the Integral Fast Rector (IFR) prototype. 20 refs., 8 figs., 1 tab

  2. EBR-II facility for cleaning and maintenance of LMR components

    International Nuclear Information System (INIS)

    Washburn, R.A.

    1986-01-01

    The cleaning and maintenance of EBR-II sodium wetted components is accomplished in a separate hands-on maintenance facility known as the Sodium Components Maintenance Shop (SCMS). Sodium removal is mostly done using alcohol but steam or water is used. The SCMS has three alcohol cleaning systems: one for small nonradioactive components, one for small radioactive components, and one for large radioactive components. The SCMS also has a water-wash station for the removal of sodium with steam or water. An Alcohol Recovery Facility removes radioactive contaminants from the alcohol and reclaims the alcohol for reuse. Associated with the large components cleaning system is a major component handling system

  3. Criticality safety requirements for transporting EBR-II fuel bottles stored at INTEC

    International Nuclear Information System (INIS)

    Lell, R. M.; Pope, C. L.

    2000-01-01

    Two carrier/shipping cask options are being developed to transport bottles of EBR-II fuel elements stored at INTEC. Some fuel bottles are intact, but some have developed leaks. Reactivity control requirements to maintain subcriticality during the hypothetical transport accident have been examined for both transport options for intact and leaking bottles. Poison rods, poison sleeves, and dummy filler bottles were considered; several possible poison materials and several possible dummy filler materials were studied. The minimum number of poison rods or dummy filler bottles has been determined for each carrier for transport of intact and leaking bottles

  4. Fail-safety of the EBR-II steam generator system

    International Nuclear Information System (INIS)

    Chopra, P.S.; Stone, C.C.; Hutter, E.; Barney, W.K.; Staker, R.G.

    1976-01-01

    Fail-safe analyses of the EBR-II steam-generator system show that a postulated non-instantaneous leak of water or steam into sodium, through a duplex tube or a tubesheet, at credible leak rates will not structurally damage the evaporators and superheaters. However, contamination of the system and possible shell wastage by sodium-water reaction products may render the system inoperable for a period exceeding six months. This period would be shortened to three months if the system were modified by adding a remotely operated water dump system, a steam vent system, a secondary sodium superheater relief line, and a tubesheet leak-detection system

  5. Simulation of LMFBR pump transients and comparison to LOF that occurred at EBR-II

    International Nuclear Information System (INIS)

    Koenig, F.F.; Dean, E.M.

    1985-01-01

    In a large LMFBR plant design, a number of pumps in parallel will feed the core. It must be demonstrated that the plant can continue to operate with the loss of one of the primary pumps. It is desirable not to have check valves in the loop from a reliability and economic standpoint. Simulations have been made to determine the consequences of a loss of one pump in a four-loop pool plant in which no plant protection action is taken. This analysis would be used to determine the required power rundown that would accompany pump loss. The two primary centrifugal pumps in EBR-II feed the core and blanket plenums in two parallel flow paths. The loss of one pump will result in decrease core flow and reverse flow through the down pump since no check valves are present in the system. For a large pool plant with four primary pumps, the loss of one pump will also result in reverse flow through the down pump if check valves of flow diodes are not included. The resulting flow transient has been modeled for EBR-II and the large plant using the DNSP program

  6. Simulation and verification of the EBR-II automatic control rod drive system with continuous system modeling codes

    International Nuclear Information System (INIS)

    Larson, H.A.; Dean, E.M.

    1985-01-01

    The two computer programs are successful in modeling the EBR-II ACRDS. In fact, this is very convenient for a presampling of the consequences of a desired power movement. The ACRDS is to be modified so that the error signal is a comparison between demand position and measured position. Purpose of this change is to permit pseudo-random binary types of reactivity transfer function experiments at EBR-II. Questions asked about the computer software and hardware to accommodate this change can be quickly answered with either of the verified codes discussed here

  7. Dynamic response of the EBR-II secondary sodium system to postulated leaks of steam and water into sodium

    International Nuclear Information System (INIS)

    Srinivas, S.; Chopra, P.S.; Stone, C.C.

    1976-01-01

    The paper presents evaluations of the dynamic response of a steam generator system to postulated leaks of steam and water into sodium. This work is part of a comprehensive fail-safe analysis of the EBR-II steam generator system

  8. EBR-II blanket fuel leaching test using simulated J-13 well water.

    Energy Technology Data Exchange (ETDEWEB)

    Fonnesbeck, J. E.

    1998-05-15

    A pulsed-flow leaching test is being conducted using three EBR-II blanket fuel segments. These samples are immersed in simulated J-13 well water. The samples are kept at a constant temperature of 90 C. Leachate is exchanged weekly and analyzed for various nuclides which are of interest from a mobility and longevity point of view. Our primary interest is in the longer-lived species such as {sup 99}Tc, {sup 237}Np, and {sup 241}Am. In addition, the behavior of U, Pu, {sup 90}Sr, and {sup 137}Cs are being analyzed. During the course of this experiment, an interesting observation has been made involving one of the samples which could indicate the possible rapid ''anoxic'' oxidation of uranium metal to UO{sub 2}.

  9. Performance of commercially produced mixed-oxide fuels in EBR-II

    International Nuclear Information System (INIS)

    Hales, J.W.; Lawrence, L.A.

    1980-11-01

    Commercially produced fuels for the Fast Flux Test Facility (FFTF) were irradiated in EBR-II under conditions of high cladding temperature (approx. 700 0 C) and low power (approx. 200 W/cm) to verify that manufacturing processes did not introduce variables which significantly affect general fuel performance. Four interim examinations and a terminal examination were completed to a peak burnup of 5.2 at. % to provide irradiation data pertaining to fuel restructuring and dimensional stability at low fuel temperature, fuel-cladding reactions at high cladding temperature and general fuel behavior. The examinations indicate completely satisfactory irradiation performance for low heat rates and high cladding temperatures to 5.2 at. % burnup

  10. EBR-II Cover Gas Cleanup System (CGCS) upgrade graphical interface design

    International Nuclear Information System (INIS)

    Staffon, J.D.; Peters, G.G.

    1992-01-01

    Technology advances in the past few years have prompted an effort at Argonne National Laboratory to replace existing equipment with high performance digital computers and color graphic displays. Improved operation of process systems can be achieved by utilizing state-of-the-art computer technology in the areas of process control and process monitoring. The Cover Gas Cleanup System (CGCS) at EBR-II is the first system to be upgraded with high performance digital equipment. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper describes the main control computer and the operator interface control software

  11. EBRPOCO - a program to calculate detailed contributions of power reactivity components of EBR-II

    International Nuclear Information System (INIS)

    Meneghetti, D.; Kucera, D.A.

    1981-01-01

    The EBRPOCO program has been developed to facilitate the calculations of the power coefficients of reactivity of EBR-II loadings. The program enables contributions of various components of the power coefficient to be delineated axially for every subassembly. The program computes the reactivity contributions of the power coefficients resulting from: density reduction of sodium coolant due to temperature; displacement of sodium coolant by thermal expansions of cladding, structural rods, subassembly cans, and lower and upper axial reflectors; density reductions of these steel components due to temperature; displacement of bond-sodium (if present) in gaps by differential thermal expansions of fuel and cladding; density reduction of bond-sodium (if present) in gaps due to temperature; free axial expansion of fuel if unrestricted by cladding or restricted axial expansion of fuel determined by axial expansion of cladding. Isotopic spatial contributions to the Doppler component my also be obtained. (orig.) [de

  12. Response of EBR-II to a complete loss of primary forced flow during power operation

    International Nuclear Information System (INIS)

    Singer, R.M.; Gillette, J.L.; Mohr, D.; Tokar, J.V.; Sullivan, J.E.; Dean, E.M.

    1980-01-01

    Detailed measurements of the thermal, hydraulic, and neutronic response of EBR-II to a complete loss of primary forced flow followed by a PPS-activated scram are presented. The experimental results clearly indicate a smooth transition to natural convective flow with a quite modest incore temperature transient. The accompanying calculations using the NATDEMO code agree quite well with the measured temperatures and flow rates throughout the primary system. The only region of the plant where a significant discrepancy between the measurements and calculations occurred was in the IHX. The reasons for this result could not be definitively determined, but it is speculated that the one-dimensional assumptions used in the modeling may not be valid in the IHX during buoyancy driver flows

  13. Development of a graphical user interface allowing use of the SASSYS LMR systems analysis code as an EBR-II interactive simulator

    International Nuclear Information System (INIS)

    Garner, P.L.; Briggs, L.L.; Gross, K.C.; Ku, J.Y.; Staffon, J.D.

    1994-01-01

    The SASSYS computer program for safety analyses of liquid-metal- cooled fast reactors has been adapted for use as the simulation engine under the graphical user interface provided by the GRAFUN and HIST programs and the Data Views software package under the X Window System on UNIX-based computer workstations to provide a high fidelity, real-time, interactive simulator of the Experimental Breeder Reactor Number II (EBR-II) plant. In addition to providing analysts with an interactive way of performing safety case studies, the simulator can be used to investigate new control room technologies and to supplement current operator training

  14. Benchmark analyses for EBR-II shutdown heat removal tests SHRT-17 and SHRT-45R

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui (Japan); Muranaka, Kohmei; Asai, Takayuki [Graduate School of Engineering, University of Fukui (Japan); Rooijen, W.F.G. van, E-mail: rooijen@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2014-08-15

    Highlights: • The IAEA EBR-II benchmarks SHRT-17 and SHRT-45R are analyzed with a 1D system code. • The calculated result of SHRT-17 corresponds well to the measured results. • For SHRT-45R ERANOS is used for various core parameters and reactivity coefficients. • SHRT-45R peak temperature is overestimated with the ERANOS feedback coefficients. • The peak temperature is well predicted when the feedback coefficient is reduced. - Abstract: Benchmark problems of several experiments in EBR-II, proposed by ANL and coordinated by the IAEA, are analyzed using the plant system code NETFLOW++ and the neutronics code ERANOS. The SHRT-17 test conducted as a loss-of-flow test is calculated using only the NETFLOW++ code because it is a purely thermal–hydraulic problem. The measured data were made available to the benchmark participants after the results of the blind benchmark calculations were submitted. Our work shows that major parameters of the plant are predicted with good accuracy. The SHRT-45R test, an unprotected loss of flow test is calculated using the NETFLOW++ code with the aid of delayed neutron data and reactivity coefficients calculated by the ERANOS code. These parameters are used in the NETFLOW++ code to perform a semi-coupled analysis of the neutronics – thermal–hydraulic problem. The measured data are compared with our calculated results. In our work, the peak temperature is underestimated, indicating that the reactivity feedback coefficients are too strong. When the reactivity feedback coefficient for thermal expansion is adjusted, good agreement is obtained in general for the calculated plant parameters, with a few exceptions.

  15. Eutectic penetration times in irradiated EBR-II driver fuel elements

    International Nuclear Information System (INIS)

    Betten, P.R.; Bottcher, J.H.; Seidel, B.R.

    1983-01-01

    The experimental test procedure employed the use of a high-temperature furnace which heated pre-irradiated elements to temperature and maintained the environment until element-cladding breach occurred. Pre-irradiated elements of the Mark-II design were first encapsulated in a close-fitting sealed tube that was instrumented with a pressure transducer at the top of the tube and a thermocouple at the element's top-of-fuel axial location. The volume of the capsule was evacuated in order to better identify the pressure pulse which would occur on breach and to minimize contaminants. Next, a three-zone fast-recovery furnace was heated and an axial temperature profile, similar to that experienced in the EBR-II core, was established. The encapsulated element was then quickly inserted into the furnace and remained there until clad breach occurred. The element was then removed from the furnace immediately. Visual and metallurgical examination of the rupture site was done later. A total of seven elements were tested in the above manner

  16. Tensile properties of helium-injected V-15Cr-5Ti after irradiation in EBR-II

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Horak, J.A.

    1985-01-01

    Miniature specimens of V-15Cr-5Ti were prepared in the annealed condition and with 10, 20, and 30% cold work. The annealed specimens were cyclotron injected with helium and irradiated in sodium in EBR-II. The cold-worked specimens were irradiated in EBR-II but not helium injected. The specimens were irradiated at 400, 525, 625, and 700 0 C and received a fluence of 4.1 to 5.5 x 10 26 neutrons/m 2 (E > 0.1 meV). Tensile testing revealed very significant embrittlement as a result of the neutron irradiation but a much smaller change, mostly at 400 0 C, resulting from helium injection. 5 references, 9 figures, 2 tables

  17. Sensitivity Analysis of Uncertainty Parameter based on MARS-LMR Code on SHRT-45R of EBR II

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seok-Ju; Kang, Doo-Hyuk; Seo, Jae-Seung [System Engineering and Technology Co., Daejeon (Korea, Republic of); Bae, Sung-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Hae-Yong [Sejong University, Seoul (Korea, Republic of)

    2016-10-15

    In order to assess the uncertainty quantification of the MARS-LMR code, the code has been improved by modifying the source code to accommodate calculation process required for uncertainty quantification. In the present study, a transient of Unprotected Loss of Flow(ULOF) is selected as typical cases of as Anticipated Transient without Scram(ATWS) which belongs to DEC category. The MARS-LMR input generation for EBR II SHRT-45R and execution works are performed by using the PAPIRUS program. The sensitivity analysis is carried out with Uncertainty Parameter of the MARS-LMR code for EBR-II SHRT-45R. Based on the results of sensitivity analysis, dominant parameters with large sensitivity to FoM are picked out. Dominant parameters selected are closely related to the development process of ULOF event.

  18. Microchemical and microstructural evolution of AISI 304 stainless steel irradiated in EBR-II at PWR-relevant dpa rates

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Y. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Sencer, B.H. [Idaho National Laboratory, Idaho Falls, ID 83402 (United States); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States); Marquis, E.A., E-mail: emarq@umich.edu [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-12-15

    AISI 304 stainless steel was irradiated at 416 °C and 450 °C at a 4.4 × 10{sup −9} and 3.05 × 10{sup −7} dpa/s to ∼0.4 and ∼28 dpa, respectively, in the reflector of the EBR-II fast reactor. Both unirradiated and irradiated conditions were examined using standard and scanning transmission electron microscopy, energy dispersive spectroscopy, and atom probe tomography on very small specimens produced by focused ion beam milling. These results are compared with previous electron microscopy examination of 3 mm disks from essentially the same material. By comparing a very low dose specimen with a much higher dose specimen, both derived from a single reactor assembly, it has been demonstrated that the coupled microstructural and microchemical evolution of dislocation loops and other sinks begins very early, with elemental segregation producing at these sinks what appears to be measurable precursors to fully formed precipitates found at higher doses. The nature of these sinks and their possible precursors are examined in detail.

  19. Microchemical and microstructural evolution of AISI 304 stainless steel irradiated in EBR-II at PWR-relevant dpa rates

    Science.gov (United States)

    Dong, Y.; Sencer, B. H.; Garner, F. A.; Marquis, E. A.

    2015-12-01

    AISI 304 stainless steel was irradiated at 416 °C and 450 °C at a 4.4 × 10-9 and 3.05 × 10-7 dpa/s to ∼0.4 and ∼28 dpa, respectively, in the reflector of the EBR-II fast reactor. Both unirradiated and irradiated conditions were examined using standard and scanning transmission electron microscopy, energy dispersive spectroscopy, and atom probe tomography on very small specimens produced by focused ion beam milling. These results are compared with previous electron microscopy examination of 3 mm disks from essentially the same material. By comparing a very low dose specimen with a much higher dose specimen, both derived from a single reactor assembly, it has been demonstrated that the coupled microstructural and microchemical evolution of dislocation loops and other sinks begins very early, with elemental segregation producing at these sinks what appears to be measurable precursors to fully formed precipitates found at higher doses. The nature of these sinks and their possible precursors are examined in detail.

  20. Zr-rich layers electrodeposited onto stainless steel cladding during the electrorefining of EBR-II fuel

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Mariani, R.D.

    1999-01-01

    Argonne National Laboratory is developing an electrometallurgical treatment for spent nuclear fuels. The initial demonstration of this process is being conducted on U-Zr alloy fuel elements irradiated in the experimental breeder reactor II (EBR-II). We report the first metallographic characterization of cladding hull remains for the electrometallurgical treatment of spent metallic fuel. During the electrorefining process, Zr-rich layers, with some U, deposit on all exposed surfaces of irradiated cladding segments (hulls) that originally contained the fuel alloy that was being treated. In some cases, not only was residual Zr (and U) found inside the cladding hulls, but a Zr-rind was also observed near the interior cladding hull surface. The Zr-rind was originally formed during the fuel casting process on the fuel slug. The observation of Zr deposits on all exposed cladding surfaces is explained with thermodynamic principles, when two conditions are met. These conditions are partial oxidation of Zr and the presence of residual uranium in the hulls when the electrorefining experiment is terminated. Comparisons are made between the structure of the initial irradiated fuel before electrorefining and the morphology of the material remaining in the cladding hulls after electrorefining. (orig.)

  1. Software engineering for the EBR-II data acquisition system conversion

    International Nuclear Information System (INIS)

    Schorzman, W.

    1988-01-01

    The purpose of this paper is to outline how EBR-II engineering approached the data acquisition system (DAS) software conversion project with the restraints of operational transparency and six weeks for final implementation and testing. Software engineering is a relatively new discipline that provides a structured philosopy for software conversion. The software life cycle is structured into six basic steps: 1) initiation, 2) requirements definition, 3) design, 4) programming, 5) testing, and 6) operations. These steps are loosely defined and can be altered to fit specific software applications. DAS software is encompassed from three sources: 1) custom software, 2) system software, and 3) in-house application software. A data flow structure is used to describe the DAS software. The categories are: 1) software used to bring signals into the central processer, 2) software that transforms the analog data to engineering units and then logs the data in the data store, and 3) software used to transport and display the data. The focus of this paper is to describe how the conversion team used a structured engineering approach and utilized the resources available to produce a quality system on time. Although successful, the conversion process provided some pit falls and stumbling blocks. Working through these obstacles enhanced our understanding and surfaced in the form of LESSONS LEARNED, which are gracefully shared in this paper

  2. Tensile properties of vanadium alloys irradiated at 390{degrees}C in EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Tsai, H.C.; Nowicki, L.J. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    Vanadium alloys were irradiated in Li-bonded stainless steel capsules to {approx}390{degrees}C in the EBR-II X-530 experiment. This report presents results of postirradiation tests of tensile properties of two large-scale (100 and 500 kg) heats of V-4Cr-Ti and laboratory (15-30 kg) heats of boron-doped V-4Cr-4Ti, V-8Cr-6Ti, V-5Ti, and V-3Ti-1Si alloys. Tensile specimens, divided into two groups, were irradiated in two different capsules under nominally similar conditions. The 500-kg heat (No. 832665) and the 100-kg heat (VX-8) of V-4Cr-4Ti irradiated in one of the subcapsules exhibited complete loss of work-hardening capability, which was manifested by very low uniform plastic strain. In contrast, the 100-kg heat of V-4Cr-4Ti irradiated in another subcapsule exhibited good tensile properties (uniform plastic strain 2.8-4.0%). A laboratory heat of V-3Ti-1Si irradiated in the latter subcapsule also exhibited good tensile properties. These results indicate that work-hardening capability at low irradiation temperatures varies significantly from heat to heat and is influenced by nominally small differences in irradiation conditions.

  3. Review of behavior of mixed-oxide fuel elements in extended overpower transient tests in EBR-II

    International Nuclear Information System (INIS)

    Tsai, H.; Neimark, L.A.

    1994-10-01

    From a series of five tests conducted in EBR-II, a substantial data base has been established on the performance of mixed-oxide fuel elements in a liquid-metal-cooled reactor under slow-ramp transient overpower conditions. Each test contained 19 preirradiated fuel elements with varying design and prior operating histories. Elements with aggressive design features, such as high fuel smear density and/or thin cladding, were included to accentuate transient effects. The ramp rates were either 0.1 or 10% ΔP/P/s and the overpowers ranged between ∼60 and 100% of the elements' prior power ratings. Six elements breached during the tests, all with aggressive design parameters. The other elements, including all those with moderate design features for the reference or advanced long-life drivers for PNC's prototype fast reactor Monju, maintained their cladding integrity during the tests. Posttest examination results indicated that fuel/cladding mechanical interaction (FCMI) was the most significant mechanism causing the cladding strain and breach. In contrast, pressure loading from the fission gas in the element plenum was less important, even in high-burnup elements. During an overpower transient, FCMI arises from fuel/cladding differential thermal expansion, transient fuel swelling, and, significantly, the gas pressure in the sealed central cavity of elements with substantial centerline fuel melting. Fuel performance data from these tests, including cladding breaching margin and transient cladding strain, are correlatable with fuel-element design and operating parameters. These correlations are being incorporated into fuel-element behavior codes. At the two tested ramp rates, fuel element behavior appears to be insensitive to transient ramp rate and there appears to be no particular vulnerability to slow ramp transients as previously perceived

  4. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y., E-mail: yina.huang@materials.ox.ac.uk [University of Wisconsin, Madison, WI 53706 (United States); Wiezorek, J.M.K. [University of Pittsburgh, Pittsburgh, PA 15260 (United States); Garner, F.A. [Radiation Effects Consulting, 2003 Howell Ave., Richland, WA 99354 (United States); Freyer, P.D. [Westinghouse Electric Company LLC, Pittsburgh, PA 15235 (United States); Okita, T. [University of Tokyo, Tokyo (Japan); Sagisaka, M.; Isobe, Y. [Nuclear Fuel Industries, Ltd., Osaka (Japan); Allen, T.R. [University of Wisconsin, Madison, WI 53706 (United States)

    2015-10-15

    While thin reactor structural components such as cladding and ducts do not experience significant gradients in dpa rate, gamma heating rate, temperature or stress, thick components can develop strong local variations in void swelling and irradiation creep in response to gradients in these variables. In this study we conducted microstructural investigations by transmission electron microscopy of two 52 mm thick 304-type stainless steel hex-blocks irradiated for 12 years in the EBR-II reactor with accumulated doses ranging from ∼0.4 to 33 dpa. Spatial variations in the populations of voids, precipitates, Frank loops and dislocation lines have been determined for 304 stainless steel sections exposed to different temperatures, different dpa levels and at different dpa rates, demonstrating the existence of spatial gradients in the resulting void swelling. The microstructural measurements compare very well with complementary density change measurements regarding void swelling gradients in the 304 stainless steel hex-block components. The TEM studies revealed that the original cold-worked-state microstructure of the unirradiated blocks was completely erased by irradiation, replaced by high densities of interstitial Frank loops, voids and carbide precipitates at both the lowest and highest doses. At large dose levels the amount of volumetric void swelling correlated directly with the gamma heating gradient-related temperature increase (e.g. for 28 dpa, ∼2% swelling at 418 °C and ∼2.9% swelling at 448 °C). Under approximately iso-thermal local conditions, volumetric void swelling was found to increase with dose level (e.g. ∼0.2% swelling at 0.4 dpa, ∼0.5% swelling at 4 dpa and ∼2% swelling at 28 dpa). Carbide precipitate formation levels were found to be relatively independent of both dpa level and temperature and induced a measurable densification. Void swelling was dominant at the higher dose levels and caused measurable decreases in density. Void

  5. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II

    Science.gov (United States)

    Huang, Y.; Wiezorek, J. M. K.; Garner, F. A.; Freyer, P. D.; Okita, T.; Sagisaka, M.; Isobe, Y.; Allen, T. R.

    2015-10-01

    While thin reactor structural components such as cladding and ducts do not experience significant gradients in dpa rate, gamma heating rate, temperature or stress, thick components can develop strong local variations in void swelling and irradiation creep in response to gradients in these variables. In this study we conducted microstructural investigations by transmission electron microscopy of two 52 mm thick 304-type stainless steel hex-blocks irradiated for 12 years in the EBR-II reactor with accumulated doses ranging from ∼0.4 to 33 dpa. Spatial variations in the populations of voids, precipitates, Frank loops and dislocation lines have been determined for 304 stainless steel sections exposed to different temperatures, different dpa levels and at different dpa rates, demonstrating the existence of spatial gradients in the resulting void swelling. The microstructural measurements compare very well with complementary density change measurements regarding void swelling gradients in the 304 stainless steel hex-block components. The TEM studies revealed that the original cold-worked-state microstructure of the unirradiated blocks was completely erased by irradiation, replaced by high densities of interstitial Frank loops, voids and carbide precipitates at both the lowest and highest doses. At large dose levels the amount of volumetric void swelling correlated directly with the gamma heating gradient-related temperature increase (e.g. for 28 dpa, ∼2% swelling at 418 °C and ∼2.9% swelling at 448 °C). Under approximately iso-thermal local conditions, volumetric void swelling was found to increase with dose level (e.g. ∼0.2% swelling at 0.4 dpa, ∼0.5% swelling at 4 dpa and ∼2% swelling at 28 dpa). Carbide precipitate formation levels were found to be relatively independent of both dpa level and temperature and induced a measurable densification. Void swelling was dominant at the higher dose levels and caused measurable decreases in density. Void swelling

  6. Microsegregation observed in Fe-35.5Ni-7.5Cr irradiated in EBR-II

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.

    1984-01-01

    At 593 0 C one alloy, Fe-35.5Ni-7.5Cr, which was particularly resistant to swelling in EBR-II, increased in density 0.9% at 7.6 x 10 22 n/cm 2 (E > 0.1 MeV). Examination by energy dispersive x-ray analysis revealed that substantial oscillations occur in the nickel content of the alloy, varying from 25 to 53% about the nominal level of 35.5%. These oscillations exhibit a period of approx.200 nm. Regions enriched in nickel are depleted in chromium and iron, and the reverse is true in regions of low nickel content. This spinodal-like process produces a net densification and also appears to eventually destroy the swelling resistance of the alloy. Once voids form in the nickel-poor chromium-rich regions, further segregation of nickel to void surfaces is expected to accelerate the loss of swelling resistance

  7. Behavior of EBR-II Mk-V-type fuel elements in simulated loss-of-flow tests

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.; Billone, M.C.; Holland, J.W.; Kramer, J.M.

    1992-11-01

    This report discusses three furnace heating tests which were conducted with irradiated, HT9-clad and U-19wt.%Pu-l0wt.%Zr-alloy fuel, Mk-V-type fuel elements in the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory, Illinois. In general, very significant safety margins for fuel-element cladding breaching have been demonstrated in these tests, under conditions that would envelop a bounding unlikely loss-of-flow event in EBR-II. Highlights of the test results will be given, as well as discussions of the cladding breaching mechanisms, axial fuel motion, and fuel surface liquefaction found in high-temperature testing of irradiated metallic fuel elements

  8. EBR-II in-vessel natural circulation experiments on hot and cold pool stratification

    International Nuclear Information System (INIS)

    Ragland, W.A.; Feldman, E.E.

    1990-01-01

    The Experimental Breeder Reactor II is located in a cylindrical pool of liquid sodium which is part of the cold-leg of the primary flow circuit. A vertical string of 32 thermocouples spans the 8 m tank height, at each of two diametrically opposed locations in the primary tank. Local temperatures were measured with these 64 thermocouples during dynamic tests. The instantaneous spacial temperature distribution obtained from a string of thermocouples can be viewed on a personal computer. The animation which results from displaying successive spacial distributions provide a very effective way to quickly obtain physical insights. The design of the two strings of thermocouples, the software used to create the animation, measured data from three different types of tests--two unprotected reactor transients, and one with the reactor at decay power levels and the reactor cover lifted, are discussed. 5 refs., 3 figs

  9. Procedures and instrumentation for sodium boiling experiments in EBR-II

    International Nuclear Information System (INIS)

    Crowe, R.D.

    1976-01-01

    The development of instrumentation capable of detecting localized coolant boiling in a liquid metal cooled breeder reactor (LMFBR) has a high priority in fast reactor safety. The detection must be rapid enough to allow corrective action to be taken before significant damage occurs to the core. To develop and test a method of boiling detection, it is desirable to produce boiling in a reactor and thereby introduce a condition in the reactor the original design concepts were chosen to preclude. The proposed boiling experiments are designed to safely produce boiling in the subassembly of a fast reactor and provide the information to develop boiling detection instrumentation without core damage or safety compromise. The experiment consists of the operation of two separate subassemblies, first, a gamma heated boiling subassembly which produces non-typical but highly conservative boiling and then a fission heated subassembly which simulates a prototypical boiling event. The two boiling subassemblies are designed to operate in the instrumentation subassembly test facility (INSAT) of Experiment Breeder Reactor II

  10. Experimental confirmation of the design to minimize vibration and wear in 61-pin wire-spaced EBR-II subassemblies

    International Nuclear Information System (INIS)

    Fukuda, S.K.

    1978-05-01

    Examinations of HEDL 61-pin subassemblies comprised of 5.84 mm (0.230) inch diameter mixed-oxide fuel pins with 1.02 mm (0.040'') diameter spacer wire (PNL-9, -10, -11, HEDL-N-E, -N-F), showed severe cladding and spacer wire wear after irradiation in EBR-II. A comparison of a large number of design, fabrication, and irradiation parameters for all of the HEDL subassemblies indicated that the porosity per ring of fuel pins correlated significantly with the occurrence of wear on the fuel pins. The porosity per ring is the clearance between the flat-to-flat pin bundle dimension and the inner hex can dimension divided by the number of hexagonal fuel pin rings in the subassembly. The porosity per ring for PNL-9, -10, -11 and HEDL-N-E was 0.15 mm/ring (6 mils/ring) and 0.18 mm/ring (7 mils/ring) for the HEDL-N-F subassembly. Since the original FTR subassembly design had a porosity/ring spread of 0.04 mm/ring to 0.16 mm/ring (1.67 to 6.11 mils/ring) an additional series of irradiation tests was conducted to confirm that a tighter fuel pin bundle would eliminate the wear

  11. Non-destructive assay of EBR-II blanket elements using resonance transmission analysis

    International Nuclear Information System (INIS)

    Klann, R.T.; Poenitz, W.P.

    1998-01-01

    Resonance transmission analysis utilizing a faltered reactor beam was examined as a means of determining the 239 Pu content in Experimental Breeder Reactor-II depleted uranium blanket elements. The technique uses cadmium and gadolinium falters along with a 239 Pu fission chamber to isolate the 0.3 eV resonance in 239 Pu. In the energy range of this resonance (0.1 eV to 0.5 ev), the total microscopic cross-section of 239 Pu is significantly greater than the cross-sections of 238 U and 235 U. This large difference allows small changes in the 239 Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and 239 Pu foils indicate a significant change in response based on the 239 Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of 239 Pu up to approximately two weight percent

  12. Method for the determination of technical specifications limiting temperature in EBR-II operation

    International Nuclear Information System (INIS)

    Chang, L.K.; Hill, D.J.; Ku, J.Y.

    2004-01-01

    The methodology and analysis procedure to qualify the Mark-V and Mark-VA fuels for the Experimental Breeder Reactor II are summarized in this paper. Fuel performance data and design safety criteria are essential for thermal-hydraulic analyses and safety evaluations. Normal and off-normal operation duty cycles and transient classifications are required for the safety assessment of the fuels. Design safety criteria for steady-state normal and transient off-normal operations were developed to ensure structural integrity of the fuel pin. The maximum allowable coolant outlet temperatures and powers of subassemblies for steady-state normal operation conditions were first determined in a row-by-row basis by a thermal-hydraulic and fuel damage analysis, in which a trial-and-error approach was used to predict the maximum subassembly coolant outlet temperatures and powers that satisfy the design safety criteria for steady-state normal operation conditions. The limiting steady-state temperature and power were then used as the initial subassembly thermal conditions for the off-normal transient analysis to assess the safety performance of the fuel pin for anticipated, unlikely and extremely unlikely events. If the design safety criteria for the off-normal events are not satisfied, then the initial steady-state subassembly temperatures and/or powers are reduced and an iterative procedure is employed until the design safety criteria for off-normal conditions are satisfied, and the initial subassembly outlet coolant temperature and power are the technical specification limits for reactor operation. (author)

  13. Method for the determination of technical specifications limiting temperature in EBR-II operation

    International Nuclear Information System (INIS)

    Chang, L.K.; Hill, D.J.; Ku, J.Y.

    1994-01-01

    The methodology and analysis procedure to qualify the Mark-V and Mark-VA fuels for the Experimental Breeder Reactor II are summarized in this paper. Fuel performance data and design safety criteria are essential for thermal-hydraulic analysis and safety evaluations. Normal and off-normal operation duty cycles and transient classifications are required for the safety assessment of the fuels. The temperature limits of subassemblies were first determined by a steady-state thermal-structural and fuel damage analysis, in which a trial-and-error approach was used to predict the maximum allowable fuel pin temperature that satisfies the design criteria for steady-state normal operation. The steady-state temperature limits were used as the basis of the off-normal transient analysis to assess the safety performance of the fuel for anticipated, unlikely and extremely unlikely events. If the design criteria for the off-normal events are not satisfied, then the subassembly temperature limit is reduced and an iterative procedure is employed until all design criteria are met

  14. Status of RBCB testing of LMR oxide fuel in EBR-II

    International Nuclear Information System (INIS)

    Strain, R.V.; Bottcher, J.H.; Gross, K.C.; Lambert, J.D.B.; Ukai, S.; Nomura, S.; Shikakura, S.; Katsuragawa, M.

    1991-01-01

    The status is given of the the American-Japanese collaborative program in Experimental Breeder Reactor 2 to determine the run-beyond-cladding-breach performance of (UPu)O 2 fuel pins for liquid-metal cooled reactors. Phase 1 of the collaboration involved eighteen irradiation tests over 1981--86 with 5.84-mm pins in 316 or D9 stainless steel. Emphasis in Phase 2 tests from 1989 onwards is with larger diameter (7.5mm) pins in advanced claddings. Results include delayed neutron and fission gas release data from breached pins, the impact of fuel-sodium reaction product formation on pin performance, and fuel and fission product contamination from failures. 13 refs, 1 fig., 4 tabs

  15. BMFT-CEA-US-DOE Exchange on KNK II-Rapsodie-EBR II operating experience, German contributions for the second expert meeting at Idaho Falls, USA, October 27 and 28, 1982

    International Nuclear Information System (INIS)

    1982-10-01

    The meeting at Idaho Falls was the follow-up meeting of the first expert meeting on EBR II- Rapsodie- KNK II operating experience, which took place at the Karlsruhe Research Center in March 1980. The present report compiles the ten German papers presented at the Idaho Falls meeting, discussing various aspects of experience gained by the operation of KNK II

  16. Validation of the REBUS-3/RCT methodologies for EBR-II core-follow analysis

    International Nuclear Information System (INIS)

    McKnight, R.D.

    1992-01-01

    One of the many tasks to be completed at EBR-2/FCF (Fuel Cycle Facility) regarding fuel cycle closure for the Integral Fast Reactor (IFR) is to develop and install the systems to be used for fissile material accountancy and control. The IFR fuel cycle and pyrometallurgical process scheme determine the degree of actinide of actinide buildup in the reload fuel assemblies. Inventories of curium, americium and neptunium in the fuel will affect the radiation and thermal environmental conditions at the fuel fabrication stations, the chemistry of reprocessing, and the neutronic performance of the core. Thus, it is important that validated calculational tools be put in place for accurately determining isotopic mass and neutronic inputs to FCF for both operational and material control and accountancy purposes. The primary goal of this work is to validate the REBUS-2/RCT codes as tools which can adequately compute the burnup and isotopic distribution in binary- and ternary-fueled Mark-3, Mark-4, and Mark-5 subassemblies. 6 refs

  17. Elevated-temperature tensile properties of 2 1/4 Cr-1 Mo steel irradiated in the EBR-II, AD-2 experiment

    International Nuclear Information System (INIS)

    Klueh, R.L.; Vitek, J.M.

    1984-01-01

    The effect of irradiated on the tensile properties of 2 1/4 Cr-1 Mo steel was determined for specimens irradiation in EBR-II at 390 to 550 0 C. Unirradiated control specimens and specimens aged for 5000 h at the irradiation temperatures were also tested. Irradiation to approximately 9 dpa at 390 0 C increased the strength and decreased the ductility compared with the unirradiated and aged specimens. Softening occurred in samples irradiated and tested at 450, 500, and 550 0 C

  18. Postirradiation results and evaluation of helium-bonded uranium--plutonium carbide fuel elements irradiated in EBR-II. Interim report

    International Nuclear Information System (INIS)

    Latimer, T.W.; Barner, J.O.; Kerrisk, J.F.; Green, J.L.

    1976-02-01

    An evaluation was made of the performance of 74 helium-bonded uranium-plutonium carbide fuel elements that were irradiated in EBR-II at 38-96 kW/m to 2-12 at. percent burnup. Only 38 of these elements have completed postirradiation examination. The higher failure rate found in fuel elements which contained high-density (greater than 95 percent theoretical density) fuel than those which contained low-density (77-91 percent theoretical density) fuel was attributed to the limited ability of the high-density fuel to swell into the void space provided in the fuel element. Increasing cladding thickness and original fuel-cladding gap size were both found to influence the failure rates for elements containing low-density fuel. Lower cladding strain and higher fission-gas release were found in high-burnup fuel elements having smear densities of less than 81 percent. Fission-gas release was usually less than 5 percent for high-density fuel, but increased with burnup to a maximum of 37 percent in low-density fuel. Maximum carburization in elements attaining 5-10 at. percent burnup and clad in Types 304 or 316 stainless steel and Incoloy 800 ranged from 36-80 μm and 38-52 μm, respectively. Strontium and barium were the fission products most frequently found in contact with the cladding but no penetration of the cladding by uranium, plutonium, or fission products was observed

  19. CSER 94-014: Storage of metal-fuel loaded EBR-II casks in concrete vault on PFP grounds

    International Nuclear Information System (INIS)

    Hess, A.L.

    1994-01-01

    A criticality safety evaluation is presented to permit EBR-2 spent fuel casks loaded with metallic fuel rods to be stored in an 8-ft diameter, cylindrical concrete vault inside the PFP security perimeter. The specific transfer of three casks with Pu alloy fuel from the Los Alamos Molten Plutonium Reactor Experiment from the burial grounds to the vault is thus covered. Up to seven casks may be emplaced in the casing with 30 inches center to center spacing. Criticality safety is assured by definitive packaging rules which keep the fissile medium dry and at a low effective volumetric density

  20. Effects of heat treatment and formulation on the phase composition and chemical durability of the EBR-II ceramic waste form

    International Nuclear Information System (INIS)

    Ebert, W. E.; Dietz, N. L.; Janney, D. E.

    2006-01-01

    High-level radioactive waste salts generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel from the Experimental Breeder Reactor-II will be immobilized in a ceramic waste form (CWF). Tests are being conducted to evaluate the suitability of the CWF for disposal in the planned federal high-level radioactive waste repository at Yucca Mountain. In this report, the results of laboratory tests and analyses conducted to address product consistency and thermal stability issues called out in waste acceptance requirements are presented. The tests measure the impacts of (1) variations in the amounts of salt and binder glass used to make the CWF and (2) heat treatments on the phase composition and chemical durability of the waste form. A series of CWF materials was made to span the ranges of salt and glass contents that could be used during processing: between 5.0 and 15 mass% salt loaded into the zeolite (the nominal salt loading is 10.7%, and the process control range is 10.6 to 11.2 mass%), and between 20 and 30 mass% binder glass mixed with the salt-loaded zeolite (the nominal glass content is 25% and the process control range is 20 to 30 mass%). In another series of tests, samples of two CWF products made with the nominal salt and glass contents were reheated to measure the impact on the phase composition and durability: long-term heat treatments were conducted at 400 and 500 C for durations of 1 week, 4 weeks, 3 months, 6 months, and 1 year; short-term heat treatments were conducted at 600, 700, 800, and 850 C for durations of 4, 28, 52, and 100 hours. All of the CWF products that were made with different amounts of salt, zeolite, and glass and all of the heat-treated CWF samples were analyzed with powder X-ray diffraction to measure changes in phase compositions and subjected to 7-day product consistency tests to measure changes in the chemical durability. The salt loading had the greatest impact on phase composition and durability. A

  1. Training experience at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Driscoll, J.W.; McCormick, R.P.; McCreery, H.I.

    1978-01-01

    The EBR-II Training Group develops, maintains,and oversees training programs and activities associated with the EBR-II Project. The group originally spent all its time on EBR-II plant-operations training, but has gradually spread its work into other areas. These other areas of training now include mechanical maintenance, fuel manufacturing facility, instrumentation and control, fissile fuel handling, and emergency activities. This report describes each of the programs and gives a statistical breakdown of the time spent by the Training Group for each program. The major training programs for the EBR-II Project are presented by multimedia methods at a pace controlled by the student. The Training Group has much experience in the use of audio-visual techniques and equipment, including video-tapes, 35 mm slides, Super 8 and 16 mm film, models, and filmstrips. The effectiveness of these techniques is evaluated in this report

  2. Swelling and swelling resistance possibilities of austenitic stainless steels in fusion reactors

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1983-01-01

    Fusion reactor helium generation rates in stainless steels are intermediate to those found in EBR-II and HFIR, and swelling in fusion reactors may differ from the fission swelling behavior. Advanced titanium-modified austenitic stainless steels exhibit much better void swelling resistance than AISI 316 under EBR-II (up to approx. 120 dpa) and HFIR (up to approx. 44 dpa) irradiations. The stability of fine titanium carbide (MC) precipitates plays an important role in void swelling resistance for the cold-worked titanium-modified steels irradiated in EBR-II. Futhermore, increased helium generation in these steels can (a) suppress void conversion, (b) suppress radiation-induced solute segregation (RIS), and (c) stabilize fine MC particles, if sufficient bubble nucleation occurs early in the irradation. The combined effects of helium-enhanced MC stability and helium-suppressed RIS suggest better void swelling resistance in these steels for fusion service than under EBR-II irradiation

  3. Liquid metal reactor deactivation as applied to the experimental breeder reactor - II

    International Nuclear Information System (INIS)

    Earle, O. K.; Michelbacher, J. A.; Pfannenstiel, D. F.; Wells, P. B.

    1999-01-01

    The Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W) was shutdown in September, 1994. This sodium cooled reactor had been in service since 1964, and by the US Department of Energy (DOE) mandate, was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility (SPF) was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the SPF

  4. Scram reliability under seismic conditions at the Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Roglans, J.; Wang, C.Y.; Hill, D.J.

    1993-01-01

    A Probabilistic Risk Assessment of the Experimental Breeder Reactor II has recently been completed. Seismic events are among the external initiating events included in the assessment. As part of the seismic PRA a detailed study has been performed of the ability to shutdown the reactor under seismic conditions. A comprehensive finite element model of the EBR-II control rod drive system has been used to analyze the control rod system response when subjected to input seismic accelerators. The results indicate the control rod drive system has a high seismic capacity. The estimated seismic fragility for the overall reactor shutdown system is dominated by the primary tank failure

  5. Design of a reactor inlet temperature controller for EBR-2 using state feedback

    International Nuclear Information System (INIS)

    Vilim, R.B.; Planchon, H.P.

    1990-01-01

    A new reactor inlet temperature controller for pool type liquid-metal reactors has been developed and will be tested in EBR-II. The controller makes use of modern control techniques to take into account stratification and mixing in the cold pool during normal operation. Secondary flowrate is varied so that the reactor inlet temperature tracks a setpoint while reactor outlet temperature, primary flowrate and secondary cold leg temperature are treated as exogenous disturbances and are free to vary. A disturbance rejection technique minimizes the effect of these disturbances on inlet temperature. A linear quadratic regulator improves inlet temperature response. Tests in EBR-II will provide experimental data for assessing the performance improvements that modern control can produce over the existing EBR-II analog inlet temperature controller. 10 refs., 8 figs

  6. Observations of in-reactor endurance and rupture life for fueled and unfueled FTR cladding

    International Nuclear Information System (INIS)

    Lovell, A.J.; Christensen, B.Y.; Chin, B.A.

    1979-01-01

    Reactor component endurance limits are important to nuclear experimenters and operators. This paper investigates endurance limits of 316 CW fuel pin cladding. The objective of this paper is to compare and analyze two different sets of FTR fuel pin cladding data. The first data set is from unfueled pressurized cladding irradiated in the Experimental Breeder Reactor No. II (EBR-II). This data set was generated in an assembly in which the temperature was monitored and controlled. The second data set contains observations of breached and unbreached EBR-II test fuel pins covering a large range of temperature, power and burnup conditions

  7. Proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the integral fast reactor

    International Nuclear Information System (INIS)

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The pool-type Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps: a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented

  8. A proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps -- a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented

  9. Feasibility of processing the experimental breeder reactor-II driver fuel from the Idaho National Laboratory through Savannah River Site's H-Canyon facility

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-28

    Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium, and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.

  10. Validation and application of a physics database for fast reactor fuel cycle analysis

    International Nuclear Information System (INIS)

    McKnight, R.D.; Stillman, J.A.; Toppel, B.J.; Khalil, H.S.

    1994-01-01

    An effort has been made to automate the execution of fast reactor fuel cycle analysis, using EBR-II as a demonstration vehicle, and to validate the analysis results for application to the IFR closed fuel cycle demonstration at EBR-II and its fuel cycle facility. This effort has included: (1) the application of the standard ANL depletion codes to perform core-follow analyses for an extensive series of EBR-II runs, (2) incorporation of the EBR-II data into a physics database, (3) development and verification of software to update, maintain and verify the database files, (4) development and validation of fuel cycle models and methodology, (5) development and verification of software which utilizes this physics database to automate the application of the ANL depletion codes, methods and models to perform the core-follow analysis, and (6) validation studies of the ANL depletion codes and of their application in support of anticipated near-term operations in EBR-II and the Fuel Cycle Facility. Results of the validation tests indicate the physics database and associated analysis codes and procedures are adequate to predict required quantities in support of early phases of FCF operations

  11. Experimental Breeder Reactor-II automatic control-rod-drive system

    International Nuclear Information System (INIS)

    Christensen, L.J.

    1983-01-01

    A computer-controlled automatic control rod drive system (ACRDS) was designed and operated in EBR-II during reactor runs 121 and 122. The ACRDS was operated in a checkout mode during run 121 using a low worth control rod. During run 122 a high worth control rod was used to perform overpower transient tests as part of the LMFBR oxide fuels transient testing program. The testing program required an increase in power of 4 MW/s, a hold time of 12 minutes and a power decrease of 4 MW/s. During run 122, 13 power transients were performed

  12. Application of microprocessor based controller in the Breeder Reactor Program

    International Nuclear Information System (INIS)

    Messick, N.C.; Lukas, M.P.

    1985-01-01

    This paper treats Argonne National Laboratory's experience using microprocessor based controllers presently in use on several control loops within the EBR-II reactor facility as well as tests being performed by these controllers. Also included is a discussion of the expandability, modularity, range of capabilities and higher level functions possible using such equipment

  13. Advanced liquid metal reactor development at Argonne National Laboratory during the 1980s

    International Nuclear Information System (INIS)

    Wade, D.C.

    1990-01-01

    Argonne National Laboratory's (ANL'S) effort to pursue the exploitation of liquid metal cooled reactor (LMR) characteristics has given rise to the Integral Fast Reactor (IFR) concept, and has produced substantial technical advancement in concept implementation which includes demonstration of high burnup capability of metallic fuel, demonstration of injection casting fabrication, integral demonstration of passive safety response, and technical feasibility of pyroprocessing. The first half decade of the 90's will host demonstration of the IFR closed fuel cycle technology at the prototype scale. The EBR-II reactor will be fueled with ternary alloy fuel in HT-9 cladding and ducts, and pyroprocessing and injection casting refabrication of EBR-II fuel will be conducted using near-commercial sized equipment at the Fuel cycle Facility (FCF) which is co-located adjacent to EBR-II. Demonstration will start in 1992. The demonstration of passive safety response achievable with the IFR design concept, (already done in EBR-II in 1986) will be repeated in the mid 90's using the IFR prototype recycle fuel from the FCF. The demonstration of scrubbing of the reprocessing fission product waste stream, with recycle of the transuranics to the reactor for consumption, will also occur in the mid 90's. 30 refs

  14. DIissolution of low enriched uranium from the experimental breeder reactor-II fuel stored at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Site (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.

  15. Actinide behavior in the integral fast reactor

    International Nuclear Information System (INIS)

    Courtney, J.C.

    1993-05-01

    Goal of this project is to determine the consumption of Np-237, Pu-240, Am-241, and Am-243 in the Integral Fast Reactor (IFR) fuel cycle. These four actinides set the long term waste management criteria for spent nuclear fuel; if it can be demonstrated that they can be efficiently consumed in the IFR, then requirements for nuclear waste repositories can be much less demanding. Irradiations in the Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory's site near Idaho Falls, Idaho, will be conducted to determine fission and transmutation rates for the four nuclides. The experimental effort involves target package design, fabrication, quality assurance, and irradiation. Post irradiation analyses are required to determine the fission rates and neutron spectra in the EBR-II core

  16. Fact reactor fuel alloys: Retrospective and prospective views

    International Nuclear Information System (INIS)

    Nevitt, M.V.

    1989-01-01

    The relationship between the physical metallurgy of the EBR-II metallic fuel, U-5% Fs, and its performance in the reactor are described. An understanding of these relationships, along with the optimal matching of fuel properties to fuel-element design, have been essential in the 23 year successful utilization of the fuel. The knowledge and experience gained are being employed in the current development of a new U-Pu-Zr metallic fuel for a proposed advanced reactor (orig./MM)

  17. Proposed fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Walters, L.C.

    1985-01-01

    One of the key features of ANL's Integral Fast Reactor (IFR) concept is a close-coupled fuel cycle. The proposed fuel cycle is similar to that demonstrated over the first five to six years of operation of EBR-II, when a fuel cycle facility adjacent to EBR-II was operated to reprocess and refabricate rapidly fuel discharged from the EBR-II. Locating the IFR and its fuel cycle facility on the same site makes the IFR a self-contained system. Because the reactor fuel and the uranium blanket are metals, pyrometallurgical processes (shortned to ''pyroprocesses'') have been chosen. The objectives of the IFR processes for the reactor fuel and blanket materials are to (1) recover fissionable materials in high yield; (2) remove fission products adequately from the reactor fuel, e.g., a decontamination factor of 10 to 100; and (3) upgrade the concentration of plutonium in uranium sufficiently to replenish the fissile-material content of the reactor fuel. After the fuel has been reconstituted, new fuel elements will be fabricated for recycle to the reactor

  18. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs

  19. Fast reactor operation in the United States

    International Nuclear Information System (INIS)

    Smith, R.R.; Cissel, D.W.

    1978-01-01

    Of the many American facilities dedicated to fast reactor technology, six qualify as liquid-metal-cooled fast reactors. All of these satisfy the following criteria: an unmoderated neutron spectrum, highly enriched fuel material, substantial heat production, and the use of a liquid metal coolant. These include the following: EBR-I Clementine, LAMPRE, EBR-II, EFFBR, and SEFOR. Collectively, these facilities encompassed all of the more important features of liquid-metal-cooled fast reactor technology. Coolant types ranged from mercury in Clementine, to NaK in EBR-I, and sodium in the others. Fuels included enriched-uranium metallic alloys in EBR-I, EBR-II, and EFFBR; metallic plutonium in Clementine; molten plutonium alloy in LAMPRE; and a mixed UO 2 -PuO 2 ceramic in SEFOR. Heat removal techniques ranged from air-blast cooling in LAMPRE and SEFOR; steam-electrical generation in EBR-I, EBR-II, and EFFBR; to a mercury-to-water heat dump in Clementine. Operational experience with such diverse systems has contributed heavily to the U.S. Each of the six systems is described from the viewpoints of purpose, history, design, and operation. Attempts are made to limit descriptive material to the most important features and to refer the reader to a few select references if additional information is needed

  20. Actinide behavior in the integral fast reactor. Progress report, May 1, 1992--April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C.

    1993-05-01

    Goal of this project is to determine the consumption of Np-237, Pu-240, Am-241, and Am-243 in the Integral Fast Reactor (IFR) fuel cycle. These four actinides set the long term waste management criteria for spent nuclear fuel; if it can be demonstrated that they can be efficiently consumed in the IFR, then requirements for nuclear waste repositories can be much less demanding. Irradiations in the Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory`s site near Idaho Falls, Idaho, will be conducted to determine fission and transmutation rates for the four nuclides. The experimental effort involves target package design, fabrication, quality assurance, and irradiation. Post irradiation analyses are required to determine the fission rates and neutron spectra in the EBR-II core.

  1. Current status of the Run-Beyond-Cladding Breach (RBCB) tests for the Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Batte, G.L.; Pahl, R.G.; Hofman, G.L.

    1993-01-01

    This paper describes the results from the Integral Fast Reactor (IFR) metallic fuel Run-Beyond-Cladding-Breach (RBCB) experiments conducted in the Experimental Breeder Reactor II (EBR-II). Included in the report are scoping test results and the data collected from the prototypical tests as well as the exam results and discussion from a naturally occurring breach of one of the lead IFR fuel tests. All results showed a characteristic delayed neutron and fission gas release pattern that readily allows for identification and evaluation of cladding breach events. Also, cladding breaches are very small and do not propagate during extensive post breach operation. Loss of fuel from breached cladding was found to be insignificant. The paper will conclude with a brief description of future RBCB experiments planned for irradiation in EBR-II

  2. Development of a risk-based inservice inspection program for a liquid metal reactor

    International Nuclear Information System (INIS)

    King, R.W.; Buschman, H.W.

    1996-01-01

    The emerging application of risk-based assessment technology to the operation and maintenance of nuclear power plants holds considerable promise for improving efficiency and reducing operating costs. EBR-II is liquid-metal-cooled fast reactor which operated for thirty years before shutting down in September 1994 due to program termination. Prior to the shutdown of EBR-II, an in-service inspection (ISI) program was developed that exploited certain advantages of the liquid-metal reactor design, e.g., demonstrated passive response to plant upset events, low pressure primary coolant and compatibility of the coolant and reactor materials. Many of the systems cannot be inspected due to inaccessibility of the components. However, application of a risk-based approach provided the basis for reducing or eliminating inspections in some areas that would otherwise be required. Development and implementation of the risk-based ISI program was interrupted by the DOE-mandated shutdown of EBR-II, so the potential benefits of this approach in terms of reduced O and M costs have yet to be realized. Through the development of this program, however it is clear that there is potential for substantial cost-savings while improving the risk-profile of the facility through this approach

  3. International experience with the bundle behavior of fuel elements of sodium cooled reactors; derivation of a figure of merit for the judgement of fuel pin bundle parameters with respect to abrasion due to thermoelastic pin-pin interaction

    International Nuclear Information System (INIS)

    Toebbe, H.

    1987-10-01

    The report describes the status of experience with respect to the abrasion behavior of bundles in standard fuel elements and test elements with wire or grid spacing in the reactors Rapsodie fortissimo, Phenix, DFR, PFR, EBR-II, FFTF, JOYO and KNK II. With the help of simple considerations concerning thermoelastic pin-pin interactions a figure of merit is deduced from the different bundle parameters, which allows a comparative judgement of the parameters of different bundle concepts [de

  4. Brazed thermocouple pass-through for sodium service in a liquid-metal-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Walker, D.E.

    1975-10-01

    Sensors installed in special fuel elements for the EBR-II reactor had 30-ft-long leads that would pass from the sodium environment through a sealed bulkhead. A hydrogen-atmosphere, induction-heated brazing furnace was constructed to simultaneously braze 20-26 separate sensor leads at one time. The brazed seals were leak-tight, and the sheath wall has less than 10 percent interaction with the braze alloy

  5. Irradiation creep experiments on fusion reactor candidate structural materials

    International Nuclear Information System (INIS)

    Hausen, H.; Cundy, M.R.; Schuele, W.

    1991-01-01

    Irradiation creep rates were determined for annealed and cold-worked AMCR- and 316-type steel alloys in the high flux reactor at Petten, for various irradiation temperatures, stresses and for neutron doses up to 4 dpa. Primary creep elongations were found in all annealed materials. A negative creep elongation was found in cold-worked materials for stresses equal to or below about 100 MPa. An increase of the negative creep elongation is found for decreasing irradiation temperatures and decreasing applied stresses. The stress exponent of the irradiation creep rate in annealed and cold-worked AMCR alloys is n = 1.85 and n = 1.1, respectively. The creep rates of cold-worked AMCR alloys are almost temperature independent over the range investigated (573-693 K). The results obtained in the HFR at Petten are compared with those obtained in ORR and EBR II. The smallest creep rates are found for cold-worked materials of AMCR- and US-PCA-type at Petten which are about a factor two smaller than the creep rates obtained of US-316 at Petten or for US-PCA at ORR or for 316L at EBR II. The scatter band factor for US-PCA, 316L, US-316 irradiated in ORR and EBR II is about 1.5 after a temperature and damage rate normalization

  6. The Integral Fast Reactor: A practical approach to waste management

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1993-01-01

    This report discusses development of the method for pyroprocessing of spent fuel from the Integral Fast Reactor (or Advanced Liquid Metal Reactor). The technology demonstration phase, in which recycle will be demonstrated with irradiated fuel from the EBR-II reactor has been reached. Methods for recovering actinides from spent LWR fuel are at an earlier stage of development but appear to be technically feasible at this time, and a large-scale demonstration of this process has begun. The utilization of fully compatible processes for recycling valuable spent fuel materials promises to provide substantial economic incentives for future applications of the pyroprocessing technology

  7. Fast Reactor Knowledge Preservation Efforts. An Overview

    International Nuclear Information System (INIS)

    Grandy, Christopher

    2013-01-01

    • ARC-AFR Program is involved in a number of knowledge preservation activities; • Recovery of Information from EBR-II, FFTF, and TREAT is very important; • Recovery of Information from Office of Scientific and Technical Information (OSTI) and conversion to electronic format; • Organizing some data into electronic databases – EBR-II Plant Testing Data, FFTF Plant Testing Data, TREAT Test Data, SFR Fuels and Materials Irradiation Data, etc.; • Information is being used to support existing U.S. SFR programs along with international programs such as the IAEA CRP EBR-II Safety Benchmark

  8. United States Department of Energy breeder reactor staff training domestic program

    International Nuclear Information System (INIS)

    1984-01-01

    Two US DOE projects in the Pacific Northwest offer unique on-the-scene training opportunities at sodium-cooled fast-reactor plants: the Fast Flux Test Facility (FFTF) near Richland, Washington, which has operated successfully in a wide range of irradiation test programs since 1980; and the Experimental Breeder Reactor II (EBR-II) near Idaho Falls, Idaho, which has been in operation for approximately 20 years. Training programs have been especially designed to take advantage of this plant experience. Available courses are described

  9. Failed fuel identification techniques for liquid-metal cooled reactors

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Gross, K.C.; Mikaili, R.; Frank, S.M.; Cutforth, D.C.; Angelo, P.L.

    1995-01-01

    The Experimental Breeder Reactor II (EBR-II), located in Idaho and operated for the US Department of Energy by Argonne National Laboratory, has been used as an irradiation testbed for LMR fuels and components for thirty years. During this time many endurance tests have been carried out with experimental LMR metal, oxide, carbide and nitride fuel elements, in which cladding failures were intentionally allowed to occur. This paper describes methods that have been developed for the detection, identification and verification of fuel failures

  10. Visual imagery and the user model applied to fuel handling at EBR-II

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.

    1995-01-01

    The material presented in this paper is based on two studies involving visual display designs and the user's perspective model of a system. The studies involved a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices which included the ''comfort parameters'' and ''perspective reality'' of the user's model of the world. (author)

  11. Studies of axial-leakage simulations for homogeneous and heterogeneous EBR-II core configurations

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1985-08-01

    When calculations of flux are done in less than three dimensions, leakage-absorption cross sections are normally used to model leakages (flows) in the dimensions for which the flux is not calculated. Since the neutron flux is axially dependent, the leakages, and hence the leakage-absorption cross sections, are also axially dependent. Therefore, to obtain axial flux profiles (or reaction rates) for individual subassemblies, an XY-geometry calculation delineating each subassembly has to be done at several axial heights with space- and energy-dependent leakage-absorption cross sections that are appropriate for each height. This report discusses homogeneous and heterogeneous XY-geometry calculations at various axial locations and using several differing assumptions for the calculation of the leakage-absorption cross section. The positive (outward) leakage-absorption cross sections are modeled as actual leakage absorptions, but the negative (inward) leakage-absorption cross sections are modeled as either negative leakage absorptions (+-B 2 method) or positive downscatter cross sections [the Σ/sub s/(1 → g) method]. 3 refs., 52 figs., 10 tabs

  12. Initial results for electrochemical dissolution of spent EBR-II fuel

    International Nuclear Information System (INIS)

    Li, S. X.

    1998-01-01

    Initial results are reported for the anode behavior of spent metallic nuclear fuel in an electrorefining process. The anode behavior has been characterized in terms of the initial spent fuel composition and the final composition of the residual cladding hulls. A variety of results have been obtained depending on the experimental conditions. Some of the process variables considered are average and maximum cell voltage, average and maximum anode voltage, amount of electrical charge passed (coulombs or amp-hours) during the experiment, and cell resistance. The main goal of the experiments has been the nearly complete dissolution of uranium with the retention of zirconium and noble metal fission products in the cladding hulls. Analysis has shown that the most indicative parameters for determining an endpoint to the process, recognizing the stated goal, are the maximum anode voltage and the amount of electrical charge passed. For the initial experiments reported here, the best result obtained is greater than 98% uranium dissolution with approximately 50% zirconium retention. Noble metal fission product retention appears to be correlated with zirconium retention

  13. Recent advances during the treatment of spent EBR-II fuel

    International Nuclear Information System (INIS)

    Westphal, B.R.; Mariani, R.D.; Vaden, D.E.; Sherman, S.R.; Li, S.X.; Keiser, D.D. Jr.

    2000-01-01

    Several recent advances have been achieved for the electrometallurgical treatment of spent nuclear fuel. In anticipation of production operations at Argonne National Laboratory-West, development of both electrorefining and metal processing has been ongoing in the post-demonstration phase in order to further optimize the process. These development activities show considerable promise. This paper discusses the results of recent experiments as well as plans for future investigations

  14. Overview of the fast reactors fuels program

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides

  15. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  16. Simulated first operating campaign for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Park, K.H.; Ackerman, J.P.

    1993-01-01

    This report discusses the Integral Fast Reactor (IFR) which is an innovative liquid-metal-cooled reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid-metal cooling to offer significant improvements in reactor safety, operation, fuel cycle-economics, environmental protection, and safeguards. Over the next few years, the IFR fuel cycle will be demonstrated at Argonne-West in Idaho. Spent fuel from the Experimental Breeder Reactor II (EBR-II) win be processed in its associated Fuel Cycle Facility (FCF) using a pyrochemical method that employs molten salts and liquid metals in an electrorefining operation. As part of the preparation for the fuel cycle demonstration, a computer code, PYRO, was developed at Argonne to model the electrorefining operation using thermodynamic and empirical data. This code has been used extensively to evaluate various operating strategies for the fuel cycle demonstration. The modeled results from the first operating campaign are presented. This campaign is capable of processing more than enough material to refuel completely the EBR-II core

  17. A status report on the integral fast reactor fuels and safety program

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor (ALMR) concept being developed at Argonne National Laboratory. The IFR program is specifically responsible for the irradiation performance, advanced core design, safety analysis, and development of the fuel cycle for the US Department of Energy's ALMR program. The basic elements of the IFR concept are (a) metallic fuel, (b) liquid-sodium cooling, (c) modular, pool-type reactor configuration, (d) an integral fuel cycle based upon pyrometallurgical processing. The most significant safety aspects of the IFR program result from its unique fuel design, a ternary alloy of uranium, plutonium, and zirconium. This fuel is based on experience gained through > 25 yr operation of the Experimental Breeder Reactor II (EBR-II) with a uranium alloy metallic fuel. The ultimate criteria for fuel pin design is the overall integrity at the target burnup. The probability of core meltdown is remote; however, a theoretical possibility of core meltdown remains. The next major step in the IFR development program will be a full-scale pyroprocessing demonstration to be carried out in conjunction with EBR-II. The IFR fuel cycle closure based on pyroprocessing will also have a dramatic impact on waste management options and on actinide recycling

  18. Relevance of passive safety testing at the fast flux test facility to advanced liquid metal reactors - 5127

    International Nuclear Information System (INIS)

    Wootan, D.W.; Omberg, R.P.

    2015-01-01

    Significant cost and safety improvements can be realized in advanced liquid metal reactor (LMR) designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. Testing at the Rapsodie and EBR-II reactors had demonstrated the beneficial effect of reactivity feedback caused by changes in fuel temperature and core geometry mechanisms in a liquid metal fast reactor in a holistic sense. The FFTF passive safety testing program was developed to examine how specific design elements influenced dynamic reactivity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results from smaller cores like Rapsodie and EBR-II to reactor cores that were more prototypic in scale to reactors of current interest. The U.S. Department of Energy, Office of Nuclear Energy Advanced Reactor Technology program is in the process of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs. (authors)

  19. Advanced fast reactor fuels program. Second annual progress report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Baker, R.D.

    1978-12-01

    Results of steady-state (EBR-II) irradiation testing, off-normal irradiation design and testing, fuel-cladding compatibility, and chemical stability of uranium--plutonium carbide and nitride fuels are presented

  20. Overview of the fast reactors fuels program. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides.

  1. Toward a Mechanistic Source Term in Advanced Reactors: A Review of Past U.S. SFR Incidents, Experiments, and Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Brunett, Acacia J.; Grabaskas, David

    2016-04-17

    In 2015, as part of a Regulatory Technology Development Plan (RTDP) effort for sodium-cooled fast reactors (SFRs), Argonne National Laboratory investigated the current state of knowledge of source term development for a metal-fueled, pool-type SFR. This paper provides a summary of past domestic metal-fueled SFR incidents and experiments and highlights information relevant to source term estimations that were gathered as part of the RTDP effort. The incidents described in this paper include fuel pin failures at the Sodium Reactor Experiment (SRE) facility in July of 1959, the Fermi I meltdown that occurred in October of 1966, and the repeated melting of a fuel element within an experimental capsule at the Experimental Breeder Reactor II (EBR-II) from November 1967 to May 1968. The experiments described in this paper include the Run-Beyond-Cladding-Breach tests that were performed at EBR-II in 1985 and a series of severe transient overpower tests conducted at the Transient Reactor Test Facility (TREAT) in the mid-1980s.

  2. Design considerations for economically competitive sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Zhang, Hongbin; Zhao, Haihua; Mousseau, Vincent; Szilard, Ronaldo

    2009-01-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phenix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design. (author)

  3. Experimental and design experience with passive safety features of liquid metal reactors

    International Nuclear Information System (INIS)

    Lucoff, D.M.; Waltar, A.E.; Sackett, J.I.; Salvatores, M.; Aizawa, K.

    1992-10-01

    Liquid metal cooled reactors (LMRs) have already been demonstrated to be robust machines. Many reactor designers now believe that it is possible to include in this technology sufficient passive safety that LMRs would be able to survive loss of flow, loss of heat sink, and transient overpower events, even if the plant protective system fails completely and do so without damage to the core. Early whole-core testing in Rapsodie, EBR-II. and FFTF indicate such designs may be possible. The operational safety testing program in EBR-II is demonstrating benign response of the reactor to a full range of controls failures. But additional testing is needed if transient core structural response under major accident conditions is to be properly understood. The proposed international Phase IIB passive safety tests in FFTF, being designed with a particular emphasis on providing, data to understand core bowing extremes, and further tests planned in EBR-11 with processed IFR fuel should provide a substantial and unique database for validating the computer codes being used to simulate postulated accident conditions

  4. US DOE Idaho national laboratory reactor decommissioning

    International Nuclear Information System (INIS)

    Szilagyi, Andrew

    2012-01-01

    The United States Department of Energy (DOE) primary contractor, CH2M-WG Idaho was awarded the cleanup and deactivation and decommissioning contract in May 2005 for the Idaho National Lab (INL). The scope of this work included dispositioning over 200 Facilities and 3 Reactors Complexes (Engineering Test Reactor (ETR), Materials Test Reactor (MTR) and Power Burst Facility (PBF) Reactor). Two additional reactors were added to the scope of the contract during the period of performance. The Zero Power Physics Reactor (ZPPR) disposition was added under a separate subcontractor with the INL lab contractor and the Experimental Breeder Reactor II (EBR-II) disposition was added through American Recovery and Reinvestment Act (ARRA) Funding. All of the reactors have been removed and disposed of with the exception of EBR-II which is scheduled for disposition approximately March of 2012. A brief synopsis of the 5 reactors is provided. For the purpose of this paper the ZPPR reactor due to its unique design as compared to the other four reactors, and the fact that is was relatively lightly contaminated and irradiated will not be discussed with the other four reactors. The ZPPR reactor was readily accessible and was a relatively non-complex removal as compared to the other reactors. Additionally the EBR-II reactor is currently undergoing D and D and will have limited mention in this paper. Prior to decommissioning the reactors, a risk based closure model was applied. This model exercised through the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Non-Time Critical Removal Action (NTCRA) Process which evaluated several options. The options included; No further action - maintain as is, long term stewardship and monitoring (mothball), entombment in place and reactor removal. Prior to commencing full scale D and D, hazardous constituents were removed including cadmium, beryllium, sodium (passivated and elemental), PCB oils and electrical components, lead

  5. Experimental studies of U-Pu-Zr fast reactor fuel pins in the Experimental Breeder Reactor 2

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1990-01-01

    Argonne National Laboratory's Integral Fast Reactor (IFR) concept has been under demonstration in the Experimental Breeder Reactor II (EBR-II) since February 1985. Irradiation tests of U-Zr and U-Pu-Zr fuel pins to >15 at. pct burnup have demonstrated their viability as driver fuel prototypes in innovative design liquid metal reactors. A number of technically challenging irradiation effects have been observed and are now under study. Microstructural changes in the fuel are dominated early in exposure by grain boundary cavitation and fission gas bubble growth, producing large amounts of swelling. Irradiation creep and swelling of the austenitic (D9) and martensitic (HT-9) candidate cladding alloys have been measured and correlate well with property modeling efforts. Chemical interaction between the fuel and cladding alloys has been characterized to assess the magnitude of cladding wastage during steady-state irradiation. Significant interdiffusion of the uranium and zirconium occurs producing metallurgically distinct zones in the fuel

  6. Safety characteristics of the integral fast reactor concept

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Cahalan, J.E.; Sevy, R.H.; Wright, A.E.

    1985-01-01

    The Integral Fast Reactor (IFR) concept is an innovative approach to liquid metal reactor design which is being studied by Argonne National Laboratory. Two of the key features of the IFR design are a metal fuel core design, based on the fuel technology developed at EBR-II, and an integral fuel cycle with a colocated fuel cycle facility based on the compact and simplified process steps made possible by the use of metal fuel. The paper presents the safety characteristics of the IFR concept which derive from the use of metal fuel. Liquid metal reactors, because of the low pressure coolant operating far below its boiling point, the natural circulation capability, and high system heat capacities, possess a high degree of inherent safety. The use of metallic fuel allows the reactor designer to further enhance the system capability for passive accommodation of postulated accidents

  7. Operability design review of prototype large breeder reactor (PLBR) designs. Final report, September 1981

    International Nuclear Information System (INIS)

    Beakes, J.H.; Ehman, J.R.; Jones, H.M.; Kinne, B.V.T.; Price, C.M.; Shores, S.P.; Welch, J.K.

    1981-09-01

    Prototype Large Breeder Reactor (PLBR) designs were reviewed by personnel with extensive power plant operations experience. Fourteen normal and off-normal events, such as startup, shutdown, refueling, reactor scram and loss of feedwater, were evaluated using an operational evaluation methodology which is designed to facilitate talk-through sessions on operational events. Human factors engineers participated in the review and assisted in developing and refining the review methodologies. Operating experience at breeder reactor facilities such as Experimental Breeder Reactor-II (EBR-II), Enrico Fermi Atomic Power Plant - Unit 1, and the Fast Flux Test Facility (FFTF) was gathered, analyzed, and used to determine whether lessons learned from operational experience had been incorporated into the PLBR designs. This eighteen month effort resulted in approximately one hundred specific recommendations for improving the operability of PLBR designs

  8. Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report

    International Nuclear Information System (INIS)

    Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.

    1980-01-01

    It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited

  9. Liquid metal reactor head designs in the USA - heat and mass transfer considerations

    International Nuclear Information System (INIS)

    Burke, T.M.

    1986-01-01

    Development of liquid metal reactor plants in the United States over the past 30 years has resulted in an evolution of reactor head designs as reflected in the SRE, Hallam, EBR-II and FFTF plants. This evolution has probably been affected to some extent by the fact that, in contrast to most other countries, there is no single organization in the United States which has been responsible for the design of liquid metal reactor plants. The current U.S. LMR design efforts involve two innovative design consortiums (guided by the US Department of Energy) and a joint industry venture on the Large Scale Prototype Breeder. It is therefore somewhat difficult to provide a statement on the philosophy of the reactor head design in the U.S. This paper however briefly describes the existing and proposed U.S. liquid metal reactor head designs and in the process, attempt to provide some insight on the basis for those designs

  10. Integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Y.I.; Marchaterre, J.F.; Sevy, R.H.

    1984-01-01

    Key features of the IFR consist of a pool-type plant arrangement, a metal fuel-based core design, and an integral fuel cycle with colocated fuel cycle facility. Both the basic concept and the technology base have been demonstrated through actual integral cycle operation in EBR-II. This paper discusses the inherent safety characteristics of the IFR concept

  11. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel

  12. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  13. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  14. Performance testing of refractory alloy-clad fuel elements for space reactors

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Karnesky, R.A.; Millhollen, M.K.

    1985-01-01

    Two fast reactor irradiation tests, SP-1 and SP-2, provide a unique and self-consistent data set with which to evaluate the technical feasibility of potential fuel systems for the SP-100 space reactor. Fuel pins fabricated with leading cladding candidates (Nb-1Zr, PWC-11, and Mo-13Re) and fuel forms (UN and UO 2 ) are operated at temperatures typical of those expected in the SP-100 design. The first US fast reactor irradiated, refractory alloy clad fuel pins, from the SP-1 test, reached 1 at. % burnup in EBR-II in March 1985. At that time selected pins were discharged for interim examination. These examinations confirmed the excellent performance of the Nb-1Zr clad uranium oxide and uranium nitride fuel elements, which are the baseline fuel systems for two SP-100 reactor concepts

  15. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  16. Space reactor/organic Rankine conversion - A near-term state-of-the-art solution

    Science.gov (United States)

    Niggemann, R. E.; Lacey, D.

    The use of demonstrated reactor technology with organic Rankine cycle (ORC) power conversion can provide a low cost, minimal risk approach to reactor-powered electrical generation systems in the near term. Several reactor technologies, including zirconium hydride, EBR-II and LMFBR, have demonstrated long life and suitability for space application at the operating temperature required by an efficient ORC engine. While this approach would not replace the high temperature space reactor systems presently under development, it could be available in a nearer time frame at a low and predictable cost, allowing some missions requiring high power levels to be flown prior to the availability of advanced systems with lower specific mass. Although this system has relatively high efficiency, the heat rejection temperature is low, requiring a large radiator on the order of 3.4 sq m/kWe. Therefore, a deployable heat pipe radiator configuration will be required.

  17. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    International Nuclear Information System (INIS)

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences

  18. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.

  19. Determination of static and dynamic reactivity effects in KNK II

    International Nuclear Information System (INIS)

    Essig, C.

    1987-11-01

    In the frame of a pre-study of the KNK II test program two series of experiments related to inherent safety characteristics of sodium cooled breeder reactors have been elaborated, which are one basis for the performance of experiments of the Loss Of Flow (LOF) type and the Loss Of Heat Sink (LOHS) type. Tests of this type at KNK II would -different from the earlier tests at RAPSODIE and EBR-II- provide a demonstration of the inherently safe performance in case of a significantly non-zero Doppler effect. With a suitable execution, the foreseen series of experiments allow, as explained in this report, a substantial separation of the reactivity contributions and the determination of reactivity effects, i.e. the time constants of the recouplings. The performance and evaluation of these experiments with respect to the inherent safety potential will once more underline the distinguished role of KNK II for the development of fast breeders [de

  20. Irradiation performance of U-Pu-Zr metal fuels for liquid-metal-cooled reactors

    International Nuclear Information System (INIS)

    Tsai, H.; Cohen, A.B.; Billone, M.C.; Neimark, L.A.

    1994-10-01

    This report discusses a fuel system utilizing metallic U-Pu-Zr alloys which has been developed for advanced liquid metal-cooled reactors (LMRs). Result's from extensive irradiation testing conducted in EBR-II show a design having the following key features can achieve both high reliability and high burnup capability: a cast nominally U-20wt %Pu-10wt %Zr slug with the diameter sized to yield a fuel smear density of ∼75% theoretical density, low-swelling tempered martensitic stainless steel cladding, sodium bond filling the initial fuel/cladding gap, and an as-built plenum/fuel volume ratio of ∼1.5. The robust performance capability of this design stems primarily from the negligible loading on the cladding from either fuel/cladding mechanical interaction or fission-gas pressure during the irradiation. The effects of these individual design parameters, e.g., fuel smear density, zirconium content in fuel, plenum volume, and cladding types, on fuel element performance were investigated in a systematic irradiation experiment in EBR-II. The results show that, at the discharge burnup of ∼11 at. %, variations on zirconium content or plenum volume in the ranges tested have no substantial effects on performance. Fuel smear density, on the other hand, has pronounced but countervailing effects: increased density results in greater cladding strain, but lesser cladding wastage from fuel/cladding chemical interaction

  1. Advanced Safeguards Approaches for New Fast Reactors

    International Nuclear Information System (INIS)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-01-01

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to 'breed' nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and 'burn' actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is 'fertile' or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing 'TRU'-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II 'EBR-II' at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line--a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors

  2. Chemical surveillance of commercial fast breeder reactors

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1988-01-01

    After BN-600 (USSR) and SUPERPHENIX (France) were started succesfully, the international development of LMFBRs is standing at the doorstep of commercial use. For commercial use of LMFBRs cost reductions for construction and operation are highly desirable and necessary. Several nations developing breeder reactors have joined in a common effort in order to reach this aim by standardization and harmonization. On the base of more than 20 years of operation experience of experimental reactors (EBR-II, FFTF, RAPSODIE, DFR, BR-5/BR-10, BOR-60, JOYO, KNK-II) and demonstration plants (PHENIX, PFR, BN-350), possibilities for standardization in chemical surveillance of commercial breeder reactors without any loss of availability, reliability and reactor safety will be discussed in the following chapters. Loop-type reactors will be considered as well as pool-type reactors, although all commercial plants under consideration so far (SUPERPHENIX II, BN-800, BN-1600, CFBR, SNR-2, EFR) include pool-type reactors only. Table 1 gives a comparison of the Na inventories of test reactors, prototype plants and commercial LMFBRs

  3. Overview of gamma-ray energy deposition and spectra in fast reactor environments

    International Nuclear Information System (INIS)

    Gold, R.

    1977-01-01

    Efforts to define gamma-ray heating in Breeder Reactor (BR) environments are reviewed. This critique is restricted to programmatic activities in the United States, as best exemplified by current practice for the Experimental Breeder Reactor II (EBR-II). Future needs are also addressed in terms of requirements for the Fast Flux Test Facility (FFTF). Experimental efforts and theoretical analyses are surveyed for both high and low power environments. Special emphasis is placed on experimental techniques for calorimetry, temperature measurement, dosimetry and spectrometry. The relation between neutron and gamma-ray calculations is stressed with particular attention given to contrasting analytical techniques and basic nuclear data requirements. Wherever possible comparisons between theory and experiment are cited

  4. Fault tolerant strategies for automated operation of nuclear reactors

    International Nuclear Information System (INIS)

    Berkan, R.C.; Tsoukalas, L.

    1991-01-01

    This paper introduces an automatic control system incorporating a number of verification, validation, and command generation tasks with-in a fault-tolerant architecture. The integrated system utilizes recent methods of artificial intelligence such as neural networks and fuzzy logic control. Furthermore, advanced signal processing and nonlinear control methods are also included in the design. The primary goal is to create an on-line capability to validate signals, analyze plant performance, and verify the consistency of commands before control decisions are finalized. The application of this approach to the automated startup of the Experimental Breeder Reactor-II (EBR-II) is performed using a validated nonlinear model. The simulation results show that the advanced concepts have the potential to improve plant availability andsafety

  5. Radioactive waste management at a Liquid Metal Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Abrams, C.S.; Fryer, R.H.; Witbeck, L.C.

    1979-01-01

    This paper presents the radioactive waste production and management at a Liquid Metal Fast Breeder Reactor-II (EBR-II), which is operated for the US Department of Energy by the Argonne National Laboratory at the Idaho National Engineering Laboratory (INEL). Since this facility, in addition to supplying power has been used to demonstrate the breeder, fuel cycling, and recently operations with defective fuel elements, various categories of waste have been handled safely over some 14 years of operation. Liquid wastes are processed such that the resulting effluent can be discharged to an uncontrolled area. Solid wastes up to 10,000 R/hr are packaged and shipped contamination-free to a disposal site or interim storage with exposures to personnel approximately 10 mrem. Gaseous waste discharges are low such as 143 Ci of noble gases in 1978 and do not have a significant effect on the environment even with operations with breached fuel

  6. Effect of a time varying power level in EBR-II on mixed-oxide fuel burnup

    International Nuclear Information System (INIS)

    Stone, I.Z.; Jost, J.W.; Baker, R.B.

    1979-01-01

    A refined prediction of burnup of mixed-oxide fuel in EBR-2 is compared with measured data. The calculation utilizes a time-varying power factor and results in a general improvement to previous calculations

  7. Impact properties of 2 1/4 Cr--1 Mo steel after ten years EBR-II service

    International Nuclear Information System (INIS)

    Shields, J.A.; Server, W.L.; Sheckherd, J.W.; Longua, K.J.

    1976-01-01

    The material studied in this investigation was obtained from a 2 1 / 4 Cr--1 Mo steel superheated steam line which had been in service for approximately 90,000 hours. Of that 90,000 hours, approximately 40,000 hours were at a temperature of approximately 820 0 F and a pressure of 1250 psi, and 35,000 hours were at a temperature of 500 0 F and 1250 psi. The results of optical metallography and instrumented impact testing performed on the materials are presented

  8. Accident analysis for PRC-II reactor

    International Nuclear Information System (INIS)

    Wei Yongren; Tang Gang; Wu Qing; Lu Yili; Liu Zhifeng

    1997-12-01

    The computer codes, calculation models, transient results, sensitivity research, design improvement, and safety evaluation used in accident analysis for PRC-II Reactor (The Second Pulsed Reactor in China) are introduced. PRC-II Reactor is built in big populous city, so the public pay close attention to reactor safety. Consequently, Some hypothetical accidents are analyzed. They include an uncontrolled control rod withdrawal at rated power, a pulse rod ejection at rated power, and loss of coolant accident. Calculation model which completely depict the principle and process for each accident is established and the relevant analysis code is developed. This work also includes comprehensive computing and analyzing transients for each accident of PRC-II Reactor; the influences in the reactor safety of all kind of sensitive parameters; evaluating the function of engineered safety feature. The measures to alleviate the consequence of accident are suggested and taken in the construction design of PRC-II Reactor. The properties of reactor safety are comprehensively evaluated. A new advanced calculation model (True Core Uncovered Model) of LOCA of PRC-II Reactor and the relevant code (MCRLOCA) are first put forward

  9. High flux-fluence measurements in fast reactors

    International Nuclear Information System (INIS)

    Lippincott, E.P.; Ulseth, J.A.

    1977-01-01

    Characterization of irradiation environments for fuels and materials tests in fast reactors requires determination of the neutron flux integrated over times as long as several years. An accurate integration requires, therefore, passive dosimetry monitors with long half-life or stable products which can be conveniently measured. In addition, burn-up, burn-in, and burn-out effects must be considered in high flux situations and use of minimum quantities of dosimeter materials is often desirable. These conditions force the use of dosimeter and dosimeter container designs, measured products, and techniques that are different from those that are used in critical facilities and other well-characterized benchmark fields. Recent measurements in EBR-II indicate that high-accuracy results can be attained and that tie-backs to benchmark field technique calibrations can be accomplished

  10. Use of fast-spectrum reactors for actinide burning

    International Nuclear Information System (INIS)

    Chang, Yoon I.

    1991-01-01

    Finally, Integral Fast Reactor (IFR) pyroprocessing has been developed only in recent years and it appears to have potential as a relatively uncomplicated, effective actinide recovery process. In fact, actinide recycling occurs naturally in the IFR fuel cycle. Although still very much developmental, the entire IFR fuel cycle will be demonstrated on prototype-scale in conjunction with the EBR-II and its refurbished Fuel Cycle Facility starting in late 1991. A logical extension to this work, therefore, is to establish whether this IFR pyrochemical processing can be applied to extracting actinides from LWR spent fuel. This paper summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 4 figs., 4 tabs

  11. Failed fuel monitoring and surveillance techniques for liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Mikaili, R.; Gross, K.C.; Strain, R.V.; Aoyama, T.; Ukai, S.; Nomura, S.; Nakae, N.

    1995-01-01

    The Experimental Breeder Reactor II (EBR-II) has been used as a facility for irradiation of LMR fuels and components for thirty years. During this time many tests of experimental fuel were continued to cladding breach in order to study modes of element failure; the methods used to identify such failures are described in a parallel paper. This paper summarizes experience of monitoring the delayed-neutron (DN) and fission-gas (FG) release behavior of a smaller number of elements that continued operation in the run-beyond-cladding-breach (RBCB) mode. The scope of RBCB testing, the methods developed to characterize failures on-line, and examples of DN/FG behavior are described

  12. A review of experiments and results from the transient reactor test (TREAT) facility

    International Nuclear Information System (INIS)

    Deitrich, L. W.

    1998-01-01

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  13. Technical specifications: Tower Shielding Reactor II

    International Nuclear Information System (INIS)

    1979-02-01

    The technical specifications define the key limitations that must be observed for safe operation of the Tower Shielding Reactor II (TSR-II) and an envelope of operation within which there is reasonable assurance that these limits cannot be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  14. The US Liquid Metal Reactor Development Program

    International Nuclear Information System (INIS)

    Till, C.E.; Arnold, W.H.; Griffith, J.D.

    1988-01-01

    The US Liquid Metal Reactor Development Program has been restructured to take advantage of the opportunity today to carry out R and D on truly advanced reactor technology. The program gives particular emphasis to improvements to reactor safety. The new directions are based on the technology of the Integral Fast Reactor (IFR). Much of the basis for superior safety performance using IFR technology has been experimentally verified and aggressive programs continue in EBR-II and TREAT. Progress has been made in demonstrating both the metallic fuel and the new electrochemical processes of the IFR. The FFTF facility is converting to metallic fuel; however, FFTF also maintains a considerable US program in oxide fuels. In addition, generic programs are continuing in steam generator testing, materials development, and, with international cooperation, aqueous reprocessing. Design studies are carried out in conjunction with the IFR technology development program. In summary, the US maintains an active development program in Liquid Metal Reactor technology, and new directions in reactor safety are central to the program

  15. Utilization of Slovenian TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Smodis, B.

    2010-01-01

    TRIGA Mark II research reactor at the Jozef Stefan Institute [JSI] is extensively used for various applications, such as: irradiation of various samples, training and education, verification and validation of nuclear data and computer codes, testing and development of experimental equipment used for core physics tests at a nuclear power plant. The paper briefly describes the aforementioned activities and shows that even such small reactors are still indispensable in nuclear science and technology. (author)

  16. Measurements of actinide transmutation in the hard spectrum of a fast reactor

    International Nuclear Information System (INIS)

    Trybus, C.L.; Collins, P.J.; Maddison, D.W.; Bunde, K.A.; Pallmtag, S.; Palmiotti, G.

    1994-01-01

    Measurements of fission and capture in 235 U, 238 U, 239 Pu and 237 Np and in their product actinides have been made following irradiation in the metal-fuel core of EBR-II. The reactor has a peak flux around 500keV and the data complement measurements in the softer spectrum of an LMFBR. Irradiations were made at the same time for a set of standard dosimeter samples. These provide a test of calculated spectra and are also used for validation of steel activations and calculated atomic displacement rates. Calculation were made with modem transport codes using ENDF/B-5.2 data. Comparisons are made, using a simple homogeneous model, producing a similar spectrum, using ENDF/B-6.2 and JEFF-2 data

  17. Mechanical behavior of fast reactor fuel pin cladding subjected to simulated overpower transients

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.

    1978-06-01

    Cladding mechanical property data for analysis and prediction of fuel pin transient behavior were obtained under experimental conditions in which the temperature ramps of reactor transients were simulated. All cladding specimens were 20% CW Type 316 stainless steel and were cut from EBR-II irradiated fuel pins. It was determined that irradiation degraded the cladding ductility and failure strength. Specimens that had been adjacent to the fuel exhibited the poorest properties. Correlations were developed to describe the effect of neutron fluence on the mechanical behavior of the cladding. Metallographic examinations were conducted to characterize the failure mode and to establish the nature of internal and external surface corrosion. Various mechanisms for the fuel adjacency effect were examined and results for helium concentration profiles were presented. Results from the simulated transient tests were compared with TREAT test results

  18. Decommissioning of TRIGA Mark II type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Jeong, Gyeonghwan; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The first research reactor in Korea, KRR 1, is a TRIGA Mark II type with open pool and fixed core. Its power was 100 kWth at its construction and it was upgraded to 250 kWth. Its construction was started in 1957. The first criticality was reached in 1962 and it had been operated for 36,000 hours. The second reactor, KRR 2, is a TRIGA Mark III type with open pool and movable core. These reactors were shut down in 1995, and the decision was made to decommission both reactors. The aim of the decommissioning activities is to decommission the KRR 2 reactor and decontaminate the residual building structures and site, and to release them as unrestricted areas. The KRR 1 reactor was decided to be preserve as a historical monument. A project was launched for the decommissioning of these reactors in 1997, and approved by the regulatory body in 2000. A total budget for the project was 20.0 million US dollars. It was anticipated that this project would be completed and the site turned over to KEPCO by 2010. However, it was discovered that the pool water of the KRR 1 reactor was leaked into the environment in 2009. As a result, preservation of the KRR 1 reactor as a monument had to be reviewed, and it was decided to fully decommission the KRR 1 reactor. Dismantling of the KRR 1 reactor takes place from 2011 to 2014 with a budget of 3.25 million US dollars. The scope of the work includes licensing of the decommissioning plan change, removal of pool internals including the reactor core, removal of the thermal and thermalizing columns, removal of beam port tubes and the aluminum liner in the reactor tank, removal of the radioactive concrete (the entire concrete structure will not be demolished), sorting the radioactive waste (concrete and soil) and conditioning the radioactive waste for final disposal, and final statuses of the survey and free release of the site and building, and turning over the site to KEPCO. In this paper, the current status of the TRIGA Mark-II type reactor

  19. Summary of advanced LMR [Liquid Metal Reactor] evaluations: PRISM [Power Reactor Inherently Safe Module] and SAFR [Sodium Advanced Fast Reactor

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Kennett, R.J.; Cheng, H.S.; Kroeger, P.G.

    1989-10-01

    In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) [Berglund, 1987] and the Sodium Advanced Fast Reactor (SAFR) [Baumeister, 1987], were developed primarily by General Electric (GE) and Rockwell International (RI), respectively. Technical support was provided to DOE, RI, and GE, by the Argonne National Laboratory (ANL), particularly with respect to the characteristics of the metal fuels. There are several examples in both PRISM and SAFR where inherent or passive systems provide for a safe response to off-normal conditions. This is in contrast to the engineered safety systems utilized on current US Light Water Reactor (LWR) designs. One important design inherency in the LMRs is the ''inherent shutdown'', which refers to the tendency of the reactor to transition to a much lower power level whenever temperatures rise significantly. This type of behavior was demonstrated in a series of unscrammed tests at EBR-II [NED, 1986]. The second key design feature is the passive air cooling of the vessel to remove decay heat. These systems, designated RVACS in PRISM and RACS in SAFR, always operate and are believed to be able to prevent core damage in the event that no other means of heat removal is available. 27 refs., 78 figs., 3 tabs

  20. Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Farris; David Gertman; Jacques Hugo

    2014-03-01

    This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was to develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would

  1. Interim waste storage for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Benedict, R.W.; Phipps, R.D.; Condiff, D.W.

    1991-01-01

    The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes that are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig

  2. Decontamination of TRIGA Mark II reactor, Indonesia

    International Nuclear Information System (INIS)

    Suseno, H.; Daryoko, M.; Goeritno, A.

    2002-01-01

    The TRIGA Mark II Reactor in the Centre for Research and Development Nuclear Technique Bandung has been partially decommissioned as part of an upgrading project. The upgrading project was carried out from 1995 to 2000 and is being commissioned in 2001. The decommissioning portion of the project included disassembly of some components of the reactor core, producing contaminated material. This contaminated material (grid plate, reflector, thermal column, heat exchanger and pipe) will be sent to the Decontamination Facility at the Radioactive Waste Management Development Centre. (author)

  3. HYLIFE-II reactor chamber design refinements

    International Nuclear Information System (INIS)

    House, P.A.

    1994-06-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li 2 BeF 4 ) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (>12 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GWe and 2 GWe reactor chamber are presented

  4. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-15

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. The various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.

  5. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The Integral Fast Reactor (IFR) concept being developed at Argonne National Laboratory has prompted a renewed interest in uranium-based metal alloys as a fuel for sodium-cooled fast reactors. In this paper we will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel. In the final section of this paper we extend the calculations to consider the failure of IFR ternary fuel under reactor accident conditions. (orig./GL)

  6. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  7. Technical meeting on decommissioning of fast reactors after sodium draining. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the technical meeting was to provide a forum for in-depth scientific and technical exchange on topics related to the decommissioning experience with fast reactors, in particular with regard to the decommissioning of components after sodium draining. Accordingly, the scope of the meeting covers the review and analyses of the experience gained from the decommissioning of both active sodium loops and sodium cooled fast reactors (e.g., KNK II, Superphenix, RAPSODIE, EBR-II, FERMI, BN-350, BR-10). It is expected that the outcome of the meeting will contribute to the Agency initiative to preserve fast reactor data and knowledge. The main focus of the technical meeting was given on the decommissioning of both active loop and reactor components (e.g., the primary vessel of a sodium-cooled reactor) that have been drained of sodium, but that still conserve some residual amounts of sodium (e.g., films covering the entire surface of the component, or particular sodium heels that cannot be drained)

  8. The computerized reactor period measurement system for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1996-01-01

    The article simply introduces the hardware, principle, and software of the computerized reactor period measurement system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between fission yield and pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computerized measurement system makes the reactor period measurement into automatical and intelligent and also improves the speed and precision of period data on-line process

  9. Computer measurement system of reactor period for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1997-01-01

    The author simply introduces the hardware, principle, and software of the reactor period computer measure system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between Fission yield and Pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computer measure system makes the reactor period measurement into automation and intellectualization and also improves the speed and precision of period data process on-line

  10. Reactor coolant pump monitoring and diagnostic system

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; Walsh, M.; Humenik, K.E.

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs

  11. The search for advanced remote technology in fast reactor reprocessing

    International Nuclear Information System (INIS)

    Burch, W.D.; Herndon, J.N.; Stradley, J.G.

    1990-01-01

    Research and development in fast reactor reprocessing has been under way about 20 years in several countries throughout the world. During the past decade in France and the United Kingdom, active development programs have been carried out in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the EBR-II facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. Germany and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in all of these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper will focus principally on the search for improved facility concepts and better maintenance systems in the CFRP and, in turn, on how developments at ORNL have influenced the technology elsewhere

  12. Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D.L., E-mail: Douglas.Porter@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Tsai Hanchung [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4803 (United States)

    2012-08-15

    The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 Degree-Sign C, cooling to 522 Degree-Sign C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at {approx}0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher {Delta}T between fuel center and cladding than at core center, together providing more rare earths at the cladding and

  13. Evaluation of TRIGA Mark II reactor in Turkey

    International Nuclear Information System (INIS)

    Bilge, Ali Nezihi

    1990-01-01

    There are two research reactors in Turkey and one of them is the university Triga Mark II reactor which was in service since 1979 both for education and industrial application purposes. The main aim of this paper is to evaluate the spectrum of the services carried by Turkish Triga Mark II reactor. In this work, statistical distribution of the graduate works and applications, by using Triga Mark II reactor is examined and evaluated. In addition to this, technical and scientific uses of this above mentioned reactor are also investigated. It was already showed that the uses and benefits of this reactor can not be limited. If the sufficient work and service is given, NDT and industrial applications can also be carried economically. (orig.)

  14. Corrosion problem in the CRENK Triga Mark II research reactor

    International Nuclear Information System (INIS)

    Kalenga, M.

    1990-01-01

    In August 1987, a routine underwater optical inspection of the aluminum tank housing the core of the CRENK Triga Mark II reactor, carried out to update safety condition of the reactor, revealed pitting corrosion attacks on the 8 mm thick aluminum tank bottom. The paper discuss the work carried out by the reactor staff to dismantle the reactor in order to allow a more precise investigation of the corrosion problem, to repair the aluminum tank bottom, and to enhance the reactor overall safety condition

  15. Response to annealing and reirradiation of AISI 304L stainless steel following initial high-dose neutron irradiation in EBR-II

    International Nuclear Information System (INIS)

    Porter, D.L.; McVay, G.L.; Walters, L.C.

    1980-01-01

    The object of this study was to measure the stability of irradiation-induced microstructure upon annealing and, by selectively annealing out some of these features and reirradiating the material, it was expected that information could be gained concerning the role of microstructural changes in the void swelling process. Transmission electron microscopic examinations of isochronally annealed (200 to 1050 0 C) AISI 304L stainless steel, which had been irradiated at approximately 415 0 C to a fast (E > 0.1 MeV) neutron fluence of approximately 5.1 x 10 26 n/m 2 , verified that the two-stage hardness recovery with temperatures was related to a low temperature annealing of dislocation structures and a higher temperature annealing of voids and solute redistribution

  16. Current Status of the LIFE Fast Reactors Fuel Performance Codes

    International Nuclear Information System (INIS)

    Yacout, A.M.; Billone, M.C.

    2013-01-01

    The LIFE-4 (Rev. 1) code was calibrated and validated using data from (U,Pu)O2 mixed-oxide fuel pins and UO2 blanket rods which were irradiation tested under steady-state and transient conditions. – It integrates a broad material and fuel-pin irradiation database into a consistent framework for use and extrapolation of the database to reactor design applications. – The code is available and running on different computer platforms (UNIX & PC) – Detailed documentations of the code’s models, routines, calibration and validation data sets are available. LIFE-METAL code is based on LIFE4 with modifications to include key phenomena applicable to metallic fuel, and metallic fuel properties – Calibrated with large database from irradiations in EBR-II – Further effort for calibration and detailed documentation. Recent activities with the codes are related to reactor design studies and support of licensing efforts for 4S and KAERI SFR designs. Future activities are related to re-assessment of the codes calibration and validation and inclusion of models for advanced fuels (transmutation fuels)

  17. Evaluating advanced LMR [liquid metal reactor] reactivity feedbacks using SSC

    International Nuclear Information System (INIS)

    Slovik, G.C.; Van Tuyle, G.J.; Kennett, R.J.; Cheng, H.S.

    1988-01-01

    Analyses of the PRISM and SAFR Liquid Metal Reactors with SSC are discussed from a safety and licensing perspective. The PRISM and SAFR reactors with metal fuel are designed for inherent shutdown responses to loss-of-flow and loss-of-heat-sink events. The demonstration of this technology was performed by EBR-II during experiments in April 1986 by ANL (Planchon, et al.). Response to postulated TOPs (control rod withdrawal) are made acceptable largely by reducing reactivity swings, and therefore minimizing the size of possible ractivity insertions. Analyses by DOE and the contractors GE, RI, and ANL take credit for several reactivity feedback mechanisms during transient calculations. These feedbacks include Doppler, sodium density, and thermal expansion of the grid plates, the load pads, the fuel (axial) and the control rod which are now factored into the BNL SSC analyses. The bowing feedback mechanism is not presently modeled in the SSC due to its complexity and subsequent large uncertainty. The analysis is conservative by not taking credit for this negative feedback mechanism. Comparisons of BNL predictions with DOE contractors are provided

  18. Conceptual design study on inertial confinement reactor ''SENRI-II''

    International Nuclear Information System (INIS)

    Nakamura, N.; Ouura, H.

    1983-01-01

    Design features of a laser fusion reactor concept SENRI-II are reviewed and discussed. A conceptual design study of the ICF reactor SENRI-II (an advanced design of SENRI-I) has been carried out over 2 years in the Research Committee of ICF Reactors, Institute of Laser Engineering, Osaka University. While the ICF reactor SENRI-I utilized a magnetic field to guide and control an inner liquid lithium flow, SENRI-II is designed to use porous metal as the liquid lithium flow guide. In the design of SENRI-II, a metal porous lithium blanket serves as the protection of a wall against fusion products and as wall per se. Because of the separation of these two functions, a high power density can be attained

  19. Estimates of time-dependent fatigue behavior of Type 316 stainless steel subject to irradiation damage in fast breeder and fusion power reactor systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Liu, K.C.; Grossbeck, M.L.

    1978-01-01

    Cyclic lives obtained from strain-controlled fatigue tests at 593 0 C of specimens irradiated in the experimental breeder reactor II (EBR-II) to a fluence of 1 to 2.63*10 26 neutrons (n)/m 2 (E>0.1 MeV) were compared with predictions based on the method of strain-range partitioning. It was demonstrated that, when appropriate tensile and creep-rupture ductilities were employed, reasonably good estimates of the influence of hold periods and irradiation damage on the fully reversed fatigue life of Type 316 stainless steel could be made. After applicability of this method was demonstrated, ductility values for 20 percent cold-worked Type 316 stainless steel specimens irradiated in a mixed-spectrum fission reactor were used to estimate fusion reactor first-wall lifetime. The ductility values used were from irradiations that simulate the environment of the first wall of a fusion reactor. Neutron wall loadings ranging from 2 to 5 MW/m 2 were used. 27 refs

  20. Run-Beyond-Cladding-Breach (RBCB) test results for the Integral Fast Reactor (IFR) metallic fuels program

    International Nuclear Information System (INIS)

    Batte, G.L.; Hoffman, G.L.

    1990-01-01

    In 1984 Argonne National Laboratory (ANL) began an aggressive program of research and development based on the concept of a closed system for fast-reactor power generation and on-site fuel reprocessing, exclusively designed around the use of metallic fuel. This is the Integral Fast Reactor (IFR). Although the Experimental Breeder Reactor-II (EBR-II) has used metallic fuel since its creation 25 yeas ago, in 1985 ANL began a study of the characteristics and behavior of an advanced-design metallic fuel based on uranium-zirconium (U-Zr) and uranium-plutonium-zirconium (U-Pu-Zr) alloys. During the past five years several areas were addressed concerning the performance of this fuel system. In all instances of testing the metallic fuel has demonstrated its ability to perform reliably to high burnups under varying design conditions. This paper will present one area of testing which concerns the fuel system's performance under breach conditions. It is the purpose of this paper to document the observed post-breach behavior of this advanced-design metallic fuel. 2 figs., 1 tab

  1. Impact of design options on natural circulation performance of the AFR-300 advanced fast reactor

    International Nuclear Information System (INIS)

    Dunn, F. D.

    2002-01-01

    The AFR-300, Advanced Fast Reactor (300 Mwe), has been proposed as a Generation IV concept. It could also be used to dispose of surplus weapons grade plutonium or as an actinide burner for transmutation of high level radioactive waste. AFR-300 uses metallic fuel and sodium coolant. The design of AFR-300 takes account of the successful design and operation of EBR-II, but the AFR-300 design includes a number of advances such as an advanced fuel cycle, inspectability and improved economics. One significant difference between AFR-300 and EBR-II is that AFR-300 is considerably larger. Another significant difference is that AFR-300 has no auxiliary EM pump in the primary loop to guarantee positive core flow when the main primary pumps are shut down. Thus, one question that has come up in connection with the AFR-300 design is whether natural circulation flow is sufficient to prevent damage to the core if the primary pumps fail. Insufficient natural circulation flow through the core could result in high cladding temperatures and cladding failure due to eutectic penetration of the cladding by the metal fuel. The rate of eutectic penetration of the cladding is strongly temperature dependent, so cladding failure depends on how hot the cladding gets and how long it is at elevated temperatures. To investigate the adequacy of natural circulation flow, a number of pump failure transients and a number of design options have been analyzed with the SASSYS-1 systems analysis code. This code has been validated for natural circulation behavior by analysis of Shutdown Heat Removal Tests performed in EBR-II. The AFR-300 design includes flywheels on the primary pumps to extend the pump coastdown times, and the size of the flywheels can be picked to give optimum coastdown times. One series of transients that has been run consists of protected loss-of-flow transients with various values for the combined moment of inertia of the pump, the motor and the flywheel giving coastdown times from 70

  2. Impacts of burnup-dependent swelling of metallic fuel on the performance of a compact breed-and-burn fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Heo, Woong; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

  3. An approach to the verification of a fault-tolerant, computer-based reactor safety system: A case study using automated reasoning: Volume 1: Interim report

    International Nuclear Information System (INIS)

    Chisholm, G.H.; Kljaich, J.; Smith, B.T.; Wojcik, A.S.

    1987-01-01

    The purpose of this project is to explore the feasibility of automating the verification process for computer systems. The intent is to demonstrate that both the software and hardware that comprise the system meet specified availability and reliability criteria, that is, total design analysis. The approach to automation is based upon the use of Automated Reasoning Software developed at Argonne National Laboratory. This approach is herein referred to as formal analysis and is based on previous work on the formal verification of digital hardware designs. Formal analysis represents a rigorous evaluation which is appropriate for system acceptance in critical applications, such as a Reactor Safety System (RSS). This report describes a formal analysis technique in the context of a case study, that is, demonstrates the feasibility of applying formal analysis via application. The case study described is based on the Reactor Safety System (RSS) for the Experimental Breeder Reactor-II (EBR-II). This is a system where high reliability and availability are tantamount to safety. The conceptual design for this case study incorporates a Fault-Tolerant Processor (FTP) for the computer environment. An FTP is a computer which has the ability to produce correct results even in the presence of any single fault. This technology was selected as it provides a computer-based equivalent to the traditional analog based RSSs. This provides a more conservative design constraint than that imposed by the IEEE Standard, Criteria For Protection Systems For Nuclear Power Generating Stations (ANSI N42.7-1972)

  4. Actinide recycle potential in the IFR [Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1989-01-01

    Rising concern about the greenhouse effect reinforces the need to reexamine the question of a next-generation reactor concept that can contribute significantly toward substitution for fossil-based energy generation. Even with only the nuclear capacity on-line today, world-wide reasonably assured uranium resources would last for only about 50 years. If nuclear is to make a significant contribution, breeding is a fundamental requirement. Uranium resources can then be extended by two orders of magnitude, making nuclear essentially a renewable energy source. The key technical elements of the IFR concept are metallic fuel and fuel cycle technology based on pyroprocessing. Pyroprocessing is radically different from the conventional PUREX reprocessing developed for the LWR oxide fuel. Chemical feasibility of pyroprocessing has been demonstrated. The next major step in the IFR development program will be the full-scale pyroprocessing demonstration to be carried out in conjunction with EBR-II. IFR fuel cycle closure based on pyroprocessing can also have a dramatic impact on the waste management options, and in particular on the actinide recycling. 6 figs

  5. An examination of reliability critical items in liquid metal reactors: An analysis by the Centralized Reliability Data Organization (CREDO)

    International Nuclear Information System (INIS)

    Humphrys, B.L.; Haire, M.J.; Koger, K.H.; Manneschmidt, J.F.; Setoguchi, K.; Nakai, R.; Okubo, Y.

    1987-01-01

    The Centralized Reliability Data Organization (CREDO) is the largest repository of liquid metal reactor (LMR) component reliability data in the world. It is jointly sponsored by the US Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. The CREDO data base contains information on a population of more than 21,000 components and approximately 1300 event records. A conservative estimation is that the total component operating hours is approaching 3.5 billion hours. Because data gathering for CREDO concentrates on event (failure) information, the work reported here focuses on the reliability information contained in CREDO and the development of reliability critical items lists. That is, components are ranked in prioritized lists from worst to best performers from a reliability standpoint. For the data contained in the CREDO data base, FFTF and JOYO show reliability growth; EBR-II reveals a slight unreliability growth for those components tracked by CREDO. However, tabulations of events which cause reactor shutdowns decrease with time at each site

  6. The world's reactors No. 82: Atucha II

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Detailed information on Atucha II, a 745 MWe pressure-vessel PHWR, is presented in the form of a wall chart. Plant specifications and full colour cutaway drawings of the power station are included. (U.K.)

  7. HYLIFE-II reactor chamber mechanical design

    International Nuclear Information System (INIS)

    House, P.A.

    1992-01-01

    Mechanical design features of the reactor chamber for the HYLIFE-11 inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams are used for shielding and blast protection. The system is designed for an 8 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (20 m/s) salt streams and also recover up to half of the dynamic head

  8. The role of SASSYS-1 in LMR [Liquid Metal Reactor] safety analysis

    International Nuclear Information System (INIS)

    Dunn, F.E.; Wei, T.Y.C.

    1988-01-01

    The SASSYS-1 liquid metal reactor systems analysis computer code is currently being used as the principal tool for analysis of reactor plant transients in LMR development projects. These include the IFR and EBR-II Projects at Argonne National Laboratory, the FFTF project at Westinghouse-Hanford, the PRISM project at General Electric, the SAFR project at Rockwell International, and the LSPB project at EPRI. The SASSYS-1 code features a multiple-channel thermal-hydraulics core representation coupled with a point kinetics neutronics model with reactivity feedback, all combined with detailed one-dimensional thermal-hydraulic models of the primary and intermediate heat transport systems, including pipes, pumps, plena, valves, heat exchangers and steam generators. In addition, SASSYS-1 contains detailed models for active and passive shutdown and emergency heat rejection systems and a generalized plant control system model. With these models, SASSYS-1 provides the capability to analyze a wide range of transients, including normal operational transients, shutdown heat removal transients, and anticipated transients without scram events. 26 refs., 16 figs

  9. Centralized Reliability Data Organization (CREDO) assessment of critical component unavailability in liquid metal reactors

    International Nuclear Information System (INIS)

    Koger, K.H.; Haire, M.J.; Humphrys, B.L.; Manneschmidt, J.F.; Setoguchi, K.; Nakai, R.

    1988-01-01

    The Centralized Reliability Data Organization (CREDO) is the largest repository of liquid metal reactor (LMR) component reliability data in the world. It is jointly sponsored by the US Dept. of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. The CREDO data base contains information on a population of more than 20,000 components and approximately 1500 event records. A conservative estimation is that the total component operating hours is approaching 2.2 billion hours. The work reported here focuses on the availability information contained in CREDO and the development of availability critical items lists. That is, individual components are ranked in prioritized lists from worst to best performers from an availability standpoint. Availability as used here is an inherent characteristics of the component and is not necessarily related to plant operability. A major observation is that a few components have a much higher unavailability factor than the average. The top fifteen components contribute 93%, 77%, and 87% of the total system unavailability for EBR-II, FFTF, and JOYO respectively. Critical components common to all three sites are mechanical pumps and electromagnetic pumps. Application of resources to these components with the highest unavailability will have the greatest effect on overall availability. All three sites demonstrate that low maintainability (i.e., long repair times), rather than unreliability (i.e., high failure rates), are the main contributors, by about a two-to-one margin, to liquid metal system unavailability

  10. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  11. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Ludewig, H.; Powers, D.A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.

    2012-01-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  12. The research reactor TRIGA Heidelberg II

    International Nuclear Information System (INIS)

    Maier-Borst, W.; Krauss, O.

    1988-01-01

    The reactor is in operation since the beginning of 1978. On the base of the working experience gathered during that time employing the TRIGA in biomedical research, especially the irradiation units have been extended or newly developed. Several TRIGA users have reported difficulties in using the rotary irradiation system. It became obvious that the alternatives to the original Lazy Susan are not commonly known. In this report, the open rotary system fed by a hydraulic rabbit system, which has proved successful in this form during the past ten years is presented

  13. Probabilistic Safety Assessment Of It TRIGA Mark-II Reactor

    International Nuclear Information System (INIS)

    Ergun, E; Kadiroglu, O.S.

    1999-01-01

    The probabilistic safety assessment for Istanbul Technical University (ITU) TRIGA Mark-II reactor is performed. Qualitative analysis, which includes fault and event trees and quantitative analysis which includes the collection of data for basic events, determination of minimal cut sets, calculation of quantitative values of top events, sensitivity analysis and importance measures, uncertainty analysis and radiation release from fuel elements are considered

  14. Ageing Management in the CENM Triga Mark II Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    El Younoussi, C.; Nacir, B.; El Bakkari, B.; Boulaich, Y. [Centre for Nuclear Studies of Maâmora (CENM), National Centre of Energy Sciences and Nuclear Techniques (CNESTEN), Rabat (Morocco)

    2014-08-15

    Physical ageing is one of the most important factors that may reduce the safety margins calculated in the design of safety system components of a research reactor. In this context, special efforts are necessary for ensuring the safety of research reactors through appropriate ageing management actions. The paper deals with the overall aspects of the ageing management system of the Moroccan TRIGA Mark II research reactor. The management system covers among others, management of structures, critical components inspections, the control command system and nuclear instrumentation verification. The paper presents also how maintenance and periodic testing are organized and managed in the reactor module. Practical examples of ageing management actions of some systems and components during recent years are presented. (author)

  15. ANL calculational methodologies for determining spent nuclear fuel source term

    International Nuclear Information System (INIS)

    McKnight, R. D.

    2000-01-01

    Over the last decade Argonne National Laboratory has developed reactor depletion methods and models to determine radionuclide inventories of irradiated EBR-II fuels. Predicted masses based on these calculational methodologies have been validated using available data from destructive measurements--first from measurements of lead EBR-II experimental test assemblies and later using data obtained from processing irradiated EBR-II fuel assemblies in the Fuel Conditioning Facility. Details of these generic methodologies are described herein. Validation results demonstrate these methods meet the FCF operations and material control and accountancy requirements

  16. Design guide for category II reactors light and heavy water cooled reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-05-01

    The Department of Energy (DOE), in the ERDA Manual, requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification operation, maintainance, and decommissioning of DOW-owned reactors be in accordance with generally uniform standards, guide and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category II reactor structure, components, and systems

  17. First TREAT [Transient Reactor Test Facility] transient overpower tests on U-Pu-Zr fuel: M5 and M6

    International Nuclear Information System (INIS)

    Robinson, W.R.; Bauer, T.H.; Wright, A.E.; Rhodes, E.A.; Stanford, G.S.; Klickman, A.E.

    1987-01-01

    Transient Reactor Test Facility (TREAT) tests M5 and M6 were the first transient overpower (TOP) tests of the margin to cladding breach and prefailure elongation of metallic U-Pu-Zr ternary fuel, the reference fuel of the Integral Fast Reactor concept. Similar tests on U-Fs fueled EBR-II driver pins were previously performed and reported [1,2]. Results from these earlier tests indicated a margin to failure of about 4 times nominal power and significant axial elongation prior to failure, a feature that was very pronounced at low burnups. While these two fuel types are similar in many respects, the ternary alloy exhibits a much more complex physical structure and is typically irradiated at much higher temperatures. Thus, a prime motivation for performing M5 and M6 was to compare the safety related fuel performance characteristics of U-Fs and U-Pu-Zr. This report described conditions, results, and conclusions of testing of these fuel types

  18. Irradiation devices at the upgraded research reactor BER II

    International Nuclear Information System (INIS)

    Gawlik, D.; Robertson, T.

    1992-06-01

    An overview is given of those properties of the BER II research reactor which are important for carrying out irradiation experiments. The subsequent section describes the irradiation devices currently installed in the reactor, or which are under construction, and some of the experiments which can be conducted using them. The field of application of these experiments extends from the study of the metabolism of trace elements in man, employing a highly sensitive element analysis, via radiation damage of high-tech materials, to the identification of paintings of the old masters. The report concludes with a review of the technical details of the irradiation devices, giving information of interest for potential users. (orig.)

  19. TIBER II: an upgraded tokamak igntion/burn experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Perkins, L.J.

    1986-01-01

    We are disIgning a minimum-size Tokamak ignition/Burn Reactor (TIBER II). This design incorporates physics requirements, neutron wall loading and fluence parameters that will make it compatible with a nuclear testing mission. Reactor relevant physics will be tested by using current drive and steady-state operation. Although the design accommodates several current drive options, including neutral beams, the base case uses a combination of lower hybrid and electron-cyclotron radio frequency power. Minimum neutron shielding, compact structures, high magnet-current densities, and remotely maintainable vacuum seals, all contribute to the compact size

  20. Reactor costs and maintenance, with reference to the Culham Mark II conceptual tokamak reactor design

    International Nuclear Information System (INIS)

    Hancox, R.; Mitchell, J.T.D.

    1977-01-01

    Published designs of tokamak reactors have proposed conceptual solutions for most of the technological problems encountered. Two areas which remain uncertain, however, are the capital cost of the reactor and the practicability of reactor maintenance. A cost estimate for the Culham Conceptual Tokamak Reactor (Mk I) is presented. The capital cost of a power station incorporating this reactor would be significantly higher than that of an equivalent fast breeder fission power station, mainly because of the low power density of the fusion reactor which affects both the reactor and building costs. To reduce the fusion station capital costs a new conceptual design is proposed (Mk II) which incorporates a shaped plasma cross-section to give a higher plasma pressure ratio, βsub(t) approximately 0.1. Since the higher power density implies more severe radiation damage of the blanket structure, the question of reactor maintenance assumes greater importance. With the proposed scheme for regular replacement of the blanket, a fusion power station availability around 0.9 should be achievable. (author)

  1. Reactor costs and maintenance, with reference to the Culham Mark II conceptual Tokamak reactor design

    International Nuclear Information System (INIS)

    Hancox, R.; Mitchell, J.T.D.

    1976-01-01

    Published designs of tokamak reactors have proposed conceptual solutions for most of the technological problems encountered. Two areas which remain uncertain, however, are capital cost of the reactor and the practicability of reactor maintenance. A cost estimate for the Culham Conceptual Tokamak Reactor (Mk I) is presented. The capital cost of a power station incorporating this reactor would be significantly higher than that of an equivalent fast breeder fission power station, due mainly to the low power density of the fusion reactor which affects both the reactor and building costs. In order to reduce the fusion station capital costs a new conceptual design is proposed (Mk II) which incorporates a shaped plasma cross-section to give a higher plasma pressure ratio, βsub(t) approximately 0.1. Since the higher power density implies more severe radiation damage of the blanket structure, the question of reactor maintenance assumes greater importance. With the proposed scheme for regular replacement of the blanket, a fusion power station availability around 0.9 should be achievable. (orig.) [de

  2. Experimental investigation of a directionally enhanced DHX concept for high temperature Direct Reactor Auxiliary Cooling Systems

    International Nuclear Information System (INIS)

    Hughes, Joel T.; Blandford, Edward D.

    2016-01-01

    Highlights: • A novel directional heat exchanger design has been developed. • Hydrodynamic tests have been performed on the proposed design. • Heat transfer performance is inferred by hydrodynamic results. • Results are discussed and future work is suggested. - Abstract: The use of Direct Reactor Auxiliary Cooling Systems (DRACSs) as a safety-related decay heat removal system for advanced reactors has developed historically through the Sodium Fast Reactor (SFR) community. Beginning with the EBR-II, DRACSs have been utilized in a large number of past and current SFR designs. More recently, the DRACS has been adopted for Fluoride Salt-Cooled High-Temperature Reactors (FHRs) for similar decay heat removal functions. In this paper we introduce a novel directionally enhanced DRACS Heat Exchanger (DHX) concept. We present design options for optimizing such a heat exchanger so that shell-side heat transfer is enhanced in one primary coolant flow direction and degraded in the opposite coolant flow direction. A reduced-scale experiment investigating the hydrodynamics of a directionally enhanced DHX was built and the data collected is presented. The concept of thermal diodicity is expanded to heat exchanger technologies and used as performance criteria for evaluating design options. A heat exchanger that can perform as such would be advantageous for use in advanced reactor concepts where primary coolant flow reversal is expected during Loss-of-Forced-Circulation (LOFC) accidents where the ability to circulate coolant is compromised. The design could also find potential use in certain advanced Sodium Fast Reactor (SFR) designs utilizing fluidic diode concepts.

  3. Experimental investigation of a directionally enhanced DHX concept for high temperature Direct Reactor Auxiliary Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Joel T.; Blandford, Edward D., E-mail: edb@unm.edu

    2016-07-15

    Highlights: • A novel directional heat exchanger design has been developed. • Hydrodynamic tests have been performed on the proposed design. • Heat transfer performance is inferred by hydrodynamic results. • Results are discussed and future work is suggested. - Abstract: The use of Direct Reactor Auxiliary Cooling Systems (DRACSs) as a safety-related decay heat removal system for advanced reactors has developed historically through the Sodium Fast Reactor (SFR) community. Beginning with the EBR-II, DRACSs have been utilized in a large number of past and current SFR designs. More recently, the DRACS has been adopted for Fluoride Salt-Cooled High-Temperature Reactors (FHRs) for similar decay heat removal functions. In this paper we introduce a novel directionally enhanced DRACS Heat Exchanger (DHX) concept. We present design options for optimizing such a heat exchanger so that shell-side heat transfer is enhanced in one primary coolant flow direction and degraded in the opposite coolant flow direction. A reduced-scale experiment investigating the hydrodynamics of a directionally enhanced DHX was built and the data collected is presented. The concept of thermal diodicity is expanded to heat exchanger technologies and used as performance criteria for evaluating design options. A heat exchanger that can perform as such would be advantageous for use in advanced reactor concepts where primary coolant flow reversal is expected during Loss-of-Forced-Circulation (LOFC) accidents where the ability to circulate coolant is compromised. The design could also find potential use in certain advanced Sodium Fast Reactor (SFR) designs utilizing fluidic diode concepts.

  4. Risk of the research reactor BER II in Berlin

    International Nuclear Information System (INIS)

    Paulitz, Henrik; Hoevener, Barbara; Rosen, Alex

    2015-01-01

    The research reactor BER II is sited at the periphery of Berlin in the neighborhood of residential areas. The operational license is limited until December 31, 2019. The reactor is funded by the Federal Government (90%) and the city of Berlin (10%). The stress test has shown that the reactor is not secured against an aircraft crash (airliner or fast flying military jet), meltdown with remarkable radiological consequences to the public would be the consequence. Further hazards result from the radioactive waste transport, explosions and fires. The emergency measures cannot be considered to be sufficient. The city of Berlin would not be able to fulfill the required measures in case of a radiation accident.

  5. Preliminary neutronic design of TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Sarikaya, B.; Tombakoglu, M.; Cecen, Y.; Kadiroglu, O. K.

    2001-01-01

    It is very important to analyse the behaviour of the research reactors, since, they play a key role in developing the power reactor technology and radiation applications such as isotope generation for medical treatments. In this study, the neutronic behaviour of the TRIGA MARK II reactor, owned and operated by Istanbul Technical University is analysed by using the SCALE code system. In the analysis, in order to overcome the disadvantages of special TRIGA codes, such as TRIGAP, the SCALE code system is chosen to perform the calculations. TRIGAP and similar codes have limited geometrical (one-dimensional geometry) and cross sectional options (two-group calculations), however, SCALE has the capability of wider range of geometrical modelling capability (three-dimensional modelling is possible) and multi-group calculations are possible

  6. HYLIFE-II reactor chamber mechanical design: Update

    International Nuclear Information System (INIS)

    House, P.A.

    1992-01-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li 2 BeF 4 ) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (17 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GW e and 2 GW e reactor chamber are presented

  7. Performances on nuclear activation analysis by TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Capannesi, G.; Rosada, A.

    1986-01-01

    Progresses in methodological research and connected applications in the field of activation analysis are introduced. Some peculiar characteristics on the TRIGA MARK II reactor have enabled the possibility of obtaining interesting results. The particular, the rotating radiation device Lazy Susan, with a capability of 40 positionings, permits homogeneity in neutron flux and energy spectrum stability within 15%. High level of precision and accuracy are obtained in analytic. Applications of major interest have been: - reference material certification; - forensic applications; - electrolytic cell productivity evaluation. The TRIGA MARK II reactor is equipped with a thermal column throughout a D 2 O diaphragm with a thickness of 70 cm. The available neutron flux has no fast and epithermal components. Via this facility a method has been tested for the instrumental determination of Al in Si metal of solar and electronic degree. (author)

  8. The optimal control of ITU TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Can, Burhanettin

    2008-01-01

    In this study, optimal control of ITU TRIGA Mark-II Reactor is discussed. A new controller has been designed for ITU TRIGA Mark-II Reactor. The controller consists of main and auxiliary controllers. The form is based on Pontragyn's Maximum Principle and the latter is based on PID approach. For the desired power program, a cubic function is chosen. Integral Performance Index includes the mean square of error function and the effect of selected period on the power variation. YAVCAN2 Neutronic - Thermal -Hydraulic code is used to solve the equations, namely 11 equations, dealing with neutronic - thermal - hydraulic behavior of the reactor. For the controller design, a new code, KONTCAN, is written. In the application of the code, it is seen that the controller controls the reactor power to follow the desired power program. The overshoot value alters between 100 W and 500 W depending on the selected period. There is no undershoot. The controller rapidly increases reactivity, then decreases, after that increases it until the effect of temperature feedback is compensated. Error function varies between 0-1 kW. (author)

  9. In-reactor performance of methods to control fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Weber, E.T.; Gibby, R.L.; Wilson, C.N.; Lawrence, L.A.; Adamson, M.G.

    1979-01-01

    Inner surface corrosion of austenitic stainless steel cladding by oxygen and reactive fission product elements requires a 50 μm wastage allowance in current FBR reference oxide fuel pin design. Elimination or reduction of this wastage allowance could result in better reactor efficiency and economics through improvements in fuel pin performance and reliability. Reduction in cladding thickness and replacement of equivalent volume with fuel result in improved breeding capability. Of the factors affecting fuel-cladding chemical interaction (FCCI), oxygen activity within the fuel pin can be most readily controlled and/or manipulated without degrading fuel pin performance or significantly increasing fuel fabrication costs. There are two major approaches to control oxygen activity within an oxide fuel pin: (1) control of total oxygen inventory and chemical activity (Δ anti GO 2 ) by use of low oxygen-to-metal ratio (O/M) fuel; and (2) incorporation of a material within the fuel pin to provide in-situ control of oxygen activity (Δ anti GO 2 ) and fixation of excess oxygen prior to, or in preference to reaction with the cladding. The paper describes irradiation tests which were conducted in EBR-II and GETR incorporating oxygen buffer/getter materials and very low O/M fuel to control oxygen activity in sealed fuel pins

  10. In-pile experiments and test facilities proposed for fast reactor safety

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Avery, R.; Goldman, A.J.; Fauske, H.K.; Marchaterre, J.F.; Rose, D.; Wright, A.E.

    1976-01-01

    The role of in-pile experiments in support of the resolution of fast breeder reactor safety and licensing issues has been re-examined, with emphasis on key safety issues. Experiment needs have been related to the specific characteristics of these safety issues and to realistic requirements for additional test facility capabilities which can be achieved and utilized within the next ten years. It is found that those safety issues related to the energetics of core disruptive accidents have the largest impact on new facility requirements. However, utilization of existing facilities with modifications can provide for a continuing increase in experiment capability and experiment results on a timely bases. Emphasis has been placed upon maximum utilization of existing facilities and minimum requirements for new facilities. This evaluation has concluded that a new Safety Test Facility, STF, along with major modifications to the EBR II facility, improvement in TREAT capabilities, the existing Sodium Loop Safety Facility and corresponding Support Facilities provide the essential elements of the Safety Research Experiment Facilities (SAREF) required for resolution of key issues

  11. Perturbation analysis of the TRIGA Mark II reactor Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Khan, R. [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Villa, M.; Stummer, T.; Boeck, H. [Vienna Univ. of Technology (Austria). Atominstitut; Saeedbadshah [International Islamic Univ., Islamabad (Pakistan)

    2013-04-15

    The safety design of a nuclear reactor needs to maintain the steady state operation at desired power level. The safe and reliable reactor operation demands the complete knowledge of the core multiplication and its changes during the reactor operation. Therefore it is frequently of interest to compute the changes in core multiplication caused by small disturbances in the field of reactor physics. These disturbances can be created either by geometry or composition changes of the core. Fortunately if these changes (or perturbations) are very small, one does not have to repeat the reactivity calculations. This article focuses the study of small perturbations created in the Central Irradiation Channel (CIC) of the TRIGA mark II core to investigate their reactivity influences on the core reactivity. For this purpose, 3 different kinds of perturbations are created by inserting 3 different samples in the CIC. The cylindrical void (air), heavy water (D2O) and Cadmium (Cd) samples are inserted into the CIC separately to determine their neutronics behavior along the length of the core. The Monte Carlo N-Particle radiation transport code (MCNP) is applied to simulate these perturbations in the CIC. The MCNP theoretical predictions are verified by the experiments performed on the current reactor core. The behavior of void in the whole core and its dependence on position and water fraction is also presented in this article. (orig.)

  12. Final project report: TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1993-02-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project including, Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 M 3 of mixed waste

  13. Final project report, TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1992-01-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project, including Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 m 3 of low-level solid radioactive waste and 5 m 3 of mixed waste

  14. Progress and status of the integral fast reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. The Integral Fast Reactor (IFR) fuel cycle, is based on the use of a metallic fuel alloy (U-Pu-Zr) that permits use of an innovative method for processing of spent fuel. This method, a combination of pyrometallurgical and electrochemical processes, has been termed pyroprocessing. It offers the advantages of a simple, compact processing system and limited volumes of stabilized high-level wastes. This translates to an economically viable system that is likely to receive favorable public response, particularly when combined with the other attributes of the Integral Fast Reactor. Substantial progress has been made in the development of the IFR pyroprocessing method. A comprehensive demonstration of the process will soon begin at the Argonne National Laboratory Idaho site, using spent fuel from the EBR-II reactor. An important advantage of the IFR is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material

  15. IAEA fast reactor knowledge preservation initiative. Project focus: KNK-II reactor, Karlsruhe, Germany

    International Nuclear Information System (INIS)

    2004-08-01

    This Working Material (including the attached CD-ROM) documents progress made in the IAEA's initiative to preserve knowledge in the fast reactor domain. The brochure describes briefly the context of the initiative and gives an introduction to the contents of the CD-ROM. In 2003/2004 a first focus of activity was concentrated on the preservation of knowledge related to the KNK-II experimental fast reactor in Karlsruhe, Germany. The urgency of this project was given by the impending physical destruction of the installation, including the office buildings. Important KNK-II documentation was brought to safety and preserved just in time. The CD-ROM contains the full texts of 264 technical and scientific documents describing research, development and operating experience gained with the KNK-II installation over a period of time from 1965 to 2002, extending through initial investigations, 17 years of rich operating experience, and final shutdown and decommissioning. The index to the documents on the CD-ROM is printed at the end of this booklet in chronological order and is accessible on the CD by subject index and chronological index. The CD-ROM contains in its root directory also the document 'fr c lassification.pdf' which describes the classification system used for the present collection of documents on the fast reactor KNK-II

  16. UWMAK-II: a conceptual tokamak reactor design

    International Nuclear Information System (INIS)

    1975-10-01

    This report describes the conceptual design of a Tokamak fusion power reactor, UWMAK-II. The aim of this study is to perform a self consistent and thorough analysis of a probable future fusion power reactor in order to assess the technological problems posed by such a system and to examine feasible solutions. UWMAK-II is a conceptual Tokamak fusion reactor designed to deliver 1716 MWe continuously and to generate 5000 MW(th) during the plasma burn. The structural material is 316 stainless steel and the primary coolant is helium. UWMAK-II is a low aspect ratio, low field design and includes a double null, axisymmetric poloidal field divertor for impurity control. In addition, a carbon curtain, made of two dimensional woven carbon fiber, is mounted on the first vacuum chamber wall to protect the plasma from high Z impurities and to protect the first wall from erosion by charged particle bombardment. The blanket is designed to minimize the inventory of both tritium and lithium while achieving a breeding ratio greater than one. This has led to a blanket design based on the use of a solid breeding material (LiAlO 2 ) with beryllium as a neutron multiplier. The lithium is enriched to 90 percent 6 Li and the blanket coolant is helium at a maximum pressure of 750 psia (5.2 x 10 6 N/m 2 ). A cell of the UWMAK-II blanket design is shown. The breeding ratio is between 1.11 and 1.19 based on one-dimensional discrete ordinates transport calculations, depending on the method of homogenization. Detailed Monte Carlo calculations, which take into account the more complicated geometry, give a breeding ratio of 1.06. The total energy per fusion is 21.56 MeV, which is fairly high

  17. Monte Carlo analysis of Musashi TRIGA mark II reactor core

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo

    1999-01-01

    The analysis of the TRIGA-II core at the Musashi Institute of Technology Research Reactor (Musashi reactor, 100 kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). Effective multiplication factors (k eff ) for the several fuel-loading patterns including the initial core criticality experiment, the fuel element and control rod reactivity worth as well as the neutron flux measurements were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated k eff overestimated the experimental data by about 1.0%Δk/k for both the initial core and the several fuel-loading arrangements. The calculated reactivity worths of control rod and fuel element agree well the measured ones within the uncertainties. The comparison of neutron flux distribution was consistent with the experimental ones which were measured by activation methods at the sample irradiation tubes. All in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicated that the Monte Carlo model is enough to simulate the Musashi TRIGA-II reactor core. (author)

  18. Development and testing of a diagnostic system for intelligen distributed control at EBR-2

    International Nuclear Information System (INIS)

    Edwards, R.M.; Ruhl, D.W.; Klevans, E.H.; Robinson, G.E.

    1990-01-01

    A diagnostic system is under development for demonstration of Intelligent Distributed Control at the Experimental Breeder Reactor (EBR--II). In the first phase of the project a diagnostic system is being developed for the EBR-II steam plant based on the DISYS expert systems approach. Current testing uses recorded plant data and data from simulated plant faults. The dynamical simulation of the EBR-II steam plant uses the Babcock and Wilcox (B ampersand W) Modular Modeling System (MMS). At EBR-II the diagnostic system operates in the UNIX workstation and receives live plant data from the plant Data Acquisition System (DAS). Future work will seek implementation of the steam plant diagnostic in a distributed manner using UNIX based computers and Bailey microprocessor-based control system. 10 refs., 6 figs

  19. The control equipment of the Melusine II reactor

    International Nuclear Information System (INIS)

    Cordelle, M.; Delcroix, V.; Denis, P.; Gariod, R.

    1963-01-01

    Melusine II, low-power reactor, used for the study of Siloe core has diverged at the CEA Grenoble, the 23. May 1962; its monitoring board studied and carried out in this center is the first in France to be entirely transistorized. The first months of running have justified the hope put in the new electronics to improve the stability and the safety of running. The article describes the design of the control and gives the main characteristics of the measurement chains and of the actions on reactivity. (O.M.) [fr

  20. Twenty years of operation of Ljubljana's TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Dimic, V.

    1986-01-01

    Twenty years have now passed since the start of the TRIGA Mark II reactor in Ljubljana. The reactor was critical on May 31, 1966. The total energy produced until the end of May 1986 was 14.048 MWh or 585 MWd. For the first 14 years (until 1981) the yearly energy produced was about 600 MWh, since 1981 the yearly energy produced was 1000 MWh when a routine radioactive isotopes production started for medical use as well as other industrial applications, such as doping and irradiation with fast neutrons of silicon monocrystals, production of level indicators (irradiated cobalt wire), production of radioactive iridium for gamma-radiography, leak detection in pipes by sodium, etc. Besides these, applied research around the reactor is being conducted in the following main fields, where- many unique methods have been developed or have found their way into the local industry or hospitals: neutron radiography, neutron induced auto-radiography using solid state nuclear track detectors, nondestructive methods for assessment of nuclear burn-up, neutron dosimetry, calculation of core burn-up for the optimal in-core fuel management strategy. The solvent extraction method was developed for the everyday production of 99m Tc, which is the most widely used radionuclide in diagnostic nuclear medicine. The methods were developed for the production of the following isotopes: 18 F, 85m Kr, 24 Na, 82 Br, 64 Zn, 125 I. Neutron activation analysis represents one of the major usages for the TRIGA reactor. Basic research is being conducted in the following main fields: solid state physics (elastic and inelastic scattering of the neutrons), neutron dosimetry, neutron radiography, reactor physics and neutron activation analysis. The reactor is used very extensively as a main instrument in the Reactor Training Centre in Ljubljana where manpower training for our nuclear power plant and other organisations has been performed. Although the reactor was designed very carefully in order to be used for

  1. Risk of the research reactor BER II in Berlin; Risiken des Berliner Experimentierreaktors BER II

    Energy Technology Data Exchange (ETDEWEB)

    Paulitz, Henrik; Hoevener, Barbara; Rosen, Alex

    2015-04-20

    The research reactor BER II is sited at the periphery of Berlin in the neighborhood of residential areas. The operational license is limited until December 31, 2019. The reactor is funded by the Federal Government (90%) and the city of Berlin (10%). The stress test has shown that the reactor is not secured against an aircraft crash (airliner or fast flying military jet), meltdown with remarkable radiological consequences to the public would be the consequence. Further hazards result from the radioactive waste transport, explosions and fires. The emergency measures cannot be considered to be sufficient. The city of Berlin would not be able to fulfill the required measures in case of a radiation accident.

  2. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose Luis

    1996-01-01

    Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed

  3. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2000-01-01

    Atucha II is a 745 MW Argentine power nuclear reactor constructed by Nuclear Argentine Company for Electric Power Generation S.A. (ENACE S.A.) and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed. (author)

  4. ERB-II operating experience

    International Nuclear Information System (INIS)

    Smith, R.N.; Cissel, D.W.; Smith, R.R.

    1977-01-01

    As originally designed and operated, EBR-II successfully demonstrated the concept of a sodium-cooled fast breeder power plant with a closed fuel reprocessing cycle (mini-nuclear park). Subsequent operation has been as an irradiation facility, a role which will continue into the foreseeable future. Since the beginning of operation in 1961, operating experience of EBR-II has been very satisfactory. Most of the components and systems have performed well. In particular, the mechanical performance of heat-removal systems has been excellent. A review of the operating experience reveals that all the original design objectives have been successfully demonstrated. To date, no failures or incidents resulting in serious in-core or out-of-core consequences have occurred. No water-to-sodium leaks have been detected over the life of the plant. At the present time, the facility is operating very well and continuously except for short shutdowns required by maintenance, refueling, modification, and minor repair. A plant factor of 76.9% was achieved for the calendar year 1976

  5. Estimates of time-dependent fatigue behavior of type 316 stainless steel subject to irradiation damage in fast breeder and fusion power reactor systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Liu, K.C.; Grossbeck, M.L.

    1979-01-01

    Cyclic lives obtained from strain-controlled fatigue tests at 593 0 C of specimens irraidated in the experimental breeder reactor II (EBR-II) to a fluence of 1 to 2.63 x 10 26 neutrons (n)/m 2 E > 0.1 MeV) were compared with predictions based on the method of strain-range partitioning. It was demonstrated that, when appropriate tensile and creep-rupture ductilities were employed, reasonably good estimates of the influence of hold periods and irradiation damage on the fully reversed fatigue life of Type 316 stainless steel could be made. After applicability of this method was demonstrated, ductility values for 20% cold-worked Type 316 stainless steel specimens irradiated in a mixed-spectrum fission reactor were used to estimate fusion reactor first-wall lifetime. The ductility values used were from irradations that simulate the environment of the first wall of a fusion reactor. Neutron wall loadins ranging from 2 to 5 MW/m 2 were used. Results, although conjectural because of the many assumptions, tended to show that 20% cold-worked Type 316 stainless steel could be used as a first-wall material meeting a 7.5 go 8.5 MW-year/m 2 lifetime goal provided the neutron wall loading does not exceed more than about 2 MW/m 2 . These results were obtained for an air environment, ant it is expected that the actual vacuum environment will extend lifetime beyond 10 MW-year/m 2

  6. Microstructural characterization and model of hardening for the irradiated austenitic stainless steels of the internals of pressurized water reactors

    International Nuclear Information System (INIS)

    Pokor, C.

    2003-01-01

    The core internals of Pressurized Water Reactors (PWR) are composed of SA 304 stainless steel plates and CW 316 stainless steel bolts. These internals undergo a neutron flux at a temperature between 280 deg C and 380 deg C which modifies their mechanical properties. These modifications are due to the changes in the microstructure of these materials under irradiation which depend on flux, dose and irradiation temperature. We have studied, by Transmission Electron Microscopy, the microstructure of stainless steels SA 304, CW 316 and CW 316Ti irradiated in a mixed flux reactor (OSIRIS at 330 deg C between 0,8 dpa et 3,4 dpa) and in a fast breeder reactor at 330 deg C (BOR-60) up to doses of 40 dpa. Moreover, samples have been irradiated at 375 deg C in a fast breeder reactor (EBR-II) up to doses of 10 dpa. The microstructure of the irradiated stainless steels consists in faulted Frank dislocation loops in the [111] planes of austenitic, with a Burgers vector of [111]. It is possible to find some voids in the solution annealed samples irradiated at 375 deg C. The evolution of the dislocations loops and voids has been simulated with a 'cluster dynamic' model. The fit of the model parameters has allowed us to have a quantitative description of our experimental results. This description of the microstructure after irradiation was coupled together with a hardening model by Frank loops that has permitted us to make a quantitative description of the hardening of SA 304, CW 316 and CW 316Ti stainless steels after irradiation at a certain dose, flux and temperature. The irradiation doses studied grow up to 90 dpa, dose of the end of life of PWR internals. (author)

  7. Reactor physics tests of TRIGA Mark-II Reactor in Ljubljana

    International Nuclear Information System (INIS)

    Ravnik, M.; Mele, I.; Trkov, A.; Rant, J.; Glumac, B.; Dimic, V.

    2008-01-01

    TRIGA Mark-II Reactor in Ljubljana was recently reconstructed. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. The standard type control rods were replaced by the fuelled follower type, the central grid location (A ring) was adapted for fuel element insertion, the triangular cutouts were introduced in the upper plate design. However, the main novelty in reactor physics and operational features of the reactor was the installation of a pulse rod. Having no previous operational experience in pulsing, a detailed and systematic sequence of tests was defined in order to check the predicted design parameters of the reactor with measurements. The following experiments are treated in this paper: initial criticality, excess reactivity measurements, control rod worth measurement, fuel temperature distribution, fuel temperature reactivity coefficient, pulse parameters measurement (peak power, prompt energy, peak temperature). Flux distributions in steady state and pulse mode were measured as well, however, they are treated only briefly due to the volume of the results. The experiments were performed with completely fresh fuel of 12 w% enriched Standard Stainless Steel type. The core configuration was uniform (one fuel element type, including fuelled followers) and compact (no irradiation channels or gaps), as such being particularly convenient for testing the computer codes for TRIGA reactor calculations. Comparison of analytical predictions, obtained with WIMS, SLXTUS, TRIGAP and PULSTRI codes to measured values showed agreement within the error of the measurement and calculation. The paper has the following contents: 1. Introduction; 2. Steady State Experiments; 2.1. Core loading and critical experiment; 2.2. Flux range determination for tests at zero power; 2.3. Digital reactivity meter checkout; 2.4. Control rod worth measurements; 2.5. Excess reactivity measurement; 2.6. Thermal power calibration; 2

  8. Safety and environmental aspects of the HYLIFE-II and ARIES fusion reactor designs

    International Nuclear Information System (INIS)

    Dolan, T.J.; Longhurst, G.R.; Herring, J.S.

    1993-01-01

    The HYLIFE-II inertial confinement fusion reactor design uses jets of Flibe molten salt to protect the blast chamber walls and to breed tritium. It has a low tritium inventory and effective tritium removal. The issue with this design is not one of safety but of economics. The ARIES reactor designs have safety concerns associated with fires. These reactors designs are described

  9. Neutronics analysis of TRIGA Mark II research reactor

    Directory of Open Access Journals (Sweden)

    Haseebur Rehman

    2018-02-01

    Full Text Available This article presents clean core criticality calculations and control rod worth calculations for TRIGA (Training, Research, Isotope production-General Atomics Mark II research reactor benchmark cores using Winfrith Improved Multi-group Scheme-D/4 (WIMS-D/4 and Program for Reactor In-core Analysis using Diffusion Equation (PRIDE codes. Cores 133 and 134 were analyzed in 2-D (r, θ and 3-D (r, θ, z, using WIMS-D/4 and PRIDE codes. Moreover, the influence of cross-section data was also studied using various libraries based on Evaluated Nuclear Data File (ENDF/B-VI.8 and VII.0, Joint Evaluated Fission and Fusion File (JEFF-3.1, Japanese Evaluated Nuclear Data Library (JENDL-3.2, and Joint Evaluated File (JEF-2.2 nuclear data. The simulation results showed that the multiplication factor calculated for all these data libraries is within 1% of the experimental results. The reactivity worth of the control rods of core 134 was also calculated with different homogenization approaches. A comparison was made with experimental and reported Monte Carlo results, and it was found that, using proper homogenization of absorber regions and surrounding fuel regions, the results obtained with PRIDE code are significantly improved.

  10. Different microprocessor controlled devices for ITU TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Can, B.; Omuz, S.; Uzun, S.; Apan, H.

    1990-01-01

    In this paper the design of a period meter and multichannel thermometer, which are controlled by a microprocessor, in order to be used at ITU TRIGA Mark-II Reactor is presented. The system works as a simple microcomputer, which includes a CPU, a EPROM, a RAM, a CTC, a PIO, a PIA a keyboard and displays, using the assembly language. The period meter can work either with pulse signal or with analog signal depending on demand of the user. The period is calculated by software and its range is -99,9 sec, to +2.1 sec. When the period drops +3 sec, the system gives alarm illuminating a LED. The multichannel thermometer has eight temperature channels. Temperature channels can manually or automatically be selected. The channel selection time can be adjusted. The thermometer gives alarm illuminating a LED, when the temperature rises to 600 C. Temperature data is stored in the RAM and is shown on a display. This system provides us to use four spare thermocouples in the reactor. (orig.)

  11. Reactor building design of nuclear power plant ATUCHA II, Argentina

    International Nuclear Information System (INIS)

    Rufino, R.E.; Hermann, E.R.; Richter, E.

    1984-01-01

    It is presented the civil engineering project carried out by the joint venture Hochtief - Techint-Bignoli (HTB) for the reactor building at the Atucha II power plant (PHWR of 745 MWe) in Buenos Aires. All the other civil projects at Atucha II are also being carried out by HTB. This building has the same general characteristics of the PWR plants developed by KWU in Germany, known for the spherical steel containment 56m in diameter. Nevertheless, it differs from those principally in the equipment lay-out and the remarkable foundation depth. From the basic engineering provided by ENACE, the joint venture has had to face the challenge of designing a tridimensional structure of large size. This has necessitated using simplified models which had to be superimposed, since the use of only one spatial mode would be highly inadequate, lacking the flexibility necessary to absorb the numerous modifications that this type of project undergoes during construction. In addition, this procedure has eliminated resorting to numerous and costly computer processings. (Author) [pt

  12. Development and verifications of fast reactor fuel design code ''Ceptar''

    International Nuclear Information System (INIS)

    Ozawa, T.; Nakazawa, H.; Abe, T.

    2001-01-01

    The annular fuel is very beneficial for fast reactors, because it is available for both high power and high burn-up. Concerning the irradiation behavior of the annular fuel, most of annular pellets irradiated up to high burn-up showed shrinkage of the central hole due to deformation and restructuring of the pellets. It is needed to predict precisely the shrinkage of the central hole during irradiation, because it has a great influence on power-to-melt. In this paper, outline of CEPTAR code (Calculation code to Evaluate fuel pin stability for annular fuel design) developed to meet this need is presented. In this code, the radial profile of fuel density can be computed by using the void migration model, and law of conservation of mass defines the inner diameter. For the mechanical analysis, the fuel and cladding deformation caused by the thermal expansion, swelling and creep is computed by the stress-strain analysis using the approximation of plane-strain. In addition, CEPTAR can also take into account the effect of Joint-Oxide-Gain (JOG) which is observed in fuel-cladding gap of high burn-up fuel. JOG has an effect to decrease the fuel swelling and to improve the gap conductance due to deposition of solid fission product. Based on post-irradiation data on PFR annular fuel, we developed an empirical model for JOG. For code verifications, the thermal and mechanical data obtained from various irradiation tests and post-irradiation examinations were compared with the predictions of this code. In this study, INTA (instrumented test assembly) test in JOYO, PTM (power-to-melt) test in JOYO, EBR-II, FFTF and MTR in Harwell laboratory, and post-irradiation examinations on a number of PFR fuels, were used as verification data. (author)

  13. Analysis of Topaz-II reactor performance using MCNP and TFEHX

    International Nuclear Information System (INIS)

    Lee, H.H.; Klein, A.C.

    1993-01-01

    Data reported by Russian scientist and engineers for the TOPAZ-II Space Nuclear Power is compared with analytical results calculated using the Monte Carlo Neutron and Photon (MCNP) and TFEHX computer codes. The results of these comparisons show good agreement with the TOPAZ-II neutronics, thermionic and thermal hydraulics performance. A detailed description of the TOPAZ-II reactor and of the TFE should enhance the performance of the both codes in modeling the reactor and TFE performances

  14. Structural evaluation of fast reactor core restraint with irradiation creep-swelling opposition effects

    International Nuclear Information System (INIS)

    Kalinowski, J.E.

    1979-01-01

    Irradiation creep and swelling correlations are derived from primary loading in-reactor experiments in which irradiation creep and swelling act in the same direction. When correlation uncertainty bands are applied in core restraint evaluations, significant variability in sub-assembly behavior is predicted. For example, sub-assemblies in the outer core region where neutron flux and duct temperature gradients are significant exhibit bowing responses ranging from a creep dominated outward bow to a swelling dominated inward bow. Furthermore, solutions based on upper bound and lower bound correlation uncertainty combinations are observed to cross-over indicating that such combinations are physically unrealistic in the assessment of creep-swelling opposition effects. In order to obtain realistic upper and lower bound sub-assembly responses, judgement must be applied in the selection of creep-swelling equation uncertainty combinations. Experimental programs have been defined which will provide the needed basic as well as prototypic creep-swelling opposition data for reference and advanced sub-assembly duct alloys. The first of these is an irradiation of cylindrical capsules subjected to a through-wall temperature gradient. This test which is presently underway in the EBR-II reactor will provide the data needed to refine irradiation creep and swelling correlations and their associated uncertainties when applied to core restraint evaluations. Restrained pin and duct bowing experiments in FFTF have also been defined. These will provide the prototypic data necessary to verify irradiated duct bowing methodology. The results of this experimental program are expected to reduce creep and swelling uncertainties and permit better definition of the design window for load plane gaps. (orig.)

  15. Reference and standard benchmark field consensus fission yields for U.S. reactor dosimetry programs

    International Nuclear Information System (INIS)

    Gilliam, D.M.; Helmer, R.G.; Greenwood, R.C.; Rogers, J.W.; Heinrich, R.R.; Popek, R.J.; Kellogg, L.S.; Lippincott, E.P.; Hansen, G.E.; Zimmer, W.H.

    1977-01-01

    Measured fission product yields are reported for three benchmark neutron fields--the BIG-10 fast critical assembly at Los Alamos, the CFRMF fast neutron cavity at INEL, and the thermal column of the NBS Research Reactor. These measurements were carried out by participants in the Interlaboratory LMFBR Reaction Rates (ILRR) program. Fission product generation rates were determined by post-irradiation analysis of gamma-ray emission from fission activation foils. The gamma counting was performed by Ge(Li) spectrometry at INEL, ANL, and HEDL; the sample sent to INEL was also analyzed by NaI(Tl) spectrometry for Ba-140 content. The fission rates were determined by means of the NBS Double Fission Ionization Chamber using thin deposits of each of the fissionable isotopes. Four fissionable isotopes were included in the fast neutron field measurements; these were U-235, U-238, Pu-239, and Np-237. Only U-235 was included in the thermal neutron yield measurements. For the fast neutron fields, consensus yields were determined for three fission product isotopes--Zr-95, Ru-103, and Ba-140. For these fission product isotopes, a separately activated foil was analyzed by each of the three gamma counting laboratories. The experimental standard deviation of the three independent results was typically +- 1.5%. For the thermal neutron field, a consensus value for the Cs-137 yield was also obtained. Subsidiary fission yields are also reported for other isotopes which were studied less intensively (usually by only one of the participating laboratories). Comparisons with EBR-II fast reactor yields from destructive analysis and with ENDF/B recommended values are given

  16. Physics analysis of the TIBER-II engineering test reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Houlberg, W.A.; Attenberger, S.E.; Dory, R.A.; Spong, D.A.; Tolliver, J.S.; Sheffield, J.

    1987-11-01

    Confinement capability, burn characteristics, heating and fueling requirements, and fast alpha particle effects are assessed for the TIBER-II engineering test reactor (ETR/ITER). Confinement predictions for a wide variety of empirical scaling laws show that ignition in TIBER-II (or similar ETR-like devices) is marginal at 10 MA, whereas the design goal to achieve noninductively driven, steady-state burn with Q > 5 can easily be attained. Operation at the higher plasma currents being discussed for ITER or the attainment of higher density limits and/or favorable H-mode scalings improves the ignition capability. Pellet penetration calculations indicate that density profile control with pellets may not be feasible even for pellet velocities up to about 50 km/s, however, density peaking could result from inward pinch effects, as frequently inferred from experiments. The fast alpha contribution to pressure is substantial (10 to 30%) at TIBER (or any ETR/ITER) burn temperatures (8 to 20 keV). A relatively low level of fast alpha radial diffusion or a modest level of thermal alpha buildup significantly influences the ignition and steady-state burn capability. The fast alpha population can also modify the background plasma ballooning mode stability boundaries, lowering the beta limit β/sub crit/ - in particular, operation at the high electron temperatures needed for efficient current drive can exacerbate this effect. The use of high-energy neutral beams offers the promise of two important improvements in projected performance: an effective method for noninductive current drive and a means for controlling the current density profile deep within the plasma, as required for stable operation at high beta levels. 14 refs., 10 figs., 1 tab

  17. Physics analysis of the TIBER-II engineering test reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Houlberg, W.A.; Attenberger, S.E.; Dory, R.A.; Spong, D.A.; Tolliver, J.S.; Sheffield, J.

    1987-01-01

    Confinement capability, burn characteristics, heating and fueling requirements, and fast-alpha particle effects are assessed for the TIBER-II engineering test reactor (ETR/ITER). Confinement predictions for a wide variety of empirical scaling laws show that ignition on TIBER-II (or similar ETR-like devices) is marginal at 10 MA, whereas the design goal to achieve noninductively driven, steady-state burn with Q > 5 can easily be attained. Operation at the higher plasma currents being discussed for ITER or the attainment of higher density limits and/or favorable H-mode scalings improves the ignition capability. Pellet penetration calculations indicate that density profile control with pellets may not be feasible even for pellet velocities up to bout 50 km/s; however, density peaking could result from inward pinch effects, as frequently inferred from experiments. The fast alpha contribution to pressure is substantial (10-30%) at TIBER (or any ETR/ITER) burn temperatures (8-20 keV). A relatively low level of fast alpha radial diffusion or a modest level of thermal alpha buildup significantly influences the ignition and steady-state burn capability. The fast alpha population can also modify the background plasma ballooning mode stability boundaries, lowering the beta limit β/sub crit/ - in particular, operation at the high electron temperatures needed for efficient current drive can exacerbate this effect. The use of high-energy neutral beams offers the promise of two important improvements in projected performance: an effective method for noninductive current drive and a means for controlling the current density profile deep within the plasma, as required for stable operation at high beta levels

  18. PODESY program for flux mapping of CNA II reactor:

    International Nuclear Information System (INIS)

    Ribeiro Guevara, Sergio

    1988-01-01

    The PODESY program, developed by KWU, calculates the spatial flux distribution of CNA II reactor through a three-dimensional expansion of 90 incore detector measurements. The calculation is made in three steps: a) short-term calculation which considers the control rod positions and it has to be done each time the flux mapping is calculated; b) medium-term calculation which includes local burn-up dependent calculation made by diffusion methods in macro-cell configurations (seven channels in hexagonal distribution), and c) long-term calculation, or macroscopic flux determination, that is a fitting and expansion of measured fluxes, previously corrected by local effects, using the eigen functions of the modified diffusion equation. The paper outlines development of step (c) of the calculation. The incore detectors have been located in the central zone of the core. In order to obtain low errors in the expansion procedure it is necessary to include additional points, whose flux values are assumed to be equivalent to detector measurements. These flux values are calculated with detector measurements and a spatial flux distribution calculated by a PUMA code. This PUMA calculation employs a smooth burn-up distribution (local burn-up variations are considered in step (b) of the whole calculation) representing the state of core evolution at the calculation time. The core evolution referred to ends when the equilibrium core condition is reached. Additionally, a calculation method to be employed in the plant in case of incore detector failures, is proposed. (Author) [es

  19. Neutronics and thermohydraulics of the reactor C.E.N.E. Part II; Analisis neutronico y termohidraulico del reactor C.E.N.E. Parte II

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R

    1976-07-01

    In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs.

  20. Visual examination program of the TRIGA Mark II reactor Vienna with the nuclear underwater telescope

    International Nuclear Information System (INIS)

    Boeck, H.; Hammer, J.; Varga, K.

    1985-12-01

    The visual inspection programm carried out during a three month shut-period at the TRIGA Mark II reactor Vienna is described. Optical inspection of all welds inside the reactor tank was carried out with an underwater telescope developed by the Central Research Institute of Physics, Budapest, Hungary. It is shown that even after 23 years of reactor operation all tank internals were found to be in good condition and minor defects can be easily repaired by remote handling tools. (Author)

  1. Data base formation for important components of reactor TRIGA MARK II

    International Nuclear Information System (INIS)

    Jordan, R.; Mavko, B.; Kozuh, M.

    1992-01-01

    The paper represents specific data base formation for reactor TRIGA MARK II in Podgorica. Reactor operation data from year 1985 to 1990 were collected. Two groups of collected data were formed. The first group includes components data and the second group covers data of reactor scrams. Time related and demand related models were used for data evaluation. Parameters were estimated by classical method. Similar data bases are useful everywhere where components unavailabilities may have severe drawback. (author) [sl

  2. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  3. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    International Nuclear Information System (INIS)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces

  4. The evaluation of research reactor TRIGA MARK II safety

    International Nuclear Information System (INIS)

    Jordan, R.; Kozuh, M.; Mavko, B.

    1994-01-01

    In the paper the Probabilistic Safety Analysis (PSA) of a research reactor is described. Five different initiating events were selected and analyzed with the use of event trees. Seven reactor systems were modeled with fault trees. Three groups of radiation releases were introduced - Success, Reactor-Hall, Environment - and their frequencies were estimated. The importance factors of initiating events, human errors and basic events were calculated regarding the consequence groups. (author)

  5. Method of power self-regulation of CFBR-II reactor based on DSP

    International Nuclear Information System (INIS)

    Bai Zhongxiong; Zhou Wenxiang

    2007-01-01

    To the control system of Power Self-regulation of CFBR-II Reactor, a new digital control scheme based on DSP has been brought forward. The TMS320F2812 DSP chip is adopted as the core controller to realize Power self-regulation of CFBR-II Reactor. In this paper, the successful program of DSP control system is introduced in both hardware and software technology in detail. (authors)

  6. Microchannel Methanation Reactors Using Nanofabricated Catalysts, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Pennsylvania State University (Penn State) propose to develop and demonstrate a microchannel methanation reactor based on...

  7. Microstructural characterization and model of hardening for the irradiated austenitic stainless steels of the internals of pressurized water reactors; Caracterisation microstructurale et modelisation du durcissement des aciers austenitiques irradies des structures internes des reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Pokor, C

    2003-07-01

    The core internals of Pressurized Water Reactors (PWR) are composed of SA 304 stainless steel plates and CW 316 stainless steel bolts. These internals undergo a neutron flux at a temperature between 280 deg C and 380 deg C which modifies their mechanical properties. These modifications are due to the changes in the microstructure of these materials under irradiation which depend on flux, dose and irradiation temperature. We have studied, by Transmission Electron Microscopy, the microstructure of stainless steels SA 304, CW 316 and CW 316Ti irradiated in a mixed flux reactor (OSIRIS at 330 deg C between 0,8 dpa et 3,4 dpa) and in a fast breeder reactor at 330 deg C (BOR-60) up to doses of 40 dpa. Moreover, samples have been irradiated at 375 deg C in a fast breeder reactor (EBR-II) up to doses of 10 dpa. The microstructure of the irradiated stainless steels consists in faulted Frank dislocation loops in the [111] planes of austenitic, with a Burgers vector of [111]. It is possible to find some voids in the solution annealed samples irradiated at 375 deg C. The evolution of the dislocations loops and voids has been simulated with a 'cluster dynamic' model. The fit of the model parameters has allowed us to have a quantitative description of our experimental results. This description of the microstructure after irradiation was coupled together with a hardening model by Frank loops that has permitted us to make a quantitative description of the hardening of SA 304, CW 316 and CW 316Ti stainless steels after irradiation at a certain dose, flux and temperature. The irradiation doses studied grow up to 90 dpa, dose of the end of life of PWR internals. (author)

  8. Over Twenty Years Of Experience In ITU TRIGA MARK-II Reactor

    International Nuclear Information System (INIS)

    Yavuz, Hasbi

    2008-01-01

    I.T.U. TRIGA MARK-II Training and Research Reactor, rated at 250 kW steady-state and 1200 MW pulsing power is the only research and training reactor owned and operated by a university in Turkey. Reactor has been operating since March 11, 1979; therefore the reactor has been operating successfully for more than twenty years. Over the twenty years of operation: - The tangential beam tube was equipped with a neutron radiography facility, which consists of a divergent collimator and exposure room; - A computerized data acquisition system was designed and installed such that all parameters of the reactor, which are observed from the console, could be monitored both in normal and pulse operations; - An electrical power calibration system was built for the thermal power calibration of the reactor; - Publications related with I.T.U. TRIGA MARK-II Training and Research Reactor are listed in Appendix; - Two majors undesired shutdown occurred; - The I.T.U. TRIGA MARK-II Training and Research Reactor is still in operation at the moment. (authors)

  9. U-233 fuelled low critical mass solution reactor experiment PURNIMA II

    International Nuclear Information System (INIS)

    Srinivasan, M.; Chandramoleshwar, K.; Pasupathy, C.S.; Rasheed, K.K.; Subba Rao, K.

    1987-01-01

    A homogeneous U-233 uranyl nitrate solution fuelled BeO reflected, low critical mass reactor has been built at the Bhabha Atomic Research Centre, India. Christened PURNIMA II, the reactor was used for the study of the variation of critical mass as a function of fuel solution concentration to determine the minimum critical mass achievable for this geometry. Other experiments performed include the determination of temperature coefficient of reactivity, study of time behaviour of photoneutrons produced due to interaction between decaying U-233 fission product gammas and the beryllium reflector and reactor noise measurements. Besides being the only operational U-233 fuelled reactor at present, PURNIMA II also has the distinction of having attained the lowest critical mass of 397 g of fissile fuel for any operating reactor at the current time. The paper briefly describes the facility and gives an account of the experiments performed and results achieved. (author)

  10. Instrumentation and control improvements at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I ampersand C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I ampersand C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I ampersand C systems of the next generation of liquid metal reactor (LMR) plants

  11. Neutron scattering-instrumentation at the upgraded research reactor BER II

    International Nuclear Information System (INIS)

    1991-01-01

    The Berlin Neutron Scattering Centre (BENSC) is a newly created special department of the Hahn-Meitner-Institut, in the framework of which the BER II neutron beam reactor is made available to external users. BENSC is devoted to development, continuous modernisation and maintenance of the scientific instrumets at the BER II and to the support of their users. (orig./HSI)

  12. Characterization of the TRIGA Mark II reactor full-power steady state

    Energy Technology Data Exchange (ETDEWEB)

    Cammi, Antonio, E-mail: antonio.cammi@polimi.it [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Zanetti, Matteo [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica [University of Milano-Bicocca, Physics Department “G. Occhialini” and INFN Section, Piazza dell’Ateneo Nuovo, 20126 Milan (Italy); Magrotti, Giovanni; Prata, Michele; Salvini, Andrea [University of Pavia, Applied Nuclear Energy Laboratory (L.E.N.A.), Via Gaspare Aselli 41, 27100 Pavia (Italy)

    2016-04-15

    Highlights: • Full-power steady state characterization of the TRIGA Mark II reactor. • Monte Carlo and Multiphysics simulation of the TRIGA Mark II reactor. • Sub-cooled boiling effects in the TRIGA Mark II reactor. • Thermal feedback effects in the TRIGA Mark II reactor. • Experimental data based validation. - Abstract: In this paper, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor at the University of Pavia is achieved by coupling the Monte Carlo (MC) simulation for neutronics with the “Multiphysics” model for thermal-hydraulics. Neutronic analyses have been carried out with a MCNP5 based MC model of the entire reactor system, already validated in fresh fuel and zero-power configurations (in which thermal effects are negligible) and using all available experimental data as a benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core must be established. To evaluate this, a thermal-hydraulic model has been developed, using the power distribution results from the MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then entered into the MC model and a benchmark analysis is carried out to validate the model in fresh fuel and full-power configurations. An acceptable correspondence between experimental data and simulation results concerning full-power reactor criticality proves the reliability of the adopted methodology of analysis, both from the perspective of neutronics and thermal-hydraulics.

  13. Fuel burnup analysis of the TRIGA Mark II reactor at the University of Pavia

    International Nuclear Information System (INIS)

    Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto

    2016-01-01

    Highlights: • A fuel evolution model for a TRIGA Mark II reactor has been developed. • Reproduction of nearly 50 years of reactor operation. • The model was used to predict the best reactor reconfiguration. • Reactor life was extended without adding fresh fuel elements. - Abstract: A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyze neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate low power experimental reactors from those used for power production, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the core and to obtain a substantial increase in the Core Excess reactivity value. The evaluation of fuel burnup and the reconfiguration results are presented in this paper.

  14. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  15. TIBER II/ETR [Engineering Test Reactor] nuclear shielding and optional tritium breeding system: An overview

    International Nuclear Information System (INIS)

    Lee, J.D.; Sawan, M.

    1987-01-01

    TIBER II, the Tokamak Ignition/Burn Experimental Reactor II, is a design concept developed as the US candidate for an International Engineering Test Reactor (ETR). An important objective of this design is to minimize cost by minimizing major radius while providing a wall loading greater than 1.0 MW/m2 and a total fluence greater than 3.0 MWY/m2 needed for blanket module testing. The shielding required for the superconducting TF coils is an important element in setting TIBER II's 3.0m major radius. 6 refs., 1 fig., 1 tab

  16. Irradiation effects on reactor structural materials. Semi-annual progress report, August 1974--February 1975

    International Nuclear Information System (INIS)

    Claudson, T.T.

    1975-03-01

    Data are reported on: effects of cold work on creep-fatigue of irradiated 304 and 316 stainless steel (ss); swelling of 304 and 316 ss irradiated with protons and fast neutrons; effects of hold time on fatigue crack propagation in neutron-irradiated 20 percent cold-worked 316 ss; radiation resistance of 0.03 percent Cu A533-B steel; microstructure of irradiated Inconel 718, Incoloy 800, PH13-8Mo, Mo, and Nb; dose dependence of 2.8-MeV Ni + ion damage (swelling) in Ni; notch ductility and strength of 316 ss submerged arc weld deposits; effects of microstructure of 316 ss on its irradiation response; in-reactor deformation of 20 percent cold-worked 316 ss; microstructure of HFIR-irradiated 316 ss; void microstructures of V bombarded by 46-MeV Ni 6+ ions (with and without preinjected helium) or 7.5-MeV Ta 3+ ions; swelling of Mo, Mo--0.5 Ti, Nb, Nb--1 Zr, W, and W--25 Re after fast neutron irradiation; swelling of V ion-irradiated Mo; creep of 20 percent cold-worked 316 ss at 850, 1000, and 1100 0 F; effects of fast neutrons on mechanical properties of 20 percent cold-worked 316 ss; notch effects in tensile behavior of irradiated, annealed 304 ss (EBR-II duct thimbles); equations for thermal creep in pressurized tubes of 20 percent cold-worked 316 ss; irradiation creep in cold-worked 316 ss; helium production cross sections in neutron-irradiated elements; and radiation effects on various alloys. (U.S.)

  17. Analysis of metallic fuel pin behaviors under transient conditions of liquid metal reactors

    International Nuclear Information System (INIS)

    Nam, Cheol; Kwon, Hyoung Mun; Hwang, Woan

    1999-02-01

    Transient behavior of metallic fuel pins in liquid metal reactor is quite different to that in steady state conditions. Even in transient conditions, the fuel may behave differently depending on its accident situation and/or accident sequence. This report describes and identifies the possible and hypothetical transient events at the aspects of fuel pin behavior. Furthermore, the transient experiments on HT9 clad metallic fuel have been analyzed, and then failure assessments are performed based on accident classes. As a result, the failure mechanism of coolant-related accidents, such as LOF, is mainly due to plenum pressure and cladding thinning caused by eutectic penetration. In the reactivity-related accidents, such as TOP, the reason to cladding failure is believed to be the fuel swelling as well as plenum pressure. The probabilistic Weibull analysis is performed to evaluate the failure behavior of HT9 clad-metallic fuel pin on coolant related accidents.The Weibull failure function is derived as a function of cladding CDF. Using the function, a sample calculation for the ULOF accident of EBR-II fuel is performed, and the results indicate that failure probability is less the 0.3%. Further discussion on failure criteria of accident condition is provided. Finally, it is introduced the state-of-arts for developing computer codes of reactivity-related fuel pin behavior. The development efforts for a simple model to predict transient fuel swelling is described, and the preliminary calculation results compared to hot pressing test results in literature.This model is currently under development, and it is recommended in the future that the transient swelling model will be combined with the cladding model and the additional development for post-failure behavior of fuel pin is required. (Author). 36 refs., 9 tabs., 18 figs

  18. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO 2 -PuO 2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  19. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States); Buongiorno, Jacopo [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States)

    2010-01-31

    An engineering code to model the irradiation behavior of UO{sub 2}-PuO{sub 2} mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  20. Maintenance of reactor recirculation pumps [Paper No.: II-1

    International Nuclear Information System (INIS)

    Ansari, M.A.; Bhat, K.P.

    1981-01-01

    At Tarapur Atomic Power Station (TAPS), two reactor recirculation pumps are provided, one each for the two reactor units. The performance of pumps has been uniformly good; however, leakage through the cartridge type, two stage, mechanical seals which are installed on these pumps was encountered on few occasions. The paper describes the leakage problems, identification of certain design deficiencies and rectification carried out at TAPS for overcoming these problems. (author)

  1. Rekindled interest in pyrometallurgical processing

    International Nuclear Information System (INIS)

    Burris, L.

    1986-01-01

    The IFR with its integral, on-site fuel recycle revived a concept pioneered at EBR-II. The reactor concept has become very attractive due to the advances in metal fuel performance over the past 15 years and in the understanding of the safety of metal-fueled reactors. The proposed fuel cycle carries out Lawroski's call for development of a low-cost fuel cycle for fast reactors to help them become economically competitive. The IFR represents a new direction in breeder developments. The next two years will be devoted to establishing experimentally the chemical feasibility of the pyrometallurgical process. Once it becomes feasible, the EBR-II fuel cycle facility can be refurbished and the process using IFR-type fuel irradiated in EBR-II

  2. Modeling of constituent redistribution in U-Pu-Zr metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: yskim@anl.gov; Hayes, S.L. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Hofman, G.L. [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Yacout, A.M. [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2006-12-01

    A computer model was developed to analyze constituent redistribution in U-Pu-Zr metallic nuclear fuels. Diffusion and thermochemical properties were parametrically determined to fit the postirradiation data from a fuel test performed in the Experimental Breeder Reactor II (EBR-II). The computer model was used to estimate redistribution profiles of fuels proposed for the conceptual designs of small modular fast reactors. The model results showed that the level of redistribution of the fuel constituents of the designs was similar to the measured data from EBR-II.

  3. RA Research nuclear reactor, Part II: radiation protection at the RA reactor in 1987

    International Nuclear Information System (INIS)

    Ninkovic, M.; Ajdacic, N.; Zaric, M.; Vukovic, Z.

    1987-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry at the RA reactor and radiation protection; (2) Radioactivity control in the vicinity of the reactor and meteorology measurements; (3) Decontamination and relevant actions, collecting and treatment of fluid effluents; and and solid radioactive wastes [sr

  4. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  5. Neutron beam utilization at the TRIGA Mark II reactor Vienna

    International Nuclear Information System (INIS)

    Villa, M.; Boeck, H.; Ismail, S.; Koerner, S.; Baron, M.; Hainbuchner, M.; Badurek, G.; Buchelt, R.J.

    1999-01-01

    A review is given about the research activities around the 250 kw TRIGA reactor Vienna, which are adequate to other neutron sources of comparable or bigger size. The topics selected for presentation range from neutron radiography, materials irradiation, neutron small-angle scattering, neutron activation analysis, neutron polarization to neutron interferometry. It is the aim of this presentation to stimulate programs for more efficient use around TRIGA research reactors with neutron flux densities of 1013 cm-2a-1 at the center of the reactor core. We briefly describe the experimental facilities installed at the 250 kw TRIGA reactor of the Austrian Universities in Vienna and present a great part of the current research activities performed with them. We believe that most of the techniques and experiments presented here are adequate for implementation to other reactors of similar or even higher power. Those technologies which require extremely specialized know-how not generally available at every research Inst.e will not be treated here or are just mentioned without any further details.(author)

  6. Neutronics comparative analysis between MNSR and slowpoke-II reactors

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-01-01

    Neutronics analysis of both MNSR and Slowpoke reactors were made. Calculations including flux distribution, power estimation, excess and shutdown reactivity margins, flooding effects of irradiation sites, and initial investigation of fuel conversion from high to low enriched uranium were discussed. A neutronic 3-D model, dedicated mainly for the MNSR, has been developed to perform such neutronic calculations for both reactors. Well-known cell and core calculation codes such as WIMSD4 and CITATIONS have been used. It was found out that it is possible to lower the fuel enrichment of the Miniature Neutron Source Reactor (MNSR) to 20% using U O 2 as fuel instead of U Al 4 . The number of fuel elements required for the new core is 199. The use of double thickness of the bottom reflector in Slowpoke reactor made it possible to load the reactor with lower enriched fuel compared to MNSR. Values of reactivity flooding effects for single or combination of inner irradiation sites were obtained accurately. Results show good agreement with reported data for MNSR. (author)

  7. Flux measurement in ZBR at the TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Dauke, M.

    2005-01-01

    The determination of the neutron flux in the TRIGA-2-Vienna reactor was the objective of this research. The theory of the method (4π-β detectors) is presented as well as the determination of the maximum flux, gold-cadmium differential measurement, cobalt-wire measurement, finally a comparison of all results was made and interpreted. (nevyjel)

  8. Expert's statement on the research reactor Munich II (FRM-II); Gutachterliche Stellungnahme zum Forschungsreaktor Muenchen II (FRM-II)

    Energy Technology Data Exchange (ETDEWEB)

    Liebert, Wolfgang; Friess, Friederike; Gufler, Klaus; Arnold, Nikolaus [Univ. fuer Bodenkultur (BOKU), Wien (Austria). Inst. fuer Sicherheits- und Risikowissenschaften (ISR)

    2017-12-15

    The Expert's statement on the research reactor FRM-II covers the following issues: The situation in Germany with respect to HEU (highly enriched uranium) fuel elements, the proliferation problems related to HEU fuel and the generated high-level radioactive wastes, possible safety hazards of an interim storage of HEU containing wastes, for instance in the interim storage facility Ahaus, possible safety hazards of final disposal of HEU containing radioactive wastes, possibilities to avoid the use of HEU fuel in order to prevent further production of these wastes, requirement of processing spent HEU containing fuel elements for final disposal.

  9. Design of the shield door and transporter for the Culham Conceptual Tokamak Reactor Mark II

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.

    1980-04-01

    In the Culham Conceptual Tokamak Reactor MK II access to the interior for blanket maintenance is through large openings in the fixed shield structure closed by removable shield doors when the reactor is operational. This report describes the design of the 200 tonne doors and the associated special-purpose remote operating transporter manipulator. The design, which has not been optimised, generally uses available commercial equipment and state-of-the-art techniques. (U.K.)

  10. Neutronics and thermohydraulics of the reactor C.E.N.E. Part II

    International Nuclear Information System (INIS)

    Caro, R.

    1976-01-01

    In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs

  11. The neutron utilization and promotion program of TRR-II research reactor project in Taiwan

    International Nuclear Information System (INIS)

    Gone, J.K.; Huang, Y.H.

    2001-01-01

    The objective of the Taiwan research reactor system improvement and utilization promotion project is to reconstruct the old Taiwan research reactor (TRR), which was operated by the Institute of Nuclear Energy Research (INER) between 1973 and 1988, into a multi-purpose medium flux research reactor (TRR-II). The project started in 1998, and the new reactor is scheduled to have its first critical in June of 2006. The estimated maximum unperturbed thermal neutron flux (E 14 n/cm 2 sec, and it is about one order of magnitude higher than other operating research reactors in Taiwan. The new reactor will equip with secondary neutron sources to provide neutrons with different energies, which will be an essential tool for advanced material researches in Taiwan. One of the major tasks of TRR-II project is to promote domestic utilization of neutrons generated at TRR-II. The traditional uses of neutrons in fuel/material research, trace element analysis, and isotope production has been carried out at INER for many years. On the other hand, it is obvious that promotions of neutron spectrometric technique will be a major challenge for the project team. The limited neutron flux from operating research reactors had discouraged domestic users in developing neutron spectrometric technique for many years, and only few researchers in Taiwan are experienced in using spectrometers. It is important for the project team to encourage domestic researchers to use neutron spectrometers provided by TRR-II as a tool for their future researches in various fields. This paper describes the current status of TRR-II neutron utilization and promotion program. The current status and future plans for important issues such as staff recruiting, personnel training, international collaboration, and promotion strategy will be described. (orig.)

  12. Damage analysis of TRIGA MARK II Bandung reactor tank material structure

    International Nuclear Information System (INIS)

    Soedardjo; Sumijanto

    2000-01-01

    Damage of Triga Mark II Bandung reactor tank material structure has been analyzed. The analysis carried out was based on ultrasonic inspection result in 1996 and the monthly reports of reactor operation by random data during 1988 up to 1995. Ultrasonic test data had shown that thinning processes on south and west region of reactor out side wall at upper part of water level had happened. Reactor operation data had shown the demineralized water should be added monthly to the reactor and bulk shielding water tank. Both reactor and bulk shielding tank are shielded by concrete of Portland type I cement consisting of CaO content about 58-68 %. The analysis result shows that the reaction between CaO and seepage water from bulk shielding wall had taken place and consequently the reactor out sidewall surroundings became alkaline. Based on Pourbaix diagram, the aluminum reactor tank made of aluminum alloy 6061 T6 would be corroded easily at pH equal an greater than 8.6. The passive layer AI 2 O 3 aluminum metal surface would be broken due to water reaction taken place continuously at high pH and produces hydrogen gas. The light hydrogen gas would expand the concrete cement and its expanding power would open the passive layer of aluminum metal upper tank. The water sea pages from adding water into reactor tank could indicate the upper water level tank corrosion is worse than the lower water level tank. (author)

  13. Operational Experience with the TRIGA Mark II Reactor of the University of Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Tigliole, A. Borio Di; Alloni, D.; Cagnazzo, M.; Coniglio, M.; Lana, F.; Losi, A.; Magrotti, G.; Manera, S.; Marchetti, F.; Pappalardo, P.; Prata, M.; Provasi, M.C.; Salvini, A.; Scian, G.; Vinciguerra, G. [University of Pavia, Laboratory of Applied Nuclear Energy (L.E.N.A), Via Aselli 41, 27100 Pavia (Italy)

    2011-07-01

    The Laboratory of Applied Nuclear Energy (LENA) is an Interdepartmental Research Centre of the University of Pavia which operates a 250 kW TRIGA Mark II Research Nuclear Reactor, a Cyclotron for the production of radioisotopes and other irradiation facilities. The reactor is in operation since 1965 and many home-made upgrading were realized in the past years in order to assure a continuous operation of the reactor for the future. The annual reactor operational time at nominal power is in the range of 300 - 400 hours depending upon the time schedule of some experiments and research activities. The reactor is mainly used for NAA activities, BNCT research, samples irradiation and training. In specific, few tens of hours of reactor operation per year are dedicated to training courses for University students and for professionals. Besides, the LENA Centre hosts every year more than one thousand high school students in visit. Lately, LENA was certified ISO 9001:2008 for the ''operation and maintenance of the reactor'' and for the ''design and delivery of the irradiation service''. Nowadays the reactor shows a good technical state and, at the moment, there are no political or economical reason to consider the reactor shut-down. (author)

  14. Conceptual design of ICF reactor SENRI, Part II. Advances in design and pellet gain scaling

    International Nuclear Information System (INIS)

    Ido, S.; Mima, K.; Nakai, S.; Tsuji, R.; Yamanaka, C.

    1984-01-01

    This chapter reviews the recent design studies on reactor concepts with magnetically guided lithium flow, SENRI-I, SENRI-IA and SENRI-II. The routes from the present status to power reactors and an advanced fuel pellet concept is also discussed. Topics covered include pellet design, magnetohydrodynamic design of liquid lithium flow; reactor cavity concepts with magnetically guided lithium flow, a thermo-hydraulic analysis, a tritium recovery system; and an advanced fuel pellet concept for an inertial confinement fusion (ICF) reactor without a tritium breeding blanket. An advanced fuel pellet for an ICF reactor without a T breeder was studied in the model calculations, which showed sufficiently high values of pellet gain. Includes a table and 8 diagrams

  15. Tritium system design for the mirror reactors FPD-I, FPD-II, and FPD-III

    International Nuclear Information System (INIS)

    Finn, P.A.

    1985-01-01

    The tritium system design for the Fusion Power Demonstration Reactor (FPD-I, II, and III) is described. The device operates at 25% availability. For FPD-II, an engineering mode using tritium neutral beams is part of the design

  16. Study of a new automatic reactor power control for the TRIGA Mark II reactor at University of Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Borio Di Tigliole, A.; Magrotti, G. [Laboratorio Energia Nucleare Applicata (L.E.N.A.), University of Pavia, Via Aselli 41, 27100 (Italy); Cammi, A.; Memoli, V. [Politecnico di Milano, Department of Energy, Nuclear Engineering Division (CeSNEF), Via Ponzio 34/3, 20133 Milano (Italy); Gadan, M. A. [Instrumentation and Control Department, National Atomic Energy Comission of Argentina, University of Pavia (Italy)

    2009-07-01

    The installation of a new Instrumentation and Control (IC) system for the TRIGA Mark-II reactor at University of Pavia has recently been completed in order to assure a safe and continuous reactor operation for the future. The intervention involved nearly the whole IC system and required a channel-by-channel component substitution. One of the most sensitive part of the intervention concerned the Automatic Reactor Power Controller (ARPC) which permits to keep the reactor at an operator-selected power level acting on the control rod devoted to the fine regulation of system reactivity. This controller installed can be set up using different control logics: currently the system is working in relay mode. The main goal of the work presented in this paper is to set up a Proportional-Integral-Derivative (PID) configuration of the new controller installed on the TRIGA reactor of Pavia so as to optimize the response to system perturbations. The analysis have shown that a continuous PID offers generally better results than the relay mode which causes power oscillations with an amplitude of 3% of the nominal power

  17. Operating experience of TRIGA MK-II Research Reactor in Bangladesh

    International Nuclear Information System (INIS)

    Mannan, M.A.; Ahmed, K.

    1992-01-01

    A 3 MW TRIGA MK II Research Reactor was installed in Bangladesh in 1986. The reactor is being utilized for research, training and for production of radioisotopes. Recently two faults were detected, one in the Emergency Core Cooling System and the other in the Primary Coolant Loop, which hindered the operation of the reactor partially. The faults were investigated by a team of local experts. Results of analyses of possible initiating events of the faults and the remedial steps are briefly discussed in the paper. (author)

  18. The Sodium Process Facility at Argonne National Laboratory-West

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1998-01-01

    Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal

  19. The Sodium Process Facility at Argonne National Laboratory-West

    Energy Technology Data Exchange (ETDEWEB)

    Michelbacher, J.A.; Henslee, S.P. McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1998-07-01

    Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal.

  20. Computer code for the thermal-hydraulic analysis of ITU TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Ustun, G.; Durmayaz, A.

    2002-01-01

    Istanbul Technical University (ITU) TRIGA Mark-II reactor core consists of ninety vertical cylindrical elements located in five rings. Sixty-nine of them are fuel elements. The reactor is operated and cooled with natural convection by pool water, which is also cooled and purified in external coolant circuits by forced convection. This characteristic leads to consider both the natural and forced convection heat transfer in a 'porous-medium analysis'. The safety analysis of the reactor requires a thermal-hydraulic model of the reactor to determine the thermal-hydraulic parameters in each mode of operation. In this study, a computer code cooled TRIGA-PM (TRIGA - Porous Medium) for the thermal-hydraulic analysis of ITU is considered. TRIGA Mark-II reactor code has been developed to obtain velocity, pressure and temperature distributions in the reactor pool as a function of core design parameters and pool configuration. The code is a transient, thermal-hydraulic code and requires geometric and physical modelling parameters. In the model, although the reactor is considered as only porous medium, the other part of the reactor pool is considered partly as continuum and partly as porous medium. COMMIX-1C code is used for the benchmark purpose of TRIGA-PM code. For the normal operating conditions of the reactor, estimations of TRIGA-PM are in good agreement with those of COMMIX-1C. After some more improvements, this code will be employed for the estimation of LOCA scenario, which can not be analyses by COMMIX-1C and the other multi-purpose codes, considering a break at one of the beam tubes of the reactor

  1. LMR [liquid metal reactor] centrifugal pump coastdowns

    International Nuclear Information System (INIS)

    Dunn, F.E.; Malloy, D.J.

    1987-01-01

    A centrifugal pump model which describes the interrelationships of the pump discharge flowrate, pump speed, shaft torque and dynamic head has been implemented based upon existing models. Specifically, the pump model is based upon the dimensionless-homologous pump theory of Wylie and Streeter. Given data from a representative pump, homologous theory allows one to predict the transient characteristics of similarly sized pumps. This homologous pump model has been implemented into both the one-dimensional SASSYS-1 systems analysis code and the three-dimensional COMMIX-1A code. Comparisons have been made both against other pump models (CRBR) and actual pump coastdown data (EBR-II and FFTF). Agreement with this homologous pump model has been excellent. Additionally, these comparisons indicate the validity of applying the medium size pump data of Wylie and Streeter to a range of typical LMR centrifugal pumps

  2. Photocatalytic reactors for treating water pollution with solar illumination. II: a simplified analysis for flow reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Inst. fuer Technische Chemie, Univ. Hannover, Hannover (Germany); Brandi, R.J.; Cassano, A.E. [INTEC (Univ. Nacional del Litoral and CONICET), Santa Fe (Argentina)

    2003-07-01

    Very frequently outgoing streams of real wastewaters do not have a definite and constant composition. Additionally, when the degradation process makes use of solar irradiation, the photon flux is hardly constant. These two factors strongly militate against the use of very elaborate, exact models for analyzing the performance of the employed reactors. In these cases, approximate methods may be the most practical approach. One possible way is presented in this paper. The observed photonic efficiency concept developed in a previous contribution (sagawe et al., 2002a) is applied to continuous reactors for both steady state and transient operations of photocatalytic reactions applied to wastewaters decontamination processes. For this reactor the local observed photonic efficiency, defined at each reactor longitudinal position, is the convenient property to express the concentration spatial evolution. It is also shown that the description of the reactor performance employing a mass balance can be done in a rather simple way introducing a mass-moving coordinate transformation that remodel the mass inventory and permits working with simpler ordinary differential equations. (orig.)

  3. Tokamak experimental power reactor conceptual design. Volume II

    International Nuclear Information System (INIS)

    1976-08-01

    Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations

  4. The ARIES-II and ARIES-IV second-stability tokamak reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Hasan, M.Z.; Mau, T.-K.; Sharafat, S.; Baxi, C.B.; Leuer, J.A.; McQuillan, B.W.; Puhn, F.A.; Schultz, K.R.; Wong, C.P.C.; Brooks, J.; Ehst, D.A.; Hassanein, A.; Hua, T.; Hull, A.; Mattis, R.; Picologlou, B.; Sze, D.-K.; Dolan, T.J.; Herring, J.S.; Bathke, C.G.; Krakowski, R.A.; Werley, K.A.; Bromberg, L.; Schultz, J.; Davis, F.; Holmes, J.A.; Lousteau, D.C.; Strickler, D.J.; Jardin, S.C.; Kessel, C.; Snead, L.; Steiner, D.; Valenti, M.; El-Guebaly, L.A.; Emmert, G.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.; Sviatoslavsky, I.N.; Cheng, E.T.

    1992-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. Four ARIES visions are currently planned for the ARIES program. The ARIES-I design is a DT-burning reactor based on modest extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. The ARIES-III study focuses on the potential of tokamaks to operate with D- 3 He fuel system as an alternative to deuterium and tritium. The ARIES-II and ARIES-IV designs have the same fusion plasma but different fusion-power-core designs. The ARIES-II reactor uses liquid lithium as the coolant and tritium breeder and vanadium alloy as the structural material in order to study the potential of low-activation metallic blankets. The ARIES-IV reactor uses helium as the coolant, a solid tritium-breeding material, and silicon carbide composite as the structural material in order to achieve the safety and environmental characteristic of fusion. In this paper the authors describe the trade-off leading to the optimum regime of operation for the ARIES-II and ARIES-IV second-stability reactors and review the engineering design of the fusion power cores

  5. Data package addendum for COBRA-1A2 life extension to 400 EFPD

    International Nuclear Information System (INIS)

    Hecht, S.L.; Ermi, A.M.

    1994-01-01

    The COBRA-1A experiment was originally designed for irradiations up to 350 effective full power days (EFPD) in EBR-II. Three of the seven B7A test capsules were discharged after 88.6 EFPD (COBRA-1A1; EBR-II designation X516), while the remaining four capsules continued to be irradiated to a goal exposure of 300 EFPD (COBRA-1A2; EBR-II designation X516A). However, it was recently decided that COBRA-1A2 was to remain in the reactor during Run 170, giving and nominal end-of-life (EOL) exposure of 375 EFPD. Since the revised test exposure exceeds the design basis given in supporting analyses, amended analyses are provided herein, giving the technical bases for the extended irradiation. This report describes the safety analysis for the extension of the COBRA-1A2 test (X516A) to 400 effective full power days in FBR-II

  6. An analytical approach to the positive reactivity void coefficient of TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Edgue, Erdinc; Yarman, Tolga

    1988-01-01

    Previous calculations of reactivity void coefficient of I.T.U. TRIGA Mark-II Reactor was done by the second author et al. The theoretical predictions were afterwards, checked in this reactor experimentally. In this work an analytical approach is developed to evaluate rather quickly the reactivity void coefficient of I.T.U. TRIGA Mark-II, versus the size of the void inserted into the reactor. It is thus assumed that the reactor is a cylindrical, bare nuclear system. Next a belt of water of 2πrΔrH is introduced axially at a distance r from the center line of the system. r here, is the thickness of the belt, and H is the height of the reactor. The void is described by decreasing the water density in the belt region. A two group diffusion theory is adopted to determine the criticality of our configuration. The space dependency of the group fluxes are, thereby, assumed to be J 0 (2.405 r / R) cos (π Z / H), the same as that associated with the original bare reactor uniformly loaded prior to the change. A perturbation type of approach, thence, furnishes the effect of introducing a void in the belt region. The reactivity void coefficient can, rather surprisingly, be indeed positive. To our knowledge, this fact had not been established, by the supplier. The agreement of our predictions with the experimental results is good. (author)

  7. Neural networks for sensor validation and plant monitoring

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Eryurek, E.; Mathai, G.

    1990-01-01

    Sensor and process monitoring in power plants require the estimation of one or more process variables. Neural network paradigms are suitable for establishing general nonlinear relationships among a set of plant variables. Multiple-input multiple-output autoassociative networks can follow changes in plant-wide behavior. The backpropagation algorithm has been applied for training feedforward networks. A new and enhanced algorithm for training neural networks (BPN) has been developed and implemented in a VAX workstation. Operational data from the Experimental Breeder Reactor-II (EBR-II) have been used to study the performance of BPN. Several results of application to the EBR-II are presented

  8. Results from an in-plant demonstration of intelligent control

    International Nuclear Information System (INIS)

    Edwards, R.M.; Garcia, H.E.; Messick, N.

    1993-01-01

    A learning systems-based reconfigurable controller was demonstrated on the deaerating feedwater heater at the Experimental Breeder Reactor II (EBR-II) on April 1, 1993. Failures of the normal pressure regulating process were introduced by reducing the steam flow to the heater by as much as 10%. The controller maintained pressure in the heater at acceptable levels for several minutes, whereas operator intervention would have otherwise been required within a few seconds. This experiment demonstrates the potential of advanced control techniques for improving safety, reliability, and performance of power plant operations as well as the utility of EBR-II as an experimental power plant controls facility

  9. TIBER (Tokamak Ignition/Burn Experimental Reactor) II as a precursor to an international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Gilleland, J.R.

    1988-01-01

    The Tokamak Ignition/Burn Experimental Reactor (TIBER) was pursued in the US as one option for an International Thermonuclear Experimental Reactor (ITER). This concept evolved from earlier work on the Tokamak Fusion Core Experiment (TFCX) to develop a small, ignited tokamak. While the copper-coil versions of TFCX became the short-pulsed, 1.23-m radius, Compact Ignition Tokamak (CIT), the superconducting TIBER with long pulse or steady state and a 2.6-m radius was considered for international collaboration. Recently the design was updated to TIBER II, to accommodate more conservative confinement scaling, double-poloidal divertors for impurity control, steady-state current drive, and nuclear testing. 18 refs., 1 fig

  10. Reactor physics studies in the GCFR phase-II critical assembly

    International Nuclear Information System (INIS)

    Pond, R.B.

    1976-09-01

    The reactor physics studies performed in the gas cooled fast reactor (GCFR) mockup on ZPR-9 are covered. This critical assembly, designated Phase II in the GCFR program, had a single zone PuO 2 -UO 2 core composition and UO 2 radial and axial blankets. The assembly was built both with and without radial and axial stainless steel reflectors. The program included the following measurements: small-sample reactivity worths of reactor constituent materials (including helium); 238 U Doppler effect; uranium and plutonium reaction rate distributions; thorium, uranium, and plutonium α and reactor kinetics. Analysis of the measurements used ENDF/B-IV nuclear data; anisotropic diffusion coefficients were used to account for neutron streaming effects. Comparison of measurements and calculations to GCFR Phase I are also made

  11. A cryogenic system for TIBER II [Tokamak Ignition/Burn Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.

    1987-01-01

    Phase II of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) study describes one option for a small, economical, next-generation tokamak [1,2]. Because of its small size, minimum shielding is used between the plasma and the toroidal-field (TF) coils. Consequently, a large cryogenic system (approximately 70 kW at 4.5 K) capable of delivering forced-flow helium is required. This paper describes a cryogenic system that meets this requirement and includes TIBER-II requirements. 3 refs

  12. Activation of TRIGA Mark II research reactor concrete shield

    International Nuclear Information System (INIS)

    Zagar, Tomaz; Ravnik, Matjaz; Bozic, Matjaz

    2002-01-01

    To determine neutron activation inside the TRIGA research reactor concrete body a special sample-holder for irradiation inside horizontal channel was developed and tested. In the sample-holder various samples can be irradiated at different concrete shielding depths. In this paper the description of the sample-holder, experiment conditions and results of long-lived activation measurements are given. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides in the samples were measured with HPGe detector. The most active long-lived radioactive nuclides in ordinary concrete samples were found to be 60 Co and 152 Eu and in barytes concrete samples 60 Co, 152 Eu and 133 Ba. Measured activity density of all nuclides was found to decrease almost linearly with depth in logarithmic scale. (author)

  13. Management of super-grade plutonium in spent nuclear fuel

    International Nuclear Information System (INIS)

    McFarlane, H. F.; Benedict, R. W.

    2000-01-01

    This paper examines the security and safeguards implications of potential management options for DOE's sodium-bonded blanket fuel from the EBR-II and the Fermi-1 fast reactors. The EBR-II fuel appears to be unsuitable for the packaging alternative because of DOE's current safeguards requirements for plutonium. Emerging DOE requirements, National Academy of Sciences recommendations, draft waste acceptance requirements for Yucca Mountain and IAEA requirements for similar fuel also emphasize the importance of safeguards in spent fuel management. Electrometallurgical treatment would be acceptable for both fuel types. Meeting the known requirements for safeguards and security could potentially add more than $200M in cost to the packaging option for the EBR-II fuel

  14. Analysis of pressurized water reactor accidents in reactivity disturbances. II

    International Nuclear Information System (INIS)

    Tinka, I.

    1978-01-01

    The logic structure of program FATRAP is described. The time course of reactivity temporal and spatial distributions of neutron flux density and power, characteristic temperatures of the individual reactor zones and the heat flux density from cladding to the coolant can be obtained as the main results. The basic program funcitons were tested for a point and a one-dimensional model. In the basic test the absorption rod was removed uncontrollably at a preset speed for 0.5 s with the reactivity feedback operative. A second test simulated the action of the accident protection system with a delay of 0.1 s started when the 7500 MW power had been obtained. The last test consisted in simulating a start-up accident with an initial power of 2.25 MW. For the said chosen accident models reactivity feedback is responsible for the formation of the appropriate power peak while the accident protection attendance alone can considerably reduce temperatures during the process. (J.F.)

  15. Control console conceptual design for sheet type fuels of Triga Mark-II reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Kurnia Wibowo; Anang Susanto

    2016-01-01

    The control console conceptual design for sheet type fuel of TRIGA Mark-II reactor has been made. The control console conceptual design was made with refer study result of instrument and control system which is used in BATAN'S reactor i.e TRIGA-2000 Bandung, TRIGA Yogyakarta and MPR-30 Serpong. The control console conceptual design was made by using AutoCad software. The control console conceptual design reactor for sheet type fuel of TRIGA Mark-II reactor consist of 5 segments that is 3 segments for placing the computer monitors, 1 segment for placing bargraph displays and recorders and 1 segment for placing panel meters. There are the door on front and back position at each segment for enter and out devices in the console. The control console conceptual design is also equipped by the table along in front of console for placing reactor panel control and for writing, 3 drawers for 3 keyboards. The dimension of console will refer control room size and the components will be placed on console which will be detailed in detail design if this conceptual design has been approved. (author)

  16. Criticality calculation in TRIGA MARK II PUSPATI Reactor using Monte Carlo code

    International Nuclear Information System (INIS)

    Rafhayudi Jamro; Redzuwan Yahaya; Abdul Aziz Mohamed; Eid Abdel-Munem; Megat Harun Al-Rashid; Julia Abdul Karim; Ikki Kurniawan; Hafizal Yazid; Azraf Azman; Shukri Mohd

    2008-01-01

    A Monte Carlo simulation of the Malaysian nuclear reactor has been performed using MCNP Version 5 code. The purpose of the work is the determination of the multiplication factor (k e ff) for the TRIGA Mark II research reactor in Malaysia based on Monte Carlo method. This work has been performed to calculate the value of k e ff for two cases, which are the control rod either fully withdrawn or fully inserted to construct a complete model of the TRIGA Mark II PUSPATI Reactor (RTP). The RTP core was modeled as close as possible to the real core and the results of k e ff from MCNP5 were obtained when the control fuel rods were fully inserted, the k e ff value indicates the RTP reactor was in the subcritical condition with a value of 0.98370±0.00054. When the control fuel rods were fully withdrawn the value of k e ff value indicates the RTP reactor is in the supercritical condition, that is 1.10773±0.00083. (Author)

  17. Operating experience and maintenance at the TRIGA Mark II LENA reactor

    International Nuclear Information System (INIS)

    Cingoli, F.; Altieri, S.; Lana, F.; Rosti, G.; Alloni, L.; Meloni, S.

    1988-01-01

    The last two years at the Trigs Mark II LENA plant were characterized by the running of the n-n-bar oscillation NADIR experiment. Consequently reactor operation was positively affected and the running hours rose again above 1000 hours per year. The LENA team was also deeply involved in the procedures for the renewal of the reactor operation license. The new requirements set by the Nuclear Energy Licensing Authority (ENEA for Italy) most of which concerning radiation protection and environmental impact, have been already fulfilled. In some cases the installation of new apparatus is underway

  18. An analysis of water reactor burnup data with the METHUSELAH II code

    International Nuclear Information System (INIS)

    Floyd, M.; Hicks, D.

    1964-10-01

    The METHUSELAH II code has been used to predict long term reactivity and isotopic changes in the YANKEE, Dresden and NRX reactors. In general it is shown that there is a satisfactory measure of agreement and the first core lives of YANKEE and Dresden appear well predicted. However there are discrepancies in the isotopic composition of the plutonium formed which appear to be correlated with the degree of hardness of the reactor spectrum. It is demonstrated that plausible changes in nuclear data could reduce the discrepancies. (author)

  19. Collimator and shielding design for boron neutron capture therapy (BNCT) facility at TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Mohd Rafi Mohd Solleh; Abdul Aziz Tajuddin; Abdul Aziz Mohamed; Eid Mahmoud Eid Abdel Munem; Mohamad Hairie Rabir; Julia Abdul Karim; Yoshiaki, Kiyanagi

    2011-01-01

    The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II Reactor were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06 x 10 8 n/ cm 2 / s. According to IAEA (2001) flux of 1.00 x 10 9 n/ cm 2 / s requires three hours of treatment. Few modifications were needed to get higher flux. (Author)

  20. Modernization design of neutron radiography of ITU TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Tugrul, B.; Bilge, A.N.

    1988-01-01

    ITU TRIGA MARK-II Research and Training Reactor has a power of 250 KW and has three beam tubes. One of them is tangential beam tube used for neutron radiography. In this study, the neutron radiography set in the tangential beam tube is described with its problems for ITU TRIGA Reactor. After that modernization of the system is designed and the applicability of the direct and indirect methods is evaluated. Improving the ratio of length to diameter for the beam tube, elimination the fogging on the film and constructive design for practice and secure application of the technique is developed. (author)

  1. Plant automation

    International Nuclear Information System (INIS)

    Christensen, L.J.; Sackett, J.I.; Dayal, Y.; Wagner, W.K.

    1989-01-01

    This paper describes work at EBR-II in the development and demonstration of new control equipment and methods and associated schemes for plant prognosis, diagnosis, and automation. The development work has attracted the interest of other national laboratories, universities, and commercial companies. New initiatives include use of new control strategies, expert systems, advanced diagnostics, and operator displays. The unique opportunity offered by EBR-II is as a test bed where a total integrated approach to automatic reactor control can be directly tested under real power plant conditions

  2. HYLIFE-II inertial confinement fusion reactor design

    International Nuclear Information System (INIS)

    Moir, R.W.

    1990-01-01

    The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE 2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li 2 BeF 4 ) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-1, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW·h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost. 15 refs., 9 figs., 3 tabs

  3. Application of the SHARP Toolkit to Sodium-Cooled Fast Reactor Challenge Problems

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yu, Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-30

    The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) toolkit is under development by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign of the U.S. Department of Energy, Office of Nuclear Energy. To better understand and exploit the benefits of advanced modeling simulations, the NEAMS Campaign initiated the “Sodium-Cooled Fast Reactor (SFR) Challenge Problems” task, which include the assessment of hot channel factors (HCFs) and the demonstration of zooming capability using the SHARP toolkit. If both challenge problems are resolved through advanced modeling and simulation using the SHARP toolkit, the economic competitiveness of a SFR can be significantly improved. The efforts in the first year of this project focused on the development of computational models, meshes, and coupling procedures for multi-physics calculations using the neutronics (PROTEUS) and thermal-hydraulic (Nek5000) components of the SHARP toolkit, as well as demonstration of the HCF calculation capability for the 100 MWe Advanced Fast Reactor (AFR-100) design. Testing the feasibility of the SHARP zooming capability is planned in FY 2018. The HCFs developed for the earlier SFRs (FFTF, CRBR, and EBR-II) were reviewed, and a subset of these were identified as potential candidates for reduction or elimination through high-fidelity simulations. A one-way offline coupling method was used to evaluate the HCFs where the neutronics solver PROTEUS computes the power profile based on an assumed temperature, and the computational fluid dynamics solver Nek5000 evaluates the peak temperatures using the neutronics power profile. If the initial temperature profile used in the neutronics calculation is reasonably accurate, the one-way offline method is valid because the neutronics power profile has weak dependence on small temperature variation. In order to get more precise results, the proper temperature profile for initial neutronics calculations was obtained from the

  4. KNK II, Compact Sodium-Cooled Reactor in the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives an overview of the project of the sodium-cooled fast reactor KNK II in the nuclear research center KfK in Karlsruhe. This test reactor was the preparatory stage of the prototype plant SNR 300 and had several goals: to train operating personal, to practice the licensing procedures in Germany, to get experience with the sodium technology and to serve as a test bed for fast breeder core components. The report contains contributions of KfK as the owner and project managing organization, of INTERATOM as the design and construction company and of the KBG as the plant operating organization. Experience with and results of relevant aspects of the project are tackled: project management, reactor core and component design, safety questions and licensing, plant design and test programs [de

  5. Nine years of operation of ITU-TRR TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Yavuz, H.; Bayuelken, A.R.; Yavuz, M.A.

    1988-01-01

    ITU-TRR TRIGA Mark-II reactor in Istanbul with a steady state power of 250 kW and a pulsing capability up to 1200 MW has been operating since March 11,1979 with an energy release of 107.5 MWh and a total of 72 pulses. During this nearly nine years, the reactor was in operation without any major undesired shut down. One of the major problems was faced when the instrumented fuel element in position 9 of the F ring went totally out of order. Secondly, the cooling tower of the secondary cooling system could not be operated properly during the hot summer days, and also we had a tar leakage problem with the radial beam port connection to the tank. During the regular maintenance work in this summer, the measurements of changes in nuclear and physical parameters of the reactor fuel and dummy elements have also proceeded. (author)

  6. The research reactor BER II at the Helmholtz-Center Berlin

    Energy Technology Data Exchange (ETDEWEB)

    Krohn, Herbert [Helmholtz-Zentrum Berlin (HZB), Berlin (Germany)

    2012-10-15

    For basic and application-oriented research assignments the Helmholtz-Center Berlin (Helmholtz Zentrum Berlin - HZB) runs a research reactor that operates as a source of neutron beams for a wide range of scientific investigations. At the end of the 1980{sup th} the BER II was completed renewed and fitted with new experimental facilities. The BER II is a light water cooled and moderated swimming pool type reactor to be operated at 10 MW thermal power. Six neutron guides deliver cold neutrons from the cold moderator cell to a neutron guide hall adjacent to the experiment hall. With its 24 experimental stations, experimenters at HZB have practically all neutron scattering or neutron radiography techniques at their disposal. (orig.)

  7. The research reactor BER II at the Helmholtz-Center Berlin

    International Nuclear Information System (INIS)

    Krohn, Herbert

    2012-01-01

    For basic and application-oriented research assignments the Helmholtz-Center Berlin (Helmholtz Zentrum Berlin - HZB) runs a research reactor that operates as a source of neutron beams for a wide range of scientific investigations. At the end of the 1980 th the BER II was completed renewed and fitted with new experimental facilities. The BER II is a light water cooled and moderated swimming pool type reactor to be operated at 10 MW thermal power. Six neutron guides deliver cold neutrons from the cold moderator cell to a neutron guide hall adjacent to the experiment hall. With its 24 experimental stations, experimenters at HZB have practically all neutron scattering or neutron radiography techniques at their disposal. (orig.)

  8. A digital data acquisition and display system for ITU TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Can, B.; Omuz, S.

    2008-01-01

    Full text: In this study, a digital data acquisition and display system realized for ITU TRIGA Mark-II Reactor is described. This system is realized in order to help the reactor operator and to increase reactor console capacity. The system consists of two main units, which are host computers and RTI-815F, analog devices, data acquisition card. RTI-815F is multi-function analog/digital input/output board that plugs into one of the available long expansion slots in the IBM-PC, PC/XT, PC/AT, or equivalent personal computers. It has 16 analog input channels for single-ended input signals or 8 analog input channels for differential input signals. But its channel capacity can be increased to 32 input channels for single-ended input signals or 16 input channels for differential input signals. RTI-815F board contains 2 analog output channels, 8 digital input channels and 8 digital output channels. In the ITD TRIGA Mark-II Reactor, 6 fuel temperature channels, 3 water temperature channels, 3 control rod position channels and 4 power channels are chosen as analog input signals for RTI-815F. Its digital outputs are assigned to cooling tower fan, primary and secondary pump reactor scram, control rod rundown. During operation, data are automatically archived to disk and displayed on screen. The channel selection time and sampling time can be adjusted. The simulated movement and position of control rods in the reactor core can be noted and displayed. The changes of power, fuel temperature and water temperature can be displayed on the screen as a graphic. In this system both period and reactivity are calculated and displayed on the screen. (authors)

  9. Data Quality Objective Summary Report for Phase II of the 105-F and DR Reactor Buildings

    International Nuclear Information System (INIS)

    Bauer, R.G.

    1998-01-01

    This data quality objective (DQO) process is to support planning and decision-making activities of Phase II decontamination and decommissioning (D and D) activities for the 105-F and 105-DR Reactor Buildings.The objective of this DQO is to determine the survey and characterization requirements for these rooms to provide the necessary information for worker safety, waste designation, recycle, reuse, and clean landfill disposal decisions during D and D

  10. International Working Group on Fast Reactors Thirteenth Annual Meeting. Summary Report. Part II

    International Nuclear Information System (INIS)

    1980-10-01

    The Thirteenth Annual Meeting of the IAEA International Working Group on Fast Reactors was held at the IAEA Headquarters, Vienna, Austria from 9 to 11 April 1980. The Summary Report (Part I) contains the Minutes of the Meeting. The Summary Report (Part II) contains the papers which review the national programme in the field of LMFBRs and other presentations at the Meeting. The Summary Report (Part III) contains the discussions on the review of the national programmes

  11. Plans for the utilization of a new research reactor FRM II

    International Nuclear Information System (INIS)

    Glaeser, W.

    1999-01-01

    The construction of the new research reactor FRM II is close to completion. The start of nuclear operation is planned for the year 2001. After a short description of the concept and figures of merit of the facility, the scientific instrumentation and user installations for basic and applied research (worked out largely by the German user community) being under construction will be summarized. Besides the introduction of several new techniques considerable progress in the performance of standard neutron techniques is envisaged. (author)

  12. Adaptive control method for core power control in TRIGA Mark II reactor

    Science.gov (United States)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  13. Computational analysis of neutronic parameters of CENM TRIGA Mark II research reactor

    International Nuclear Information System (INIS)

    El Younoussi, C.; El Bakkari, B.; Boulaich, Y.; Riyach, D.; Otmani, S.; Marrhich, I.; Badri, H.; Htet, A.; Nacir, B.; El Bardouni, T.; Boukhal, H.; Zoubair, M.; Ossama, M.; Chakir, E.

    2010-01-01

    The CENM TRIGA MARK II reactor is part of the National Center for Energy, Sciences and Nuclear Techniques (CNESTEN). It's a standard design 2MW, natural-convection-cooled reactor with a graphite reflector containing 4 beam tubes and a thermal column. The reactor has several applications in different fields as industry, agriculture, medicine, training and education. In the present work a computational study has been carried out in the framework of neutronic parameters studies of the reactor. A detailed MCNP model that include all elements of the core and surrounding structures has been developed to calculate different parameters of the core (The effective multiplication factor, reactivity experiments comprising control rods worth, excess reactivity and shutdown margin). Further calculations have been carried out to calculate the neutron flux profiles at different locations of the reactor core. The cross sections used are processed from the library provided with MCNP5 and based on the ENDF/B-VII with continuous dependence in energy and special treatment of thermal neutrons in lightweight materials. (author)

  14. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    International Nuclear Information System (INIS)

    Muswema, J.L.; Ekoko, G.B.; Lukanda, V.M.; Lobo, J.K.-K.; Darko, E.O.; Boafo, E.K.

    2015-01-01

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  15. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    Energy Technology Data Exchange (ETDEWEB)

    Muswema, J.L., E-mail: jeremie.muswem@unikin.ac.cd [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Ekoko, G.B. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Lukanda, V.M. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Democratic Republic of the Congo' s General Atomic Energy Commission, P.O. Box AE1 (Congo, The Democratic Republic of the); Lobo, J.K.-K. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Darko, E.O. [Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Boafo, E.K. [University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, ONL1 H7K4 (Canada)

    2015-01-15

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  16. Operation experience with the 3 MW TRIGA Mark-II research reactor of Bangladesh

    International Nuclear Information System (INIS)

    Islam, M.S.; Haque, M.M.; Salam, M.A.; Rahman, M.M.; Khandokar, M.R.I.; Sardar, M.A.; Saha, P.K.; Haque, A.; Malek Sonar, M.A.; Uddin, M.M.; Hossain, S.M.S.; Zulquarnain, M.A.

    2004-01-01

    The 3 MW TRIGA Mark-II research reactor of Bangladesh Atomic Energy Commission (BAEC) has been operating since September 14, 1986. The reactor is used for radioisotope production ( 131 I, 99m Tc, 46 Sc), various R and D activities and manpower training. The reactor has been operated successfully since it's commissioning with the exception of a few reportable incidents. Of these, the decay tank leakage incident of 1997 is considered to be the most significant one. As a result of this incident, reactor operation at full power under forced-convection mode remained suspended for about 4 years. During that time, the reactor was operated at a power level of 250 kW so as to carry out experiments that require lower neutron flux. This was made possible by establishing a temporary by pass connection across the decay tank using local technology. The other incident was the contamination of the Dry Central Thimble (DCT) that took place in March 2002 when a pyrex vial containing 50 g of TeO 2 powder got melted inside the DCT. The vial was melted due to high heat generation on its surface while the reactor was operated for 8 hours at 3 MW for trial production of Iodine-131 ( 131 I). A Wet Central Thimble (WCT) was used to replace the damaged DCT in June 2002 such that the reactor operation could be resumed. The WCT was again replaced by a new DCT in June 2003 such that radioisotope production could be continued. A total of 873 irradiation requests (IRs) have been catered for different reactor uses. Out of these, 114 IRs were for radioisotope (RI) production and 759 IRs for different experiments. The total amount of RI produced stands at about 2100 GBq. The total amount of burn-up-fuel is about 6158 MWh. Efforts are on to undertake an ADP project so as to convert the analog console and I and C system of the reactor into digital one. The paper summarizes the reactor operation experiences focusing on troubleshooting, rectification, modification, RI production, various R and D

  17. MOTHER MK II: An advanced direct cycle high temperature gas reactor

    International Nuclear Information System (INIS)

    Hart, R.S.; Kendall, J.M.; Marsden, B.J.

    2003-01-01

    -power refueling feature of the Pebble Bed reactor core concept is attractive in many situations, the MOTHER MK II conceptual design adopts a Pebble Bed core configuration. The power conversion systems of MOTHER MKI are utilized. In an effort to overcome the disadvantages of current graphite pebble annular Pebble Bed core designs, MOTHER MK II introduces a novel split core configuration. The MOTHER concepts were developed with an objective of minimizing technical risk and the need for technology development. A principal purpose of this paper is to inform other designers currently working on direct cycle HTGR concepts of the work undertaken in defining the designs for the MOTHER nuclear power plants, and of the many novel technical features adopted. (author)

  18. Operation and maintenance of the RA reactor in 1964, I-II, Part II; Pogon i odrzavanje reaktora RA u 1964. godini, I-II, II Deo

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M [Institute of Nuclear Sciences Boris Kidric, Reaktor RA, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    This volume of the report contains the following 15 Annexes: Improvement of the fuel cycle economy (record No. 37009803 in INIS DB); Analysis of neutron flux increase in horizontal experimental channels of the RA reactor record No. 37005698 in INIS DB); Application of the critical system for determining the thermal neutron flux in a research reactor with central horizontal reflector ( record No. 37055005 in INIS DB); Determining the capacity of the RA reactor heat exchanger dependent on the coolant water temperature and flow; Operation of the RA reactor in forced regime; Analysis of the CEN-132 heavy water pumps failures at the RA reactor from decontamination till present; Modifications in the vacuum loop of the distillation system; Report on decontamination of the evaporator and cleaning of the condenser of the distillation system; Operation of reactor at nominal power with reduced D{sub 2}O circulation; Cooling of the RA reactor with reduced flow rate in the heavy water loop; Measurement of the heavy water level in the fuel channels of the RA reactor; Conclusions of the experts group of the RA reactor at the meeting held on November 2 and 3 1964; Conclusions of the experts group at the meeting held on November 23 1964; After heat and the cooling problem after RA reactor shut-down; Measurement of noise and vibrations on the Ra reactor heavy water system; Calculation and measurement of the uranium temperature during irradiation in the experimental channel in the reflector of the RA reactor; Temperature measurement of the reactor materials samples irradiated in the fuel channels of the RA reactor; Study of the modifications in the synchronous generators, heavy water pumps and condenser batteries of the RA reactor.

  19. Implementation of MOAS II diagnosis system at the OECD Halden Reactor project

    International Nuclear Information System (INIS)

    Kim, I.S.; Grini, R.E.; Nilsen, S.

    1995-01-01

    MOAS II is a surveillance and diagnosis system that uses several techniques for knowledge acquisition and diagnostic reasoning, e.g., goal tree-success tree, simplified directed graphs, diagnosis trees, and detailed knowledge of the process, such as mass or energy balance. This new approach was used at the Halden Man-Machine Laboratory of the OECD Halden Reactor Project. The performance of MOAS II, developed in G2 real-time expert system shell for the high-pressure preheaters of the NORS process, was tested against a variety of transient scenarios, including failures of control valves and sensors, and leakage of tubes of the preheaters. These tests showed that MOAS II successfully carried out its intended functions, i.e., quickly recognizing an occurring disturbance, correctly diagnosing its cause, and presenting advice on its control to the operator. The insights gained during the implementation are discussed

  20. Real time operating system for a nuclear power plant computer

    International Nuclear Information System (INIS)

    Alger, L.S.; Lala, J.H.

    1986-01-01

    A quadruply redundant synchronous fault tolerant processor (FTP) is now under fabrication at the C.S. Draper Laboratory to be used initially as a trip monitor for the Experimental Breeder Reactor EBR-II operated by the Argonne National Laboratory in Idaho Falls, Idaho. The real time operating system for this processor is described

  1. Fabrication of ThO2, UO2, and PuO2-UO2 pellets

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Jentzen, W.R.; McCord, R.B.

    1978-01-01

    Fabrication of ThO pellets for EBR-II irradiation testing and fabrication of UO 2 and PuO 2 -UO 2 pellets for United Kingdom Prototype Fast Reactor (PFR) irradiation testing is discussed. Effect of process parameters on density and microstructure of pellets fabricated by the cold press and sinter technique is reviewed

  2. Status of IFR fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; McFarlane, H.F.

    1993-01-01

    The next major step in Argonne's Integral Fast Reactor (IFR) Program is demonstration of the pyroprocess fuel cycle, in conjunction with continued operation of EBR-II. The Fuel Cycle Facility (FCF) is being readied for this mission. This paper will address the status of facility systems and process equipment, the initial startup experience, and plans for the demonstration program

  3. Evaluation of cross sections of Th-232 and U-233

    International Nuclear Information System (INIS)

    Dias, A.M.

    1978-01-01

    The cross sections in multigroups of Th-232 and U-233 are evaluated by comparison of theoretical results and experimental data obtained through experiments on the fast reactors IBR-I, EBR-II, BR-I and AETR. The deviation between calculated values and experimental results is about 10%. They are therefore satisfatory for neutronic calculations [pt

  4. Back-to-back technical meetings (TMs): 'TM on the coordinated project (CRP) analyses of and lessons learned from the operational experience with fast reactor equipment and systems' and 'TM to coordinate the Agency's fast reactor knowledge preservation international project in Russia'. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Since the early 1960's, several countries have undertaken important fast breeder reactor development programs. Fast test reactors were constructed and successfully operated in a number of countries, including Rapsodie (France), KNK-II (Germany), FBTR (India), JOYO (Japan), DFR (UK), BR-10, BOR-60 (Russia), and EBR-II, Fermi, FFTF (USA). This was followed by commercial size prototypes (Phenix, Superphenix (France), SNR-300 (Germany), MONJU (Japan), PFR (UK), BN-350 (Kazakhstan), BN-600 (Russia)], either just under construction, coming on line, or experiencing long term operation. However, from the 1980s onward, and mostly for economical and political reasons, fast reactor development in general began to decline. By 1994, in the USA, the Clinch River Breeder Reactor (CRBR) had been cancelled, and the two fast reactor test facilities, FFTF and EBR-II had been shutdown - EBRII permanently, and FFTF, until recently, in standby condition, but now also facing permanent closure. Thus, in the U.S., effort essentially disappeared for fast breeder reactor development. Similarly, programs in other nations were terminated or substantially reduced. In France, Superphenix was shut down at the end of 1998; SNR-300 in Germany was completed but not taken into operation, and KNK-II was permanently shut down in 1991 (after 17 years of operation) and is scheduled to be dismantled by 2004. In the UK, PFR was shut down in 1994, and in Kazakhstan, BN-350 was shut down in 1998. As the interest and activity in the fast breeder reactor diminished, the retirement of many of the developers and acknowledged experts of this technology reached its peak, between 1990 and 2000. The effort and investment required to replace these skills also diminished in parallel. In addition, the facilities (e.g., hot cells, fuel fabrication and inspection lines, seismic test rigs) required to develop and maintain the fast reactor program are drifting into a degraded state or are being shut down. This leads to the

  5. Data base formation for important components of reactor TRIGA MARK II

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, R; Mavko, B; Kozuh, M [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    The paper represents specific data base formation for reactor TRIGA MARK II in Podgorica. Reactor operation data from year 1985 to 1990 were collected. Two groups of collected data were formed. The first group includes components data and the second group covers data of reactor scrams. Time related and demand related models were used for data evaluation. Parameters were estimated by classical method. Similar data bases are useful everywhere where components unavailabilities may have severe drawback. (author) [Slovenian] V referatu smo prikazali raziskavo, v okviru katere smo za raziskovalni reaktor TRIGA MARK II v Podgorici izoblikovali specificno bazo podatkov. Zbrali smo podatke obratovanja reaktorja od leta 1985 do 1990. Rezultate raziskave dogodkov smo razdelili v dve glavni skupini. V prvo spadajo obratovalni podatki o komponentah, v drugo skupino pa spadajo zagoni oz. zaustavitve reaktorja. Podatke smo ovrednotili z modelom v casovnem prostoru in z modelom na zahtevo. Parametre modelov smo dolocili s klasicno metodo. Opisane baze podatkov so uporabne povsod, kjer so lahko posledice nezanesljivega delovanja sistemov velike. [author].

  6. Visualization of neutron flux and power distributions in TRIGA Mark II reactor as an educational tool

    International Nuclear Information System (INIS)

    Snoj, Luka; Ravnik, Matjaz; Lengar, Igor

    2008-01-01

    Modern Monte Carlo computer codes (e.g. MCNP) for neutron transport allow calculation of detailed neutron flux and power distribution in complex geometries with resolution of ∼1 mm. Moreover they enable the calculation of individual particle tracks, scattering and absorption events. With the use of advanced software for 3D visualization (e.g. Amira, Voxler, etc.) one can create and present neutron flux and power distribution in a 'user friendly' way convenient for educational purposes. One can view axial, radial or any other spatial distribution of the neutron flux and power distribution in a nuclear reactor from various perspectives and in various modalities of presentation. By visualizing the distribution of scattering and absorption events and individual particle tracks one can visualize neutron transport parameters (mean free path, diffusion length, macroscopic cross section, up-scattering, thermalization, etc.) from elementary point of view. Most of the people remember better, if they visualize the processes. Therefore the representation of the reactor and neutron transport parameters is a convenient modern educational tool for the (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. The visualization of neutron flux and power distributions in Jozef Stefan Institute TRIGA Mark II research reactor is treated in the paper. The distributions are calculated with MCNP computer code and presented using Amira and Voxler software. The results in the form of figures are presented in the paper together with comments qualitatively explaining the figures. (authors)

  7. Tritium handling, breeding, and containment in two conceptual fusion reactor designs: UWMAK-II and UWMAK-III

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Larsen, E.M.

    1976-01-01

    Tritium is an essential component of near-term controlled thermonuclear reactor systems. Since tritium is not likely to be available on a large scale at a modest cost, fusion reactor designs must incorporate blanket systems which will be capable of breeding tritium. Because of the radiological activity and capability of assimilation into living tissues, tritium release to the environment must be strictly controlled. The University of Wisconsin has completed three conceptual designs of fusion reactors, UWMAK-I, UWMAK-II, and UWMAK-III. This report discusses the tritium systems for UWMAK-II, a reactor design with a helium cooled solid breeder blanket, and UWMAK-III, a reactor design with a high-temperature liquid breeder blanket. Tritium systems for fueling and recycling, breeding and recovery, and plant containment and control are discussed. (Auth.)

  8. Present Services at the TRIGA Mark II Reactor of the JSI

    International Nuclear Information System (INIS)

    Smodiš, B.; Snoj, L.

    2013-01-01

    The TRIGA Mark II research reactor of the Jožef Stefan Institute has been continuously operating since the year 1966. The currently offered services include: (1) Neutron activation analysis in both instrumental and radiochemical modes; (2) neutron irradiation of various kinds of materials intended to be used for research and applicative purposes; (3) training and education of university students as well as on-job training of staff working in public and private institutions, (4) verification of computer codes and nuclear data, comprising primarily criticality calculations and neutron flux distribution studies and (5) testing and development of a digital reactivity meter. The paper briefly describes the aforementioned activities and shows that even such small reactors are still indispensable in nuclear science and technology. (author)

  9. Investigation of the transition from forced to natural convection in the research reactor Munich II

    International Nuclear Information System (INIS)

    Skreba, S.; Adamek, J.; Unger, H.

    1999-01-01

    The new research reactor Munich II (FRM-II), which is under construction at the Technical University Munich, Germany, makes use of a newly developed compact reactor core consisting of a single fuel element, which is assembled of two concentric pipes. Between the fuel element's inner and outer pipe 113 involutely bent fuel plates are placed rotationally symmetric, forming 113 cooling channels of a constant width of 2.2 mm. After a shut down of the reactor, battery supported cooling pumps are started by the reactor safety system in order to remove the decay heat by a downwards directed forced flow. Three hours after they have been started, the cooling pumps are shut down and so-called 'natural convection flaps' are opened by their own weight. Through a flow path, which is provided by the opening of the natural convection flaps, the decay heat is given off to the water in the reactor pool after the direction of the flow has changed and an upwards directed natural convection flow has developed. At the Department for Nuclear and New Energy Systems of the Ruhr-University Bochum, Germany, a test facility has been built in order to confirm the concept of the decay heat removal in the FRM-II, to acquire data of single and two phase natural convection flows and to detect the dry out in a narrow channel. The thermohydraulics of the FRM-II are simulated by an electrically heated test section, which represents one cooling channel of the fuel element. At first experiments have been performed, which simulated the transition from forced to natural convection in the core of the FRM-II, both at normal operation and at a complete loss of the decay heat removal pumps. In case of normal operation, the transition from forced to natural convection takes place single phased. If a complete loss of the active decay heat removal system occurs, the decay heat removal is ensured by a quasi-steady two phase flow. In a second test series minimum heat flux densities leading to pressure pulsations

  10. The KNK II instrumentation for global and local supervision of the reactor core

    International Nuclear Information System (INIS)

    Steiger, W.O.

    1990-01-01

    After an introduction into the KNK plant itself, their historical development and their present situation, the instrumentation of the global and local supervision of the KNK II-core as well as the main safety-related i- and c-systems are described. Special emphasis is laid on the instrumentation of the reactor protection systems and the shutdown systems. After that some practices are reported about instrumentation behavior and lessons learned from the operation and maintenance of the above mentioned systems. At last follows a short description of the special instrumentation for the detection of failed fuel subassemblies and of the plant data processing system. (orig.)

  11. Biological Tests for Boron Neutron Capture Therapy Research at the TRIGA Mark II Reactor in Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Protti, N.; Ballarini, F.; Bortolussi, S.; De Bari, A.; Stella, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Nuclear Physics National Institute (INFN), Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Bakeine, J.G.; Cansolino, L.; Clerici, A.M. [Laboratory of Experimental Surgery, Department of Surgery, University of Pavia, Pavia (Italy)

    2011-07-01

    The thermal column of the TRIGA Mark II reactor of the Pavia University is used as an irradiation facility to perform biological tests and irradiations of living systems for Boron Neutron Capture Therapy (BNCT) research. The suitability of the facility has been ensured by studying the neutron flux and the photon background in the irradiation chamber inside the thermal column. This characterization has been realized both by flux and dose measurements as well as by Monte Carlo simulations. The routine irradiations concern in vitro cells cultures and different tumor animal models to test the efficacy of the BNCT treatment. Some results about these experiments will be described. (author)

  12. Generation of an activation map for decommissioning planning of the Berlin Experimental Reactor-II

    Science.gov (United States)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang

    2017-09-01

    The BER-II is an experimental facility with 10 MW that was operated since 1974. Its planned operation will end in 2019. To support the decommissioning planning, a map with the overall distribution of relevant radionuclides has to be created according to the state of the art. In this paper, a procedure to create these 3-d maps using a combination of MCNP and deterministic methods is presented. With this approach, an activation analysis is performed for the whole reactor geometry including the most remote parts of the concrete shielding.

  13. Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.

    Science.gov (United States)

    Henry, R; Tiselj, I; Snoj, L

    2015-03-01

    New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The KNK II instrumentation for global and local supervision of the reactor core

    International Nuclear Information System (INIS)

    Steiger, W.O.

    1991-01-01

    After an introduction into the KNK plant itself, their historical development and their present situation, the instrumentation of the global and local supervision of the KNK II-core as well as the main safety-related instrumentation and control systems is described. Special emphasis is laid on the instrumentation of the reactor protection systems and the shut down systems. After that some practices are reported about instrumentation behavior and lessons learned from the operation and maintenance of the above mentioned systems. At last follows a short description of the special instrumentation for the detection of failed fuel subassemblies and of the plant data processing system. (author). 4 refs, 18 tabs

  15. Culham Conceptual Tokamak Mark II. Design study of the layout of a twin-reactor fusion power station

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.; Harding, N.H.

    1981-07-01

    This report describes the building layout and outline design for the nuclear complex of a fusion reactor power station incorporating two Culham Conceptual Tokamak Reactors Mk.II. The design incorporates equipment for steam generation, process services for the fusion reactors and all facilities for routine and non-routine servicing of the nuclear complex. The design includes provision of temporary facilities for on site construction of the major reactor components and shows that these facilities may be used for disassembly of the reactors either for major repair and/or decommissioning. Preliminary estimates are included, which indicate the cost benefits to be obtained from incorporating two reactors in one nuclear complex and from increased wall loading. (author)

  16. The control equipment of the Melusine II reactor; L'equipement de controle du reacteur Melusine II

    Energy Technology Data Exchange (ETDEWEB)

    Cordelle, M; Delcroix, V; Denis, P; Gariod, R

    1963-07-01

    Melusine II, low-power reactor, used for the study of Siloe core has diverged at the CEA Grenoble, the 23. May 1962; its monitoring board studied and carried out in this center is the first in France to be entirely transistorized. The first months of running have justified the hope put in the new electronics to improve the stability and the safety of running. The article describes the design of the control and gives the main characteristics of the measurement chains and of the actions on reactivity. (O.M.) [French] Melusine II, reacteur de faible puissance destine a l'etude du coeur de Siloe a diverge au Centre d'Etudes Nucleaires de Grenoble, le 23 mai 1962, son tableau de controle etudie et realise dans ce Centre est le premier en France a etre entierement transistorise. Les premiers mois de fonctionnement ont justifie l'espoir mis dans la nouvelle electronique pour ameliorer la stabilite et la surete de fonctionnement. L'article decrit la conception du controle et donne les principales caracteristiques des chaines de mesure et des actions sur la reactivite. (auteurs)

  17. Filtration experiments of the KNK II primary sodium

    International Nuclear Information System (INIS)

    Stamm, H.H.

    1987-01-01

    The separated particles of the KNK primary sodium are a result of a normal corrosion rate by using ferritic and austenitic steels in sodium. Similar particle distributions and concentrations were found in primary circuits of other breeder plants (EBR-II et al). The experimental results of the particle concentration in the KNK primary sodium were lower than the theoretical calculation. Based on a corrosion rate of 0.5 micron/y for austenitic steels and a corrosion rate of 1.5 mg/square-cm y for a ferritic steel used in KNK as structure material an equilibrium particle concentration of 1.066 mg/kg Na was calculated. The experimental results of particle size are not in agreement with theoretical calculation of the BACCHUS code. (orig.)

  18. Independent Safety Assessment of the TOPAZ-II space nuclear reactor power system (Revised)

    International Nuclear Information System (INIS)

    1993-09-01

    The Independent Safety Assessment described in this study report was performed to assess the safety of the design and launch plans anticipated by the U.S. Department of Defense (DOD) in 1993 for a Russian-built, U.S.-modified, TOPAZ-II space nuclear reactor power system. Its conclusions, and the bases for them, were intended to provide guidance for the U.S. Department of Energy (DOE) management in the event that the DOD requested authorization under section 91b. of the Atomic Energy Act of 1954, as amended, for possession and use (including ground testing and launch) of a nuclear-fueled, modified TOPAZ-II. The scientists and engineers who were engaged to perform this assessment are nationally-known nuclear safety experts in various disciplines. They met with participants in the TOPAZ-II program during the spring and summer of 1993 and produced a report based on their analysis of the proposed TOPAZ-II mission. Their conclusions were confined to the potential impact on public safety and did not include budgetary, reliability, or risk-benefit analyses

  19. Testing the applicability of the k 0-NAA method at the MINT's TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Siong, Wee Boon; Dung, Ho Manh; Wood, Ab. Khalik; Salim, Nazaratul Ashifa Abd.; Elias, Md. Suhaimi

    2006-01-01

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k 0 method has become the preferred standardization method of NAA (k 0 -NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k 0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k 0 -NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters (α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k 0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k 0 -NAA method at the MINT

  20. Testing the applicability of the k0-NAA method at the MINT's TRIGA MARK II reactor

    Science.gov (United States)

    Siong, Wee Boon; Dung, Ho Manh; Wood, Ab. Khalik; Salim, Nazaratul Ashifa Abd.; Elias, Md. Suhaimi

    2006-08-01

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k0 method has become the preferred standardization method of NAA ( k0-NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k0-NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters ( α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k0-NAA method at the MINT.

  1. Thermal Hydraulics Analysis for the 3MW TRIGA MARK-II Research Reactor Under Transient Condition

    International Nuclear Information System (INIS)

    Huda, M.Q.; Bhuiyan, S.I.; Mondal, M.A.W.

    1996-12-01

    Some important thermal hydraulic parameters of the 3 MW TRIGA MARK-II research reactor operating under transient condition were investigated using two computer codes PULTRI and TEMPUL. Major transient parameters, such as, peak power and prompt energy released after pulse, maximum fuel and coolant temperature, surface heat flux, time and radial distribution of temperature within fuel element after pulse, fuel, fuel-cladding gap width variation, etc. were computer and compared with the experimental and operational values as reported in the safety Analysis Report (SAR). It was observed that pulsing of the reactor inserting an excess reactivity of $2.00 shoots the reactor power level to 854.353 MW compared to an experimental value of 852 MW; the maximum fuel temperature corresponding to this peak power was found to be 846.76 o C which is much less than the limiting maximum value of fuel temperature of 1150 0 C as reported in SAR. During a pulse if the film boiling occurs for a peak adiabatic fuel temperature of 1000 o C, the calculated outer cladding wall temperature was observed to be 702.39 0 C compared to a value of 760 o C reported in SAR under the same condition. The investigated other results were also found to be in good agreement with the values reported in the SAR. 16 refs., 22 figs. (author)

  2. Gamma heated subassembly for sodium boiling experiments

    International Nuclear Information System (INIS)

    Artus, S.C.

    1975-01-01

    The design of a system to boil sodium in an LMFBR is examined. This design should be regarded as a first step in a series of boiling experiments. The reactor chosen for the design of the boiling apparatus is the Experimental Breeder Reactor-II (EBR-II), located at the National Reactor Testing Station in Idaho. Criteria broadly classified as design objectives and design requirements are discussed

  3. Gamma heated subassembly for sodium boiling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Artus, S.C.

    1975-01-01

    The design of a system to boil sodium in an LMFBR is examined. This design should be regarded as a first step in a series of boiling experiments. The reactor chosen for the design of the boiling apparatus is the Experimental Breeder Reactor-II (EBR-II), located at the National Reactor Testing Station in Idaho. Criteria broadly classified as design objectives and design requirements are discussed.

  4. Real-time dynamic simulator for the Topaz II reactor power system

    International Nuclear Information System (INIS)

    Kwok, K.S.

    1994-01-01

    A dynamic simulator of the TOPAZ II reactor system has been developed for the Nuclear Electric Propulsion Space Test Program. The simulator is a self-contained IBM-PC compatible based system that executes at a speed faster than real-time. The simulator combines first-principle modeling and empirical correlations in its algorithm to attain the modeling accuracy and computational through-put that are required for real-time execution. The overall execution time of the simulator for each time step is 15 ms when no data is written to the disk, and 18 ms when nine double precision data points are written to the disk once in every time step. The simulation program has been tested and it is able to handle a step decrease of $8 worth of reactivity. It also provides simulation of fuel, emitter, collector, stainless steel, and ZrH moderator failures. Presented in this paper are the models used in the calculations, a sample simulation session, and a discussion of the performance and limitations of the simulator. The simulator has been found to provide realistic real-time dynamic response of the TOPAZ II reactor system under both normal and causality conditions

  5. Feasibility study on commercialized fast reactor cycle systems. Phase II final report

    International Nuclear Information System (INIS)

    Ieda, Yoshiaki; Uchikawa, Sadao; Okubo, Tsutomu; Ono, Kiyoshi; Kato, Atsushi; Kurisaka, Kenichi; Sakamoto, Yoshihiko; Sato, Kazujiro; Sato, Koji; Chikazawa, Yoshitaka; Nakai, Ryodai; Nakabayashi, Hiroki; Nakamura, Hirofumi; Namekawa, Takashi; Niwa, Hajime; Nomura, Kazunori; Hayashi, Hideyuki; Hayafune, Hiroki; Hirao, Kazunori; Mizuno, Tomoyasu; Muramatsu, Toshiharu; Ando, Masato; Ono, Katsumi; Ogata, Takanari; Kubo, Shigenobu; Kotake, Shoji; Sagayama, Yutaka; Takakuma, Katsuyuki; Tanaka, Toshihiko; Namba, Takashi; Fujii, Sumio; Muramatsu, Kazuyoshi

    2006-06-01

    A joint project team of Japan Atomic Energy Agency and the Japan Atomic Power Company (as the representative of the electric utilities) started the feasibility study on commercialized fast reactor cycle systems (F/S) in July 1999 in cooperation with Central Research Institute of Electric Power Industry and vendors. On the major premise of safety assurance, F/S aims to present an appropriate picture of commercialization of fast reactor (FR) cycle system which has economic competitiveness with light water reactor cycle systems and other electricity base load systems, and to establish FR cycle technologies for the future major energy supply. In the period from Japanese fiscal year (JFY) 1999 to 2000, the phase-I of F/S was carried out to screen our representative FR, reprocessing and fuel fabrication technologies. In the phase-II (JFY 2001-2005), the design study of FR cycle concepts, the development of significant technologies necessary for the feasibility evaluation, and the confirmation of key technical issues were performed to clarify the promising candidate concepts toward the commercialization. In this final phase-II report clarified the most promising concept, the R and D plan until around 2015, and the key issues for the commercialization. Based on the comprehensive evaluation in F/S, the combination of the sodium-cooled FR with MOX fuel core, the advanced-aqueous reprocessing process and the simplified-pelletizing fuel fabrication process was recommended as the mainline choice for the most promising concept. The concept exceeds in technical advancement, and the conformity to the development targets was higher compared with that of the others. Alternative technologies are prepared to be decrease the development risk of innovative technologies in the mainline choice. (author)

  6. Operation experience and maintenance at the TRIGA Mark II L.E.N.A. reactor

    International Nuclear Information System (INIS)

    Gngoli, F.; Berzero, A.; Lana, F.; Rosti, G.; Meloni, S.

    2008-01-01

    The TRIGA Mark II reactor of the University of Pavia was operated in the last two years on a routine basis, mostly for neutron activation analysis purposes. Moreover the reactor was completely shutdown in the first six months of this year to allow the dismantling of the NADIR experimental setup. The paper presents: - Reactor operation from July 1990 to June 1992; - Reactor users in the time period January 1990 - December 1991; - Specific activities of some radionuclides in the filling materials; - Specific activity of some radionuclides in thermal column materials. Operations related to dismantling of NADIR experimental facility are described. Finally the new thermal column configuration is presented. Starting from the end inside the reactor tank, a graphite layer (35 cm thick) was positioned, followed by a bismuth layer (10 cm thick) to reduce gamma-ray intensity. The old graphite rods were then positioned leaving in the central part, on the equatorial plane of the thermal column, a cavity whose vertical section has 40 cm width and 20 cm height. The bottom of the cavity, towards to the reactor tank, has been lined with additional layers of graphite (10 cm), bismuth (10 cm) and again graphite (1 cm). The new configuration allowed new experiments to be performed. The cavity in the central part has been created to allow the irradiation of large biological samples such as experimental animal and human livers. This is a peculiar step in a neutron capture boron therapy project to be carried out at the University of Pavia. In order to avoid an implemented 41 Ar production in the void space between shutters and the thermal column outer end, the external surface of the thermal column has been coated with boral sheets. The neutron flux profile, both thermal and epithermal, and cadmium ratio for gold are shown. The flux distribution appears to be adequate to proceed with the neutron capture boron therapy experiment. The LENA Health Physics Service has checked all phases of

  7. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States); Buongiorno, Jacopo [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States)

    2010-01-31

    reactors. FEAST-METAL was benchmarked against the open-literature EBR-II database for steady state and furnace tests (transients). The results show that the code is able to predict important phenomena such as clad strain, fission gas release, clad wastage, clad failure time, axial fuel slug deformation and fuel constituent redistribution, satisfactorily.

  8. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin; Buongiorno, Jacopo

    2010-01-01

    . FEAST-METAL was benchmarked against the open-literature EBR-II database for steady state and furnace tests (transients). The results show that the code is able to predict important phenomena such as clad strain, fission gas release, clad wastage, clad failure time, axial fuel slug deformation and fuel constituent redistribution, satisfactorily.

  9. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  10. LMFBR plant parameters

    International Nuclear Information System (INIS)

    1979-03-01

    This document contains up-to-date data on existing or firmly decided prototype or demonstration LMFBR reactors (Table I), on planned commercial size LMFBR according to the present status of design (Table II) and on experimental fast reactors such as BOR-60, DFR, EBR-II, FERMI, FFTF, JOYO, KNK-II, PEC, RAPSODIE-FORTISSIMO (Table III). Only corrected and revised parameters submitted by the countries participating in the IWGFR are included in this document

  11. A report on the second specialists' meeting on reactor noise (SMORN II) Gatlinburg, Tennessee, September 19th-23rd 1977

    International Nuclear Information System (INIS)

    Greef, C.P.

    1978-03-01

    The current state of power reactor noise analysis as presented at the Second Specialists' Meeting on Reactor Noise (SMORN II) is reviewed. Practical successes include the analysis of PWR core support barrel motions and BWR instrument tube vibrations, leading to better understanding of the Physical processes involved. Future applications to LMFBRs are being actively pursued, but more information is required, notably on background noise sources in operating reactors. Theoretical understanding is improving in a number of specific areas, but general fundamental progress is hampered by the multiplicity of potential noise sources in a reactor. Past attempts to automate noise analysis so that simplified information may be presented to the reactor operator have not been totally successful. This has resulted from an over-hasty application of the techniques before all of the factors involved in physical phenomena were fully appreciated. (author)

  12. Exxon nuclear power distribution control for pressurized water reactors: Phase II

    International Nuclear Information System (INIS)

    Holm, J.S.; Burnside, R.J.

    1978-01-01

    The power distribution control procedure, denoted PDC-II, described in this report enables nuclear plants to manage core power distributions such that Technical Specification Limits on F/sub Q//sup T/ are not violated during normal operation and limits on MDNBR are not violated during steady-state, load-follow, and anticipated transients. The PDC-II data base described provides the means for predicting the maximum F/sub Q//sup T/(z) distribution anticipated during operation under the PDC-II procedure taking into account the incore measured equilibrium power distribution data for the reactor in question. A comparison of this distribution with the Technical Specification limit curve determines whether the Technical Specification limit can be protected by PDC-II procedure. If such protection can be confirmed for a given operating cycle interval, APDMS monitoring is not necessary over this interval and the excore monitored constant axial offset limits will protect the Technical Specification F/sub Q//sup T/ limits. This document describes the maximum possible variation in F/sub Q//sup T/(z) which can occur during operation when following the PDC-II procedures. This bounding variation in F/sub Q//sup T/(z) is referred to as V(z). This V(z) distribution represents the maximun variation in F/sub Q//sup T/(z) when the axial offset is maintained within the range defined in this report [+- 5% at full power condition

  13. RA reactor safety analysis, Part II - Accident analysis; Analiza sigurnosti rada Reaktora RA I-III, Deo II - Analiza akcidenta

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Radanovic, Lj; Milovanovic, M; Afgan, N; Kulundzic, P [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    This part of the RA reactor safety analysis includes analysis of possible accidents caused by failures of the reactor devices and errors during reactor operation. Two types of accidents are analyzed: accidents resulting from uncontrolled reactivity increase, and accidents caused by interruption of cooling.

  14. U.S. activities related to fast reactors and ADS

    International Nuclear Information System (INIS)

    Finck, Phillip J.

    2001-01-01

    , lower cost, and improved safety and proliferation resistance; Innovative nuclear plant design, manufacturing, construction, operation, maintenance and decommissioning technologies; Advanced nuclear fuels; and Relevant areas of fundamental science. In 2000, the US Fast Reactor and ADS programs include the EBR-II Electrometallurgical Treatment program, FFTF activities in view of a decision whether to restart or deactivate the facility, several NERI awards, and the Advanced Accelerators Applications program. A 10 year R and D plan concentrated on defining the key technologies to be used for transmutation of nuclear waste (plutonium, minor actinides and long lived fission products). This activity includes fuels development and performance testing, development and testing of dedicated separation technologies, design of transmutation systems, and materials and physics research. It is expected that after 10 years, suitable technologies will have been demonstrated for practical waste transmutation demonstration. The Accelerator Driven Test Facility (ADTF) will be built over 10 years. It will consist of a large proton linear accelerator (600MeV, 13mA), coupled to two testing stations; the Target and Multiplier Test Station will consist of a large (8MW) spallation target surrounded by test loops for materials and small amounts of fuels; the Sub Critical Multiplier (SCM) will consist of a 100MW subcritical fast reactor driven by a 4MW spallation target and will be used to demonstrate the safe and efficient operations of accelerator driven systems, and will serve to irradiate experimental fuels. The ADTF will serve as the principal test station for a Proof of Performance series of tests, to demonstrate the safety and operations of Accelerator Driven Systems, and to demonstrate efficient transmutation and recycling of minor actinides and long lived fission products

  15. SIFAIL: a subprogram to calculate cladding deformation and damage for fast reactor fuel pins

    International Nuclear Information System (INIS)

    Wilson, D.R.; Dutt, D.S.

    1979-05-01

    SIFAIL is a series of subroutines used in conjunction with the thermal performance models of SIEX to assist in the evaluation of mechanical performance of mixed uranium plutonium oxide fuel pins. Cladding deformations due to swelling and creep are calculated. These have been compared to post-irradiation data from fuel pin tests in EBR-II. Several fuel pin cladding failure criteria (cumulative damage, total strain, and thermal creep strain) are evaluated to provide the fuel pin designer with a basis to select design parameters. SIFAIL allows the user many property options for cladding material. Code input is limited to geometric and environmental parameters, with a consistent set of material properties provided by the code. The simplified, yet adequate, thin wall stress--strain calculations provide a reliable estimate of fuel pin mechanical performance, while requiring a small amount of core storage and computer running time

  16. Calculation of neutron fluxes in biological shield of the TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Bozic, M.; Zagar, T.; Ravnik, M.

    2001-01-01

    The complete calculation of neutron fluxes in biological shield and verification with experimental results is presented. Calculated results are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Experimental results used for comparison are available from irradiation experiment with selected type of concrete and other materials in irradiation channel 4 in TRIGA Mark II reactor. These experimental results were used as a benchmark. Homogeneous type of problem (without inserted irradiation channel) and problem with asymmetry (inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. Deviation from material data set up as original parameters is also considered (first of all presence of water in concrete and density of concrete) for type of concrete in biological shield and for selected type of concrete in irradiation channel. BUGLE-96 (47 neutron energy groups) library is used. Excellent agreement between calculated and experimental results for reaction rate is received.(author)

  17. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    International Nuclear Information System (INIS)

    Connell, L.W.; Trost, L.C.

    1994-03-01

    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents

  18. Human action contribution to ET-RR-II reactor systems unstems unavailability

    International Nuclear Information System (INIS)

    Sabek, M.G.

    2001-01-01

    This paper gives a study on the human action contribution to the systems unavailability of ET-RR-II reactor as a result of the test and maintenance procedures. The human contribution is expressed in terms of Fussel-Vesely importance which is defined by the probability that event is contributing to system failure (unavailability). The human error basic events contribution was analyzed for all initiating events and systems fault trees. The calculations result shows a high contribution value (61%) for the human error to systems unavailability. This means that the operator and the maintenance people should be highly qualified trained. Moreover, there should be programs for continuous training. Also, the procedures of tests and maintenance should be in a simple way and clear in order to minimize the contribution of the human errors. The calculations were done using the IRRAS cods

  19. Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.

    Science.gov (United States)

    Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S

    2012-10-01

    A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Non-destructive material investigation with thermal neutrons at the TRIGA Mark II reactor in Vienna

    International Nuclear Information System (INIS)

    Bastuerk, M.; Boeck, H.; Zamani, B.; Zawisky, M.; Rauch, H.

    2004-01-01

    Neutron tomography providing 3D information about interior of an object is a very efficient tool to visualize inner defects of the materials, non-destructively. In this study, some applications of neutron tomography in different fields such as geology, aerospace, civil engineering and archaeology were presented. Distribution of minerals in pumice and rock samples, visualization of inner defects within a new developed titan aluminum turbine blade, and distribution of silica gel as an important impregnating agent in construction and restoration of buildings were investigated. The measurements of tomography projections taken in the 0 to 180 o angle were performed with a thermal neutron flux of 10 5 at the TRIGA Mark II research reactor in Vienna, and the common filtered back projection method was used for the 3D image reconstruction. (author)

  1. Study and application of ANISN and DOT-II nuclear cores in reactor physics problems

    International Nuclear Information System (INIS)

    Dias, Artur Flavio

    1980-01-01

    To solve time-independent neutrons and/or gamma rays transport problems in nuclear reactors, two codes available at IPEN were studied and applied to solve benchmark problems. The ANISN code solves the one-dimensional Boltzmann transport equation for neutrons or gamma rays, in plane, spherical, or cylindrical geometries. The DOT-II code solves the same equation in two-dimensional space for plane, cylindrical and circular geometries. General anisotropic scattering allowed in both codes. Moreover, pointwise convergence criteria, and alternate step function difference equations are also used in order to remove the oscillating flux distributions, sometimes found in discrete ordinates solutions. Basic theories and numerical techniques used in these codes are studied and summarized. Benchmark problems have been solved using these codes. Comparisons of the results show that both codes can be used with confidence in the analysis of nuclear problems. (author)

  2. SPLOSH II: A dynamics programme for nuclear - thermal - hydrodynamic behaviour of water-cooled reactors

    International Nuclear Information System (INIS)

    Moxon, D.

    1966-01-01

    A dynamics code is described that solves the two-group neutron diffusion equations simultaneously with the thermal and the hydraulic equations for an average channel of a water-cooled reactor. Other reactor channels can be represented as 'slaves', which have no feedback to the average channel. The fission power at any axial station in a slave channel is related to that in the average by prescribed time-dependent factors, and the hydraulic flow is determined from pressure-drop requirements dictated by the performance of the average channel. A finite difference model of the fuel element and can represents the behaviour of the fuel temperatures and surface heat flux. The representation of the hydraulic circuit has been made sufficiently general that the code is applicable to B.W.R., P.W.R. and pressure tube reactor designs. The code can be used to study transients resulting from imposed time variations in coolant flow, inlet enthalpy, system pressure, electrical torque supplied to the circulating pumps, (or alternatively, the angular velocity of the pump rotors,) moderator height, frictional resistances simulating blockages and control rod and fuel element insertions. The harmonic response can be obtained by injecting sinusoidal time variations until the starting transient has been damped out. Output includes axial distributions of the neutron fluxes, heat flux, coolant density and temperature, burn-but margin, and the fuel and can temperatures in both the average and the slave channels. The code was originally written in FORTRAN II for use on the IBM 7090. Computing times vary greatly with the problem and the desired accuracy but experience has shown that a computing time which is slower than real time by a factor thirty is adequate for a wide range of cases. The code has recently been converted to S2 and EGTRAN for use on the IBM 7030 and the English Electric Leo Marconi KDF 9 computers. (author)

  3. Neutronic Analysis of the 3 MW TRIGA MARK II Research Reactor, Part I: Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Huda, M.Q.; Chakrobortty, T.K.; Rahman, M.; Sarker, M.M.; Mahmood, M.S.

    2003-05-01

    This study deals with the neutronic analysis of the current core configuration of a 3 MW TRIGA MARK II research reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh and validation of the results by benchmarking with the experimental, operational and available Final Safety Analysis Report (FSAR) values. The three-dimensional continuous-energy Monte Carlo code MCNP4C was used to develop a versatile and accurate full-core model of the TRIGA core. The model represents in detail all components of the core with literally no physical approximation. All fresh fuel and control elements as well as the vicinity of the core were precisely described. Continuous energy cross-section data from ENDF/B-VI and S(α, β) scattering functions from the ENDF/B-V library were used. The validation of the model against benchmark experimental results is presented. The MCNP predictions and the experimentally determined values are found to be in very good agreement, which indicates that the Monte Carlo model is correctly simulating the TRIGA reactor. (author)

  4. Maintenance procedures for the TITAN-I and TITAN-II reversed field pinch reactors

    International Nuclear Information System (INIS)

    Grotz, S.P.; Duggan, W.; Krakowski, R.; Najmabadi, F.; Wong, C.P.C.

    1989-01-01

    The TITAN reactor is a compact, high-power-density (neutron wall loading 18 MW/m 2 ) machine, based on the reversed-field-pinch (RFP) confinement concept. Two designs for the fusion power core have been examined: TITAN-I is based on a self-cooled lithium loop with a vanadium-alloy structure for the first wall, blanket and shield; and TITAN-II is based on an aqueous loop-in-pool design with a LiNO 3 solution as the coolant and breeder. The compact design of the TITAN fusion power core, (FPC) reduces the system to a few small and relatively low mass components, making toroidal segmentation of the FPC unnecessary. A single-piece maintenance procedure is possible. The potential advantages of single-piece maintenance procedures are: (1) Short period of down time; (2) improved reliability; (3) no adverse effects resulting from unequal levels of irradiation; and (4) ability to continually modify the FPC design. Increased availability can be expected from a fully pre-tested, single-piece FPC. Pre-testing of the FPC throughout the assembly process and prior to installation into the reactor vault is discussed. (orig.)

  5. Utilization of a typical 250 kW TRIGA Mark II reactor at a University

    International Nuclear Information System (INIS)

    Villa, M.; Boeck, H.; Musilek, A.

    2007-01-01

    The 250 kW TRIGA Mark-II reactor operates since March 1962 at the Atominstitut Vienna/Austria. Its main tasks are nuclear education and training in the fields of neutron- and solid state physics, nuclear technology, reactor safety, radiochemistry, radiation protection and dosimetry, and low temperature physics and fusion research. Academic research is carried out by students in the above mentioned fields coordinated and supervised by about 70 staff members with the aim of a masters- or PhD degree in one of the above mentioned areas. During the past 15 years about 580 students graduated through the Atominstitut. In addition, the Atominstitut co-operates closely with the nearby located IAEA in research projects, coordinated research programs (CRP) and supplying expert services. Regular training courses are carried out for the IAEA for Safeguard Trainees, fellowship places are offered for scientists from developing countries and staff members carry out expert missions to research centres in Africa, Asia and South America. Special Nuclear Material (SNM) is stored for calibration purposes at the Atominstitut belonging to the IAEA. (author)

  6. Measurements of neutron flux distributions in the core of the Ljubljana TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Rant, J.; Ravnik, M.; Mele, I.; Dimic, V.

    2008-01-01

    Recently the Ljubljana TRIGA Mark II Reactor has been refurbished and upgraded to pulsed operation. To verify the core design calculations using TRIGAP and PULSTR1 codes and to obtain necessary data for future irradiation and neutron beam experiments, an extensive experimental program of neutron flux mapping and neutron field characterization was carried out. Using the existing neutron measuring thimbles complete axial and radial distributions in two radial directions were determined for two different core configurations. For one core configuration the measurements were also carried out in the pulsed mode. For flux distributions thin Cu (relative measurements) and diluted Au wires (absolute values) were used. For each radial position the cadmium ratio was determined in two axial levels. The core configuration was rather uniform, well defined (fresh fuel of a single type, including fuelled followers) and compact (no irradiation channels or gaps), offering unique opportunity to test the computer codes for TRIGA reactor calculations. The neutron flux measuring procedures and techniques are described and the experimental results are presented. The agreement between the predicted and measured power peaking factors are within the error limits of the measurements (<±5%) and calculations (±10%). Power peaking occurs in the B ring, and in the A ring (centre) there is a significant flux depression. (authors)

  7. Comparison of standardised decommissioning costing tools on pilot Vienna TRIGA MARK-II research reactor

    International Nuclear Information System (INIS)

    Hornacek, M.; Kristofova, K.; Slugen, V.; Zachar, M.; Stummer, T.

    2017-01-01

    The main purpose of the paper is to compare decommissioning costing code CERREX (Cost Estimation for Research Reactors in Excel) with advanced calculation methodology applied in eOMEGA-RR code. CERREX code was developed in line with the IAEA recommendations for decommissioning costing of research facilities and fully implements the ISDC (International Structure for Decommissioning Costing of Nuclear Installations) structure and costing methodology. In comparison with CERREX, usually applied in preliminary costing, the code eOMEGA-RR incorporates the realistic activity and material flow during decommissioning process (e.g. decontamination, dismantling and waste management). This advanced approach enables to carry out the decommissioning planning and costing more effectively. Moreover, the user-friendly interface helps to perform wide range of sensitivity analyses. In order to meet the above mentioned objectives, the model calculation costing case for TRIGA MARK-II research reactor in Vienna was developed in both calculation codes. The whole process covered four step-by-step procedures to be implemented. At first, inventory database taking into account physical as well as radiological parameters (e.g.: contamination, dose rates, nuclide vectors, limits and conditions) was developed. At second, advanced decommissioning costing case using CERREX and eOMEGA-RR code was created. At third, sensitivity analyses to estimate the impact of changing input parameters on calculated results were performed. Finally, costing results obtained from both cost calculation codes are compared and discussed. (authors)

  8. Culham conceptual Tokamak reactor MkII. Conceptual layout of buildings for a twin reactor power station

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.; Harding, N.H.

    1981-01-01

    This paper discusses the conceptual design of the nuclear complex of a 2400 MWe twin fusion reactor power station utilising common services and a single containment building. The design is based upon environmental and maintenance logistical requirements, the provision of adequate storage, workshop and construction facilities and the constraints imposed by the geometry of the main and auxiliary reactor coolant systems. (author)

  9. Neutron radiography applications in I.T.U. TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Tugrul, A. B.

    2002-01-01

    Neutron radiography is an important radiographic technique which is supplied different and advanced information according to the X or gamma ray radiography. However, it has a trouble for supplying the convenient neutron sources. Tangential beam tube of Istanbul Technical University (ITU) TRIGA Mark-II Training and Research Reactor has been arranged for using neutron radiography. The neutron radiography set defined as detailed for the application of the technique. Two different techniques for neutron radiography are defined as namely, transfer method and direct method. For the transfer method dysprosium and indium screens are used in the study. But, dysprosium generally was preferred in many studies in the point of view nuclear safety. Gadolinium was used for direct method. Two techniques are compared and explained the preferring of the transfer technique. Firstly, reference composition is prepared for seeing the differences between neutron and X-ray or gamma radiography. In addition of it, some radiograph samples are given neutron and X-ray radiography which shows the different image characters. Lastly, some examples are given from archaeometric studies. One of them the brass plates of Great Mosque door in Cizre. After the neutron radiography application, organic dye traces are noticed. Other study is on a sword that belong to Urartu period at the first millennium B.C. It is seen that some wooden part on it. Some different artefacts are examined with neutron radiography from the Ikiztepe excavation site, then some animal post parts are recognized on them. One of them is sword and sheath which are corroded together. After the neutron radiography application, it can be noticed that there are a cloth between the sword and its sheath. By using neutron radiography, many interesting and detailed results are observed in ITU TRIGA Mark-II Training and Research Reactor. Some of them shouldn't be recognised by using any other technique

  10. Archaeometric studies by using neutron radiography in ITU TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Tugrul, A. Beril

    2008-01-01

    Archaeometric many studies have been done by using neutron radiography in ITU TRIGA Mark-II Training and Research Reactor for over 15 years. Tangential beam tube has been arranged for using neutron radiography. Generally, transfer technique has been preferred with using dysprosium screen, but indium screen also is used. Some studies are described which are all on the Anatolian artefacts. The first study from 13th century AD deals with Seljukian period from south-east Anatolia. It investigated a plate from Great Mosque door in Cizre. With means of the neutron radiography painting traces are investigated on the plates. Organic dye traces are noticed on some of plates, which have generally animal figures. Other studies from Urartu period at the first millennium B.C, investigates artefacts found at the vicinity of Van on east Anatolia. An important one is a sword that was found in a grave. It has some corrosion defects. The neutron radiography was applied and shown that wooden parts are there. Other studies referred to samples from the Ikiztepe Excavation site on north Anatolia. Many artefacts were examined by neutron radiography. Some of them evidenced animal parts are recognised as covering parts. An interesting result was obtained to a sword and its sheath that were corroded together. After the neutron radiography applications, it was noticed that there are a cloth between the sword and its sheath. Hence, it was the cause of corrosion of the artefact. By using neutron radiography, many interesting and detailed results were observed by means of the neutron beam from the ITU TRIGA Mark-II Training and Research Reactor. Some of them could not be evidenced by means of any other technique

  11. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  12. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  13. Final report-passive safety optimization in liquid sodium-cooled reactors

    International Nuclear Information System (INIS)

    Cahalana, J. E.; Hahn, D.

    2007-01-01

    This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety

  14. Improvements in fabrication of metallic fuels

    International Nuclear Information System (INIS)

    Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

    1989-12-01

    Argonne National Laboratory is currently developing a new liquid- metal cooled breeder reactor known as the Integral Fast Reactor (IFR). IFR fuels represent the state-of-the-art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, to be discussed below, will support the fully remote fuel cycle facility that as an integral part of the IFR concept will be demonstrated at the EBR-II site. 3 refs

  15. Using TRIGA Mark II research reactor for irradiation with thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kolšek, Aljaž, E-mail: aljaz.kolsek@gmail.com; Radulović, Vladimir, E-mail: vladimir.radulovic@ijs.si; Trkov, Andrej, E-mail: andrej.trkov@ijs.si; Snoj, Luka, E-mail: luka.snoj@ijs.si

    2015-03-15

    Highlights: • Monte Carlo N-Particle Transport Code was used to design and perform calculations. • Characterization of the TRIGA Mark II ex-core irradiation facilities was performed. • The irradiation device was designed in the TRIGA irradiation channel. • The use of the device improves the fraction of thermal neutron flux by 390%. - Abstract: Recently a series of test irradiations was performed at the JSI TRIGA Mark II reactor for the Fission Track-Thermoionization Mass Spectrometry (FT-TIMS) method, which requires a well thermalized neutron spectrum for sample irradiation. For this purpose the Monte Carlo N-Particle Transport Code (MCNP5) was used to computationally support the design of an irradiation device inside the TRIGA model and to support the actual measurements by calculating the neutron fluxes inside the major ex-core irradiation facilities. The irradiation device, filled with heavy water, was designed and optimized inside the Thermal Column and the additional moderation was placed inside the Elevated Piercing Port. The use of the device improves the ratio of thermal neutron flux to the sum of epithermal and fast neutron flux inside the Thermal Column Port by 390% and achieves the desired thermal neutron fluence of 10{sup 15} neutrons/cm{sup 2} in irradiation time of 20 h.

  16. Lessons learned from Gen II NPP staffing approaches applicable to new reactors - 15003

    International Nuclear Information System (INIS)

    Goodnight, C.

    2015-01-01

    This paper discusses lessons learned from the operation of the Gen II fleet of existing nuclear power plants (NPPs), in terms of staffing, that can be applied to the final design, deployment, and operation of new reactor designs. The most significant of these lessons is the need to appropriately staff the facility, having the right number of people with the required skills and experience. This begs the question of how to identify those personnel requirements. For NPPs, there are five key factors that ultimately will determine the effectiveness and costs of operating nuclear power plants (NPPs): 1) The Nuclear Steam Supply System (NSSS) and the layout of the plant site; 2) The processes which the operating organization applies; 3) The organizational structure of the operating organization; 4) The organizational culture of the operating organization, and 5) The regulatory framework under which the licensee must operate. In summary, this paper identifies opportunities to minimize staffing and costs learned from Gen II NPPs that may be applicable for new nuclear plants. (author)

  17. Experimental and numerical determination of the dynamic properties of the reactor building of Atucha II NPP

    International Nuclear Information System (INIS)

    Ceballos, M.A.; Car, E.J.; Prato, T.A.; Prato, C.A.; Alvarez, L.M.; Godoy, A.R.

    1995-01-01

    Determination of the dynamic properties of the reactor building of Atucha II NPP is carried out in order to: i) Obtain valuable information for seismic qualification of the plant, and ii) Assess some procedures for testing and analysis that are used in the process of seismic evaluation of existing nuclear facilities founded on Quaternary soil deposits. Both steady state and impulsive dynamic tests were performed but attention is centered here in tile techniques used to determine natural frequencies and modal damping ratios with impulsive tests. Numerical analyses were performed by means of a 3-D model model of the superstructure together with foundation stiffness coefficients derived in a separate paper from steady state vibration tests, and also from analysis with a 2-D F.E. model of the soil layers capable of approximating the 3-D features of the problem. The computed foundation stiffness coefficients are compared both with those obtained from the tests and from an axisymmetric F.E. model; results indicate that foundation stiffness coefficients calculated with F.E. models with soil parameters given by laboratory tests performed on cored samples are significantly lower than those given by the steady state vibration tests. (author)

  18. Gas dynamics in the central cavity of HYLIFE-II reactor

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.; Colella, P.

    1992-01-01

    In a HYLIFE-II ICF reactor, the microfusion of the D-T capsule in the center of the chamber produces X-rays that can ablate a thin layer off the liquid blanket which protects the first structural wall Thisablated material will implode toward the center line of the central cavity due to the initial vacuum and cylindrical geometry, and then rebound back to the liquid blanket vent through it and exert a pressure ''impulse'' onto the structural wall. The initial ablation occurs in a very short period with very small characteristic length and the implosion and rebounding processes feature very high pressures and temperatures. The proper design of the chamber relies on the reasonably accurate analysis of the gas dynamics in the central cavity and the gas-liquid interaction. In this paper, a second order Godunov numerical method is used to solve the compressible flow equations in the central cavity. The rarefaction and shock phenomena are very well captured by the numerical calculation. The equation of state for Flibe vapor is used in the calculation along with the parameters for the HYLIFE-II design. Since the radiation transport has not yet been included in the current calculations, the vapor possesses higher energy and therefore temperature. The total mass vaporized will also be underestimated in the later time of the calculation. The incorporation of a radiation calculation into this code is our next goal

  19. Partial oxidation of Raffinate II and other mixtures of n-Butane and n-Butenes to maleic anhydride in a fixed-bed reactor

    OpenAIRE

    Brandstädter, Willi Michael

    2008-01-01

    The utilisation of the C4 streams of steamcrackers by converting raffinate II to maleic anhydride was studied. The oxidation reactions were investigated in a laboratory-scale fixed-bed reactor to determine reaction kinetics. The effects of pore diffusional resistance were investigated and explained. A two-dimensional pseudo-homogeneous reactor model was used for the simulation of a production-scale fixed-bed reactor. A flow scheme of the reactor section including a recycle was proposed.

  20. Neutronics analysis of the TRIGA Mark II reactor core and its experimental facilities

    International Nuclear Information System (INIS)

    Khan, R.

    2010-01-01

    The neutronics analysis of the current core of the TRIGA Mark II research reactor is performed at the Atominstitute (ATI) of Vienna University of Technology. The current core is a completely mixed core having three different types of fuels i.e. aluminium clad 20 % enriched, stainless steel clad 20 % enriched and SS clad 70 % enriched (FLIP) Fuel Elements (FE(s)). The completely mixed nature and complicated irradiation history of the core makes the reactor physics calculations challenging. This PhD neutronics research is performed by employing the combination of two best and well practiced reactor simulation tools i.e. MCNP (general Monte Carlo N-particle transport code) for static analysis and ORIGEN2 (Oak Ridge Isotop Generation and depletion code) for dynamic analysis of the reactor core. The PhD work is started to develop a MCNP model of the first core configuration (March 1962) employing fresh fuel composition. The neutrons reaction data libraries ENDF/B-VI is applied taking the missing isotope of Samarium from JEFF3.1. The MCNP model of the very first core has been confirmed by three different local experiments performed on the first core configuration. These experiments include the first criticality, reactivity distribution and the neutron flux density distribution experiment. The first criticality experiment verifies the MCNP model that core achieves its criticality on addition of the 57th FE with a reactivity difference of about 9.3 cents. The measured reactivity worths of four FE(s) and a graphite element are taken from the log book and compared with MCNP simulated results. The percent difference between calculations and measurements ranges from 4 to 22 %. The neutron flux density mapping experiment confirms the model completely exhibiting good agreement between simulated and the experimental results. Since its first criticality, some additional 104-type and 110-type (FLIP) FE(s) have been added to keep the reactor into operation. This turns the current