WorldWideScience

Sample records for reactor hot laboratory

  1. Report on operation utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1982-03-01

    Activities of the Division of Research Reactor Operation in fiscal 1980 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  2. Report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1980-03-01

    Activities of the Division of Research Reactor Operation in fiscal 1978 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  3. Report on operation, utilization and technical development of Research Reactors and Hot Laboratory

    International Nuclear Information System (INIS)

    1984-10-01

    Activities of the Division of Research Reactor Operation in fiscal 1981 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  4. Annual report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1990-09-01

    This report describes the activities of the Department of Research Reactor Operation in fiscal year of 1989. It also presents some technical topics on the reactor operation and utilization in details. The Department is responsible for operation of the research reactors, JRR-2 and JRR-4, and the Hot Laboratory. The research reactor JRR-3 was reconstructed to enhance the performance for utilization. The first criticality was achieved on March 22, 1989, and it subsequently went into operation. In connection with the reactor operation, the various research and development activities in the area of fuel management, water chemistry, radiation monitoring and material irradiation have been made. In the Hot Laboratory, post-irradiation examinations of fuels and materials have been carried out along with the development of related techniques. (author)

  5. Examination in hot laboratories of irradiated fuels from fast reactors

    International Nuclear Information System (INIS)

    Clottes, G.; Peray, R.; Ratier, J.L.

    1980-05-01

    Low irradiation rate examinations were carried out soon after the Rapsodie, Rapsodie Fortissimo and Phenix reactors were started up for the first time in order to check the level of maximum temperatures reached and the radial migration of oxygen and plutonium and to assess the movements of fuels inside the cladding. The other examinations were effected at a high specific burnup in order to defines the limit specific burnup securing the integrity of the fuel pin claddings (distortion, ruptures and possible consequences). The examinations carried out so far on fuel elements coming from Phenix or Rapsodie have allowed good fuel surveillance to be undertaken and the acquisition of a large number of data, thanks to which the fuel characteristics of future reactors of the system have been developed [fr

  6. Handbook of materials testing reactors and ancillary hot laboratories in the European Community

    International Nuclear Information System (INIS)

    1977-01-01

    The purpose of this Handbook is to make available to those interested in 'in-pile' irradiation experiments important data on Materials Testing Reactors in operation in the European Community. Only thermal reactors having a power output of more than 5 MW(th) are taken into consideration. In particular, detailed technical information is given on the experimental irradiation facilities of the reactors, their specialized irradiation devices (loops and instrumented capsules), and the associated hot cell facilities for post-irradiation examination of samples

  7. Annual report on operation, utilization and technical development of Research Reactors and Hot Laboratory, from April 1, 1983 to March 31, 1984

    International Nuclear Information System (INIS)

    1984-11-01

    Activities of the Department of Research Reactor Operation in fiscal year 1983 are described. The department is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other work has also been performed, such as technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, we have performed post-irradiation examinations of fuels and materials, and also development of examination procedures, too. (author)

  8. Annual report on operation, utilization and technical development of research reactors and hot laboratory, from April 1, 1987 to March 31, 1988

    International Nuclear Information System (INIS)

    1988-10-01

    Activities of the Department of Research Reactor Operation in fiscal year 1987 are described. The department is responsible for operation and maintenance of JRR-2, JRR-4, Research Reactor Development Division which performed upgraded JRR-3 and other R D, and Hot Laboratory. In the above connection various other work has also been performed, such as technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, we have performed post-irradiation examinations of fuels and materials, and also development of examination procedures, too. (author)

  9. Annual report on operation, utilization and technical development of research reactors and hot laboratory, from April 1, 1985 to March 31, 1986

    International Nuclear Information System (INIS)

    1986-10-01

    Activities of the Department of Research Reactor Operation in fiscal year 1985 are described. The department is responsible for operation and maintenance of JRR-2, JRR-4, Research Reactor Development Division which performed upgraded JRR-3 and other R and D, and Hot Laboratory. In the above connection various other work has also been performed, such as technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, we have performed post-irradiation examinations of fuels and materials, and also development of examination procedures, too. (author)

  10. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    The European Working Group on ' Hot Laboratories and Remote Handling' is firmly established as the major contact forum for the nuclear R and D facilities at the European scale. The yearly plenary meetings intend to: - Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research; - Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling; - Promote normalization and co-operation, e.g., by looking at mutual complementarities; - Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The 41. plenary meeting was held in CEA Saclay from September 22 to 24, 2003 in the premises and with the technical support of the INSTN (National Institute for Nuclear Science and Technology). The Nuclear Energy Division of CEA sponsored it. The Saclay meeting was divided in three topical oral sessions covering: - Post irradiation examination: new analysis methods and methodologies, small specimen technology, programmes and results; - Hot laboratory infrastructure: decommissioning, refurbishment, waste, safety, nuclear transports; - Prospective research on materials for future applications: innovative fuels (Generation IV, HTR, transmutation, ADS), spallation source materials, and candidate materials for fusion reactor. A poster session was opened to transport companies and laboratory suppliers. The meeting addressed in three sessions the following items: Session 1 - Post Irradiation Examinations. Out of 12 papers (including 1 poster) 7 dealt with surface and solid state micro analysis, another one with an equally complex wet chemical instrumental analytical technique, while the other four papers (including the poster) presented new concepts for digital x-ray image analysis; Session 2 - Hot laboratory infrastructure (including waste theme) which was

  11. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    2007-01-01

    The Opening talk of the workshop 'Hot Laboratories and Remote Handling' was given by Marin Ciocanescu with the communication 'Overview of R and D Program in Romanian Institute for Nuclear Research'. The works of the meeting were structured into three sections addressing the following items: Session 1. Hot cell facilities: Infrastructure, Refurbishment, Decommissioning; Session 2. Waste, transport, safety and remote handling issues; Session 3. Post-Irradiation examination techniques. In the frame of Section 1 the communication 'Overview of hot cell facilities in South Africa' by Wouter Klopper, Willie van Greunen et al, was presented. In the framework of the second session there were given the following four communications: 'The irradiated elements cell at PHENIX' by Laurent Breton et al., 'Development of remote equipment for DUPIC fuel fabrication at KAERI', by Jung Won Lee et al., 'Aspects of working with manipulators and small samples in an αβγ-box, by Robert Zubler et al., and 'The GIOCONDA experience of the Joint Research Centre Ispra: analysis of the experimental assemblies finalized to their safe recovery and dismantling', by Roberto Covini. Finally, in the framework of the third section the following five communications were presented: 'PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor' by Marcel Parvan et al., 'Adaptation of the pole figure measurement to the irradiated items from zirconium alloys' by Yury Goncharenko et al., 'Fuel rod profilometry with a laser scan micrometer' by Daniel Kuster et al., 'Raman spectroscopy, a new facility at LECI laboratory to investigate neutron damage in irradiated materials' by Lionel Gosmain et al., and 'Analysis of complex nuclear materials with the PSI shielded analytical instruments' by Didier Gavillet. In addition, eleven more presentations were given as posters. Their titles were: 'Presentation of CETAMA activities (CEA analytic group)' by Alain Hanssens et al. 'Analysis of

  12. The design of hot laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The need for specialized laboratories to handle radioactive substances of high activity has increased greatly due to the expansion of the nuclear power industry and the widespread use of radioisotopes in scientific research and technology. Such laboratories, which are called hot laboratories, are specially designed and equipped to handle radioactive materials of high activity, including plutonium and transplutonium elements. The handling of plutonium and transplutonium elements presents special radiation-protection and safety problems because of their high specific activity and high radiotoxicity. Therefore, the planning, design, construction and operation of hot laboratories must meet the stringent safety, containment, ventilation, shielding, criticality control and fire-protection requirements. The IAEA has published two manuals in its Safety Series, one on the safety aspects of design and equipment of hot laboratories (SS No.30) and the other on the safe handling of plutonium (SS No.39). The purpose of the symposium in Otaniemi was to collect information on recent developments in the safety features of hot laboratories and to review the present state of knowledge. A number of new developments have taken place as the result of growing sophistication in the philosophy of radiation protection as given in the ICRP recommendations (Report No.22) and in the Agency's basic safety standards (No.9). The topics discussed were safety features of planning and design, air cleaning, transfer and transport systems, criticality control, fire protection, radiological protection, waste management, administrative arrangements and operating experience

  13. Statistical hot spot analysis of reactor cores

    International Nuclear Information System (INIS)

    Schaefer, H.

    1974-05-01

    This report is an introduction into statistical hot spot analysis. After the definition of the term 'hot spot' a statistical analysis is outlined. The mathematical method is presented, especially the formula concerning the probability of no hot spots in a reactor core is evaluated. A discussion with the boundary conditions of a statistical hot spot analysis is given (technological limits, nominal situation, uncertainties). The application of the hot spot analysis to the linear power of pellets and the temperature rise in cooling channels is demonstrated with respect to the test zone of KNK II. Basic values, such as probability of no hot spots, hot spot potential, expected hot spot diagram and cumulative distribution function of hot spots, are discussed. It is shown, that the risk of hot channels can be dispersed equally over all subassemblies by an adequate choice of the nominal temperature distribution in the core

  14. Fire preparedness measures in buildings with hot laboratories

    International Nuclear Information System (INIS)

    Oberlaender, B.C.

    2003-01-01

    Important hot laboratory safety issues are the general design/construction of the building with respect to fire, fire prevention, fire protection, administrative controls, and risk assessment. Within the network of the European Working Group Hot Laboratories and Remote Handling items concerning 'fire preparedness measures in hot laboratories' were screened and studied. Two questionnaires were sent to European hot laboratories; the first in November 2002 on 'fire preparedness measures, fire detection and fire suppression/extinguishing in lead shielded cells, concrete shielded cells' and the second in June 2003 on 'Fire preparedness measures in buildings with hot laboratories'. The questionnaires were filled in by a total of ten hot laboratories in seven European countries. On request of participants the answers were evaluated and 'anonymised' for presentation and discussion at the plenary meeting. The answers showed that many European hot laboratories are implementing improvements to their fire protection programmes to comply with more stringent requirements of the national authorities. The recommendations ('International guidelines for the fire protection of Nuclear Power Plants') given by the insurance pools are followed up with national variations. An ISO standard (ISO 17873) is in progress giving criteria for the design and the operation of ventilation systems as well as fire hazard management in nuclear installations others than reactors

  15. Upgrades of Hanford Engineering Development Laboratory hot cell facilities

    International Nuclear Information System (INIS)

    Daubert, R.L.; DesChane, D.J.

    1987-01-01

    The Hanford Engineering Development Laboratory operates the 327 Postirradiation Testing Laboratory (PITL) and the 324 Shielded Materials Facility (SMF). These hot cell facilities provide diverse capabilities for the postirradiation examination and testing of irradiated reactor fuels and materials. The primary function of these facilities is to determine failure mechanisms and effects of irradiation on physical and mechanical properties of reactor components. The purpose of this paper is to review major equipment and facility upgrades that enhance customer satisfaction and broaden the engineering capabilities for more diversified programs. These facility and system upgrades are providing higher quality remote nondestructive and destructive examination services with increased productivity, operator comfort, and customer satisfaction

  16. Radiological design of hot laboratories

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-04-01

    The fundamental design objectives for a laboratory where work with highly radioactive and highly toxic materials, such as plutonium and transplutonium nuclides, is performed are (1) to accomplish the purpose of the laboratory; (2) to protect the environment, (3) to provide safe working conditions; and (4) to keep radiation exposure to staff as low as practicable. The major planning and design features of a well engineered plutonium or transplutonium laboratory are given

  17. Radiological design of hot laboratories

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-01-01

    The fundamental design objectives for a laboratory where work with highly radioactive and highly toxic materials, such as plutonium and transplutonium nuclides, is performed, are (1) to accomplish the purpose of the laboratory, (2) to protect the environment, (3) to provide safe working conditions, and (4) to keep radiation exposure to staff as low as practicable. The major planning and design features of well-engineered plutonium or transplutonium laboratory are given. (author)

  18. CAREM reactor thermohydraulic essays laboratory

    International Nuclear Information System (INIS)

    Horro, R.; Mazzi, R.; Rossini, A.

    1990-01-01

    The main characteristics, essays projected and the present state of the Thermohydraulic Essays Laboratory -under construction at present- prepared to meet the experimental needs resulting from a power reactor design of the CAREM type, are herein described. (Author) [es

  19. Hot cells of the Osiris reactor

    International Nuclear Information System (INIS)

    Jourdain, Jean

    1969-10-01

    Hot cells of the Osiris reactor are β and γ type cells. Their main functions are: the extraction of irradiated samples from experimental assemblies (irradiation loops, experimental devices) used to irradiate them, the reinstallation of experimental setups with irradiated samples, the fractioning of unrecoverable experimental devices, and the removal of irradiated samples and active wastes. Each cell is therefore equipped with means for remote handling, for observation and for removal, and a venting. Each cell may also receive additional equipment, notably for the dismantling of experimental setups. This report presents the cell implantation in the reactor, elements to be handled in cells, the path followed by elements to be handled (arrival, departure, conveyors). It describes the cells (capacity and protection, design and construction, external and internal arrangements) and the cell equipment (remote handling devices, windows, lighting, lifting unit, sound system), and the installed electric power. A realisation planning is provided. An appendix indicates the cost of these hot cells

  20. Design and management of hot-laboratories

    International Nuclear Information System (INIS)

    1976-09-01

    This document is a manual for the design and management of hot-laboratories. It is composed of three parts. The first part is devoted to the design of hot-laboratories. Items included here are; conceptual design; many regulations which must be considered at design stage; design of cave and its shielding; and the design of building, ventilation, and draining. Many examples of specific designs are presented by figures and photographs. The second part is concerned with the methods of operation management. Organizational structure, scheduling of operation, process management, and regulatory problems are discussed with some examples. Technological problems associated with the operation of a hot laboratory (e.g., manipulator, transfer machine, maintenance, and decontamination) are also discussed based on the authors' experiences. An example of the operation manual is presented for reference. The third part is devoted to the safety management and the training of personnel. The regulations by law are briefly explained. Most of this part is devoted to the problem of monitoring radio-activity. Monitoring of control areas, radio-active wastes, and personal dosage is discussed together with many other specific monitoring problems. As for training, the purpose and the present status are explained. (Aoki, K.)

  1. Simplified numerical simulation of hot channel in sodium cooled reactor

    International Nuclear Information System (INIS)

    Fonseca, F. de A.S. da; Silva Filho, E.

    1988-12-01

    The thermal-hydraulic parameter values that restrict the operation of a liquid sodium cooled reactor are not established by the average conditions of the coolant in the reactor core but by the extreme conditions of the hot channel. The present work was developed to analysis of hot channel of a sodium cooled reactor, adapting to this reactor an existent simplified model for hot channel of pressurized water reactor. The model was applied for a standard sodium reactor and the results are considered satisfatory. (author) [pt

  2. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  3. Development status of post irradiation examination techniques at the JMTR Hot Laboratory

    International Nuclear Information System (INIS)

    Ohmi, M.; Ohsawa, K.; Nakagawa, T.; Umino, A.; Shimizu, M.; Satoh, H.; Oyamada, R.

    1992-01-01

    Hot laboratory at Oarai Research Establishment was founded to examine the objects mainly irradiated at JMTR (Japan Materials Testing Reactor) and has been operated since 1971. A wide variety of post-irradiation examinations (PIE) is available using the hot laboratory. Continuous efforts are made to develop new PIE techniques to accommodate the user's requirements. The following are main techniques recently developed in the hot laboratory; 1. Remote capsule assembly including remote weld of irradiated objects for reirradiation in JMTR. 2. Fracture toughness tests of reactor component materials. 3. Creep tests of heat resistance alloys in high temperature conditions. 4. Tests of irradiation assisted stress corrosion cracking (IASCC). 5. Examination techniques of miniaturized test specimens. This report describes an outline of the hot laboratory with main emphasis on the new PIE techniques. (author)

  4. Current status and future prospects of JMTR Hot Laboratory

    International Nuclear Information System (INIS)

    Baba, Osamu; Ooka, Norikazu; Hoshiya, Taiji

    1999-01-01

    A wide variety of post-irradiation examinations (PIEs) for research and development of nuclear fuels and materials to be utilized in nuclear field is available in three kinds of β - γ hot cells; concrete, lead and steel cells in the JMTR Hot Laboratory (JMTR HL) associated with the Japan Materials Testing Reactor (JMTR). In addition to PIEs, re-capsuling including re-instrumentation on the irradiated specimen is currently conducted for the power ramping tests of the LWR fuels using the Boiling Water Capsule (BOCA) or for the re-irradiation tests in the different neutron fields (coupling irradiation test). The newly developed techniques by the JMTR HL have provided us with the key information about the irradiation effects on mechanical and physical properties of the specimen in various environments as fission and fusion reactors. These techniques are focused on several topics as follows; (1) miniaturized specimen test as an advanced mechanical test, (2) slow strain rate tensile test (SSRT) and crack propagation measurement in high temperature and pressure water for the study of Irradiation Assisted Stress Corrosion Cracking (IASCC) of LWR core internals, (3) handling technique on materials containing tritium for the research and development of tritium breeders and neutron multiplier for fusion reactors, (4) jointing method using the conventional Tungsten Inert Gas (TIG) welding for re-assembling of irradiation capsules and/or re-fabrication of specimen, and (5) Nondestructive examination using ultrasonic wave and infrared thermography for the quantitative evaluation of irradiation embrittlement of structural materials in fission and fusion reactors. As there are various PIE facilities around Oarai site, mutual exchange of PIE information, interchange of researchers and mutual utilization on PIE facilities are desired to raise the scientific and technical potential on PIE and to get the break-through of the study in the field of nuclear applications. (author)

  5. A university hot laboratory for teaching and research

    International Nuclear Information System (INIS)

    Heinonen, O.; Miettinen, J.K.

    1976-01-01

    In small countries which have limited material and capital resources there is more need for studying and teaching reactor chemistry in universities than there is in countries with special nuclear research and training centres. A new 150-m 2 laboratory of reactor chemistry was added to the premises of the Department of Radiochemistry, University of Helsinki, in October 1975. It contains a hot area with low-pressure air-conditioning, a sanitary room, a low-activity area, and an office area. The main instrument is a mass-spectrometer MI-1309 equipped with an ion counter which is particularly useful for plutonium analysis. The laboratory can handle samples up-to 10Ci gamma-acitivity - which equals one pellet of a fuel rod - in a sealed lead cell which has an interchangeable box for alpha-active work. Pretreated samples are submitted to chemical separations in glove-boxes. Samples for alpha and mass spectroscopy are also prepared in glove-boxes. Also the laboratory is provided with fume hoods suitable for building lead shields. Radiation protection and special features typical to the university environment are discussed. Methods for verfication of contamination and protection against internal and external contamination are applied. These include air monitoring, analysis of excreta, and whole-body counting. (author)

  6. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    International Nuclear Information System (INIS)

    Rosenthal, Murray Wilford

    2009-01-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  7. New facilities of the ECN hot cell laboratory

    International Nuclear Information System (INIS)

    Duijves, K.A.; Konings, R.J.M.

    1996-04-01

    A description is given of two recent expansions of the ECN Hot Cell Laboratory in Petten; a production facility for molybdenum-99 and an actinide laboratory, a special facility to investigate unirradiated alpha- and beta-active samples. (orig.)

  8. Current status and future plan of JMTR Hot Laboratory

    International Nuclear Information System (INIS)

    Hoshiya, Taiji; Usui, Takashi; Saito, Jun-ichi; Shimizu, Michio; Nakakura, Yuichi; Mimura, Hideaki; Nakagawa, Tetsuya; Ooka, Norikazu

    1999-01-01

    The newly developed techniques by the Hot Laboratory (JMTR HL) have provided for us the key information on behavior of specimens due to mechanical / physical / chemical / synergistic effects of radiation, stress and water for fission and fusion reactor environment. These techniques are focused on several topics as follows; (1) miniaturized specimen test for the development of fusion reactor materials, (2) slow strain rate tensile testing (SSRT) and crack propagation measuring tests for the study of Irradiation Assisted Stress Corrosion Cracking (IASCC) of core internals of LWR, (3) handling technique on specimens including tritium for the research and development of tritium breeders and neutron multiplier as fusion blanket materials, (4) joining method using the Tungsten Inert Gas (TIG) welding technique for re-assembling of capsule and re-fabrication of specimen and (5) nondestructive evaluation using ultrasonic wave and infrared thermography for the quantitative evaluation of irradiation brittleness of key components of fission and/or fusion reactor. The mutual exchange of PIE information, interchange of researchers and mutual utilization on PIE facilities are indispensable to raise PIE potentials and to get the break-through in the study of nuclear power. (author)

  9. Accelerators and nuclear reactors as tools in hot atom chemistry

    International Nuclear Information System (INIS)

    Lindner, L.

    1975-01-01

    The characteristics of accelerators and of nuclear reactors - the latter to a lesser extent - are discussed in view of their present and future use in hot atom chemistry research and its applications. (author)

  10. Final-Independent Confirmatory Survey Report For The Reactor Building, Hot Laboratory, Primary Pump House, And Land Areas At The Plum Brook Reactor Facility, Sandusky, Ohio DCN:2036-SR-01-10

    International Nuclear Information System (INIS)

    Bailey, Erika N.

    2011-01-01

    In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities

  11. Kinetics of Pressurized Water Reactors with Hot or Cold Moderators

    Energy Technology Data Exchange (ETDEWEB)

    Norinder, O

    1960-11-15

    The set of neutron kinetic equations developed in this report permits the use of long integration steps during stepwise integration. Thermal relations which describe the transfer of heat from fuel to coolant are derived. The influence upon the kinetic behavior of the reactor of a number of parameters is studied. A comparison of the kinetic properties of the hot and cold moderators is given.

  12. Refurbishment of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Rosenberg, K.; Henslee, S.P.; Michelbacher, J.A.; Coleman, R.M.

    1997-01-01

    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. All penetrations within the facility were sealed; the ventilation system was redesigned, upgraded and replaced; the manipulators were replaced; the hot cell windows were removed, refurbished, and reinstalled; all hot cell utilities were replaced; a lead-shielded glovebox housing an Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO2 fire suppression system and other ALHC support equipment were installed

  13. Requisite accuracy for hot spot factors in fast reactors

    International Nuclear Information System (INIS)

    Miki, Kazuyoshi; Inoue, Kotaro

    1976-01-01

    In the thermal design of a fast reactor, it should be most effective to reduce hot spot factors to the lowest possible level compatible with safety considerations, in order to minimize the design margin for the temperature prevailing in the core. Hot spot factors account for probabilistic and statistic deviations from nominal value of fuel element temperatures, due to uncertainties in the data adopted for estimating various factors including the physical properties. Such temperature deviations necessitate the provision of correspondingly large design margins for temperatures in order to keep within permissible limits the probability of exceeding the allowable temperatures. Evaluation of the desired accuracy for hot spot factors is performed by a method of optimization, which permits determination of the degree of accuracy that should minimize the design margins, to give realistic results with consideration given not only to sensitivity coefficients but also to the present-day uncertainty levels in the data adopted in the calculations. A concept of ''degree of difficulty'' is introduced for the purpose of determining the hot spot factors to be given higher priority for reduction. Application of this method to the core of a prototype fast reactor leads to the conclusion that the hot spot factors to be given the highest priority are those relevant to the power distribution, the flow distribution, the fuel enrichment, the fuel-cladding gap conductance and the fuel thermal conductivity. (auth.)

  14. Encapsulation of tritiated wastes in hot laboratories

    International Nuclear Information System (INIS)

    Hayet, L.; Bourdinaud, P.

    1982-06-01

    From 1962 to 1976, one of the laboratories called ''Cellule 4'', was equipped to produce large quantities of tritium. The decisions taken in June 1976 to redirect the activities of the Radioisotopes Department included the suspension of the tritium activities of ''Cellule 4'' at the Saclay Nuclear Research Center. From 1976 to 1981, many CEA departments contributed to the design and implementation of a packaging procedure for tritiated wastes resulting from the dismantling of ''Cellule 4''. A classification into three groups was adopted for this purpose. (1) Packaging in a welded stainless steel container. (2) Packaging in a reinforced concrete shell lined internally with a thick coat of epoxy resin charged with sand. (3) Packaging in a reinforced concrete shell lined internally with a thin coat of epoxy resin. The dismantling operations were carried out in three phases. (1) (2 1/2 months): the T activity remained unchanged during this period and waste selection was carried out. (2) (2 1/2 months): waste dismantling and packaging of groups (2) and (3) were carried out in this phase. Activity decayed rapidly. (3) (2 months): the work performed included the loosening and cutting of the general structures [fr

  15. Radiation monitoring programme in a university hot laboratory

    International Nuclear Information System (INIS)

    Tillander, M.; Heinonen, O.J.

    1979-01-01

    The Department of Radiochemistry in the University of Helsinki is the only institute teaching radiochemistry at the university level in Finland. The research programme of the Deparment must therefore include the uses of radiation and radionuclides in many branches of science. The students must receive adequate instruction in radiation protection for safe work in laboratories. This also has the educational benefit that the radiochemists will subsequently be able to observe the necessary safety precautions when employing ionizing radiation professionally. The Department of Radiochemistry consists of the following laboratories: a radiotracer laboratory, a neutron/electron and a gamma irradiation laboratory, an environmental low activity level laboratory, a whole-body counting laboratory, a reactor chemistry laboratory and a waste-treatment facility. The radiation protection organization of the Department is presented. Various methods of monitoring, including advantages and disadvantages are discussed. Emphasis is placed on the reactor chemistry laboratory where transuranic elements are utilized. These elements are highly radiotoxic and their monitoring in most cases requires destructive analysis. Different methods of determining external and internal doses are evaluated with regard to sensitivity and accuracy. Detection limits for radionuclides utilized in the laboratory are presented for different measurement systems, including non-destructive monitoring, spectrometry after chemical analysis, liquid scintillation counting and low-energy gamma spectrometry using a CsI-NaI scintillation detector. The guidelines laid down in the IAEA Safety Series Manuals are discussed in the light of practical experience. (author)

  16. Hot laboratory design on the basis of standardized components

    International Nuclear Information System (INIS)

    Cadrot, J.

    1976-01-01

    The paper describes the principal effects on hot laboratory design brought about over the last 15 years by the use of standardized components developed jointly with the CEA and the industrial associates of AFINE. After a rapid survey of the various advantages of standardization, the author turns to the specific case of a laboratory producing mixed plutonium and uranium oxide fuels, giving a brief description of the glove-boxes and ancillary equipment. He then deals with the design of an isotope production laboratory. The basic component is the DR 200 standard cell, which permits the civil engineering work to be effected on modular principles. Use of a safety-flow pressure regulating valve makes possible pneumatic automation of the production-cell internals. A substantial gain in output is the result. In the next section the paper refers to a pilot facility for irradiated fuel studies, and describes the components used, which require taking into account the high activities and intense radiations encountered in studies of this type. The author then demonstrates the flexibility with which standardized components can be adapted to different uses, thus solving many distinct problems, an example of which is represented by a semi-hot box for handling up to 100g of americium-241. Finally, the paper offers a rapid summary of the effects of standardization at the various stages concerned, from initial design to the commissioning of a hot laboratory. (author)

  17. Current activities in development of PIE techniques in JMTR hot laboratory

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ohmi, Masao; Shimizu, Michio; Kaji, Yoshiyuki; Ueno, Fumiyoshi

    2006-01-01

    A wide variety of post-irradiation examinations (PIEs) for research and development of nuclear fuels and materials to be utilized in nuclear field has been carried out since 1971 in three kinds of β-γ hot cells; concrete, lead and steel cells in the JMTR Hot Laboratory (JMTR HL) associated with the Japan Materials Testing Reactor (JMTR). In addition to PIEs, the re-capsuling work including re-instrumentation was also conducted for the power ramping tests of the irradiated LWR fuels using Boiling Water Capsule (BOCA). Recently, new PIE techniques are required for the advanced irradiation studies. In this paper, the irradiation assisted stress corrosion cracking (IASCC) growth test technique of irradiated in-core structural materials and the remote operation technique of the atomic force microscope (AFM) are described as JMTR HL's current activities in the development of new PIE techniques. (author)

  18. Annual report on operation and management of hot laboratories and facilities. From April 1, 2006 to March 31, 2007

    International Nuclear Information System (INIS)

    2008-02-01

    This is an annual report in a fiscal year 2006 that describes activities of the Reactor Fuel Examination Facility (RFEF), the Waste Safety Testing Facility (WASTEF), the Research Hot Laboratory (RHL) and the other research hot facilities in the Department of Hot laboratories and facilities. In RFEF, destructive examinations of BWR fuel rods and re-assembly were carried out as PIEs for a fuel assembly irradiated for 5 cycles in the Fukushima-2 Nuclear Power Station Unit-1. Mechanical property measurement of high burn-up fuel rods were performed as spent fuel integrity test for long term dry storage in order to formulate guidelines and technical criteria. In WASTEF, Slow Strain Rate Tests (SSRT) and Uni-axial Constant Load Tensile tests (UCLT) of in-core materials in pressurized high-temperature water condition, stress corrosion cracking tests for high-performance fuel cladding material and calorific value measurement of pulse irradiated fuel in NSRR were carried out. In RHL, equipment un-installations and decontamination were performed to lead cells according to the decommissioning plan. And modification of fuel storage room were started in order to utilize the facility for un-irradiated fuel storage after a fiscal year 2007. In addition, management of the other research hot facilities (No.1 Plutonium Laboratory, No.2 Research Laboratory, No.4 Research Laboratory, Analytical Chemistry Laboratory, Uranium Enrichment Laboratory, (Simulation Test for Environmental Radionuclide Migration (STEM), Clean Laboratory for Environmental Analysis and Research (CLEAR) and fuel storage) were carried out. (author)

  19. Decontamination of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; Rosenberg, K.E.; Coleman, R.M.

    1995-11-01

    An Analytical Laboratory Hot Cell Facility at Argonne National Laboratory-West (ANL-W) had been in service for nearly thirty years. In order to comply with current DOE regulations governing such facilities and meet programmatic requirements, a major refurbishment effort was mandated. Due to the high levels of radiation and contamination within the cells, a decontamination effort was necessary to provide an environment that permitted workers to enter the cells to perform refurbishment activities without receiving high doses of radiation and to minimize the potential for the spread of contamination. State-of-the-art decontamination methods, as well as time-proven methods were utilized to minimize personnel exposure as well as maximize results

  20. Localization of the hot spots in a pebble bed reactor

    International Nuclear Information System (INIS)

    Chen, Leisheng; Lee, Wooram; Lee, Jaeyoung

    2016-01-01

    The pebble bed reactor (PBR) is a candidate reactor type for the very high temperature reactor (VHTR), which is one of the Generation-IV reactor types. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. The conclusions are made and may contribute to a better design of a PBR core and a closer inspection of the local hot spots to avoid destruction of pebbles from happening. Thermal field of a PBR core is investigated in this study. Specifically, experiments on measuring the pebbles' surface temperature are performed. It is found that the upper pebble has an overall higher temperature profile than the other pebbles and the stagnation zone under does not increase its surface's temperature. In addition, the temperature profile of the side pebble shows a concave form and it keeps decreasing from the contact point to the vertex in the lower pebble. Lastly, the maximum temperature difference among these points is 5.83 deg. C. These findings above are validated by CFX simulations under two different turbulence models (k-e, SST) and two contact areas (diameter of 6mm and 3.5mm). By contrasting the temperature variation trends of all simulation cases, it is concluded that SST turbulence model with 20% intensity shows a better agreement with the experiment result, nevertheless, slightly deviation is also found in terms of total temperature difference and the peak appears in position 17-19 in experiments

  1. Localization of the hot spots in a pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leisheng; Lee, Wooram; Lee, Jaeyoung [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    The pebble bed reactor (PBR) is a candidate reactor type for the very high temperature reactor (VHTR), which is one of the Generation-IV reactor types. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. The conclusions are made and may contribute to a better design of a PBR core and a closer inspection of the local hot spots to avoid destruction of pebbles from happening. Thermal field of a PBR core is investigated in this study. Specifically, experiments on measuring the pebbles' surface temperature are performed. It is found that the upper pebble has an overall higher temperature profile than the other pebbles and the stagnation zone under does not increase its surface's temperature. In addition, the temperature profile of the side pebble shows a concave form and it keeps decreasing from the contact point to the vertex in the lower pebble. Lastly, the maximum temperature difference among these points is 5.83 deg. C. These findings above are validated by CFX simulations under two different turbulence models (k-e, SST) and two contact areas (diameter of 6mm and 3.5mm). By contrasting the temperature variation trends of all simulation cases, it is concluded that SST turbulence model with 20% intensity shows a better agreement with the experiment result, nevertheless, slightly deviation is also found in terms of total temperature difference and the peak appears in position 17-19 in experiments.

  2. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  3. The 'MELUSINE' reactor at Grenoble, France, and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the MELUSINE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities and specialized irradiation devices (loops and capsules). The information is presented in the form of six information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities

  4. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell

    International Nuclear Information System (INIS)

    Bazire, R.; Blin, J.; Cherel, G.; Duvaux, Y.; Cherel, G.; Mustelier, J.P.; Bussy, P.; Gondal, G.; Bloch, J.; Faugeras, P.; Raggenbass, A.; Raggenbass, P.; Fufresne, J.

    1959-01-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  5. Decommissioning program and future plan for research hot laboratory (2)

    International Nuclear Information System (INIS)

    Koya, Toshio; Nozawa, Yukio; Hanada, Yasushi; Ono, Katsuto; Kanazawa, Hiroyuki; Nihei, Yasuo; Owada, Isao

    2010-01-01

    The Research Hot Laboratory (RHL) in Japan Atomic Energy Agency (JAEA) was constructed in 1961, as the first one in JAPAN, to perform the examinations of irradiated fuels and materials. RHL consists of 10 heavy concrete cells and 38 lead cells, which had been contributed to research and development program in or out of JAEA for the investigation of irradiation behavior for fuels and nuclear materials. However, RHL is the one of target as the rationalization program for decrepit facilities in former Tokai institute. Therefore the decommissioning works of RHL have been started on April 2003. The decommissioning work will be progressing, dismantling the lead cells and decontamination of concrete caves then release in the regulation of controlled area. The 18 lead cells (including semi-hot cell and junior-cell) had been dismantled. Removal of the applause from the cells, survey of the contamination revel in the lead cells and prediction of radio active waste have been finished as the preparing work for dismantling of the remained 20 lead cells. The future plan of decommissioning work has been prepared to incarnate the basic vision and dismantling procedure. (author)

  6. Surveillance and radiological protection in the Hot Cell laboratory

    International Nuclear Information System (INIS)

    Ramirez, J.M.; Torre, J. De la; Garcia C, M.A.

    2004-01-01

    The Hot Cells Laboratory (LCC) located in the National Institute of Nuclear Research are an installation that was designed for the management at distance of 10,000 Curies of Co-60 or other radioactive materials with different values in activity. The management of such materials in the installation, implies to analyze and to determine the doses that the POE will receive as well as the implementation of protection measures and appropriate radiological safety so that is completed the specified by the ALARA concept. In this work it is carried out an evaluation of the doses to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of results is made with the program of surveillance and radiological protection implemented for the development of the works that carried out in the installation. (Author)

  7. Laboratory procedures used in the hot corrosion project

    International Nuclear Information System (INIS)

    Jeys, T.R.

    1980-01-01

    The objective of the Hot Corrosion Project in the LLNL Metals and Ceramics Division is to study the physical and chemical mechanisms of corrosion of nickel, iron, and some of their alloys when these metals are subjected to oxidizing or sulfidizing environments at temperatures between 850 and 950 0 C. To obtain meaningful data in this study, we must rigidly control many parameters. Parameters are discussed and the methods chosen to control them in this laboratory. Some of the mechanics and manipulative procedures that are specifically related to data access and repeatability are covered. The method of recording and processing the data from each experiment using an LS-11 minicomputer are described. The analytical procedures used to evaluate the specimens after the corrosion tests are enumerated and discussed

  8. Reactor D and D at Argonne National Laboratory - lessons learned

    International Nuclear Information System (INIS)

    Fellhauer, C. R.

    1998-01-01

    This paper focuses on the lessons learned during the decontamination and decommissioning (D and D) of two reactors at Argonne National Laboratory-East (ANL-E). The Experimental Boiling Water Reactor (EBWR) was a 100 MW(t), 5 MSV(e) proof-of-concept facility. The Janus Reactor was a 200 kW(t) reactor located at the Biological Irradiation Facility and was used to study the effects of neutron radiation on animals

  9. The 'SILOE' reactor at Grenoble, France and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the SILOE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  10. The DR 3 reactor at Risoe, Denmark and its associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DR 2 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of seven information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  11. The DIDO-reactor at Harwell, U.K. and ancillary hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DIDO reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  12. The 'OSIRIS' reactor at Saclay, France and available hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the OSIRIS reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  13. US DOE Idaho national laboratory reactor decommissioning

    International Nuclear Information System (INIS)

    Szilagyi, Andrew

    2012-01-01

    The United States Department of Energy (DOE) primary contractor, CH2M-WG Idaho was awarded the cleanup and deactivation and decommissioning contract in May 2005 for the Idaho National Lab (INL). The scope of this work included dispositioning over 200 Facilities and 3 Reactors Complexes (Engineering Test Reactor (ETR), Materials Test Reactor (MTR) and Power Burst Facility (PBF) Reactor). Two additional reactors were added to the scope of the contract during the period of performance. The Zero Power Physics Reactor (ZPPR) disposition was added under a separate subcontractor with the INL lab contractor and the Experimental Breeder Reactor II (EBR-II) disposition was added through American Recovery and Reinvestment Act (ARRA) Funding. All of the reactors have been removed and disposed of with the exception of EBR-II which is scheduled for disposition approximately March of 2012. A brief synopsis of the 5 reactors is provided. For the purpose of this paper the ZPPR reactor due to its unique design as compared to the other four reactors, and the fact that is was relatively lightly contaminated and irradiated will not be discussed with the other four reactors. The ZPPR reactor was readily accessible and was a relatively non-complex removal as compared to the other reactors. Additionally the EBR-II reactor is currently undergoing D and D and will have limited mention in this paper. Prior to decommissioning the reactors, a risk based closure model was applied. This model exercised through the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Non-Time Critical Removal Action (NTCRA) Process which evaluated several options. The options included; No further action - maintain as is, long term stewardship and monitoring (mothball), entombment in place and reactor removal. Prior to commencing full scale D and D, hazardous constituents were removed including cadmium, beryllium, sodium (passivated and elemental), PCB oils and electrical components, lead

  14. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2014-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the suing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer is implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer is produced an inverse buoyant force make the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow - open pool research reactor (with a power greater than 20 M watt) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against Gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability

  15. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2015-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the swing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer produced an inverse buoyant force making the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow-open pool research reactor (with a power greater than 20 Mw) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability conditions from

  16. Programme of hot points eradication (Co-60) led on French PWR type reactors

    International Nuclear Information System (INIS)

    Rocher, A.; Ridoux, P.; Anthoni, S.; Brun, C.

    1998-01-01

    The question of hot points (pellets rich in cobalt 59 or in cobalt 60 in a PWR type reactor), is studied from the radiation protection point of view. The purpose is to see how to optimize the radiation protection, the elimination of these hot points can bring an improvement. (N.C.)

  17. Annual report on operation, utilization and technical development of hot laboratories. From April 1, 1996 to March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report describes activities, in fiscal year 1996, of the Reactor Fuel Examination Facility (RFEF), the Research Hot Laboratory (RHL) and the Waste Safety Testing Facility (WASTEF) which belong to the Department of Hot laboratories. In the RFEF, Post-Irradiation Examinations (PIEs) of PWR fuel assemblies irradiated in the Takahama Unit 3, a BWR fuel assembly irradiated in the Fukusima Daini Unit have been performed. Also, PIEs of assembly materials irradiated in the Fugen Reactor have been carried out. To support R and D works in JAERI, refabrication of segmented fuel rods have been done using irradiated LWR fuel rods for pulse irradiation in the NSRR and re-irradiation tests in the JMTR. PIEs have been performed on high burnup fuel rods and ROX fuel rods. For the RHL, PIEs have been performed on segment fuels irradiated in the NSRR, fuels and materials for HTTR, standard fuels for JRR-3M and materials for nuclear fusion reactor. In addition, a monitoring test of fuel elements in accordance with the surveillance program of the Magnox reactor of the Japan Atomic Power Corporation has been continued. In the WASTEF, leaching tests on TRU in simulated glass forms and a low flow rate tests on glass waste forms have been carried out. The examinations of alpha damage acceleration for the Synroc waste forms have also been performed. (author)

  18. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  19. Chemical reactor development : from laboratory synthesis to industrial production

    NARCIS (Netherlands)

    Thoenes, D.

    1998-01-01

    Chemical Reactor Development is written primarily for chemists and chemical engineers who are concerned with the development of a chemical synthesis from the laboratory bench scale, where the first successful experiments are performed, to the design desk, where the first commercial reactor is

  20. The hot cell laboratories for material investigations of the Institute for Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, H W

    1998-10-01

    Special facilities for handling and testing of irradiated specimens are necessary, to perform the investigation of activated material. The Institute for Safety Research has two hot cell laboratories: - the preparation laboratory and - the materials testing laboratory. This report is intended to give an overview of the available facilities and developed techniques in the laboratories. (orig.)

  1. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  2. Manual on Safety Aspects of the Design and Equipment of Hot Laboratories

    International Nuclear Information System (INIS)

    1969-01-01

    With the development of atomic energy application and research, hot laboratories are now being constructed in a number of countries. The present publication describes and discusses experience in several countries in designing equipment for these laboratories. The safe handling of highly radioactive substances is the main purpose of hot laboratory design and equipment. The manual aims at helping those persons, particularly in the developing countries, who plan to design and construct a new hot laboratory or modify an existing one. It does not deal in great detail with the engineering design of protective and handling equipment; these matters can be found in the comprehensive list of references. The manual itself covers only basic ideas and different approaches in the design of laboratory building, hot cells, shielded and glove boxes, fume cupboards, and handling and viewing equipment. Systems for transferring materials and main services are also discussed.

  3. A TRIGA reactor in an industrial laboratory

    International Nuclear Information System (INIS)

    Anders, Oswald U.

    1980-01-01

    The Dow TRIGA Reactor is a well established facility in its industrial environment. It is used extensively for internal Dow projects. The primary use of the TRIGA is as neutron source for NAA. It faces similar technical and organizational challenges as other TRIGA installations and over the years developed its own solutions

  4. Certification of the PSI request for the renewal of the operation license for the Hot Laboratory

    International Nuclear Information System (INIS)

    2014-03-01

    At the Paul Scherrer Institute (PSI), the Hot Laboratory was built in the years 1961 to 1963 in the former EIR in order to make scientific material analyses on highly radioactive material samples and to prepare diagnostic and therapeutically useful radioisotopes. The 1964 safety report with the request for the granting of the operational warrant was revised for the first time in 2004. Further safety reports and radiation protection plans were produced and accepted by the surveying authorities. The operational regulations were revised and approved on a yearly basis by the PSI direction. The regulations reflect the experience gained in 40 years of safe operation and take new regulations in nuclear energy legislation into account. In the years 2000-2002 the Hot Lab was refitted especially with respect to the fields of radiation and fire protection. Presently, the Hot Lab is used for applied material research on highly radioactive samples which mainly come from nuclear power plants, research reactors and the target stations of the PSI accelerator facilities. The investigations on highly radioactive samples and the handling of large quantities of radioisotopes include the possibility of incidents. The analysis of such incidents shows that the legal safety requirements are satisfied. The Swiss Federal Nuclear Safety Inspectorate (ENSI) requirements concerning the protection of personnel, population and environment, as well as the protection against fire, are fulfilled. In the Hot Lab the principle of barriers for the containment of radioactive materials is applied. Open radioactive sources are manipulated in depressurized cells. The air extracted from the cells is filtered before being released to the environment. In the building, the total amount of radioactive materials is limited in order to reduce the exposition of the population in normal operation as well as in case of incidents, and to avoid criticality accidents. Possible weaknesses in this concept can be shown

  5. Emergency cooling system with hot-water jet pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Reinsch, A.O.W.

    1977-01-01

    The ECCS for a PWR or BWR uses hot-water jet pumps to remove the thermal energy generated in the reactor vessel and stored in the water. The hot water expands in the nozzle part (Laval nozzle) of the jet pump and sucks in coolant (borated water) coming from a storage tank containing subcooled water. This water is mixing with the hot water/steam mixture from the Laval nozzle. The steam is condensed. The kinetic energy of the water is converted into a pressure increase which is sufficient to feed the water into the reactor vessel. The emergency cooling may further be helped by a jet condenser also operating according to the principle of a jet pump and condensing the steam generated in the reactor vessel. (DG) [de

  6. Hot vacuum outgassing to ensure low hydrogen content in MOX fuel pellets for thermal reactors

    International Nuclear Information System (INIS)

    Majumdar, S.; Nair, M.R.; Kumar, Arun

    1983-01-01

    Hot vacuum outgassing treatment to ensure low hydrogen content in Mixed Oxide Fuel (MOX) pellets for thermal reactors has been described. Hypostoichiometric sintered MOX pellets retain more hydrogen than UO 2 pellets. The hydrogen content further increases with the addition of admixed lubricant and pore formers. However, low hydrogen content in the MOX pellets can be ensured by a hot vacuum outgassing treatment at a temperature between 773K to 823K for 2 hrs. (author)

  7. Laboratory observation of hot bands of H+3

    International Nuclear Information System (INIS)

    Bawendi, M.G.; Rehfuss, B.D.; Oka, T.

    1990-01-01

    The (2ν 2 ,l=2 left-arrow ν 2 ), (2ν 2 ,l=0 left-arrow ν 2 ), and (ν 1 +ν 2 left-arrow ν 1 ) hot bands of H + 3 were observed. The vibrationally hot ions were produced in a liquid nitrogen cooled 6 kHz ac discharge using gas mixtures of H 2 and He. The spectra were detected in direct absorption using a newly extended tunable difference frequency spectrometer using both LiNbO 3 and LiIO 3 crystals as nonlinear optical elements. The range of this spectrometer is now ∼5300--∼1900 cm -1 . The positions of the rovibrational transitions compare extremely well with the theoretical predictions of Miller and Tennyson. A vibrational temperature study of the discharge indicates a significant population inversion between the ν 1 and ν 2 levels

  8. Development of a new virtual nuclear reactor laboratory

    International Nuclear Information System (INIS)

    Ahmad Abrishami; Ali Pazirandeh

    2009-01-01

    Full text: Nowadays the education industry benefits from computer programs and software in various ways as well as many other industries. Here the e-learning technology uses some forms of software platform to present its contents. Virtual laboratories are superior tools in this technology. A virtual laboratory is interactive graphical user interface software that is based on known scientific laws of its virtual elements, which responses to user acts as desired in the real case. There are some known commercial and non-commercial ones. There are also some simulation software in the field of nuclear industry that has some uses in operator learning and some other applications such as analyzing the effects of human mistakes on plant safety. In this paper we discuss more about the ways to develop a virtual nuclear reactor laboratory and propose our first release of such tool. Our target reactor is Tehran Research Reactor (TRR), which is a pool type reactor. We used WIMS and COSTANZA to develop the simulator kernel of virtual laboratory. (Author)

  9. Joint reactor laboratory course for students in KUCA

    International Nuclear Information System (INIS)

    Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Pyeon Cheol Ho; Shiroya, Seiji

    2004-06-01

    This book is a revised version of Joint Reactor Laboratory Course for Students, which we have given over 30 years from 1975 at Kyoto University Critical Assembly (KUCA). The major objective of this course is to help the students for understanding the essence of nuclear reactor physics through the experiments carried out in KUCA C-core. At the same time, it is expected that by the end of the course the students will be able to obtain good and fruitful results by their efforts through this course. This textbook is composed of these following chapters; Introduction to Kyoto University Critical Assembly (KUCA). Chapter 1: Approach to Criticality. Chapter 2: Control Rod Calibration. Chapter 3: Measurement of Reaction Rate Distribution. Chapter 4: Neutron Correlation Experiment Feynman-α Method. Chapter 5: Measurement of Reactivity by the Pulsed Neutron Method. Chapter 6: Reactor Operation Training (Reactor Operation for Education). (author)

  10. Preliminary draft: environmental impact statement for Hot Engineering Test Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Boyle, J.W.; Baxter, B.J.; Carpenter, J.A.

    1978-08-01

    The project considered is the Hot Engineering Test Project (HETP), which is to be located in largely existing facilities at Oak Ridge National Laboratory (ORNL). The project is a part of the National High Temperature Gas-Cooled Reactor Fuel Recycle Program, which seeks to demonstrate the technological feasibility of the recycle processes. The HETP will attempt to confirm the operability of the processes (proven feasible in cold or nonradioactive, benchtop experimentation) under the more realistic radioactive condition. As such, the operation will involve the reprocessing and refabrication of spent HTGR fuel rods obtained from the Fort St. Vrain reactor. The reference fuel is highly enriched uranium. No significant radiological impacts are expected from routine operation of the facility to any biota or ecosystem. Concentrations of one or more radionuclides in Whiteoak Lake will increase as a result of the combination of HETP wastes with other ORNL wastes. Nonradiological effects from construction activities and routine operation should be insignificant on land and water use and on terrestrial and aquatic ecosystems. No significant socioeconomic impacts should occur from either construction or operation of the facility. Some conservative accident scenarios depict significant releases of radioactivity. Effects should be localized and would not be severe for all but the most unlikely of such incidents. No significant long-term commitment of resources is expected to be required for the project. Nor are any large quantities of scarce or critical resources likely to be irreversibly or irretrievably committed to the project. Principal alternatives considered were: relocation of the project site, postponement of the project schedule, project cancellation, and chemical process variations

  11. The choice between cooled tubular reactor models: analysis of the hot spot

    NARCIS (Netherlands)

    Westerink, E.J.; Koster, N.; Westerterp, K.R.

    1990-01-01

    The applicability of the one-dimensional pseudo-homogeneous model of the cooled tubular reactor is studied. Using the two-dimensional model as the more accurate one we compared both models by studying the influence of the design and operating variables on the conditions in the hot spot of the

  12. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    Imtiaz, N.; Butt, M.; Khan, R.A.; Saeed, M.T.; Irfan, M.

    2012-01-01

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  13. 3-D thermal stress analysis of hot spots in reactor piping using BEM

    International Nuclear Information System (INIS)

    Bains, R.S.; Sugimoto, Jun

    1994-08-01

    A three-dimensional steady state thermoelastic analysis has been conducted on the hot leg of a pressurized water reactor(PWR) containing localized hot spots resulting from fission product aerosol deposition occurring during a hypothetical severe accident. The boundary element method (BEM) of numerical solution was successfully employed to investigate the structural response of the hot leg. Convergence of solution can be realized provided sufficiently large number of elements are employed and correct modelling of the temperature transition region (TTR) adjacent to the hot spot on the inner surface is conducted. The only correct temperature field across the TTR is that which can be represented by the interpolation functions employed in the BEM code. Further, incorrect solutions can also be generated if the TTR is too thin. The nature of the deformation at the hot spot location depends on whether the thermal boundary condition on the outer surface of the hot leg is one of constant temperature or adiabatic. The analysis shows that at the location of the hot spot on the inner surface large compressive stresses can be established. On the outer surface at the same location, large tensile stresses can be established. The presence of these large stress elevations in the vicinity of the hot spot could be detrimental to the integrity of the hot leg. The tensile stresses are extremely important since they can act as sites of crack initiation and subsequent propagation. Once a crack propagates through the thickness, leak worthiness of the hot leg comes into question. Consequently, additional analysis incorporating the effects of plasticity and temperature dependence of the material properties must be conducted to ascertain the integrity of the hot leg. (J.P.N.)

  14. Numerical analysis and scale experiment design of the hot water layer system of the Brazilian Multipurpose Reactor (RMB reactor)

    International Nuclear Information System (INIS)

    Schweizer, Fernando Lage Araújo

    2014-01-01

    The Brazilian Multipurpose Reactor (RMB) consists in a 30 MW open pool research reactor and its design is currently in development. The RMB is intended to produce a neutron flux applied at material irradiation for radioisotope production and materials and nuclear fuel tests. The reactor is immersed in a deep water pool needed for radiation shielding and thermal protection. A heating and purifying system is applied in research reactors with high thermal power in order to create a Hot Water Layer (HWL) on the pool top preventing that contaminated water from the reactor core neighboring reaches its surface reducing the room radiation dose rate. This dissertation presents a study of the HWL behavior during the reactor operation first hours where perturbations due to the cooling system and pool heating induce a mixing flow in the HWL reducing its protection. Numerical simulations using the CFD code CFX 14.0 have been performed for theoretical dose rate estimation during reactor operation, for a 1/10 scaled down model using dimensional analysis and mesh testing as an initial verification of the commercial code application. Equipment and sensor needed for an experimental bench project were defined by the CFD numerical simulation. (author)

  15. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  16. Hydraulic modelling for analysis of the hot water layer stability in research reactor

    International Nuclear Information System (INIS)

    Ribeiro, Rogerio; Yanagihara, Jurandir Itizo

    1995-01-01

    Pool reactors are research reactors, which allow easy access to the core and are simple to operate. Reactors of this kind operating at power levels higher than about one megawatt need a hot water layer at the surface of the pool, in order to keep surface activity below acceptable levels and enable free access to the upper part of the reactor. This work presents similitude criteria derived by dimensional analysis and by non dimensioning the basic equations to analyze this layer's stability in a reduced scale model. The flow in the reactor is complex. It is impossible to consider all the phenomena with a single similitude criterion. The best would be to construct several models considering all the similitude criteria and then combine the results. Economical reasons and available time in the majority of the cases are a restrain to this procedure. Then, the most important criteria to the considered phenomenon must be chosen in order to give the best results. This work identifies three similitude criteria that were considered important to analyze the pool reactor's hot water layer stability. (author)

  17. CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis

    Directory of Open Access Journals (Sweden)

    Hamed Aligolzadeh

    2015-12-01

    Full Text Available One of the interesting methods for conversion of synthesis gas to heavy hydrocarbons is Fischer–Tropsch process. The process has some bottlenecks, such as hot spot formation and low degree of conversion. In this work, computational fluid dynamics technique was used to simulate conversion of synthetic gas and product distribution. Also, hot spot formation in the catalytic fixed-bed reactor was investigated in several runs. Simulation results indicated that hot spot formation occurred more likely in the early and middle part of reactor due to high reaction rates. Based on the simulation results, the temperature of hot spots increased with increase in the inlet temperature as well as pressure. Among the many CFD runs conducted, it is found that the optimal temperature and pressure for Fischer–Tropsch synthesis are 565 K and 20 bar, respectively. As it seems that the reactor shall work very well under optimal conditions, the reaction rates and catalyst duration would simultaneously be maximum .

  18. Experimental and computational analysis of the hot water layer for the radiological protection in swimming pool reactor

    International Nuclear Information System (INIS)

    Ribeiro, Rogerio.

    1995-01-01

    Pool reactors are research reactors, which allow easy access to the core and rare simple to operate. Reactors of this kind operating at power levels higher than about one megawatt need a hot water layer at the surface of the pool, in order to keep surface activity below acceptable levels and enable free access to the upper part of the reactor. An experimental apparatus was constructed to study the hot water layer stability. Thermocouples were used to measure the temperature field. A numerical analysis was conducted simultaneously. Regarding experimental results, representative temperature contour lines of the hot water layer were plotted. The temperature field was determined in the numerical analysis and temperature contour lines corresponding to those of the experimental results were plotted. The hot water layer kept stable for experimental and numerical results. Good agreement between the results for the hot water layer position and thickness has been obtained. (author). 21 refs., 40 figs., 15 tabs

  19. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, John D.; Marshall, Margaret A.; Gorham, Mackenzie L.; Christensen, Joseph; Turnbull, James C.; Clark, Kim

    2011-01-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) (1) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) (2) were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  20. A Shielding Analysis of Hot Cell for a 10 MW Research Reactor

    International Nuclear Information System (INIS)

    Alnajjar, Alaaddin; Park, Chang Je; Roh, Gyuhong; Lee, Byunchul

    2013-01-01

    In this paper, a shielding analysis has been performed for the hot cell in a 10 MW research reactor. Two kinds of shielding analysis code systems are used such as MCNPX2.7 and M-Shield7. The first one is Monte Carlo stochastic code and the second one is a deterministic point kernel code. The results are compared in this study. In order to obtain source term, the ORIGEN-S code is used for different kinds of source. Four kinds of sources are taken into consideration. From the simulation, it is also proposed that the proper thickness of shielding material and the maximum source capacity in the hot cell. This study shows preliminary analysis results of hot cell shielding for 10MW research reactor. Total four different source terms are considered such as spent fuel assembly, Ir-192, Mo-99, and I-131. For shielding material, general concrete, heavy concrete, and lead are used. MCNPX code is mainly used for a simplified hot cell model and the result are nearly consistent when compared with M-Shield code. Required shielding thickness and the hot cell capacity are also obtained for various criterion of surface dose rates

  1. Reactor safety research and development in Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's Chalk River Laboratories provides three different services to stakeholders and customers. The first service provided by the laboratory is the implementation of Research and Development (R&D) programs to provide the underlying technological basis of safe nuclear power reactor designs. A significant portion of the Canadian R&D capability in reactor safety resides at Atomic Energy of Canada Limited's Chalk River Laboratories, and this capability was instrumental in providing the science and technology required to aid in the safety design of CANDU power reactors. The second role of the laboratory has been in supporting nuclear facility licensees to ensure the continued safe operation of nuclear facilities, and to develop safety cases to justify continued operation. The licensing of plant life extension is a key industry objective, requiring extensive research on degradation mechanisms, such that safety cases are based on the original safety design data and valid and realistic assumptions regarding the effect of ageing and management of plant life. Recently, Chalk River Laboratories has been engaged in a third role in research to provide the technical basis and improved understanding for decision making by regulatory bodies. The state-of-the-art test facilities in Chalk River Laboratories have been contributing to the R&D needs of all three roles, not only in Canada but also in the international community, thorough Canada's participation in cooperative programs lead by International Atomic Energy Agency and the OECD's Nuclear Energy Agency. (author)

  2. Vaporizing Flow in Hot Fractures: Observations from Laboratory Experiments

    International Nuclear Information System (INIS)

    Kneafsey, T.; Pruess, K.

    1998-01-01

    Understanding water seepage in hot fractured rock is important in a number of fields including geothermal energy recovery and nuclear waste disposal. Heat-generating high-level nuclear waste packages which will be emplaced in the partially saturated fractured tuffs at the potential high-level nuclear waste repository at Yucca Mountain, Nevada, if it becomes a high-level nuclear waste repository, will cause significant impacts on moisture distribution and migration. Liquid water, which occupies anywhere from 30 to 100% of the porespace, will be vaporized as the temperature reaches the boiling temperature. Flowing primarily in fractures, the vapor will condense where it encounters cooler rock, generating mobile water. This water will flow under gravitational and capillary forces and may flow back to the vicinity of the emplaced waste where it may partially escape vaporization. Water flowing down (sub-) vertical fractures may migrate considerable distances through fractured rock that is at above-boiling temperatures; thus, flowing condensate may contact waste packages, and provide a pathway for the transport of water-soluble radionuclides downward to the saturated zone. Thermally-driven flow processes induced by repository heat may be as important or even more important for repository performance than natural infiltration. For a nominal thermal loading of 57 kW/acre, vaporization may generate an average equivalent percolation flux from condensate of 23.1 mm/yr over 1,000 years, and 5.2 mm/yr over 10,000 years. These numbers are comparable to or larger than current estimates of net infiltration at Yucca Mountain. This condensate, which is generated in the immediate vicinity (meters) of the waste packages, will likely have a larger impact on waste package and repository performance than a similar amount of water introduced at the land surface

  3. Radiological performance of hot water layer system in open pool type reactor

    Directory of Open Access Journals (Sweden)

    Amr Abdelhady

    2013-06-01

    Full Text Available The paper presents the calculated dose rate carried out by using MicroShield code to show the importance of hot water layer system (HWL in 22 MW open pool type reactor from the radiation protection safety point of view. The paper presents the dose rate profiles over the pool surface in normal and abnormal operations of HWL system. The results show that, in case of losing the hot water layer effect, the radiation dose rate profiles over the pool surface will increase from values lower than the worker permissible dose limits to values very higher than the permissible dose limits.

  4. Radiological performance of hot water layer system in open pool type reactor

    OpenAIRE

    Amr Abdelhady

    2013-01-01

    The paper presents the calculated dose rate carried out by using MicroShield code to show the importance of hot water layer system (HWL) in 22 MW open pool type reactor from the radiation protection safety point of view. The paper presents the dose rate profiles over the pool surface in normal and abnormal operations of HWL system. The results show that, in case of losing the hot water layer effect, the radiation dose rate profiles over the pool surface will increase from values lower than th...

  5. Annual report on operation, utilization and technical development of hot laboratories. From April 1, 2001 to March 31, 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-01

    This is an annual report in a fiscal year of 2001 that describes activities of the Reactor Fuel Examination Facility (RFEF), the Waste Safety Testing Facility (WASTEF), and the Research Hot Laboratory (RHL) in the Department of Hot laboratories. In RFEF, PIEs including destructive and nondestructive tests were performed on a BWR fuel assembly and/or its fuel rod irradiated in the Fukushima-2 Nuclear Power Station Unit-1 and a fuel assembly with UO{sub 2}-Gd{sub 2}O{sub 3} and mixed oxide (MOX) fuel pellets for Japan Nuclear Cycle Development Institute. In addition, 34 fuel assemblies irradiated in the nuclear ship ''Mutsu'' were conveyed from Mutsu Establishment, and re-assembly and PIEs for the assemblies were carried out. In WASTEF, tests for evaluating barrier performance in terms of disposal of waste, high temperature tests for evaluating stable on TRansUraniums (TRU) nitrides, leaching tests on Rock-like OXide (ROX) fuels were performed. The slow Strain Rate Tests (SSRT) apparatuses were installed for investigation of Irradiation-Assisted Stress Corrosion Cracking (IASCC) on light water structural materials, and characterization tests for the apparatus were performed. In RHL, PIEs for light water reactor materials, fusion materials, and target materials of Proton Accelerator Facilities were carried out for laboratories in Japan Atomic Energy Research Institute. PIEs for zirconium alloys for ultra-high burn-up irradiated in the Kashiwazaki Nuclear Power Station Unit-5 were also performed. In order to investigate roots cause of pipe rupture in Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company, several examinations including SEM observation, EPMA, and Vickers hardness test were performed in those three facilities. The data from the examinations greatly contribute to clarify roots cause of the pipe rupture. (author)

  6. Annual report on operation, utilization and technical development of hot laboratories. From April 1, 2001 to March 31, 2002

    International Nuclear Information System (INIS)

    2003-01-01

    This is an annual report in a fiscal year of 2001 that describes activities of the Reactor Fuel Examination Facility (RFEF), the Waste Safety Testing Facility (WASTEF), and the Research Hot Laboratory (RHL) in the Department of Hot laboratories. In RFEF, PIEs including destructive and nondestructive tests were performed on a BWR fuel assembly and/or its fuel rod irradiated in the Fukushima-2 Nuclear Power Station Unit-1 and a fuel assembly with UO 2 -Gd 2 O 3 and mixed oxide (MOX) fuel pellets for Japan Nuclear Cycle Development Institute. In addition, 34 fuel assemblies irradiated in the nuclear ship ''Mutsu'' were conveyed from Mutsu Establishment, and re-assembly and PIEs for the assemblies were carried out. In WASTEF, tests for evaluating barrier performance in terms of disposal of waste, high temperature tests for evaluating stable on TRansUraniums (TRU) nitrides, leaching tests on Rock-like OXide (ROX) fuels were performed. The slow Strain Rate Tests (SSRT) apparatuses were installed for investigation of Irradiation-Assisted Stress Corrosion Cracking (IASCC) on light water structural materials, and characterization tests for the apparatus were performed. In RHL, PIEs for light water reactor materials, fusion materials, and target materials of Proton Accelerator Facilities were carried out for laboratories in Japan Atomic Energy Research Institute. PIEs for zirconium alloys for ultra-high burn-up irradiated in the Kashiwazaki Nuclear Power Station Unit-5 were also performed. In order to investigate roots cause of pipe rupture in Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company, several examinations including SEM observation, EPMA, and Vickers hardness test were performed in those three facilities. The data from the examinations greatly contribute to clarify roots cause of the pipe rupture. (author)

  7. Investigation on field removed pipe sections in the PISC hot laboratories

    International Nuclear Information System (INIS)

    Cambini, M.; Crutzen, S.; Jehenson, P.; Bergh, R. Van den; Violin, F.

    1990-01-01

    Action No. 1 of PISC II: Real Contaminated Structures (RCS), seeks to collect results from specific investigations and limited round robin tests on real service induced defects in materials and structures of the primary circuit of Light Water Reactors. The hot cell facilities at JRC-Ispra are fully equipped for non destructive and destructive work on a collaborative basis. Cracked austenitic steel primary circuit pipes coming from the primary circuit of the Muhleberg reactor (Switzerland) have been inspected in order to demonstrate the validity of the facilities to examine these contaminated pieces. (author)

  8. Investigation on field removed pipe sections in the PISC hot laboratories

    International Nuclear Information System (INIS)

    Cambini, M.; Crutzen, S.; Jehenson, P.

    1990-01-01

    Action no. 1 of PISC III (Programme for the Inspection of Steel Components): Real Contaminated Structures (RCS), seeks to collect results from specific investigations and limited round robin tests on real service induced defects in materials and structures of the primary circuit of Light Water Reactors. The hot cell facilities at JRC-Ispra are fully equipped for non destructive and destructive work on a collaborative basis. Cracked austenitic steel pipes coming from the primary circuit of the Muehleberg reactor (Switzerland) have been inspected in order to demonstrate the validity of the facilities for the examination of these contaminated pieces

  9. The FRJ 1 reactor (MERLIN) at Juelich, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FRJ 1 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  10. The FR 2 reactor at Karlsruhe, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FR 2 reactor and associated hot cell facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  11. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  12. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  13. A practical methodology of radiological protection for the reduction of hot particles in BWR type reactors

    International Nuclear Information System (INIS)

    Alvarez G, G.

    1991-01-01

    The purpose of this work, in general form, is to describe a practical method for reduction of hot particles generated as consequence of the operational activities of BWR nuclear reactors. This methodology provides a description of the localizations and/or probable activities of finding particles highly radioactive denominated hot particles. For this purpose it was developed a strategy based on the decontamination lineaments, as well as the manipulation, gathering, registration, contention, documentation, control and final disposition of the hot particles. In addition, some recommendations are reiterated and alternative, in order to gathering the hot particles in a dynamic way given to the activities of the personal occupationally exposed in highly radioactive areas. The structure of the methodology of hot particles is supported in the radiological controls based on the Code of Federal Regulation 10 CFR 20 as well as the applicable regulatory documents. It provides an idea based on administrative controls of radiological protection, in order to suggesting the responsibilities and necessary directing for the control of the hot particles required in nuclear plants of the BWR type. (author)

  14. Alpha-Gamma Hot-Cell Facility at Argonne National Laboratory East

    International Nuclear Information System (INIS)

    Neimark, L.A.; Jackson, W.D.; Donahue, D.A.

    1979-01-01

    The Alpha-Gamma Hot-Cell Facility has been in operation at Argonne National Laboratory East (ANL-E) for 15 years. The facility was designed for plutonium research in support of ANL's LMFBR program. The facility consists of a kilocurie, nitrogen-atmosphere alpha-gamma hot cell and supporting laboratories. Modifications to the facility and its equipment have been made over the years as the workload and nature of the work changed. These modifications included inerting the entire hot cell, adding four work stations, modifying in-loading procedures and examination equipment to handle longer test articles, and changing to a new sodium-vapor lighting system. Future upgrading includes the addition of a decontamination and repair facility, use of radio-controlled transfer carts, refurbishment of the zinc bromide windows, and the installation of an Auger microprobe

  15. THESEE-3, Orgel Reactor Performance and Statistic Hot Channel Factors

    International Nuclear Information System (INIS)

    Chambaud, B.

    1974-01-01

    1 - Nature of physical problem solved: The code applies to a heavy-water moderated organic-cooled reactor channel. Different fuel cluster models can be used (circular or hexagonal patterns). The code gives coolant temperatures and velocities and cladding temperatures throughout the channel and also channel performances, such as power, outlet temperature, boiling and burn-out safety margins (see THESEE-1). In a further step, calculations are performed with statistical values obtained by random retrieval of geometrical in- put data and taking into account construction tolerances, vibrations, etc. The code evaluates the mean value and standard deviation for the more important thermal and hydraulic parameters. 2 - Method of solution: First step calculations are performed for nominal values of parameters by solving iteratively the non-linear system of equations which give the pressure drops in subchannels of the current zone (see THESEE-1). Then a Gaussian probability distribution of possible statistical values of the geometrical input data is assumed. A random number generation routine determines the statistical case. Calculations are performed in the same way as for the nominal case. In the case of several channels, statistical performances must be adjusted to equalize the normal pressure drop. A special subroutine (AVERAGE) then determines the mean value and standard deviation, and thus probability functions of the most significant thermal and hydraulic results. 3 - Restrictions on the complexity of the problem: Maximum 7 fuel clusters, each divided into 10 axial zones. Fuel bundle geometries are restricted to the following models - circular pattern 6/7, 18/19, 36/67 rods, with or without fillers. The fuel temperature distribution is not studied. The probability distribution of the statistical input is assumed to be a Gaussian function. The principle of random retrieval of statistical values is correct, but some additional correlations could be found from a more

  16. Biennial activity report of Reactor Engineering Laboratory - 1983 and 1984

    International Nuclear Information System (INIS)

    Swaminathan, K.; Prahlad, B.

    1986-01-01

    This report summarises activities of the Reactor Engineering Laboratory for the period January 1983 to December 1984. The report consists of four sections dealing with development of reactor components, prototype tests in sodium, instrumentation development and measurement techniques and noise analysis techniques respectively. As is customary, the activities have been reported in brief but where detailed reports have been prepared the same are referred. The main thrust of the work of the laboratory was still in support of the FBTR which is in an advanced stage of construction and commissioning at Kalpakkam site. Purification of 100 tonnes of commercial grade sodium to reactor grade, pouring of the liquid metal seals and the construction and commissioning of a sodium loop for calibration of the hydrogen leak detector in all represented significant contribution towards FBTR. The section on development of reactor components describes efforts on construction of both electromagnetic and small mechanical sodium pumps. Sodium removal from the control rod drive mechanism by means of vacuum distillation technique has been a useful experience despite some difficulties faced due, possibly, to the presence of extraneous matter in the decontamination set-up. The section on instrumentation development and measurement techniques describes interesting development concerning ultrasonic imaging for under sodium viewing. The last section on noise analysis techniques describes some experience gained in the detection of cavitation in dummy fuel subassembly by means of acoustic technique. The developmental efforts on construction of high temperature acoustic sensors of both piezoelectric and magnetostrictive type have been encouraging. At the end of the report is included a list of technical publications of the laboratory. (author)

  17. 25th-year jubilee edition of the Hot Laboratory's annual report

    International Nuclear Information System (INIS)

    Bart, G.

    1989-07-01

    The topics discussed in this report concern the history of PSI's Hot Laboratory, nuclear fuel development performed there during the last twenty years, post irradiation examination work, basic research for a final repository of radioactive wastes, and neutron embrittlement experiments. 44 figs., 1 tab., 82 refs

  18. Design and installation of a hot water layer system at the Tehran research reactor

    Directory of Open Access Journals (Sweden)

    Mirmohammadi Sayedeh Leila

    2013-01-01

    Full Text Available A hot water layer system (HWLS is a novel system for reducing radioactivity under research reactor containment. This system is particularly useful in pool-type research reactors or other light water reactors with an open pool surface. The main purpose of a HWLS is to provide more protection for operators and reactor personnel against undesired doses due to the radio- activity of the primary loop. This radioactivity originates mainly from the induced radioactivity contained within the cooling water or probable minute leaks of fuel elements. More importantly, the bothersome radioactivity is progressively proportional to reactor power and, thus, the HWLS is a partial solution for mitigating such problems when power upgrading is planned. Following a series of tests and checks for different parameters, a HWLS has been built and put into operation at the Tehran research reactor in 2009. It underwent a series of comprehensive tests for a period of 6 months. Within this time-frame, it was realized that the HWLS could provide a better protection for reactor personnel against prevailing radiation under containment. The system is especially suitable in cases of abnormality, e. g. the spread of fission products due to fuel failure, because it prevents the mixing of pollutants developed deep in the pool with the upper layer and thus mitigates widespread leakage of radioactivity.

  19. Hot steam header of a high temperature reactor as a benchmark problem

    International Nuclear Information System (INIS)

    Demierre, J.

    1990-01-01

    The International Atomic Energy Agency (IAEA) initiated a Coordinated Research Programme (CRP) on ''Design Codes for Gas-Cooled Reactor Components''. The specialists proposed to start with a benchmark design of a hot steam header in order to get a better understanding of the methods in the participating countries. The contribution of Switzerland carried out by Sulzer. The following report summarized the detailed calculations of dimensioning procedure and analysis. (author). 5 refs, 2 figs, 2 tabs

  20. Experience of Integrated Safeguards Approach for Large-scale Hot Cell Laboratory

    International Nuclear Information System (INIS)

    Miyaji, N.; Kawakami, Y.; Koizumi, A.; Otsuji, A.; Sasaki, K.

    2010-01-01

    The Japan Atomic Energy Agency (JAEA) has been operating a large-scale hot cell laboratory, the Fuels Monitoring Facility (FMF), located near the experimental fast reactor Joyo at the Oarai Research and Development Center (JNC-2 site). The FMF conducts post irradiation examinations (PIE) of fuel assemblies irradiated in Joyo. The assemblies are disassembled and non-destructive examinations, such as X-ray computed tomography tests, are carried out. Some of the fuel pins are cut into specimens and destructive examinations, such as ceramography and X-ray micro analyses, are performed. Following PIE, the tested material, in the form of a pin or segments, is shipped back to a Joyo spent fuel pond. In some cases, after reassembly of the examined irradiated fuel pins is completed, the fuel assemblies are shipped back to Joyo for further irradiation. For the IAEA to apply the integrated safeguards approach (ISA) to the FMF, a new verification system on material shipping and receiving process between Joyo and the FMF has been established by the IAEA under technical collaboration among the Japan Safeguard Office (JSGO) of MEXT, the Nuclear Material Control Center (NMCC) and the JAEA. The main concept of receipt/shipment verification under the ISA for JNC-2 site is as follows: under the IS, the FMF is treated as a Joyo-associated facility in terms of its safeguards system because it deals with the same spent fuels. Verification of the material shipping and receiving process between Joyo and the FMF can only be applied to the declared transport routes and transport casks. The verification of the nuclear material contained in the cask is performed with the method of gross defect at the time of short notice random interim inspections (RIIs) by measuring the surface neutron dose rate of the cask, filled with water to reduce radiation. The JAEA performed a series of preliminary tests with the IAEA, the JSGO and the NMCC, and confirmed from the standpoint of the operator that this

  1. PIE technology on mechanical tests for HTTR core component and structural materials developed at Research Hot Laboratory

    International Nuclear Information System (INIS)

    Kizaki, Minoru; Honda, Junichi; Usami, Kouji; Ouchi, Asao; Oeda, Etsuro; Matsumoto, Seiichiro

    2001-02-01

    The high temperature engineering test reactor (HTTR) with the target operation temperature of 950degC established the first criticality on November, 1998 based on a large amount of R and D results on fuel and materials. In such R and D works, the development of reactor materials are one of the key issues from the view point of reactor environments such as extremely high temperature, neutron irradiation and so on for the HTTR. The Research Hot Laboratory (RHL) had carried out much kind of post irradiation examinations (PIEs) on core component and pressure vessel materials for during more than a quarter century. And obtained data played an important role in development, characterization and licensing of those materials for the HTTR. This paper describes the PIE technology developed at RHL and typical results on mechanical tests such as elevated temperature tensile and creep rupture tests for Hasteloy-X, Incolloy 800H and so on, and Charpy impact, J IC fracture toughness, K Id fracture toughness and small punch tests for normalized and tempered 2 1/4Cr-1Mo steel from historical view. In addition, an electrochemical test technique established for investigating the irradiation embrittlement mechanism on 2 1/4Cr-1Mo steel is also mentioned. (author)

  2. Experience of joint reactor laboratory course with KUCA

    International Nuclear Information System (INIS)

    Nishina, Kojiro

    1982-01-01

    A description is given of a joint reactor laboratory course of graduate level, which is offered every summer since 1975 by nine associated japanese universities with the use of Kyoto University Critical Assembly (KUCA). A total of 315 students have taken the course in the last seven years. The course has been institutionalized with the background that it is extremely difficult for any single university in this country to have her own research or training reactor. By their effort the united faculty team of the course have succeeded in giving an effective, unique one-week course, taking advantage of their collaboration. By the scrutiny of student's responses to the course, one norices that a reactor is distinctively different from ordinary educational apparatus, in that the students do not play a main part in the adjustment of the apparatus itself. The beginners therefore tend to feel the reactor as a remote existence. This difficulty must be circumvented if an effective educational process is to be designed. (author)

  3. The High Flux Beam Reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1994-01-01

    Brookhaven National Laboratory's High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want 'more'. In the mid-50's the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments

  4. Hot Chemistry Laboratory decommissioning activities at IPEN/CNEN-SP, Brazil

    International Nuclear Information System (INIS)

    Camilo, Ruth L.; Lainetti, Paulo E.O.

    2009-01-01

    IPEN's fuel cycle activities were accomplished in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Since then, IPEN has faced the problem of the pilot plants decommissioning considering that there was no experience/expertise in this field at all. In spite of this, some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years, even without previous experience and training support. One of the first decommissioning activities accomplished in IPEN involved the Hot Chemistry Laboratory. This facility was built in the beginning of the 80's with the proposal of supporting research and development in the nuclear chemistry area. It was decided to settle a new laboratory in the place where the Hot Chemistry Laboratory was installed, being necessary its total releasing from the radioactive contamination point of view. The previous work in the laboratory involved the manipulation of samples of irradiated nuclear fuel, besides plutonium-239 and uranium-233 standard solutions. There were 5 glove-boxes in the facility but only 3 were used with radioactive material. The glove-boxes contained several devices and materials, besides the radioactive compounds, such as: electric and electronic equipment, metallic and plastic pieces, chemical reagents, liquid and solid radioactive wastes, etc. The laboratory's decommissioning process was divided in 12 steps. This paper describes the procedures, problems faced and results related to the Hot Chemistry Laboratory decommissioning operations and its reintegration as a new laboratory of the Chemical and Environmental Technology Center (CQMA) - IPEN-CNEN/SP. (author)

  5. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    International Nuclear Information System (INIS)

    None

    1997-01-01

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D and D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D and D activities beginning in 1997

  6. Joint reactor laboratory course for students in KUCA

    International Nuclear Information System (INIS)

    Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Pyeon Cheol Ho; Shiroya, Seiji

    2004-04-01

    This book is based on Joint Reactor Laboratory Course for Students, which we have given over 30 years from 1975 at Kyoto University Critical Assembly (KUCA), and is one translated from Japanese into English. The major objective of this course is to help the students for understanding the essence of nuclear reactor physics through the experiments carried out in KUCA C-core. At the same time, it is expected that by the end of the course the students will be able to obtain good and fruitful results by their efforts through this course. This textbook is composed of these following chapters; Introduction to Kyoto University Critical Assembly (KUCA). Chapter 1: Approach to Criticality. Chapter 2: Control Rod Calibration. Chapter 3: Measurement of Reaction Rate Distribution. Chapter 4: Neutron Correlation Experiment Feynman-α Method. Chapter 5: Measurement of Reactivity by the Pulsed Neutron Method. (author)

  7. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  8. Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Haneefa, K. Mohammed, E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F. C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Performance evaluation of geopolymers subjected to hot liquid sodium is performed. • Apart from mechanical properties, micro-analytical techniques are used for material characterization. • The geopolymer composite showed comparatively lesser damage than conventional cement composites. • Geopolymer technology can emerge as a new choice for sacrificial layer in SCFBRs. - Abstract: A sacrificial layer of concrete is used in sodium cooled fast breeder reactors (SCFBRs) to mitigate thermo-chemical effect of accidentally spilled sodium at and above 550 °C on structural concrete. Performance of this layer is governed by thermo-chemical stability of the ingredients of sacrificial layer concrete. Concrete with limestone aggregate is generally used as a sacrificial layer. Conventional cement based systems exhibit instability in hot liquid sodium environment. Geo-polymer composites are well known to perform excellently at elevated temperatures compared to conventional cement systems. This paper discusses performance of such composites subjected to exposure of hot liquid sodium in air. The investigation includes comprehensive evaluation of various geo-polymer composites before any exposure, after heating to 550 °C in air, and after immersing in hot liquid sodium initially heated to 550 °C in air. Results from the current study indicate that hot liquid sodium produces less damage to geopolymer composites than to the existing conventional cement based system. Hence, the geopolymer technology has potential application in mitigating the degrading effects of sodium fires and can emerge as a new choice for sodium exposed sacrificial layer in SCFBRs.

  9. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    International Nuclear Information System (INIS)

    Cagle, C.D.

    1982-10-01

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included

  10. Coalescence kinetics of dispersed crude oil in a laboratory reactor

    International Nuclear Information System (INIS)

    Sterling, M.C. Jr.; Ojo, T.; Autenrieth, R.L.; Bonner, J.S.; Page, C.A.; Ernst, A.N.S.

    2002-01-01

    A study was conducted to examine the effects of salinity and mixing energy on the resurfacing and coalescence rates of chemically dispersed crude oil droplets. This kinetic study involved the use of mean shear rates to characterize the mixing energy in a laboratory reactor. Coagulation kinetics of dispersed crude oil were determined within a range of mean shear rates of 5, 10, 15, and 20 per second, and with salinity values of 10 and 30 per cent. Observed droplet distributions were fit to a transport-reaction model to estimate collision efficiency values and their dependence on salinity and mixing energy. Dispersant efficiencies were compared with those derived from other laboratory testing methods. Experimentally determined dispersant efficiencies were found to be 10 to 50 per cent lower than predicted using a non-interacting droplet model, but dispersant efficiencies were higher than those predicted using other testing methods. 24 refs., 1 tab., 3 figs

  11. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    OSCAR, DEBBY S.; WALKER, SHARON ANN; HUNTER, REGINA LEE; WALKER, CHERYL A.

    1999-01-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2

  12. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  13. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    Science.gov (United States)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  14. Justify of implementation of a hot water layer system in swimming pool research reactor IEA-R1m

    International Nuclear Information System (INIS)

    Toyoda, Eduardo Yoshio; Gordon, Ana Maria Pinho Leite; Sordi, Gian-Maria A.A.

    2001-01-01

    The IPEN/CNEN-SP has a swimming pool research reactor (IEA-R1m) in operation since 1957 at 2 MW. In 1998, after some modifications, its nominal power increased to 5 MW. Among these modifications some adaptations had to be accomplished in the radiological protection and operational procedure. The present work aim to study the need of implementation of a hot water layer in order to reduce the dose in the workers in the vicinity of the reactor swimming pool. Applying the principles of radioprotection optimization, it was concluded that the decision of the construction of one hot water layer system in the reactor swimming pool, is not necessary. (author)

  15. Thermal hydraulics in the hot pool of Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Padmakumar, G.; Pandey, G.K.; Vaidyanathan, G.

    2009-01-01

    Sodium cooled Fast Breeder Test Reactor (FBTR) of 40 MWt/13 MWe capacity is in operation at Kalpakkam, near Chennai. Presently it is operating with a core of 10.5 MWt. Knowledge of temperatures and flow pattern in the hot pool of FBTR is essential to assess the thermal stresses in the hot pool. While theoretical analysis of the hot pool has been conducted by a three-dimensional code to access the temperature profile, it involves tuning due to complex geometry, thermal stresses and vibration. With this in view, an experimental model was fabricated in 1/4 scale using acrylic material and tests were conducted in water. Initially hydraulic studies were conducted with ambient water maintaining Froude number similarity. After that thermal studies were conducted using hot and cold water maintaining Richardson similitude. In both cases Euler similarity was also maintained. Studies were conducted simulating both low and full power operating conditions. This paper discusses the model simulation, similarity criteria, the various thermal hydraulic studies that were carried out, the results obtained and the comparison with the prototype measurements.

  16. Experimental optimization of temperature distribution in the hot-gas duct through the installation of internals in the hot-gas plenum of a high-temperature reactor

    International Nuclear Information System (INIS)

    Henssen, J.; Mauersberger, R.

    1990-01-01

    The flow conditions in the hot-gas plenum and in the adjacent hot-gas ducts and hot-gas pipes for the high-temperature reactor project PNP-1000 (nuclear process heat project for 1000 MW thermal output) have been examined experimentally. The experiments were performed in a closed loop in which the flow model to be analyzed, representing a 60deg sector of the core bottom of the PNP-1000 with connecting hot-gas piping and diverting arrangements, was installed. The model scale was approx. 1:5.6. The temperature and flow velocity distribution in the hot-gas duct was registered by means of 14 dual hot-wire flowmeters. Through structural changes and/or the installation of internals into the hot-gas plenum of the core bottom offering little flow resistance coolant gas temperature differentials produced in the core could be reduced to such an extent that a degree of mixture amounting to over 80% was achieved at the entrance of the connected heat exchanger systems. Thereby the desired goal of an adequate degree of mixture of the hot gas involving an acceptable pressure loss was reached. (orig.)

  17. Design and management of hot-laboratories. [Manual]. Hottorabo no sekkei to kanri

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    This document is a manual for the design and management of hot-laboratories. It is composed of three parts. The first part is devoted to the design of hot-laboratories. Items included here are; conceptual design; many regulations which must be considered at design stage; design of cave and its shielding; and the design of building, ventilation, and draining. Many examples of specific designs are presented by figures and photographs. The second part is concerned with the methods of operation management. Organizational structure, scheduling of operation, process management, and regulatory problems are discussed with some examples. Technological problems associated with the operation of a hot laboratory (e.g., manipulator, transfer machine, maintenance, and decontamination) are also discussed based on the authors' experiences. An example of the operation manual is presented for reference. The third part is devoted to the safety management and the training of personnel. The regulations by law are briefly explained. Most of this part is devoted to the problem of monitoring radio-activity. Monitoring of control areas, radio-active wastes, and personal dosage is discussed together with many other specific monitoring problems. As for training, the purpose and the present status are explained.

  18. Fire protection at hot laboratories: Prevention, surveillance and fire-fighting

    International Nuclear Information System (INIS)

    Chappellier, A.M.

    1976-01-01

    After pointing out that fire in a hot laboratory can be an important factor contributing to a radioactivity accident, the author briefly recalls the items to be taken into account in a fire hazard analysis. He then describes various important aspects of prevention, detection and fire-fighting which - at the French Commissariat a l'Energie Atomique - are governed by already defined rules or by guidelines which are sufficiently advanced to give a clear idea of the final conclusions to be drawn therefrom. From the point of view protection, the concept of fire sector has been evolved, at hot laboratories, becomes the fire and contamination sector, so as to ensure under all circumstances the containment of any radioactive materials dispersed in the premises on fire. Regarding fire detection, a study should be made on the constraints specific to the facility and liable to affect detector operation. These include ventilation, radiations, neutral or corrosive atmosphere, etc. As regards fire-fighting, two particular aspects are dealt with, namely the question of using water in case of fire and action to be taken concerning ventilation. A practical example - the protection of a ventilation system - is described. In conclusion the paper refers to the need for a thorough analysis specific to each hot laboratory, and to the importance of preparing an operational plan so as to avoid any dangerous improvisations in case of an accident. (author)

  19. Theoretical study of hydraulic jump during circular horizontal hot leg injection in pressurized water reactor

    International Nuclear Information System (INIS)

    El Hawary, Shehab; Abu-Elyazeed, Osayed S.M.; Fahmy, Adel Alyan; Meglaa, Khairy

    2016-01-01

    Highlights: • The model is developed to predict the occurrence of onset hydraulic jump in a circular pipe. • Theoretical results are in agreement with experimental results and theory. • Effects of diameter of the injection pipe, Froude number and injected coolant mass are studied. - Abstract: One important phenomenon occurring during Loss of Coolant Accident (LOCA) is Counter-Current Flow Limitation (CCFL). The incidence of such CCFL is introduced by the onset of hydraulic jump. In the present work, a one dimensional model was modified to fit circular hot channel. The model was used to study the factors affecting the initial Froude number, the location of the occurrence of the hydraulic jump, and the critical coolant flow depth during circular horizontal hot leg injection in US-APWR Mitsubishi Reactor. The results showed good agreement with published experimental data of the Upper Plenum Test Facility (UPTF) at Mannheim, Germany. It was found that higher injected coolant mass flow rate increases the initial Froude number, the location of the occurrence of the hydraulic jump, and the critical injection depth divided by the diameter of the injection pipe. Such behavior is thought to be due to the increase of the inertia force by increasing of the injected coolant mass flow rate and the inverse of the diameter of the injection pipe. It was found also that, the location of the occurrence of hydraulic jump increases with decreasing load effect. Therefore, these results reveal that the avoidance of CCFL as well as hydraulic jump through hot leg at maximum load can be achieved by decreasing the distance between the injection point and the pressure vessel to below 0.3 m, and with diameter of 4 in (10.16 cm) as the design diameter of the injection pipe in US-APWR Mitsubishi Reactor. Moreover, the maximum critical depth (56 cm) is less than the diameter of the hot leg (78.74 cm) at an injected coolant mass flow of 400 kg/s, and with diameter of 4 in (10.16 cm) as the

  20. Sensitivity analysis on hot channel of PWR type reactors using matricial formalism

    International Nuclear Information System (INIS)

    Maciel, Edisson Savio G.; Andrade Lima, Fernando Roberto de; Lira, Carlos Alberto B.O.

    1995-01-01

    The matricial formalism of the perturbation theory is applied in a simplified model to study the hot channel of PWR reactors. Mass, linear momentum and energy conservation equations and appropriated heat transfer and fluid mechanics correlations describe the discretized system. After calculating system's thermalhydraulic properties, the matricial formalism is applied and the sensitivity coefficients are determined for each case of interest. Comparisons between perturbative method and direct results of the model have shown good agreement which demonstrates that the matricial formalism is an important tool for discretized system analysis. (author). 6 refs, 2 tabs

  1. Cast iron as structural material for hot-working reactor vessels (PCIV)

    International Nuclear Information System (INIS)

    Ostendorf, H.; Schmidt, G.; Pittack, W.

    1977-01-01

    Cast iron with lamellar graphite is best suited for prestressed structures, because its compressive strength is nearly 4 times its tensile strength. In comparison to room temperature, cast iron with lamellar graphite shows essentially no loss of strength up to temperatures of 400 0 C. Under the particular aspect to use cast iron for hot-working prestressed reactor pressure vessels (PCIV) (Prestressed cast iron vessel=PCIV) a materials testing program is carried out, which meets the strict certification requirements for materials in the construction of reactor pressure vessels and which completes the presently available knowledge of cast iron. Especially in the following fields an extension and supplement of the present level of knowledge is necessary: mechanical properties under compressive stresses; material properties at elevated temperatures; influence of irradiation on mechanical and physical properties; production standards and quality control. The state of the research and the available data of the material testing program are reported

  2. Cast iron as structural material for hot-working reactor vessels (PCIV)

    International Nuclear Information System (INIS)

    Ostendorf, H.; Schmidt, G.; Pittack, W.

    1977-01-01

    Cast iron with lamellar graphite is best suited for prestressed structures, because its compressive strength is nearly 4 times its tensile strength. In comparison to room temperature, cast iron with lamellar graphite shows essentially no loss of strength up to temperatures of 400 0 C. Under the particular aspect to use cast iron for hot-working prestressed reactor pressure vessels (PCIV) (Prestressed cast iron vessel=PCIV) a materials testing program is carried out, which meets the strict certification requirements for materials in the construction of reactor pressure vessels and which completes the presently available knowledge of cast iron. Especially in the following fields an extension and supplement of the present level of knowledge is necessary. - Mechanical properties under compressive stresses. - Material properties at elevated temperatures. - Influence of irradiation on mechanical and physical properties. - Production standards and quality control. The state of the research and the available data of the material testing program are reported. (Auth.)

  3. CFD Analysis for Hot Spot Fuel Temperature of Deep-Burn Modular Helium Reactor

    International Nuclear Information System (INIS)

    Tak, Nam Il; Jo, Chang Keun; Jun, Ji Su; Kim, Min Hwan; Venneri, Francesco

    2009-01-01

    As an alternative concept of a conventional transmutation using fast reactors, a deep-burn modular helium reactor (DB-MHR) concept has been proposed by General Atomics (GA). Kim and Venneri published an optimization study on the DB-MHR core in terms of nuclear design. The authors concluded that more concrete evaluations are necessary including thermo-fluid and safety analysis. The present paper describes the evaluation of the hot spot fuel temperature of the fuel assembly in the 600MWth DB-MHR core under full operating power conditions. Two types of fuel shuffling scheme (radial and axial hybrid shuffling and axial-only shuffling) are investigated. For accurate thermo-fluid analysis, the computational fluid dynamics (CFD) analysis has been performed on a 1/12 fuel assembly using the CFX code

  4. Development of hot water supply system for a small district heating reactor

    International Nuclear Information System (INIS)

    Murase, Toshihiko; Narabayashi, Tadashi; Shimazu, Yoichiro

    2007-01-01

    On the earth, there are many environmental problems. For example, rapid increase of world population causes the enormous consumption of fossil fuel and emission of CO 2 into the global air. Now, mankaind faced to deal with these serious problems. One solution for these problems is utilization of nuclear reactors. Currently, about 65% of thermal output of a nuclear reactor is thrown away to the sea or the atmosphere through a turbine condenser. When a hot-water pipeline from a nuclear plant will be constructed, the exhaust heat from nuclear reactor will able to be utilized. Therefore, authors began to study nuclear power plant system for district heating. This reactor is based on a PWR plant. Its thermal output is 10 MWth and its electrical output is 3.4 MW. The nuclear plant supply electricity and heat for 2000 to 3000 houses. The plant aim to supply all the energy for the adjacent pepole's life, for example, heat, electricity and hydrogen for fuel battery car. This total-energy supply system assumed to be built in Northern area such as Hokkaido in Japan. In order to develop an optimum thermal design method for the system, heat transport experiments and thermal-hydraulic calculations were carried out. Using a metal pipe covered with foam-polyurethane thermal insulator, feed-water temperature and return-water temperature was measured to evaluate heat loss. As the result, the heat loss from the hot-water temperature was very little. The thermal-hydraulic calculation method was verified and applied to actual pipeline size calculation. The result of heat loss calculation will be 0.2degC/5 km. considering these results, the best pipe specification was obtained. (author)

  5. MIT nuclear reactor laboratory high school teaching program

    International Nuclear Information System (INIS)

    Olmez, I.

    1991-01-01

    For the last 6 years, the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory's academic and scientific staff a have been conducting evening seminars for precollege science teachers, parents, and high school students from the New England area. These seminars, as outlined in this paper, are intended to give general information on nuclear technologies with specific emphasis on radiation physics, nuclear medicine, nuclear chemistry, and ongoing research activities at the MIT research reactor. The ultimate goal is to create interest or build on the already existing interest in science and technology by, for example, special student projects. Several small projects have already been completed ranging from environmental research to biological reactions with direct student involvement. Another outcome of these seminars was the change in attitudes of science teachers toward nuclear technology. Numerous letters have been received from the teachers and parents stating their previous lack of knowledge on the beneficial aspects of nuclear technologies and the subsequent inclusion of programs in their curriculum for educating students so that they may also develop a more positive attitude toward nuclear power

  6. Proposed power upgrade of the hot fuel examination facility's neutron radiography reactor

    International Nuclear Information System (INIS)

    Pruett, D.P.; Richards, W.J.; Heidel, C.C.

    1984-01-01

    The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both non-destructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the non-destructive examination techniques utilized at HFEF is neutron radiography. When the NRAD facility was designed and constructed, an operating power level of 250 kw was considered to be adequate for obtaining radiographs of the type of specimens envisaged at that time. Since that time, several things have occurred that have tended to increase radiography exposure times to as much as 90 minutes each. In order to decrease exposure times, the reactor power level is to be increased from 250 kW to 1 MW. This increase in power will necessitate several engineering and design changes. The proposed upgrade of the NRAD facility will increase the neutron flux available in the beam tubes appreciably. The increased flux will enable NRAD to continue to meet its operational commitments in a timely manner and to develop state-of-the-art techniques in the future as it has in the past

  7. Development of welding technique by remote control at the JMTR Hot Laboratory

    International Nuclear Information System (INIS)

    Shimizu, Michio; Iwamatu, Sigemi; Takada, Humiki

    2000-03-01

    Several kinds of welding techniques have been systematically developed using the remote controlled procedures in the JMTR Hot Laboratory. These are as follows, (1) re-instrumentation's of FP gas pressure gauge and thermocouple to an irradiated fuel rod for the centerline temperature measurement, (2) welding of the un-irradiated/irradiated specimen and machining process to produce tensile test specimens, (3) fabrication of Co-60 radiation source from materials for reactivity adjustment in JMTR core, (4) re-capsuling of irradiated materials in the different types of irradiation facilities. These research and development of circumferential and sealed welding for capsuling and welding of irradiated specimen for re-irradiation were implemented under the remote-controlled conditions in the Hot Cell. These techniques will be very indispensable for supporting the irradiation experiments to be conducted in the JMTR. (author)

  8. Thermal hydrodynamic modeling and simulation of hot-gas duct for next-generation nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Hong, Sungdeok; Kim, Chansoo [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bai, Cheolho; Hong, Sungyull [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-12-15

    Highlights: • Thermal hydrodynamic nonlinear model is presented to examine a hot gas duct (HGD) used in a fourth-generation nuclear power reactor. • Experiments and simulation were compared to validate the nonlinear porous model. • Natural convection and radiation are considered to study the effect on the surface temperature of the HGD. • Local Nusselt number is obtained for the optimum design of a possible next-generation HGD. - Abstract: A very high-temperature gas-cooled reactor (VHTR) is a fourth-generation nuclear power reactor that requires an intermediate loop that consists of a hot-gas duct (HGD), an intermediate heat exchanger (IHX), and a process heat exchanger for massive hydrogen production. In this study, a mathematical model and simulation were developed for the HGD in a small-scale nitrogen gas loop that was designed and manufactured by the Korea Atomic Energy Research Institute. These were used to investigate the effect of various important factors on the surface of the HGD. In the modeling, a porous model was considered for a Kaowool insulator inside the HGD. The natural convection and radiation are included in the model. For validation, the modeled external surface temperatures are compared with experimental results obtained while changing the inlet temperatures of the nitrogen working fluid. The simulation results show very good agreement with the experiments. The external surface temperatures of the HGD are obtained with respect to the porosity of insulator, emissivity of radiation, and pressure of the working fluid. The local Nusselt number is also obtained for the optimum design of a possible next-generation HGD.

  9. Enhancing the actinide sciences in Europe through hot laboratories networking and pooling: from ACTINET to TALISMAN

    International Nuclear Information System (INIS)

    Bourg, S.; Poinssot, C.

    2013-01-01

    Since 2004, Europe supports the strengthening of the European actinides sciences scientific community through the funding of dedicated networks: (i) from 2004 to 2008, the ACTINET6 network of excellence (6. Framework Programme) gathered major laboratories involved in nuclear research and a wide range of academic research organisations and universities with the specific aims of funding and implementing joint research projects to be performed within the network of pooled facilities; (ii) from 2009 to 2013, the ACTINET-I3 integrated infrastructure initiative (I3) supports the cost of access of any academics in the pooled EU hot laboratories. In this continuation, TALISMAN (Trans-national Access to Large Infrastructures for a Safe Management of Actinides) gathers now the main European hot laboratories in actinides sciences in order to promote their opening to academics and universities and strengthen the EU-skills in actinides sciences. Furthermore, a specific focus is set on the development of advanced cutting-edge experimental and spectroscopic capabilities, the combination of state-of-the art experimental with theoretical first-principle methods on a quantum mechanical level and to benefit from the synergy between the different scientific and technical communities. ACTINET-I3 and TALISMAN attach a great importance and promote the Education and Training of the young generation of actinides scientists in the Trans-national access but also by organizing Schools (general Summer Schools or Theoretical User Lab Schools) or by granting students to attend International Conference on actinide sciences. (authors)

  10. 'Experience with decommissioning of research and test reactors at Argonne National Laboratory'

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Yule, T.J.; Fellhauer, C.R.; Boing, L.E.

    2002-01-01

    A large number of research reactors around the world have reached the end of their useful operational life. Many of these are kept in a controlled storage mode awaiting decontamination and decommissioning (D and D). At Argonne National Laboratory located near Chicago in the United States of America, significant experience has been gained in the D and D of research and test reactors. These experiences span the entire range of activities in D and D - from planning and characterization of the facilities to the eventual disposition of all waste. A multifaceted D nd D program has been in progress at the Argonne National Laboratory - East site for nearly a decade. The program consists of three elements: - D and D of nuclear facilities on the site that have reached the end of their useful life; - Development and demonstrations of technologies that help in safe and cost effective D and D; - Presentation of training courses in D and D practices. Nuclear reactor facilities have been constructed and operated at the ANL-E site since the earliest days of nuclear power. As a result, a number of these early reactors reached end-of-life long before reactors on other sites and were ready for D and D earlier. They presented an excellent set of test beds on which D and D practices and technologies could be demonstrated in environments that were similar to commercial reactors, but considerably less hazardous. As shown, four reactor facilities, plutonium contaminated glove boxes and hot cells, a cyclotron facility and assorted other nuclear related facilities have been decommissioned in this program. The overall cost of the program has been modest relative to the cost of comparable projects undertaken both in the U.S. and abroad. The safety record throughout the program was excellent. Complementing the actual operations, a set of D and D technologies are being developed. These include robotic methods of tool handling and operation, chemical and laser decontamination techniques, sensors

  11. Experience feedback on the refurbishment of the LECA hot laboratory at Cadarache

    International Nuclear Information System (INIS)

    Grandjean, Jean-Paul; Autran, Bernard; Blanc, Jean-Yves

    2007-01-01

    Full text: After ten years of renovation work, the LECA hot laboratory refurbishment project has finally been completed which means it is now time to draw a few conclusions. Refurbishment of LECA was needed to enable PIE in this laboratory up to 2015. Improvements were made according to the laboratory safety assessment in March 2001. More than 400,000 working hours were clocked up without any serious accidents. The overall radiological record remained below 0.4 man.Sv for this period despite a high contamination level in the venting system and hot cells. The total fissile mass was decreased by a factor of three, and contamination was also considerably reduced. The project was finalised two years later than expected, mainly due to difficulties with two contracts on civil engineering work to improve seismic resistance and on inserting stainless steel casing into some hot cells. Renovation work on existing structures was underestimated, as was the time required to re-commission the cells. The fact that the total number of external staff working inside the facility at the same time was limited also slowed work down. This delay affected the research programmes mainly over the last two years. On the whole, 85 % of all experimentation activities were nevertheless continued during refurbishment. New steps for refurbishment have already been planned so as to extend the LECA service life once again. A line of lead-shielded cells - not designed to withstand current earthquake standards - will be demolished before the end of 2008, and civil engineering operations have been programmed for 2013-2014 so the facility will be able to withstand a maximum design earthquake. (authors)

  12. Preliminary design analysis of hot gas ducts and a intermediate heat exchanger for the nuclear hydrogen reactor

    International Nuclear Information System (INIS)

    Song, K. N.; Kim, Y. W.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) is in the process of carrying out a nuclear hydrogen system by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. Primary and secondary hot gas ducts with coaxial double tubes and are key components connecting a reactor pressure vessel and a intermediate heat exchanger for the nuclear hydrogen system. In this study, preliminary design analyses on the hot gas ducts and the intermediate heat exchanger were carried out. These preliminary design activities include a preliminary design on the geometric dimensions, a preliminary strength evaluation, thermal sizing, and an appropriate material selection

  13. Simplified model for the thermo-hydraulic simulation of the hot channel of a PWR type nuclear reactor

    International Nuclear Information System (INIS)

    Belem, J.A.T.

    1993-09-01

    The present work deals with the thermal-hydraulic analysis of the hot channel of a standard PWR type reactor utilizing a simplified mathematical model that considers constant the water mass flux during single-phase flow and reduction of the flow when the steam quality is increasing in the channel (two-phase flow). The model has been applied to the Angra-1 reactor and it has proved satisfactory when compared to other ones. (author). 25 refs, 15 figs, 3 tabs

  14. Hot cell works and related irradiation tests in fission reactor for development of new materials for nuclear application

    International Nuclear Information System (INIS)

    Shikama, Tatsuo

    1999-01-01

    Present status of research works in Oarai Branch, Institute for Materials Research, Tohoku University, utilizing Japan Materials Testing Reactor and related hot cells will be described.Topics are mainly related with nuclear materials studies, excluding fissile materials, which is mainly aiming for development of materials for advanced nuclear systems such as a nuclear fusion reactor. Conflict between traditional and routined procedures and new demands will be described and future perspective is discussed. (author)

  15. HOTLAB: European hot laboratories research and capacities and needs. Plenary meeting 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oberlaender, B.C.; Jenssen, H.K. (ed.)

    2005-01-01

    The report presents proceedings from the 2004 annual HOTLAB plenary meeting at Halden and Kjeller, Norway. The goal of the yearly plenary meeting was to: Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research. Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling, etc. Promote normalisation and co-operation, e.g. by looking at mutual complementarities. Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The main themes of the five topical oral sessions of the Halden plenary meeting cover: Work package leaders report and specific papers, presentation of PIE facility databases, i.e. one worldwide (IAEA) and one inside the European communities. Reports from present and future needs and on nuclear transports. Refabrication and instrumentation: Available equipment, technical characteristics such as fabrication procedures, hot-cell compatibility, and practical experiences. Post irradiation examination: Updated and new remote techniques and methodologies, new materials such as inert matrix fuels, spallation sources and neutron absorber materials. Refurbishment and decommissioning: reports on refurbishment and decommissioning of PIE facilities. Waste and transport: Hot laboratory waste characteristics and handling, spent fuel research. Several posters are presented.

  16. HOTLAB: European hot laboratories research capacities and needs. Plenary meeting 2004

    International Nuclear Information System (INIS)

    Oberlaender, B.C.; Jenssen, H.K.

    2005-01-01

    The report presents proceedings from the 2004 annual HOTLAB plenary meeting at Halden and Kjeller, Norway. The goal of the yearly plenary meeting was to: Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research. Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling, etc. Promote normalisation and co-operation, e.g. by looking at mutual complementarities. Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The main themes of the five topical oral sessions of the Halden plenary meeting cover: Work package leaders report and specific papers, presentation of PIE facility databases, i.e. one worldwide (IAEA) and one inside the European communities. Reports from present and future needs and on nuclear transports. Refabrication and instrumentation: Available equipment, technical characteristics such as fabrication procedures, hot-cell compatibility, and practical experiences. Post irradiation examination: Updated and new remote techniques and methodologies, new materials such as inert matrix fuels, spallation sources and neutron absorber materials. Refurbishment and decommissioning: reports on refurbishment and decommissioning of PIE facilities. Waste and transport: Hot laboratory waste characteristics and handling, spent fuel research. Several posters are presented

  17. Report on application results of the nuclear reactor in Atomic Energy Research Laboratory, Rikkyo University. April 1994 - March 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report is on researching action state, application state, management state, and others of 1994 fiscal year at the Atomic Energy Research Laboratory, Rikkyo University. The experimental reactor has been used for the studies such as application of neutron radioactivity analysis to multi fields, application of fission and alpha track method to age determination and metallurgy, hot atom chemistry, neutron radiation effect on semiconductors and others, nuclear data measurement, organism, materials and products using neutron radiography, and development and application to inspection of radiation detectors such as neutron detector. This report was a report shown as a shape of research results of actions of the researchers. And, another report of colaborate research results using the Rikkyo University reactor was also published from the Atomic Energy Center, the University of Tokyo begun since April, 1974. (G.K.)

  18. Study of cold and hot sources in a research reactor. (Physics, specifications, operation, utilization)

    International Nuclear Information System (INIS)

    Safieh, J.

    1982-10-01

    A brief description of the reactor, sources and experimental channels (ORPHEE being taken as example) is first given. The first part deals with the hot neutron source, mainly made of a graphite block to be carried at a temperature of 1500 0 K by nuclear heating. The present study focused on the determination, with the code MERCURE IV, of heat sources generated in the graphite block. From these results the spatial distribution of temperatures have been calculated with two different methods. Mechanical and thermal stresses have been calculated for the hot points. Then, the outlet neutron spectra is determined by means of the code APOLLO. Finally, the operation of the device is presented and the risks and the safety measures are given. The second part deals with cold neutron sources comprising mainly a cold moderator (liquid hydrogen 20.4 0 K). The helium coolant circuit liquefies the hydrogen by means of heat exchange in a condenser. Cold neutron yields calculations are developed by means of the code THERMOS in the plane and cyclindrical geometries. Heat sources generated by nuclear radiations are calculated. A detailed description of the device and its coolant circuit is given, and a risk analysis is finally presented. The third part deals with the part of thermal cold and hot neutrons in the study of matter and its dynamics. Technical means needed to obtain a monochromatic beam, for diffraction experiments, are recalled emphasizing on the interest of these neutrons with regard to X radiation. Then, one deals with cold neutron guides. Finally, the efficiency of two neutron guides is calculated. 78 refs [fr

  19. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  20. TRIO a general computer code for reactor 3-D flows analysis. Application to a LMFBR hot plenum

    International Nuclear Information System (INIS)

    Magnaud, J.P.; Rouzaud, P.

    1985-09-01

    TRIO is a code developed at CEA to investigate general incompressible 2D and 3D viscous flows. Two calculations are presented: the lid driven cubic cavity at Re=400; steady state (velocity and temperature field) of a LMFBR hot plenum, carried out in order to prepare the calculation of a cold shock consecutive to a reactor scram. 8 refs., 26 figs.

  1. Safety assessment of a multicavity prestressed concrete reactor vessel with hot liner

    Energy Technology Data Exchange (ETDEWEB)

    Lafitte, R.; Marchand, J. D. [Bonnard et Gardel, Ingenieurs-Conseil, Lausanne (Switzerland)

    1981-01-15

    The prestressed concrete reactor vessel of the high temperature reactor with helium turbine project differs from those realized up to this day by the important number of cavities, by the different cavity pressures and by a liner in contact with hot gas. For the cases of operating conditions, the computations can be based on an identical pressure in all the cavities. The overdimensioning of the vessel which results is not a determining factor at this stage of the project. The possible loss of leaktightness of the liner can introduce gas pressure into the walls of the vessel. The great thickness of the walls makes it impossible to withstand the resulting forces with prestressing in offering sufficient safety factor against collapse. It is thus important to design a drainage network largely dimensioned. The warm liner appears at this stage of the project too highly stressed by fatigue at the singularity points (ducts between cavities, angles). A solution is proposed which limits the variations of thermal stresses by using a steel with low coefficient of thermal expansion. The cavity closures, which are numerous and some with large dimensions are an important aspect of the vessel safety. A solution of reinforced concrete shell with independent liner is proposed.

  2. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ren Xiulian [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wei Qifeng, E-mail: weiqifeng163@163.com [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Hu Surong; Wei Sijie [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with {omega}{sup 1/2} ({omega}: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH{sub 4}Cl concentration was 53.46 g L{sup -1} and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min{sup -1}. Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor.

  3. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.

    Science.gov (United States)

    Ren, Xiulian; Wei, Qifeng; Hu, Surong; Wei, Sijie

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with omega(1/2) (omega: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH(4)Cl concentration was 53.46 g L(-1) and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min(-1). Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor. Copyright 2010 Elsevier B.V. All rights reserved.

  4. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor

    International Nuclear Information System (INIS)

    Ren Xiulian; Wei Qifeng; Hu Surong; Wei Sijie

    2010-01-01

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with ω 1/2 (ω: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH 4 Cl concentration was 53.46 g L -1 and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min -1 . Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor.

  5. Safety assessment of a multicavity prestressed concrete reactor vessel with hot liner

    International Nuclear Information System (INIS)

    Lafitte, R.; Marchand, J.D.

    1981-01-01

    The prestressed concrete reactor vessel of the high temperature reactor with helium turbine project differs from those realized up to this day by the important number of cavities, by the different cavity pressures and by a liner in contact with hot gas. For the cases of operating conditions, the computations can be based on an identical pressure in all the cavities. The overdimensioning of the vessel which results is not a determining factor at this stage of the project. The possible loss of leaktightness of the liner can introduce gas pressure into the walls of the vessel. The great thickness of the walls makes it impossible to withstand the resulting forces with prestressing in offering sufficient safety factor against collapse. It is thus important to design a drainage network largely dimensioned. The warm liner appears at this stage of the project too highly stressed by fatigue at the singularity points (ducts between cavities, angles). A solution is proposed which limits the variations of thermal stresses by using a steel with low coefficient of thermal expansion. The cavity closures, which are numerous and some with large dimensions are an important aspect of the vessel safety. A solution of reinforced concrete shell with independent liner is proposed

  6. Decommissioning of the radio chemical hot laboratory of the european commission joint research centre of Ispra - 59207

    International Nuclear Information System (INIS)

    Ugolini, Daniele; Rossi, Francesco; Basile, Francesco

    2012-01-01

    The construction of the Radio Chemical Hot Laboratory (RCHL) of the Joint Research Centre (JRC) of Ispra began in the early 1960's while the laboratory activities started in 1964. In 1976 an annex to the main building was built. At this time the RCHL main research activities were in environment and biochemistry by means of radioactive tracers; neutron activation analyses; extraction of actinides from radioactive liquid waste coming from the nuclear fuel reprocessing plants; and analyses of U, Pu, and Th in samples from the nuclear fuel cycle in order to determine the isotopic ratio and the burn-up. In 1978, a new area of laboratories named 'Stabularium' was built to study the metabolism of heavy metal on laboratory animals. Complementary to the laboratory three pneumatic transfer systems for irradiated sources connected the RCHL to two research reactors. The decommissioning activities of the 2650 m 2 facility started in January 2008 and they were completed at the end of 2010 with the release for unrestricted use of all the buildings of the facility. They consisted in five main tasks: pre-decommissioning, licensing, dismantling, waste management, and final survey. The main pre-decommissioning activities were the physical and radiological characterization of the facility. The principal licensing activity was the preparation of the de-licensing documentation to obtain the license termination from the safety authorities. Dismantling consisted in the removal of all the equipments and ancillary systems, of the pneumatic transfer system, and in the decontamination of the structures of the controlled zone. The waste management was limited to the transfer of the waste and of the clearable material to the centralized waste management facility. The final survey consisted in the final radiological characterization to quantify the concentration of any residual radioactivity remained after the completion of the dismantling activities for the release of the RCHL without any

  7. Internet accessible hot cell with gamma spectroscopy at the Missouri S and T nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Edwin [Nuclear Engineering, Missouri University of Science and Technology, 203 Fulton Hall, 300 W. 13th St., Rolla, MO 65409 (United States); Mueller, Gary, E-mail: gmueller@mst.edu [Nuclear Engineering, Missouri University of Science and Technology, 203 Fulton Hall, 300 W. 13th St., Rolla, MO 65409 (United States); Castano, Carlos; Usman, Shoaib; Kumar, Arvind [Nuclear Engineering, Missouri University of Science and Technology, 203 Fulton Hall, 300 W. 13th St., Rolla, MO 65409 (United States)

    2011-08-15

    Highlights: > A dual-chambered internet-accessible heavily shielded facility has been built. > The facility allows distance users to analyze neutron irradiated samples remotely. > The Missouri S and T system uses computer automation with user feedback. > The system can analyze multiple samples and assist several researchers concurrently. - Abstract: A dual-chambered internet-accessible heavily shielded facility with pneumatic access to the University of Missouri Science and Technology (Missouri S and T) 200 kW Research Nuclear Reactor (MSTR) core has been built and is currently available for irradiation and analysis of samples. The facility allows authorized distance users engaged in collaborative activities with Missouri S and T to remotely manipulate and analyze neutron irradiated samples. The system consists of two shielded compartments, one for multiple sample storage, and the other dedicated exclusively for radiation measurements and spectroscopy. The second chamber has multiple detector ports, with graded shielding, and has the capability to support gamma spectroscopy using radiation detectors such as an HPGe detector. Both these chambers are connected though a rapid pneumatic system with access to the MSTR nuclear reactor core. This new internet-based system complements the MSTR's current bare pneumatic tube (BPT) and cadmium lined pneumatic tube (CPT) facilities. The total transportation time between the core and the hot cell, for samples weighing 10 g, irradiated in the MSTR core, is roughly 3.0 s. This work was funded by the DOE grant number DE-FG07-07ID14852 and expands the capabilities of teaching and research at the MSTR. It allows individuals who do not have on-site access to a nuclear reactor facility to remotely participate in research and educational activities.

  8. Internet accessible hot cell with gamma spectroscopy at the Missouri S and T nuclear reactor

    International Nuclear Information System (INIS)

    Grant, Edwin; Mueller, Gary; Castano, Carlos; Usman, Shoaib; Kumar, Arvind

    2011-01-01

    Highlights: → A dual-chambered internet-accessible heavily shielded facility has been built. → The facility allows distance users to analyze neutron irradiated samples remotely. → The Missouri S and T system uses computer automation with user feedback. → The system can analyze multiple samples and assist several researchers concurrently. - Abstract: A dual-chambered internet-accessible heavily shielded facility with pneumatic access to the University of Missouri Science and Technology (Missouri S and T) 200 kW Research Nuclear Reactor (MSTR) core has been built and is currently available for irradiation and analysis of samples. The facility allows authorized distance users engaged in collaborative activities with Missouri S and T to remotely manipulate and analyze neutron irradiated samples. The system consists of two shielded compartments, one for multiple sample storage, and the other dedicated exclusively for radiation measurements and spectroscopy. The second chamber has multiple detector ports, with graded shielding, and has the capability to support gamma spectroscopy using radiation detectors such as an HPGe detector. Both these chambers are connected though a rapid pneumatic system with access to the MSTR nuclear reactor core. This new internet-based system complements the MSTR's current bare pneumatic tube (BPT) and cadmium lined pneumatic tube (CPT) facilities. The total transportation time between the core and the hot cell, for samples weighing 10 g, irradiated in the MSTR core, is roughly 3.0 s. This work was funded by the DOE grant number DE-FG07-07ID14852 and expands the capabilities of teaching and research at the MSTR. It allows individuals who do not have on-site access to a nuclear reactor facility to remotely participate in research and educational activities.

  9. Delignification of softwood kraft pulp by chlorine dioxide in a laboratory bleaching liquor displacement reactor

    International Nuclear Information System (INIS)

    Hamzeh, Y.; Izadyar, S.

    2008-01-01

    The chlorine dioxide delignification efficiency of softwood kraft pulp in the laboratory liquor displacement reactor (fixed bed reactor) was investigated and compared with conventional batch reactor. The comparison of two reactors was made based on the effective efficiency and overall efficiency of chlorine dioxide. Effective efficiency corresponds to the oxidizing capacity of chlorine dioxide which consumed by organic materials. Comparison of two reactors based on the effective efficiency showed that the selectivity of delignification significantly enhanced in the displacement reactor in which the primary reaction products are eliminated from reaction zone by displacing flow. On the other hand, the formation of high amounts of chlorate in the reaction zone of displacement reactor reduces the overall efficiency of chlorine dioxide delignification stage. Thus, in spite of significant decrease in useless secondary reactions, this type of reactor would not be cost effective in the industrial scale

  10. Nuclear Reactor Laboratory annual report, fiscal year 1981-1982

    International Nuclear Information System (INIS)

    Cashwell, R.J.

    1982-01-01

    Information related to the use of the UWNR reactor is presented concerning instructional use by the Nuclear Engineering Department; reactor sharing program; utility personnel training; sample irradiations and neutron activation analysis services; changes in personnel, facility, and procedures; and results of surveillance tests

  11. Activity of safety review for the facilities using nuclear material (2). Safety review results and maintenance experiences for hot laboratories

    International Nuclear Information System (INIS)

    Amagai, Tomio; Fujishima, Tadatsune; Mizukoshi, Yasutaka; Sakamoto, Naoki; Ohmori, Tsuyoshi

    2009-01-01

    In the site of O-arai Research and Development Center of Japan Atomic Energy Agency (JAEA), five hot laboratories for post-irradiation examination and development of plutonium fuels are operated more than 30 years. A safety review method for preventive maintenance on these hot laboratories includes test facilities and devices are established in 2003. After that, the safety review of these facilities and devices are done and taken the necessary maintenance based on the results in each year. In 2008, 372 test facilities and devices in these hot laboratories were checked and reviewed by this method. As a results of the safety review, repair issues of 38 facilities of above 372 facilities were resolved. This report shows the review results and maintenance experiences based on the results. (author)

  12. Antinociceptive effects of voluntarily ingested buprenorphine in the hot-plate test in laboratory rats

    DEFF Research Database (Denmark)

    Kristensen, Sara Hestehave; Munro, Gordon; Brønnum Pedersen, Tina

    2017-01-01

    the animal to a thermal stimulus using a hot plate, significant antinociceptive effects of voluntarily ingested buprenorphine administered in Nutella® were demonstrated. This was evident at doses of 1.0 mg/kg 60 and 120 min post administration (Peffects were not as marked......Researchers performing experiments on animals should always strive towards the refinement of experiments, minimization of stress and provision of better animal welfare. An adequate analgesic strategy is important to improve post-operative recovery and welfare in laboratory rats and mice....... In addition, it is desirable to provide post-operative analgesia using methods that are minimally invasive and stressful. This study investigated the antinociceptive effects of orally administered buprenorphine ingested in Nutella® in comparison with subcutaneous buprenorphine administration. By exposing...

  13. Partial gasification of coal in a fluidized bed reactor: Comparison of a laboratory and pilot scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, R.; Shen, L.H.; Zhang, M.Y.; Jin, B.S.; Xiong, Y.Q.; Duan, Y.F.; Zhong, Z.P.; Zhou, H.C.; Chen, X.P.; Huang, Y.J. [Southeast University, Nanjing (China)

    2007-01-15

    A 0.1 MWth lab-scale and 2 MWth pilot-scale experimental rigs were constructed to demonstrate the technical feasibility of a new process. The aim of the lab-scale study is to optimize coal partial gasification reactions operating conditions, which were applied in the pilot-scale tests. A comparison between the laboratory and pilot scale experimental results is presented in this paper in order to provide valuable information for scaling-up of the PFB coal partial reactor to industrial applications. The results show that trends and phenomena obtained in the laboratory reactor are confirmed in a pilot plant operating at similar conditions. However, many differences are observed in the two reactors. The higher heat loss in the lab-scale reactor is responsible for higher equivalence ratio (ER) and lower gas heating value at the similar reactor temperature. With respect to the pilot-scale reactor, mass transfer limitation between bubbles and emulsion phase may become important. Hence, longer contact time is required to achieve the same conversions as in the lab-scale reactor. This difference is explained by a significant change of the hydrodynamic conditions due to the formation of larger bubbles.

  14. Berkeley Nuclear Laboratories Reactor Physics Mk. III Experimental Programme. Description of facility and programme for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, R M; Waterson, R H; Young, J D

    1971-01-15

    Reactor physics experiments have been carried out at Berkeley Nuclear Laboratories during the past few years in support of the Civil Advanced Gas-Cooled Reactors (Mk. II) the Generating Board is building. These experiments are part of an overall programme whose objective is to assess the accuracy of the calculational methods used in the design and operation of these reactors. This report provides a description of the facility for the Mk. III experimental programme and the planned programme for 1971.

  15. Experimental facility of innovative types as the laboratory analog of research reactor experimental device

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Zabud'ko, A.N.; Kremenetskij, A.K.; Nikolaev, A.N.; Trykov, L.A.

    1991-01-01

    The paper analyses capability of creating laboratory analogs of complex experimental facilities at research reactors utilizing power radionuclide neutron sources fabricated in industrial conditions. Some experimental and calculational investigations of neutron-physical characteristics are presented, which have been attained at the RIZ research reactor laboratory analog. Experimental results are supplemented by calculational investigations, fulfilled by means of the BRAND three-dimensional computational complex and the ROZ-6 one-dimensional program. 4 refs.; 3 figs

  16. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...... were carried out with aerobic glucose and starch degrading biofilms. The well described aerobic glucose degradation biofilm system was used to test the combined reactor set-up. Results predicted from known biofilm kinetics were obtained. In the starch degrading biofilm, basic assumptions were tested...... with the microelectrode measurements. It was established, that even with a high molecular weight, non-diffusible substrate, degradation took place in the depths of the biofilm. Intrinsic enzymatic hydrolysis was not limiting and the volumetric removal rate of oxygen was zero order....

  17. Inertial-fusion-reactor studies at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Monsler, M.J.; Meier, W.R.

    1982-08-01

    We present results of our reactor studies for inertial-fusion energy production. Design studies of liquid-metal wall chambers have led to reactors that are remarkably simple in design, and that promise long life and low cost. Variants of the same basic design, called HYLIFE, can be used for electricity production, as a fissile-fuel factory, a dedicated tritium breeder, or hybrids of each

  18. Welcome to the home page of the Decontamination and Decommissioning Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents the details of the Argonne National Laboratory Home Page. Topics discussed include decontamination and decommissioning of the following: hot cells; remedial action; Experimental Boiling Water Reactor; glove boxes; the Chicago Pile No. 5 Research Reactor Facility; the Janus Reactor; Building 310 Retention Tanks; Zero Power Reactors 6 and 9; Argonne Thermal Source Reactor; cyclotron facility; and Juggernaut reactor

  19. Experiences with fast breeder reactor education in laboratory and short course settings

    International Nuclear Information System (INIS)

    Waltar, A.E.

    1983-01-01

    The breeder reactor industry throughout the world has grown impressively over the last two decades. Despite the uncertainties in some national programs, breeder reactor technology is well established on a global scale. Given the magnitude of this technological undertaking, there has been surprisingly little emphasis on general breeder reactor education - either at the university or laboratory level. Many universities assume the topic too specialized for including appropriate courses in their curriculum - thus leaving students entering the breeder reactor industry to learn almost exclusively from on-the-job experience. The evaluation of four course presentations utilizing visual aids is presented

  20. Development of a new bench for puncturing of irradiated fuel rods in STAR hot laboratory

    Science.gov (United States)

    Petitprez, B.; Silvestre, P.; Valenza, P.; Boulore, A.; David, T.

    2018-01-01

    A new device for puncturing of irradiated fuel rods in commercial power plants has been designed by Fuel Research Department of CEA Cadarache in order to provide experimental data of high precision on fuel pins with various designs. It will replace the current set-up that has been used since 1998 in hot cell 2 of STAR facility with more than 200 rod puncturing experiments. Based on this consistent experimental feedback, the heavy-duty technique of rod perforation by clad punching has been preserved for the new bench. The method of double expansion of rod gases is also retained since it allows upgrading the confidence interval of volumetric results obtained from rod puncturing. Furthermore, many evolutions have been introduced in the new design in order to improve its reliability, to make the maintenance easier by remote handling and to reduce experimental uncertainties. Tightness components have been studied with Sealing Laboratory Maestral at Pierrelatte so as to make them able to work under mixed pressure conditions (from vacuum at 10-5 mbar up to pressure at 50 bars) and to lengthen their lifetime under permanent gamma irradiation in hot cell. Bench ergonomics has been optimized to make its operating by remote handling easier and to secure the critical phases of a puncturing experiment. A high pressure gas line equipped with high precision pressure sensors out of cell can be connected to the bench in cell for calibration purposes. Uncertainty analyses using Monte Carlo calculations have been performed in order to optimize capacity of the different volumes of the apparatus according to volumetric characteristics of the rod to be punctured. At last this device is composed of independent modules which allow puncturing fuel pins out of different geometries (PWR, BWR, VVER). After leak tests of the device and remote handling simulation in a mock-up cell, several punctures of calibrated specimens have been performed in 2016. The bench will be implemented soon in hot

  1. University of Wisconsin Nuclear Reactor Laboratory, Madison, Wisconsin. Annual report, Fiscal Year 1982-1983

    International Nuclear Information System (INIS)

    Cashwell, R.J.

    1983-01-01

    Three Nuclear Engineering Department classes make use of the reactor. Forty-eight students enrolled in NE 231 participated in a two-hour laboratory session introducing students to rector behavior characteristics. Twelve hours of reactor operating time were devoted to this session. NE 427 was offeed in the fall semester and had an enrollment of sixteen. Several NE 427 experiments use materials that are activated in the reactor. One experiment entitled Radiation Survey requires that students make measurements of radiation levels in and around the reactor laboratory. The irradiations in support of NE 427 and the radiation survey take place during normal isotope production runs, so no reactor time is specifically devoted to NE 427. The enrollment in NE 428 was twenty-four, as it was offered in both semesters

  2. Enhancing Students' HOTS in Laboratory Educational Activity by Using Concept Map as an Alternative Assessment Tool

    Science.gov (United States)

    Ghani, I. B. A.; Ibrahim, N. H.; Yahaya, N. A.; Surif, J.

    2017-01-01

    Educational transformation in the 21st century demands in-depth knowledge and understanding in order to promote the development of higher-order thinking skills (HOTS). However, the most commonly reported problem with respect to developing a knowledge of chemistry is poor mastery of basic concepts. Chemistry laboratory educational activities are…

  3. Request for Naval Reactors Comment on Proposed PROMETHEUS Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to Jet Propulsion Laboratory

    International Nuclear Information System (INIS)

    D. Kokkinos

    2005-01-01

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory

  4. Los Alamos National Laboratory Omega West Reactor restart

    International Nuclear Information System (INIS)

    1993-01-01

    This report is a critical evaluation of the effort for the restart of the Omega West reactor. It is divided into the following areas: progress made; difficulties in restart effort; current needs; and suggested detailed steps for improvement. A brief discussion is given for each area of study

  5. Three-Dimensional Analysis of the Hot-Spot Fuel Temperature in Pebble Bed and Prismatic Modular Reactors

    International Nuclear Information System (INIS)

    In, W. K.; Lee, S. W.; Lim, H. S.; Lee, W. J.

    2006-01-01

    High temperature gas-cooled reactors(HTGR) have been reviewed as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor(PBR) and a prismatic modular reactor(PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both a PBR and a PMR. The objective of this study is to predict the hot-spot fuel temperature distributions in a PBR and a PMR at a steady state. The computational fluid dynamics(CFD) code, CFX-10 is used to perform the three-dimensional analysis. The latest design data was used here based on the reference reactor designs, PBMR400 and GTMHR60

  6. Present status of mechanical testing technology at the Research Hot Laboratory

    International Nuclear Information System (INIS)

    Kizaki, M.; Tobita, T.; Koya, T.; Kikuchi, T.

    1993-01-01

    Mechanical tests of irradiated metallic materials at the Research Hot Laboratory(RHL) have been carried out for 30 years to support material research in JAERI and to evaluate the irradiation integrity of pressure vessel steel in commercial power plant. Two tensile testing machines and one Charpy impact testing machine are available for the examinations. One of the tensile testing machines has 1000 kgf load capacity under the vacuum of ∼ 10 -7 torr at the temperature of 1300degC max.. The other one has 10 tonf load capacity, and is utilized for the multi-purpose tests such as tensile and compressive tests in air atmosphere at the temperature between -160 and 900degC. Examinations cover tensile test, bending test, J ic fracture toughness test, low cycle fatigue test and so on. Charpy impact testing machine with notched-bar specimen is instrumented with 30 kgf-m capacity in the temperature range of -140 - 240 degC. To support these mechanical tests in RHL, special jigs, devices and instruments have been developed. (author)

  7. Basic actinide chemistry and physics research in close cooperation with hot laboratories: ACTILAB

    International Nuclear Information System (INIS)

    Minato, K; Konashi, K; Fujii, T; Uehara, A; Nagasaki, S; Ohtori, N; Tokunaga, Y; Kambe, S

    2010-01-01

    Basic research in actinide chemistry and physics is indispensable to maintain sustainable development of innovative nuclear technology. Actinides, especially minor actinides of americium and curium, need to be handled in special facilities with containment and radiation shields. To promote and facilitate actinide research, close cooperation with the facilities and sharing of technical and scientific information must be very important and effective. A three-year-program B asic actinide chemistry and physics research in close cooperation with hot laboratories , ACTILAB, was started to form the basis of sustainable development of innovative nuclear technology. In this program, research on actinide solid-state physics, solution chemistry and solid-liquid interface chemistry is made using four main facilities in Japan in close cooperation with each other, where basic experiments with transuranium elements can be made. The 17 O-NMR measurements were performed on (Pu 0.91 Am 0.09 )O 2 to study the electronic state and the chemical behaviour of Am and Cm ions in electrolyte solutions was studied by distribution experiments.

  8. Experimental study of hot water layer in a model in scale of the Brazilian Multipurpose Reactor (RMB)

    International Nuclear Information System (INIS)

    Tomaz, Gabriel Caio Queiroz

    2017-01-01

    The Brazilian Multipurpose Reactor (RMB) is a 30 MW open pool research reactor planned to be constructed in Brazil. Such type of reactor is built inside a deep pool of purified and demineralized water, providing radiological protection still keeping the core accessible for maintenance and refueling. However, dissolved ions become activated in the pool water due to the core neutron flux, releasing radiation in the reactor room when the activated elements reach the top. Thus high power open pool reactors, as RMB, have an auxiliary thermal-hydraulic circuit that creates a Hot Water Layer (HWL) on the pool’s top, keeping the activated water under the HWL and mitigating the dose rate to which the operators are exposed to. The Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) built a 1/10 scale experimental bench of the RMB’s pool for the HWL investigation. This work presents the results of the pool’s heating due to the reactor startup in the HWL stability. (author)

  9. University of Missouri research reactor exhaust ventilation/laboratory fume hood upgrade

    International Nuclear Information System (INIS)

    Edwards, C.B. Jr.; McKibben, J.C.; McCracken, C.B.

    1989-01-01

    The University of Missouri research reactor (MURR) facility is located in Research Park, 1 mile south of the Columbia campus. The reactor is a 10-MW pressurized loop, in-pool-type, light-water-moderated, beryllium-and-graphite-reflected core, serviced by six radial beam tubes for research, and has sample irradiation facilities in both a flux trap and in the graphite region. The reactor operates at full power 150 h/week, 52 week/yr, making it one of the best operating schedules and the most extensively used of any university research reactor. This extensive utilization includes many programs, such as radioisotope applications, neutron activation analysis, etc., that depend heavily on fume hoods, glove boxes, and hot cells that put a tremendous demand on the exhaust system. The exhaust system is required to be operable whenever the reactor is operating and must have the capability of being operated from an emergency electrical generator on loss of site electrical power. The originally installed exhaust ventilation system was below needed capacity and, with increased program requirements and system age, the necessity to upgrade the system was paramount. The challenge was to complete the upgrade construction while continuing to operate the reactor and maintain all the other ongoing programs, rather than take the easy way of an extended shutdown. This paper discusses how MURR met this challenge and solved these problems, problems that are similarly experienced by almost all research reactors to some degree when major work is required on critical systems

  10. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Boing, L.E.; Henley, D.R.; Manion, W.J.; Gordon, J.W.

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs

  11. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  12. TIT reactor laboratory course using JAERI and PNC large experimental facilities

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Obara, Toru; Ohtani, Nobuo.

    1995-01-01

    This report is presented on a reactor laboratory course for graduate students using large facilities in national laboratories in Japan. A reactor laboratory course is offered every summer since 1990 for all graduate students in the Nuclear Engineering Course in Tokyo Institute of Technology (TIT), where the students can choose one of the experiments prepared at Japan Atomic Energy Research Institute (JAERI), Power Reactor and Nuclear Fuel Development Corporation (PNC) and Research Reactor Institute, Kyoto University (KUR). Both JAERI and PNC belong to Science and Technology Agency (STA). This is the first university curriculum of nuclear engineering using the facilities owned by the STA laboratories. This type of collaboration is promoted in the new Long-Term Program for Research, Development and Utilization of Nuclear Energy adopted by Atomic Energy Commission. Most students taking this course reported that they could learn so much about reactor physics and engineering in this course and the experiment done in large laboratory was a very good experience for them. (author)

  13. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell; Laboratoire a tres haute activite de Saclay. Equipement et techniques radiometallurgiques du laboratoire a haute activite de Saclay. Description de cellules pour manipulation de sels de plutonium. Amenagement d'une cellule du laboratoire de haute activite

    Energy Technology Data Exchange (ETDEWEB)

    Bazire, R; Blin, J; Cherel, G; Duvaux, Y; Cherel, G; Mustelier, J P; Bussy, P; Gondal, G; Bloch, J; Faugeras, P; Raggenbass, A; Raggenbass, P; Fufresne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  14. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell; Laboratoire a tres haute activite de Saclay. Equipement et techniques radiometallurgiques du laboratoire a haute activite de Saclay. Description de cellules pour manipulation de sels de plutonium. Amenagement d'une cellule du laboratoire de haute activite

    Energy Technology Data Exchange (ETDEWEB)

    Bazire, R.; Blin, J.; Cherel, G.; Duvaux, Y.; Cherel, G.; Mustelier, J.P.; Bussy, P.; Gondal, G.; Bloch, J.; Faugeras, P.; Raggenbass, A.; Raggenbass, P.; Fufresne, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  15. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  16. The search for sterile neutrinos at reactors and underground laboratories

    Science.gov (United States)

    Langford, Thomas

    2017-01-01

    From the initial discovery of neutrinos to the observation of neutrino oscillations, unexpected results have lead to deeper understanding of physics. However, as experiments and theoretical predictions have improved, new anomalies have surfaced that could point to beyond the Standard Model physics. Leading hypotheses invoke a new form of matter, sterile neutrinos, as a possible resolution of these outstanding questions. New experimental efforts are underway to probe short-baseline neutrino oscillations with reactors and radioactive sources. This talk will highlight developments in current and next generation experiments and present possible outcomes for the next few years.

  17. Laboratory evaluation of hot metal de siliconizing process in ladle; Avaliacao laboratorial do processo de dessiliciacao do gusa na panela

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Sergio R.M.; Furtado, Henrique S.; Bentes, Miguel A.G.; Almeida, Pedro S. de [Companhia Siderurgica Nacional, Volta Redonda, RJ (Brazil). Centro de Pesquisas

    1996-12-31

    The attractiveness of hot metal de siliconizing in ladle, relative to the process in blast furnace runner, is the previous knowledge of silicon content of hot metal, without the constraints of slag removing by skimmer met in torpedo car, and the better efficiency in low range silicon content, making easier the process controllability. Meanwhile, the main question about this technology is the extent of the resulfurization of hot metal that may occur due to process be performed after the desulfurization. This work simulates de de siliconizing process in ladle by experiments in induction furnace to compare the efficiencies of various de siliconizing agents available at CSN iron and steel making plant, and to evaluate the resulfurization intensity able to occur during the process, as well as, unexpected increasing of refractory wear. (author) 4 refs., 8 figs., 6 tabs.

  18. Dose measurements in controlled area and laboratory of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Maretti Junior, Fausto; Alvarenga, Frederico Ladeia

    2005-01-01

    The workers doses in exposure areas to the radiation are so important for a Radioprotection Quality Program, as well as to guarantee the workers safety. For that it is necessary to raise the doses in the radiation areas, to obtain the accumulated dose in certain procedures for detailed studies. Several risings were accomplished to obtain the radiation levels in the areas where the workers are exposed due the operation of a research nuclear reactor and in the radioisotopes manipulation laboratories of a nuclear institute. The radiation levels and doses can be observed through graphs in the dependences of the Controlled Area 1 (AC-1) and the Reactor Laboratory. Those limits are in according of the CNEN-NE-3.01 work limits rules. The conclusion of the work allowed to demonstrate that the Laboratory of the Reactor and AC-1, have booth an effective radiological program with efficient operational practices that contributes with low doses to the workers. (author)

  19. Broad scope educational role of a midsize university reactor NAA laboratory

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    2000-01-01

    Broad scope educational activities at the Neutron Activation Analysis Laboratory (NAAL) associated with the 100 kW University of Florida Training Reactor (UFTR) have been implemented to serve a deserve and multidisciplinary academic clientele to meet a wide spectrum of educational needs for students at all academic levels. Educational usage of the complementary laboratory facilities is described and the importance of such academic experimental experience is emphasized for developing and maintaining a cadre of professionals in the analytical applications of nuclear energy. The synergistic operation of the NAAL and the reactor at the University of Florida to serve as a model worthy of emulation for other similar facilities is emphasized. (author)

  20. Characterization of reactor neutron environments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Kelly, J.G.; Luera, T.F.; Griffin, P.J.; Vehar, D.W.

    1994-01-01

    To assure quality in the testing of electronic parts in neutron radiation environments, Sandia National Laboratories (SNL) has incorporated modern techniques and procedures, developed in the last two decades by the radiation effects community, into all of its experimental programs. Attention to the application of all of these methodologies, experiment designs, nuclear data, procedures and controls to the SNL radiation services has led to the much more accurate and reliable environment characterizations required to correlate the effects observed with the radiation delivered

  1. Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.

    Science.gov (United States)

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2012-08-01

    The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper.

  2. Retrospect over past 25 years at Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Aoki, Shigebumi

    1983-01-01

    Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, was established on April 1, 1956, with the aims of the investigation on the peaceful use of nuclear energy and of the education of scientists and engineers in this field. This report reviews the history of the Laboratory during 25 years and traces the process of growth concerning research divisions, buildings, large-scale experimental facilities and the education in the graduate course for nuclear engineering. In addition, considering what the Laboratory has to be and what the future plan will be, it is mentioned that the research interest should be extended to the field of nuclear fusion reactor, especially the blanket engineering, as a long-term future project of the Research Laboratory. (author)

  3. Numerical study of hot-leg ECC injection into the upper plenum of a pressurized water reactor

    International Nuclear Information System (INIS)

    Daly, B.J.; Torrey, M.D.; Rivard, W.C.

    1981-01-01

    In certain pressurized water reactor (PWR) designs, emergency core coolant (ECC) is injected through the hot legs into the upper plenum. The condensation of steam on this subcooled liquid stream reduces the pressure in the hot legs and upper plenum and thereby affects flow conditions throughout the reactor. In the present study, we examine countercurrent steam-water flow in the hot leg to determine the deceleration of the ECC flow that results from an adverse pressure gradient and from momentum exchange from the steam by interfacial drag and condensation. For the parameters examined in the study, water flow reversal is observed for a pressure drop of 22 to 32 mBar over the 1.5 m hot leg. We have also performed a three-dimensional study of subcooled water injection into air and steam environments of the upper plenum. The ECC water is deflected by an array of cylindrical guide tubes in its passage through the upper plenum. Comparisons of the air-water results with data obtained in a full scale experiment shows reasonable agreement, but indicates that there may be too much resistance to horizontal flow about the columns because of the use of a stair-step representation of the cylindrical guide tube cross section. Calculations of flow past single columns of stair-step, square and circular cross section do indicate excessive water deeentrainment by the noncircular column. This has prompted the use of an arbitrary mesh computational procedure to more accuratey represent the circular cross-section guide tubes. 15 figures

  4. Hot cell examination on the surveillance capsule of SA 533 cl. 1 reactor pressure vessel (1st test report)

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yong Sun; Jung, Y. H.; Yoo, B. O.; Baik, S. J.; Oh, W. H.; Soong, W. S.; Hong, K. P

    2000-08-01

    The post-irradiated examinations such as impact test, tensile test, composition analysis and etc. were conducted to monitor and to evaluate the radiation-induced changes, so called radiation embrittlement, in the mechanical properties of ferritic materials. Those data should be applied to confirm safety as well as reliability of reactor pressure vessel. The scopes and contents of hot cell examination on the surveillance capsule are as follows; - Capsule transportation, cutting, dismantling and classification - Shim block and Dosimeter cutting and dismantling - Impact test - Tensile test - Composition analysis by EPMA - SEM observation on the fractured surface - Hardness test - Radwaste treatment.

  5. BEACON/MOD2A analysis of the Arkansas-1 reactor cavity during a hypothetical hot leg break

    International Nuclear Information System (INIS)

    Ramsthaler, J.A.

    1979-01-01

    As part of the evaluation of the new MOD2A version of the BEACON code, the Arkansas-1 reactor cavity was modeled during a hypothetical loss-of-coolant accident. Results of the BEACON analysis were compared with results obtained previously with the COMPARE containment code. Studies were also made investigating some of the BEACON interphasic, timestep control, and wall heat transfer options to assure that these models were working properly and to observe their effects on the results. Descriptions of the Arkansas-1 reactor cavity, initial assumptions during the hypothetical LOCA, and methods of modeling with BEACON are presented. Some of the problems encountered in accurately modeling the penetrations surrounding the hot and cold leg pipes are also discussed

  6. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments using equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.

  7. Radiological survey support activities for the decommissioning of the Ames Laboratory Research Reactor Facility, Ames, Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1984-09-01

    At the request of the Engineering Support Division of the US Department of Energy-Chicago Operations Office and in accordance with the programmatic overview/certification responsibilities of the Department of Energy Environmental and Safety Engineering Division, the Argonne National Laboratory Radiological Survey Group conducted a series of radiological measurements and tests at the Ames Laboratory Research Reactor located in Ames, Iowa. These measurements and tests were conducted during 1980 and 1981 while the reactor building was being decontaminated and decommissioned for the purpose of returning the building to general use. The results of these evaluations are included in this report. Although the surface contamination within the reactor building could presumably be reduced to negligible levels, the potential for airborne contamination from tritiated water vapor remains. This vapor emmanates from contamination within the concrete of the building and should be monitored until such time as it is reduced to background levels. 2 references, 8 figures, 6 tables.

  8. Analyses in support of the Laboratory Microfusion Facility and ICF commercial reactor designs

    International Nuclear Information System (INIS)

    Meier, W.R.; Monsler, M.J.

    1988-01-01

    Our work on this contract was divided into two major categories; two thirds of the total effort was in support of the Laboratory Microfusion Facility (LMF), and one third of the effort was in support of Inertial Confinement Fusion (ICF) commercial reactors. This final report includes copies of the formal reports, memoranda, and viewgraph presentations that were completed under this contract

  9. Radiation chemistry in the nuclear power reactor environment: from laboratory study to practical application

    International Nuclear Information System (INIS)

    Stuart, C.R.

    1999-01-01

    This paper discusses the work carried out at the Chalk River Nuclear Laboratories in underlying and applied radiation chemical research performed to optimise the processes occurring in the four aqueous systems in and around the core. The aqueous systems subject to radiolysis in CANDU reactors are Heat Transport System, Moderator, Liquid Zone Controls and End Shields.

  10. 9 CFR 147.15 - Laboratory procedure recommended for the bacteriological examination of mycoplasma reactors. 11

    Science.gov (United States)

    2010-01-01

    ... Laboratory procedure recommended for the bacteriological examination of mycoplasma reactors. 11 11 Yoder, H. W., Jr., “Mycoplasmosis.” In: Isolation and Identification of Avian Pathogens. (Stephen B. Hitchner, Chairman, Charles H. Domermuth, H. Graham Purchase, James E. Williams.) 1980, pp. 40-42, Creative Printing...

  11. Decontamination and decommissioning of the JANUS reactor at the Argonne National Laboratory-East site

    International Nuclear Information System (INIS)

    Fellhauer, C.R.; Garlock, G.A.

    1997-05-01

    Argonne National Laboratory has begun the decontamination and decommissioning (D ampersand D) of the JANUS Reactor Facility. The project is managed by the Technology Development Division's D ampersand D Program personnel. D ampersand D procedures are performed by sub-contractor personnel. Specific activities involving the removal, size reduction, and packaging of radioactive components and facilities are discussed

  12. Education and research at the Ohio State University nuclear reactor laboratory

    International Nuclear Information System (INIS)

    Miller, D.W.; Myser, R.D.; Talnagi, J.W.

    1989-01-01

    The educational and research activities at the Ohio State University Nuclear Reactor Laboratory (OSUNRL) are discussed in this paper. A brief description of an OSUNRL facility improvement program and its expected impact on research is presented. The overall long-term goal of the OSUNRL is to support the comprehensive education, research, and service mission of OSU

  13. Research opportunities in a reactor-based nuclear analytical laboratory

    International Nuclear Information System (INIS)

    Robinson, L.; Brown, D.H.

    1994-01-01

    Although considered by many to be a open-quotes matureclose quotes science, neutron activation analysis (NAA) continues to be a valuable elemental analysis tool. Examples of the applicability of NAA can be found in a variety of areas including archaeology, environmental science, epidemiology, forensic science, and materials science to name a few. The major components of neutron activation are sample preparation, irradiation, counting, and data analysis. Each one of these stages provides opportunities to share numerous practical and fundamental scientific principles with high school teachers. This paper presents an overview of these opportunities. In addition, a specific example of the collaboration with a high school teacher whose research involved the automation of a gamma-ray spectroscopy counting system using a laboratory robot is discussed

  14. Sludge combustion in fluidized bed reactors at laboratory scale

    International Nuclear Information System (INIS)

    Chirone, R.; Cammarota, A.

    2001-01-01

    The combustion of a dried sewage sludge in laboratory scale fluidized bed has been studied in Naples by the Istituto di ricerche sulla combustione (Irc) in the framework of a National project named Thermal Process with Energy Recovery to be used in laboratory and pre-pilot scale apparatus. The attention has been focused on emissions of unreacted carbon as elutriated fines, on the emissions of pollutant gases and on the assessment of the inventory of fly- and bottom ashes. The combustion behaviour of sewage sludge has been compared with those of a market available Tyre Derived Fuel (TDF) and a biomass from Mediterranean area (Robinia Pseudoacacia) and with that of a South African bituminous coal. Stationary combustion tests were carried out at 850 0 C by feeding particles in the size range 0-1 mm into a bed of silica sand without any sorbent addition. The fluidized bed combustor has been operated, at a superficial gas velocity of 0.4 m/s and different excesses of air ranging between 14 and 98%. Relatively high combustion efficiency, larger than 98.9% has been obtained in experiments carried out with sewage sludge and excess of air larger than 20%. These values, are comparable with those obtained in previously experimental activity carried out under similar operative conditions with a South Africa Bituminous coal (97-98%). It is larger than those obtained by using a Tyre Derived Fuel (89-90%) and the Robinia Pseudoacacia Biomass (93-93%). The relative importance of carbon fines elutriation, CO emissions and volatile bypassing the bed in determining the loss of combustion efficiency has been evaluated for the different fuels tested [it

  15. Decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East. Project final report

    International Nuclear Information System (INIS)

    Fellhauer, C.R.; Clark, F.R.

    1997-10-01

    The decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East (ANL-E) was completed in October 1997. Descriptions and evaluations of the activities performed and analyses of the results obtained during the JANUS D and D Project are provided in this Final Report. The following information is included: objective of the JANUS D and D Project; history of the JANUS Reactor facility; description of the ANL-E site and the JANUS Reactor facility; overview of the D and D activities performed; description of the project planning and engineering; description of the D and D operations; summary of the final status of the JANUS Reactor facility based upon the final survey results; description of the health and safety aspects of the project, including personnel exposure and OSHA reporting; summary of the waste minimization techniques utilized and total waste generated by the project; and summary of the final cost and schedule for the JANUS D and D Project

  16. 9 CFR 75.4 - Interstate movement of equine infectious anemia reactors and approval of laboratories, diagnostic...

    Science.gov (United States)

    2010-01-01

    ... infectious anemia reactors and approval of laboratories, diagnostic facilities, and research facilities. 75.4... IN HORSES, ASSES, PONIES, MULES, AND ZEBRAS Equine Infectious Anemia (swamp Fever) § 75.4 Interstate movement of equine infectious anemia reactors and approval of laboratories, diagnostic facilities, and...

  17. Experimental study of bypass flow in near wall gaps of a pebble bed reactor using hot wire anemometry technique

    International Nuclear Information System (INIS)

    Amini, Noushin; Hassan, Yassin A.

    2014-01-01

    Highlights: • Coolant flow behavior in near wall gaps of a pebble bed reactor is studied. • Hot wire anemometry is applied for high frequency velocity measurements. • Bypass flow is identified within the velocity profiles of near wall gaps. • Effect of gap geometry and Reynolds number on bypass flow is investigated. • Variation of velocity power spectra with radial location and Reynolds number is studied. - Abstract: Coolant flow behavior through the core of an annular pebble bed reactor is investigated in this experimental study. A high frequency hot wire anemometry system coupled with an X-probe is used for measurement of axial and radial velocity components at different points within two near wall gaps at five different modified Reynolds numbers (Re m = 2043–6857). The velocity profiles within the gaps verify the presence of an area of increased velocity close to the pebble bed outer reflector wall, which is known as the bypass flow. Moreover, the characteristics of the coolant flow profile are seen to be highly dependent on the gap geometry. The effect of Reynolds number on the velocity profiles varies as the geometry of the gap changes. The time histories of the local velocities measured with considerably high frequency are further analyzed using power spectral density technique. Power spectral plots illustrate substantial spatial variation of the energy content, spectral shape, and the slope of the energy cascade region. A significant correlation between Reynolds number and characteristics of the velocity power spectra is observed

  18. Two-phase flow experiments in a model of the hot leg of a pressurised water reactor. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Tobias; Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Deendarlianto

    2011-09-15

    In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264 C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which

  19. Two-phase flow experiments in a model of the hot leg of a pressurised water reactor. Technical report

    International Nuclear Information System (INIS)

    Seidel, Tobias; Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Deendarlianto

    2011-09-01

    In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264 C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which

  20. Stress corrosion cracking of zircaloy. The use of laboratory data to predict in-reactor behaviour

    International Nuclear Information System (INIS)

    Miller, A.K.; Ocken, H.

    1981-01-01

    Pellet-cladding interaction (PCI) can lead to failure of the Zircaloy tubing used as cladding in water-cooled reactors. Many investigations have shown that the mechanism directly responsible for such fuel rod failures is stress corrosion cracking (SCC) of Zircaloy tubing. Laboratory studies have yielded extensive data on the time-to-failure (tsub(f)) behaviour of Zircaloy tubing specimens as a function of such important variables as the applied hoop stress (σ sub(h)), the iodine concentration (I 2 ), the temperature (T) and the fluence (F). These data have been used to predict the response of Zircaloy tubing exposed in-reactor. A typical approach is to fit laboratory data to obtain an empirical equation for tsub(f) in terms of the variables identified above. The question can then be posed as to whether it is appropriate to use such an empirical expression for predicting in-reactor behaviour. This paper describes the approach which has been taken in modelling the SCC process. It first reviews the experimental observations upon which the model is based. A summary of the key features of the model is then presented. The model's capabilities, emphasizing those predictions that are independent of data used to evaluate empirical constants, are briefly discussed. Finally, it is shown how the model can be used to predict important differences between the response of tubing specimens exposed in the laboratory and the response of large quantities of tubing exposed in-reactor

  1. Reactor laboratory course for students majoring in nuclear engineering with the Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    Nishihara, H.; Shiroya, S.; Kanda, K.

    1996-01-01

    With the use of the Kyoto University Critical Assembly (KUCA), a joint reactor laboratory course of graduate level is offered every summer since 1975 by nine associated Japanese universities (Hokkaido University, Tohoku University, Tokyo Institute of Technology, Musashi Institute of Technology, Tokai University, Nagoya University, Osaka University, Kobe University of Mercantile Marine and Kyushu University) in addition to a reactor laboratory course of undergraduate level for Kyoto University. These courses are opened for three weeks (two weeks for the joint course and one week for the undergraduate course) to students majoring in nuclear engineering and a total of 1,360 students have taken the course in the last 21 years. The joint course has been institutionalized with the background that it is extremely difficult for a single university in Japan to have her own research or training reactor. By their effort, the united faculty team of the joint course have succeeded in giving an effective, unique one-week course, taking advantage of their collaboration. Last year, an enquete (questionnaire survey) was conducted to survey the needs for the educational experiments of graduate level and precious data have been obtained for promoting reactor laboratory courses. (author)

  2. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    International Nuclear Information System (INIS)

    Salazar, M.D.

    1998-01-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel

  3. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  4. Study on mixed convective flow penetration into subassembly from reactor hot plenum in FBRs

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, J.; Ohshima, H.; Kamide, H.; Ieda, Y. [Power Reactor and Nuclear Fuel Development Corporation, Ibaraki (Japan)

    1995-09-01

    Fundamental experiments using water were carried out in order to reveal the phenomenon of mixed convective flow penetration into subassemblies from a reactor`s upper plenum of fast breeder reactors. This phenomenon appears under a certain natural circulation conditions during the operation of the direct reactor auxiliary cooling system for decay heat removal and might influence the natural circulation head which determines the core flow rate and therefore affects the core coolability. In the experiment, a simplified model which simulates an upper plenum and a subassembly was used and the ultrasonic velocity profile monitor as well as thermocouples were applied for the simultaneous measurement of velocity and temperature distributions in the subassembly. From the measured data, empirical equations related to the penetration flow onset condition and the penetration depth were obtained using relevant parameters which were derived from dimensional analysis.

  5. Project plan for the decontamination and decommissioning of the Argonne National Laboratory Experimental Boiling Water Reactor

    International Nuclear Information System (INIS)

    Boing, L.E.

    1989-12-01

    In 1956, the Experimental Boiling Water Reactor (EBWR) Facility was first operated at Argonne National Laboratory (ANL) as a test reactor to demonstrate the feasibility of operating an integrated power plant using a direct cycle boiling water reactor as a heat source. In 1967, ANL permanently shut down the EBWR and placed it in dry lay-up. This project plan presents the schedule and organization for the decontamination and decommissioning of the EBWR Facility which will allow it to be reused by other ANL scientific research programs. The project total estimated cost is $14.3M and is projected to generate 22,000 cubic feet of low-level radioactive waste which will be disposed of at an approved DOE burial ground. 18 figs., 3 tabs

  6. Project plan for the decontamination and decommissioning of the Argonne National Laboratory Experimental Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.

    1989-12-01

    In 1956, the Experimental Boiling Water Reactor (EBWR) Facility was first operated at Argonne National Laboratory (ANL) as a test reactor to demonstrate the feasibility of operating an integrated power plant using a direct cycle boiling water reactor as a heat source. In 1967, ANL permanently shut down the EBWR and placed it in dry lay-up. This project plan presents the schedule and organization for the decontamination and decommissioning of the EBWR Facility which will allow it to be reused by other ANL scientific research programs. The project total estimated cost is $14.3M and is projected to generate 22,000 cubic feet of low-level radioactive waste which will be disposed of at an approved DOE burial ground. 18 figs., 3 tabs.

  7. Seismic hazard studies for the high flux beam reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Costantino, C.J.; Heymsfield, E.; Park, Y.J.; Hofmayer, C.H.

    1991-01-01

    This paper presents the results of a calculation to determine the site specific seismic hazard appropriate for the deep soil site at Brookhaven National Laboratory (BNL) which is to be used in the risk assessment studies being conducted for the High Flux Beam Reactor (HFBR). The calculations use as input the seismic hazard defined for the bedrock outcrop by a study conducted at Lawrence Livermore National Laboratory (LLNL). Variability in site soil properties were included in the calculations to obtain the seismic hazard at the ground surface and compare these results with those using the generic amplification factors from the LLNL study

  8. Aerial radiological survey of the Industrial Reactor Laboratory and surrounding area Plainsboro, New Jersey

    International Nuclear Information System (INIS)

    1980-12-01

    An airborne radiological survey of a 6 km 2 area centered over the Industrial Reactor Laboratory was made 25-27 July 1979. Detected radioisotopes and their associated gamma ray exposure rates were consistent with that expected from normal background emitters, except at two locations described in this report. Count rates observed at 46 m altitude were converted to exposure rates at 1 m above the ground and are presented in the form of an isopleth map

  9. Evaluation and selection of hot channel (peaking) factors for research reactor applications

    International Nuclear Information System (INIS)

    Woodruff, W.L.

    1987-01-01

    A proposed method for selecting and applying hot channel factors is presented along with some justification for these selections. The method is illustrated by example, and the sensitivity to some of the choices is examined. The uncertainty in the heat transfer coefficient is a major contributor to the reduction in thermal-hydraulic safety margins. The uncertainty introduced by the heterogeneity in the fuel is another important contributor and an area where more information may be useful in reducing this uncertainty. (Author)

  10. Neutronics calculations for the Oak Ridge National Laboratory Tokamak Reactor Studies

    International Nuclear Information System (INIS)

    Santoro, R.T.; Baker, V.C.; Barnes, J.M.

    1976-01-01

    Neutronics calculations have been carried out to analyze the nuclear performance of conceptual blanket and shield designs for the Tokamak Experimental Power Reactor (EPR) and the Tokamak Demonstration Reactor Plant (DRP) being considered at the Oak Ridge National Laboratory. These reactor designs represent a sequence in the commercialization of fusion-generated electrical power. All of the calculations were carried out using the one-dimensional discrete ordinates code ANISN and the latest available ENDF/B-IV coupled neutron-gamma-ray transport cross-section data, fluence-to-kerma conversion factors, and radiation damage cross-section data. The calculations include spatial and integral heating-rate estimates in the reactor with emphasis on the recovery of fusion neutron energy in the blanket and limiting the heat-deposition rate in the superconducting toroidal field coils. Radiation damage due to atomic displacements and gas production produced in the reactor structural material and in the toroidal field coil windings were also estimated. The tritium-breeding ratio when natural lithium is used as the fertile material in the DRP blanket and in the experimental breeding modules in the EPR is also given

  11. Thermohydraulic behaviour of the hot channel in a PWR type reactor under loss-of-coolant accident conditions (LOCA)

    International Nuclear Information System (INIS)

    Costa, J.R.

    1978-12-01

    An analysis is done of the core behavior for a 1861 MW(th) pressurized water reactor with two coolant loops, during the blowdown phase of a double-ended cold leg rupture, between the main feedwater pump, and the pressure vessel. The analysis is done through a detailed thermohydraulic study of the hot pin channel with RELAP4/MOD 5 code, including the Evaluatin Model options. The problem is solved separately for two values of discharge coefficient (C sub(D)= 1,0 and 0,4). The results show that the maximum clad temperature is lower than the limit value for licensing purposes. Concerning clad material oxidation, the maximum value obtained is also under the limit of acceptance. (author) [pt

  12. Evaluating the effects of compaction of hot mix asphalt on selected laboratory tests

    CSIR Research Space (South Africa)

    Kekana, SL

    2008-07-01

    Full Text Available of the gyratory prepared samples for standard laboratory design mix and the field prepared samples, while the short-term aged (SA) sample shows similar rut rates to the field compacted samples. Early failure was evident after 2 000 wheel passes for the short.... The laboratory design mixed is represented by short-term aged mixed and design mix (fresh mix in the laboratory). The type of mix discussed in this study is summarised in Tables 1 and 2 and Figure 1. Detailed information about the mix is discussed in Denneman...

  13. Localization of the Hot Spot in the Gap of Pebble Bed of Very High Temperature Gas Cooled Reactor(VHTGR)

    International Nuclear Information System (INIS)

    Lee, Sa Ya; Hong, Sung Je; Lee, Jae Young

    2010-01-01

    Pebble Bed Reactor(PBR) has been investigated intensively due to its benefits in management, but its complicated flow geometry requests reliable analytical methods. Hassan and Lee et al. have been made three dimensional computational methods. Hassan also measured local velocity fields with Particle Tracking Velocimetry(PTV), in small sized packed bed using liquid coolant, and Lee et al. measured flow field in the 2-dimensional wind tunnel with a hot wire system. In the present study, we develop the scaled up wind tunnel of pebble bed to use air as coolant in the same Reynolds number condition, as 21614, of the PBMR-250MWth. In order to measure the local surface temperature, the heating system and temperature measurement system were installed and heat transfer analogy was performed. The local surface temperature data shows that the predicted hot spots by Lee et al. at the top and bottom of the pebble by the velocity field measurement are reasonable, but the heat conduction is prior than contact effect at contact points

  14. Laboratory investigation of the performance properties of hot mix asphalt containing waste glass

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2016-07-01

    Full Text Available CSIR is currently undertaking a study on potential utilization of crushed glass as a substitute material to natural aggregate in asphalt mixes. As part of the study, laboratory investigation is needed to determine the performance characteristics...

  15. Structural characterisation of pretreated solids from flow-through liquid hot water treatment of sugarcane bagasse in a fixed-bed reactor

    CSIR Research Space (South Africa)

    Reddy, P

    2015-05-01

    Full Text Available Untreated sugarcane bagasse and sugarcane bagasse pretreated with flow-through liquid hot water (LHW) treatment (170-207°C and 204-250 ml/min) in a fixed-bed reactor have been structurally characterised. Field emission gun scanning electron...

  16. Seismic modifications to the Hot and Suspect Repair area Argone National Laboratory - West

    International Nuclear Information System (INIS)

    Malik, L.E.; Harris, B.G.

    1993-01-01

    The ANL-W WIPP Waste Facility Enhancement Project required substantial remodeling and upgrades to the Hot Fuels Examination Facility (HFEF) building, including the Hot and Suspect Repair Area (HSRA). The HSRA is an enclosed single-storied area inside the HFEF. It is separated into several compartments, some of which are used for handling radioactive materials. The HSRA roof consists of 18 GA steel Robertson Q decking with 1.5 in. concrete topping, and is utilized for storage. Braced steel frames support the HSRA roof, except at the north side, where the steel beams are connected to the HFEF columns. The HSRA has hollow block masonry perimeter and interior walls. Seismic evaluations concluded that the HSRA did not have a competent seismic force resisting system. The structure was upgraded by decoupling it from the HFEF framing for N/S motions, modifying two existing braced frames, adding a new braced frame that can be removed temporarily during maintenance and strengthening the roof diaphragm by a unique modification consisting of special epoxy grout and steel plates installed over the existing concrete roof

  17. Seismic modifications to the hot suspect repair area Argonne National Laboratory, West

    International Nuclear Information System (INIS)

    Malik, L.E.; Harris, B.G.

    1993-01-01

    The ANL-W WIPP Waste Facility Enhancement Project required substantial remodeling and upgrades to the Hot Fuels Examination Facility (HFEF) building, including the Hot and Suspect Repair Area (HSRA). The HSRA is an enclosed single-stoned area inside the HFEF. It is separated into several compartments, some of which are used for handling radioactive materials. The HSRA roof consists of 18 GA steel Robertson Q decking with 1.5 in. concrete topping, and is utilized for storage. Braced steel frames support the HSRA roof, except at the north side, where the steel beams arc connected to the HFEF columns. The HSRA has hollow block masonry perimeter and interior walls. Seismic evaluations concluded that the HSRA did not have a competent seismic force resisting system. The structure was upgraded by decoupling it from the HFEF framing for N/S motions, modifying two existing braced frames, adding a now braced frame that can be removed temporarily during maintenance and strengthening the roof diaphragm by a unique modification consisting of special epoxy grout and steel plates installed over the existing concrete roof

  18. Numerical Simulation of Two-branch Hot Gas Mixing at Reactor Outlet of HTR-PM

    International Nuclear Information System (INIS)

    Hao Pengefei; Zhou Yangping; Li Fu; Shi Lei; He Heng

    2014-01-01

    A series of two-branch model experiment has been finished to investigate the thermal mixing efficiency of the HTR-PM reactor outlet. This paper introduces the numerical simulation on the design of thermal mixing structure of HTR-PM and the test facility with Fluent software. The profiles of temperature, pressure and velocity in the mixing structure design and the test facility are discussed by comparing with the model experiment results. The numerical simulation results of the test facility have good agreement to the experiment results. In addition, the thermal-fluid characters obtained by numerical simulation show the thermal mixing structure of HTR-PM has similarity with the test facility. Finally, it is concluded that the thermal mixing design at HTR-PM reactor outlet can fulfilled the requirements for high thermal mixing efficiency and appropriate pressure drop. (author)

  19. HESTER: a hot-electron superconducting tokamak experimental reactor at M.I.T

    International Nuclear Information System (INIS)

    Schultz, J.H.; Montgomery, D.B.

    1983-04-01

    HESTER is an experimental tokamak, designed to resolve many of the central questions in the tokamak development program in the 1980's. It combines several unique features with new perspectives on the other major tokamak experiments scheduled for the next decade. The overall objectives of HESTER, in rough order of their presently perceived importance, are the achievement of reactor-like wall-loadings and plasma parameters for long pulse periods, determination of a good, reactor-relevant method of steady-state or very long pulse tokamak current drive, duplication of the planned very high temperature neutral injection experiments using only radio frequency heating, a demonstration of true steady-state tokamak operation, integration of a high-performance superconducting magnet system into a tokamak experiment, determination of the best methods of long term impurity control, and studies of transport and pressure limits in high field, high aspect ratio tokamak plasmas. These objectives are described

  20. Thermoluminescence dosimetry in very hot atmosphere with a view to the dosimetry in nuclear reactors

    International Nuclear Information System (INIS)

    Bikwaku, Nsampala Tomakunsimba

    1985-01-01

    In order to develop radiation resistant materials for use in the region of nuclear reactor cores, it is necessary to know the dose absorbed by the surrounding structures. A passive thermoluminescence technique was chosen, an activated alumina material with very deep traps which are stable at high temperature (450 deg. C), being used. The characteristic properties of this detector have been studied and an attempt made to interpret the results obtained. (author) [fr

  1. Neutron activation analysis in an industrial laboratory using an off-site nuclear reactor

    International Nuclear Information System (INIS)

    Osborn, T.W.; Broering, W.B.

    1977-01-01

    A multifunctional research laboratory, such as Procter and Gamble's Miami Valley Laboratories, requires elemental analyses on many materials. A general survey technique is important even if the information it provides is incomplete or is less precise than single element analyses. Procter and Gamble has developed neutron activation analysis (NAA) capabilities using a nuclear reactor several hundred miles away. The concentration of 40 to 50 elements can be determined in a variety of matrices. We have found NAA to be a powerful supplement to some of the more classical analytical techniques even without having an on-site neutron source. We have also found an automated data acquisition system to be essential for the successful application of NAA in an industrial laboratory

  2. Hot Cell Facility modifications at Sandia National Laboratories to support 99Mo production

    International Nuclear Information System (INIS)

    Vernon, M.; Philbin, J.; Berry, D.

    1997-01-01

    In September, 1996, following the completion of an extensive Environmental Impact Statement (EIS), a record of decision (ROD) was issued by DOE selecting Sandia as the facility to take on the 99 Mo production mission. 99 Mo is the precursor to 99m Tc which is used in 36,000 medical procedures per day in the US. to meet US 99 Mo medical demands, 20 kCi of 99 Mo must be delivered to the pharmaceutical companies each week. This could be accomplished by the processing of twenty-five targets (total fission product of 15 kCi/target) each week within the SNL Hot Cell Facility (HCF). To accomplish this new mission, significant modifications to the HCF will have to be undertaken. This paper presents a brief history of the HCF, and describes modifications necessary to achieve DOE directives

  3. Advanced liquid metal reactor development at Argonne National Laboratory during the 1980s

    International Nuclear Information System (INIS)

    Wade, D.C.

    1990-01-01

    Argonne National Laboratory's (ANL'S) effort to pursue the exploitation of liquid metal cooled reactor (LMR) characteristics has given rise to the Integral Fast Reactor (IFR) concept, and has produced substantial technical advancement in concept implementation which includes demonstration of high burnup capability of metallic fuel, demonstration of injection casting fabrication, integral demonstration of passive safety response, and technical feasibility of pyroprocessing. The first half decade of the 90's will host demonstration of the IFR closed fuel cycle technology at the prototype scale. The EBR-II reactor will be fueled with ternary alloy fuel in HT-9 cladding and ducts, and pyroprocessing and injection casting refabrication of EBR-II fuel will be conducted using near-commercial sized equipment at the Fuel cycle Facility (FCF) which is co-located adjacent to EBR-II. Demonstration will start in 1992. The demonstration of passive safety response achievable with the IFR design concept, (already done in EBR-II in 1986) will be repeated in the mid 90's using the IFR prototype recycle fuel from the FCF. The demonstration of scrubbing of the reprocessing fission product waste stream, with recycle of the transuranics to the reactor for consumption, will also occur in the mid 90's. 30 refs

  4. Evaluation of filters in RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) in OPAL research reactor at ANSTO (Australian Nuclear Science and Technology Organization) using Gamma Spectrometry System and Liquid Scintillation Counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jim In; Foy, Robin; Jung, Seong Moon; Park, Hyeon Suk; Ye, Sung Joon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Australian Nuclear Science and Technology Organization(ANSTO) has a research reactor, OPAL (Open Pool Australian Lightwater reactor) which is a state-of-art 20 MW reactor for various purposes. In OPAL reactor, there are many kinds of radionuclides produced from various reactions in pool water and those should be identified and quantified for the safe use of OPAL. To do that, it is essential to check the efficiency of filters which are able to remove the radioactive substance from the reactor pool water. There are two main water circuits in OPAL which are RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) water circuits. The reactor service pool is connected to the reactor pool via a transfer canal and provides a working area and storage space for the spent and other materials. Also, HWL is the upper part of the reactor pool water and it minimize radiation dose rates at the pool surface. We collected water samples from these circuits and measured the radioactivity by using Gamma Spectrometry System (GSS) and Liquid Scintillation Counter (LSC) to evaluate the filters. We could evaluate the efficiency of filters in RSPCS and HWL in OPAL research reactor. Through the measurements of radioactivity using GSS and LSC, we could conclude that there is likely to be no alpha emitter in water samples, and for beta and gamma activity, there are very big differences between inlet and outlet results, so every filter is working efficiently to remove the radioactive substance.

  5. Establishment of effective maintenance method based on the superior inspection technique for the deteriorating hot laboratory exhaust stack

    International Nuclear Information System (INIS)

    Mizukoshi, Yasutaka; Yasu, Tetsunori

    2012-06-01

    The Materials Monitoring Facility is equipped with an exhaust stack to emit air from a controlled area (the hot laboratory) into the atmosphere. Cracks and exfoliation have been observed for the surface of the exhaust stack, which is made of reinforced concrete and was constructed on the seacoast about 25 years ago, so exposed to a salt-corrosive condition. In order to get details of the present condition of the exhaust stack, an inspection was carried out using an electromagnetic wave radar method and chloride content method. Cracks and exfoliation were observed for the whole stack surface, especially for high positions. Moreover, salt damage was observed for the outer surface of the exhaust stack, and it was estimated that the infiltration of the chloride content was about 17 mm. Based on this detailed inspection of the exhaust stack, maintenance and repair work were carried out. (author)

  6. Surveillance and radiological protection in the Hot Cell laboratory; Vigilancia y proteccion radiologica en el Laboratorio de Celdas Calientes

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, J.M.; Torre, J. De la; Garcia C, M.A. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2004-07-01

    The Hot Cells Laboratory (LCC) located in the National Institute of Nuclear Research are an installation that was designed for the management at distance of 10,000 Curies of Co-60 or other radioactive materials with different values in activity. The management of such materials in the installation, implies to analyze and to determine the doses that the POE will receive as well as the implementation of protection measures and appropriate radiological safety so that is completed the specified by the ALARA concept. In this work it is carried out an evaluation of the doses to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of results is made with the program of surveillance and radiological protection implemented for the development of the works that carried out in the installation. (Author)

  7. Evaporation Basin Test Reactor Area, Idaho National Engineering Laboratory: Environmental assessment

    International Nuclear Information System (INIS)

    1991-12-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0501, on the construction and operation of the proposed Evaporation Basin at the Test Reactor Area (TRA) at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact

  8. Experience of steam generator tube examination in the hot laboratory of EDF: analysis of recent events concerning the secondary side

    International Nuclear Information System (INIS)

    Thebault, Y.; Bouvier, O. de; Boccanfuso, M.; Coquio, N.; Barbe, V.; Molinie, E.

    2011-01-01

    Until 2010, more than 60 steam generator (SG) tubes have been removed and analysed in the EDF hot laboratory of CEIDRE/Chinon. This article is particularly related to three recent events that lead to the extraction of several tubes dedicated to laboratory destructive examinations. The first event that constitutes a first occurrence on the EDF Park, concerns the detection of a circumferential crack on the external surface of a tube located at tube support plate elevation. After this observation, several tubes have been extracted from Bugey 3 and Fessenheim 2 nuclear power plants with steam generators equipped with 600 MA bundle. The other two events concern the consequences of chemical cleaning of the tube bundle steam generators. The examples chosen are from Cruas 4 et Chinon B2 units whose tubes were extracted following non destructive testing performed immediately after or at the completion of cycle following the chemical cleaning. In the case of Cruas 4, Eddy Current Testing (ET) were performed for requalification of steam Generators after chemical cleaning. They allowed the detection of an indication located at the bottom of tube for a large number of tubes; the ET signal was similar to that corresponding to 'deposit' corrosion. Moreover, inspections of Chinon-B2 SGs at the end of the operation cycle following the chemical cleaning, showed the presence of conductor deposits at the bottom of some tubes. The first part of this document presents the major results of laboratory examinations of the pulled tubes of Bugey 3 and Fessenheim 2 and their analysis. Hypothesis concerning damage mechanisms of the tubes are also proposed. The second part of the paper relates the results of the laboratory examinations of the pulled tubes of Cruas 4 and Chinon B 2 after chemical cleaning and their analysis. (authors)

  9. Structural analyses on piping systems of sodium reactors. 2. Eigenvalue analyses of hot-leg pipelines of large scale sodium reactors

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Kasahara, Naoto

    2002-01-01

    Two types of finite element models analyzed eigenvalues of hot-leg pipelines of a large-scale sodium reactor. One is a beam element model, which is usual for pipe analyses. The other is a shell element model to evaluate particular modes in thin pipes with large diameters. Summary of analysis results: (1) A beam element model and a order natural frequency. A beam element model is available to get the first order vibration mode. (2) The maximum difference ratio of beam mode natural frequencies was 14% between a beam element model with no shear deformations and a shell element model. However, its difference becomes very small, when shear deformations are considered in beam element. (3) In the first order horizontal mode, the Y-piece acts like a pendulum, and the elbow acts like the hinge. The natural frequency is strongly affected by the bending and shear rigidities of the outer supporting pipe. (4) In the first order vertical mode, the vertical sections of the outer and inner pipes moves in the axial-directional piston mode, the horizontal section of inner pipe behaves like the cantilever, and the elbow acts like the hinge. The natural frequency is strongly affected by the axial rigidity of outer supporting pipe. (5) Both effective masses and participation factors were small for particular shell modes. (author)

  10. Waste minimization value engineering workshop for the Los Alamos National Laboratory Omega West Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Hartnett, S.; Seguin, N.; Burns, M.

    1995-01-01

    The Los Alamos National Laboratory Pollution Prevention Program Office sponsored a Value Engineering (VE) Workshop to evaluate recycling options and other pollution prevention and waste minimization (PP/WMin) practices to incorporate into the decommissioning of the Omega West Reactor (OWR) at the laboratory. The VE process is an organized, systematic approach for evaluating a process or design to identify cost saving opportunities, or in this application, waste reduction opportunities. This VE Workshop was a facilitated process that included a team of specialists in the areas of decontamination, decommissioning, PP/WMin, cost estimating, construction, waste management, recycling, Department of Energy representatives, and others. The uniqueness of this VE Workshop was that it used an interdisciplinary approach to focus on PP/WMin practices that could be included in the OWR Decommissioning Project Plans and specifications to provide waste reduction. This report discusses the VE workshop objectives, summarizes the OWR decommissioning project, and describes the VE workshop activities, results, and lessons learned

  11. Waste minimization value engineering workshop for the Los Alamos National Laboratory Omega West Reactor Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Hartnett, S.; Seguin, N. [Benchmark Environmental Corp., Albuquerque, NM (United States); Burns, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    The Los Alamos National Laboratory Pollution Prevention Program Office sponsored a Value Engineering (VE) Workshop to evaluate recycling options and other pollution prevention and waste minimization (PP/WMin) practices to incorporate into the decommissioning of the Omega West Reactor (OWR) at the laboratory. The VE process is an organized, systematic approach for evaluating a process or design to identify cost saving opportunities, or in this application, waste reduction opportunities. This VE Workshop was a facilitated process that included a team of specialists in the areas of decontamination, decommissioning, PP/WMin, cost estimating, construction, waste management, recycling, Department of Energy representatives, and others. The uniqueness of this VE Workshop was that it used an interdisciplinary approach to focus on PP/WMin practices that could be included in the OWR Decommissioning Project Plans and specifications to provide waste reduction. This report discusses the VE workshop objectives, summarizes the OWR decommissioning project, and describes the VE workshop activities, results, and lessons learned.

  12. Manual on safety aspects of the design and equipment of hot laboratories. 1981 ed

    International Nuclear Information System (INIS)

    1981-01-01

    This manual covers the general principles of planning and design of areas inside laboratories according to the varying potential radiation and contamination hazards; enclosures for radioactive material containment; viewing and lighting systems and various types of manipulators; transfer and transport of radioactive materials within the laboratories; air cleaning and ventilation systems, with particular reference to IAEA Safety Series No.17; techniques for controlling air pollution from the operation of nuclear facilities; various radioactive waste disposal systems; criticality control; fire protection; personnel monitoring, including changing-room monitoring and protective clothing; standardization and automation; and administrative controls. Although alpha, beta, gamma technologies have developed separately, equipment used in radioactive work is common to many operations. There is a step change in technology between work with uranium and plutonium and between work with plutonium and other transuranics; with plutonium one enters the field of alpha, beta, gamma technology. This manual reports the basic requirements and gives reference to more sophisticated techniques available. It is not concerned with work on a commercial scale. Other publications of interest in this context, for instance IAEA Safety Series No.39, are referenced for more detailed information.

  13. Justification and manufacturing quality assurance for the use of hot Isostatically pressed, reactor coolant system components in PWR plant

    International Nuclear Information System (INIS)

    Sulley, J. L.; Hookham, I. D.

    2008-01-01

    This paper presents an overview of the work undertaken by Rolls-Royce to introduce Hot Isostatically Pressed (HIP) components into Pressurised Water Reactor plant. It presents the work from a design justification and manufacturing quality assurance perspective, rather than from a pure metallurgical perspective, although some metallurgical and mechanical property comparisons with the traditional forged material are presented. Although the HIP process is not new, it was new in its application to Rolls-Royce designed nuclear reactor plant. In order to satisfy the regulatory requirement of 'Proven Engineering Practices' with regard to the introduction of new material processes, and to provide a robust manufacturing substantiation leg of a multi-legged safety case, Rolls-Royce has implemented an evolving, staged approach, starting with HIP bonding of solid valve seats into small bore valve pressure boundaries. This was followed by powder HIP consolidation of leak-limited, thin-walled toroids, and has culminated in the powder HIP consolidation of components, such as steam generator headers, large bore valves and pipe sections. The paper provides an overview of each of these stages and the approach taken with respect to justification. The paper describes the benefits that Rolls-Royce has realised so far through the introduction of HIPed components, and improvements planned for the future. Structural integrity benefits are described, such as improved grain structure, mechanical properties, and ultrasonic inspection. Project-based benefits are also described, such as provision of an alternative strategic sourcing route, cost and lead-time reduction. A full description is provided of key quality assurance steps applied to the process to ensure a high quality product is delivered commensurate with a high integrity nuclear application. 2008 Rolls-Royce plc. (authors)

  14. Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona DCN:2051-SR-01-0

    International Nuclear Information System (INIS)

    Altic, Nick A.

    2011-01-01

    The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

  15. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels

    Directory of Open Access Journals (Sweden)

    YANG Zhi-qiang

    2017-08-01

    Full Text Available The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak stress increases with the decrease of deformation temperature or the increase of strain rate, indicating the experimental steel is temperature and strain rate sensitive material. The constitutive equation for SA508Gr.4N steel is established on the basis of the true stress-strain curves, and exhibits the characteristics of the high-temperature flow behavior quite well, while the activation energy of the steel is determined to be 383.862kJ/mol. Furthermore, an inflection point is found in the θ-σ curve, while the -dθ/dσ-σ curve shows a minimum value. The critical strain increases with increasing strain rate and decreasing deformation temperature. A linear relationship between critical strain (εc and peak strain (εp is found and could be expressed as εc/εp=0.517. The predicted model of critical strain could be described as εc=8.57×10-4Z0.148.

  16. Modelling and experimental investigation of waste tyre pyrolysis process in a laboratory reactor

    Directory of Open Access Journals (Sweden)

    Rudniak Leszek

    2017-09-01

    Full Text Available A mathematical model of waste tyre pyrolysis process is developed in this work. Tyre material decomposition based on a simplified reaction mechanism leads to main product lumps: noncondensable (gas, condensable (pyrolytic oil and solid (char. The model takes into account kinetics of heat and mass transfer in the grain of the shredded rubber material as well as surrounding gas phase. The main reaction routes were modelled as the pseudo-first order reactions with a rate constant calculated from the Arrhenius type equation using literature values of activation energy determined for main tyre constituents based on TG/DTG measurements and tuned pre-exponential parameter values obtained by fitting theoretical predictions to the experimental results obtained in our laboratory reactor. The model was implemented within the CFD software (ANSYS Fluent. The results of numerical simulation of the pyrolysis process revealed non-uniformity of sample’s porosity and temperature. The simulation predictions were in satisfactory agreement with the experimentally measured mass loss of the tyre sample during pyrolysis process investigated in a laboratory reactor.

  17. Chemical vapour deposition of silicon under reduced pressure in a hot-wall reactor: Equilibrium and kinetics

    International Nuclear Information System (INIS)

    Langlais, F.; Hottier, F.; Cadoret, R.

    1982-01-01

    Silicon chemical vapour deposition (SiH 2 Cl 2 /H 2 system), under reduced pressure conditions, in a hot-wall reactor, is presented. The vapour phase composition is assessed by evaluating two distinct equilibria. The homogeneous equilibrium , which assumes that the vapour phase is not in equilibrium with solid silicon, is thought to give an adequate description of the vapour phase in the case of low pressure, high gas velocities, good temperature homogeneity conditions. A comparison with heterogeneous equilibrium enables us to calculate the supersaturation so evidencing a highly irreversible growth system. The experimental determination of the growth rates reveals two distinct temperature ranges: below 1000 0 C, polycrystalline films are usually obtained with a thermally activated growth rate (+40 kcal mole -1 ) and a reaction order, with respect to the predominant species SiCl 2 , close to one; above 1000 0 C, the films are always monocrystalline and their growth rate exhibits a much lower or even negative activation energy, the reaction order in SiCl 2 remaining about one. (orig.)

  18. Laboratory determination of normal operating flow rates with enlarged outlet fittings -- BDF reactors

    Energy Technology Data Exchange (ETDEWEB)

    Waters, E.D.

    1960-02-02

    Experiments have been conducted in the Hydraulics Laboratory, at the request of IPD`s Mechanical Development-A Operation, to determine the energy losses of various enlarged outlet fitting combinations. These experiments were conducted an steady state runs and allow the determination of the normal operating point (flow rate) of a reactor process channel under selected conditions of front header pressure and fuel charge. No attempt is made to make a mechanical or economic evaluation of the particular fitting combinations, although observations were noted which might bear on this evaluation. It is very important for the reader to bear in mind that changing outlet fittings will definitely affect the reactor tube power limits and outlet vater temperature limits. The size of the outlet fittings largely determines the present outlet temperature limits of the old reactors. The flow characteristics of these present fittings cause some degree of pressurization to suppress boiling on the fuel charge and also cause dual Panellit trip protection for certain flow changes and for power surges. Enlargement of the outlet fittings may actually reduce the allowable outlet coolant temperature limits. Since these effects cannot be determined on the apparatus used in these experiments, a complete discussion of this point is not included in this report. However, the seriousness of these effects should be known and carefully analyzed before a final selection of enlarged outlet fittings in made. This report will be one of a series. New reports in the series will be issued as data are obtained for other such outlet fitting combinations or for new concepts of outlet fitting assemblies such as the new nozzle being developed by C. E. Trantz for use on F-reactor stuck gunbarrel tubes.

  19. Channel Bow in Boiling Water Reactors - Hot Cell Examination Results and Correlation to Measured Bow

    International Nuclear Information System (INIS)

    Mahmood, S.T.; Lin, Y.P.; Dubecky, M.A.; Edsinger, K.; Mader, E.V.

    2007-01-01

    An increase in frequency of fuel channel-control blade interference has been observed in Boiling Water Reactors (BWR) in recent years. Many of the channels leading to interference were found to bow towards the control blade in a manner that was inconsistent with the expected bow due to other effects. The pattern of bow appeared to indicate a new channel bow mechanism that differed from the predominant bow mechanism caused by differential growth due to fast-fluence gradients. In order to investigate this new type of channel bow, coupons from several channels with varying degrees of bow were returned to the GE Vallecitos Nuclear Center (VNC) for Post-Irradiation Examination (PIE). This paper describes the characteristics of channel corrosion and hydrogen pickup observed, and relates the observations to the channel exposure level, control history, and measured channel bow. The channels selected for PIE had exposures in the range of 36-48 GWd/MTU and covered a wide range of measured bow. The coupons were obtained at 4 elevations from opposing channel sides adjacent and away from the control blade. The PIE performed on these coupons included visual examination, metallography, and hydrogen concentration measurements. A new mechanism of control-blade shadow corrosion-induced channel bow was found to correlate with differences in the extent of corrosion and corresponding differences in the hydrogen concentration between opposite sides of the channels. The increased corrosion on the control blade sides was found to be dependent on the level of control early in the life of the channel. The contributions of other potential factors leading to increased channel bow and channel-control blade interference are also discussed in this paper. (authors)

  20. Construction of an external electrode for determination of electrochemical corrosion potential in normal operational conditions of an BWR type reactor for hot cells

    International Nuclear Information System (INIS)

    Aguilar T, J.A.; Rivera M, H.; Hernandez C, R.

    2001-01-01

    The behavior of the corrosion processes at high temperature requires of external devices that being capable to resist a temperature of 288 Centigrade and a pressure of 80 Kg/cm 2 , to give stable and reproducible results of some variable and resisting physically and chemically the radiation. The external electrode of Ag/AgCl fulfils all the requirements in the determination of the electrochemical corrosion potential under normal operational conditions of a BWR type reactor in hot cells. (Author)

  1. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V.; Korolev, Alexander S. [JSC ' ' Atomtechenergo' ' , Novovoronezh (Russian Federation). Novovoronezh Filial ' ' Novovoronezhatomtechenergo' ' ; Ryasny, Sergei I. [JSC ' ' Atomtechenergo' ' , Moscow (Russian Federation)

    2017-09-15

    The JSC ''Atomtechenergo'' experts have developed a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. The necessity for developing the new methodology was determined by the need to decrease the calculation error of the weighted mean coolant temperature in the hot legs because of the coolant temperature stratification. The methodology development was based on the findings of experimental and calculating research executed by the authors. The methodology verification was fulfilled through comparison of calculation results obtained with and without the methodology use in various operational states and modes of several WWER-1000 power units. The obtained verification results have confirmed that the use of the new methodology provides objective error decrease in determining the weighted mean coolant temperature in the primary circuit hot legs. The decrease value depends on the stratification character which is various for different objects and conditions.

  2. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    International Nuclear Information System (INIS)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V.; Korolev, Alexander S.

    2017-01-01

    The JSC ''Atomtechenergo'' experts have developed a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. The necessity for developing the new methodology was determined by the need to decrease the calculation error of the weighted mean coolant temperature in the hot legs because of the coolant temperature stratification. The methodology development was based on the findings of experimental and calculating research executed by the authors. The methodology verification was fulfilled through comparison of calculation results obtained with and without the methodology use in various operational states and modes of several WWER-1000 power units. The obtained verification results have confirmed that the use of the new methodology provides objective error decrease in determining the weighted mean coolant temperature in the primary circuit hot legs. The decrease value depends on the stratification character which is various for different objects and conditions.

  3. Development of core hot spot evaluation method for decay heat removal by natural circulation under transient conditions in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki; Doda, Norihiro; Kamide, Hideki; Watanabe, Osamu; Ohkubo, Yoshiyuki

    2010-01-01

    Toward the commercialization of fast reactors, a design study of Japan Sodium-cooled Fast Reactor (JSFR) is being performed. In this design study, the adoption of decay heat removal system operated by fully natural circulation is being examined from viewpoints of economic competitiveness and passive safety. This paper describes a new evaluation method of core hot spot under transient conditions from forced to natural circulation operations that is necessary for confirming feasibility of the fully natural circulation decay heat removal system. The new method consists of three analysis steps in order to include effects of thermal hydraulic phenomena particular to the natural circulation decay heat removal, e.g., flow redistribution in fuel assemblies caused by buoyancy force, and therefore it enables more rational hot spot evaluation rather than conventional ones. This method was applied to a hot spot evaluation of loss-of-external-power event and the result was compared with those by conventional 1D and detailed 3D simulations. It was confirmed that the proposed method can estimate the hot spot with reasonable degree of conservativeness. (author)

  4. Development of a Two-dimensional Thermohydraulic Hot Pool Model and ITS Effects on Reactivity Feedback during a UTOP in Liquid Metal Reactors

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Jeong, Hae Yong; Cho, Chung Ho; Kwon, Young Min; Ha, Kwi Seok; Chang, Won Pyo; Suk, Soo Dong; Hahn, Do Hee

    2009-01-01

    The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect

  5. A practical methodology of radiological protection for the reduction of hot particles in BWR type reactors; Una metodologia practica de proteccion radiologica para la reduccion de particulas calientes en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez G, G [Comision Federal de Electricidad, Gerencia del Proyecto Nucleoelectrico Laguna Verde, Disciplina de Fisica Aplicada (Mexico)

    1991-07-01

    The purpose of this work, in general form, is to describe a practical method for reduction of hot particles generated as consequence of the operational activities of BWR nuclear reactors. This methodology provides a description of the localizations and/or probable activities of finding particles highly radioactive denominated hot particles. For this purpose it was developed a strategy based on the decontamination lineaments, as well as the manipulation, gathering, registration, contention, documentation, control and final disposition of the hot particles. In addition, some recommendations are reiterated and alternative, in order to gathering the hot particles in a dynamic way given to the activities of the personal occupationally exposed in highly radioactive areas. The structure of the methodology of hot particles is supported in the radiological controls based on the Code of Federal Regulation 10 CFR 20 as well as the applicable regulatory documents. It provides an idea based on administrative controls of radiological protection, in order to suggesting the responsibilities and necessary directing for the control of the hot particles required in nuclear plants of the BWR type. (author)

  6. Decontamination and decommissioning of the Argonne Thermal Source Reactor at Argonne National Laboratory - East project final report

    International Nuclear Information System (INIS)

    Fellhauer, C.; Garlock, G.; Mathiesen, J.

    1998-01-01

    The ATSR D and D Project was directed toward the following goals: (1) Removal of radioactive and hazardous materials associated with the ATSR Reactor facility; (2) Decontamination of the ATSR Reactor facility to unrestricted use levels; and (3)Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure). These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the ATSR Reactor facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The reactor aluminum, reactor lead, graphite piles in room E-111, and the contaminated concrete in room E-102 were the primary areas of concern. NES, Incorporated (Danbury, CT) characterized the ATSR Reactor facility from January to March 1998. The characterization identified a total of thirteen radionuclides, with a total activity of 64.84 mCi (2.4 GBq). The primary radionuclides of concern were Co 60 , Eu 152 , Cs 137 , and U 238 . No additional radionuclides were identified during the D and D of the facility. The highest dose rates observed during the project were associated with the reactor tank and shield tank. Contact radiation levels of 30 mrem/hr (0.3 mSv/hr) were measured on reactor internals during dismantlement of the reactor. A level of 3 mrem/hr (0.03 mSv/hr) was observed in a small area (hot spot) in room E-102. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem/yr (50 mSv/yr); the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr)

  7. Hot Fuel Examination Facility/South

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

  8. Hot Fuel Examination Facility/South

    International Nuclear Information System (INIS)

    1990-05-01

    This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs

  9. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  10. Non-destructive test for irradiated fuels using X-ray CT system in hot-laboratory

    International Nuclear Information System (INIS)

    Kim, Heemoon; Kim, Gil-Soo; Yoo, Boung-Ok; Tahk, Young-Wook; Cho, Moon-Sung; Ahn, Sang-Bok

    2015-01-01

    To inspect inside of irradiated fuel rod for PIE in hotcell, neutron beam and X-ray have been used. Many hot laboratories in the world have shown the results for NDT by 2-D film data. Currently, computed image processing technology instead of film has been developed and CT was applied to the X-ray and neutron beam system. In this trend, our facility needed to set up X-ray system for irradiated fuel inspection and installed in hotcell with consideration of radiation damage. In this study, X-ray system was tested to be operated with radioactive samples and was performed to inspect fuel rods and observe internal damage and dimensional change. 450kV X-ray CT system was installed in hotcell with modification and tested to check image resolution and radiation damage. The image data were analyzed by 3-D computer software. 8 fuel plates and VHTR rods were inspected and measured internal shape and dimension

  11. Development of volumetric methane measurement instrument for laboratory scale anaerobic reactors

    International Nuclear Information System (INIS)

    Sahito, A.R.

    2015-01-01

    In the present study, a newly developed VMMI (volumetric Methane-Measuring Instrument) for laboratory scale anaerobic reactors is presented. The VMMI is a reliable, inexpensive, easy to construct, easy to use, corrosion resistant device that does not need maintenance, can measure a wide flow range of gas at varying pressure and temperature. As per the results of the error analysis, the accuracy of the VMMI is unilateral, i.e. -6.91 %. The calibration of VMMI was investigated and a linear variation was found; hence, in situ calibration is recommended for this type of instrument. As per chromatographic analysis, it absorbs almost 100% of the carbon dioxide present in the biogas, results only the methane, and thus eliminates the need of cost intensive composition analysis of biogas through gas chromatograph. (author)

  12. Containment performance analyses for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.

    1992-10-01

    This paper discusses salient aspects of methodology, assumptions, and modeling of various features related to estimation of source terms from two conservatively scoped severe accident scenarios in the Advanced Neutron Source (ANS) reactor at the Oak Ridge National Laboratory. Various containment configurations are considered for steaming-pool-type accidents and an accident involving molten core-concrete interaction. Several design features (such as rupture disks) are examined to study containment response during postulated severe accidents. Also, thermal-hydraulic response of the containment and radionuclide transport and retention in the containment are studied. The results are described as transient variations of source terms for each scenario, which are to be used for studying off-site radiological consequences and health effects for these postulated severe accidents. Also highlighted will be a comparison of source terms estimated by two different versions of the MELCOR code

  13. Boiling water reactor containment modeling and analysis at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Holcomb, E.E. III; Wilson, G.E.

    1984-01-01

    Under the auspices of the United States Nuclear Regulatory Commission, severe accidents are being studied at the Idaho National Engineering Laboratory. The boiling water reactor (BWR) studies have focused on postulated anticipated transients without scram (ATWS) accidents which might contribute to severe core damage or containment failure. A summary of the containment studies is presented in the context of the analytical tools (codes) used, typical transient simulation results and the need for prototypical containment data. All of these are related to current and future analytical capabilities. It is shown that torus temperatures during the ATWS depart from limiting conditions for BWR T-quencher operation, outside of which stable steam condensation has not been proven

  14. History of the 185-/189-D thermal hydraulics laboratory and its effects on reactor operations at the Hanford Site

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1994-09-01

    The 185-D deaeration building and the 189-D refrigeration building were constructed at Hanford during 1943 and 1944. Both buildings were constructed as part of the influent water cooling system for D reactor. The CMS studies eliminated the need for 185-D function. Early gains in knowledge ended the original function of the 189-D building mission. In 1951, 185-D and 189-D were converted to a thermal-hydraulic laboratory. The experiments held in the thermal-hydraulic lab lead to historic changes in Hanford reactor operations. In late 1951, the exponential physics experiments were moved to the 189-D building. In 1958, new production reactor experiments were begun in 185/189-D. In 1959, Plutonium Recycle Test Reactor experiments were added to the 185/189-D facility. By 1960, the 185/189-D thermal hydraulics laboratory was one of the few full service facilities of its type in the nation. During the years 1961--1963 tests continued in the facility in support of existing reactors, new production reactors, and the Plutonium Recycle Test Reactor. In 1969, Fast Flux Test Facility developmental testings began in the facility. Simulations in 185/189-D building aided in the N Reactor repairs in the 1980's. In 1994 the facility was nominated to the National Register of Historic Places, because of its pioneering role over many years in thermal hydraulics, flow studies, heat transfer, and other reactor coolant support work. During 1994 and 1995 it was demolished in the largest decontamination and decommissioning project thus far in Hanford Site history

  15. The reaction environment in a filter-press laboratory reactor: the FM01-LC flow cell

    International Nuclear Information System (INIS)

    Rivera, Fernando F.; León, Carlos Ponce de; Walsh, Frank C.; Nava, José L.

    2015-01-01

    A parallel plate cell facilitating controlled flow in a rectangular channel and capable of incorporating a wide range of electrode materials is important in studies of electrode reactions prior to process development and scale-up. The FM01-LC, a versatile laboratory-scale, plane parallel filter-press type electrochemical cell (having a projected electrode area of 64 cm 2 ) which is based on the larger FM21-SP electrolyser (2100 cm 2 area). Many laboratories have used this type of reactor to quantify the importance of reaction environment in fundamental studies and to prepare for industrial applications. A number of papers have concerned the experimental characterization and computational modelling of its reaction environment but the experimental and computational data has become dispersed. The cell has been used in a diverse range of synthesis and processing applications which require controlled flow and known reaction environment. In a previous review, the cell construction and reaction environment was summarised followed by the illustration of its use for a range of applications that include organic and inorganic electrosynthesis, metal ion removal, energy storage, environmental remediation (e.g., metal recycling or anodic destruction of organics) and drinking water treatment. This complementary review considers the characteristics of the FM01-LC electrolyser as an example of a well-engineered flow cell facilitating cell scale-up and provides a rigorous analysis of its reaction environment. Particular aspects include the influence of electrolyte velocity on mass transport rates, flow dispersion and current distribution

  16. Use of a CO2 pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    International Nuclear Information System (INIS)

    Bench, T.R.

    1997-01-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO 2 ) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO 2 pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants from the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility

  17. Functional and performance evaluation of 28 bar hot shutdown passive valve (HSPV) at integral test loop (ITL) for advanced heavy water reactor (AHWR)

    International Nuclear Information System (INIS)

    Sapra, M.K.; Kundu, S.; Pal, A.K.; Sharma, B.S.V.G.

    2007-02-01

    During reactor shutdown in advanced heavy water reactor (AHWR), core decay heat is removed by eight isolation condensers (IC) submerged in gravity driven water pool. Passive valves are provided on the down stream of each isolation condenser. On increase in steam drum pressure beyond a set value, these passive valves start opening and establish steam flow by natural circulation between the four steam drums and corresponding isolation condensers under hot shutdown and therefore they are termed as Hot Shut Down Passive Valves (HSPVs). The HSPV is a self acting type valve requiring no external energy, i.e. neither air nor electric supply for actuation. This feature makes the valve functioning independent of external systems such as compressed air supply or electric power supply, thereby providing inherent safety feature in line with reactor design philosophy. The high pressure and high temperature HSPV s for nuclear reactor use, are non-standard valves and therefore not manufactured by the valve industry worldwide. In the process of design and development of a prototype valve for AHWR, a 28 bar HSPV was configured and successfully tested at Integral Test Loop (ITL) at Engineering Hall No.7. During ten continuous experiments spread over 14 days, the HSPV has proved its functional capabilities and its intended use in decay heat removal system. The in-situ pressure setting and calibration aspect of HSPV has also been successfully established during these experiments. This report gives an insight into the HSPV's functional behavior and role in reactor decay heat removal system. The report not only provides the quantitative measure of performance for 28 bar HSPV in terms of valve characteristics, pressure controllability, linearity and hysteresis but also sets qualitative indicators for prototype 80 bar HSPV, being developed for AHWR. (author)

  18. Installation of remote-handling typed EBSD-OIM analyzer for heavy irradiated reactor materials

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Takada, Fumiki; Ohmi, Masao; Nakagawa, Tetsuya; Miwa, Yukio

    2008-06-01

    The remote-handling typed EBSD-OIM analyzer for heavy irradiated reactor materials was installed in the JMTR hot laboratory at the first time in the world. The analyzer is used to study on IASCC (irradiation assisted stress corrosion cracking) or IGSCC (inter granular stress corrosion cracking) in reactor materials. This report describes the measurement procedure, the measured results and the operating experiences on the analyzer in the JMTR hot laboratory. (author)

  19. Plan and reports of coupled irradiation (JRR-3 and JOYO of research reactors) and hot facilities work (WASTEF, JMTR-HL, MMF and FMF). R and D project on irradiation damage management technology for structural materials of long-life nuclear plant

    International Nuclear Information System (INIS)

    Matsui, Yoshinori; Yamamoto, Masaya; Yoshitake, Tsunemitsu; Yoshikawa, Katsunori; Iwamatsu, Shigemi; Ichikawa, Shoichi; Yamagata, Ichiro; Soga, Tomonori; Yonekawa, Minoru; Kitamura, Ryoichi; Miyake, Osamu; Takahashi, Hiroyuki; Ishikawa, Kazuyoshi; Kikuchi, Taiji; Usami, Koji; Endo, Shinya; Ichise, Kenichi; Numata, Masami; Onozawa, Atsushi; Aizawa, Masao; Kusunoki, Tsuyoshi; Nakata, Masahito; Abe, Kazuyuki; Ito, Kazuhiro; Takaya, Shigeru; Nagae, Yuji; Wakai, Eiichi; Aoto, Kazumi

    2010-03-01

    'R and D Project on Irradiation Damage Management Technology for Structural Materials of Long-life Nuclear Plant' was carried out from FY2006 in a fund of a trust enterprise of the Ministry of Education, Culture, Sports, Science and Technology. The coupled irradiations or single irradiation by JOYO fast reactor and JRR-3 thermal reactor were performed for about two years. The irradiation specimens are very important materials to establish of 'Evaluation of Irradiation Damage Indicator' in this research. For the acquisition of the examination specimens irradiated by the JOYO and JRR-3, we summarized about the overall plan, the work process and the results for the study to utilize these reactors and some facilities of hot laboratory (WASTEF, JMTR-HL, MMF and FMF) of the Oarai Research and Development Center and the Nuclear Science Research Institute in the Japan Atomic Energy Agency. (author)

  20. Waste reduction efforts through the evaluation and procurement of a digital camera system for the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Bray, T. S.; Cohen, A. B.; Tsai, H.; Kettman, W. C.; Trychta, K.

    1999-01-01

    The Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory-East is a research facility where sample examinations involve traditional photography. The AGHCF documents samples with photographs (both Polaroid self-developing and negative film). Wastes generated include developing chemicals. The AGHCF evaluated, procured, and installed a digital camera system for the Leitz metallograph to significantly reduce labor, supplies, and wastes associated with traditional photography with a return on investment of less than two years

  1. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-[TEMPERATURE GAS-COOLED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard; Kumar, Akansha; Gougar, Hans

    2016-11-01

    A point design for a graphite-moderated, high-temperature, gas-cooled test reactor (HTG TR) has been developed by Idaho National Laboratory (INL) as part of a United States (U.S.) Department of Energy (DOE) initiative to explore and potentially expand the existing U.S. test reactor capabilities. This paper provides a summary of the design and its main attributes. The 200 MW HTG TR is a thermal-neutron spectrum reactor composed of hexagonal prismatic fuel and graphite reflector blocks. Twelve fuel columns (96 fuel blocks total and 6.34 m active core height) are arranged in two hexagonal rings to form a relatively compact, high-power density, annular core sandwiched between inner, outer, top, and bottom graphite reflectors. The HTG-TR is designed to operate at 7 MPa with a coolant inlet/outlet temperature of 325°C/650°C, and utilizes TRISO particle fuel from the DOE AGR Program with 425 ?m uranium oxycarbide (UCO) kernels and an enrichment of 15.5 wt% 235U. The primary mission of the HTG TR is material irradiation and therefore the core has been specifically designed and optimized to provide the highest possible thermal and fast neutron fluxes. The highest thermal neutron flux (3.90E+14 n/cm2s) occurs in the outer reflector, and the maximum fast flux levels (1.17E+14 n/cm2s) are produced in the central reflector column where most of the graphite has been removed. Due to high core temperatures under accident conditions, all the irradiation test facilities have been located in the inner and outer reflectors where fast flux levels decline. The core features a large number of irradiation positions with large test volumes and long test lengths, ideal for thermal neutron irradiation of large test articles. The total available test volume is more than 1100 liters. Up to four test loop facilities can be accommodated with pressure tube boundaries to isolate test articles and test fluids (e.g., liquid metal, liquid salt, light water) from the helium primary coolant system.

  2. Radioactive Mapping Contaminant of Alpha on The Air in Space of Repair of Hot Cell and Medium Radioactivity Laboratory in Radio metallurgy Installation

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Endang-Sukesi; S-Wahyuningsih; R-Budi-Santoso

    2007-01-01

    Hot cell and space of acid laboratory medium activity in Radio metallurgy Installation are used for the examination preparation of fuel nuclear post irradiation. The sample examined is dangerous radioactive material representing which can disseminate passing air stream. The dangerous material spreading can be pursued by arranging air stream from laboratory space to examination space. To know the performance the air stream arrangement is hence conducted by radioactive mapping contaminant of alpha in laboratory / space of activity place, for example, medium activity laboratory and repair space. This mapping radioactivity contaminant is executed with the measurement level of the radioactivity from sample air taken at various height with the distance of 1 m, various distance and from potential source as contaminant spreading access. The mapping result indicate that a little spreading of radioactive material happened from acid cupboard locker to laboratory activity up to distance of 3 m from acid cupboard locker and spreading of radioactive contaminant from goods access door of the hot cell 104 to repair space reach the distance of 2 m from goods door access. Level of the radioactive contamination in the space was far under maximum limitation allowed (20 Bq / m 3 ). (author)

  3. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  4. Certification of the PSI request for the renewal of the operation license for the Hot Laboratory; Gutachten zum Gesuch des Paul Scherrer Instituts um Erneuerung der Betriebsbewilligung für das Hotlabor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-15

    At the Paul Scherrer Institute (PSI), the Hot Laboratory was built in the years 1961 to 1963 in the former EIR in order to make scientific material analyses on highly radioactive material samples and to prepare diagnostic and therapeutically useful radioisotopes. The 1964 safety report with the request for the granting of the operational warrant was revised for the first time in 2004. Further safety reports and radiation protection plans were produced and accepted by the surveying authorities. The operational regulations were revised and approved on a yearly basis by the PSI direction. The regulations reflect the experience gained in 40 years of safe operation and take new regulations in nuclear energy legislation into account. In the years 2000-2002 the Hot Lab was refitted especially with respect to the fields of radiation and fire protection. Presently, the Hot Lab is used for applied material research on highly radioactive samples which mainly come from nuclear power plants, research reactors and the target stations of the PSI accelerator facilities. The investigations on highly radioactive samples and the handling of large quantities of radioisotopes include the possibility of incidents. The analysis of such incidents shows that the legal safety requirements are satisfied. The Swiss Federal Nuclear Safety Inspectorate (ENSI) requirements concerning the protection of personnel, population and environment, as well as the protection against fire, are fulfilled. In the Hot Lab the principle of barriers for the containment of radioactive materials is applied. Open radioactive sources are manipulated in depressurized cells. The air extracted from the cells is filtered before being released to the environment. In the building, the total amount of radioactive materials is limited in order to reduce the exposition of the population in normal operation as well as in case of incidents, and to avoid criticality accidents. Possible weaknesses in this concept can be shown

  5. Establishing a laboratory model of dental unit waterlines bacterial biofilms using a CDC biofilm reactor.

    Science.gov (United States)

    Yoon, Hye Young; Lee, Si Young

    2017-11-01

    In this study, a laboratory model to reproduce dental unit waterline (DUWL) biofilms was developed using a CDC biofilm reactor (CBR). Bacteria obtained from DUWLs were filtered and cultured in Reasoner's 2A (R2A) for 10 days, and were subsequently stored at -70°C. This stock was cultivated on R2A in batch mode. After culturing for five days, the bacteria were inoculated into the CBR. Biofilms were grown on polyurethane tubing for four days. Biofilm accumulation and thickness was 1.3 × 10 5  CFU cm -2 and 10-14 μm respectively, after four days. Bacteria in the biofilms included cocci and rods of short and medium lengths. In addition, 38 bacterial genera were detected in biofilms. In this study, the suitability and reproducibility of the CBR model for DUWL biofilm formation were demonstrated. The model provides a foundation for the development of bacterial control methods for DUWLs.

  6. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Wu, Weimin; Criddle, Craig S.

    2015-01-01

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetings at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.

  7. Laboratory scale development of coating for improving characteristics of candidate materials for fusion reactor

    International Nuclear Information System (INIS)

    Agarwala, R.P.

    1989-01-01

    Application of coatings of refractory low atomic number materials on to different components of Tokamak type controlled thermonuclear reactor are expected to provide a degree of design flexibility. The project envisages to deal with the challenging problem on laboratory scale. Coatings investigated include carbon, beryllium, boron, titanium carbide and alumina and substrates chosen have been 304, 316 stainless steels, monel-400, molybdenum, copper, graphite, etc. For their deposition, different techniques (e.g. evaporation, sputtering and their different variants) have been tried, appropriate ones chosen and their parameters optimized. The coating composition has been analyzed using X-ray diffraction (XRD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Rutherford backscattering analysis (RBS) and secondary ions mass spectroscopy (SIMS). Surface morphology has been studied using scanning electron microscopy (SEM). Sebastian coating adherence tester has been used for adhesion measurement and Wilson's Tukon microhardness tester for their microhardness measurement. The coatings have been subjected to pulses from YAG laser to evaluate their thermal cycling behaviour. Deuterium ion bombardment (Energy: 20-120 keV; doses: 10 19 -9.3x10 20 ions/cm 2 ) behaviour has also been studied. In general, adherent and hard coatings capable of withstanding thermal cycling could be deposited. Out of the coatings studied, titanium carbide shows best results. The following pages are reprints and not mircrofiched: p. 25-32, 39-41, 57-81. Bibliographic description is on page 13

  8. Decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR): Project final report, Argonne National Laboratory

    International Nuclear Information System (INIS)

    Fellhauer, C.R.; Boing, L.E.; Aldana, J.

    1997-03-01

    The Final Report for the Decontamination and Decommissioning (D ampersand D) of the Argonne National Laboratory - East (ANL-E) Experimental Boiling Water Reactor (EBWR) facility contains the descriptions and evaluations of the activities and the results of the EBWR D ampersand D project. It provides the following information: (1) An overall description of the ANL-E site and EBWR facility. (2) The history of the EBWR facility. (3) A description of the D ampersand D activities conducted during the EBWR project. (4) A summary of the final status of the facility, including the final and confirmation surveys. (5) A summary of the final cost, schedule, and personnel exposure associated with the project, including a summary of the total waste generated. This project report covers the entire EBWR D ampersand D project, from the initiation of Phase I activities to final project closeout. After the confirmation survey, the EBWR facility was released as a open-quotes Radiologically Controlled Area,close quotes noting residual elevated activity remains in inaccessible areas. However, exposure levels in accessible areas are at background levels. Personnel working in accessible areas do not need Radiation Work Permits, radiation monitors, or other radiological controls. Planned use for the containment structure is as an interim transuranic waste storage facility (after conversion)

  9. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weimin [Stanford Univ., CA (United States); Criddle, Craig S. [Stanford Univ., CA (United States)

    2015-11-16

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetings at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.

  10. Scientific upgrades at the high flux isotope reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Selby, D.L.; Garrett, D.L.; Lucas, A.T.; Reeves, M.E.

    2001-01-01

    The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the high flux isotope reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: 1) larger beam tubes, 2) a new monochromator drum for the HB-1 beam line, 3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, 4) new instruments for the HB-2 beamline, 5) a new monochromator drum for the HB-3 beam line, 6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, 7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, 8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, 9) a number of new instruments for the cold beams including two new SANS instruments, and 10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule. (orig.)

  11. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  12. Completion Summary for Well NRF-16 near the Naval Reactors Facility, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Twining, Brian V.; Fisher, Jason C.; Bartholomay, Roy C.

    2010-01-01

    In 2009, the U.S. Geological Survey in cooperation with the U.S. Department of Energy's Naval Reactors Laboratory Field Office, Idaho Branch Office cored and completed well NRF-16 for monitoring the eastern Snake River Plain (SRP) aquifer. The borehole was initially cored to a depth of 425 feet below land surface and water samples and geophysical data were collected and analyzed to determine if well NRF-16 would meet criteria requested by Naval Reactors Facility (NRF) for a new upgradient well. Final construction continued after initial water samples and geophysical data indicated that NRF-16 would produce chemical concentrations representative of upgradient aquifer water not influenced by NRF facility disposal, and that the well was capable of producing sustainable discharge for ongoing monitoring. The borehole was reamed and constructed as a Comprehensive Environmental Response Compensation and Liability Act monitoring well complete with screen and dedicated pump. Geophysical and borehole video logs were collected after coring and final completion of the monitoring well. Geophysical logs were examined in conjunction with the borehole core to identify primary flow paths for groundwater, which are believed to occur in the intervals of fractured and vesicular basalt and to describe borehole lithology in detail. Geophysical data also were examined to look for evidence of perched water and the extent of the annular seal after cement grouting the casing in place. Borehole videos were collected to confirm that no perched water was present and to examine the borehole before and after setting the screen in well NRF-16. Two consecutive single-well aquifer tests to define hydraulic characteristics for well NRF-16 were conducted in the eastern SRP aquifer. Transmissivity and hydraulic conductivity averaged from the aquifer tests were 4.8 x 103 ft2/d and 9.9 ft/d, respectively. The transmissivity for well NRF-16 was within the range of values determined from past aquifer

  13. Development of the coupled 'system thermal-hydraulics, 3D reactor kinetics, and hot channel' analysis capability of the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. J.; Chung, B. D.; Lee, W.J

    2005-02-01

    The subchannel analysis capability of the MARS 3D module has been improved. Especially, the turbulent mixing and void drift models for flow mixing phenomena in rod bundles have been assessed using some well-known rod bundle test data. Then, the subchannel analysis feature was combined to the existing coupled 'system Thermal-Hydraulics (T/H) and 3D reactor kinetics' calculation capability of MARS. These features allow the coupled 'system T/H, 3D reactor kinetics, and hot channel' analysis capability and, thus, realistic simulations of hot channel behavior as well as global system T/H behavior. In this report, the MARS code features for the coupled analysis capability are described first. The code modifications relevant to the features are also given. Then, a coupled analysis of the Main Steam Line Break (MSLB) is carried out for demonstration. The results of the coupled calculations are very reasonable and realistic, and show these methods can be used to reduce the over-conservatism in the conventional safety analysis.

  14. Reactor laboratory course for Korean under-graduate students in Kyoto University Critical Assembly (KUGSiKUCA)

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho; Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Shiroya, Seiji; Whang, Joo Ho; Kim, Myung Hyun

    2005-01-01

    The Reactor Laboratory Course for Korean Under-Graduate Students has been carried out at Kyoto University Critical Assembly of Japan. This course has been launched from fiscal year 2003 and has been founded by Ministry of Science and Technology of Korean Government. Since then, the total number of 43 Korean under-graduate students, who have majored in nuclear engineering of 6 universities in all over the Korea, has been taken part in this course. The reactor physics experiments have been performed in this course, such as Approach to criticality, Control rod calibration, Measurement of neutron flux and power calibration, and Educational reactor operation. As technical tour of Japan, nuclear site tour has been taken during their stay in Japan, such as PWR, FBR, nuclear fuel company and some institutes

  15. University of Wisconsin, Nuclear Reactor Laboratory. Annual report, 1985-1986

    International Nuclear Information System (INIS)

    Cashwell, R.J.

    1986-01-01

    Operational activities for the reactor are described concerning nuclear engineering classes from the University of Wisconsin; reactor sharing program; utility personnel training; sample irradiations and neutron activation analysis; and changes in personnel, facility, and procedures. Results of surveillance tests are presented for operating statistics and fuel exposure; emergency shutdowns and inadvertent scrams; maintenance; radioactive waste disposal; radiation exposures; environmental surveys; and publications and presentations on work based on reactor use

  16. 2015 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2014–October 31, 2015. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019.

  17. 2015 Annual Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Ponds

    International Nuclear Information System (INIS)

    Lewis, Michael George

    2016-01-01

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2014-October 31, 2015. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019.

  18. TEMPERATURE MONITORING OPTIONS AVAILABLE AT THE IDAHO NATIONAL LABORATORY ADVANCED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Daw; J.L. Rempe; D.L. Knudson; T. Unruh; B.M. Chase; K.L Davis

    2012-03-01

    As part of the Advanced Test Reactor National Scientific User Facility (ATR NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced sensors for irradiation testing. To meet recent customer requests, an array of temperature monitoring options is now available to ATR users. The method selected is determined by test requirements and budget. Melt wires are the simplest and least expensive option for monitoring temperature. INL has recently verified the melting temperature of a collection of materials with melt temperatures ranging from 100 to 1000 C with a differential scanning calorimeter installed at INL’s High Temperature Test Laboratory (HTTL). INL encapsulates these melt wires in quartz or metal tubes. In the case of quartz tubes, multiple wires can be encapsulated in a single 1.6 mm diameter tube. The second option available to ATR users is a silicon carbide temperature monitor. The benefit of this option is that a single small monitor (typically 1 mm x 1 mm x 10 mm or 1 mm diameter x 10 mm length) can be used to detect peak irradiation temperatures ranging from 200 to 800 C. Equipment has been installed at INL’s HTTL to complete post-irradiation resistivity measurements on SiC monitors, a technique that has been found to yield the most accurate temperatures from these monitors. For instrumented tests, thermocouples may be used. In addition to Type-K and Type-N thermocouples, a High Temperature Irradiation Resistant ThermoCouple (HTIR-TC) was developed at the HTTL that contains commercially-available doped molybdenum paired with a niobium alloy thermoelements. Long duration high temperature tests, in furnaces and in the ATR and other MTRs, demonstrate that the HTIR-TC is accurate up to 1800 C and insensitive to thermal neutron interactions. Thus, degradation observed at temperatures above 1100 C with Type K and N thermocouples and decalibration due to transmutation with tungsten

  19. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  20. Decontamination and decommissioning of the SPERT-I Reactor Building at the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Dolenc, M.R.

    1986-02-01

    This final report documents the decontamination and decommissioning of the SPERT-I Reactor Building. This 20- by 40-ft galvanized steel building was dismantled; and the resultant contaminated sludge, liquid, and carbon steel were disposed of at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. This report presents the results of the characterization, decision analysis, planning, and decommissioning of the facility. The total cost of these activities was $139,500. Of this total, $103,500 was required for decommissioning operations. (This latter figure represents a 20% savings over the estimated costs generated during the planning effort.) The objectives of decommissioning this facility were to stabilize the seepage pit area and remove the reactor building. The D and D work was divided into two parts; the seepage pit was decommissioned in 1984, and the reactor building in 1985. The entire area was backfilled with radiologically clean soil, graded, and seeded. Two markers were installed to identify the locations of the pit and reactor building. The only isotopes found in either decommissioning operation were cesium-137 and uranium-235 in very low concentrations. Decommissioning operations of the reactor building were carried out during August 1985. The project generate 297 ft 3 of radioactive waste. No personnel radiation exposure above background was received by D and D workers

  1. Thermal performance of small solar domestic hot water systems in theory, in the laboratory and in practice

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    for poor thermal performances of systems tested in practice are given. Based on theoretical calculations the negative impact on the thermal performance, due to a large number of different parameter variations are given. Recommendations for future developments of small solar domestic hot water systems...

  2. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  3. University of Wisconsin Nuclear Reactor Laboratory annual report, 1981-1982

    International Nuclear Information System (INIS)

    1982-01-01

    Information is presented concerning operations at the UWNR reactor; operating statistics and fuel exposure; emergency shutdowns and inadvertent scrams; maintenance operations; radioactive waste disposal; summary of radiation exposures; results of environmental studies; and publications and presentations on work based on reactor use

  4. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    International Nuclear Information System (INIS)

    Lockrem, L.L.; Owens, J.W.; Seidel, C.M.

    2009-01-01

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method

  5. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    International Nuclear Information System (INIS)

    Seidel, C.M.; Jain, J.; Owens, J.W.

    2009-01-01

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method

  6. Plan for fully decontaminating and decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick, Revision 3

    International Nuclear Information System (INIS)

    1982-01-01

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This volume contains the following 3 attachments: (1) Plan for Fully Decontamination and Decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick; (2) Environmental Assessment for Decontamination and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA; and (3) WARD-386, Quality Assurance Program Description for Decontamination and Decommissioning Activities

  7. Simplified model for the thermo-hydraulic simulation of the hot channel of a PWR type nuclear reactor; Modelo simplificado para simulacao do comportamento termohidraulico do canal quente de reator nuclear do tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Belem, J A.T.

    1993-09-01

    The present work deals with the thermal-hydraulic analysis of the hot channel of a standard PWR type reactor utilizing a simplified mathematical model that considers constant the water mass flux during single-phase flow and reduction of the flow when the steam quality is increasing in the channel (two-phase flow). The model has been applied to the Angra-1 reactor and it has proved satisfactory when compared to other ones. (author). 25 refs, 15 figs, 3 tabs.

  8. Current status of JAERI Tokai hot cell facilities

    International Nuclear Information System (INIS)

    Itami, Hiroharu; Morozumi, Minoru; Yamahara, Takeshi

    1992-01-01

    JAERI has 4 hot cell facilities in order to examine high radioactive materials. Three of them, the Research Hot Laboratory, the Reactor Fuel Examination Facility and the Waste Safety Testing Facility are located in the JAERI Tokai site, and the rest is the JMTR Hot Laboratory in the Oarai site. The Research Hot Laboratory (RHL) was constructed for post-irradiation examination (PIE), especially nuclear related basic research experiment, such as metallurgical, chemical and mechanical examination on fuels and materials irradiated in research and test reactors. This facility has 10 large dimension concrete and 38 lead cells. At present the RHL is used for various kinds of examinations of high radioactive samples such as fuels of research and test reactors, power reactors and high temperature testing reactor (HTTR), and structural materials. The Reactor Fuel Examination Facility (RFEF) was designed and constructed for carrying out PIE of irradiated full-size fuel assemblies of light water reactors (LWRs). This facility has a storage pool, 8 concrete and 5 lead cells. They are currently used for safety evaluation on high burnup and advanced lWR fuels as part of the national program. The Waste Safety Testing Facility (WASTEF) was designed and constructed for safety research on long-term storage and disposal of high level radioactive wastes, generated by fuel reprocessing. The WASTEF has 5 concrete cells and 1 lead cell. Examinations on the behavior of various long-lived fission products in a glass form and in a canister and, releasing behavior of them out of a canister are carrying out under the condition at storage. (author)

  9. Numerical simulation and geometry optimization of hot-gas mixing in lower plenum of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Hang; Wang Jie; Laurien, E.

    2010-01-01

    The lower plenum in high temperature gas-cooled reactor was designed to mix the gas of different temperatures from the reactor core. Previous researches suggest the current geometry of the lower plenum to be improved for better mixing capability and lower pressure drop. In the presented work, a series of varied geometries were investigated with numerical simulation way. The choice of appropriate mesh type and size used in the geometry variation was discussed with the reference of experimental data. The original thin ribs in the current design were merged into thicker ones, and a junction located at the starting end of the outlet pipe was introduced. After comparing several potential optimization methods, an improved geometry was selected with the merged ribs increasing the pre-defined mixing coefficient and the junction reducing the pressure drop. Future work was discussed based on the simulation of real reactor case. The work shows a direction for design improvements of the lower plenum geometry. (authors)

  10. Disposition of the fluoride fuel and flush salts from the Molten Salt Reactor experiment at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1996-01-01

    The Molten Salt Reactor Experiment (MSRE) is an 8 MW reactor that was operated at Oak Ridge National Laboratory (ORNL) from 1965 through 1969. The reactor used a unique liquid salt fuel, composed of a mixture of LIF, BeF 2 , ZrF 4 , and UF 4 , and operated at temperatures above 600 degrees C. The primary fuel salt circulation system consisted of the reactor vessel, a single fuel salt pump, and a single primary heat exchanger. Heat was transferred from the fuel salt to a coolant salt circuit in the primary heat exchanger. The coolant salt was similar to the fuel salt, except that it contains only LiF (66%) and BeF, (34%). The coolant salt passed from the primary heat exchanger to an air-cooled radiator and a coolant salt pump, and then returned to the primary heat exchanger. Each of the salt loops was provided with drain tanks, located such that the salt could be drained out of either circuit by gravity. A single drain tank was provided for the non-radioactive coolant salt. Two drain tanks were provided for the fuel salt. Since the fuel salt contained radioactive fuel, fission products, and activation products, and since the reactor was designed such that the fuel salt could be drained immediately into the drain tanks in the event of a problem in the fuel salt loop, the fuel salt drain tanks were provided with a system to remove the heat generated by radioactive decay. A third drain tank connected to the fuel salt loop was provided for a batch of flush salt. This batch of salt, similar in composition to the coolant salt, was used to condition the fuel salt loop after it had been exposed to air and to flush the fuel salt loop of residual fuel salt prior to accessing the reactor circuit for maintenance or experimental activities. This report discusses the disposition of the fluoride fuel and flush salt

  11. Introduction of hot cell facility in research center Rez - Poster

    International Nuclear Information System (INIS)

    Petrickova, A.; Srba, O.; Miklos, M.; Svoboda, P.

    2015-01-01

    This poster presents the hot cell facility which is being constructed as part of the SUSEN project at the Rez research center (Czech Republic). Within this project a new complex of 10 hot cells and one semi-hot cell will be built. There will be 8 gamma hot cells and 2 alpha hot cells. In each hot cell a hermetic, removable box made of stainless steel will home different type of devices. The hot cells and semi hot cell will be equipped with devices for processing samples (cutting, welding, drilling, machining) as well as equipment for testing (sample preparation area, stress testing machine, fatigue machine, electromechanical creep machine, high frequency resonance pulsator...) and equipment for studying material microstructure (nano-indenter with nano-scratch tester and scanning electron microscope). An autoclave with water loop, installed in a cell will allow mechanical testing in control environment of water, pressure and temperature. A scheme shows the equipment of each cell. This hot laboratory will be able to cover all the process to study radioactive materials: receiving the material, the preparation of the samples, mechanical testing and microstructure observation. Our hot cells will be close to the research nuclear reactor LVR-15 and new irradiation facility (high irradiation by cobalt source) is planned to be built within the SUSEN project

  12. Stabilization of fine fraction from landfill mining in anaerobic and aerobic laboratory leach bed reactors.

    Science.gov (United States)

    Mönkäre, Tiina J; Palmroth, Marja R T; Rintala, Jukka A

    2015-11-01

    Fine fraction (FF, mined landfill was stabilized in four laboratory-scale leach bed reactors (LBR) over 180 days. The aim was to study feasibility of biotechnological methods to treat FF and if further stabilization of FF is possible. Four different stabilization methods were compared and their effects upon quality of FF were evaluated. Also during the stabilization experiment, leachate quality as well as gas composition and quantity were analyzed. The methods studied included three anaerobic LBRs (one without water addition, one with water addition, and one with leachate recirculation) and one aerobic LBR (with water addition). During the experiment, the most methane was produced in anaerobic LBR without water addition (18.0 L CH4/kg VS), while water addition and leachate recirculation depressed methane production slightly, to 16.1 and 16.4 L CH4/kg VS, respectively. Organic matter was also removed via the leachate and was measured as chemical oxygen demand (COD). Calculated removal of organic matter in gas and leachate was highest in LBR with water addition (59 g COD/kg VS), compared with LBR without water addition or with leachate recirculation (51 g COD/kg VS). Concentrations of COD, ammonium nitrogen and anions in leachate decreased during the experiment, indicating washout mechanism caused by water additions. Aeration increased sulfate and nitrate concentrations in leachate due to oxidized sulfide and ammonium. Molecular weight distributions of leachates showed that all the size categories decreased, especially low molecular weight compounds, which were reduced the most. Aerobic stabilization resulted in the lowest final VS/TS (13.1%), lowest respiration activity (0.9-1.2 mg O2/g TS), and lowest methane production after treatment (0.0-0.8 L CH4/kg VS), with 29% of VS being removed from FF. Anaerobic stabilization methods also reduced organic matter by 9-20% compared with the initial amount. Stabilization reduced the quantity of soluble nitrogen in FF and did

  13. Incidental transients problems in reactor. Application examples

    International Nuclear Information System (INIS)

    Marbach, G.

    1988-03-01

    The fast neutron reactor fuel element qualification should be made not only for nominal operation but also for incidental and accidental transients. Different studies and tests permit to bring this justification such as simulation in hot laboratory after irradiation of irradiated pins or specific tests interpretation [fr

  14. DIissolution of low enriched uranium from the experimental breeder reactor-II fuel stored at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Site (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.

  15. FABRICE process for the refrabrication of experimental pins in a hot cell, from pins pre-irradiated in power reactors

    International Nuclear Information System (INIS)

    Vignesoult, N.; Atabek, R.; Ducas, S.

    1982-06-01

    The Fabrice ''hot cell refabrication'' process for small pins from very long irradiated fuel elements was developed at the CEA to allow parametric studies of the irradiation behavior of pins from nuclear power plants. Since this operation required complete assurance of the validity of the process, qualification of the fabrication was performed on test pins, refabricated in the hot cell, as well as irradiation qualification. The latter qualification was intended to demonstrate that, in identical experimental irradiation conditions, the refabricated Fabrice pins behaved in the same way as whole pins with the same initial characteristics. This qualification of the Fabrice process, dealing with more than twenty pins at different burnups, showed that fabrication did not alter: the inherent characteristics of the sampled fuel element and the irradiation behavior of the sampled fuel element [fr

  16. A study of the effects of changing burn-up and gap gaseous compound on the gap convection coefficient (in a hot fuel pin) in VVER-1000 reactor

    International Nuclear Information System (INIS)

    Rahgoshay, M.; Rahmani, Y.

    2007-01-01

    In this article we worked on the result and process of calculation of the gap heat transfer coefficient for a hot fuel pin in accordance with burn-up changes in the VVER-1000 reactor at the Bushehr nuclear power plant (Iran). With regard to the fact that in calculating the fuel gap heat transfer coefficient, various parameters are effective and the need for designing a model is being felt, therefore, in this article we used Ross and Stoute gap model to study impacts of different effective parameters such as thermal expansion and gaseous fission products on the h gap change rate. Over time and with changes in fuel burn-up some gaseous fission products such as xenon, argon and krypton gases are released to the gas mixture in the gap, which originally contained helium. In this study, the composition of gaseous elements in the gap volume during different times of reactor operation was found using ORIGEN code. Considering that the thermal conduction of these gases is lower than that of helium, and by using the Ross and Stoute gap model, we find first that the changes in gaseous compounds in the gap reduce the values of gap thermal conductivity coefficient, but considering thermal expansion (due to burn-up alterations) of fuel and clad resulting in the reduction of gap thickness we find that the gap heat transfer coefficient will augment in a broad range of burn-up changes. These changes result in a higher rate of gap thickness reduction than the low rate of decrease of heat conduction coefficient of the gas in the gap during burn-up. Once these changes have been defined, we can proceed with the analysis of the results of calculations based on the Ross and Stoute model and compare the results obtained with the experimental results for a hot fuel pin as presented in the final safety analysis report of the VVER-1000 reactor at Bushehr. It is noteworthy that the results of accomplished calculations based on the Ross and Stoute model correspond well with the existing

  17. Tandem mirror reactor studies at Lawrence Livermore National Laboratory, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, G.A.; Neef, W.S. Jr.

    1981-03-20

    The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror Fusion Test Facility (MFTF-B) in 1984. Continued analysis and conceptual design over this period will evolve the optimal configuration and parameters for a power-producing reactor. In this article we describe the progress we have made in this reactor design study effort during 1980.

  18. Tandem mirror reactor studies at Lawrence Livermore National Laboratory, FY 1980

    International Nuclear Information System (INIS)

    Carlson, G.A.; Neef, W.S. Jr.

    1981-01-01

    The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror Fusion Test Facility (MFTF-B) in 1984. Continued analysis and conceptual design over this period will evolve the optimal configuration and parameters for a power-producing reactor. In this article we describe the progress we have made in this reactor design study effort during 1980

  19. 10 years of current generation in the AVR reactor. The high-temperature pebble-bed reactor - a hot tip for our future

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, P [Arbeitsgemeinschaft Versuchs-Reaktor G.m.b.H., Juelich (Germany, F.R.); A G, Stadtwerke Duesseldorf [Germany, F.R.; Vereinigung Deutscher Elektrizitaetswerke e.V. (VDEW), Frankfurt am Main (Germany, F.R.)); Nehrling, H [Ministerium fuer Wirtschaft, Mittelstand und Verkehr des Landes Nordrhein-Westfalen, Duesseldorf (Germany, F.R.); Daeunert, U [Bundesministerium fuer Forschung und Technologie, Bonn-Bad Godesberg (Germany, F.R.); Schulten, R [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Reaktorentwicklung; Mattick, W [Brown, Boveri und Cie A.G., Mannheim (Germany, F.R.)

    1978-02-01

    On 17th December 1967, the experimental nuclear power plant (AVR) in Juelich supplied RWE network with power for the first time. With the start of the power operation of the first German high-temperature reactor (HTR), a milestone was reached in the development of this new and progressive line of construction. On the same day exactly 10 years later, the successful work with the hottest nuclear reactor in the world was reviewed in the presence of 15 associates of the Arbeitsgemeinschaft Versuchsreaktor (AVR) Ltd. and the personnel of the experimental nuclear power plant at a festival event in the main auditorium of the nuclear power plant at Juelich before some 300 guests from central and local government, the board of control, representatives of the population of the Dueren area and the town of Juelich, as well as bodies of the power producing industry.

  20. Two-phase flow experiments on Counter-Current Flow Limitation in a model of the hot leg of a pressurized water reactor (2015 test series)

    International Nuclear Information System (INIS)

    Beyer, Matthias; Lucas, Dirk; Pietruske, Heiko; Szalinski, Lutz

    2016-12-01

    Counter-Current Flow Limitation (CCFL) is of importance for PWR safety analyses in several accident scenarios connected with loss of coolant. Basing on the experiences obtained during a first series of hot leg tests now new experiments on counter-current flow limitation were conducted in the TOPFLOW pressure vessel. The test series comprises air-water tests at 1 and 2 bar as well as steam-water tests at 10, 25 and 50 bar. During the experiments the flow structure was observed along the hot leg model using a high-speed camera and web-cams. In addition pressure was measured at several positions along the horizontal part and the water levels in the reactor-simulator and steam-generator-simulator tanks were determined. This report documents the experimental setup including the description of operational and special measuring techniques, the experimental procedure and the data obtained. From these data flooding curves were obtained basing on the Wallis parameter. The results show a slight shift of the curves in dependency of the pressure. In addition a slight decrease of the slope was found with increasing pressure. Additional investigations concern the effects of hysteresis and the frequencies of liquid slugs. The latter ones show a dependency on pressure and the mass flow rate of the injected water. The data are available for CFD-model development and validation.

  1. Two-phase flow experiments on Counter-Current Flow Limitation in a model of the hot leg of a pressurized water reactor (2015 test series)

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Matthias; Lucas, Dirk; Pietruske, Heiko; Szalinski, Lutz

    2016-12-15

    Counter-Current Flow Limitation (CCFL) is of importance for PWR safety analyses in several accident scenarios connected with loss of coolant. Basing on the experiences obtained during a first series of hot leg tests now new experiments on counter-current flow limitation were conducted in the TOPFLOW pressure vessel. The test series comprises air-water tests at 1 and 2 bar as well as steam-water tests at 10, 25 and 50 bar. During the experiments the flow structure was observed along the hot leg model using a high-speed camera and web-cams. In addition pressure was measured at several positions along the horizontal part and the water levels in the reactor-simulator and steam-generator-simulator tanks were determined. This report documents the experimental setup including the description of operational and special measuring techniques, the experimental procedure and the data obtained. From these data flooding curves were obtained basing on the Wallis parameter. The results show a slight shift of the curves in dependency of the pressure. In addition a slight decrease of the slope was found with increasing pressure. Additional investigations concern the effects of hysteresis and the frequencies of liquid slugs. The latter ones show a dependency on pressure and the mass flow rate of the injected water. The data are available for CFD-model development and validation.

  2. Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois

    International Nuclear Information System (INIS)

    W. C. Adams

    2007-01-01

    Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory's Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007). Argonne National Laboratory-East (ANL-E) is owned by the U.S. Department of Energy (DOE) and is operated under a contract with the University of Chicago. Fundamental and applied research in the physical, biomedical, and environmental sciences are conducted at ANL-E and the laboratory serves as a major center of energy research and development. Building 315, which was completed in 1962, contained two cells, Cells 5 and 4, for holding Zero Power Reactor (ZPR)-6 and ZPR-9, respectively. These reactors were built to increase the knowledge and understanding of fast reactor technology. ZPR-6 was also referred to as the Fast Critical Facility and focused on fast reactor studies for civilian power production. ZPR-9 was used for nuclear rocket and fast reactor studies. In 1967, the reactors were converted for plutonium use. The reactors operated from the mid-1960's until 1982 when they were both shut down. Low levels of radioactivity were expected to be present due to the operating power levels of the ZPR's being restricted to well below 1,000 watts. To evaluate the presence of radiological contamination, DOE characterized the ZPRs in 2001. Currently, the Melt Attack and Coolability Experiments (MACE) and Melt Coolability and Concrete Interaction (MCCI) Experiments are being conducted in Cell 4 where the ZPR-9 is located (ANL 2002 and 2006). ANL has performed final

  3. Continuous Photo-Oxidation in a Vortex Reactor: Efficient Operations Using Air Drawn from the Laboratory.

    Science.gov (United States)

    Lee, Darren S; Amara, Zacharias; Clark, Charlotte A; Xu, Zeyuan; Kakimpa, Bruce; Morvan, Herve P; Pickering, Stephen J; Poliakoff, Martyn; George, Michael W

    2017-07-21

    We report the construction and use of a vortex reactor which uses a rapidly rotating cylinder to generate Taylor vortices for continuous flow thermal and photochemical reactions. The reactor is designed to operate under conditions required for vortex generation. The flow pattern of the vortices has been represented using computational fluid dynamics, and the presence of the vortices can be easily visualized by observing streams of bubbles within the reactor. This approach presents certain advantages for reactions with added gases. For reactions with oxygen, the reactor offers an alternative to traditional setups as it efficiently draws in air from the lab without the need specifically to pressurize with oxygen. The rapid mixing generated by the vortices enables rapid mass transfer between the gas and the liquid phases allowing for a high efficiency dissolution of gases. The reactor has been applied to several photochemical reactions involving singlet oxygen ( 1 O 2 ) including the photo-oxidations of α-terpinene and furfuryl alcohol and the photodeborylation of phenyl boronic acid. The rotation speed of the cylinder proved to be key for reaction efficiency, and in the operation we found that the uptake of air was highest at 4000 rpm. The reactor has also been successfully applied to the synthesis of artemisinin, a potent antimalarial compound; and this three-step synthesis involving a Schenk-ene reaction with 1 O 2 , Hock cleavage with H + , and an oxidative cyclization cascade with triplet oxygen ( 3 O 2 ), from dihydroartemisinic acid was carried out as a single process in the vortex reactor.

  4. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Haydary, J., E-mail: juma.haydary@stuba.sk [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia); Susa, D.; Dudáš, J. [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia)

    2013-05-15

    Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.

  5. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  6. Pacific Northwest Laboratory Monthly Activities Report for August 1966 AEC Division of Reactor Development and Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    SL Fawcett

    1966-08-01

    This report has the following sections: Summary; Civilian Power Reactors; Applied and Reactor Physics; Reactor Fuels and Materials; Engineering Development; Plutonium Recycle Program; and Nuclear Safety.

  7. Experiences in the D ampersand D of the EBWR reactor complex at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Boing, L.E.; Fellhauer, C.R.

    1995-02-01

    EBWR went critical in Dec 1957 at 20 MW(t), was upgraded to 100 MW(t) operation. EBWR was shut down July 1967 and placed in dry lay-up. In 1986, the D ampersand D work was planned in 4 phases: final planning and preparations for D ampersand D, removal of reactor systems, removal of reactor vessel complex, and final decontamination and project closeout. Despite precautions, there was an uptake of 241 Am by D ampersand D workers following underwater plasma arc cutting within the pool; the cause was traced to an experimental 241 Pu foil (200 μg) that was lost in the mid-1960s in the reactor vessel. Several major lessons were learned from this episode, among which is the fact that research facilities often involve unusual experiments which may not be recorded. Safety analysis and review procedure for D ampersand D operations need to be carefully considered since they represent considerably different situations than reactor operations. EBWR is one of the very few cases of a prototypic reactor facility designed, operated, tested and now D ampersand D'd by one organization

  8. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliance with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.

  9. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliance with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit

  10. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Dann C.

    2011-09-01

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  11. Assessments of the probabilities of aircraft impact with the Sandia Pulsed Reactor and Building 836, Sandia Laboratories, Albuquerque

    International Nuclear Information System (INIS)

    Biringer, B.E.

    1976-11-01

    This report documents a study of the annual probabilities of aircraft impact with the Sandia Pulsed Reactor (SPR) and Bldg. 836 at Sandia Laboratories, Albuquerque. The probability of aircraft impact into each structure was estimated using total yearly operations, effective structure area, structure location relative to air activity, and accident rate per kilometer. The estimated probability for an aircraft impact with SPR is 1.1 x 10 -4 per year; the estimated probability for impact with Bldg. 836 is 1.0 x 10 -3 per year

  12. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France

    International Nuclear Information System (INIS)

    Ward, Dann C.

    2011-01-01

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  13. Lessons Learned from Sandia National Laboratories' Operational Readiness Review of the Annular Core Research Reactor (ACRR)

    International Nuclear Information System (INIS)

    Bendure, Albert O.; Bryson, James W.

    1999-01-01

    The Sandia ACRR (a Hazard Category 2 Nuclear Reactor Facility) was defueled in June 1997 to modify the reactor core and control system to produce medical radioisotopes for the Department of Energy (DOE) Isotope Production Program. The DOE determined that an Operational Readiness Review (ORR) was required to confirm readiness to begin operations within the revised safety basis. This paper addresses the ORR Process, lessons learned from the Sandia and DOE ORRS of the ACRR, and the use of the ORR to confirm authorization basis implementation

  14. N2O Catalytic Decomposition – from Laboratory Experiment to Industry Reactor

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Karásková, K.; Chromčáková, Ž.

    2012-01-01

    Roč. 191, č. 1 (2012), s. 116-120 ISSN 0920-5861 R&D Projects: GA TA ČR TA01020336 Institutional support: RVO:67985858 Keywords : N2O * catalytic decomposition * fixed bed reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.980, year: 2012

  15. IV Training program for the staff of the laboratory for the RA reactor exploitation; IV Programi obuke osoblja Laboratorije za eksploataciju reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-01

    All the staff members of the laboratory for RA reactor exploitation are obliged to learn the following: fundamental properties of the RA reactor, the role and functionality of the reactor components, basic and auxiliary reactor systems, basics of radioactivity, measures for preventing contamination. The personnel working in shifts must be acquainted with the regulations and instructions for reactor operation. Training programs for reactor operators, mechanics, electricians, instrumentators and dosimetrysts are described separately. Svi saradnici Laboratorije za eksploataciju reaktora RA moraju poznavati sledece oblasti: Osnovne karakeristike reaktora RA, princip rada, ulogu i funkcionisanje komponenti reaktora, osnovnih i pomocnih sistema reaktora; osnovne pojmove o radioaktivnom zracenju, mere za sprecavanje kontaminacije. Osoblje koje radi u smenama mora dodatno poznavati propise i uputstva za rad reaktora. Posebno je naveden program obuke operatora reaktora, mehanicara, electricara, instrumentatora, dozimetrista.

  16. Treatment of arsenic contaminated water in a laboratory scale up-flow bio-column reactor

    International Nuclear Information System (INIS)

    Mondal, P.; Majumder, C.B.; Mohanty, B.

    2008-01-01

    The present paper describes the observations on the treatment of arsenic contaminated synthetic industrial effluent in a bio-column reactor. Ralstonia eutropha MTCC 2487 has been immobilized on the granular activated carbon (GAC) bed in the column reactor. The synthetic water sample containing As(T) (As(III):As(V) = 1:1), Fe, Mn, Cu and Zn at the initial concentrations of 25, 10, 2, 5, 10 ppm, respectively, was used. Concentrations of all the elements have been found to be reduced below their permissible limits in the treated water. The significant effect of empty bed contact time (EBCT) and bed height on the arsenic removal was observed in the initial stage. However, after some time of operation (approximately 3-4 days) no such effect was observed. Removal of As(III) and As(V) was almost similar after ∼2 days of operation. However, at the initial stage As(V) removal was slightly more than that of As(III). In absence of washing, after ∼4-5 days of operation, the bio-column reactor was observed to act as a GAC column reactor based on physico-chemical adsorption. Like arsenic, the percent removals of Fe, Mn, Cu and Zn also attained minimum after ∼1 day and increased significantly to the optimum value within 3-4 days of operation. Dissolved oxygen (DO) has been found to decrease along with the increasing bed height from the bottom. The pH of the solution in the reactor has increased slightly and oxidation-reduction potential (ORP) has decreased with the time of operation

  17. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    Directory of Open Access Journals (Sweden)

    Lefèvre Grégory

    2012-01-01

    Full Text Available In the primary circuit of pressurized water reactors (PWR, the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspected to be the cause. As better understanding of the adhesion mechanism is the key factor in the prevention of fouling and particle removal, an experimental study was carried out using a laboratory set-up. With model materials, hematite and sintered alumina, the adhesion rate and surface potentials of the interacting solids were measured under different chemical conditions (solution pH and composition in analogy with the PWR ones. The obtained results were in good agreement with the DLVO (Derjaguin-Landau-Verwey- Overbeek theory and used as such to interpret this industrial phenomenon.

  18. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Kyu, E-mail: power@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Kwangmin; Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of)

    2015-11-15

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  19. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    International Nuclear Information System (INIS)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-01-01

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  20. Refitting of the 'Celimene' hot cell for following up the fuel assembly of 900 MWe PWR power reactors

    International Nuclear Information System (INIS)

    Lhermenier, Andre; Van Craeynest, J.-C.

    1980-05-01

    The 'Celimene' cell adjoining the EL3 reactor provides for the acceptance, handling and the examination of irradiated fuel assemblies from power reactors (length approximately 4m, weight approximately 700 kg). Within the framework of the PWR fuel behavior follow-up or reprocessing, it is possible to extract an assembly representative of the normal fuel cycle, carry out non destructive tests on this assembly, extract pencils from it and re-insert this assembly, after refitting the head, into the normal fuel cycle for handling in a reprocessing plant or storage pond. Given suitable refitting techniques, the re-irradiation of the assembly can be considered after examination. Significant changes have been made to the buildings and the hoist facilities for handling very heavy flasks. It was necessary to rearrange the handling, machining and in-cell storage facilities. The development of an inspection rig will make it possible, some time in 1980, to carry out non destructive tests of assemblies, optical and metrological examination of assemblies prior to dismantling or of the structure after dismantling [fr

  1. Laboratory-scale anaerobic sequencing batch reactor for treatment of stillage from fruit distillation.

    Science.gov (United States)

    Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo

    2013-01-01

    This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.

  2. Nuclear engineering laboratory self regulated power oscillation experiments at the Health Physics Research Reactor

    International Nuclear Information System (INIS)

    Miller, L.F.; Mihalczo, J.T.; Bailiff, E.G.; Woody, N.D.; Gardner, G.D.

    1983-01-01

    Self regulated power oscillation experiments with a variety of initial conditions have been performed with the ORNL Health Physics Research Reactor (HPRR) by undergraduate nuclear engineering students from The University of Tennessee for several years. These experiments demonstrate the coupling between reactor kinetics and heat transfer and show how the temperature coefficient of reactivity affects reactor behavior. A model that consists of several coupled first order nonlinear differential equations is used to calculate the temperature of the core center and surface and power as a function of time which are compared with the experimental data; also, the model is also used to study the effects of various model parameters and initial conditions on the amplitude, frequency and damping of the power and temperature oscillations. A previous paper presented some limited experimental results and demonstrated the correspondence between a simple point model and the experimental data. This paper presents the results of experiments for: (1) the initial power fixed at 9 kW with central core temperatures of 300 0 F and 500 0 F, annd (2) the initial central core temperature fixed at 500 0 F with initial powers of 6 and 8 kW

  3. The Brazilian Multipurpose Reactor (RMB) Project

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, Jose Augusto [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Full text: The Plan of Action on Science, Technology and Innovation (PACT 2007-2010) of the Ministry of Science Technology and Innovation (MCTI), aligned to the governmental strategies for the Brazilian Nuclear Program, established as a goal the study and definition of the Brazilian Multipurpose Reactor (RMB). The RMB research reactor is designed to perform three main functions: radioisotope production for medicine, industry, agriculture and environmental applications; fuel and material irradiation testing in support to the Brazilian nuclear energy program; and to provide neutron beams for scientific and applied research. The main project facilities are: nuclear pool type reactor with a flux level compatible to the multipurpose uses; hot cells laboratory for Mo-99 and I-131 processing; hot cells laboratory for radioisotope processing; hot cells laboratory for irradiated material post irradiation analysis; neutron beams laboratory building with scientific equipment and instrumentation for researching; radiochemistry laboratory; radioactive waste treatment facility; support laboratories for operation and researching; and buildings for researchers and operators. This speech presents the RMB project status, giving some technical and management details on its development and its future perspectives for new jobs in research activities for the Brazilian technical and scientific community. (author)

  4. The Brazilian Multipurpose Reactor (RMB) Project

    International Nuclear Information System (INIS)

    Perrotta, Jose Augusto

    2012-01-01

    Full text: The Plan of Action on Science, Technology and Innovation (PACT 2007-2010) of the Ministry of Science Technology and Innovation (MCTI), aligned to the governmental strategies for the Brazilian Nuclear Program, established as a goal the study and definition of the Brazilian Multipurpose Reactor (RMB). The RMB research reactor is designed to perform three main functions: radioisotope production for medicine, industry, agriculture and environmental applications; fuel and material irradiation testing in support to the Brazilian nuclear energy program; and to provide neutron beams for scientific and applied research. The main project facilities are: nuclear pool type reactor with a flux level compatible to the multipurpose uses; hot cells laboratory for Mo-99 and I-131 processing; hot cells laboratory for radioisotope processing; hot cells laboratory for irradiated material post irradiation analysis; neutron beams laboratory building with scientific equipment and instrumentation for researching; radiochemistry laboratory; radioactive waste treatment facility; support laboratories for operation and researching; and buildings for researchers and operators. This speech presents the RMB project status, giving some technical and management details on its development and its future perspectives for new jobs in research activities for the Brazilian technical and scientific community. (author)

  5. Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Benson, Jeff; Thelen, Mary Catherine

    2011-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  6. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  7. Bioremediation of endosulfan contaminated soil and water-Optimization of operating conditions in laboratory scale reactors

    International Nuclear Information System (INIS)

    Kumar, Mathava; Philip, Ligy

    2006-01-01

    A mixed bacterial culture consisted of Staphylococcus sp., Bacillus circulans-I and -II has been enriched from contaminated soil collected from the vicinity of an endosulfan processing industry. The degradation of endosulfan by mixed bacterial culture was studied in aerobic and facultative anaerobic conditions via batch experiments with an initial endosulfan concentration of 50 mg/L. After 3 weeks of incubation, mixed bacterial culture was able to degrade 71.58 ± 0.2% and 75.88 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively. The addition of external carbon (dextrose) increased the endosulfan degradation in both the conditions. The optimal dextrose concentration and inoculum size was estimated as 1 g/L and 75 mg/L, respectively. The pH of the system has significant effect on endosulfan degradation. The degradation of alpha endosulfan was more compared to beta endosulfan in all the experiments. Endosulfan biodegradation in soil was evaluated by miniature and bench scale soil reactors. The soils used for the biodegradation experiments were identified as clayey soil (CL, lean clay with sand), red soil (GM, silty gravel with sand), sandy soil (SM, silty sand with gravel) and composted soil (PT, peat) as per ASTM (American society for testing and materials) standards. Endosulfan degradation efficiency in miniature soil reactors were in the order of sandy soil followed by red soil, composted soil and clayey soil in both aerobic and anaerobic conditions. In bench scale soil reactors, endosulfan degradation was observed more in the bottom layers. After 4 weeks, maximum endosulfan degradation efficiency of 95.48 ± 0.17% was observed in red soil reactor where as in composted soil-I (moisture 38 ± 1%) and composted soil-II (moisture 45 ± 1%) it was 96.03 ± 0.23% and 94.84 ± 0.19%, respectively. The high moisture content in compost soil reactor-II increased the endosulfan concentration in the leachate. Known intermediate metabolites of

  8. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-15

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis.

  9. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-01

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis

  10. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  11. Improvement of nuclear reactor component materials by application of hot isostatic processing (HIP). Survey report on Phase 1

    International Nuclear Information System (INIS)

    Mueller, J.J.

    1975-12-01

    The report summarizes the results of an EPRI-sponsored state-of-the-art survey of hot isostatic processing (HIP). The purpose of the study was to identify potential nuclear plant applications of HIP with high pay-off through improvement in component quality and reliability. The survey shows that HIP will reduce cost and manufacturing time and improve quality and ease of nondestructive examination of all castings for which porosity is a problem. Nuclear valves are a prime example. Tubing, pipe, and sheet and bar present other possibilities of somewhat less immediate promise. This report includes a review of some of the EPRI motivations for undertaking this research; a brief explanation of HIP, the survey methodology exployed; the basic operations in the processes studied; a review of the historical applications of HIP to problem areas consistent with those addressed in the survey; the results of the survey and associated analyses of the problems; and the recommendations and justifications for the Phase II program

  12. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Wang, Zhanhong; Zhong, Jinming [Northwest Rare Metal Material Research Institute, CNMC, Ningxia Orient Group Co. Ltd.,No.119 Yejin Road, Shizuishan City, Ningxia,753000 (China)

    2013-11-15

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W–TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5–5 × 10{sup 18} D/cm{sup 2}; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress.

  13. Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Jose-Luis [Univ. of Colorado, Boulder, CO (United States)

    2016-02-01

    This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratory through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O3, HO2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.

  14. Radiation shielding design for a hot repair facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Dwight, C.C.

    1991-01-01

    A new repair and decontamination area is being built to support operations at the demonstration fuel cycle facility for the Integral Fast Reactor program at Argonne National Laboratory's site at the Idaho National Engineering Laboratory. Provisions are made for remote, glove wall, and contact maintenance on equipment removed from hot cells where spent fuel will be electrochemically processed and recycled to the Experimental Breeder Reactor-II. The source for the shielding design is contamination from a mix of fission and activation products present on items removed from the hot cells. The repair facility also serves as a transfer path for radioactive waste produced by processing operations. Radiation shields are designed to limit dose rates to no more than 5 microSv h-1 (0.5 mrem h-1) in normally occupied areas. Point kernel calculations with buildup factors have been used to design the shielding and to position radiation monitors within the area

  15. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-TEMPERATURE GAS-COOLED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard; Kumar, Akansha; Gougar, Hans

    2016-11-01

    Uncertainty and sensitivity analysis is an indispensable element of any substantial attempt in reactor simulation validation. The quantification of uncertainties in nuclear engineering has grown more important and the IAEA Coordinated Research Program (CRP) on High-Temperature Gas Cooled Reactor (HTGR) initiated in 2012 aims to investigate the various uncertainty quantification methodologies for this type of reactors. The first phase of the CRP is dedicated to the estimation of cell and lattice model uncertainties due to the neutron cross sections co-variances. Phase II is oriented towards the investigation of propagated uncertainties from the lattice to the coupled neutronics/thermal hydraulics core calculations. Nominal results for the prismatic single block (Ex.I-2a) and super cell models (Ex.I-2c) have been obtained using the SCALE 6.1.3 two-dimensional lattice code NEWT coupled to the TRITON sequence for cross section generation. In this work, the TRITON/NEWT-flux-weighted cross sections obtained for Ex.I-2a and various models of Ex.I-2c is utilized to perform a sensitivity analysis of the MHTGR-350 core power densities and eigenvalues. The core solutions are obtained with the INL coupled code PHISICS/RELAP5-3D, utilizing a fixed-temperature feedback for Ex. II-1a.. It is observed that the core power density does not vary significantly in shape, but the magnitude of these variations increases as the moderator-to-fuel ratio increases in the super cell lattice models.

  16. Bulletin of the Research Laboratory for Nuclear reactors (Tokyo Institute of Technology)

    International Nuclear Information System (INIS)

    Fujii, Yasuhiko

    2000-01-01

    This bulletin contains five chapters, which are Celebration of Prof. Tomiyasu's sixtieth birthday, Energy engineering, Mass transmutation engineering, System and safety engineering, and Co-operative researches. At first,, a memorial lecture of prof. Tomiyasu was expressed on a short note concerning pyrometallurgical nuclear reprocessing methods in view of recent studies under a title of 'Illusion in pyrometallurgical nuclear fuel reprocessing'. On next, at the energy engineering, 26 reports such as energy loss of 6 MeV/u iron ions in partially ionized helium plasma, nuclear fuel rods bundle thermal hydraulics analysis, coupling of space-dependent neutron kinetics model with thermal hydraulics analysis, and so on, were described. At the mass transmutation engineering, 22 reports such as a lead-bismuth cooled long life reactor with CANDLE burnup, molten salt reactor in the future equilibrium state, basic study on some equilibrium fuel cycle of PWR, and so on, were expressed. And, at the system and safety engineering, 16 reports such as study of a rotary phase shifter for power system applications, high field FBC tokamak for D-T fusion reactor, SMES using a high temperature superconductor, and so on, were found. At the co-operative researches at last chapter, four subjects on co-operative researches in T.I.T., themes of co-operative researches outside T.I.T., co-operative researches by use of MIT-RR, and themes supported by grants-in-aid for scientific research of the Ministry of Education, Science, Sports and Culture, were reported. (G.K.)

  17. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Science.gov (United States)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-11-01

    High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  18. Description of a materials/coolant laboratory for support of the Breeder Reactor Technology Shipping Program

    International Nuclear Information System (INIS)

    Rack, H.J.; Rohde, R.W.

    1979-04-01

    A description of a facility devoted to evaluating the environmental compatibility and mechanical response of materials suitable for a breeder reactor spent-fuel shipping cask is given. The facility presently consists of a closed-loop servo-controlled hydraulic, horizontal test system coupled to an environmental chamber, generalized mechanical test equipment and high-rate mechanical behavior apparatus. Future plans include the procurement of real-time computer control equipment which will be used to assess the effects of complex load-time histories on spent-fuel shipping cask materials

  19. Tetraphenylborate Catalyst Development for the Oak Ridge National Laboratory 20-L Continuously Stirred Tank Reactor Demonstration

    International Nuclear Information System (INIS)

    Barnes, M.J.

    2001-01-01

    The Salt Disposition Systems Engineering Team identified Small Tank Tetraphenylborate Precipitation as one of the three alternatives to replace the In-Tank Precipitation Facility at the Savannah River Site. The proposed design incorporates two continuous stirred tank reactors (CSTR) a concentrate tank and a sintered metal crossflow filter. Previous use of tetraphenylborate in batch operation and testing demonstrated the ability of the feed material to catalyze the decomposition of tetraphenylborate. The Small Tank Tetraphenylborate Precipitation design seeks to overcome the processing limitation of the unwanted reaction by rapid throughput and temperature control. Nitrogen inerting of the vapor space helps mitigate any safety (i.e., flammable) concerns of the reaction

  20. Nuclear reactor

    International Nuclear Information System (INIS)

    Mysels, K.J.; Shenoy, A.S.

    1976-01-01

    A nuclear reactor is described in which the core consists of a number of fuel regions through each of which regulated coolant flows. The coolant from neighbouring fuel regions is combined in a manner which results in an averaging of the coolant temperature at the outlet of the core. By this method the presence of hot streaks in the reactor is reduced. (UK)

  1. Remote waste handling at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Vaughn, M.E.

    1982-01-01

    Radioactive solid wastes, some of which are combustible, are generated during disassembly and examination of irradiated fast-reactor fuel and material experiments at the Hot Fuel Examination Facility (HFEF). These wastes are remotely segregated and packaged in doubly contained, high-integrity, clean, retrievable waste packages for shipment to the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). This paper describes the equipment and techniques used to perform these operations

  2. Development of manufacturing technology of radial plate in superconducting coil for fusion reactor by diffusion bonding by Hot Isostatic Pressing (HIP)

    International Nuclear Information System (INIS)

    Takano, Katsutoshi; Koizumi, Norikiyo; Masuo, Hiroshi; Natsume, Yoshihisa

    2014-01-01

    The radial plates (RPs), which is used in Toroidal field (TF) coil in ITER, are quite large, such as 13 m tall and 9 m wide, but thin, such as 10 cm thick, and are made of stainless steel. Even though they are very large structures, they require very high manufacturing tolerances and high mechanical strength at 4 K. The similar requirements will be required in the next generation fusion reactor. Therefore, the authors intend to develop efficient manufacturing methods in parallel with ITER TF coil RP manufacture. The authors therefore performed trial manufacture of the RP segments using a diffusion bonding method, namely Hot Isostatic Pressing (HIP). As a result of trials, it was clarified that even when HIPping is applied, the mechanical characteristic of base metal is not deteriorated. The machining period can be reduced by about 1/3 compared with the traditional manufacturing method. On the other hand, mechanical strength at 4 K is degraded due to weak bonding, that is no grain growth through joint, by HIPping. However, additional test indicates promising possibility of much better joint by higher temperature and joint surface treated HIPpings. These results justified that RP segment manufacturing is not only possible, but it is a technically valid manufacturing method that satisfies all requirements. (author)

  3. Radiative heat transfer in the Na mist dispersion over the hot surface of liquid Na in the cooling system of nuclear reactor

    International Nuclear Information System (INIS)

    Kunitomo, T.; Shafey, H.M.

    1980-01-01

    The analysis has been carried out for the radiative heat transfer in the Na mist dispersion enclosed between the hot surface of liquid Na at temperature Tsub(n) and the cold surface of Na deposit at Tsub(c). The model selected for the present study represents the Na mist formed in a sodium cooled fast breeder reactor in which the condensed liquid particles are dispersed in the mixture of the Ar cover gas and the Na vapor. The analysis is based on replacing the inhomogeneous dispersing medium by three discrete homogeneous layers, and formulating the transfer equation for the monochromatic radiation in each layer according to the Chandrasekhar theory. The numerical calculations of the radiative qsub(r) and convective qsub(c) heat transfers have been performed for the wave length range lambda=1.6-30 μm and are compared. The qsub(r) has the same order of magnitude as the qsub(c) for all conditions of the mist dispersions. Both qsub(r) and qsub(c) increase by nearly equal rates with the increase of Tsub(H) and decrease by different rates with increasing Tsub(c). Variations of the particle diameter of the Na mist do not change substantially the qsub(r). Both qsub(r) and qsub(c) decrease slightly with the increase in the total thickness of the Na mist dispersion

  4. United States Department of Energy commercial reactor spent fuel programs being conducted at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Piscitella, R.R.; Rasmussen, T.L.; Uhl, D.L.

    1987-01-01

    The Idaho National Engineering Laboratory participation in OCRWM programs includes the Spent Fuel Storage Cask Testing Program, Dry Rod Consolidation Technology Program, Prototypical Consolidation Demonstration Program, the Nuclear Fuel Services Project, and the Cask Systems Acquisition Program. The DOE has entered into a cooperative agreement with Virginia Power and the Electric Power Research Institute to demonstrate storage of commercial spent fuel in steel storage casks. The Program conducted heat transfer and shielding tests with three storage casks with intact spent fuel assemblies and two casks with consolidated spent fuel rods, one of which was previously tested with intact fuel, and provides test information in support of Virginia Power's at-reactor dry storage licensing effort. 3 figs., 1 tab

  5. Quality assurance plan for the molten salt reactor experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-02-01

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by Molten Salt Reactor Experiment (MSRE) Remediation Project personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description, Y/QD-15 Rev. 2 (Martin Marietta Energy Systems, Inc., 1995) and Environmental Management and Enrichment Facilities Work Smart Standards. This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRE Remediation Project. This QAP will be periodically reviewed, revised, and approved as necessary. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan

  6. Research and development program for PWR safety at the CEA reactor thermal hydraulics laboratories

    International Nuclear Information System (INIS)

    Bernard, M.

    1995-01-01

    Since the start of the French electronuclear program, the three partners Fermate, EDF and Cea (DRN and IPSN) have devoted considerable effort to research and development for safety issues. In particular an important program on thermal hydraulics was initiated at the beginning of the seventies. It is illustrated by the development of the CATHARE thermalhydraulic safety code which includes physical models derived from a large experimental support program and the construction of the BETHSY integral facility which is aimed to assess both the CATHARE code and the physical relevance of the accident management procedures to be applied on reactors. The state of the art on this program is described with particular emphasis on the capabilities and the assessment of the last version of CATHARE and the lessons drawn from 50 BETHSY tests performed so far. The future plans for safety research cover the following strategy: - to solve the few problems identified on present computing tools and extend the assessment - to solve the few problems identified on present computing tools and extend the assessment - to perform safety studies on the basis of plant operation feedback - to contribute to treating the safety issues related to the future reactors and in particular the case of severe accidents which have to be taken into account from the design stage. The program on severe accidents is aimed to support the design studies performed by the industrial partners and to provide computing tools which model the various phases of severe accidents and will be validated on experiments performed with real and simulating materials. The main lines of the program are: - the development of the TOLBIAC 3D code for the thermal hydraulics of core melt pools, which will be validated against the Bali experiment presently under construction - the Sultan experiment, to study the capability of cooling by external flooding of the reactor vessel - the development of the MC-3D code for core melt

  7. Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor.

    Science.gov (United States)

    Barton, Lauren E; Auffan, Melanie; Bertrand, Marie; Barakat, Mohamed; Santaella, Catherine; Masion, Armand; Borschneck, Daniel; Olivi, Luca; Roche, Nicolas; Wiesner, Mark R; Bottero, Jean-Yves

    2014-07-01

    Engineered nanomaterials (ENMs) are used to enhance the properties of many manufactured products and technologies. Increased use of ENMs will inevitably lead to their release into the environment. An important route of exposure is through the waste stream, where ENMs will enter wastewater treatment plants (WWTPs), undergo transformations, and be discharged with treated effluent or biosolids. To better understand the fate of a common ENM in WWTPs, experiments with laboratory-scale activated sludge reactors and pristine and citrate-functionalized CeO2 nanoparticles (NPs) were conducted. Greater than 90% of the CeO2 introduced was observed to associate with biosolids. This association was accompanied by reduction of the Ce(IV) NPs to Ce(III). After 5 weeks in the reactor, 44 ± 4% reduction was observed for the pristine NPs and 31 ± 3% for the citrate-functionalized NPs, illustrating surface functionality dependence. Thermodynamic arguments suggest that the likely Ce(III) phase generated would be Ce2S3. This study indicates that the majority of CeO2 NPs (>90% by mass) entering WWTPs will be associated with the solid phase, and a significant portion will be present as Ce(III). At maximum, 10% of the CeO2 will remain in the effluent and be discharged as a Ce(IV) phase, governed by cerianite (CeO2).

  8. Reactor pressure vessel integrity research at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Corwin, W.R.; Pennell, W.E.; Pace, J.V.

    1995-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the integrity inherent in the RPV. For this reason, the U.S. Nuclear Regulatory Commission has established the related research programs at ORNL described herein to provide for the development and confirmation of the methods used for: (1) establishing the irradiation exposure conditions within the RPV in the Embrittlement Data Base and Dosimetry Evaluation Program, (2) assessing the effects of irradiation on the RPV materials in the Heavy-Section Steel Irradiation Program, and (3) developing overall structural and fracture analyses of RPVs in the Heavy-Section Steel Technology Program

  9. A service laboratory's view of the status and direction of reactor vessel surveillance

    International Nuclear Information System (INIS)

    Norris, E.B.

    1981-01-01

    Advances in testing techniques and analysis procedures have had a minor impact to date on the conduct of reactor vessel material surveillance programs. However, major thrusts in the near future will be associated with the development of elastic-plastic fracture toughness data on irradiated materials and improvements in analysis techniques for projecting surveillance results to the pressure vessel wall. In this regard, increased emphasis will be placed on the development of R-curves from the results of J-integral tests. Also, efforts will be increased to develop a better understanding of neutron irradiation embrittlement mechanisms, to determine if a time dependency of damage can lead to saturation and to evaluate the significance of small variations in irradiation temperature on the embrittlement response

  10. Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors

    Science.gov (United States)

    Brown, Juliana; Burgos, William

    2010-05-01

    Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments

  11. Description of a plutonium incident in the Hot Laboratory on May 24, 1983, and the resulting consequences

    International Nuclear Information System (INIS)

    Hausmann, W.; Francioni, W.; Ingold, F.; Ledergerber, G.

    1985-08-01

    At 16.15 on 24 May 1983 a rapid chemical reaction occured in an apparatus in which a routine waste sludge evaporation process was under way. The waste was produced during fuel fabrication. The resulting pressure wave ruptured a number of parts at the glove box in which the equipment was situated leading to an alpha contamination of that and neighboring laboratories. The alarm system activated by the fire alarm, the activity detectors and manualy by the operators functioned correctly. No one was physicaly injured and thanks to immediate protecture measures (e.g. gas masks) the amount of alpha-dust incorporated could be limited in degree and extent. Very time-consuming and costly cleaning and decontamination procedures were found to be necessary but these led to the encouraging result that the greater part of the contaminated equipment (particularly electrical and electronic apparatus) could be released for further unrestricted use in open labs. Detailed tests with the original waste solutions showed that at a certain ammonium nitrate content and at 235 C an exothermic chemical reaction can occur in the sludge. This temperature can only be reached due to a defective apparatus (e.g. a broken glass vessel) allowing the sludge to contact the heating element directly. The external expert agrees that this is the most likely cause of the incident. (author)

  12. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  13. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  14. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  15. Research and learning opportunities in a reactor-based nuclear analytical laboratory

    International Nuclear Information System (INIS)

    Robinson, L.

    1994-01-01

    Although considered by many to be a mature science, neutron activation analysis (NAA) continues to be a valuable tool in trace-element research applications. Examples of the applicability of NAA can be found in a variety of areas including archaeology, environmental science, epidemiology, forensic science, and material science to name a few. Each stage of NAA provides opportunities to share numerous practical and fundamental scientific principles with high school teachers and students. This paper will present an overview of these opportunities and give a specific example from collaboration with a high school teacher whose research involved the automation of a gamma-ray spectroscopy counting system using a laboratory robot

  16. OSIRIS Nuclear Reactors and Services Department

    International Nuclear Information System (INIS)

    2008-01-01

    OSIRIS is an experimental reactor with a thermal power of 70 megawatts. It is a light-water reactor, open-core pool type, the principal aim of which is to carry out tests and irradiate the fuel elements and structural materials of nuclear power stations under a high flux of neutrons, and to produce radioisotopes. Located within the French Atomic Energy Commission (CEA) centre at Saclay, it is close to many research teams and inspection laboratories and has a large-scale technological infrastructure. After a presentation of the characteristics of the reactor, the document presents its irradiation positions and experimental conditions (Geometry, Neutron flux, Gamma heating) and its experimental devices (CHOUCA, IRMA, PHAETON, GRIFFONOS, ISABELLE loops, MERCI, IRIS, Instrumentation of the devices, Qualification of the instrumentation). A forth part presents the facilities that are provided to guarantee the quality of the irradiations carried out in the reactor: ISIS reactor model, hot cells, non-destructive inspection means, chemical control of the water, tools for on-line data acquisition and follow-up of experiments, and the calculation and modelling group. A last part is devoted to the hot labs associated to OSIRIS: the LECI, a hot laboratory located on the Saclay site and mainly designed for the study of irradiated materials, and the LECA and STAR facilities, located on the CEA site in Cadarache in the south of France, and which supplement those of Saclay for fuel studies

  17. Charge distribution on plutonium-containing aerosols produced in mixed-oxide reactor fuel fabrication and the laboratory

    International Nuclear Information System (INIS)

    Yeh, H.C.; Newton, G.J.; Teague, S.V.

    1976-01-01

    The inhalation toxicity of potentially toxic aerosols may be affected by the electrostatic charge on the particles. Charge may influence the deposition site during inhalation and therefore its subsequent clearance and dose patterns. The electrostatic charge distributions on plutonium-containing aerosols were measured with a miniature, parallel plate, aerosol electrical mobility spectrometer. Two aerosols were studied: a laboratory-produced 238 PuO 2 aerosol (15.8 Ci/g) and a plutonium mixed-oxide aerosol (PU-MOX, natural UO 2 plus PuO 2 , 0.02 Ci/g) formed during industrial centerless grinding of mixed-oxide reactor fuel pellets. Plutonium-238 dioxide particles produced in the laboratory exhibited a small net positive charge within a few minutes after passing through a 85 Kr discharger due to alpha particle emission removal of valence electrons. PU-MOX aerosols produced during centerless grinding showed a charge distribution essentially in Boltzmann equilibrium. The gross alpha aerosol concentrations (960-1200 nCi/l) within the glove box were sufficient to provide high ion concentrations capable of discharging the charge induced by mechanical and/or nuclear decay processes

  18. Chemical Reactor Automation as a way to Optimize a Laboratory Scale Polymerization Process

    Science.gov (United States)

    Cruz-Campa, Jose L.; Saenz de Buruaga, Isabel; Lopez, Raymundo

    2004-10-01

    The automation of the registration and control of variables involved in a chemical reactor improves the reaction process by making it faster, optimized and without the influence of human error. The objective of this work is to register and control the involved variables (temperatures, reactive fluxes, weights, etc) in an emulsion polymerization reaction. The programs and control algorithms were developed in the language G in LabVIEW®. The designed software is able to send and receive RS232 codified data from the devices (pumps, temperature sensors, mixer, balances, and so on) to and from a personal Computer. The transduction from digital information to movement or measurement actions of the devices is done by electronic components included in the devices. Once the programs were done and proved, chemical reactions of emulsion polymerization were made to validate the system. Moreover, some advanced heat-estimation algorithms were implemented in order to know the heat caused by the reaction and the estimation and control of chemical variables in-line. All the information gotten from the reaction is stored in the PC. The information is then available and ready to use in any commercial data processor software. This work is now being used in a Research Center in order to make emulsion polymerizations under efficient and controlled conditions with reproducible results. The experiences obtained from this project may be used in the implementation of chemical estimation algorithms at pilot plant or industrial scale.

  19. Bulletin of the Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    1992-01-01

    In this bulletin, 48 reports of the researches in the Energy Engineering Division on two-phase flow characteristics, thermo-hydraulic behavior of fuel channel, FBR cores, combustion systems, boiling heat transfer, MHD generators, thermoluminescence emission, nuclear magnetic resonance, photoreduction of uranium, kinetics and mechanism of reaction, chemical heat pumps and others, 39 reports of the researches in the Mass Transmutation Engineering Division on heavy ion linac system, tritiated water diffusion into concrete, hydrogen plasma-driven permeation, neutron diffusion, long life small safe reactors, use of U-233, mercury coolant, low level neutron detectors, tritium enrichment, free electron laser, compact storage and acceleration rings and others, and 20 reports of the researches in the System and Safety Engineering Division on self-consistent nuclear energy supply system, behavior of plasma-facing components, fragmentation of liquid metal, flywheel motor generator, modeling of tokamak plasma, irradiation effect on SiC ceramics, safety analysis of fusion energy system and others are collected. (K.I.)

  20. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors

    International Nuclear Information System (INIS)

    Scheuer, A.; Gutsmiedl, E.

    1999-01-01

    The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6. The sheets and forgings of Zircaloy 4 were examined in the temperature range between -256 deg. C and 250 deg. C. The thickness of the sheets are 3, 4, 5 and 10 mm, the maximum diameter of the forgings was 560 mm. This great forging diameters are not be treated in the ASTM rule B 351 for nuclear material, so a special approval with independent experts was necessary. The requirements for the material examinations were specified in a material specification and material test sheets which based on the ASTM rules B 351 and B 352 with additional restriction and additional requirements of the basic safety concept for nuclear power plants in Germany, which was take into consideration in the nuclear licensing procedure. Charpy-V samples were carried out in the temperature range between -256 deg. C and 150 deg. C to get more information on the ductile behaviour of the Zircaloy 4. The results of the sheet examination confirm the requirements of the specifications, the results of the forging examination in the tangential testing direction are lower than specified and expected for the tensile strength. The axial and transverse values confirm the specification requirements. For the strength calculation of the pressure retaining wall a reduced material value for the forgings has to take into consideration. The material behaviour of Zircaloy 4 under irradiation up to a fluence of ∼ 1x10 22 n/cm 2 was investigated. The loss of ductility was determined. As an additional criteria the variation of the fracture toughness was studies. Fracture mechanic calculations of the material were carried out in the licensing procedure with the focus to fulfill the leak before rupture

  1. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors

    International Nuclear Information System (INIS)

    Gutsmiedl, Erwin

    2001-01-01

    The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6. The sheets and forgings of Zircaloy 4 were examined in the temperature range between -256degC and 250degC. The thickness of the sheets are 3, 4, 5 and 10 mm, the maximum diameter of the forgings was 560 mm. This great forging diameters are not be treated in the ASTM rule B 351 for nuclear material, so a special approval with independent experts was necessary. The requirements for the material examinations were specified in a material specification and material test sheets which based on the ASTM rules B 351 and B 352 with additional restriction and additional requirements of the basic safety concept for nuclear power plants in Germany, which was taken into consideration in the nuclear licensing procedure. Charpy-V samples were carried out in the temperature range between -256degC and 150degC to get more information on the ductile behaviour of the Zircaloy 4. The results of the sheet examination confirm the requirements of the specifications, the results of the forging examination in the tangential testing direction are lower than specified and expected for the tensile strength. The axial and transverse values confirm the specification requirements. For the strength calculation of the pressure retaining wall a reduced material value for the forgings has to taken into consideration. The material behaviour of Zircaloy 4 under irradiation up to a fluence of ∼1·10 22 n/cm 2 was investigated. The loss of ductility was determined. As an additional criteria the variation of the fracture toughness was studies. Fracture mechanic calculations of the material were carried out in the licensing procedure with the focus to fulfill the leak before rupture criteria of

  2. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, Heilongjiang 150090 (China)

    2010-10-15

    The objective of conducting experiments in a laboratory is to gain data that helps in designing and operating large-scale biological processes. However, the scale-up and design of industrial-scale biohydrogen production reactors is still uncertain. In this paper, an established and proven Eulerian-Eulerian computational fluid dynamics (CFD) model was employed to perform hydrodynamics assessments of an industrial-scale continuous stirred-tank reactor (CSTR) for biohydrogen production. The merits of the laboratory-scale CSTR and industrial-scale CSTR were compared and analyzed on the basis of CFD simulation. The outcomes demonstrated that there are many parameters that need to be optimized in the industrial-scale reactor, such as the velocity field and stagnation zone. According to the results of hydrodynamics evaluation, the structure of industrial-scale CSTR was optimized and the results are positive in terms of advancing the industrialization of biohydrogen production. (author)

  3. Experimental study of hot water layer in a model in scale of the Brazilian Multipurpose Reactor (RMB); Estudo experimental da camada de Água quente em um modelo em escala do Reator Multipropósito Brasileiro (RMB)

    Energy Technology Data Exchange (ETDEWEB)

    Tomaz, Gabriel Caio Queiroz

    2017-07-01

    The Brazilian Multipurpose Reactor (RMB) is a 30 MW open pool research reactor planned to be constructed in Brazil. Such type of reactor is built inside a deep pool of purified and demineralized water, providing radiological protection still keeping the core accessible for maintenance and refueling. However, dissolved ions become activated in the pool water due to the core neutron flux, releasing radiation in the reactor room when the activated elements reach the top. Thus high power open pool reactors, as RMB, have an auxiliary thermal-hydraulic circuit that creates a Hot Water Layer (HWL) on the pool’s top, keeping the activated water under the HWL and mitigating the dose rate to which the operators are exposed to. The Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) built a 1/10 scale experimental bench of the RMB’s pool for the HWL investigation. This work presents the results of the pool’s heating due to the reactor startup in the HWL stability. (author)

  4. Pacific Northwest Laboratory report on controlled thermonuclear reactor technology, October 1975--December 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Survey calculations are being made on three blanket configurations for a conceptual hybrid design based on a Two Component Torus (TCT) in a cooperative effort between Princeton Plasma Physics Laboratory (PPPL) and PNL. Other studies are underway to provide background data in the design of a minimum thickness shield and a convertor region for the TCT hybrid. The effect the plasma and associated radiation and emission will have upon the surfaces of the first wall are being studied. A variety of metal targets were prepared for neutron irradiation and were evaluated. Radioactive recoil sputtering ratios are summarized with complete results being prepared for separate publication. The development and testing of the ion blistering equipment is continuing with the design and installation of a special differential pumping stage. Analysis of the molybdenum specimens irradiated for the initial BCC ion correlation experiment is completed and data from the participants have been compared. Graphite cloth and fibers irradiated in EBR-II to approximately 3 x 10 21 cm -2 at approximately 500 0 C are being evaluated for radiation damage effects. Helium effects are being studied on five alloys specified in CTR conceptual designs. Tests were designed to determine the effects of oxidation potential on low-level contaminant/metal interactions. Niobium and vanadium are being studied for mechanical property effects after injection of helium by the tritium trick method. An advanced state-of-the-art Acoustics Emission Event Energy Analyzer (AEEEA) has been developed and tested

  5. Pacific Northwest Laboratory report on controlled thermonuclear reactor technology, January 1975--September 1975

    International Nuclear Information System (INIS)

    1975-10-01

    The PNL staff has been studying fusion technology in areas such as economics, fusion-fission hybrid concepts, materials, neutronics, environment and safety. These studies have been scoped to make efficient use of ERDA resources, and to complement and support efforts at other laboratories. The effect the plasma and associated radiation and emission will have upon the surfaces of the first wall are being studied. Neutron sputtering experiments were made on niobium and gold and the results were evaluated for absolute neutron yields. Molybdenum and vanadium were studied for effects of ion bombardment under various conditions of helium injection. Graphite cloth is being irradiated for examination of radiation effects because it is suggested for use in several CTR concepts as a shield between the plasma and the first wall. Helium effects are being studied to characterize degradation of structural metal properties. Work is progressing on absolute measurement of the electrical resistivity of insulators and the demonstration of the feasibility of producing insulating coatings by sputter deposition

  6. Report of investigation into allegations of retaliation for raising safety and quality of work issues regarding Argonne National Laboratory's Integral Fast Reactor project

    International Nuclear Information System (INIS)

    1991-12-01

    In August 1990 James A. Smith resigned his position as an experimenter at Argonne National Laboratory-West (ANL-W), located near Idaho Falls, Idaho. Smith who holds a Ph.D. in metallurgy, had worked at the Laboratory since 1988, primarily on its Integral Fast Reactor (IFR) project. He alleged that the quality of the Laboratory's work on that project had been undermined by fundamental errors in metallurgy and related sciences, at least some of which had nuclear safety implications; that the Laboratory had published false and misleading accounts of its work; that prevailing attitudes at the Laboratory were antithetical to quality scientific work; and that because he had expressed concerns about these matters his job was threatened by his managers. Evidence gathered during an investigation by the Department of Energy's Office of Nuclear Safety (NS) is presented and conclusions and recommendations are provided

  7. Study on development of virtual reactor core laboratory (1). Development of prototype coupled neutronic, thermal-hydraulic and structural analysis system

    International Nuclear Information System (INIS)

    Uto, Nariaki; Sugaya, Toshio; Tsukimori, Kazuyuki; Negishi, Hitoshi; Enuma, Yasuhiro; Sakai, Takaaki

    1999-09-01

    A study on development of virtual reactor core laboratory, which is to conduct numerical experiments representative of complicated physical phenomena in practical reactor core systems on a computational environment, has progressed at Japan Nuclear Cycle Development Institute (JNC). The study aims at systematic evaluation of these phenomena into which nuclear reactions, thermal-hydraulic characteristics, structural responses and fuel behaviors combine, and effective utilization of the obtained comprehension for core design. This report presents a production of a prototype computational system which is required to construct the virtual reactor core laboratory. This system is to evaluate reactor core performance under the coupled neutronic, thermal-hydraulic and structural phenomena, and is composed of two analysis tools connected by a newly developed interface program; 1) an existing space-dependent coupled neutronic and thermal-hydraulic analysis system arranged at JNC and 2) a core deformation analysis code. It acts on a cluster of several DEC/Alpha workstations. A specific library called MPI1 (Message Passing Interface 1) is incorporated as a tool for communicating among the analysis modules consisting of the system. A series of calculations for simulating a sequence of Unprotected Loss Of Heat Sink (ULOHS) coupled with rapid drop of some neutron absorber devices in a prototype fast reactor is tried to investigate how the system works. The obtained results show the core deformation behavior followed by the reactivity change that can be properly evaluated. The results of this report show that the system is expected to be useful for analyzing sensitivity of reactor core performance with respect to uncertainties of various design parameters and establishing a concept of passive safety reactor system, taking into account space distortion of neutron flux distribution during abnormal events as well as reactivity feedback from core deformation. (author)

  8. Effects of chlorine and sulphur on particle formation in wood combustion performed in a laboratory scale reactor

    Energy Technology Data Exchange (ETDEWEB)

    Olli Sippula; Terttaliisa Lind; Jorma Jokiniemi [University of Kuopio, Kuopio (Finland). Fine Particle and Aerosol Technology Laboratory, Department of Environmental Sciences

    2008-09-15

    Fine particle formation in wood combustion was studied in a laboratory scale laminar flow reactor at various flue gas chlorine and sulphur concentrations. Aerosol samples were quenched at around 850{sup o}C using a porous tube diluter. Fine particle number concentrations, mass concentrations, size distributions and chemical compositions were measured. In addition, flue gas composition, including SO{sub 2} and HCl, was monitored. Experimental results were interpreted by thermodynamic equilibrium calculations. Addition of HCl clearly raised fine particle mass concentration (PM1.0) which was because of increased release of ash-forming material to fine particles. Especially the release of K, Na, Zn and Cd to fine particles increased. These species form chlorides which apparently increases their volatilization from the fuel. When a sufficient amount of SO{sub 2} was supplied in a chlorine rich combustion (S/Cl molar ratio from 4.7 to 7.5), most of the HCl stayed in the gas phase, release of ash-forming elements decreased and also fine particle concentrations dropped significantly. The sulphation of alkali metals is suggested to play a key role in the observed decrease in the fine particle concentration. It seems that the formation of sulphates leads to alkali metal retention in the coarse particle fraction. 27 refs., 11 figs., 1 tab.

  9. 2016 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015–October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Permit required groundwater monitoring data • Status of compliance activities • Issues • Discussion of the facility’s environmental impacts. During the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds. Sulfate and total dissolved solids concentrations decrease rapidly as the distance downgradient from the Cold Waste Ponds increases. Although concentrations of sulfate and total dissolved solids are significantly higher in well USGS-065 than in the other monitoring wells, both parameters remained below the Ground Water Quality Rule Secondary Constituent Standards in well USGS-065. The facility was in compliance with the Reuse Permit during the 2016 permit year.

  10. Health and safety plan for the Molten Salt Reactor Experiment remediation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Uziel, M.S.

    1995-12-01

    The Lockheed Martin Energy Systems, Inc., (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of the policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  11. 2016 Annual Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Ponds

    International Nuclear Information System (INIS)

    Lewis, Michael George

    2017-01-01

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015-October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: · Facility and system description · Permit required effluent monitoring data and loading rates · Permit required groundwater monitoring data · Status of compliance activities · Issues · Discussion of the facility's environmental impacts. During the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds. Sulfate and total dissolved solids concentrations decrease rapidly as the distance downgradient from the Cold Waste Ponds increases. Although concentrations of sulfate and total dissolved solids are significantly higher in well USGS-065 than in the other monitoring wells, both parameters remained below the Ground Water Quality Rule Secondary Constituent Standards in well USGS-065. The facility was in compliance with the Reuse Permit during the 2016 permit year.

  12. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    International Nuclear Information System (INIS)

    Lewis, Mike

    2011-01-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of compliance activities; and (5) Discussion of the facility's environmental impacts. During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  13. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    International Nuclear Information System (INIS)

    Lewis, Mike

    2012-01-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  14. Health and safety plan for the Molten Salt Reactor Experiment remediation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Burman, S.N.; Uziel, M.S.

    1995-12-01

    The Lockheed Martin Energy Systems, Inc., (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of the policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air

  15. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  16. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  17. Post-remedial-action survey report for Kinetic Experiment Water Boiler Reactor Facility, Santa Susana Field Laboratories, Rockwell International, Ventura County, California

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.; Justus, A.L.

    1981-10-01

    Rockwell International's Santa Susana Laboratories in Ventura County, California, have been the site of numerous federally-funded contracted projects involving the use of radioactive materials. Among these was the Kinetics Experiment Water Boiler (KEWB) Reactor which was operated under the auspices of the US Atomic Energy Commission (AEC). The KEWB Reactor was last operated in 1966. The facility was subsequently declared excess and decontamination and decommissioning operations were conducted during the first half of calendar year 1975. The facility was completely dismantled and the site graded to blend with the surrounding terrain. During October 1981, a post-remedial-action (certification) survey of the KEWB site was conducted on the behalf of the US Department of Energy by the Radiological Survey Group (RSG) of the Occupational Health and Safety Division's Health Physics Section (OHS/HP) of Argonne National Laboratory (ANL). The survey confirmed that the site was free from contamination and could be released for unrestricted use

  18. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    OpenAIRE

    Lefèvre, Grégory; Živković, Ljiljana S.; Jaubertie, Anne

    2012-01-01

    In the primary circuit of pressurized water reactors (PWR), the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspec...

  19. Quantification of the distribution of hydrogen by nuclear microprobe at the Laboratory Pierre Sue in the width of zirconium alloy fuel clad of PWR reactors

    International Nuclear Information System (INIS)

    Raepsaet, C.; Bossis, Ph.; Hamon, D.; Bechade, J.L.; Brachet, J.C.

    2007-01-01

    Among the analysis techniques by ions beams, the micro ERDA (Elastic Detection Analysis) is an interesting technique which allows the quantitative distribution of the hydrogen in materials. In particular, this analysis has been used for hydride zirconium alloys, with the nuclear microprobe of the Laboratory Pierre Sue. This probe allows the characterization of radioactive materials. The technique principles are recalled and then two examples are provided to illustrate the fuel clad behavior in PWR reactors. (A.L.B.)

  20. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Gerstner, Douglas M.

    2009-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 'flux traps' (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop's temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation

  1. CFD and FEM thermo-mechanical design of a recuperative-dissipative heat exchanger for a laboratory water gas shift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Michele Vascellari; Stefano Sollai; Pier Francesco Orru; Giorgio Cau [University of Cagliari, Cagliari (Italy). Department of Mechanical Engineering

    2007-07-01

    A small scale test rig based on a two-stage reactor for testing water gas shift conversion processes has been set up at the Department of Mechanical Engineering at the University of Cagliari, chiefly for the purpose of supporting a pilot plant operation for high sulphur (Sulcis) coal gasification, gas cleaning and treatment, CO{sub 2} separation, hydrogen and electricity production. The laboratory test rig comprises two packed-bed reactors in series to be operated at different temperatures and has been designed for testing CO-shift conversion processes using a variety of catalysts for different syngas temperatures (up to 500{sup o}C) and compositions. One critical component of the system is a recuperative-dissipative heat exchanger placed between the two reactors. The heat exchanger, which preheats the syngas prior to entering the high temperature reactor and cools the shifted gas exiting there from, prior to its entering the low temperature reactor, is subjected to severe thermo-mechanical stress. Thus the design and analysis of this component, described herein, is a critical issue. A full 3D conjugate heat transfer CFD analysis of the tubular heat exchanger has been performed, considering different geometries. Based on the CFD results we were able to verify the preliminary design of the component, carried out using simple thermal correlations and to predict wall temperature distribution for the thermo-structural analysis. 10 refs., 10 figs., 2 tabs.

  2. An evaluation of alternative reactor vessel cutting technologies for the decommissioning of the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Boing, L.E.; Henley, D.R.; Manion, W.J.; Gordon, J.W.

    1991-01-01

    This paper will detail (1) a brief overview of the current status of the EBWR D ampersand D Project, and (2) the results of a study performed to evaluate the metal cutting technologies available to size reduce the EBWR reactor vessel. The techniques evaluated were: Plasma arc, Arc saw, Oxyacetylene, Electric arc gouging, Mechanical cladding removal/flame cutting, Exothermic reaction, Diamond wire, Water jet, Laser, Mechanical milling, Controlled explosives, and Electrical discharge. After a detailed review of these 12 techniques, the decision was made by ANL that the most appropriate method for segmenting the EBWR reactor vessel would be to rift the vessel from the vessel cavity and use an abrasive water jet positioned on the main floor to perform the cutting of the reactor vessel

  3. LETTER REPORT - INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Weaver, P.C.

    2010-01-01

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the Brookhaven National Laboratory (BNL) on August 17 through August 23, 2010 to perform visual inspections and conduct independent measurement and sampling of the 'Outside Areas' at the High Flux Beam Reactor (HFBR) decommissioning project. During this visit, ORISE was also able to evaluate Fan House, Building 704 survey units (SUs) 4 and 5, which are part of the Underground Utilities portion of the HFBR decommissioning project. ORISE performed limited alpha plus beta scans of the remaining Fan House foundation lower walls and remaining pedestals while collecting static measurements. Scans were performed using gas proportional detectors coupled to ratemeter-scalers with audible output and encompassed an area of approximately 1 square meter around the static measurement location. Alpha plus beta scans ranged from 120 to 460 cpm. Twenty smears for gross alpha and beta activity and tritium were collected at judgmentally selected locations on the walls and pedestals of the Fan House foundation. Attention was given to joints, cracks, and penetrations when determining each sample location. Removable concentrations ranged from -0.43 to 1.73 dpm/100 cm2 for alpha and -3.64 to 7.80 dpm/100 cm2 for beta. Tritium results for smears ranged from -1.9 to 9.0 pCi/g. On the concrete pad, 100% of accessible area was scanned using a large area alpha plus beta gas proportional detector coupled to a ratemeter-scaler. Gross scan count rates ranged from 800 to 1500 cpm using the large area detector. Three concrete samples were collected from the pad primarily for tritium analysis. Tritium concentrations in concrete samples ranged from 53.3 to 127.5 pCi/g. Gamma spectroscopy results of radionuclide concentrations in concrete samples ranged from 0.02 to 0.11 pCi/g for Cs-137 and 0.19 to 0.22 pCi/g for Ra-226. High density scans for gamma radiation levels were performed in accessible areas in each SU, Fan House

  4. Decontamination of hot cells K-1, K-3, M-1, M-3, and A-1, M-Wing, Building 200: Project final report Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    The purpose of this project was to remove radioactively contaminated materials and equipment from the hot cells, to decontaminate the hot cells, and to dispose of the radioactive waste. The goal was to reduce stack releases of Rn-220 and to place the hot cells in an emptied, decontaminated condition with less than 10 microSv/h (1 mrem/h) general radiation background. The following actions were needed: organize and mobilize a decontamination team; prepare decontamination plans and procedures; perform safety analyses to ensure protection of the workers, public, and environment; remotely size-reduce, package, and remove radioactive materials and equipment for waste disposal; remotely decontaminate surfaces to reduce hot cell radiation background levels to allow personnel entries using supplied air and full protective suits; disassemble and package the remaining radioactive materials and equipment using hands-on techniques; decontaminate hot cell surfaces to remove loose radioactive contaminants and to attain a less than 10 microSv/h (1 mrem/h) general background level; document and dispose of the radioactive and mixed waste; and conduct a final radiological survey

  5. Effect of two heavy metals, cadmium and nickel, on the organic load removal efficiency in a laboratory UASB reactor

    International Nuclear Information System (INIS)

    Forero, Luis Eduardo; Sierra, Jorge Humberto

    2004-01-01

    Experiments were carried out in three up flow anaerobic sludge blanket, UASB, reactors each with 3 L capacity, four hours of hydraulic retention time, (HRT) and volumetric organic load of 4,8 g/L/d. After the initial start phase, which was of 4.000 hours for the three reactors, they were affected in the following way: the first reactor was continuously feed with 5 mg/L of cadmium chloride, the second one was continuously feed with 10 mg/L of nickel chloride and the last one was not affected and served as reference. Efficiency in organic load removal was measured as oxygen chemical demand (OCD), the first reactor changed from 60% in the start phase (phase one) to 18% in the cadmium-affected phase (phase two), efficiency in removal (OCI) in reactor two varied from 60 to 24% and the last one did not change in a noticeable manner. Reactor one accumulated cadmium in the mud, whereas reactor two did not do that with nickel

  6. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1995-01-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analysis are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  7. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1998-04-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analyses are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  8. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  9. Hot cell verification facility update

    International Nuclear Information System (INIS)

    Titzler, P.A.; Moffett, S.D.; Lerch, R.E.

    1985-01-01

    The Hot Cell Verification Facility (HCVF) provides a prototypic hot cell mockup to check equipment for functional and remote operation, and provides actual hands-on training for operators. The facility arrangement is flexible and assists in solving potential problems in a nonradioactive environment. HCVF has been in operation for six years, and the facility is a part of the Hanford Engineering Development Laboratory

  10. Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery

    Directory of Open Access Journals (Sweden)

    Kuo-Ting Wang

    2017-12-01

    Full Text Available Miscanthus (Miscanthus sp. Family: Poaceae was hot-water extracted (two h, at 160 °C at three scales: laboratory (Parr reactor, 300 cm3, intermediate (M/K digester, 4000 cm3, and pilot (65 ft3-digester, 1.841 × 106 cm3. Hot-water extracted miscanthus, hydrolyzate, and lignin recovered from hydrolyzate were characterized and evaluated for potential uses aiming at complete utilization of miscanthus. Effects of scale-up on digester yield, removal of hemicelluloses, deashing, delignification degree, lignin recovery and purity, and cellulose retention were studied. The scale-dependent results demonstrated that before implementation, hot-water extraction (HWE should be evaluated on a scale larger than a laboratory scale. The production of energy-enriched fuel pellets from hot-water extracted miscanthus, especially in combination with recovered lignin is recommended, as energy of combustion increased gradually from native to hot-water extracted miscanthus to recovered lignin. The native and pilot-scale hot-water extracted miscanthus samples were also subjected to enzymatic hydrolysis using a cellulase-hemicellulase cocktail, to produce fermentable sugars. Hot-water extracted biomass released higher amount of glucose and xylose verifying benefits of HWE as an effective pretreatment for xylan-rich lignocellulosics. The recovered lignin was used to prepare a formaldehyde-free alternative to phenol-formaldehyde resins and as an antioxidant. Promising results were obtained for these lignin valorization pathways.

  11. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  12. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  13. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  14. Lawrence Livermore National Laboratory and Sandia National Laboratory Nuclear Accident Dosimetry Support of IER 252 and the Dose Characterization of the Flattop Reactor at the DAF

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jeffers, K. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Radev, R. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tai, L. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ward, D. C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Leonard, E. I. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-10-06

    In support of IER 252 “Characterization of the Flattop Reactor at the NCERC”, LLNL performed ROSPEC measurements of the neutron spectrum and deployed 129 Personnel Nuclear Accident Dosimeters (PNAD) to establish the need for height corrections and verification of neutron spectrum evaluation of the fluences and dose. A very limited number of heights (typically only one or two heights) can be measured using neutron spectrometers, therefore it was important to determine if any height correction would be needed in future intercomparisons and studies. Specific measurement positions around the Flatttop reactor are provided in Figure 1. Table 1 provides run and position information for LLNL measurements. The LLNL ROSPEC (R2) was used for run numbers 1 – 7, and vi. PNADs were positioned on trees during run numbers 9, 11, and 13.

  15. Line Heat-Source Guarded Hot Plate

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. This facility provides for absolute measurement of thermal...

  16. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  17. Management of waste associated with the decommissioning of the JASON research reactor and the nuclear laboratories at the Royal Naval College Greenwich

    International Nuclear Information System (INIS)

    Beeley, P.A.; Lockwood, R.J.S.; Hoult, D.; Major, R.

    2001-01-01

    In 1996 the UK Government announced that the Royal Naval College, Greenwich would pass to non-defence use by the millennium. As a consequence of this decision, the decommissioning of the JASON 10 kW Argonaut research reactor and the relocation of the Department of Nuclear Science and Technology (DNST) were approved by the Ministry of Defence. The decommissioning of the reactor commenced in November 1997 while DNST remained operational until October 1998. The DNST was responsible for education and training in support of the UK Naval Nuclear Propulsion Programme and operated academic laboratories for atomic and nuclear physics, health physics, instrument calibration and radiochemistry. Therefore, besides the nuclear reactor, open and sealed sources (alpha, beta and gamma), intense x-ray (sealed tube) and gamma-ray ( 60 CO and 137 Cs) sources and small 241 Am/Be neutron sources had been used in the Department for over 35 years. Decommissioning of all facilities was therefore a relatively complex task and the management of waste streams was challenging. All facilities were successfully decommissioned for unrestricted site release by December 1999 and this paper will describe the methodology used for preparation, storage, characterisation and disposal of all waste streams. The most significant waste management task during this decommissioning programme was that associated with the JASON reactor. It should be noted that the JASON reactor fuel was not designated as nuclear waste, the fuel removal and storage were covered under separate contracts and therefore no high level waste was generated. With respect to other waste streams, a combination of Monte Carlo modelling and selective sampling and analysis of the reactor materials was used to estimate the quantities of waste as follows: LLW - 76 tonnes packed in 4 half height ISO containers; LLW - 6 Tonnes packed in 200litre drums in 1 full height ISO container; ILW - 60 kg packed in approved shielded containers; FRW -121

  18. Review of the International Atomic Energy Agency International database on reactor pressure vessel materials and US Nuclear Regulatory Commission/Oak Ridge National Laboratory embrittlement data base

    International Nuclear Information System (INIS)

    Wang, J.A.; Kam, F.B.K.

    1998-02-01

    The International Atomic Energy Agency (IAEA) has supported neutron radiation effects information exchange through meetings and conferences since the mid-1960s. Through an International Working Group on Reliability of Reactor Pressure Components, information exchange and research activities were fostered through the Coordinated Research Program (CRP) sponsored by the IAEA. The final CRP meeting was held in November 1993, where it was recommended that the IAEA coordinate the development of an International Database on Reactor Pressure Vessel Material (IDRPVM) as the first step in generating an International Database on Aging Management. The purpose of this study was to provide special technical assistance to the NRC in monitoring and evaluating the IAEA activities in developing the IAEA IDRPVM, and to compare the IDRPVM with the Nuclear Regulatory Commission (NRC) - Oak Ridge National Laboratory (ORNL) Power Reactor Embrittlement Data Base (PR-EDB) and provide recommendations for improving the PR-EDB. A first test version of the IDRPVM was distributed at the First Meeting of Liaison Officers to the IAEA IDRPVM, in November 1996. No power reactor surveillance data were included in this version; the testing data were mainly from CRP Phase III data. Therefore, because of insufficient data and a lack of power reactor surveillance data received from the IAEA IDRPVM, the comparison is made based only on the structure of the IDRPVM. In general, the IDRPVM and the EDB have very similar data structure and data format. One anticipates that because the IDRPVM data will be collected from so many different sources, quality assurance of the data will be a difficult task. The consistency of experimental test results will be an important issue. A very wide spectrum of material characteristics of RPV steels and irradiation environments exists among the various countries. Hence the development of embrittlement prediction models will be a formidable task. 4 refs., 2 figs., 4 tabs

  19. Facilities for post-irradiation examination of experimental fuel elements at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Mizzan, E.; Chenier, R.J.

    1979-10-01

    Expansion of post-irradiation facilities at the Chalk River Nuclear Laboratories and steady improvement in hot-cell techniques and equipment are providing more support to Canada's reactor fuel development program. The hot-cell facility primarily used for examination of experimental fuels averages a quarterly throughput of 40 elements and 110 metallographic specimens. New developments in ultrasonic testing, metallographic sample preparation, active storage, active waste filtration, and fissile accountability are coming into use to increase the efficiency and safety of hot-cell operations. (author)

  20. Identification and evaluation of alternatives for the disposition of fluoride fuel and flush salts from the molten salt reactor experiment at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-01-01

    This document presents an initial identification and evaluation of the alternatives for disposition of the fluoride fuel and flush salts stored in the drain tanks at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). It will serve as a resource for the U.S. Department of Energy contractor preparing the feasibility study for this activity under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). This document will also facilitate further discussion on the range of credible alternatives, and the relative merits of alternatives, throughout the time that a final alternative is selected under the CERCLA process

  1. Lessons Learned from Sandia National Laboratories' Operational Readiness Review of the Annular Core Research Reactor (ACRR)

    Energy Technology Data Exchange (ETDEWEB)

    Bendure, Albert O.; Bryson, James W.

    1999-05-17

    The Sandia ACRR (a Hazard Category 2 Nuclear Reactor Facility) was defueled in June 1997 to modify the reactor core and control system to produce medical radioisotopes for the Department of Energy (DOE) Isotope Production Program. The DOE determined that an Operational Readiness Review (ORR) was required to confirm readiness to begin operations within the revised safety basis. This paper addresses the ORR Process, lessons learned from the Sandia and DOE ORRS of the ACRR, and the use of the ORR to confirm authorization basis implementation.

  2. Neutron radiography (NRAD) reactor 64-element core upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA (registered) (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The interim critical configuration developed during the core upgrade, which contains only 62 fuel elements, has been evaluated as an acceptable benchmark experiment. The final 64-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (approximately ±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  3. Investigation of the delay in pressure vessel embrittlement specimen analysis for the Oak Ridge National Laboratory High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Rothrock, J.D.; Hoffman, E.E.; Manthey, G.C.; Sheffey, D.W.

    1987-01-01

    Analysis of the investigative data pertaining to this incident reveals the following conditions as key findings and probable causes: (1) The contractor failed to properly implement the surveillance program for monitoring reactor pressure vessel embrittlement. (2) Contractor and DOE organizations provided less than adequate oversight and independent overview, especially by not requiring operating organizations to provide documented evidence to substantiate claims that there was ''no problem'' with respect to embrittlement. (3) Although the temperature limitation for reactor pressurization identified in the Technical Specifications was never violated, the basis of this safety limitation was violated. (4) The basis for concluding that there would be no embrittlement of the pressure vessel steel over the expected life of the reactor is questionable. (5) The contractor and DOE failed to make the surveillance program visible by incorporating it in the Technical Specifications. (6) The Accident Analysis/Final Safety Analysis Report was never adequately reviewed and updated subsequent to its initial issuance. (7) Surveillance specimen analysis was incomplete and never transmitted to reactor operating personnel in a usable format prior to November 1986. (8) There was extensive delays (many years) in the testing, analysis, and reporting of surveillance program results

  4. Developing the Sandia National Laboratories transportation infrastructure for isotope products and wastes

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1997-11-01

    The US Department of Energy (DOE) plans to establish a medical isotope project that would ensure a reliable domestic supply of molybdenum-99 ( 99 Mo) and related medical isotopes (Iodine-125, Iodine-131, and Xenon-133). The Department's plan for production will modify the Annular Core Research Reactor (ACRR) and associated hot cell facility at Sandia National Laboratories (SNL)/New Mexico and the Chemistry and Metallurgy Research facility at Los Alamos National Laboratory (LANL). Transportation activities associated with such production is discussed

  5. Systems dynamics (SD) strategy for Small Modular Reactor (SMR) marketing - Conquest at the MIT Energy Laboratory (Pres. MIT Energy Initiative)

    Energy Technology Data Exchange (ETDEWEB)

    Woo, T. H. [Yonsei University, Wonju (Korea, Republic of)

    2016-10-15

    This reactor has the specification as the power is 330 MWt pressurized water reactor (PWR) with integral steam generators and advanced safety features. In the plant design, it is planned for electricity generation of 100 MWe and thermal applications of seawater desalination where the life span is a 60-year operation design and three-year refueling cycle. Regarding of the licensing, the standard design was approved from the Korean regulator in mid-2012 and the Korea Atomic Energy Research Institute (KAERI) has a plan to build a demonstration plant to operate from 2017. According to the previous study of the marketing strategy of the Canadian small reactor, Safe LOW-POwer Kritical Experiment (SLOWPOKE) reactor had been investigated in 1988. Therefore, it is interesting to compare SMART and SLOWPOKE. In this work, it is to find out the strategy of the successful marketing of SMART and suggest continuous marketing prospects. There are specifications and parameters of SMART in Tables 1 and 2. The public acceptance (PA) had been studies as safety-public interpretation, SLOWPOKE safety-experience and process, and economics in the previous paper of the SLOWPOKE, which was about the marketing strategy for the commercial nuclear reactor. The highly cognitive networking based dynamical modeling was discussed where the system is treated by a complex and non-linear way. The linear networking of the interested issue was changed by the SD algorithm where the feedback and multiple connections are added to the original networking theory. The non-linear method has shown the complexity of the marketing strategy, especially for the NPP which is the very expensive and safety focused facility.

  6. The Effect of Initial Inoculum Source on the Microbial Community Structure and Dynamics in Laboratory-Scale Sequencing Batch Reactors

    KAUST Repository

    Hernandez, Susana

    2011-07-01

    Understanding the factors that shapes the microbial community assembly in activated sludge wastewater treatment processes provide a conceptual foundation for improving process performance. The aim of this study was to compare two major theories (deterministic theory and neutral theory) regarding the assembly of microorganisms in activated sludge: Six lab-scale activated sludge sequencing batch reactors were inoculated with activated sludge collected from three different sources (domestic, industrial, and sugar industry WWTP). Additionally, two reactors were seeded with equal proportion of sludge from the three WWTPs. Duplicate reactors were used for each sludge source (i.e. domestic, industrial, sugar and mix). Reactors were operated in parallel for 11 weeks under identical conditions. Bacterial diversity and community structure in the eight SBRs were assessed by 16S rRNA gene pyrosequencing. The 16S rRNA gene sequences were analyzed using taxonomic and clustering analysis and by measuring diversity indices (Shannon-weaver and Chao1 indices). Cluster analysis revealed that the microbial community structure was dynamic and that replicate reactors evolved differently. Also the microbial community structure in the SBRs seeded with a different sludge did not converge after 11 weeks of operation under identical conditions. These results suggest that history and distribution of taxa in the source inoculum were stronger regulating factors in shaping bacterial community structure than environmental factors. This supports the neutral theory which states that the assembly of the local microbial community from the metacommunity is random and is regulated by the size and diversity of the metacommunity. Furthermore, sludge performance, measured by COD and ammonia removal, confirmed that broad-scale functions (e.g. COD removal) are not influenced by dynamics in the microbial composition, while specific functions (e.g. nitrification) are more susceptible to these changes.

  7. Systems dynamics (SD) strategy for Small Modular Reactor (SMR) marketing - Conquest at the MIT Energy Laboratory (Pres. MIT Energy Initiative)

    International Nuclear Information System (INIS)

    Woo, T. H.

    2016-01-01

    This reactor has the specification as the power is 330 MWt pressurized water reactor (PWR) with integral steam generators and advanced safety features. In the plant design, it is planned for electricity generation of 100 MWe and thermal applications of seawater desalination where the life span is a 60-year operation design and three-year refueling cycle. Regarding of the licensing, the standard design was approved from the Korean regulator in mid-2012 and the Korea Atomic Energy Research Institute (KAERI) has a plan to build a demonstration plant to operate from 2017. According to the previous study of the marketing strategy of the Canadian small reactor, Safe LOW-POwer Kritical Experiment (SLOWPOKE) reactor had been investigated in 1988. Therefore, it is interesting to compare SMART and SLOWPOKE. In this work, it is to find out the strategy of the successful marketing of SMART and suggest continuous marketing prospects. There are specifications and parameters of SMART in Tables 1 and 2. The public acceptance (PA) had been studies as safety-public interpretation, SLOWPOKE safety-experience and process, and economics in the previous paper of the SLOWPOKE, which was about the marketing strategy for the commercial nuclear reactor. The highly cognitive networking based dynamical modeling was discussed where the system is treated by a complex and non-linear way. The linear networking of the interested issue was changed by the SD algorithm where the feedback and multiple connections are added to the original networking theory. The non-linear method has shown the complexity of the marketing strategy, especially for the NPP which is the very expensive and safety focused facility

  8. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  9. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  10. Feasibility of processing the experimental breeder reactor-II driver fuel from the Idaho National Laboratory through Savannah River Site's H-Canyon facility

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-28

    Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium, and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.

  11. SHOSPA-MOD, Hot Spot Factors for Fuel and Clad, Hot Channel Factors

    International Nuclear Information System (INIS)

    Amendola, A.

    1982-01-01

    1 - Nature of the physical problem solved: SHOSPA evaluates the hot spot factors for fuel and cladding as well as the hot channel factor as a function of the confidence level. Moreover, it evaluates the probability on n hot subassemblies. The code has been developed with emphasis on sodium cooled fast reactors, but it is applicable to any type of reactors constituted of bundled fuel rods with single phase coolant. An option for plotting is available in this version. 2 - Restrictions on the complexity of the problem: This code is applicable to any type of reactors constituted of fuel rods with single phase coolant

  12. An application of Brookhaven National Laboratory's hot particle methodology for determining the most effective beta particle energy in causing skin ulcers

    International Nuclear Information System (INIS)

    Schaefer, C.

    1994-11-01

    The purpose of this project was to compare the effectiveness of hot particles with different energy betas in producing ulcers on skin. The sources were man-made hot particles similar in size and activity to those found in the commercial nuclear power industry. Four different particle types were used. These were thulium (Tm-170) with a 0.97 MeV maximum energy beta, ytterbium (Yb-175) with a maximum beta energy of 0.47 MeV, scandium (Sc-46) with a 0.36 MeV beta, which was used as a surrogate for cobalt-60 (0.31 MeV beta) and uranium (in the carbide form) with an average maximum beta energy of about 2.5 MeV. Since higher energy beta particles penetrate further in skin, they will affect a higher number and different populations of target cells. The experiments were designed as threshold studies such that the dose needed to produce ulcers ten percent of the time (ED 10%) for each particle type could be compared against each other

  13. Completion summary for boreholes USGS 140 and USGS 141 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2014-01-01

    In 2013, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 140 and USGS 141 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 140 initially was cored to collect continuous geologic data, and then re-drilled to complete construction as a monitor well. Borehole USGS 141 was drilled and constructed as a monitor well without coring. Boreholes USGS 140 and USGS 141 are separated by about 375 feet (ft) and have similar geologic layers and hydrologic characteristics based on geophysical and aquifer test data collected. The final construction for boreholes USGS 140 and USGS 141 required 6-inch (in.) diameter carbon-steel well casing and 5-in. diameter stainless-steel well screen; the screened monitoring interval was completed about 50 ft into the eastern Snake River Plain aquifer, between 496 and 546 ft below land surface (BLS) at both sites. Following construction and data collection, dedicated pumps and water-level access lines were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Borehole USGS 140 was cored continuously, starting from land surface to a depth of 543 ft BLS. Excluding surface sediment, recovery of basalt and sediment core at borehole USGS 140 was about 98 and 65 percent, respectively. Based on visual inspection of core and geophysical data, about 32 basalt flows and 4 sediment layers were collected from borehole USGS 140 between 34 and 543 ft BLS. Basalt texture for borehole USGS 140 generally was described as aphanitic, phaneritic, and porphyritic; rubble zones and flow mold structure also were described in recovered core material. Sediment layers, starting near 163 ft BLS, generally were composed of fine-grained sand and silt with a lesser amount of clay; however, between 223 and 228 ft BLS, silt

  14. Type A verification report for the high flux beam reactor stack and grounds, Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    Harpenau, Evan M.

    2012-01-01

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA). The HFBR Stack and Grounds surveys began in June 2011 and were completed in September 2011. Survey activities by BSA included gamma walkover scans and sampling of the as-left soils in accordance with the BSA Work Procedure (BNL 2010a). The Field Sampling Plan - Stack and Remaining HFBR Outside Areas (FSP) stated that gamma walk-over surveys would be conducted with a bare sodium iodide (NaI) detector, and a collimated detector would be used to check areas with elevated count rates to locate the source of the high readings (BNL 2010b). BSA used the Mult- Agency Radiation Survey and Site Investigation Manual (MARSSIM) principles for determining the classifications of each survey unit. Therefore, SUs 6 and 7 were identified as Class 1 and SU 8 was deemed Class 2 (BNL 2010b). Gamma walkover surveys of SUs 6, 7, and 8 were completed using a 2 1/2 2 NaI detector coupled to a data-logger with a global positioning system (GPS). The 100% scan surveys conducted prior to the final status survey (FSS) sampling identified two general soil areas and two isolated soil locations with elevated radioactivity. The general areas of elevated activity

  15. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  16. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  17. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  18. Proceedings of the Oak Ridge National Laboratory/Brookhaven National Laboratory workshop on neutron scattering instrumentation at high-flux reactors

    International Nuclear Information System (INIS)

    McBee, M.R.; Axe, J.D.; Hayter, J.B.

    1990-07-01

    For the first three decades following World War II, the US, which pioneered the field of neutron scattering research, enjoyed uncontested leadership in the field. By the mid-1970's, other countries, most notably through the West European consortium at Institut Laue-Langevin (ILL) in Grenoble, France, had begun funding neutron scattering on a scale unmatched in this country. By the early 1980's, observers charged with defining US scientific priorities began to stress the need for upgrading and expansion of US research reactor facilities. The conceptual design of the ANS facility is now well under way, and line-item funding for more advanced design is being sought for FY 1992. This should lead to a construction request in FY 1994 and start-up in FY 1999, assuming an optimal funding profile. While it may be too early to finalize designs for instruments whose construction is nearly a decade removed, it is imperative that we begin to develop the necessary concepts to ensure state-of-the-art instrumentation for the ANS. It is in this context that this Instrumentation Workshop was planned. The workshop touched upon many ideas that must be considered for the ANS, and as anticipated, several of the discussions and findings were relevant to the planning of the HFBR Upgrade. In addition, this report recognizes numerous opportunities for further breakthroughs on neutron instrumentation in areas such as improved detection schemes (including better tailored scintillation materials and image plates, and increased speed in both detection and data handling), in-beam monitors, transmission white beam polarizers, multilayers and supermirrors, and more. Each individual report has been cataloged separately

  19. Analysis of a hot-leg small break loss-of-coolant accident in a three-loop westinghouse pressurized water reactor plant

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Clements, T.B.

    1985-01-01

    The RETRAN-02 computer code was used to perform a best-estimate analysis of a 7.52-cm-diam hotleg break in a three-loop Westinghouse pressurized water reactor. This break size produced a net primary coolant mass depletion through the early portion of the transient. The primary system started to refill only after the accumulator valves opened. As the primary system refilled, there were extreme temperature differentials around the system with cold, denser fluid collecting at the lower elevations and two-phase fluid at higher elevations

  20. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Gangwal, Santosh K.

    1997-01-01

    Prior to the current project, development of the DSRP was done in a laboratory setting, using synthetic gas mixtures to simulate the regeneration off-gas and coal gas feeds. The objective of the current work is to further the development of zinc titanate fluidized-bed desulfurization (ZTFBD) and the DSRP for hot-gas cleanup by testing with actual coal gas. The objectives of this project are to: (1) Develop and test an integrated, skid-mounted, bench-scale ZTFBD/DSRP reactor system with a slipstream of actual coal gas; (2) Test the bench-scale DSRP over an extended period with a slipstream of actual coal gas to quantify the degradation in performance, if any, caused by the trace contaminants present in coal gas (including heavy metals, chlorides, fluorides, and ammonia); (3) Expose the DSRP catalyst to actual coal gas for extended periods and then test its activity in a laboratory reactor to quantify the degradation in performance, if any, caused by static exposure to the trace contaminants in coal gas; (4) Design and fabricate a six-fold larger-scale DSRP reactor system for future slipstream testing; (5) Further develop the fluidized-bed DSRP to handle high concentrations (up to 14 percent) of SO 2 that are likely to be encountered when pure air is used for regeneration of desulfurization sorbents; and (6) Conduct extended field testing of the 6X DSRP reactor with actual coal gas and high concentrations of SO 2 . The accomplishment of the first three objectives--testing the DSRP with actual coal gas, integration with hot-gas desulfurization, and catalyst exposure testing--was described previously (Portzer and Gangwal, 1994, 1995; Portzer et al., 1996). This paper summarizes the results of previous work and describes the current activities and plans to accomplish the remaining objectives

  1. The 33 years of research reactors in JAERI

    International Nuclear Information System (INIS)

    1990-11-01

    The development and utilization of atomic energy in Japan began with the installation of JRR-1 reactor which attained the criticality in August, 1957, thus the third fire was lighted for the first time in Japan. JRR-2 was constructed as a full scale versatile research reactor, which attained the criticality in October, 1960, and since 1962, it has accomplished the role of the reactor for joint utilization. JRR-3 is the first reactor made in Japan by concentrating Japanese technologies in it, to develop and improve Japanese atomic energy technology. It attained the criticality in September, 1962, and has been used as a versatile research reactor. In 1960, Research Reactor Management Department was founded. JRR-4 was constructed as the research reactor for shielding for developing a nuclear-powered ship, which attained the criticality in January, 1965. The first hot laboratory in Japan for carrying out the post-irradiation test on the fuel and materials irradiated in these research reactors was installed in 1961. The JRR-1 was stopped in September, 1968, and is used as the commemorative exhibition hall. The JRR-3 was reconstructed, and attained the criticality in March, 1990, using 20 % enriched uranium fuel. The course of the research reactors for 33 years is reported. (K.I.)

  2. Integral Fast Reactor: A future source of nuclear energy

    International Nuclear Information System (INIS)

    Southon, R.

    1993-01-01

    Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality

  3. Nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, R F; George, B V; Baglin, C J

    1978-05-10

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given.

  4. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.; George, B.V.; Baglin, C.J.

    1978-01-01

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given. (UK)

  5. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Criddle, Craig S.; Wu, Weimin

    2013-04-17

    With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with the addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.

  6. Results of work in the hot cells of Laboratory Testing Materials Irradiated Areva of Carina project for the expansion of the database of mechanical characteristics of fractures in materials of RPV German irradiated

    International Nuclear Information System (INIS)

    Barthelmes, J.; Schabel, H.; Hein, H.; Kein, E.; Eiselt, C.

    2013-01-01

    In the frame of the already completed research projects CARINA and its predecessor CARISMA a data base was created for pre-irradiated original RPV steels of German PWRs which allowed to examine the consequences if the Master Curve (T 0 ) approach instead of the RT N OT concept is applied to the RPV safety assessment. Furthermore in CARINA different irradiation conditions with respect to the accumulated neutron fluences and specific impact parameters were investigated. Besides a brief introduction of the CARINA project and an overview of the main results an overview on the requirements of the hot laboratory work in terms of specimen manufacturing and material testing is given and examples for realization are shown. (Author)

  7. Stellar Laboratories: New GeV and Ge VI Oscillator Strengths and their Validation in the Hot White Dwarf RE0503-289

    Science.gov (United States)

    Rauch, T.; Werner, K.; Biemont, E.; Quinet, P.; Kruk, J. W.

    2013-01-01

    State-of-the-art spectral analysis of hot stars by means of non-LTE model-atmosphere techniques has arrived at a high level of sophistication. The analysis of high-resolution and high-S/N spectra, however, is strongly restricted by the lack of reliable atomic data for highly ionized species from intermediate-mass metals to trans-iron elements. Especially data for the latter has only been sparsely calculated. Many of their lines are identified in spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable determination of their abundances establishes crucial constraints for AGB nucleosynthesis simulations and, thus, for stellar evolutionary theory. Aims. In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified. Individual abundance determinations are hampered by the lack of reliable oscillator strengths. Most of these identified lines stem from Ge V. In addition, we identified Ge VI lines for the first time. We calculated Ge V and Ge VI oscillator strengths in order to reproduce the observed spectrum. Methods. We newly calculated Ge V and Ge VI oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our non-LTE stellar-atmosphere models for the analysis of the Ge IV-VI spectrum exhibited in high-resolution and high-S/N FUV (FUSE) and UV (ORFEUS/BEFS, IUE) observations of RE 0503-289. Results. In the UV spectrum of RE 0503-289, we identify four Ge IV, 37 Ge V, and seven Ge VI lines. Most of these lines are identified for the first time in any star. We can reproduce almost all Ge IV, GeV, and Ge VI lines in the observed spectrum of RE 0503-289 (T(sub eff) = 70 kK, log g = 7.5) at log Ge = -3.8 +/- 0.3 (mass fraction, about 650 times solar). The Ge IV/V/VI ionization equilibrium, that is a very sensitive T(sub eff) indicator, is reproduced well. Conclusions. Reliable measurements and calculations of atomic data are a

  8. Chemical and Radiochemical Constituents in Water from Wells in the Vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1997-98

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; L. L. Knobel; B. J. Tucker; B. V. Twining (USGS)

    2000-06-01

    The US Geological Survey, in response to a request from the U.S Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled water from 13 wells during 1997-98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A total of 91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen quality-assurance samples were also collected and analyzed; seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.

  9. Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1990--91

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Knobel, L.L.; Tucker, B.J.

    1993-01-01

    The US Geological Survey, in response to a request from the US Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 12 wells as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. Sixty samples were collected from eight groundwater monitoring wells and four production wells. Ten quality-assurance samples also were collected and analyzed. Most of the samples contained concentrations of total sodium and dissolved anions that exceeded reporting levels. The predominant category of nitrogen-bearing compounds was nitrite plus nitrate as nitrogen. Concentrations of total organic carbon ranged from less than 0.1 to 2.2 milligrams per liter. Total phenols in 52 of 69 samples ranged from 1 to 8 micrograms per liter. Extractable acid and base/neutral organic compounds were detected in water from 16 of 69 samples. Concentrations of dissolved gross alpha- and gross beta-particle radioactivity in all samples exceeded the reporting level. Radium-226 concentrations were greater than the reporting level in 63 of 68 samples

  10. Effects of C/N ratio on nitrous oxide production from nitrification in a laboratory-scale biological aerated filter reactor.

    Science.gov (United States)

    He, Qiang; Zhu, Yinying; Fan, Leilei; Ai, Hainan; Huangfu, Xiaoliu; Chen, Mei

    2017-03-01

    Emission of nitrous oxide (N 2 O) during biological wastewater treatment is of growing concern. This paper reports findings of the effects of carbon/nitrogen (C/N) ratio on N 2 O production rates in a laboratory-scale biological aerated filter (BAF) reactor, focusing on the biofilm during nitrification. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were utilized to evaluate the mechanisms associated with N 2 O production during wastewater treatment using BAF. Results indicated that the ability of N 2 O emission in biofilm at C/N ratio of 2 was much stronger than at C/N ratios of 5 and 8. PCR-DGGE analysis showed that the microbial community structures differed completely after the acclimatization at tested C/N ratios (i.e., 2, 5, and 8). Measurements of critical parameters including dissolved oxygen, oxidation reduction potential, NH 4 + -N, NO 3 - -N, and NO 2 - -N also demonstrated that the internal micro-environment of the biofilm benefit N 2 O production. DNA analysis showed that Proteobacteria comprised the majority of the bacteria, which might mainly result in N 2 O emission. Based on these results, C/N ratio is one of the parameters that play an important role in the N 2 O emission from the BAF reactors during nitrification.

  11. Removal of an acid fume system contaminated with perchlorates located within hot cell

    International Nuclear Information System (INIS)

    Rosenberg, K.E.; Henslee, S.P.; Vroman, W.R.; Krsul, J.R.; Michelbacher, J.A.; Knighton, G.C.

    1992-09-01

    An add scrubbing system located within the confines of a highly radioactive hot cell at Argonne National Laboratory-West (ANL-W) was remotely removed. The acid scrubbing system was routinely used for the dissolution of irradiated reactor fuel samples and structural materials. Perchloric acid was one of the acids used in the dissolution process and remained in the system with its inherent risks. Personnel could not enter the hot cell to perform the dismantling of the acid scabbing system due to the high radiation field and the explosion potential associated with the perchlorates. A robot was designed and built at ANL-W and used to dismantle the system without the need for personnel entry into the hot cell. The robot was also used for size reduction of removed components and loading of the removed components into waste containers

  12. Post-remedial-action radiological survey of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania, October 1-8, 1981

    International Nuclear Information System (INIS)

    Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

    1984-01-01

    The post-remedial-action radiological assessment conducted by the ANL Radiological Survey Group in October 1981, following decommissioning and decontamination efforts by Westinghouse personnel, indicated that except for the Advanced Fuels Laboratory exhaust ductwork and north wall, the interior surfaces of the Plutonium Laboratory and associated areas within Building 7 and the Advanced Fuels Laboratory within Building 8 were below both the ANSI Draft Standard N13.12 and NRC Guideline criteria for acceptable surface contamination levels. Hence, with the exceptions noted above, the interior surfaces of those areas within Buildings 7 and 8 that were included in the assessment are suitable for unrestricted use. Air samples collected at the involved areas within Buildings 7 and 8 indicated that the radon, thoron, and progeny concentrations within the air were well below the limits prescribed by the US Surgeon General, the Environmental Protection Agency, and the Department of Energy. The Building 7 drain lines are contaminated with uranium, plutonium, and americium. Radiochemical analysis of water and dirt/sludge samples collected from accessible Low-Bay, High-Bay, Shower Room, and Sodium laboratory drains revealed uranium, plutonium, and americium contaminants. The Building 7 drain lines hence are unsuitable for release for unrestricted use in their present condition. Low levels of enriched uranium, plutonium, and americium were detected in an environmental soil coring near Building 8, indicating release or spillage due to Advanced Reactors Division activities or Nuclear Fuel Division activities undr NRC licensure. 60 Co contamination was detected within the Building 7 Shower Room and in soil corings from the environs of Building 7. All other radionuclide concentrations measured in soil corings and the storm sewer outfall sample collected from the environs about Buildings 7 and 8 were within the range of normally expected background concentrations

  13. Methodology for advanced control rooms assessment of nuclear reactors: case study using Laboratory of Human System Interface (LABIHS)

    International Nuclear Information System (INIS)

    Carvalho, Eduardo Ferro; Verboonen, Monique; Carvalho, Bruno Batista de

    2005-01-01

    A control room of a nuclear reactor is a complex system that controls a thermodynamic process used to produce electric energy. The operators interact with the control room through interfaces and several monitoring stations. These interfaces present significant implications for the safety of the nuclear power plant, once they influence the activities of the operators, affect the way how operators receive information related with the status from the main systems and determine the necessary requirements so that the operators understand and supervise the main parameters. This article intends to present the methodology and the results of the evaluation carried through in the advanced control room of a compact simulator, that uses as reference a nuclear plant PWR of the Westinghouse. The structure used for evaluation of the simulator is formed by the guideline of human factors of the NRC, the NUREG 700, checklist, questionnaires and the analysis of the operator's activity. (author)

  14. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training

  15. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

  16. Dealing with Historical Discrepancies: The Recovery of National Research Experiment (NRX) Reactor Fuel Rods at Chalk River Laboratories (CRL) - 13324

    International Nuclear Information System (INIS)

    Vickerd, Meggan

    2013-01-01

    Following the 1952 National Research Experiment (NRX) Reactor accident, fuel rods which had short irradiation histories were 'temporarily' buried in wooden boxes at the 'disposal grounds' during the cleanup effort. The Nuclear Legacy Liabilities Program (NLLP), funded by Natural Resources Canada (NRCan), strategically retrieves legacy waste and restores lands affected by Atomic Energy of Canada Limited (AECL) early operations. Thus under this program the recovery of still buried NRX reactor fuel rods and their relocation to modern fuel storage was identified as a priority. A suspect inventory of NRX fuels was compiled from historical records and various research activities. Site characterization in 2005 verified the physical location of the fuel rods and determined the wooden boxes they were buried in had degraded such that the fuel rods were in direct contact with the soil. The fuel rods were recovered and transferred to a modern fuel storage facility in 2007. Recovered identification tags and measured radiation fields were used to identify the inventory of these fuels. During the retrieval activity, a discrepancy was discovered between the anticipated number of fuel rods and the number found during the retrieval. A total of 32 fuel rods and cans of cut end pieces were recovered from the specified site, which was greater than the anticipated 19 fuel rods and cans. This discovery delayed the completion of the project, increased the associated costs, and required more than anticipated storage space in the modern fuel storage facility. A number of lessons learned were identified following completion of this project, the most significant of which was the potential for discrepancies within the historical records. Historical discrepancies are more likely to be resolved by comprehensive historical record searches and site characterizations. It was also recommended that a complete review of the wastes generated, and the total affected lands as a result of this historic

  17. Pellet-Cladding Mechanical Interaction Failure Threshold for Reactivity Initiated Accidents for Pressurized Water Reactors and Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Carl E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-06-01

    Pacific Northwest National Laboratory (PNNL) has been requested by the U.S. Nuclear Regulatory Commission to evaluate the reactivity initiated accident (RIA) tests that have recently been performed in the Nuclear Safety Research Reactor (NSRR) and CABRI (French research reactor) on uranium dioxide (UO2) and mixed uranium and plutonium dioxide (MOX) fuels, and to propose pellet-cladding mechanical interaction (PCMI) failure thresholds for RIA events. This report discusses how PNNL developed PCMI failure thresholds for RIA based on least squares (LSQ) regression fits to the RIA test data from cold-worked stress relief annealed (CWSRA) and recrystallized annealed (RXA) cladding alloys under pressurized water reactor (PWR) hot zero power (HZP) conditions and boiling water reactor (BWR) cold zero power (CZP) conditions.

  18. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis.......HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  19. Operational trials of single- and multi-element CR-39 dosemeters for the DIDO and PLUTO reactors at the Harwell Laboratory

    International Nuclear Information System (INIS)

    Gallacher, G.G.; Perks, C.A.

    1993-01-01

    Single- and multi-element CR-39 dosemeters, developed at the Harwell Laboratory, and a commercially available multi-element CR-39 dosemeter (obtained from Track Analysis Systems Ltd), were evaluated for their potential as neutron dosemeters for personnel working at Harwell Laboratory's research reactors. Owing to the angular dependence of the CR-39 (processed using electrochemical etching), the single-element dosemeter was found to be impractical. Consequently, a multi-element dosemeter was developed, which consisted of a cube of side 36 mm with CR-39 elements (also processed using electrochemical etching) attached to each of the sides. Although this dosemeter was technically suitable for this type of dosimetry, it was considered to be unacceptably bulky in personnel trials. The commercially available CR-39 dosemeter tested was much smaller (the CR-39 was only chemically etched) and this was considered to be acceptable as a personnel dosemeter. In addition, trials with personnel working at active handling glove boxes indicated that single-element dosemeters might be adequate, but further work would be needed to verify this. (author)

  20. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  1. Study on severe accident fuel dispersion behavior in the Advanced Neutron Source reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.; Xiang, J.Y.

    1995-01-01

    Core flow blockage events are a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel could result in core heatup and melting under full coolant flow condition. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Heat transfer between melt particle and coolant, which affects particle breakup, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that results from the pressure variation on the surface, inertia, virtual mass, viscous force due to relative motion of particle in the coolant, gravitation, and resistance due to inhomogenous coolant velocity radially across piping due to possible turbulent coolant motions. Results indicate that debris particles would reside longest in heat exchangers because of lower coolant velocity there. Also core debris tends to move together upon melting and entrainment

  2. Study on severe accident fuel dispersion behavior in the advanced neutron source reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S. [Oak Ridge National Lab., TN (United States)] [and others

    1995-09-01

    Core flow blockage events have been determined to represent a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel in a few adjacent blocked coolant channels out of several hundred channels, could also result in core heatup and melting under full coolant flow condition in other coolant channels. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Hat transfer between melt particle and coolant, which affects the particle breakup characteristics, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that results from the pressure variation on the surface, inertia, virtual mass, viscous force due to the relative motion of the particle in the coolant, gravitation, and resistance due to inhomogenous coolant velocity radially across piping due to possible turbulent coolant motions. The results indicate that debris particles would reside longest in heat exchangers because of lower coolant velocity there. Also they are entrained and move together in a cloud.

  3. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium

  4. Temperature dependence of liquid lithium film formation and deuterium retention on hot W samples studied by LID-QMS. Implications for future fusion reactors

    Science.gov (United States)

    de Castro, A.; Sepetys, A.; González, M.; Tabarés, F. L.

    2018-04-01

    Liquid metal (LM) divertor concepts explore an alternative solution to the challenging power/particle exhaust issues in future magnetic fusion reactors. Among them, lithium (Li) is the most promising material. Its use has shown important advantages in terms of improved H-mode plasma confinement and heat handling capabilities. In such scenario, a possible combination of tungsten (W) on the first wall and liquid Li on the divertor could be an acceptable solution, but several issues related to material compatibility remain open. In particular, the co-deposition of Li and hydrogen isotopes on W components could increase the associated tritium retention and represent a safety risk, especially if these co-deposits can uncontrollably grow in remote/plasma shadowed zones of the first wall. In this work, the retention of Li and deuterium (D) on tungsten at different surface temperature (200 °C-400 °C) has been studied by exposing W samples to Li evaporation under several D2 gaseous environments. Deuterium retention in the W-Li films has been quantified by using laser induced desorption-mass spectrometry (LID-QMS). Additional techniques as thermal desorption spectroscopy, secondary ion mass spectrometry, profilemetry and flame atomic emission spectroscopy were implemented to corroborate the retention results and for the qualitative and quantitative characterization of the films. The results showed a negligible (below LID sensibility) D uptake at T surface  =  225 °C, when the W-Li layer is exposed to simultaneous Li evaporation and D2 gas exposition (0.67 Pa). Pre-lithiated samples were also exposed to higher D2 pressures (133.3 Pa) at different temperatures (200 °C-400 °C). A non-linear drastic reduction in the D retention with increasing temperatures was found on the W-Li films, presenting a D/Li atomic ratio at 400 °C lower than 0.1 at.% on a thin film of  ≈100 nm thick. These results bode well (in terms of tritium inventory) for the potential

  5. Control of reactor coolant flow path during reactor decay heat removal

    International Nuclear Information System (INIS)

    Hunsbedt, A.N.

    1988-01-01

    This patent describes a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating the hot pool and the cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor coolant pumps having a suction on the lower pressure sodium cold pool and an outlet to a reactor core; the reactor core for heating the sodium and discharging the sodium to the reactor hot pool; a heat exchanger for receiving sodium from the hot pool, and removing heat from the sodium and discharging the sodium to the lower pressure cold pool; the improvement across the reactor vessel liner comprising: a jet pump having a venturi installed across the reactor vessel liner, the jet pump having a lower inlet from the reactor vessel cold pool across the reactor vessel liner and an upper outlet to the reactor vessel hot pool

  6. Stellar Laboratories . [VI. New Mo IV - VII Oscillator Strengths and the Molybdenum Abundance in the Hot White Dwarfs G191-B2B and RE 0503-289

    Science.gov (United States)

    Rauch, T.; Quinet, T.; Hoyer, D.; Werner, K.; Demleitner, M.; Kruk, J. W.

    2016-01-01

    For the spectral analysis of high-resolution and high signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: To identify molybdenum lines in the ultraviolet (UV) spectra of the DA-type white dwarf G191B2B and the DO-type white dwarf RE 0503289 and, to determine their photospheric Mo abundances, reliable Mo iv-vii oscillator strengths are used. Methods: We newly calculated Mo iv-vii oscillator strengths to consider their radiative and collisional bound-bound transitions indetail in our NLTE stellar-atmosphere models for the analysis of Mo lines exhibited in high-resolution and high SN UV observations of RE 0503289.Results. We identified 12 Mo v and nine Mo vi lines in the UV spectrum of RE 0503289 and measured a photospheric Mo abundance of 1.2 3.0 104(mass fraction, 22 500 56 400 times the solar abundance). In addition, from the As v and Sn iv resonance lines,we measured mass fractions of arsenic (0.51.3 105, about 300 1200 times solar) and tin (1.33.2 104, about 14 300 35 200 times solar). For G191B2B, upper limits were determined for the abundances of Mo (5.3 107, 100 times solar) and, in addition, for Kr (1.1106, 10 times solar) and Xe (1.7107, 10 times solar). The arsenic abundance was determined (2.35.9 107, about 21 53 times solar). A new, registered German Astrophysical Virtual Observatory (GAVO) service, TOSS, has been constructed to provide weighted oscillator strengths and transition probabilities.Conclusions. Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. Observed Mo v-vi line profiles in the UV spectrum of the white dwarf RE 0503289 were well reproduced with our newly calculated oscillator strengths. For the first time, this allowed the photospheric Mo abundance in a white dwarf to be determined.

  7. Assessment of the Idaho National Laboratory Hot Fuel Examination Facility Stack Monitoring Site for Compliance with ANSI/HPS N13.1 1999

    International Nuclear Information System (INIS)

    Glissmeyer, John A.; Flaherty, Julia E.

    2010-01-01

    This document reports on a series of tests to determine whether the location of the air sampling probe in the Hot Fuels Examination Facility (HFEF) heating, ventilation and air conditioning (HVAC) exhaust duct meets the applicable regulatory criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria of the ANSI/HPS N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that is representative of the effluent stream. The tests conducted by PNNL during July 2010 on the HFEF system are described in this report. The sampling probe location is approximately 20 feet from the base of the stack. The stack base is in the second floor of the HFEF, and has a building ventilation stream (limited potential radioactive effluent) as well as a process stream (potential radioactive effluent, but HEPA-filtered) that feeds into it. The tests conducted on the duct indicate that the process stream is insufficiently mixed with the building ventilation stream. As a result, the air sampling probe location does not meet the criteria of the N13.1-1999 standard. The series of tests consists of various measurements taken over a grid of points in the duct cross section at the proposed sampling-probe location. The results of the test series on the HFEF exhaust duct as it relates to the criteria from ANSI/HPS N13.1-1999 are desribed in this report. Based on these tests, the location of the air sampling probe does not meet the requirements of the ANSI/HPS N13.1-1999 standard, and modifications must be made to either the HVAC system or the air sampling probe for compliance. The recommended approaches are discussed and vary from sampling probe modifications to modifying the junction of the two air exhaust streams.

  8. Laboratory stand for examination of the operational thermal parameters of polyvalent system for heating, cooling and domestic hot water supply using renewable energy sources

    International Nuclear Information System (INIS)

    Zlateva, Merima

    2014-01-01

    The report presents the structure of an universal laboratory stand for determine the operating parameters of a polyvalent system for utilization of renewable energy sources. The system is a combination of three modules using different technologies for renewable sources – solar energy, atmospheric air and biomass, incorporated in a common heat accumulator. The structural scheme permits the possibility to use the stand in different operating modes, to demonstrate the feasibility of using any one of the renewable energy sources both individually and in various combinations. The author express gratitude to the partners of the companies Robert Bosch Bulgaria Ltd, Ahi Carrier Bulgaria and Eratermtotal, with whose generous support is build the stand. Key words: Renewable energy sources (RES), Heating with RES, Biomass, Air to Water Heat pumps

  9. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  10. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment for the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-01-01

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material

  11. Safety re-assessment of AECL test and research reactors

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1990-01-01

    Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor Maple-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX, and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX AND NRU). ZED-2 and PTR are operated by the Reactor Physics Branch; all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis, and the plan for future analysis. In addition, during the last four years safety assessments have been carried out on the new isotope-, heat-, and electricity-producing reactors, as part of the safety design review, commissioning and licensing activities

  12. Progress in hot pressing

    International Nuclear Information System (INIS)

    Brodhag, C.; Thevenot, F.

    1988-01-01

    An experimental technique is described to study hot pressing of ceramics under conditions of controlled temperature and pressure during both the heating and final sintering stages. This method gives a better control of the final microstructure of the material. Transformation mechanisms can be studied during initial heating stage (impurity degasing, reaction, phase transformation, mechanical behavior of intergranular phase...) using computer control and graphical data representations. Some examples will be given for different systems studied in our laboratory: B (α, β, amorphous), B 12 O 2 (reaction of B + B 2 O 3 ), Si 3 N 4 ( + additives), TiN, Al 2 O 3 + AlON,ZrC

  13. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility (open-quotes OHBISclose quotes, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility

  14. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Shimakawa, S.; Akiba, M.; Kawamura, H.

    1996-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop plasma facing components which can resist these. We have established electron beam heat facility ('OHBIS', Oarai hot-cell electron beam irradiating system) at a hot cell in JMTR (Japan materials testing reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50 kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30 kV (constant) and 1.7 A, respectively. The loading time of the electron beam is more than 0.1 ms. The shape of vacuum vessel is cylindrical, and the main dimensions are 500 mm in inside diameter, 1000 mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for the thermal shock test has been established in a hot cell. The performance of the electron beam is being evaluated at this time. In the future, the equipment for conducting static heat loadings will be incorporated into the facility. (orig.)

  15. Characterizing oxidative flow reactor SOA production and OH radical exposure from laboratory experiments of complex mixtures (engine exhaust) and simple precursors (monoterpenes)

    Science.gov (United States)

    Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.

    2016-12-01

    Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the

  16. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    Edwards, R.M.; Power, M.A.; Bryan, M.

    1992-01-01

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  17. Beta-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors

    International Nuclear Information System (INIS)

    Mogedas, B.; Casal, C.; Forjan, E.; Vilchez, C.

    2009-01-01

    beta-Carotene is an antioxidant molecule of commercial value that can be naturally produced by certain microalgae that mostly belong to the genus Dunaliella. So far, nitrogen starvation has been the most efficient condition for enhancing beta-carotene accumulation in Dunaliella. However, while nitrogen starvation promotes beta-carotene accumulation, the cells become non-viable; consequently under such conditions, continuous beta-carotene production is limited to less than 1 week. In this study, the use of UV-A radiation as a tool to enhance long-term beta-carotene production in Dunaliella bardawil cultures was investigated. The effect of UV-A radiation (320-400 nm) added to photosynthetically active radiation (PAR, 400-700 nm) on growth and carotenoid accumulation of D. bardawil in a laboratory air-fluidized bed photobioreactor was studied. The results were compared with those from D. bardawil control cultures incubated with PAR only. The addition of 8.7 W/square m UV-A radiation to 250 W/square m PAR stimulated long-term growth of D. bardawil. Throughout the exponential growth period the UV-A irradiated cultures showed enhanced carotenoid accumulation, mostly as beta-carotene. After 24 days, the concentration of beta-carotene in UV-A irradiated cultures was approximately two times that of control cultures. Analysis revealed that UV-A clearly induced major accumulation of all-trans beta-carotene. In N-starved culture media, beta-carotene biosynthesis in UV-A irradiated cultures was stimulated. We conclude that the addition of UV-A to PAR enhances carotenoid production processes, specifically all-trans beta-carotene, in D. bardawil cells without negative effects on cell growth

  18. A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94

    International Nuclear Information System (INIS)

    Orr, B. R.

    1999-01-01

    Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA)

  19. Application of a Loop-Type Laboratory Biofilm Reactor to the Evaluation of Biofilm for Some Metallic Materials and Polymers such as Urinary Stents and Catheters

    Directory of Open Access Journals (Sweden)

    Hideyuki Kanematsu

    2016-10-01

    Full Text Available A laboratory biofilm reactor (LBR was modified to a new loop-type closed system in order to evaluate novel stents and catheter materials using 3D optical microscopy and Raman spectroscopy. Two metallic specimens, pure nickel and cupronickel (80% Cu-20% Ni, along with two polymers, silicone and polyurethane, were chosen as examples to ratify the system. Each set of specimens was assigned to the LBR using either tap water or an NB (Nutrient broth based on peptone from animal foods and beef extract mainly—cultured solution with E-coli formed over 48–72 h. The specimens were then analyzed using Raman Spectroscopy. 3D optical microscopy was employed to corroborate the Raman Spectroscopy results for only the metallic specimens since the inherent roughness of the polymer specimens made such measurements difficult. The findings suggest that the closed loop-type LBR together with Raman spectroscopy analysis is a useful method for evaluating biomaterials as a potential urinary system.

  20. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the advanced neutron source reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effect of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

  1. Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

    1998-01-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air

  2. Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

    1998-01-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  3. The Jules Horowitz Reactor project, a driver for revival of the research reactor community

    International Nuclear Information System (INIS)

    Pere, P.; Cavailler, C.; Pascal, C.

    2010-01-01

    The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first-rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x10 14 n.cm -2 /sec -1 E>1 MeV in core and 3,6x10 14 n.cm -2 /sec -1 E<0.625 eV in the reflector) and the JHR's considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015. This will be followed by a description of the project organization set up by the CEA as owner and future operator and AREVA TA as prime contractor and supplier of critical systems, and a discussion of project challenges, especially those dealing with the following items:accommodation of a broad experimental domain; involvement by international partners making in-kind contributions to the project; ? development of components critical to safety and performance; the revival of engineering of research reactors and experimental devices involving France's historical players in the field of research reactors, and; tools to carry out the project, including computer codes

  4. The Jules Horowitz reactor project, a driver for revival of the research reactor community

    Energy Technology Data Exchange (ETDEWEB)

    Pere, P.; Cavailler, C.; Pascal, C. [AREVA TA, CEA Cadarache - Etablissement d' AREVA TA - Chantier RJH - MOE - BV2 - BP no. 9 - 13115 Saint Paul lez Durance (France); CS 50497 - 1100, rue JR Gauthier de la Lauziere, 13593 Aix en Provence cedex 3 (France)

    2010-07-01

    The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first -rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x10{sup 14} n.cm{sup -2}/sec{sup -1} E> 1 MeV in core and 3,6x10{sup 14} n.cm{sup -2}/sec{sup -1} E<0.625 eV in the reflector) and the JHR's considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960's, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015. This will be followed by a description of the project organization set up by the CEA as owner and future operator and AREVA TA as prime contractor and supplier of critical systems, and a discussion of project challenges, especially those dealing with the following items: - accommodation of a broad experimental domain, - involvement by international partners making in-kind contributions to the project, - development of components critical to safety and performance, - the revival of engineering of research reactors and experimental devices involving France's historical players in the field of research reactors, and

  5. STARFIRE remote maintenance and reactor facility concept

    International Nuclear Information System (INIS)

    Graumann, D.W.; Field, R.E.; Lutz, G.R.; Trachsel, C.A.

    1981-01-01

    A total remote maintenance facility has been designed for all equipment located within the reactor building and hot cell, although operational flexibility has been provided by design of the reactor shielding such that personnel access into the reactor building within 24 hours after reactor shutdown is possible. The reactor design permits removal and replacement of all components if necessary, however, the vacuum pumps, isolation valves and blanket require scheduled, routine maintenance. Reactor scheduled maintenance does not dominate annual plant downtime, therefore, several scheduled operations can be added without affecting reactor availability. The maintenance facilities consist of the reactor building, the hot cell, the reactor service area and the remote maintenance control room. The reactor building contains the reactor, selected support system modules, and required maintenance equipment. The reactor and the support systems are maintained with (1) equipment that is mounted on a monorail system; (2) overhead cranes; and (3) bridge-mounted electromechanical manipulators. The hot cell is located outside of the reactor building to localize contamination products and permit independent operation. An equipment air lock connects the reactor building to the hot cell

  6. Testing of research reactor fuel in the high flux reactor (Petten)

    International Nuclear Information System (INIS)

    Guidez, J.; Markgraf, J.W.; Sordon, G.; Wijtsma, F.J.; Thijssen, P.J.M.; Hendriks, J.A.

    1999-01-01

    The two types of fuel most frequently used by the main research reactors are metallic: highly enriched uranium (>90%) and silicide low enriched uranium ( 3 . However, a need exists for research on new reactor fuel. This would permit some plants to convert without losses in flux or in cycle length and would allow new reactor projects to achieve higher possibilities especially in fluxes. In these cases research is made either on silicide with higher density, or on other types of fuel (UMo, etc.). In all cases when new fuel is proposed, there is a need, for safety reasons, to test it, especially regarding the mechanical evolution due to burn-up (swelling, etc.). Initially, such tests are often made with separate plates, but lately, using entire elements. Destructive examinations are often necessary. For this type of test, the High Flux Reactor, located in Petten (The Netherlands) has many specific advantages: a large core, providing a variety of interesting positions with high fluence rate; a downward coolant flow simplifies the engineering of the device; there exists easy access with all handling possibilities to the hot-cells; the high number of operating days (>280 days/year), together with the high flux, gives a possibility to reach quickly the high burn-up needs; an experienced engineering department capable of translating specific requirements to tailor-made experimental devices; a well equipped hot-cell laboratory on site to perform all necessary measurements (swelling, γ-scanning, profilometry) and all destructive examinations. In conclusion, the HFR reactor readily permits experimental research on specific fuels used for research reactors with all the necessary facilities on the Petten site. (author)

  7. Reactor Operations informal monthly report December 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Reactor operations at the MRR and HFBR reactors at Brookhaven National Laboratory are presented for December 1994. Reactor run-time and power levels, instrumentation, mechanical maintenance, occurrence reports, and safety information are included

  8. HAC and fission reactors

    International Nuclear Information System (INIS)

    Fujiwara, I.; Moriyama, H.; Tachikawa, E.

    1984-01-01

    In the fission process, newly formed fission products undergo hot atom reactions due to their energetic recoil and abnormal positive charge. The hot atom reactions of the fission products are usually accompanied by secondary effects such as radiation damage, especially in condensed phase. For reactor safety it is valuable to know the chemical behaviour and the release behaviour of these radioactive fission products. Here, the authors study the chemical behaviour and the release behaviour of the fission products from the viewpoint of hot atom chemistry (HAC). They analyze the experimental results concerning fission product behaviour with the help of the theories in HAC and other neighboring fields such as radiation chemistry. (Auth.)

  9. Nitrogen and phosphorus treatment of marine wastewater by a laboratory-scale sequencing batch reactor with eco-friendly marine high-efficiency sediment.

    Science.gov (United States)

    Cho, Seonghyeon; Kim, Jinsoo; Kim, Sungchul; Lee, Sang-Seob

    2017-06-22

    We screened and identified a NH 3 -N-removing bacterial strain, Bacillus sp. KGN1, and a [Formula: see text] removing strain, Vibrio sp. KGP1, from 960 indigenous marine isolates from seawater and marine sediment from Tongyeong, South Korea. We developed eco-friendly high-efficiency marine sludge (eco-HEMS), and inoculated these marine bacterial strains into the marine sediment. A laboratory-scale sequencing batch reactor (SBR) system using the eco-HEMS for marine wastewater from land-based fish farms improved the treatment performance as indicated by 88.2% removal efficiency (RE) of total nitrogen (initial: 5.6 mg/L) and 90.6% RE of total phosphorus (initial: 1.2 mg/L) under the optimal operation conditions (food and microorganism (F/M) ratio, 0.35 g SCOD Cr /g mixed liquor volatile suspended solids (MLVSS)·d; dissolved oxygen (DO) 1.0 ± 0.2 mg/L; hydraulic retention time (HRT), 6.6 h; solids retention time (SRT), 12 d). The following kinetic parameters were obtained: cell yield (Y), 0.29 g MLVSS/g SCOD Cr ; specific growth rate (µ), 0.06 d -1 ; specific nitrification rate (SNR), 0.49 mg NH 3 -N/g MLVSS·h; specific denitrification rate (SDNR), 0.005 mg [Formula: see text]/g MLVSS·h; specific phosphorus uptake rate (SPUR), 0.12 mg [Formula: see text]/g MLVSS·h. The nitrogen- and phosphorus-removing bacterial strains comprised 18.4% of distribution rate in the microbial community of eco-HEMS under the optimal operation conditions. Therefore, eco-HEMS effectively removed nitrogen and phosphorus from highly saline marine wastewater from land-based fish farms with improving SNR, SDNR, and SPUR values in more diverse microbial communities. DO: dissolved oxygen; Eco-HEMS: eco-friendly high efficiency marine sludge; F/M: food and microorganism ratio; HRT: hydraulic retention time; ML(V)SS: mixed liquor (volatile) suspended solids; NCBI: National Center for Biotechnology Information; ND: not determined; qPCR: quantitative real-time polymerase

  10. Culham Laboratory

    International Nuclear Information System (INIS)

    1980-06-01

    The report contains summaries of work carried out under the following headings: fusion research experiments; U.K. contribution to the JET project; supporting studies; theoretical plasma physics, computational physics and computing; fusion reactor studies; engineering and technology; contract research; external relations; staff, finance and services. Appendices cover main characteristics of Culham fusion experiments, staff, extra-mural projects supported by Culham Laboratory, and a list of papers written by Culham staff. (U.K.)

  11. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-02-01

    The Hot Cell facility at Risoe has been in active use since 1964. During the years several types of nuclear fuels have been handled and examined: test reactor fuel pins from the Danish reactor DR3, the Norwegian Halden reactor, etc; power reactor fuel pins from several foreign reactors, including plutonium enriched pins; HTGR fuel from the Dragon reactor. All kinds of physical and chemical non-destructive and destructive post irradiation examinations have been performed. Besides, different radiotherapy sources have been produced, mainly cobalt sources. The general object of the decommissioning programme for the Hot Cell facility was to obtain a safe condition for the total building that does not require the special safety provisions. The hot cell building will be usable for other purposes after decommissioning. The facilicy comprised six concrete cells, lead cells, glove boxes, a shielded unit for temporary storage of waste, frogman area, decontamination areas, workshops, various installations of importance for safe operation of the plant, offices, etc. The tasks comprised e.g. removal of all irradiated fuel items, removal of other radioactive items, removal of contaminated equipment, and decontamination of all the cells and rooms. The goal was to decontaminate all the concrete cells to a degree where no loose contamination exists in the cells, and where the radiation level is so low, that total removal of the cell structures can be done at any time in the future without significant dose commitments. (AB)

  12. Control of reactor coolant flow path during reactor decay heat removal

    Science.gov (United States)

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  13. MAAP4 hot leg and lower head failure benchmarking

    International Nuclear Information System (INIS)

    Lee, S.J.; Henry, R.E.; Paik, C.Y.; Conzen, J.; Luangdilok, W.

    2009-01-01

    The MAAP4 material creep calculation was compared with the experiments reported by Maile, et al., for a 0.7 m diameter hot leg, with a thickness of 47 mm, which is pressurized to 16.3 MPa and heated to temperatures in excess of 700degC. These experiments showed that the carbon steel hot leg would undergo material creep to a failure state in approximately 1,100 seconds. In addition, the MAAP4 creep calculation was compared with the lower head failure tests performed at the Sandia National Laboratories (SNL). These experiments were performed using scaled models of a typical Reactor Pressure Vessel lower head. The test vessel was fabricated from SA533B1 steel with an inner diameter of 0.91 m and a nominal thickness of 30 mm. The experiments were performed at around 10 MPa internal pressure with various imposed heat flux distributions. The onset of creep was observed to occur between 660degC and 705degC. The MAAP4 model provides a good characterization of the material creep behavior. For the hot leg test benchmark, the key is determining the correct equivalent stress when the stress is multi-axial. A good agreement was obtained when a multiplier of 1.09 to the hoop stress was used. For the lower head failure benchmark, using correct creep properties is important. The SNL test vessel material was fabricated as SA533B1 steel. However, when the experimental vessel material was tested for creep properties it turned out to be significantly weaker than the reactor vessel steel which has the same identification. Also, the material undergoing phase transition and becoming stronger at high temperatures has to be considered for accurate prediction of the failure time. A good agreement was obtained when the creep data of Jeong, et al., was used. (author)

  14. Technology development program for safe shipment of spent fuel from liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Freedman, J.M.; Humphreys, J.R.

    1975-10-01

    A comprehensive plan to develop shipping cask technology is described. Technical programs in the disciplines of heat transfer, structures and containment, spent fuel characterization, hot laboratory verification, shielding, and hazards analysis are discussed. Both short- and long-term goals in each discipline are delineated and how the disciplines interrelate is shown. The technologies developed will be used in the design, fabrication, and testing of truck-mounted and rail-car casks. These casks will be used for safely transporting short-cooled, high-burnup Liquid Metal Fast Breeder Reactor (LMFBR) spent fuel from reactors to reprocessing plants

  15. Testing capabilities of Los Alamos National Laboratory for irradiated materials

    International Nuclear Information System (INIS)

    Maloy, S.A.; James, M.R.; Sommer, W.F.

    1999-01-01

    Spallation neutron sources expose materials to high energy (>100 MeV) proton and neutron spectra. Although numerous studies have investigated the effects of radiation damage in a lower energy neutron flux from fission or fusion reactors on the mechanical properties of materials, very little work has been performed on the effects that exposure to a spallation neutron spectrum has on the mechanical properties of materials. These effects can be significantly different than those observed in a fission or fusion reactor spectrum because exposure to high energy protons and neutrons produces more He and H along with the atomic displacement damage. Los Alamos National Laboratory has unique facilities to study the effects of spallation radiation damage on the mechanical properties of materials. The Los Alamos Neutron Science Center (LANSCE) has a pulsed linear accelerator which operates at 800 MeV and 1 mA. The Los Alamos Spallation Radiation Effect Facility (LASREF) located at the end of this accelerator is designed to allow the irradiation of components in a proton beam while water cooling these components and measuring their temperature. After irradiation, specimens can be investigated at hot cells located at the Chemical Metallurgy Research Building. Wing 9 of this facility contains 16 hot cells set up in two groups of eight, each having a corridor in the center to allow easy transfer of radioactive shipments into and out of the hot cells. These corridors have been used to prepare specimens for shipment to collaborating laboratories such as PNNL, ORNL, BNL, and the Paul Scherrer Institute to perform specialized testing at their hot cells. The LANL hot cells contain capabilities for opening radioactive components and testing their mechanical properties as well as preparing specimens from irradiated components

  16. Laboratory Measurements of Biomass Cook-stove Emissions Aged in an Oxidation Flow Reactor: Influence of Combustion and Aging Conditions on Aerosols

    Science.gov (United States)

    Grieshop, A. P.; Reece, S. M.; Sinha, A.; Wathore, R.

    2016-12-01

    Combustion in rudimentary and improved cook-stoves used by billions in developing countries can be a regionally dominant contributor to black carbon (BC), primary organic aerosols (POA) and precursors for secondary organic aerosol (SOA). Recent studies suggest that SOA formed during photo-oxidation of primary emissions from biomass burning may make important contribution to its atmospheric impacts. However, the extent to which stove type and operating conditions affect the amount, composition and characteristics of SOA formed from the aging of cookstoves emissions is still largely undetermined. Here we present results from experiments with a field portable oxidation flow reactor (F-OFR) designed to assess aging of cook-stove emissions in both laboratory and field settings. Laboratory tests results are used to compare the quantity and properties of fresh and aged emissions from a traditional open fire and twp alternative stove designs operated on the standard and alternate testing protocols. Diluted cookstove emissions were exposed to a range of oxidant concentrations in the F-OFR. Primary emissions were aged both on-line, to study the influence of combustion variability, and sampled from batched emissions in a smog chamber to examine different aging conditions. Data from real-time particle- and gas-phase instruments and integrated filter samples were collected up and down stream of the OFR. The properties of primary emissions vary strongly with stove type and combustion conditions (e.g. smoldering versus flaming). Experiments aging diluted biomass emissions from distinct phases of stove operation (smoldering and flaming) showed peak SOA production for both phases occurred between 3 and 6 equivalent days of aging with slightly greater production observed in flaming phase emissions. Changing combustion conditions had a stronger influence than aging on POA+SOA `emission factors'. Aerosol Chemical Speciation Monitor data show a substantial evolution of aerosol

  17. Remote maintenance for a new generation of hot cells

    International Nuclear Information System (INIS)

    Feldman, M.J.; Grant, N.R.

    1987-01-01

    For several years the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory has been developing facility concepts, designing specialized equipment, and testing prototypical hardware for reprocessing spent fuel from fast breeder reactors. The major facility conceptual design, the Hot Experimental Facility, was based on total remote maintenance to increase plant availability and to reduce radiation exposure. This thrust included designing modular equipment to facilitate maintenance and the manipulation necessary to accomplish maintenance. Included in the design repetoire was the development effort in advanced servomanipulator systems, a remote sampling system, television viewing, and a transporter system, television viewing, and a transporter for manipulator positioning. Demonstration of these developed items is currently ongoing, and the technology is available for applications where production operations in highly radioactive environments are required

  18. Remote maintenance for a new generation of hot cells

    International Nuclear Information System (INIS)

    Feldman, M.J.; Grant, N.R.

    1987-01-01

    For several years the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been developing facility concepts, designing specialized equipment, and testing prototypical hardware for reprocessing spent fuel from fast breeder reactors. The major facility conceptual design, the Hot Experimental Facility, was based on total remote maintenance to increase plant availability and to reduce radiation exposure. This thrust included designing modular equipment to facilitate maintenance and the manipulation necessary to accomplish maintenance. Included in the design repetoire was the development effort in advanced servomanipulator systems, a remote sampling system, television viewing, and a transporter for manipulator positioning. Demonstration of these developed items is currently ongoing, and the technology is available for applications where production operations in highly radioactive environments are required

  19. Hot fuel examination facility element spacer wire-wrap machine

    International Nuclear Information System (INIS)

    Tobias, D.A.; Sherman, E.K.

    1989-01-01

    Nondestructive examinations of irradiated experimental fuel elements conducted in the Argonne National Laboratory Hot Fuel Examination Facility/North (HFEF/N) at the Idaho National Engineering Laboratory include laser and contact profilometry (element diameter measurements), electrical eddy-current testing for cladding and thermal bond defects, bow and length measurements, neutron radiography, gamma scanning, remote visual exam, and photography. Profilometry was previously restricted to spiral profilometry of the element to prevent interference with the element spacer wire wrapped in a helix about the Experimental Breeder Reactor II (EBR-II)-type fuel element from end to end. By removing the spacer wire prior to conducting profilometry examination, axial profilometry techniques may be used, which are considerably faster than spiral techniques and often result in data acquisition more important to experiment sponsors. Because the element must often be reinserted into the nuclear reactor (EBR-II) for additional irradiation, however, the spacer wire must be reinstalled on the highly irradiated fuel element by remote means after profilometry of the wireless elements. The element spacer wire-wrap machine developed at HFEF is capable of helically wrapping fuel elements with diameters up to 1.68 cm (0.660 in.) and 2.44-m (96-in.) lengths. The machine can accommodate almost any desired wire pitch length by simply inserting a new wrapper gear module

  20. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2011-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  1. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2013-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has been evaluated as an acceptable benchmark experiment. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  2. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maddock, Thomas L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Ning [Idaho National Lab. (INL), Idaho Falls, ID (United States); Phillips, Ann Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schreck, Kenneth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolin, John M. [General Atomics, San Diego, CA (United States); Veca, Anthony [General Atomics, San Diego, CA (United States); McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Lell, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  3. Annual report in compliance with the reactor sharing program, September 1, 1994--August 31, 1995

    International Nuclear Information System (INIS)

    Karam, R.A.

    1997-01-01

    This report contains information with regard to facilities utilization, descriptions (brief), personnel, organization, and programs of the Neely Nuclear Research Center (NNRC) at the Georgia Institute of Technology. The NNRC has two major facilities: the Georgia Tech Research Reactor and the Hot Cell Laboratory. This report of NNRC utilization is prepared in compliance with the contract requirements between the U.S. Department of Energy and the Georgia Institute of Technology. The NNRC is a participant in the University Reactor Sharing Program; as such, it makes available its 5 MW research reactor, its Co-60 irradiation facility and its activation analysis laboratory to large numbers of students and faculty from many universities and colleges

  4. Large-signal, dynamic simulation of the slowpoke-3 nuclear heating reactor

    International Nuclear Information System (INIS)

    Tseng, C.M.; Lepp, R.M.

    1983-07-01

    A 2 MWt nuclear reactor, called SLOWPOKE-3, is being developed at the Chalk River Nuclear Laboratories (CRNL). This reactor, which is cooled by natural circulation, is designed to produce hot water for commercial space heating and perhaps generate some electricity in remote locations where the costs of alternate forms of energy are high. A large-signal, dynamic simulation of this reactor, without closed-loop control, was developed and implemented on a hybrid computer, using the basic equations of conservation of mass, energy and momentum. The natural circulation of downcomer flow in the pool was simulated using a special filter, capable of modelling various flow conditions. The simulation was then used to study the intermediate and long-term transient response of SLOWPOKE-3 to large disturbances, such as loss of heat sink, loss of regulation, daily load following, and overcooling of the reactor coolant. Results of the simulation show that none of these disturbances produce hazardous transients

  5. Ex-vessel boiling experiments: laboratory- and reactor-scale testing of the flooded cavity concept for in-vessel core retention. Pt. II. Reactor-scale boiling experiments of the flooded cavity concept for in-vessel core retention

    International Nuclear Information System (INIS)

    Chu, T.Y.; Bentz, J.H.; Slezak, S.E.; Pasedag, W.F.

    1997-01-01

    For pt.I see ibid., p.77-88 (1997). This paper summarizes the results of a reactor-scale ex-vessel boiling experiment for assessing the flooded cavity design of the heavy water new production reactor. The simulated reactor vessel has a cylindrical diameter of 3.7 m and a torispherical bottom head. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling mainly results from the gravity head, which in turn results from flooding the side of the reactor vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid-solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion. The results show that, under prototypic heat load and heat flux distributions, the flooded cavity will be effective for in-vessel core retention in the heavy water new production reactor. The results also demonstrate that the heat dissipation requirement for in-vessel core retention, for the central region of the lower head of an AP-600 advanced light water reactor, can be met with the flooded cavity design. (orig.)

  6. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-11-01

    Research activities in fiscal 1974 in Reactor Engineering Division of eight laboratories and computing center are described. Works in the division are closely related with the development of a multi-purpose High-temperature Gas Cooled Reactor, the development of a Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation, and engineering of thermonuclear fusion reactors. They cover nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and aspects of the computing center. (auth.)

  7. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  8. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  9. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  10. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  11. Integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics

  12. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  13. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Lineberry, M.J.

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs

  14. Present status of Japan materials testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Naohiko; Kaminaga, Masanori; Kusunoki, Tsuyoshi; Ishihara, Masahiro; Niimi, Motoji; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    The Japan Materials Testing Reactor (JMTR) in Japan Atomic Energy Agency (JAEA) is a light water cooled tank type reactor with first criticality in March 1968. Owing to the connection between the JMTR and hot laboratory by a canal, easy re-irradiation tests can be conducted with safe and quick transportation of irradiated samples. The JMTR has been applied to fuel/material irradiation examinations for LWRs, HTGR, fusion reactor and RI production. However, the JMTR operation was once stopped in August 2006, and check and review on the reoperation had been conducted by internal as well as external committees. As a result of the discussion, the JMTR reoperation was determined, and refurbishment works started from the beginning of JFY 2007. The refurbishment works have finished in March 2011 taking four years from JFY 2007. Unfortunately, at the end of the JFY 2010 on March 11, the Great-Eastern-Japan-Earthquake occurred, and functional tests before the JMTR restart, such as cooling system, reactor control system and so on, were delayed by the earthquake. Moreover, a detail inspection found some damages such as slight deformation of the truss structure at the roof of the JMTR reactor building. Consequently, the restart of the JMTR will be delayed from June to next October, 2012. Now, the safety evaluation after the earthquake disaster is being carried out aiming at the restart of the JMTR. The renewed JMTR will be started from JFY 2012 and operated for a period of about 20 years until around JFY 2030. The usability improvement of the JMTR, e.g. higher reactor availability, shortening turnaround time to get irradiation results, attractive irradiation cost, business confidence, is also discussed with users as the preparations for re-operation. (author)

  15. Present status of Japan materials testing reactor

    International Nuclear Information System (INIS)

    Hori, Naohiko; Kaminaga, Masanori; Kusunoki, Tsuyoshi; Ishihara, Masahiro; Niimi, Motoji; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi

    2012-01-01

    The Japan Materials Testing Reactor (JMTR) in Japan Atomic Energy Agency (JAEA) is a light water cooled tank type reactor with first criticality in March 1968. Owing to the connection between the JMTR and hot laboratory by a canal, easy re-irradiation tests can be conducted with safe and quick transportation of irradiated samples. The JMTR has been applied to fuel/material irradiation examinations for LWRs, HTGR, fusion reactor and RI production. However, the JMTR operation was once stopped in August 2006, and check and review on the reoperation had been conducted by internal as well as external committees. As a result of the discussion, the JMTR reoperation was determined, and refurbishment works started from the beginning of JFY 2007. The refurbishment works have finished in March 2011 taking four years from JFY 2007. Unfortunately, at the end of the JFY 2010 on March 11, the Great-Eastern-Japan-Earthquake occurred, and functional tests before the JMTR restart, such as cooling system, reactor control system and so on, were delayed by the earthquake. Moreover, a detail inspection found some damages such as slight deformation of the truss structure at the roof of the JMTR reactor building. Consequently, the restart of the JMTR will be delayed from June to next October, 2012. Now, the safety evaluation after the earthquake disaster is being carried out aiming at the restart of the JMTR. The renewed JMTR will be started from JFY 2012 and operated for a period of about 20 years until around JFY 2030. The usability improvement of the JMTR, e.g. higher reactor availability, shortening turnaround time to get irradiation results, attractive irradiation cost, business confidence, is also discussed with users as the preparations for re-operation. (author)

  16. Fuel deposits, chemistry and CANDU® reactor operation

    International Nuclear Information System (INIS)

    Roberts, J.G.

    2014-01-01

    'Hot conditioning' is a process which occurs as part of commissioning and initial start-up of each CANDU® reactor, the first being the Nuclear Power Demonstration - 2 reactor (NPD). Later, understanding of the cause of the failure of the Pickering Unit 1 G16 fuel channelled to a revised approach to 'hot conditioning', initially demonstrated on Bruce Unit 5. The difference being that during 'hot conditioning' of CANDU® heat transport systems fuel was not in-core until Bruce Unit 5. The 'hot conditioning' processes will be briefly described along with the consequences to fuel. (author)

  17. Hot Leg Piping Materials Issues

    International Nuclear Information System (INIS)

    V. Munne

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP)

  18. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Harpenau, E.M.

    2010-01-01

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 1 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the 42-inch duct and 14-inch line in Trench 1 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 1 was appropriate based on recent verification results from Trenches 2, 3, 4, and 5, and the minimal potential for residual radioactivity in the area. The removal of underground utilities has been performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch duct from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 1. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the gamma spectroscopy results for 14 FSS soil samples, four core samples, and one duplicate sample collected from Trench 1. Sample results for the radionuclides of concern were below the established cleanup goals. However, in sample PH-3

  19. The Maple reactor project

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Labrie, J.-P.

    2003-01-01

    MDS Nordion supplies the majority of the world's reactor-produced medical isotopes. These isotopes are currently produced in the NRU reactor at AECL's Chalk River Laboratories (CRL). Medical isotopes and related technology are relied upon around the world to prevent, diagnose and treat disease. The NRU reactor, which has played a key role in supplying medical isotopes to date, has been in operation for over 40 years. Replacing this aging reactor has been a priority for MDS Nordion to assure the global nuclear medicine community that Canada will continue to be a dependable supplier of medical isotopes. MDS Nordion contracted AECL to construct two MAPLE reactors dedicated to the production of medical isotopes. The MDS Nordion Medical Isotope Reactor (MMIR) project started in September 1996. This paper describes the MAPLE reactors that AECL has built at its CRL site, and will operate for MDS Nordion. (author)

  20. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5x10 19 m -2 ·sec -1 . Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities