WorldWideScience

Sample records for reactor heat transfer

  1. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  2. Heat transfer capability analysis of heat pipe for space reactor

    International Nuclear Information System (INIS)

    Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang

    2015-01-01

    To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)

  3. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    Science.gov (United States)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  4. Seminar on Heat-transfer fluids for fast neutron reactors

    International Nuclear Information System (INIS)

    Brechet, Yves; Dautray, Robert; Friedel, Jacques; Brezin, Edouard; Martin, Georges; Pineau, Andre; Carre, Francois; Gauche, Francois; Rodriguez, Guillaume; Latge, Christian; Cabet, Celine; Garnier, Jean-Claude; Bamberger, Yves; Sauvage, Jean-Francois; Buisine, Denis; Agostini, Pietro; Ulyanov, Vladimir; Auger, Thierry; Heuer, Daniel; Ghetta, Veronique; Bubelis, Evaldas; Charlaix, Elisabeth; Barrat, Jean-Louis; Boquet, Lyderic; Glickman, Evgueny; Escaravage, Claude

    2014-03-01

    This book reports the content of a two-day meeting held by the Academy of Sciences on the use of heat-transfer fluids in fast neutron reactors. After a first part which proposes an overview of scientific and technical problems related to these heat-transfer fluids (heat transfer process, nuclear properties, chemistry, materials, risks), a contribution proposes a return on experience on the use of heat-transfer fluids in the different design options of reactors of fourth generation: from mercury to NaK in the first fast neutron reactor projects, specific assets and constraints of sodium used as heat-transfer fluid, concepts of fast neutron reactors cooled by something else than sodium, perspectives for projects and research in fast neutron reactors. The next contribution discusses the specifications of future fast-neutron reactors: expectations for fourth-generation reactors, expectations in terms of performance and of safety, specific challenges. The last contribution addresses actions to be undertaken in the field of research and development: actions regarding all reactor types or specific types as sodium-cooled reactors, lead cooled reactors, molten salt reactors, and gas-cooled fast reactors

  5. Review of heat transfer problems associated with magnetically-confined fusion reactor concepts

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Werner, R.W.; Carlson, G.A.; Cornish, D.N.

    1976-01-01

    Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements. Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated

  6. A comprehensive examination of heat transfer correlations suitable for reactor safety analysis

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Snoek, C.W.

    1986-01-01

    Due to the inadequate understanding of heat transfer mechanisms, an empirical approach is often necessary. This approach requires the derivation of empirical heat transfer correlations for each heat transfer configuration, resulting in numerous correlations for each heat transfer mode. A simplification that is frequently used is to combine these heat transfer correlations using some suitably defined local parameters to characterize the heat transfer process. These local condition correlations, usually encountered in reactor safety codes are discussed in this paper

  7. Conjugate heat transfer analysis for in-vessel retention with external reactor vessel cooling

    International Nuclear Information System (INIS)

    Park, Jong-Woon; Bae, Jae-ho; Song, Hyuk-Jin

    2016-01-01

    Highlights: • A conjugate heat transfer analysis method is applied for in-vessel corium retention. • 3D heat diffusion has a formidable effect in alleviating focusing heat load from metallic layer. • The focusing heat load is decreased by about 2.5 times on the external surface. - Abstract: A conjugate heat transfer analysis method for the thermal integrity of a reactor vessel under external reactor vessel cooling conditions is developed to resolve light metal layer focusing effect issue for in-vessel retention. The method calculates steady-state three-dimensional temperature distribution of a reactor vessel using coupled conjugate heat transfer between in-vessel three-layered stratified corium (metallic pool, oxide pool and heavy metal and polar-angle dependent boiling heat transfer at the outer surface of a reactor vessel). The three-layer corium heat transfer model is utilizing lumped-parameter thermal-resistance circuit method. For the ex-vessel boiling boundary conditions, nucleate, transition and film boiling are considered. The thermal integrity of a reactor vessel is addressed in terms of heat flux at the outer-most nodes of the vessel and remaining thickness profile. The vessel three-dimensional heat conduction is validated against a commercial code. It is found that even though the internal heat flux from the metal layer goes far beyond critical heat flux (CHF) the heat flux from the outermost nodes of the vessel may be maintained below CHF due to massive vessel heat diffusion. The heat diffusion throughout the vessel is more pronounced for relatively low heat generation rate in an oxide pool. Parametric calculations are performed considering thermal conditions such as peak heat flux from a light metal layer, heat generation in an oxide pool and external boiling conditions. The major finding is that the most crucial factor for success of in-vessel retention is not the mass of the molten light metal above the oxide pool but the heat generation rate

  8. Heat transfer: Pittsburgh 1987

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.

    1987-01-01

    This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers

  9. Updated heat transfer correlations for supercritical water-cooled reactor applications

    International Nuclear Information System (INIS)

    Mokry, S.J.; Pioro, I.L.; Farah, A.; King, K.

    2011-01-01

    In support of the development of SuperCritical Water-cooled Reactors (SCWRs), research is currently being conducted for heat-transfer at supercritical conditions. Currently, there are no experimental datasets for heat transfer from power reactor fuel bundles to the fuel coolant (Water) available in open literature. Therefore, for preliminary calculations, heat-transfer correlations obtained with bare tube data can be used as a conservative approach. A large set of experimental data, for supercritical water was analyzed and an updated heat-transfer correlation for forced-convective heat-transfer, in the normal heat transfer regime, was developed. This experimental dataset was obtained within conditions similar to those for proposed SCWR concepts. Thus, this new correlation can be used for preliminary heat-transfer calculations in SCWR fuel channels. It has demonstrated a good fit for the analyzed dataset. Experiments with SuperCritical Water (SCW) are very expensive. Therefore, a number of experiments are performed in modeling fluids, such as carbon dioxide and refrigerants. However, there is no common opinion if SC modeling fluids' correlations can be applied to SCW and vice versa. Therefore, a correlation for supercritical carbon dioxide heat transfer was developed as a less expensive alternative to using supercritical water. The conducted analysis also meets the objective of improving our fundamental knowledge of the transport processes and handling of supercritical fluids. These correlations can be used for supercritical water heat exchangers linked to indirect-cycle concepts and the cogeneration of hydrogen, for future comparisons with other independent datasets, with bundle data, for the verification of computer codes for SCWR core thermalhydraulics and for the verification of scaling parameters between water and modeling fluids. (author)

  10. Study on enhancement of heat transfer of reactor vessel auxiliary cooling system of fast breeder reactor

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi; Ueda, Nobuyuki; Furuya, Masahiro

    1996-01-01

    A reactor vessel auxiliary cooling system (RVACS), which is one of the decay heat removal systems of the fast breeder reactor (FBR), has passive safety as well as high reliability. However, the heat removal capability is relatively small, because its heat exchange is dependent on the natural convection of the air. The objectives of this report are to propose a heat transfer medium to enhance the heat transfer and to confirm the heat transfer performance of this system by experimental and analytical studies. From these studies, the following main results were obtained. (1) A porous plate with 5 mm thickness, 5 mm pore diameter, 92% porosity, was found to have the highest enhancement of heat transfer. (2) The heat transfer enhancement was demonstrated by large scale heat transfer experiments. Also, the heat transfer correlations, which can be used in the plant transient analyses, were derived from the experimental results. (3) Analysing the transient conditions of conventional pool-type FBR by means of the system analysis code, the applicable range of this system was assumed from the capability of the RVACS with porous plates. As a result, this type of RVACS was found to be applicable to conventional pool-type FBRs with capacity of about 500 MWe or less. (author)

  11. Heat transfer system

    Science.gov (United States)

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  12. Fuel-to-cladding heat transfer coefficient into reactor fuel element

    International Nuclear Information System (INIS)

    Lassmann, K.

    1979-01-01

    Models describing the fuel-to-cladding heat transfer coefficient in a reactor fuel element are reviewed critically. A new model is developed with contributions from solid, fluid and radiation heat transfer components. It provides a consistent description of the transition from an open gap to the contact case. Model parameters are easily available and highly independent of different combinations of material surfaces. There are no restrictions for fast transients. The model parameters are fitted to 388 data points under reactor conditions. For model verification another 274 data points of steel-steel and aluminium-aluminium interfaces, respectively, were used. The fluid component takes into account peak-to-peak surface roughnesses and, approximatively, also the wavelengths of surface roughnesses. For minor surface roughnesses normally prevailing in reactor fuel elements the model asymptotically yields Ross' and Stoute's model for the open gap, which is thus confirmed. Experimental contact data can be interpreted in very different ways. The new model differs greatly from Ross' and Stoute's contact term and results in better correlation coefficients. The numerical algorithm provides an adequate representation for calculating the fuel-to-cladding heat transfer coefficient in large fuel element structural analysis computer systems. (orig.) [de

  13. Heat transfer burnout in tube-type fuel elements of nuclear power reactors

    International Nuclear Information System (INIS)

    Subbotin, V.; Alexeev, G.; Peskov, O.; Sapankevic, A.

    1976-01-01

    The conditions are formulated under which the results of the experimental research of the boilino. water heat transfer burnout carried out on models may be applied to fuel elements of nuclear reactors. Experimental material providing data on the heat transfer burnout was expanded by the results of measurements of the uneven (cosine) longitudinal distribution of heat sources. The results of the effects of helical fins or wires on heat transfer burnout are presented. (F.M.)

  14. Heat transfer burnout in tube-type fuel elements of nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, V; Alexeev, G; Peskov, O; Sapankevic, A

    1976-08-01

    The conditions are formulated under which the results of the experimental research of the boiling. water heat transfer burnout carried out on models may be applied to fuel elements of nuclear reactors. Experimental material providing data on the heat transfer burnout was expanded by the results of measurements of the uneven (cosine) longitudinal distribution of heat sources. The results of the effects of helical fins or wires on heat transfer burnout are presented.

  15. Heat transfer tests of ribbed surfaces for gas-cooled reactors

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1975-07-01

    The performance of gas-cooled reactors is often limited by the heat transfer in the reactor core. Means for modifying core heat transfer surfaces to improve their performance were investigated. The 0.3-in.-OD stainless steel clad heater rods were photo-etched to produce external ribs 0.006 in. high and 0.12 in. wide with a pitch of 0.072 in. Helical ribs with a helix angle of 37 0 (to promote interchannel flow mixing in a multirod array) were provided on one surface. For comparison purposes, a transversely ribbed surface and a smooth rod were also studied. The test surfaces were 49 in. long with a 24-in. heated region, concentrically arranged inside a smooth 0.602-in.-ID stainless steel tube. Nitrogen gas at pressures up to 400 psig was used as the coolant; the linear heat rating ranged to 6.8 kW/ft at surface temperatures up to 1400 0 F; T/sub w/T/sub b/ varied from 1.2 to 2.4 at Re values up to 450,000. Annulus results were recalculated for rod geometry using two different transformations. Good agreement was observed with applicable literature values. The effectiveness of the surfaces was assessed as the ratio E of the heat transfer coefficients of the roughened rods to that of a smooth rod at the same pumping power. The effectiveness of the spiral ribs ranged from 1.3 to 1.4, and from 1.2 to 1.4 for the transverse ribs, spanning Re values from 60,000 to 400,000. These data include variations introduced by alternate transformation methods that were used to make annulus test results applicable to rod geometry. The surfaces investigated in these tests were considered for fast gas-cooled reactors; however, the range of parameters studied also applies to heat transfer from ribbed rod-type fuel elements in thermal gas-cooled reactors. (U.S.)

  16. Heat transfer in inertial confinement fusion reactor systems

    International Nuclear Information System (INIS)

    Hovingh, J.

    1979-01-01

    The transfer of energy produced by the interaction of the intense pulses of short-ranged fusion microexplosion products with materials is one of the most difficult problems in inertially-confined fusion (ICF) reactor design. The short time and deposition distance for the energy results in local peak power densities on the order of 10 18 watts/m 3 . High local power densities may cause change of state or spall in the reactor materials. This will limit the structure lifetimes for ICF reactors of economic physical sizes, increasing operating costs including structure replacement and radioactive waste management. Four basic first wall protection methods have evolved: a dry-wall, a wet-wall, a magnetically shielded wall, and a fluid wall. These approaches are distinguished by the way the reactor wall interfaces with fusion debris as well as the way the ambient cavity conditions modify the fusion energy forms and spectra at the first wall. Each of these approaches requires different heat transfer considerations

  17. Improvement of Reactor Fuel Element Heat Transfer by Surface Roughness

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B; Larsson, A E

    1967-04-15

    In heat exchangers with a limited surface temperature such as reactor fuel elements, rough heat transfer surfaces may give lower pumping power than smooth. To obtain data for choice of the most advantageous roughness for the superheater elements in the Marviken reactor, measurements were made of heat transfer and pressure drop in an annular channel with a smooth or rough test rod in a smooth adiabatic shroud. 24 different roughness geometries were tested. The results were transformed to rod cluster geometry by the method of W B Hall, and correlated by the friction and heat transfer similarity laws as suggested by D F Dipprey and R H Sabersky with RMS errors of 12.5 % in the friction factor and 8.1 % in the Stanton number. The relation between the Stanton number and the friction factor could be described by a relation of the type suggested by W Nunner, with a mean error of 3.1 % and an RMS error of 11.6 %. Application of the results to fuel element calculations is discussed, and the great gains in economy which can be obtained with rough surfaces are demonstrated by two examples.

  18. Improvement of Reactor Fuel Element Heat Transfer by Surface Roughness

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Larsson, A.E.

    1967-04-01

    In heat exchangers with a limited surface temperature such as reactor fuel elements, rough heat transfer surfaces may give lower pumping power than smooth. To obtain data for choice of the most advantageous roughness for the superheater elements in the Marviken reactor, measurements were made of heat transfer and pressure drop in an annular channel with a smooth or rough test rod in a smooth adiabatic shroud. 24 different roughness geometries were tested. The results were transformed to rod cluster geometry by the method of W B Hall, and correlated by the friction and heat transfer similarity laws as suggested by D F Dipprey and R H Sabersky with RMS errors of 12.5 % in the friction factor and 8.1 % in the Stanton number. The relation between the Stanton number and the friction factor could be described by a relation of the type suggested by W Nunner, with a mean error of 3.1 % and an RMS error of 11.6 %. Application of the results to fuel element calculations is discussed, and the great gains in economy which can be obtained with rough surfaces are demonstrated by two examples

  19. Integrated conjugate heat transfer analysis method for in-vessel retention with external reactor vessel cooling - 15477

    International Nuclear Information System (INIS)

    Park, J.W.; Bae, J.H.; Seol, W.C.

    2015-01-01

    An integrated conjugate heat transfer analysis method for the thermal integrity of a reactor vessel under external reactor vessel cooling conditions is developed to resolve light metal layer focusing effect issue. The method calculates steady-state 3-dimensional temperature distribution of a reactor vessel using coupled conjugate heat transfer between in-vessel 3-layered stratified corium (metallic pool, oxide pool and heavy metal) and polar-angle dependent boiling heat transfer at the outer surface of a reactor vessel. The 3-layer corium heat transfer model is utilizing lumped-parameter thermal-resistance circuit method and ex-vessel boiling regimes are parametrically considered. The thermal integrity of a reactor vessel is addressed in terms of un-molten thickness profile. The vessel 3-dimensional heat conduction is validated against a commercial code. It is found that even though the internal heat flux from the metal layer goes far beyond critical heat flux (CHF) the heat flux from the outermost nodes of the vessel may be maintained below CHF due to massive vessel heat diffusion. The heat diffusion throughout the vessel is more pronounced for relatively low heat generation rate in an oxide pool. Parametric calculations are performed considering thermal conditions such as peak heat flux from a light metal layer, heat generation in an oxide pool and external boiling conditions. The major finding is that the most crucial factor for success of in-vessel retention is not the mass of the molten light metal above the oxide pool but the heat generation rate inside the oxide pool and the 3-dimensional vessel heat transfer provides a much larger minimum vessel wall thickness. (authors)

  20. Convective heat transfer analysis in aggregates rotary drum reactor

    International Nuclear Information System (INIS)

    Le Guen, Laurédan; Huchet, Florian; Dumoulin, Jean; Baudru, Yvan; Tamagny, Philippe

    2013-01-01

    Heat transport characterisation inside rotary drum dryer has a considerable importance linked to many industrial applications. The present paper deals with the heat transfer analysis from experimental apparatus installed in a large-scale rotary drum reactor applied to the asphalt materials production. The equipment including in-situ thermal probes and external visualization by mean of infrared thermography gives rise to the longitudinal evaluation of inner and external temperatures. The assessment of the heat transfer coefficients by an inverse methodology is resolved in order to accomplish a fin analysis of the convective mechanism inside baffled (or flights) rotary drum. The results are discussed and compared with major results of the literature. -- Highlights: ► A thermal and flow experimentation is performed on a large-scale rotary drum. ► Four working points is chosen in the frame of asphalt materials production. ► Evaluation of the convective transfer mechanisms is calculated by inverse method. ► The drying stage is performed in the combustion area. ► Wall/aggregates heat exchanges have a major contribution in the heating stage

  1. SCEPTIC, Pressure Drop, Flow Rate, Heat Transfer, Temperature in Reactor Heat Exchanger

    International Nuclear Information System (INIS)

    Kattchee, N.; Reynolds, W.C.

    1975-01-01

    1 - Nature of physical problem solved: SCEPTIC is a program for calculating pressure drop, flow rates, heat transfer rates, and temperature in heat exchangers such as fuel elements of typical gas or liquid cooled nuclear reactors. The effects of turbulent and heat interchange between flow passages are considered. 2 - Method of solution: The computation procedure amounts to a nodal of lumped parameter type of calculation. The axial mesh size is automatically selected to assure that a prescribed accuracy of results is obtained. 3 - Restrictions on the complexity of the problem: Maximum number of subchannels is 25, maximum number of heated surfaces is 46

  2. Studies of heat transfer having relevance to nuclear reactor containment cooling by buoyancy-driven air flow

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. D.; Li, J.; Wang, J. [The Univ., of Manchester, Manchester (United Kingdom)

    2003-07-01

    Two separate effects experiments concerned with buoyancy-influenced convective heat transfer in vertical passages which have relevance to the problem of nuclear reactor containment cooling by means of buoyancy-driven airflow are described. A feature of each is that local values of heat transfer coefficient are determined on surfaces maintained at uniform temperature. Experimental results are presented which highlight the need for buoyancy-induced impairment of turbulent convective heat transfer to be accounted for in the design of such passive cooling systems. A strategy is presented for predicting the heat removal by combined convective and radiative heat transfer from a full scale nuclear reactor containment shell using such experimental results.

  3. Numerical investigation of heat transfer in high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, g.; Anghaie, S. [Univ. of Florida, Gainesville, FL (United States)

    1995-09-01

    This paper proposes a computational model for analysis of flow and heat transfer in high-temperature gas-cooled reactors. The formulation of the problem is based on using the axisymmetric, thin layer Navier-Stokes equations. A hybrid implicit-explicit method based on finite volume approach is used to numerically solve the governing equations. A fast converging scheme is developed to accelerate the Gauss-Siedel iterative method for problems involving the wall heat flux boundary condition. Several cases are simulated and results of temperature and pressure distribution in the core are presented. Results of a parametric analysis for the assessment of the impact of power density on the convective heat transfer rate and wall temperature are discussed. A comparative analysis is conducted to identify the Nusselt number correlation that best fits the physical conditions of the high-temperature gas-cooled reactors.

  4. Heat transfer characteristics and operation limit of pressurized hybrid heat pipe for small modular reactors

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Bang, In Cheol

    2017-01-01

    Highlights: • Thermal performances and operation limits of hybrid heat pipe were experimentally studied. • Models for predicting the operation limit of the hybrid heat pipe was developed. • Non-condensable gas affected heat transfer characteristics of the hybrid heat pipe. - Abstract: In this paper, a hybrid heat pipe is proposed for use in advanced nuclear power plants as a passive heat transfer device. The hybrid heat pipe combines the functions of a heat pipe and a control rod to simultaneously remove the decay heat generated from the core and shutdown the reactor under accident conditions. Thus, the hybrid heat pipe contains a neutron absorber in the evaporator section, which corresponds to the core of the reactor pressure vessel. The presence of the neutron absorber material leads to differences in the heated diameter and hydraulic diameter of the heat pipe. The cross-sectional areas of the vapor paths through the evaporator, adiabatic, and condenser sections are also different. The hybrid heat pipe must operate in a high-temperature, high-pressure environment to remove the decay heat. In other words, the operating pressure must be higher than those of the commercially available thermosyphons. Hence, the thermal performances, including operation limit of the hybrid heat pipe, were experimentally studied in the operating pressure range of 0.2–20 bar. The operating pressure of the hybrid heat pipe was controlled by charging the non-condensable gas which is unused method to achieve the high saturation pressure in conventional thermosyphons. The effect of operating pressure on evaporation heat transfer was negligible, while condensation heat transfer was affected by the amount of non-condensable gas in the test section. The operation limit of the hybrid heat pipe increased with the operating pressure. Maximum heat removal capacity of the hybrid heat pipe was up to 6 kW which is meaningful value as a passive decay heat removal device in the nuclear power

  5. Design guide for heat transfer equipment in water-cooled nuclear reactor systems

    International Nuclear Information System (INIS)

    1975-07-01

    Information pertaining to design methods, material selection, fabrication, quality assurance, and performance tests for heat transfer equipment in water-cooled nuclear reactor systems is given in this design guide. This information is intended to assist those concerned with the design, specification, and evaluation of heat transfer equipment for nuclear service and the systems in which this equipment is required. (U.S.)

  6. CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core

    International Nuclear Information System (INIS)

    Kotas, J.F.; Stroh, K.R.

    1983-01-01

    The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident that simulates a control-rod withdrawal at full power

  7. USING LIGA BASED MICROFABRICATION TO IMPROVE OVERALL HEAT TRANSFER EFFICIENCY OF PRESSURIZED WATER REACTOR: I. Effects of Different Micro Pattern on Overall Heat Transfer

    International Nuclear Information System (INIS)

    Zhang, M.; Ibekwe, S.; Li, G.; Pang, S.S.; Lian, K.

    2006-01-01

    The Pressurized Water Reactors (PWRs in Figure 1) were originally developed for naval propulsion purposes, and then adapted to land-based applications. It has three parts: the reactor coolant system, the steam generator and the condenser. The Steam generator (a yellow area in Figure 1) is a shell and tube heat exchanger with high-pressure primary water passing through the tube side and lower pressure secondary feed water as well as steam passing through the shell side. Therefore, a key issue in increasing the efficiency of heat exchanger is to improve the design of steam generator, which is directly translated into economic benefits. The past research works show that the presence of a pin-fin array in a channel enhances the heat transfer significantly. Hence, using microfabrication techniques, such as LIGA, micro-molding or electroplating, some special microstructures can be fabricated around the tubes in the heat exchanger to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. In this paper, micro-pin fins of different densities made of SU-8 photoresist are fabricated and studied to evaluate overall heat transfer efficiency. The results show that there is an optimized micro pin-fin configuration that has the best overall heat transfer effects

  8. Fluid flow and heat transfer investigation of pebble bed reactors using mesh-adaptive LES

    International Nuclear Information System (INIS)

    Pavlidis, Dimitrios; Lathouwers, Danny

    2013-01-01

    The very high temperature reactor is one of the designs currently being considered for nuclear power generation. One its variants is the pebble bed reactor in which the coolant passes through complex geometries (pores) at high Reynolds numbers. A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in such reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. coolant flow and heat transfer patterns are investigated

  9. Perspectives of heat transfer enhancement in nuclear reactors toward nanofluids applications

    International Nuclear Information System (INIS)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Sabundjian, Gaiane

    2013-01-01

    Nanofluids are colloidal suspensions of nanoparticles in a base fluid with interesting physical properties and large potential for heat transfer enhancement in thermal systems among other applications. There are an increasing number of nanofluids investigations concerning many aspects of synthesis and fabrication technologies, physical properties, and special applications. Results demonstrate that physical properties like high thermal conductivities and high critical heat flux (CHF) of some nanofluids classifies them as potential working fluids for high heat flux transportation in special systems, including thermal management of microelectronic devices (MEMS) and nuclear reactors. Understanding the importance of such investigations for the knowledge development of nuclear engineering a new research is being conducted at the Nuclear Engineering Center (CEN) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) to analyze the application potentiality of some nanofluids in nuclear systems for heat transfer enhancement under ionizing radiation influence. In this work a revision of theoretical and experimental studies of nanofluids is performed and its potentiality for using in future generations of nuclear reactors is highlighted showing the status of the research at present. (author)

  10. Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

    Directory of Open Access Journals (Sweden)

    Zonghao Yang

    2017-12-01

    Full Text Available In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

  11. Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)

    International Nuclear Information System (INIS)

    2014-08-01

    The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in

  12. Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in

  13. Heat Transfer in Pebble-Bed Nuclear Reactor Cores Cooled by Fluoride Salts

    Science.gov (United States)

    Huddar, Lakshana Ravindranath

    With electricity demand predicted to rise by more than 50% within the next 20 years and a burgeoning world population requiring reliable emissions-free base-load electricity, can we design advanced nuclear reactors to help meet this challenge? At the University of California, Berkeley (UCB) Fluoride-salt-cooled High Temperature Reactors (FHR) are currently being investigated. FHRs are designed with better safety and economic characteristics than conventional light water reactors (LWR) currently in operation. These reactors operate at high temperature and low pressure making them more efficient and safer than LWRs. The pebble-bed FHR (PB-FHR) variant includes an annular nuclear reactor core that is filled with randomly packed pebble fuel. It is crucial to characterize the heat transfer within this unique geometry as this informs the safety limits of the reactor. The work presented in this dissertation focused on furthering the understanding of heat transfer in pebble-bed nuclear reactor cores using fluoride salts as a coolant. This was done through experimental, analytical and computational techniques. A complex nuclear system with a coolant that has never previously been in commercial use requires experimental data that can directly inform aspects of its design. It is important to isolate heat transfer phenomena in order to understand the underlying physics in the context of the PB-FHR, as well as to make decisions about further experimental work that needs to be done in support of developing the PB-FHR. Certain organic oils can simulate the heat transfer behaviour of the fluoride salt if relevant non-dimensional parameters are matched. The advantage of this method is that experiments can be done at a much lower temperature and at a smaller geometric scale compared to FHRs, thereby lowering costs. In this dissertation, experiments were designed and performed to collect data demonstrating similitude. The limitations of these experiments were also elucidated by

  14. Modeling of heat and mass transfer processes during core melt discharge from a reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R. [Royal Institute of Technology, Stockholm (Sweden)] [and others

    1995-09-01

    The objective of the paper is to study heat and mass transfer processes related to core melt discharge from a reactor vessel is a severe light water reactor accident. The phenomenology of the issue includes (1) melt convection in and heat transfer from the melt pool in contact with the vessel lower head wall; (2) fluid dynamics and heat transfer of the melt flow in the growing discharge hole; and (3) multi-dimensional heat conduction in the ablating lower head wall. A program of model development, validation and application is underway (i) to analyse the dominant physical mechanisms determining characteristics of the lower head ablation process; (ii) to develop and validate efficient analytic/computational methods for estimating heat and mass transfer under phase-change conditions in irregular moving-boundary domains; and (iii) to investigate numerically the melt discharge phenomena in a reactor-scale situation, and, in particular, the sensitivity of the melt discharge transient to structural differences and various in-vessel melt progression scenarios. The paper presents recent results of the analysis and model development work supporting the simulant melt-structure interaction experiments.

  15. Heat exchanger for transfering heat produced in a high temperature reactor to an intermediate circuit gas

    International Nuclear Information System (INIS)

    Barchewitz, E.; Baumgaertner, H.

    1985-01-01

    The invention is concerned with improving the arrangement of a heat exchanger designed to transfer heat from the coolant gas circuit of a high temperature reactor to a gas which is to be used for a process heat plant. In the plant the material stresses are to be kept low at high differential pressures and temperatures. According to the invention the tube bundles designed as boxes are fixed within the heat exchanger closure by means of supply pipes having got loops. For conducting the hot gas the heat exchanger has got a central pipe leading out of the reactor vessel through the pod closure and having got only one point of fixation, lying in this closure. Additional advantageous designs are mentioned. (orig./PW)

  16. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    Science.gov (United States)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high

  17. Conjugate heat transfer simulations of advanced research reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Piro, M.H.A., E-mail: pirom@aecl.ca; Leitch, B.W.

    2014-07-01

    Highlights: • Temperature predictions are enhanced by coupling heat transfer in solid and fluid zones. • Seven different cases are considered to observe trends in predicted temperature and pressure. • The seven cases consider high/medium/low power, flow, burnup, fuel material and geometry. • Simulations provide temperature predictions for performance/safety. Boiling is unlikely. • Simulations demonstrate that a candidate geometry can enhance performance/safety. - Abstract: The current work presents numerical simulations of coupled fluid flow and heat transfer of advanced U–Mo/Al and U–Mo/Mg research reactor fuels in support of performance and safety analyses. The objective of this study is to enhance predictions of the flow regime and fuel temperatures through high fidelity simulations that better capture various heat transfer pathways and with a more realistic geometric representation of the fuel assembly in comparison to previous efforts. Specifically, thermal conduction, convection and radiation mechanisms are conjugated between the solid and fluid regions. Also, a complete fuel element assembly is represented in three dimensional space, permitting fluid flow and heat transfer to be simulated across the entire domain. Seven case studies are examined that vary the coolant inlet conditions, specific power, and burnup to investigate the predicted changes in the pressure drop in the coolant and the fuel, clad and coolant temperatures. In addition, an alternate fuel geometry is considered with helical fins (replacing straight fins in the existing design) to investigate the relative changes in predicted fluid and solid temperatures. Numerical simulations predict that the clad temperature is sensitive to changes in the thermal boundary layer in the coolant, particularly in simultaneously developing flow regions, while the temperature in the fuel is anticipated to be unaffected. Finally, heat transfer between fluid and solid regions is enhanced with

  18. Prediction of heat and mass transfer in innovative nuclear reactors

    International Nuclear Information System (INIS)

    Ambrosini, W.; Forgione, N.; Manfredini, A.; Oriolo, F.

    2000-01-01

    This paper proposes a short review of the different forms adopted to express the analogy between heat and mass transfer for application in correlating data from condensation and evaporation experiments. In particular, the assumptions at the basis of the various forms presented by classical textbooks as well as recent research work are qualitatively discussed, proposing a unified treatment of the different models. On this background, the results of the application of one of the considered forms of the analogy to a problem having relevance for nuclear reactor safety are then discussed. The work performed in this frame is related to condensation on finned tube heat exchangers, proposed as key components in passive containment cooling systems adopted in some innovative reactor concepts. The application of the model to the experimental dana also allowed to obtain interesting information about the effect of different parameters on the cooling capabilities of this compact heat exchangers. (author)

  19. Tests of the heat transfer characteristic of air cooler during cooling by natural convection of the Fast Breeder Reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purpose of this study is to confirm the heat transfer characteristics of the air cooler (AC) of the Fast Breeder Reactor(FBR) which has a function to remove the residual heat of the reactor by heat exchange between sodium and air in natural convection region if electric power would be lost. In order to confirm the characteristics of the AC installed in the FBR plant, the heat transfer test by using the AC which is installed in the sodium test loop owned by Toshiba Corporation has been planned. In this study, the heat transfer characteristic tests were performed by using the AC in sodium test loop, and the CFD analyses were conducted to evaluate the test results and the heat transfer characteristics of the plant scale AC at the condition of natural convection. In addition, the elemental tests to confirm the influence of the heat transfer tube placement by using the heat transfer tube of the same specification as the AC of Monju were performed. (author)

  20. Heat transfer from the roughened surface of gas cooled fast breeder reactor fuel element

    International Nuclear Information System (INIS)

    Tang, I.M.

    1979-01-01

    The temperature distributions and the augmentation of heat transfer performance by artificial roughening of a gas cooled fast breeder reactor (GCFR) fuel rod cladding are studied. Numerical solutions are based on the axisymmetric assumption for a two-dimensional model for one rib pitch of axial distance. The local and axial clad temperature distributions are obtained for both the rectangular and ramp rib roughened surface geometries. The transformation of experimentally measured convective heat transfer coefficients, in terms of Stanton number, into GCFR values is studied. In addition, the heat transfer performance of a GCFR fuel rod cladding roughened surface design is evaluated. Approximate analytical solution for correlating an average Stanton number is also obtained and satisfactorily compared with the corresponding numerical result for a GCFR design. The analytical correlation is useful in assessing roughened surface heat transfer performance in scoping studies and conceptual design

  1. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Kawaji, Masahiro [City College of New York, NY (United States); Valentin, Francisco I. [City College of New York, NY (United States); Artoun, Narbeh [City College of New York, NY (United States); Banerjee, Sanjoy [City College of New York, NY (United States); Sohal, Manohar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-21

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spots in the VHTR core.

  2. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    International Nuclear Information System (INIS)

    Kawaji, Masahiro; Valentin, Francisco I.; Artoun, Narbeh; Banerjee, Sanjoy; Sohal, Manohar; Schultz, Richard; McEligot, Donald M.

    2015-01-01

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spots in the VHTR core.

  3. Handbook of heat and mass transfer. Volume 2

    International Nuclear Information System (INIS)

    Cheremisinoff, N.P.

    1986-01-01

    This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors

  4. Study on enhancement of heat transfer of RVACS

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi

    1989-01-01

    As for the enhancement of heat transfer on Reactor Vessel Auxiliary Cooling System (RVACS), utilization of high porosity porous bodies have been proposed by the last report. This report describe the experimental results to evaluate heat transfer performance of the porous bodies and to estimate the extrapolation to long heat transfer surface such as reactor scale. Following are typical results. (1) Usually the Heat Transfer coefficient at the lower reaches is smoller than that of the upper reaches. But Using with the high porosity porous bodies, the Heat Transfer coefficient at the lower reaches remains a constant value against distance from entrance point or a increase slightly compared to that of the upper reaches because of the effect of thermal radiation. (2) From the results of Heat Transfer coefficients against distance from the entrance point, the increasing ratio of enhancement of heat removal in the case of reactor scale is about 1.3. (author)

  5. Pressure drop and heat transfer in the sodium to air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, H.; Eoh, J.; Cha, J.; Kim, S.

    2011-01-01

    A numerical study was performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX were modeled as porous media and simulated heat and momentum transfer. Two-dimensional flow characteristic appeared at the most region of AHX annulus. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX were evaluated and compared with Zhukauskas empirical correlations. (author)

  6. Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO

    International Nuclear Information System (INIS)

    Mueller, R.; Lipinski, W.; Steinfeld, A.

    2008-01-01

    A numerical and experimental investigation is carried out in a solar thermochemical reactor for the thermal dissociation of ZnO at 2000 K using concentrated solar energy. The reactor consists of a cavity-receiver lined with ZnO particles and directly exposed to high-flux irradiation. A transient heat transfer model is formulated to link the rate of radiation, convection, and conduction heat transfer to the reaction kinetics. The radiosity and Monte Carlo methods are applied to obtain the distribution of net radiative fluxes at the internal surfaces of the reactor cavity and at the surface of the ZnO bed. Validation is accomplished in terms of the calculated and measured transient temperature profiles and chemical reaction rates

  7. Pulse*Star Inertial Confinement Fusion Reactor: heat transfer loop and balance of plant considerations

    International Nuclear Information System (INIS)

    McDowell, M.W.; Murray, K.A.

    1984-01-01

    A conceptual heat transfer loop and balance of plant design for the Pulse*Star Inertial Confinement Fusion Reactor has been investigated and results are presented. The Pulse*Star reaction vessel, a perforated steel bell jar approximately 11 m in diameter, is immersed in Li 17 Pb 83 coolant which flows through the perforations and forms a 1.5 m thick plenum of droplets around an 8 m diameter inner chamber. The reactor and associated pumps, piping, and steam generators are contained within a 17 m diameter pool of Li 17 Pb 83 coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops with flow rates of 5.5 m 3 /s each are necessary to transfer 3300 MWt of power. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. Power balance calculations based on an improved electrical conversion efficiency revealed a net electrical output of 1260 MWe to the bus bar and a resulting net efficiency of 39%. Suggested balance-of-plant layouts are also presented

  8. Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    J. Yang; F. B. Cheung; J. L. Rempe; K. Y. Suh; S. B. Kim

    2005-01-01

    Four types of steady-state boiling experiments were conducted to investigate the efficacy of two distinctly different heat transfer enhancement methods for external reactor vessel cooling under severe accident conditions. One method involved the use of a thin vessel coating and the other involved the use of an enhanced insulation structure. By comparing the results obtained in the four types of experiments, the separate and integral effect of vessel coating and insulation structure were determined. Correlation equations were obtained for the nucleate boiling heat transfer and the critical heat flux. It was found that both enhancement methods were quite effective. Depending on the angular location, the local critical heat flux could be enhanced by 1.4 to 2.5 times using vessel coating alone whereas it could be enhanced by 1.8 to 3.0 times using an enhanced insulation structure alone. When both vessel coating and insulation structure were used simultaneously, the integral effect on the enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods

  9. Supercritical heat transfer phenomena in nuclear system

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Kim, Moo Hwan; Anderson, Mark H.; Corradini, Michael L.

    2005-01-01

    A supercritical water (SCW) power cycle has been considered as one of the viable candidates for advanced fission reactor designs. However, the dramatic variation of thermo-physical properties with a modest change of temperature near the pseudo-critical point make existing heat transfer correlations such as the Dittus-Boelter correlation not suitably accurate to calculate the heat transfer in supercritical fluid. Several other correlations have also been suggested but none of them are able to predict the heat transfer over a parameter range, needed for reactor thermal-hydraulics simulation and design. This has prompted additional research to understand the characteristic of supercritical fluid heat transfer

  10. Evaluation of radiation heat transfer in porous medial: Application for a pebble bed modular reactor cooled by CO2 gas

    Directory of Open Access Journals (Sweden)

    Sidi-Ali Kamel

    2013-01-01

    Full Text Available This work analyses the contribution of radiation heat transfer in the cooling of a pebble bed modular reactor. The mathematical model, developed for a porous medium, is based on a set of equations applied to an annular geometry. Previous major works dealing with the subject have considered the forced convection mode and often did not take into account the radiation heat transfer. In this work, only free convection and radiation heat transfer are considered. This can occur during the removal of residual heat after shutdown or during an emergency situation. In order to derive the governing equations of radiation heat transfer, a steady-state in an isotropic and emissive porous medium (CO2 is considered. The obtained system of equations is written in a dimensionless form and then solved. In order to evaluate the effect of radiation heat transfer on the total heat removed, an analytical method for solving the system of equations is used. The results allow quantifying both radiation and free convection heat transfer. For the studied situation, they show that, in a pebble bed modular reactor, more than 70% of heat is removed by radiation heat transfer when CO2 is used as the coolant gas.

  11. Numerical Simulation of a Coolant Flow and Heat Transfer in a Pebble Bed Reactor

    International Nuclear Information System (INIS)

    In, Wang-Kee; Kim, Min-Hwan; Lee, Won-Jae

    2008-01-01

    Pebble Bed Reactor(PBR) is one of the very high temperature gas cooled reactors(VHTR) which have been reviewed in the Generation IV International Forum as potential sources for future energy needs, particularly for a hydrogen production. The pebble bed modular reactor(PBMR) exhibits inherent safety features due to the low power density and the large amount of graphite present in the core. PBR uses coated fuel particles(TRISO) embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the PBR core during a reactor operation and the coolant flows around randomly distributed spheres. For the reliable operation and the safety of the PBR, it is important to understand the coolant flow structure and the fuel pebble temperature in the PBR core. There have been few experimental and numerical studies to investigate the fluid and heat transfer phenomena in the PBR core. The objective of this paper is to predict the fluid and heat transfer in the PBR core. The computational fluid dynamics (CFD) code, STAR-CCM+(V2.08) is used to perform the CFD analysis using the design data for the PBMR400

  12. Features of an emergency heat-conducting path in reactors about lead-bismuth and lead heat-carriers

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Bokova, T.A.; Molodtsov, A.A.

    2006-01-01

    The reactor emergency heat removal systems should transfer heat from the surface of reactor core fuel element claddings to the primary circuit followed by heat transfer to the environment. One suggests three design approaches for emergency heat removal systems in lead-bismuth and lead cooled reactor circuits that take account of the peculiar nature of their features. Application of the discussed systems for emergency heat removal improves safety of lead-bismuth and lead cooled reactor plants [ru

  13. Heat transfer from rough surfaces

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1977-01-01

    Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.) [de

  14. Nuclear reactor plant for production process heat

    International Nuclear Information System (INIS)

    Weber, M.

    1979-01-01

    The high temperature reactor is suitable as a heat source for carrying out endothermal chemical processes. A heat exchanger is required for separating the reactor coolant gases and the process medium. The heat of the reactor is transferred at a temperature lower than the process temperature to a secondary gas and is compressed to give the required temperature. The compression energy is obtained from the same reactor. (RW) [de

  15. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui, E-mail: rhu@anl.gov; Yu, Yiqi

    2016-11-15

    Highlights: • Developed a computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors. • Applied fully-coupled JFNK solution scheme to avoid the operator-splitting errors. • The accuracy and efficiency of the method is confirmed with a 7-assembly test problem. • The effects of different spatial discretization schemes are investigated and compared to the RANS-based CFD simulations. - Abstract: For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneously in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. Additionally, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.

  16. The effect of water vapor in the reactor cavity in a MHTGR [Modular High Temperature Gas Cooled Reactor] on the radiation heat transfer

    International Nuclear Information System (INIS)

    Cappiello, M.W.

    1991-01-01

    Analyses have been completed to determine the effect of the presence of water vapor in the reactor cavity in a modular high temperature gas cooled reactor on the predicted radiation heat transfer from the vessel wall to the reactor cavity cooling system. The analysis involves the radiation heat transfer between two parallel plates with an absorbing and emitting medium present. Because the absorption in the water vapor is spectrally dependent, the solution is difficult even for simple geometries. A computer code was written to solve the problem using the Monte Carlo method. The code was validated against closed form solutions, and shows excellent agreement. In the analysis of the reactor problem, the results show that the reduction in heat transfer, and the consequent increase in the vessel wall temperature, can be significant. This effect can be cast in terms of a reduction in the wall surface emissivities from 0.8 to 0.59. Because of the insulating effect of the water vapor, increasing the gap distance between the vessel wall and the cooling system will cause the vessel wall temperature to increase further. Care should be taken in the design of the facility to minimize the gap distance and keep temperature increase within allowable limits. 3 refs., 6 figs., 4 tabs

  17. Heat transfer in intermediate heat exchanger under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, H.

    2008-01-01

    The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)

  18. Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas

    International Nuclear Information System (INIS)

    Yvon, J.

    1955-01-01

    Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)

  19. Pulse Star Inertial Confinement Fusion Reactor: Heat transfer loop and balance-of-plant considerations

    International Nuclear Information System (INIS)

    McDowell, M.W.; Blink, J.A.; Curlander, K.A.

    1983-01-01

    A conceptual heat transfer loop and balance-of-plant design for the Pulse Star Inertial Confinement Fusion Reactor has been investigated and the results are presented. The Pulse Star reaction vessel, a perforated steel bell jar about11 m in diameter, is immersed in Li 17 Pb 83 coolant, which flows through the perforations and forms a 1.5-m-thick plenum of droplets around a 8-m-diameter inner chamber. The bell jar and associated pumps, piping, and steam generators are contained within a 17-m-diameter pool of Li 17 Pb 83 coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops, each with a flow rate of 5.5 m 3 /s, are necessary to transfer 3300 MWt of power. Liquid metal is pumped to the top of the pool, where it flows downward through eight vertical steam generators. Double-walled tubes are used in the steam generators to assure tritium containment without intermediate heat transfer loops. Each pump is a mixed flow type and has a required NPSH of 3.4 m, a speed of 278 rpm, and an impeller diameter of 1.2 m. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. The design minimizes the total cost (heat exchanger area plus pumping) for the plant lifetime. The power required for the pumps is 36 MWe. Each resulting steam generator is 12 m high and 1.6 m in diameter, with 2360 tubes. The steam generators and pumps fit easily in the pool between the reactor chamber and the pool wall

  20. An experimental investigation of heat transfer from a reactor fuel channel to surrounding water

    International Nuclear Information System (INIS)

    Gillespie, G.E.

    An important feature of the CANDU-PHW reactor is that each fuel channel is surrounded by cool heavy-water moderator that can act as a sink for heat generated in the fuel if other means of heat removal were to fail. During postulated loss-of-coolant accidents there are two scenarios in which the primary cooling system may not prevent fuel-channel overheating. These situations arise when: (1) for a particular break size and location, called the critical break, the coolant flow through a portion of the reactor core stagnates before the emergency coolant injection system restores circulation, or, (2) the emergency coolant injection system fails to operate. In either case, the heat generated in the fuel is transferred mainly by radiation to the pressure tube and calandria tube, and then by boiling heat transfer to the moderator. This paper describes a simple one-dimensional model developed to analyse the thermal behaviour of a fuel channel when the internal pressure is high. Also described is a series of experiments in which the pressure-tube segment is pressurized and heated at a constant rate until it contacts a surrounding calandria-tube segment. Predictions of the one-dimensional model are compared with the experimental results

  1. High-temperature process heat reactor with solid coolant and radiant heat exchange

    International Nuclear Information System (INIS)

    Alekseev, A.M.; Bulkin, Yu.M.; Vasil'ev, S.I.

    1984-01-01

    The high temperature graphite reactor with the solid coolant in which heat transfer is realized by radiant heat exchange is described. Neutron-physical and thermal-technological features of the reactor are considered. The reactor vessel is made of sheet carbon steel in the form of a sealed rectangular annular box. The moderator is a set of graphite blocks mounted as rows of arched laying Between the moderator rows the solid coolant annular layings made of graphite blocks with high temperature nuclear fuel in the form of coated microparticles are placed. The coolant layings are mounted onto ring movable platforms, the continuous rotation of which is realizod by special electric drives. Each part of the graphite coolant laying consecutively passes through the reactor core neutron cut-off zones and technological zone. In the core the graphite is heated up to the temperature of 1350 deg C sufficient for effective radiant heat transfer. In the neutron cut-off zone the chain reaction and further graphite heating are stopped. In the technological zone the graphite transfers the accumulated heat to the walls of technological channels in which the working medium moves. The described reactor is supposed to be used in nuclear-chemical complex for ammonia production by the method of methane steam catalytic conversion

  2. Application of heat pipes in nuclear reactors for passive heat removal

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Z.; Yetisir, M., E-mail: haquez@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper introduces a number of potential heat pipe applications in passive (i.e., not requiring external power) nuclear reactor heat removal. Heat pipes are particularly suitable for small reactors as the demand for heat removal is significantly less than commercial nuclear power plants, and passive and reliable heat removal is required. The use of heat pipes has been proposed in many small reactor designs for passive heat removal from the reactor core. This paper presents the application of heat pipes in AECL's Nuclear Battery design, a small reactor concept developed by AECL. Other potential applications of heat pipes include transferring excess heat from containment to the atmosphere by integrating low-temperature heat pipes into the containment building (to ensure long-term cooling following a station blackout), and passively cooling spent fuel bays. (author)

  3. Heat transfer and the continuous production of hydroxypropyl starch in a static mixer reactor

    NARCIS (Netherlands)

    Lammers, Gerard; Beenackers, Antonie A. C. M.

    1994-01-01

    A novel continuous reactor for the chemical derivation of aqueous starch solutions based on static mixers is proposed. Both the experimentally observed axial and radial temperature gradients in the static mixer could be accurately described by a pseudohomogeneous two-dimensional heat transfer (PTHT)

  4. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores

    International Nuclear Information System (INIS)

    El Ganaoui, K.

    2006-09-01

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  5. Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning

    Energy Technology Data Exchange (ETDEWEB)

    Oka, S; Becirspahic, S [Institute of Nuclear Sciences Boris Kidric, Heat Transfer Department, Vinca, Beograd (Serbia and Montenegro)

    1964-10-15

    Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning have been investigated. The St-number distribution over length and perimeter of he finning are given. The mean and minimum St{sub k}-number are plotted against the Re-number. The influence of the gap between two fuel elements upon heat transfer and pressure drop, in dependence on the Re-number, and the influence of the length of the fuel element on pressure drop across the gap are shown. The influence of the relative position of the splitters of two neighboring fuel elements on pressure drop and heat transfer is shown. The investigations were performed in the Re-number range 15,000 to 100,000 (author)

  6. Heat transfer. V. 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume contains the 4 key-note lectures and 83 of the 148 papers presented at the 3rd UK National Conference on Heat Transfer. The papers are grouped under the following broad headings: boiling and condensation; heat exchangers; refrigeration and air-conditioning; natural convection; process safety and nuclear reactors; two-phase flow; post dry-out; combustion, radiation and chemical reaction. Separate abstracts have been prepared for 13 papers of relevance to nuclear reactors. (UK)

  7. Evaluation of an experiment modelling heat transfer from the melt pool for use in VVER 440/213 reactors

    International Nuclear Information System (INIS)

    Skop, J.

    2003-12-01

    The strategy of confining core melt within the reactor vessel is among promising strategies to mitigate severe accidents of VVER 440/213 reactors. This strategy consists in residual heat removal from the melt by external vessel cooling from the outside, using water from the flooded reactor downcomer. This approach can only be successful if the critical heat flux on the external vessel surface is not exceeded. This can be assessed based on the parameters of heat transfer from the core melt pool in the conditions of natural circulation within the pool. Those parameters are the subject of the report. A basic description of the terms and physical basis of the strategy of confining core melt inside the vessel is given in Chapter 2, which also briefly explains similarity theory, based on which the results obtained on experimental facilities, using simulation materials, can be related to the actual situation inside a real reactor. Chapter 3 presents an overview of experimental work addressing the characteristics of heat transfer from the core melt pool in natural circulation conditions and a description of the experimental facilities. An overview of the results emerging from the experiments and their evaluation with respect to their applicability to reactors in Czech nuclear power plants are given in Chapter 4

  8. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    International Nuclear Information System (INIS)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-01-01

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mass velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel

  9. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  10. Heat Transfer Phenomena of Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  11. Experimental and numerical investigations of high temperature gas heat transfer and flow in a VHTR reactor core

    Science.gov (United States)

    Valentin Rodriguez, Francisco Ivan

    High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat

  12. Inter-subchannel heat transfer modeling for a subchannel analysis of liquid metal-cooled reactors

    International Nuclear Information System (INIS)

    Hae-Yong, Jeong; Kwi-Seok, Ha; Young-Min, Kwon; Yong-Bum, Lee; Dohee, Hahn

    2007-01-01

    In a subchannel approach, the temperature, pressure and velocity in a subchannel are averaged, and one representative thermal-hydraulic condition specifies the state of a subchannel. To enhance the predictability of a subchannel analysis code, it is required to model the inter-subchannel heat transfer between the adjacent subchannels as accurately as possible. One of the critical parameters which determine the thermal-hydraulic behavior of the coolant in subchannels is the heat conduction between two neighboring sub-channels. This portion of a heat transfer becomes more important in the design of an LMR (Liquid Metal-cooled Reactor) because of the high heat capacity of the liquid metal coolant. The other important part of heat transfer is the mixing of flow as a form of cross flow. Especially, the turbulent mixing caused by the eddy motion of fluid across the gap between the subchannels enhances the exchange of the momentum and the energy through the gap with no net transport of the mass. Major results of recent efforts on these modeling have been implemented in a subchannel analysis code MATRA-LMR-FB. The analysis shows that the accuracy of a subchannel analysis code is improved by enhancing the models describing the conduction heat transfer and the cross-flow mixing, especially at low flow rate. (authors)

  13. Heat transfer between immiscible liquids enhanced by gas bubbling

    International Nuclear Information System (INIS)

    Greene, G.A.; Schwarz, C.E.; Klages, J.; Klein, J.

    1982-08-01

    The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments have been performed with non-reactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies have been performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non-entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model. However heat transfer data for fluid pairs which are found to entrain (water-oil), believed to be characteristic of molten reactor core-concrete conditions, were measured to be up to two orders of magnitude greater than surface renewal predictions and are calculated by a simple entrainment heat transfer model

  14. Fluid flow and heat transfer investigation of pebble bed reactors using mesh adaptive large-eddy simulation

    International Nuclear Information System (INIS)

    Pavlidis, D.; Lathouwers, D.

    2011-01-01

    A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in pebble bed reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. Coolant flow and heat transfer patterns are investigated. (author)

  15. Modelling the behaviour of corrosion products in the primary heat transfer circuits of pressurised water reactors

    International Nuclear Information System (INIS)

    Rodliffe, R.S.; Polley, M.V.; Thornton, E.W.

    1985-05-01

    The redistribution of corrosion products from the primary circuit surfaces of a water reactor can result in increased flow resistance, poorer heat transfer performance, fuel failure and radioactive contamination of circuit surfaces. The environment is generally sufficiently well controlled to ensure that the first three effects are not limiting. The last effect is of particular importance since radioactive corrosion products are major contributors to shutdown fields and since it is necessary to ensure that the radiation exposure of personnel is as low as reasonably achievable. This review focusses attention on the principles which must form the basis for any mechanistic model describing the formation, transport and deposition of radioactive corrosion products. It is relevant to all water reactors in which the primary heat transfer medium is predominantly single-phase water and in which steam is generated in a secondary circuit, i.e. including CANDU pressurised heavy water reactors, Sovient VVERs, etc. (author)

  16. Studies of thermal hydraulics and heat transfer in cascade subcritical molten salt reactor

    International Nuclear Information System (INIS)

    Aysen, E.M.; Sedov, A.A.; Subbotin, A.S.

    2005-01-01

    Full text of publication follows: Cascade Subcritical Molten Salt Reactor (CSMSR) consists of three main parts: accelerator-driven proton-bombarded target, central and peripheral zones. External neutrons generated in the result of interaction of protons with the target nuclei are multiplied then in the central zone and leak farther into the peripheral reactor zone, where an efficient burning of Minor Actinides dissolved in a molten salt fluoride composition is produced. The bunch of target and two zones is designed so that preset subcriticality of reactor would not be less than 1% of k eff . A characteristic feature of the reactor is a high density of neutron flux (2.10 15 n/cm 2 s) in the central zone and target and very high volumetric power rate (2000 - 6000 W/cm 3 ) in all the parts of CSMSR. To provide a workability of the core structures under condition of so big level of power rate it is necessary to impose strict limitations on the temperatures and temperature gradients developed in the coolants and constructions. In this reason it has been arranged a calculational-designing study to reveal the problems of heat transfer in the coolant and core structures and to find more appropriate variant of the core and target design, which is a compromise of contradictory requirements: provision of high neutron flux and coolability of the core structures. In this paper the results of studies of thermal hydraulics and heat transfer in the core zones and proton-beam target are presented. Different variants of the target and central zone design as well as application of different kind of coolants in them are discussed and the main problems of heat removal in their structures are analyzed. Multidimensional fields of velocity and temperature got in thermal hydraulics calculations for free flow of fuelled molten salt in cylindrical-cave peripheral CSMSR zone without structures inside are demonstrated. The role of turbulent exchange of momentum and heat for free flow in the

  17. E-learning modules for nuclear reactor heat transfer

    Science.gov (United States)

    Jayaram, Praveen Bharadwaj

    E learning in engineering education is becoming popular at several universities as it allows instructors to create content that the students may view and interact with at his/her own convenience. Web-based simulation and what-if analysis are examples of such educational content and has proved to be extremely beneficial for engineering students. Such pedagogical content promote active learning and encourage students to experiment and be more creative. The main objective of this project is to develop web based learning modules, in the form of analytical simulations, for the Reactor Thermal Hydraulics course offered by the College of Engineering at UT Arlington. These modules seek to comprehensively transform the traditional education structure. The simulations are built to supplement the class lectures and are divided into categories like Fundamentals, Heat generation, Heat transfer and Heat removal categories. Each category contains modules which are sub-divided chapter wise and further into section wise. Some of the important sections from the text book are taken and calculations for a particular functionality are implemented. Since it is an interactive tool, it allows user to input certain values, which are then processed with the traditional equations, and output results either in the form of a number or graphs.

  18. Heat Transfer Analysis of Methane Hydrate Sediment Dissociation in a Closed Reactor by a Thermal Method

    Directory of Open Access Journals (Sweden)

    Mingjun Yang

    2012-05-01

    Full Text Available The heat transfer analysis of hydrate-bearing sediment involved phase changes is one of the key requirements of gas hydrate exploitation techniques. In this paper, experiments were conducted to examine the heat transfer performance during hydrate formation and dissociation by a thermal method using a 5L volume reactor. This study simulated porous media by using glass beads of uniform size. Sixteen platinum resistance thermometers were placed in different position in the reactor to monitor the temperature differences of the hydrate in porous media. The influence of production temperature on the production time was also investigated. Experimental results show that there is a delay when hydrate decomposed in the radial direction and there are three stages in the dissociation period which is influenced by the rate of hydrate dissociation and the heat flow of the reactor. A significant temperature difference along the radial direction of the reactor was obtained when the hydrate dissociates and this phenomenon could be enhanced by raising the production temperature. In addition, hydrate dissociates homogeneously and the temperature difference is much smaller than the other conditions when the production temperature is around the 10 °C. With the increase of the production temperature, the maximum of ΔToi grows until the temperature reaches 40 °C. The period of ΔToi have a close relation with the total time of hydrate dissociation. Especially, the period of ΔToi with production temperature of 10 °C is twice as much as that at other temperatures. Under these experimental conditions, the heat is mainly transferred by conduction from the dissociated zone to the dissociating zone and the production temperature has little effect on the convection of the water in the porous media.

  19. Heat and momentum transfer in a gas coolant flow through a circular pipe in a high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    1989-07-01

    In Japan Atomic Energy Research Institute (JAERI), a very high temperature gas cooled reactor (VHTR) has been researched and developed with a purpose of attaining a coolant temperature of around 1000degC at the reactor outlet. In order to design VHTR, comprehensive knowledge is required on thermo-hydraulic characteristics of laminar-turbulent transition, of coolant flow with large thermal property variation due to temperature difference, and of heat transfer deterioration. In the present investigation, experimental and analytical studies are made on a gas flow in a circular tube to elucidate the thermo-hydraulic characteristics. Friction factors and heat transfer coefficients in transitional flows are obtained. Influence of thermal property variation on the friction factor is qualitatively determined. Heat transfer deterioration in the turbulent flow subjected to intense heating is experimentally found to be caused by flow laminarization. The analysis based on a k-kL two-equation model of turbulence predicts well the experimental results on friction factors and heat transfer coefficients in flows with thermal property variation and in laminarizing flows. (author)

  20. Heat transfer in a magnet C

    International Nuclear Information System (INIS)

    Sircilli Neto, F.; Passaro, A.; Borges, E.M.

    1991-01-01

    The cooling systems of nuclear reactors for spacial applications include direct current electromagnetic pumps, which are used to circulate the coolant fluid thru the reactor core. In this work, the transfer of the heat generated by the electrical current in a magnet C excitation coils, which is used in a prototype pump, was evaluated. Considering the processes of heat transfer by conduction, natural convection and radiation, the results of simulation with the codes HEATING5 and AUTHEATS indicate the utilization of the 180 sup(0)C thermal class conductor for a working Joule power of 4 10 sup(4) W/m sup(3) in each magnet coil. (author)

  1. Single-phase convection heat transfer characteristics of pebble-bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Xu Guangzhan

    2012-01-01

    Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average

  2. Natural convection heat transfer in SIGMA experiment

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Gang Hee; Suh, Kune Yull

    2004-01-01

    A loss-of-coolant accident (LOCA) results in core melt formation and relocation at various locations within the reactor core over a considerable period of time. If there is no effective cooling mechanism, the core debris may heat up and commence natural circulation. The high temperature pool of molten core material will threaten the structural integrity of the reactor vessel. The extent and urgency of this threat depend primarily upon the intensity of the internal heat sources and upon the consequent distribution of the heat fluxes on the vessel walls in contact with the molten core material pools. In such a steady molten pool convection state, the thermal loads against the vessel would be determined by the in-vessel heat transfer distribution involving convective and conductive heat transfer from the decay-heated core material pool to the lower head wall in contact with the core material. In this study, upward and downward heat transfer fraction ratio is focused on

  3. Simulation of thermal-hydraulic process in reactor of HTR-PM based on flow and heat transfer network

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2012-01-01

    The development of HTR-PM full scale simulator (FSS) is an important part in the project. The simulation of thermal-hydraulic process in reactor is one of the key technologies in the development of FSS. The simulation of thermal-hydraulic process in reactor was studied. According to the geometry structures and the characteristics of thermal-hydraulic process in reactor, the model was setup in components construction way. Based on the established simulation method of flow and heat transfer network, a Fortran code was developed and the simulation of thermal-hydraulic process was achieved. The simulation results of 50% FP steady state, 100% FP steady state and control rod mistakenly ascension accidents were given. The verification of simulation results was carried out by comparing with the design and analysis code THERMIX. The results show that the method and model based on flow and heat transfer network can meet the requirements of FSS and reflect the features of thermal-hydraulic process in HTR-PM. (authors)

  4. Heat transfer to accelerating gas flows

    International Nuclear Information System (INIS)

    Kennedy, T.D.A.

    1978-01-01

    The development of fuels for gas-cooled reactors has resulted in a number of 'gas loop' experiments in materials-testing research reactors. In these experiments, efforts are made to reproduce the conditions expected in gas-cooled power reactors. Constant surface temperatures are sought over a short (300 mm) fuelled length, and because of entrance effects, an accelerating flow is required to increase the heat transfer down-stream from the entrance. Strong acceleration of a gas stream will laminarise the flow even at Reynolds Numbers up to 50000, far above values normally associated with laminar flow. A method of predicting heat transfer in this situation is presented here. An integral method is used to find the velocity profile; this profile is then used in an explicit finite-difference solution of the energy equation to give a temperature profile and resultant heat-transfer coefficient values. The Kline criterion, which compares viscous and disruptive forces, is used to predict whether the flow will be laminar. Experimental results are compared with predictions, and good agreement is found to exist. (author)

  5. Heat transfer in the lithium-cooled blanket of a pulsed fusion reactor

    International Nuclear Information System (INIS)

    Cort, G.E.; Krakowski, R.A.

    1978-01-01

    The transient temperature distribution in the lithium-cooled blanket of a pulsed fusion reactor has been calculated using a finite-element heat-conduction computer program. An auxiliary program was used to predict the coolant transient velocity in a network of parallel and series flow passages with constant driving pressure and varying magnetic field. The coolant velocity was calculated by a Runge-Kutta numerical integration of the conservation equations. The lithium coolant was part of the finite-element heat-conduction mesh with the velocity terms included in the total matrix. The matrix was solved implicitly at each time step for the nodal point temperatures. Slug flow was assumed in the coolant passages and the Boussinesq analogy was used to calculate turbulent heat transfer when the magnetic field was not present

  6. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    Science.gov (United States)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  7. Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid

    International Nuclear Information System (INIS)

    Faw, R.E.; Baker, L. Jr.

    1976-01-01

    Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process

  8. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  9. Two-phase flow heat transfer in nuclear reactor systems

    International Nuclear Information System (INIS)

    Koncar, Bostjan; Krepper, Eckhard; Bestion, Dominique; Song, Chul-Hwa; Hassan, Yassin A.

    2013-01-01

    Complete text of publication follows: Heat transfer and phase change phenomena in two-phase flows are often encountered in nuclear reactor systems and are therefore of paramount importance for their optimal design and safe operation.The complex phenomena observed especially during transient operation of nuclear reactor systems necessitate extensive theoretical and experimental investigations. This special issue brings seven research articles of high quality. Though small in number, they cover a wide range of topics, presenting high complexity and diversity of heat transfer phenomena in two-phase flow. In the last decades a vast amount of research has been devoted to theoretical work and computational simulations, yet the experimental work remains indispensable for understanding of two-phase flow phenomena and for model validation purposes. This is reflected also in this issue, where only one article is purely experimental, while three of them deal with theoretical modelling and the remaining three with numerical simulations. The experimental investigation of the critical heat flux (CHF) phenomena by means of photographic study is presented in the paper of J. Park et al. They have used a high-speed camera system to observe the transient boiling characteristics on a thin horizontal cylinder submerged in a pool of water or highly wetting liquid. Experiments show that the initial boiling process is strongly affected by the properties and wettability of the liquid. The authors have stressed the importance of the local scale observation leading to better understanding of the transient CHF phenomena. In the article of G. Espinosa-Paredes et al. a theoretical work concerning the derivation of transport equations for two-phase flow is presented. The author proposes a novel approach based on derivation of nonlocal volume averaged equations which contain new terms related to nonlocal transport effects. These non-local terms act as coupling elements between the phenomena

  10. The Radiative Heat Transfer Properties of Molten Salts and Their Relevance to the Design of Advanced Reactors

    Science.gov (United States)

    Chaleff, Ethan Solomon

    Molten salts, such as the fluoride salt eutectic LiF-NaF-KF (FLiNaK) or the transition metal fluoride salt KF-ZrF4, have been proposed as coolants for numerous advanced reactor concepts. These reactors are designed to operate at high temperatures where radiative heat transfer may play a significant role. If this is the case, the radiative heat transfer properties of the salt coolants are required to be known for heat transfer calculations to be performed accurately. Chapter 1 describes the existing literature and experimental efforts pertaining to radiative heat transfer in molten salts. The physics governing photon absorption by halide salts is discussed first, followed by a more specific description of experimental results pertaining to salts of interest. The phonon absorption edge in LiF-based salts such as FLiNaK is estimated and the technique described for potential use in other salts. A description is given of various spectral measurement techniques which might plausibly be employed in the present effort, as well as an argument for the use of integral techniques. Chapter 2 discusses the mathematical treatments required to approximate and solve for the radiative flux in participating materials. The differential approximation and the exact solutions to the radiative flux are examined, and methods are given to solve radiative and energy equations simultaneously. A coupled solution is used to examine radiative heat transfer to molten salt coolants. A map is generated of pipe diameters, wall temperatures, and average absorption coefficients where radiative heat transfer will increase expected heat transfer by more than 10% compared to convective methods alone. Chapter 3 presents the design and analysis of the Integral Radiative Absorption Chamber (IRAC). The IRAC employs an integral technique for the measurement of the entire electromagnetic spectrum, negating some of the challenges associated with the methods discussed in Chapter 1 at the loss of spectral

  11. A susceptor heating structure in MOVPE reactor by induction heating

    International Nuclear Information System (INIS)

    Li, Zhiming; Li, Hailing; Zhang, Jincheng; Li, Jinping; Jiang, Haiying; Fu, Xiaoqian; Han, Yanbin; Xia, Yingjie; Huang, Yimei; Yin, Jianqin; Zhang, Lejuan; Hu, Shigang

    2014-01-01

    A novel susceptor with a revolutionary V-shaped slot of solid of revolution form is proposed in the metalorganic vapor phase epitaxy (MOVPE) reactor by induction heating. This slot changes the heat transfer rate as the generated heat is transferred from the high temperature region of the susceptor to the substrate, which improves the uniformity of the substrate temperature distribution. By using finite element method (FEM), the susceptor with this structure for heating the substrate of six inches in diameter is optimized. It is observed that this optimized susceptor with the V-shaped slot makes the uniformity of the substrate temperature distribution improve more than 80%, which can be beneficial to the film growth. - Highlights: •A novel susceptor with V-shaped slot in MOVPE reactor is proposed. •Temperature in the substrate is optimized. •Great temperature uniformity of the substrate is obtained

  12. Characterization and modelling of the heat transfers in a pilot-scale reactor during composting under forced aeration

    International Nuclear Information System (INIS)

    Guardia, A. de; Petiot, C.; Benoist, J.C.; Druilhe, C.

    2012-01-01

    The paper focused on the modelling of the heat transfers during composting in a pilot-scale reactor under forced aeration. The model took into account the heat production and the transfers by evaporation, convection between material and gas crossing the material, conduction and surface convection between gas and material in bottom and upper parts of the reactor. The model was adjusted thanks to the measurements practised during fifteen composting experiments in which five organic wastes were, each, composted under three constant aeration rates. Heat production was considered proportional to oxygen consumption rate and the enthalpy per mole oxygen consumed was assumed constant. The convective heat transfer coefficients were determined on basis of the continuous measurements of the temperatures of both the lid and the bottom part of the reactor. The model allowed a satisfying prediction of the temperature of the composting material. In most cases, the mean absolute discard between the experimental and the simulated temperatures was inferior to 2.5 °C and the peaks of temperature occurred with less than 8 h delay. For the half of the experiments the temperature discard between the simulated peak and the experimental one was inferior to 5 °C. On basis of the calculation of a stoichiometric production of water through oxidation of the biodegradable organic matter, the simulation of water going out from material as vapour also allowed a rather satisfying prediction of the mass of water in final mixture. The influence of the aeration rate on every type of heat loss was characterized. Finally, the model was used to evaluate the impacts on material temperature caused by the change of the insulation thickness, the ambient temperature, take the lid away, the increase or the decrease of the mass of waste to compost.

  13. Measurements of Critical Heat Flux using Mass Transfer System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Hyun; Chung Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    In a severe accident, the reactor vessel is heated by the decay heat from core melts and the outer surface of reactor vessel is cooled by the natural convection of water pool. When the heat flux increases, boiling will start. Further increase of the heat flux may result in the CHF, which is generated by the bubble combinations. The CHF means that the reactor vessel was separated with coolant and wall temperature is raised rapidly. It may damage the reactor vessel. Also the CHF indicates the maximum cooling capability of the system. Therefore, the CHF has been used as a criterion for the regulatory and licensing. Mechanism of hydrogen vapor bubbles generated and combined can be simulated water bubbles mechanism. And also the both heat and mass transfer mechanism of CHF can be identified in the same methods. Therefore, the CHF phenomena can be simulated enough by mass transfer.

  14. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  15. Heat transfer in high-level waste management

    International Nuclear Information System (INIS)

    Dickey, B.R.; Hogg, G.W.

    1979-01-01

    Heat transfer in the storage of high-level liquid wastes, calcining of radioactive wastes, and storage of solidified wastes are discussed. Processing and storage experience at the Idaho Chemical Processing Plant are summarized for defense high-level wastes; heat transfer in power reactor high-level waste processing and storage is also discussed

  16. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    Science.gov (United States)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  17. Application of automatic inspection system to nondestructive test of heat transfer tubes of primary pressurized water cooler in the high temperature engineering test reactor. Joint research

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Furusawa, Takayuki

    2001-07-01

    Heat transfer tubes of a primary pressurized water cooled (PPWC) in the high temperature engineering test reactor (HTTR) form the reactor pressure boundary of the primary coolant, therefore are important from the viewpoint of safety. To establish inspection techniques for the heat transfer tubes of the PPWC, an automatic inspection system was developed. The system employs a bobbin coil probe, a rotating probe for eddy current testing (ECT) and a rotating probe for ultrasonic testing (UT). Nondestructive test of a half of the heat transfer tubes of the PPWC was carried out by the automatic inspection system during reactor shutdown period of the HTTR (about 55% in the maximum reactor power in this paper). The nondestructive test results showed that the maximum signal-to-noise ratio was 1.8 in ECT. Pattern and phase of Lissajous wave, which were obtained for the heat transfer tube of the PPWC, were different from those obtained for the artificially defected tube. In UT echo amplitude of the PPWC tubes inspected was lower than 20% of distance-amplitude calibration curve. Thus, it was confirmed that there was no defect in depth, which was more than the detecting standard of the probes, on the outer surface of the heat transfer tubes of the PPWC inspected. (author)

  18. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory

  19. Characteristics of convective heat transport in a packed pebble-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmohsin, Rahman S., E-mail: rsar62@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Al-Dahhan, Muthanna H., E-mail: aldahhanm@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Department of Nuclear Engineering, 301 W. 14th St./222 Fulton Hall (United States)

    2015-04-01

    Highlights: • A fast-response heat transfer probe has been developed and used in this work. • Heat transport has been quantified in terms of local heat transfer coefficients. • The method of the electrically heated single sphere in packing has been applied. • The heat transfer coefficient increases from the center to the wall of packed bed. • This work advancing the knowledge of heat transport in the studied packed bed. - Abstract: Obtaining more precise results and a better understanding of the heat transport mechanism in the dynamic core of packed pebble-bed reactors is needed because this mechanism poses extreme challenges to the reliable design and efficient operation of these reactors. This mechanism can be quantified in terms of a solid-to-gas convective heat transfer coefficient. Therefore, in this work, the local convective heat transfer coefficients and their radial profiles were measured experimentally in a separate effect pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter, using a sophisticated noninvasive heat transfer probe of spherical type. The effect of gas velocity on the heat transfer coefficient was investigated over a wide range of Reynolds numbers of practical importance. The experimental investigations of this work include various radial locations along the height of the bed. It was found that an increase in coolant gas flow velocity causes an increase in the heat transfer coefficient and that effect of the gas flow rate varies from laminar to turbulent flow regimes at all radial positions of the studied packed pebble-bed reactor. The results show that the local heat transfer coefficient increases from the bed center to the wall due to the change in the bed structure, and hence, in the flow pattern of the coolant gas. The findings clearly indicate that one value of an overall heat transfer coefficient cannot represent the local heat transfer coefficients within the bed; therefore, correlations are needed to

  20. Specialists' meeting on heat and mass transfer in the reactor cover gas, Harwell, England, 8-10 October 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The specialists' meeting on ''Heat and Mass Transfer in the Reactor Cover Gas'' was held at Harwell, the United Kingdom, on 8-10 October 1985. It was attended by 24 participants from all IWGFR member-countries: France, the Federal Republic of Germany, India, Italy, Japan, the Union of Soviet Socialist Republics, the United Kingdom and the United States. The meeting was presided over by Dr K. Eickhoff of the United Kingdom. The following topical areas were reviewed and discussed during the meeting: 1. National review presentations on the status of activities on heat and mass transfer in the reactor cover gas - 2 papers; 2. Aerosol dynamics - 4 papers; 3. Aerosol trapping - 2 papers; 4. Heat and mass transfer through cover gas in annuli - 3 papers; 5. Radiative properties - 4 papers; 6. Modelling of cover gas - 4 papers. A separate abstract was prepared for each of these papers. On the basis of papers presented and discussed by participants, session summaries and conclusions were drafted on the above topical areas. These summaries, as well as general conclusions and recommendations of the meeting were reviewed and agreed upon by consensus at the end of the meeting

  1. Heat and mass transfer in particulate suspensions

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  2. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Clark, J.S.; Walton, J.T.; Mcguire, M.L.

    1992-07-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines. 11 refs

  3. Experimental study of natural convective heat transfer in a vertical hexagonal sub channel

    International Nuclear Information System (INIS)

    Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur

    2012-01-01

    The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.

  4. MHTGR inherent heat transfer capability

    International Nuclear Information System (INIS)

    Berkoe, J.M.

    1992-01-01

    This paper reports on the Commercial Modular High Temperature Gas-Cooled Reactor (MHTGR) which achieves improved reactor safety performance and reliability by utilizing a completely passive natural convection cooling system called the RCCS to remove decay heat in the event that all active cooling systems fail to operate. For the highly improbable condition that the RCCS were to become non-functional following a reactor depressurization event, the plant would be forced to rely upon its inherent thermo-physical characteristics to reject decay heat to the surrounding earth and ambient environment. A computational heat transfer model was created to simulate such a scenario. Plant component temperature histories were computed over a period of 20 days into the event. The results clearly demonstrate the capability of the MHTGR to maintain core integrity and provide substantial lead time for taking corrective measures

  5. Heat Transfer Experiment with Supercritical CO2 Flowing Upward in a Circular Tube

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong

    2005-01-01

    SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO 2 are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations

  6. CORTAP: a coupled neutron kinetics-heat transfer digital computer program for the dynamic simulation of the high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Cleveland, J.C.

    1977-01-01

    CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP

  7. Reassessment of forced convection heat transfer correlations for refrigerant-12

    International Nuclear Information System (INIS)

    Celata, G.P.; Cuomo, M.; D'Annibale, F.; Farello, G.E.; Setaro, T.

    1986-01-01

    In the frame of a Refrigerant-12 experiment on postulated accidental transients in Pressurized Water Reactors under way at Heat Transfer Laboratory (ENEA Casaccia Research Center), an assessment of the main correlation available in scientific literature, for the different heat transfer regions encountered when a liquid is boiled in a confined heated channel, has been performed. Considering a vertical tube uniformly heated over its length with CHF at the exit, the following heat transfer regimes may be individuated: convective heat transfer to liquid, subcooled boiling, saturated nucleate boiling, forced convective heat transfer through liquid film (annular flow regime) and thermal crisis. From the comparison of computed values with an original ENEA dataset, the best correlations in predicting Refrigerant-12 data have been individuated. In a few cases, though preserving the original structure of the correlations, mainly developed for water, it was necessary to adjust some coefficients by means of best-fit procedures through our experimental data. The work has been performed in the frame of the ENEA Thermal Reactor Department Safety Research Project

  8. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow

    International Nuclear Information System (INIS)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs

  9. Design of a natural draft air-cooled condenser and its heat transfer characteristics in the passive residual heat removal system for 10 MW molten salt reactor experiment

    International Nuclear Information System (INIS)

    Zhao, Hangbin; Yan, Changqi; Sun, Licheng; Zhao, Kaibin; Fa, Dan

    2015-01-01

    As one of the Generation IV reactors, Molten Salt Reactor (MSR) has its superiorities in satisfying the requirements on safety. In order to improve its inherent safety, a concept of passive residual heat removal system (PRHRS) for the 10 MW Molten Salt Reactor Experiment (MSRE) was put forward, which mainly consisted of a fuel drain tank, a feed water tank and a natural draft air-cooled condenser (NDACC). Besides, several valves and pipes are also included in the PRHRS. A NDACC for the PRHRS was preliminarily designed in this paper, which contained a finned tube bundle and a chimney. The tube bundle was installed at the bottom of the chimney for increasing the velocity of the air across the bundle. The heat transfer characteristics of the NDACC were investigated by developing a model of the PRHRS using C++ code. The effects of the environmental temperature, finned tube number and chimney height on heat removal capacity of the NDACC were analyzed. The results show that it has sufficient heat removal capacity to meet the requirements of the residual heat removal for MSRE. The effects of these three factors are obvious. With the decay heat reducing, the heat dissipation power declines after a short-time rise in the beginning. The operation of the NDACC is completely automatic without the need of any external power, resulting in a high safety and reliability of the reactor, especially once the accident of power lost occurs to the power plant. - Highlights: • A model to study the heat transfer characteristics of the NDACC was developed. • The NDACC had sufficient heat removal capacity to remove the decay heat of MSRE. • NDACC heat dissipation power depends on outside temperature and condenser geometry. • As time grown, the effects of outside temperature and condenser geometry diminish. • The NDACC could automatically adjust its heat removal capacity

  10. Comparison of correlations for heat transfer in sphere-pac beds

    International Nuclear Information System (INIS)

    Fundamenski, W.R.; Gierszewski, P.J.

    1991-08-01

    The design of a tritium breeding blanket for a fusion reactor requires the knowledge of heat transfer within the blanket. In this paper three models for effective bed heat transfer are compared against the experimental database in order to choose a reference correlation to be used in blanket design. Two parameters are used to describe heat transfer in a packed bed: effective thermal conductivity of the bed, and a heat transfer coefficient at the bed-solid interface

  11. Numerical study on pressure drop and heat transfer for designing sodium-to-air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, Hie-Chan; Eoh, Jae-Hyuk; Cha, Jae-Eun; Kim, Seong-O.

    2013-01-01

    Highlights: ► Numerical simulation for the heat flow characteristic of the sodium-to-air heat exchanger (AHX) and tube banks. ► Parallelogram tube banks showed almost similar thermal and hydraulic characteristics to the rectangular tube banks. ► Pressure drop and heat transfer of the staggered and rectangular tube banks compared with Zhukauskas’ correlation. ► AHX was modeled as porous media and suggested design guide to enhance the performance. - Abstract: A numerical study is performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX are modeled as porous media and simulated heat and momentum transfer by a commercial program. Two-dimensional flow characteristic appears differently at the inlet region of the AHX annulus, and the required length of the inlet region is shorter for an inlet having a 45 degree chamber or a round shape than for one with a perpendicular corner. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX are evaluated and discussed. Pressure drop and heat transfer shows similar trends and underestimated values, respectively, when compared with Zhukauskas empirical correlations. The parallelogram tube bank shows similar results to the rectangular arrangement.

  12. Study on boiling heat transfer of high temperature liquid sodium

    International Nuclear Information System (INIS)

    Sakurai, Akira

    1978-01-01

    In the Intitute of Atomic Energy, Kyoto University, fundamental studies on steady state and non-steady state heat flow are underway in connection with reactor design and the safety in a critical accident in a sodium-cooled fast breeder reactor. First, the experimental apparatus for sodium heat transfer and the testing system are described in detail. The apparatus is composed of sodium-purifying section including the plugging meter for measuring purity and cold trap, the pool boiling test section for experimenting natural convection boiling heat transfer, the forced convection boiling test section for experimenting forced convection boiling heat transfer, and gas system. Next, the experimental results by the author and the data obtained so far are compared regarding heat transfer in sodium natural convection and stable nucleating boiling and critical heat flux. The effect of liquid head on a heater on boiling heat transfer coefficient and critical heat flux under the condition of low system pressure in most fundamental pool boiling was elucidated quantitatively, which has been overlooked in previous studies. It was clarified that this is the essentially important problem that can not be overlooked. From this point of view, expressions on heat transfer were also re-investigated. (Wakatsuki, Y.)

  13. Numerical prediction on turbulent heat transfer of a spacer ribbed fuel rod for high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    1994-11-01

    The turbulent heat transfer of a fuel rod with three-dimensional trapezoidal spacer ribs for high temperature gas-cooled reactors was analyzed numerically using the k-ε turbulence model, and investigated experimentally using a simulated fuel rod under the helium gas condition of a maximum outlet temperature of 1000degC and pressure of 4MPa. From the experimental results, it found that the turbulent heat transfer coefficients of the fuel rod were 18 to 80% higher than those of a concentric smooth annulus at a region of Reynolds number exceeding 2000. On the other hand, the predicted average Nusselt number of the fuel rod agreed well with the heat transfer correlation obtained from the experimental data within a relative error of 10% with Reynolds number of more than 5000. It was verified that the numerical analysis results had sufficient accuracy. Furthermore, the numerical prediction could clarify quantitatively the effects of the heat transfer augmentation by the spacer rib and the axial velocity increase due to a reduction in the annular channel cross-section. (author)

  14. Validation of heat transfer models for gap cooling

    International Nuclear Information System (INIS)

    Okano, Yukimitsu; Nagae, Takashi; Murase, Michio

    2004-01-01

    For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)

  15. Design of the prestressed concrete reactor vessel for gas-cooled heating reactors

    International Nuclear Information System (INIS)

    Becker, G.; Notheisen, C.; Steffen, G.

    1987-01-01

    The GHR pebble bed reactor offers a simple, safe and economic possibility of heat generation. An essential component of this concept is the prestressed concrete reactor vessel. A system of cooling pipes welded to the outer surface of the liner is used to transfer the heat from the reactor to the intermediate circuit. The high safety of this vessel concept results from the clear separation of the functions of the individual components and from the design principle of the prestressed conncrete. The prestressed concrete structure is so designed that failure can be reliably ruled out under all operating and accident conditions. Even in the extremely improbable event of failure of all decay heat removal systems when decay heat and accumulated heat are transferred passively by natural convection only, the integrity of the vessel remains intact. For reasons of plant availability the liner and the liner cooling system shall be designed so as to ensure safe elimination of failure over the total operating life. The calculations which were peformed partly on the basis of extremely adverse assumption, also resulted in very low loads. The prestressed concrete vessel is prefabricated to the greatest possible extent. Thus a high quality and optimized fabrication technology can be achieved especially for the liner and the liner cooling system. (orig./HP)

  16. Heat Transfer Experiment with Supercritical CO{sub 2} Flowing Upward in a Circular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO{sub 2} are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations.

  17. Natural Convection Heat Transfer of Oxide Pool During In-Vessel Retention of Core Melts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Kyun; Chung, Bum-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The integrity of reactor vessel may be threatened by the heat generation at the oxide pool and to the natural convection heat transfer to the reactor vessel by those two layers. Therefore, External Reactor Vessel Cooling (ERVC) is performed in order to secure the integrity of the reactor vessel. Whether the IVR(In-Vessel Retention) Strategy can be applicable to a larger reactor is the technical concern, which nourished the research interest for the natural convection heat transfer of metal and oxide pool and ERVC performance. Especially, it is hard to simulate oxide pool by experimentally due to the high level of buoyancy. Moreover, the volumetrically exothermic working fluid should be adopted to simulate the behavior of the core melts. Therefore, the volumetric heat sources that immersed in the working fluid have been adopted to simulate oxide pool by experiment. We investigated oxide pool with two different designs of the volumetric heat sources that adopted previous experiments. The investigation was performed by mass transfer experiment using analogy between heat and mass transfers. The results were compared to previous studies. We simulated the natural convection heat transfer of the oxide pool by mass transfer experiment. The isothermally cooled condition was established by limiting current technique firstly. The results were compared to previous studies under identical design of the volumetric heat sources. The average Nu's of the curvature and the top plate were close to the previous studies.

  18. A two-cavity reactor for solar chemical processes: heat transfer model and application to carbothermic reduction of ZnO

    International Nuclear Information System (INIS)

    Wieckert, Christian; Palumbo, Robert; Frommherz, Ulrich

    2004-01-01

    A 5 kW two-cavity beam down reactor for the solar thermal decomposition of ZnO with solid carbon has been developed and tested in a solar furnace. Initial exploratory experiments show that it operates with a solar to chemical energy conversion efficiency of about 15% when the solar flux entering the reactor is 1300 kW/m 2 , resulting in a reaction chamber temperature of about 1500 K. The solid products have a purity of nearly 100% Zn. Furthermore, the reactor has been described by a numerical model that combines radiant and conduction heat transfer with the decomposition kinetics of the ZnO-carbon reaction. The model is based on the radiosity exchange method. For a given solar input, the model estimates cavity temperatures, Zn production rates, and the solar to chemical energy conversion efficiency. The model currently makes use of two parameters which are determined from the experimental results: conduction heat transfer through the reactor walls enters the model as a lumped term that reflects the conduction loss during the experiments, and the rate of the chemical reaction includes an experimentally determined term that reflects the effective amount of ZnO and CO participating in the reactor. The model output matches well the experimentally determined cavity temperatures. It suggests that reactors built with this two-cavity concept already on this small scale can reach efficiencies exceeding 25%, if operated with a higher solar flux or if one can reduce conduction heat losses through better insulation and if one can maintain or improve the effective amount of ZnO and CO that participates in the reaction

  19. Verification and Validation of Heat Transfer Model of AGREE Code

    Energy Technology Data Exchange (ETDEWEB)

    Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)

    2013-05-15

    The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.

  20. An evaluation of analytical heat transfer area with various boiling heat transfer correlations in steam generator thermal sizing

    International Nuclear Information System (INIS)

    Jung, B. R.; Park, H. S.; Chung, D. M.; Baik, S. J.

    1999-01-01

    The computer program SAFE has been used to size and analyze the performance of a steam generator which has two types of heat transfer regions in Korean Standard Nuclear Power Plants (KSNP) and Korean Next Generation Reactor (KNGR) design. The SAFE code calculates the analytical boiling heat transfer area using the modified form of the saturated nucleate pool boiling correlation suggested by Rohsenow. The predicted heat transfer area in the boiling region is multiplied by a constant to obtain a final analytical heat transfer area. The inclusion of the multiplier in the analytical calculation has some disadvantage of loss of complete correlation by the governing heat transfer equation. Several comparative analyses have been performed quantitatively to evaluate the possibility of removing the multiplier in the analytical calculation in the SAFE code. The evaluation shows that the boiling correlation and multiplier used in predicting the boiling region heat transfer area can be replaced with other correlations predicting nearly the same heat transfer area. The removal of multiplier included in the analytical calculation will facilitate a direct use of a set of concerned analytical sizing values that can be exactly correlated by the governing heat transfer equation. In addition this will provide more reasonable basis for the steam generator thermal sizing calculation and enhance the code usability without loss of any validity of the current sizing procedure. (author)

  1. Evaluation of piping heat transfer, piping flow regimes, and steam generator heat transfer for the Semiscale Mod-1 isothermal tests

    International Nuclear Information System (INIS)

    French, R.T.

    1975-08-01

    Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)

  2. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  3. POST CRITICAL HEAT TRANSFER AND FUEL CLADDING OXIDATION

    Directory of Open Access Journals (Sweden)

    Vojtěch Caha

    2016-12-01

    Full Text Available The knowledge of heat transfer coefficient in the post critical heat flux region in nuclear reactor safety is very important. Although the nuclear reactors normally operate at conditions where critical heat flux (CHF is not reached, accidents where dryout occur are possible. Most serious postulated accidents are a loss of coolant accident or reactivity initiated accident which can lead to CHF or post CHF conditions and possible disruption of core integrity. Moreover, this is also influenced by an oxide layer on the cladding surface. The paper deals with the study of mathematical models and correlations used for heat transfer calculation, especially in post dryout region, and fuel cladding oxidation kinetics of currently operated nuclear reactors. The study is focused on increasing of accuracy and reliability of safety limit calculations (e.g. DNBR or fuel cladding temperature. The paper presents coupled code which was developed for the solution of forced convection flow in heated channel and oxidation of fuel cladding. The code is capable of calculating temperature distribution in the coolant, cladding and fuel and also the thickness of an oxide layer.

  4. Effect of radiant heat transfer on the performance of high temperature heat exchanger

    International Nuclear Information System (INIS)

    Mori, Yasuo; Hijikata, Kunio; Yamada, Yukio

    1975-01-01

    The development of high temperature gas-cooled reactors is motivated by the consideration of the application of nuclear heat for industrial uses or direct steelmaking and chemical processes. For these purposes, reliable and efficient heat exchangers should be developed. This report analyzes the effect of radiant heat transfer on the performance of high temperature heat exchangers. The heat transfer model is as follows: the channel composed with two parallel adiabatic walls is divided with one parallel plate between the walls. Non-radiative fluid flows in the two separated channels in opposite direction. Heat transfer equations for this system were obtained, and these equations were solved by some approximate method and numerical analysis. The effect of radiation on heat transfer became larger as the radiant heat transfer between two walls was larger. In the heat exchangers of counter flow type, the thermal efficiency is controlled with three parameters, namely radiation-convection parameter, Stanton number and temperature difference. The thermal efficiency was larger with the increase of these parameters. (Iwase, T.)

  5. State of the art on the heat transfer experiments under supercritical pressure condition

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Song, Chul Hwa

    2003-07-01

    The SCWR(Super-Critical Water cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project which aims at the development of new reactors with enhanced economy and safety. The SCWR is considered to be a feasible concept of new nuclear power plant if the existing technologies developed in fossil fuel fired plant and LWR technologies together with additional research on several disciplines such as materials, water chemistry and safety. As KAERI takes part in the GIF(Generation IV Forum) for the Gen-IV project, domestic concerns about the SCWR have been recently increased. In order to establish a foundation for the development of SCWR, efforts should be concentrated on the conceptual design of systems and the associated key experiments as well. Heat transfer experiments, among others, under supercritical condition are required for the proper prediction of thermal hydraulic phenomena, which are essential for the thermal hydraulic designs of reactor core. Nevertheless, the experiments have not been performed in Korea yet. This report deals with fundamental surveys on the heat transfer experiments under supercritical conditions, which are required for the understanding of heat transfer characteristics for the thermal hydraulic designs of supercritical reactor core. Investigations on the physical properties of water and CO 2 showed that the physical properties such as density, specific heat, viscosity and thermal conductivity are significantly changed near the pseudo-critical points. The state of the art on the heat transfer characteristics in relation with heat transfer deterioration and heat transfer coefficient is briefly described. In addition, previous experiments with supercritical water as well as supercritical CO 2 and Freon used for an alternating fluid are presented

  6. State of the art on the heat transfer experiments under supercritical pressure condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Song, Chul Hwa

    2003-07-01

    The SCWR(Super-Critical Water cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project which aims at the development of new reactors with enhanced economy and safety. The SCWR is considered to be a feasible concept of new nuclear power plant if the existing technologies developed in fossil fuel fired plant and LWR technologies together with additional research on several disciplines such as materials, water chemistry and safety. As KAERI takes part in the GIF(Generation IV Forum) for the Gen-IV project, domestic concerns about the SCWR have been recently increased. In order to establish a foundation for the development of SCWR, efforts should be concentrated on the conceptual design of systems and the associated key experiments as well. Heat transfer experiments, among others, under supercritical condition are required for the proper prediction of thermal hydraulic phenomena, which are essential for the thermal hydraulic designs of reactor core. Nevertheless, the experiments have not been performed in Korea yet. This report deals with fundamental surveys on the heat transfer experiments under supercritical conditions, which are required for the understanding of heat transfer characteristics for the thermal hydraulic designs of supercritical reactor core. Investigations on the physical properties of water and CO{sub 2} showed that the physical properties such as density, specific heat, viscosity and thermal conductivity are significantly changed near the pseudo-critical points. The state of the art on the heat transfer characteristics in relation with heat transfer deterioration and heat transfer coefficient is briefly described. In addition, previous experiments with supercritical water as well as supercritical CO{sub 2} and Freon used for an alternating fluid are presented.

  7. A model for dispersed flow heat transfer in rod bundles during reflood

    International Nuclear Information System (INIS)

    Wong, S.

    1980-01-01

    The present model calculates the heat transfer characteristics of the non-equilibrium dispersed droplet flow regime above the quench front during reflood by solving simultaneously the wall-to-vapor interactions, wall-to-droplet interactions and vapor-to-droplet interactions by an iterative numerical method. The unique feature in the present study is various heat transfer mechanisms are combined in an overall energy balance equation, and the convective heat transfer to vapor is obtained by calculating the vapor temperature distributions at the heated walls. The reactor rod bundle geometry, axial variations of vapor temperature and flow properties, radiative heat transfers, and enhancement of heat transfer due to turbulence are considered carefully, so that the present model could be used to predict PWR (Pressurized Water Reactor) reflood heat transfers, and hence the fuel cladding wall temperature transients. In order to achieve closure of the problem formulations, the droplet size and its motion are determined from the FLECHT (Full Length Emergency Cooling Heat Transfer Program) low flooding rate series consine axial power shape test data. The model is then verified by comparing the heat transfer predictions with FLECHT low flooding rate series skewed axial power shape test data. Comparisons of predictions with data show satisfactory agreements

  8. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube

    International Nuclear Information System (INIS)

    Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)

  9. Study on decay heat removal capability of reactor vessel auxiliary cooling system

    International Nuclear Information System (INIS)

    Nishi, Y.; Kinoshita, I.

    1991-01-01

    The reactor vessel auxiliary cooling system (RVACS) is a simple, Passive decay heat removal system for an LMFBR. However, the heat removal capacity of this system is small compared to that of an immersed type of decay heat exchanger. In this study, a high-porosity porous body is proposed to enhance the RVACS's heat transfer performance to improve its applicability. The objectives of this study are to propose a new method which is able to use thermal radiation effectively, to confirm its heat removal capability and to estimate its applicability limit of RVACS for an LMFBR. Heat transfer tests were conducted in an experimental facility with a 3.5 m heat transfer height to evaluate the heat transfer performance of the high-porosity porous body. Using the experimental results, plant transient analyses were performed for a 300 MWe pool type LMFBR under a Total Black Out (TBO) condition to confirm the heat removal capability. Furthermore, the relationship between heat removal capability and thermal output of a reactor were evaluated using a simple parameter model

  10. An Experimental Study on the Convective Heat Transfer in Narrow Rectangular Channels for Downward Flow to Predict Onset of Nucleate Boiling

    International Nuclear Information System (INIS)

    Song, Junghyun; Jeong, Yong Hoon; Lee, Juhyung; Chang, Soon Heung

    2014-01-01

    Research reactor is the nuclear reactor serves neutron source for many research fields such as neutron scattering, non-destructive testing, radioisotope treatment and so on. Due to that characteristic of research reactor, as many people work around the research reactor, research reactor should be designed to have much more conservative margin for normal operation. Boiling heat transfer is the one of the most efficient type in heat transfer modes, however, research reactor needs to avoid onset of nucleate boiling (ONB) in normal operation as IAEA recommend for research reactors to have enough ONB margin to maintain the normal operation state in 'IAEA-TECDOC-233' (1980) for the same reason explained above. Jordan Research and Training Reactor (JRTR) operates under downward flow in narrow rectangular channel in fuel assembly. There isn't sufficient heat transfer data under downward flow condition and only few ONB prediction correlation as well. In the present work, not only a new ONB prediction model would be developed, but also comparison between heat transfer data with several heat transfer correlations could be shown. In addition, as Sudo and Omar S. proposed differently about the Nusselt number behaviors in upward and downward convective heat transfer, the study of convective heat transfer should be conducted continuously to determine it exactly. In this paper, single-phase heat transfer data is analyzed by several heat transfer correlations before developing ONB prediction correlation. In this study, an experiment on the single-phase heat transfer was conducted. As shown in Fig. 5, comparison between experimental data and existing correlations shows quite huge difference as about 40%. Additional experiments on single-phase heat transfer at low heat flux are necessary to clarify the tendency of Nusselt number among heat flux and to develop new correlation for single-phase heat transfer

  11. Overview PWR-Blowdown Heat Transfer Separate-Effects Program

    International Nuclear Information System (INIS)

    White, J.D.

    1978-01-01

    The ORNL Pressurized Water Reactor Blowdown Heat Transfer Program (PWR-BDHT) is a separate-effects experimental study of thermal-hydraulic phenomena occurring during the first 20 sec of a hypothetical LOCA. Specific objectives include the determination, for a wide range of parameters, of time to CHF and the following variables for both pre- and post-CHF: heat fluxes, ΔT (temperature difference between pin surface and fluid), heat transfer coefficients, and local fluid properties. A summary of the most interesting results from the program obtained during the past year is presented. These results are in the area of: (1) RELAP verification, (2) electric pin calibration, (3) time to critical heat flux (CHF), (4) heat transfer coefficient comparisons, and (5) nuclear fuel pin simulation

  12. Technical support to the Nuclear Regulatory Commission for the boiling water reactor blowdown heat transfer program

    International Nuclear Information System (INIS)

    Rice, R.E.

    1976-09-01

    Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments

  13. Three dimensional conjugated heat transfer analysis in sodium fast reactor wire-wrapped fuel assembly

    International Nuclear Information System (INIS)

    Peniguel, C.; Rupp, I.; Juhel, JP.; Rolfo, S.; Guillaud, M.; Gervais, N.

    2009-01-01

    Fast reactors with liquid metal coolant have recently received a renewed interest owing to a more efficient usage of the primary uranium resources, and they are one of the proposal for the next Generation IV. In order to evaluate nuclear power plant design and safety, 3D analysis of the flow and heat transfer in a wire spacer fuel assembly are ongoing at EDF. The introduction of the wire wrapped spacers, helically wound along the pin axis, enhances the mixing of the coolant between sub-channels and prevents contact between the fuel pins. The mesh generation step constitutes a challenging task if a reasonable amount of cells in conjunction with a suitable spatial discretization is wanted. Several approaches have been investigated and will be presented. Quite complex global flow patterns are found using either k-ε or preferably Reynolds Stress turbulent models. Preliminary conjugated heat transfer calculations using a coupling between the finite element thermal code SYRTHES and the finite volume CFD code Code Saturne are also shown. (author)

  14. SCDAP/RELAP5 modeling of fluid heat transfer and flow losses through porous debris in a light water reactor

    International Nuclear Information System (INIS)

    Harvego, E. A.; Siefken, L. J.

    2000-01-01

    The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident

  15. Numerical modelling of heat and mass transfer in adsorption solar reactor of ammonia on active carbon

    Science.gov (United States)

    Aroudam, El. H.

    In this paper, we present a modelling of the performance of a reactor of a solar cooling machine based carbon-ammonia activated bed. Hence, for a solar radiation, measured in the Energetic Laboratory of the Faculty of Sciences in Tetouan (northern Morocco), the proposed model computes the temperature distribution, the pressure and the ammonia concentration within the activated carbon bed. The Dubinin-Radushkevich formula is used to compute the ammonia concentration distribution and the daily cycled mass necessary to produce a cooling effect for an ideal machine. The reactor is heated at a maximum temperature during the day and cool at the night. A numerical simulation is carried out employing the recorded solar radiation data measured locally and the daily ambient temperature for the typical clear days. Initially the reactor is at ambient temperature, evaporating pressure; Pev=Pst(Tev=0 ∘C) and maintained at uniform concentration. It is heated successively until the threshold temperature corresponding to the condensing pressure; Pcond=Pst(Tam) (saturation pressure at ambient temperature; in the condenser) and until a maximum temperature at a constant pressure; Pcond. The cooling of the reactor is characterised by a fall of temperature to the minimal values at night corresponding to the end of a daily cycle. We use the mass balance equations as well as energy equation to describe heat and mass transfer inside the medium of three phases. A numerical solution of the obtained non linear equations system based on the implicit finite difference method allows to know all parameters characteristic of the thermodynamic cycle and consider principally the daily evolution of temperature, ammonia concentration for divers positions inside the reactor. The tube diameter of the reactor shows the dependence of the optimum value on meteorological parameters for 1 m2 of collector surface.

  16. Enhancement of nuclear heat transfer in a typical pressurized water reactor by new spacer grids

    International Nuclear Information System (INIS)

    Nazifi, M.; Nematollahi, M.

    2007-01-01

    The fuel element geometry typically used in nuclear reactor is rod bundle whose rod-to-rod clearance is maintained by grid spacer. The heat generated in the rod by nuclear reaction is removed by coolant, usually in turbulent flow. The coolant moves axially through the subchannels. Fuel spacer grid affects the coolant flow distribution in a fuel rod bundle, and so spacer geometry has a strong influence on a bundle's thermal-hydraulic characteristics such as critical heat flux and pressure drop. An understanding of the detailed structure of the turbulent flow and heat transfer in the rod bundle, used especially as nuclear fuel elements, is of major interest to the nuclear power industry for their safe and reliable operation. The flow mixing devices on grid spacer would enhance the mixing rate between sub-channels and promote the turbulence in subchannel. The present study evaluates the effects of mixing vane shape on flow structure and heat transfer downstream of mixing vane in a sub-channel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. Six new shapes mixing vane designed by the authors, are simulated numerically to evaluate the performance in enhancing the heat transfer, in comparison with commercialized split vane. Standard K-epsilon model are used as a turbulence closure model and periodic and symmetry condition are set as boundary conditions. The capability of the model to predict the coolant flow distribution inside rod bundles is shown and discussed on the base of comparison with experimental data for a variety of geometrical and Reynolds number conditions. It is conformed that the turbulence in the sub-channel was significantly promoted by spacer and mixing devices but rapidly decreased to a fully developed level approximately 10 time of hydraulic diameter downstream of the top of spacer. Ring type mixer showed a high

  17. Various methods to improve heat transfer in exchangers

    Directory of Open Access Journals (Sweden)

    Pavel Zitek

    2015-01-01

    Full Text Available The University of West Bohemia in Pilsen (Department of Power System Engineering is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors. For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production. In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  18. Local heat transfer where heated rods touch in axially flowing water

    International Nuclear Information System (INIS)

    Kast, S.J.

    1983-05-01

    An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube

  19. Solving implicit multi-mesh flow and conjugate heat transfer problems with RELAP-7

    International Nuclear Information System (INIS)

    Zou, L.; Peterson, J.; Zhao, H.; Zhang, H.; Andrs, D.; Martineau, R.

    2013-01-01

    The fully implicit simulation capability of RELAP-7 to solve multi-mesh flow and conjugate heat transfer problems for reactor system safety analysis is presented. Compared to general single-mesh simulations, the reactor system safety analysis-type of code has unique challenges due to its highly simplified, interconnected, one-dimensional, and zero-dimensional flow network describing multiple physics with significantly different time and length scales. To use the Jacobian-free Newton Krylov-type of solver, preconditioning is generally required for the Krylov method. The uniqueness of the reactor safety analysis-type of code in treating the interconnected flow network and conjugate heat transfer also introduces challenges in providing preconditioning matrix. Typical flow and conjugate heat transfer problems involved in reactor safety analysis using RELAP-7, as well as the special treatment on the preconditioning matrix are presented in detail. (authors)

  20. A Heat Transfer Correlation in a Vertical Upward Flow of CO2 at Supercritical Pressures

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Yoon Yeong; Song, Jin Ho; Kim, Hwan Yeol

    2006-01-01

    Heat transfer data has been collected in the heat transfer test loop, named SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), in KAERI. The facility primarily aims at the generation of heat transfer data in the flow conditions and geometries relevant to SCWR (SuperCritical Water-cooled Reactor). The produced data will aid the thermohydraulic design of a reactor core. The loop uses carbon dioxide, and later the results will be scaled to the water flows. The heat transfer data has been collected for a vertical upward flow in a circular tube with varying mass fluxes, heat fluxes, and operating pressures. The results are compared with the existing correlations and a new correlation is proposed by fine-tuning the one of the existing correlations

  1. A study on the correlations development for film boiling heat transfer on spheres

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-12-31

    Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corlium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced. 7 refs., 5 figs., 5 tabs. (Author)

  2. A study on the correlations development for film boiling heat transfer on spheres

    International Nuclear Information System (INIS)

    Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung

    1998-01-01

    Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced

  3. A study on the correlations development for film boiling heat transfer on spheres

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corlium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced. 7 refs., 5 figs., 5 tabs. (Author)

  4. Effect of radiation heat transfer on the performance of high temperature heat exchanger, (2)

    International Nuclear Information System (INIS)

    Yamada, Yukio; Mori, Yasuo; Hijikata, Kunio.

    1977-01-01

    In high temperature helium gas-cooled reactors, the nuclear energy can be utilized effectively, and the safety is excellent as compared with conventional reactors. They are advantageous also in view of environmental problems. In this report, the high temperature heat exchanger used for heating steam with the helium from a high temperature gas reactor is modeled, and the case that radiating gas flow between parallel plates is considered. Analysis was made on the case of one channel and constant heat flux and on the model for a counter-flow type heat exchanger with two channels, and the effect of radiation on the heat transfer in laminar flow and turbulent flow regions was clarified theoretically. The basic equations, the method of approximate solution and the results of calculation are explained. When one dimensional radiation was considered, the representative temperature Tr regarding fluid radiation was introduced, and its relation to mean mixing temperature Tm was determined. It was clarified that the large error in the result did not arise even if Tr was taken equally to Tm, especially in case of turbulent flow. The error was practically negligible when the rate of forced convection heat transfer in case of radiating medium flow was taken same as that in the case without radiation. (Kako, I.)

  5. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    International Nuclear Information System (INIS)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.; Rohatgi, U.S.

    1995-01-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba's Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations al these conditions were compared with the GIRAFFE data. The effects of PCCS cell nodings on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to ±5% of the data with a three-node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer in the presence of noncondensable gases with only a coarse mesh. The cell length term in the condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes

  6. Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin

    2013-01-01

    The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept

  7. Radiation Heat Transfer Effect on Thermal Sizing of Air-Cooling Heat Exchanger of Emergency Cooldown Tank

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Young In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Myoung Jun; Lee, Hee Joon [School of Mechanical Eng., Kookmin University, Seoul (Korea, Republic of)

    2014-10-15

    An attempt has begun to extend the life time of emergency cooldown tank (ECT) by Korea Atomic Energy Research Institute (KAERI) researchers. Moon et al. recently reported a basic concept upon how to keep the ECT in operation beyond 72 hours after an accident occurs without any active corrective actions for the postulated design basis accidents. When the SMART (System-integrated Modular Advanced Reac-Tor) received its Standard Design Approval (SDA) for the first time in the world, hybrid safety systems are applied. However, the passive safety systems of SMART are being enforced in response to the public concern for much safer reactors since the Fukushima accident occurred. The ECT is a major component of a passive residual heat removal system (PRHRS), which is one of the most important systems to enhance the safety of SMART. It is being developed in a SMART safety enhancement project to contain enough cooling water to remove a sensible heat and a decay heat from reactor core for 72 hours since an accident occurs. Moon et al. offered to install another heat exchanger above the ECT and to recirculate an evaporated steam into water, which enables the ECT to be in operation, theoretically, indefinitely. An investigation was made to determine how long and how many tubes were required to meet the purpose of the study. In their calculation, however, a radiation heat transfer effect was neglected. The present study is to consider the radiation heat transfer for the design of air-cooling heat exchanger. Radiation heat transfer is normally ignored in many situations, but this is not the case for the present study. Kim et al. conducted thermal sizing of scaled-down ECT heat exchanger, which will be used to validate experimentally the basic concept of the present study. Their calculation is also examined to see if a radiation heat transfer effect was taken into consideration. The thermal sizing of an air-cooling heat exchanger was conducted including radiation heat transfer

  8. Heat transfer and mechanical interactions in fusion nuclear systems

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1984-01-01

    This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance

  9. Turbulent heat transfer in a coolant channel of a pressurized water reactor (PWR) core

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Saha, Arun K.; Munshi, Prabhat

    2016-01-01

    Exact predictions in nuclear reactors are more crucial, because of the safety aspects. It necessitates the appropriate modeling of heat transfer phenomena in the reactors core. A two-dimensional thermal-hydraulics model is used to study the detailed analysis of the coolant region of a fuel pin. Governing equations are solved using Marker and Cell (MAC) method. Standard wall functions k-ε turbulence model is incorporated to consider the turbulent behaviour of the flow field. Validation of the code and a few results for a typical PWR running at normal operating conditions reported earlier. There were some discrepancies in the old calculations. These discrepancies have been resolved and updated results are presented in this work. 2D thermal-hydraulics model results have been compared with the 1D thermal-hydraulics model results and conclusions have been drawn. (author)

  10. Modeling Loss-of-Flow Accidents and Their Impact on Radiation Heat Transfer

    Directory of Open Access Journals (Sweden)

    Jivan Khatry

    2017-01-01

    Full Text Available Long-term high payload missions necessitate the need for nuclear space propulsion. The National Aeronautics and Space Administration (NASA investigated several reactor designs from 1959 to 1973 in order to develop the Nuclear Engine for Rocket Vehicle Application (NERVA. Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. In this work, a system model based on RELAP5 is developed to simulate loss-of-flow accidents on the Pewee I test reactor. This paper investigates the radiation heat transfer between the fuel elements and the structures around it. In addition, the impact on the core fuel element temperature and average core pressure was also investigated. The following expected results were achieved: (i greater than normal fuel element temperatures, (ii fuel element temperatures exceeding the uranium carbide melting point, and (iii average core pressure less than normal. Results show that the radiation heat transfer rate between fuel elements and cold surfaces increases with decreasing flow rate through the reactor system. However, radiation heat transfer decreases when there is a complete LOFA. When there is a complete LOFA, the peripheral coolant channels of the fuel elements handle most of the radiation heat transfer. A safety system needs to be designed to counteract the decay heat resulting from a post-LOFA reactor scram.

  11. The Effective Convectivity Model for Simulation and Analysis of Melt Pool Heat Transfer in a Light Water Reactor Pressure Vessel Lower Head

    International Nuclear Information System (INIS)

    Tran, Chi Thanh

    2009-09-01

    Severe accidents in a Light Water Reactor (LWR) have been a subject of intense research for the last three decades. The research in this area aims to reach understanding of the inherent physical phenomena and reduce the uncertainties in their quantification, with the ultimate goal of developing models that can be applied to safety analysis of nuclear reactors, and to evaluation of the proposed accident management schemes for mitigating the consequences of severe accidents. In a hypothetical severe accident there is likelihood that the core materials will be relocated to the lower plenum and form a decay-heated debris bed (debris cake) or a melt pool. Interactions of core debris or melt with the reactor structures depend to a large extent on the debris bed or melt pool thermal hydraulics. In case of inadequate cooling, the excessive heat would drive the structures' overheating and ablation, and hence govern the vessel failure mode and timing. In turn, threats to containment integrity associated with potential ex-vessel steam explosions and ex-vessel debris uncoolability depend on the composition, superheat, and amount of molten corium available for discharge upon the vessel failure. That is why predictions of transient melt pool heat transfer in the reactor lower head, subsequent vessel failure modes and melt characteristics upon the discharge are of paramount importance for plant safety assessment. The main purpose of the present study is to develop a method for reliable prediction of melt pool thermal hydraulics, namely to establish a computational platform for cost-effective, sufficiently-accurate numerical simulations and analyses of core Melt-Structure-Water Interactions in the LWR lower head during a postulated severe core-melting accident. To achieve the goal, an approach to efficient use of Computational Fluid Dynamics (CFD) has been proposed to guide and support the development of models suitable for accident analysis. The CFD method, on the one hand, is

  12. Turbulence model for melt pool natural convection heat transfer

    International Nuclear Information System (INIS)

    Kelkar, K.M.; Patankar, S.V.

    1994-01-01

    Under severe reactor accident scenarios, pools of molten core material may form in the reactor core or in the hemispherically shaped lower plenum of the reactor vessel. Such molten pools are internally heated due to the radioactive decay heat that gives rise to buoyant flows in the molten pool. The flow in such pools is strongly influenced by the turbulent mixing because the expected Rayleigh numbers under accidents scenarios are very high. The variation of the local heat flux over the boundaries of the molten pools are important in determining the subsequent melt progression behavior. This study reports results of an ongoing effort towards providing a well validated mathematical model for the prediction of buoyant flow and heat transfer in internally heated pool under conditions expected in severe accident scenarios

  13. Development of heat transfer package for core thermal-hydraulic design and analysis of upgraded JRR-3

    International Nuclear Information System (INIS)

    Sudo, Yukio; Ikawa, Hiromasa; Kaminaga, Masanori

    1985-01-01

    A heat transfer package was developed for the core thermal-hydraulic design and analysis of the Japan Research Reactor-3 (JRR-3) which is to be remodeled to a 20 MWt pool-type, light water-cooled reactor with 20 % low enriched uranium (LEU) plate-type fuel. This paper presents the constitution of the developed heat transfer package and the applicability of the heat transfer correlations adopted in it, based on the heat transfer experiments in which thermal-hydraulic features of the new JRR-3 core were properly reflected. (author)

  14. Single-phase convective heat transfer in rod bundles

    International Nuclear Information System (INIS)

    Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

    2008-01-01

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids

  15. Single-phase convective heat transfer in rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)

    2008-04-15

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.

  16. Development of local heat transfer and pressure drop models for pebble bed high temperature gas-cooled reactor cores - HTR2008-58296

    International Nuclear Information System (INIS)

    McLaughlin, B.; Worsley, M.; Stainsby, R.; Grief, A.; Dennier, A.; Macintosh, S.; Van Heerden, E.

    2008-01-01

    This paper describes pressure drop and heat transfer coefficient predictions for a typical coolant flow within the core of a pebble bed reactor (PBR) by examining a representative group of pebbles remote from the reflector region. The three- dimensional steady state flow and heat transfer predictions utilized in this work are obtained from a computational fluid dynamics (CFD) model created in the commercial software ANSYS FLUENT TM . This work utilizes three RANS turbulence models and the Chilton-Colburn analogy for heat transfer. A methodology is included in this paper for creating a quality unstructured mesh with prismatic surface layers on a random arrangement of touching pebbles. The results of the model are validated by comparing them with the correlations of the German KTA rules for a PBR. (authors)

  17. Analysis of prompt supercritical process with heat transfer and temperature feedback

    Institute of Scientific and Technical Information of China (English)

    ZHU BO; ZHU Qian; CHEN Zhiyun

    2009-01-01

    The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper.Considering the effect of heat transfer on temperature of the reactor,a new model is set up.For any initial power,the variations of output power and reactivity with time are obtained by numerical method.The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed.It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power,and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper,and the analytical solution can be adopted.The results provide a theoretical base for safety analysis and operation management of a power reactor.

  18. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert

    2017-09-14

    The present invention discloses a system and method for supercritical water gasification (SCWG) of biomass materials wherein the system includes a SCWG reactor and a plurality of heat exchangers located within a shared pressurized vessel, which decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed and fabricated in manner that would support commercial scaled-up SCWG operations. By using heat exchangers coupled to the reactor in a series configuration, significant efficiencies are achieved by the present invention SCWG system over prior known SCWG systems.

  19. Post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.; Condie, K.G.

    1980-01-01

    This paper describes quantitatively new mechanisms in the post-CHF regime which provide understanding and predictive capability for several current two-phase forced convective heat transfer problems. These mechanisms are important in predicting rod temperature turnaround and quenching during the reflood phase of either a hypothetical loss-of-coolant accident (LOCA) or the FLECHT and Semiscale experiments. The mechanisms are also important to the blowdown phase of a LOCA or the recent Loss-of-Fluid Test (LOFT) experiments L2-2 and L2-3, which were 200% cold leg break transients. These LOFT experiments experienced total core quenching in the early part of the blowdown phase at high (1000 psia) pressures. The mechanisms are also important to certain pressurized water reactor (PWR) operational transients where the reactor may operate in the post-CHF regime for short periods of time. Accurate prediction of the post-CHF heat transfer including core quench during these transients is of prime importance to limit maximum cladding temperatures and prevent cladding deformation

  20. Heat transfer phenomena revelant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression

  1. Heat transfer phenomena relevant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression. 26 refs

  2. Two phase nonequilibrium heat transfer in the TRAC-PD2 code

    International Nuclear Information System (INIS)

    Mandell, D.A.; Liles, D.R.

    1980-01-01

    TRAC is a best-estimate, multidimensional, nonequilibrium computer code intended for the analysis of loss-of-coolant accidents (LOCA's) in light water reactors. TRAC-PD2 is the third, detailed, pressurized water reactor version of the code. The TRAC code is modular both by components and by function. That is, vessels, pipes, pumps, etc. can be coupled together in any manner in order to simulate a reactor or a particular experimental facility. Individual physical phenomena are also coded in separate subroutines. This paper discusses the wall to fluid heat transfer coefficient correlations, the interfacial heat transfer models, and presents results for several experimental facilities

  3. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    International Nuclear Information System (INIS)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.

    1995-01-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba's Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to ±5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes

  4. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  5. Accident analysis of heat pipe cooled and AMTEC conversion space reactor system

    International Nuclear Information System (INIS)

    Yuan, Yuan; Shan, Jianqiang; Zhang, Bin; Gou, Junli; Bo, Zhang; Lu, Tianyu; Ge, Li; Yang, Zijiang

    2016-01-01

    Highlights: • A transient analysis code TAPIRS for HPS has been developed. • Three typical accidents are analyzed using TAPIRS. • The reactor system has the self-stabilization ability under accident conditions. - Abstract: A space power with high power density, light weight, low cost and high reliability is of crucial importance to future exploration of deep space. Space reactor is an excellent candidate because of its unique characteristics of high specific power, low cost, strong environment adaptability and so on. Among all types of space reactors, heat pipe cooled space reactor, which adopts the passive heat pipe (HP) as core cooling component, is considered as one of the most promising choices and is widely studied all over the world. This paper develops a transient analysis code (TAPIRS) for heat pipe cooled space reactor power system (HPS) based on point reactor kinetics model, lumped parameter core heat transfer model, combined HP model (self-diffusion model, flat-front startup model and network model), energy conversion model of Alkali Metal Thermal-to-Electric Conversion units (AMTEC), and HP radiator model. Three typical accidents, i.e., control drum failure, AMTEC failure and partial loss of the heat transfer area of radiator are then analyzed using TAPIRS. By comparing the simulation results of the models and steady state with those in the references, the rationality of the models and the solution method is validated. The results show the following. (1) After the failure of one set of control drums, the reactor power finally reaches a stable value after two local peaks under the temperature feedback. The fuel temperature rises rapidly, however it is still under safe limit. (2) The fuel temperature is below a safe limit under the AMTEC failure and partial loss of the heat transfer area of radiator. This demonstrates the rationality of the system design and the potential applicability of the TAPIRS code for the future engineering application of

  6. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  7. Experimental study on single-phase convection heat transfer characteristics of pebble bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Zhou Ping; Xu Guangzhan

    2012-01-01

    The water-cooled pebble bed reactor core is the porous channels stacked with spherical fuel elements, having evident effect on enhancing heat transfer. Owing to the variability and randomness characteristics of it's interstice, pebble bed channels have a very complex heat transfer situation and have little correlative research. In order to research the heat transfer characters of pebble bed channels with internal heat source, electromagnetic induction heating method was adopted for overall heating the pebble bed which was composed of 8 mm diameter steel balls, and the internal heat transfer characteristics were researched. By comparing and analyzing the experimental data, the rule of power distribution and heat transfer coefficient with heat flux density, inlet temperature and working fluid's Re were got. According to the experimental data fitting, the dimensionless average heat transfer coefficient correlation criteria was got. The fitting results are good agreement with the experimental results within 12% difference. (authors)

  8. Dimensional analysis of boiling heat transfer burnout conditions

    International Nuclear Information System (INIS)

    El-Mitwally, E.S.; Raafat, N.M.; Darwish, M.A.

    1979-01-01

    The first criteria in boiling water systems design, such as boiling water reactors, is that no burnout in the core is allowed to exist under any conditions of the reactor operation either during steady state operation or during any of the several postulated accidental transients, such as sudden interruption of coolant flow in the reactor core (due to pump failure or blockage of fuel channel). The aim of the present work is to obtain a correlation for the critical heat flux based on a theoretical study where the mechanism of burn out and the related hydrodynamic and heat transfer equations are considered. 8 refs

  9. Heat transfer and fluid flow in nuclear systems

    CERN Document Server

    Fenech, Henri

    1982-01-01

    Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto

  10. Heat transfer of liquid-metal magnetohydrodynamic flow with internal heat generation

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige; Kurita, Kazuhisa; Kodama, Satoshi

    2000-01-01

    Numerical calculations on heat transfer of a magnetohydrodynamic (MHD) flow with internal heat generation in a rectangular channel have been performed for the cases of very-large Hartmann numbers, finite wall conductivities and small aspect ratio (i.e. small length ratios of the channel side perpendicular to the applied magnetic field and the side parallel to the field), simulating typical conditions for a fusion-reactor blanket. The Nusselt numbers of the MHD flow in rectangular channels with aspect ratios of 1/10 to 1/40 for Hartmann numbers of ∼5 x 10 5 become ∼10 times higher than those for the corresponding flow under no magnetic field. The Nusselt number becomes higher as the internal heat generation rate increases as far as the heat generation rates in a fusion reactor blanket are considered. (author)

  11. Friction pressure drop and heat transfer coefficient of two-phase flow in helically coiled tube once-through steam generator for integrated type marine water reactor

    International Nuclear Information System (INIS)

    Nariai, Hideki; Kobayashi, Michiyuki; Matsuoka, Takeshi.

    1982-01-01

    Two-phase friction pressure drop and heat transfer coefficients in a once-through steam generator with helically coiled tubes were investigated with the model test rig of an integrated type marine water reactor. As the dimensions of the heat transfer tubes and the thermal-fluid conditions are almost the same as those of real reactors, the data applicable directly to the real reactor design were obtained. As to the friction pressure drop, modified Kozeki's prediction which is based on the experimental data by Kozeki for coiled tubes, agreed the best with the experimental data. Modified Martinelli-Nelson's prediction which is based on Martinelli-Nelson's multiplier using Ito's equation for single-phase flow in coiled tube, agreed within 30%. The effect of coiled tube on the average heat transfer coefficients at boiling region were small, and the predictions for straight tube could also be applied to coiled tube. Schrock-Grossman's correlation agreed well with the experimental data at the pressures of lower than 3.5 MPa. It was suggested that dryout should be occurred at the quality of greater than 90% within the conditions of this report. (author)

  12. A Heat Transfer Correlation in a Vertical Upward Flow of CO{sub 2} at Supercritical Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Rae; Bae, Yoon Yeong; Song, Jin Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Heat transfer data has been collected in the heat transfer test loop, named SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), in KAERI. The facility primarily aims at the generation of heat transfer data in the flow conditions and geometries relevant to SCWR (SuperCritical Water-cooled Reactor). The produced data will aid the thermohydraulic design of a reactor core. The loop uses carbon dioxide, and later the results will be scaled to the water flows. The heat transfer data has been collected for a vertical upward flow in a circular tube with varying mass fluxes, heat fluxes, and operating pressures. The results are compared with the existing correlations and a new correlation is proposed by fine-tuning the one of the existing correlations.

  13. Preliminary feasibility study of the heat - pipe ENHS reactor

    International Nuclear Information System (INIS)

    Fratoni, M.; Kim, L.; Mattafirri, S.; Petroski, R.; Greenspan, E.

    2007-01-01

    This preliminary study assesses the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor [1] to have a solid core from which heat is removed by liquid-metal heat pipes (HP). Like the SAFE space nuclear reactor core [2], the HP-ENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The HPs extend beyond the core length and transfer heat to a secondary coolant that flows by natural circulation. The HP-ENHS reactor is designed to preserve many features of the ENHS reactor including 20-year operation without refueling, very small excess reactivity throughout life, natural circulation cooling, walk-away passive safety, and robust proliferation resistance. The target power level and specific power of the HP-ENHS reactor are those of the reference ENHS reactor [1]. Compared to previous ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system, the HP-ENHS reactor offers a number of possible advantageous features including: (1) significantly enhanced decay heat removal capability; (2) no positive void reactivity coefficients; (3) no direct contact between the fuel clad and coolant, hence, relatively lower wet corrosion of the clad; (4) a core that is more robust for transportation; (5) higher temperature potentially offering higher efficiency and hydrogen production capability. The study focuses on four areas: material compatibility analysis, HP performance analysis, neutronic analysis and thermal-hydraulic analysis. Of four high-temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of working fluid type, operating temperature, wick design and HP diameter and length. Sodium is the preferred working fluid and the HP working temperature is 1300 K. The neutronic analysis found that it is possible to achieve criticality

  14. In-pile critical heat flux and post-dryout heat transfer measurements – A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, D.C., E-mail: degroeneveld@gmail.com

    2017-06-15

    In the 1960s’ and 1970s’ Canada was a world leader in performing in-reactor heat transfer experiments on fuel bundles instrumented with miniature sheath thermocouples. Several Critical Heat Flux (CHF) and Post-CHF experiments were performed in Chalk River’s NRU and NRX reactors on water-cooled 3-, 18-, 19-, 21-, and 36-element fuel bundles. Most experiments were obtained at steady-state conditions, where the power was raised gradually from single-phase conditions up to the CHF and beyond. Occasionally, post-dryout temperatures up to 600 °C were maintained for several hours. In some tests, the fuel behaviour during loss-of-flow and blowdown transients was investigated – during these transients sheath temperatures could exceed 2000 °C. Because of the increasingly more stringent licensing requirements for in-pile heat transfer tests on instrumented fuel bundles, no in-pile CHF and post-dryout tests on fuel bundles have been performed anywhere in the world for the past 40 years. This paper provides details of these unique in-pile experiments and describes some of their heat transfer results.

  15. Local heat transfer coefficient in a fluidized bed

    International Nuclear Information System (INIS)

    Al-Busoul, A. M.

    1999-01-01

    This paper presents an experimental study for the local heat transfer coefficient. The experiments was conducted inside a reactor with inner diameter (I D = 142mm) at atmospheric conditions (temperature mean value = 29 deg.) The bed was heated by means of a parochial electric heater with a diameter of (d h = 29 mm) and a constant power of 5W. The following factors varied: particles type and diameter, fluid velocity, bed height and heater position inside the reactor. The results were presented and discussed. (author). 15 refs., 7 figs

  16. Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure CO2 in a Vertical Annulus Passage

    International Nuclear Information System (INIS)

    Kang, Deog Ji; Kim, Sin; Kim, Hwan Yeol; Bae, Yoon Yeong

    2007-01-01

    Heat transfer experiments at a vertical annulus passage were carried out in the SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation) to investigate the heat transfer behaviors of supercritical CO 2 . The collected test data are to be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). The mass flux was in the range of 400 ∼1200 kg/m 2 s and the heat flux was chosen up to 150 kW/m 2 . The selected pressures were 7.75 and 8.12 MPa. The heat transfer data were analyzed and compared with the previous tube test data. The test results showed that the heat transfer characteristics were similar to those of the tube in case of a normal heat transfer mode and degree of heat transfer deterioration became smaller than that in the tube. Comparison of the experimental heat transfer coefficients with the predicted ones by the existing correlations showed that there was not a distinct difference between the correlations

  17. Study of heat transfer in 3D fuel rods of the EPRI-9R reactor modified

    International Nuclear Information System (INIS)

    Affonso, Renato Raoni Werneck; Lava, Deise Diana; Borges, Diogo da Silva; Sampaio, Paulo Augusto Berquo de; Moreira, Maria de Lourdes

    2014-01-01

    This paper aims to conduct a case study of the fuel rods that have the highest and the lowest average power of the EPRI-9R 3D reactor modified , for various positions of the control rods banks. For this, will be addressed the verification of computer code, comparing the results obtained with analytical solutions. This check is important so that, subsequently, it is possible use the program to understand the behavior of the fuel rods and the coolant channel of the EPRI-9R 3D reactor modified. Thus, in view of the scope of this paper, first a brief introducing on the heat transfer is done, including the rod equations and the equation of energy in the channel to allow the analysis of the results

  18. High-temperature gas-cooled reactors and process heat

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1980-01-01

    High-Temperature Gas-Cooled Reactors (HTGRs) are fueled with ceramic-coated microspheres of uranium and thorium oxides/carbides embedded in graphite blocks which are cooled with helium. Promising areas of HTGR application are in cogeneration, energy transport using Heat Transfer Salt, recovery of oils from oil shale, steam reforming of methane for chemical production, coal gasification, and in energy transfer using chemical heat jpipes in the long term. Further, HTGRs could be used as the energy source for hydrogen production through thermochemical water splitting in the long term. The potential market for Process Heat HTGRs is 100-200 large units by about the year 2020

  19. Study of condensation heat transfer following a main steam line break inside containment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J.H.; Elia, F.A. Jr.; Lischer, D.J. [Stone & Webster Engineering Corporation, Boston, MA (United States)

    1995-09-01

    An alternative model for calculating condensation heat transfer following a main stream line break (MSLB) accident is proposed. The proposed model predictions and the current regulatory model predictions are compared to the results of the Carolinas Virginia Tube Reactor (CVTR) test. The very conservative results predicted by the current regulatory model result from: (1) low estimate of the condensation heat transfer coefficient by the Uchida correlation and (2) neglecting the convective contribution to the overall heat transfer. Neglecting the convection overestimates the mass of steam being condensed and does not permit the calculation of additional convective heat transfer resulting from superheated conditions. In this study, the Uchida correlation is used, but correction factors for the effects of convection an superheat are derived. The proposed model uses heat and mass transfer analogy methods to estimate to convective fraction of the total heat transfer and bases the steam removal rate on the condensation heat transfer portion only. The results predicted by the proposed model are shown to be conservative and more accurate than those predicted by the current regulatory model when compared with the results of the CVTR test. Results for typical pressurized water reactors indicate that the proposed model provides a basis for lowering the equipment qualification temperature envelope, particularly at later times following the accident.

  20. Secondary heat exchanger design and comparison for advanced high temperature reactor

    International Nuclear Information System (INIS)

    Sabharwall, P.; Kim, E. S.; Siahpush, A.; McKellar, M.; Patterson, M.

    2012-01-01

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  1. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1986-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  2. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1987-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during stead-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K steam generator inlet plenum fluid temperatures, 6.2 MPa secondary pressure). The Semiscale (MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  3. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  4. Solid-Core Heat-Pipe Nuclear Batterly Type Reactor

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2008-01-01

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP). Like the SAFE 400 space nuclear reactor core, the HPENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The core is oriented horizontally and has a square rather cylindrical cross section for effective heat transfer. The HPs extend from the two axial reflectors in which the fission gas plena are embedded and transfer heat to an intermediate coolant that flows by natural-circulation. The HP-ENHS is designed to preserve many features of the ENHS including 20-year operation without refueling, very small excess reactivity throughout life, natural circulation cooling, walkaway passive safety, and robust proliferation resistance. The target power level and specific power of the HP-ENHS reactor are those of the reference ENHS reactor. Compared to previous ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system, the HP-ENHS reactor offers a number of advantageous features including: (1) significantly enhanced passive decay heat removal capability; (2) no positive void reactivity coefficients; (3) relatively lower corrosion of the cladding (4) a core that is more robust for transportation; (5) higher temperature potentially offering higher efficiency and hydrogen production capability. This preliminary study focuses on five areas: material compatibility analysis, HP performance analysis, neutronic analysis, thermal-hydraulic analysis and safety analysis. Of the four high-temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of working fluid type, operating temperature, wick design and HP diameter and length. Sodium is the

  5. Present status of heat transfer in narrow gap rectangular channel

    International Nuclear Information System (INIS)

    Sudo, Yukio; Kaminaga, Masanori

    1990-01-01

    In the safety evaluation for research nuclear reactors, at the time of abnormal transient change and accidents, after the tripping of a primary coolant pump, such event that the flow direction of coolant in a core reverses from steady downward flow to rising flow is supposed. In this case, the coexisting convection field, in which free convection and forced convection coexist, arises in place of forced convection, and especially in the research reactors using plate type fuel like JRR-3, it is important to grasp the heat transfer characteristics in the coexisting convection field in a narrow channel. Jackson et al. proposed the heat transfer correlation equation which can be applied to wide conditions including the coexisting convection zone, but its applicability to a narrow channel has not been confirmed. Based on the experimental results, in this study, the effect that the decrease of gap exerts to the convection heat transfer characteristics reported so far was investigated. The experiment and the results are reported. In this experiment on the coexisting convection zone in a narrow gap, the effect of main flow acceleration arose sufficiently large as compared with the effect of buoyancy, and heat transfer was promoted. (K.I.)

  6. Effects of transient and non-uniform distribution of heat flux on intensity of heat transfer and burnout conditions in the channels of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vitaly Osmachkin [Russian Research Center ' Kurchatov Institute' 1, Kurchatov sq, Moscow 123182 (Russian Federation)

    2005-07-01

    Full text of publication follows: The influence of power transient, changes of flow rate, inlet temperatures or pressure in cores of nuclear reactors on heat transfer and burnout conditions in channels depend on rate of such violations. Non-uniform distribution of the heat flux is also important factor for heat transfer and development of crisis phenomenon. Such effects may be significant for NPPs safety. But they have not yet generally accepted interpretation. Steady state approach is often recommended for use in calculations. In the paper a review of experimental observed so-called non-equilibrium effects is presented. The effects of space and time factors are displaying due delay in reformation turbulence intensity, velocity, temperatures or void fraction profiles, water film flow on the surface of heated channels. For estimation of such effect different methods are used. Modern computer codes based on two or three fluids approaches are considered as most effective. But simple and clear correlations may light up the mechanics of effects on heat transfer and improve general understanding of scale and significance of the transient events. In the paper the simplified methods for assessment the influence of lags in the development of distributions of parameters of flow, the relaxation of temporal or space violations are considered. They are compared with more sophisticated approaches. Velocities of disturbance fronts moving along the channels are discussed also. (author)

  7. Study on Heat Transfer Characteristics of One Side Heated Vertical Channel Applied as Vessel Cooling System

    International Nuclear Information System (INIS)

    Kuriyama, Shinji; Takeda, Tetsuaki; Funatani, Shumpei

    2014-01-01

    The inherent properties of the Very-High-Temperature Reactor facilitate the design of the VHTR with high degree of passive safe performances, compared to other type of reactors. However; it is still not clear if the VHTR can maintain a passive safe function during the severe accident, or what would be a design criterion to guarantee the VHTR with the high degree of passive safe performances during the accidents. In the Very High Temperature Reactor (VHTR) which is a next generation nuclear reactor system, ceramics and graphite are used as a fuel coating material and a core structural material, respectively. Even if the depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change slowly. This is because the thermal capacity of the core is so large. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel (RPV). This study is to develop the passive cooling system for the VHTR using the vertical channel inserting porous materials. The objective of this study is to investigate heat transfer characteristics of natural convection of a one-side heated vertical channel inserting the porous materials with high porosity. In order to obtain the heat transfer and fluid flow characteristics of a vertical channel inserting porous material, we have also carried out a numerical analysis using the commercial CFD code. From the analytical results obtained in the natural convection cooling, an amount of removed heat enhanced inserting the copper wire. It was found that an amount of removed heat inserting the copper wire (porosity = 0.9972) was about 10% higher than that without the copper wire. This paper describes a thermal performance of the one-side heated vertical channel inserting copper wire with high porosity. (author)

  8. GAM-HEAT -- a computer code to compute heat transfer in complex enclosures

    International Nuclear Information System (INIS)

    Cooper, R.E.; Taylor, J.R.; Kielpinski, A.L.; Steimke, J.L.

    1991-02-01

    The GAM-HEAT code was developed for heat transfer analyses associated with postulated Double Ended Guillotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re- radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices, and also accounts for convective, conductive, and advective heat exchanges. The code is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium. The GAM-HEAT code has been exercised extensively for computing transient temperatures in SRS reactors with specific charges and control components. Results from these computations have been used to establish the need for and to evaluate hardware modifications designed to mitigate results of postulated accident scenarios, and to assist in the specification of safe reactor operating power limits. The code utilizes temperature dependence on material properties. The efficiency of the code has been enhanced by the use of an iterative equation solver. Verification of the code to date consists of comparisons with parallel efforts at Los Alamos National Laboratory and with similar efforts at Westinghouse Science and Technology Center in Pittsburgh, PA, and benchmarked using problems with known analytical or iterated solutions. All comparisons and tests yield results that indicate the GAM-HEAT code performs as intended

  9. A Study on Conjugate Heat Transfer Analysis of Reactor Vessel including Irradiated Structural Heat Source

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Cho, Hyuksu; Im, Inyoung; Kim, Eunkee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    Though Material reliability programs (MRPs) have a purpose to provide the evaluation or management methodologies for the operating RVI, the similar evaluation methodologies can be applied to the APR1400 fleet in the design stage for the evaluation of neutron irradiation effects. The purposes of this study are: to predict the thermal behavior whether or not irradiated structure heat source; to evaluate effective thermal conductivity (ETC) in relation to isotropic and anisotropic conductivity of porous media for APR1400 Reactor Vessel. The CFD simulations are performed so as to evaluate thermal behavior whether or not irradiated structure heat source and effective thermal conductivity for APR1400 Reactor Vessel. In respective of using irradiated structure heat source, the maximum temperature of fluid and core shroud for isotropic ETC are 325.8 .deg. C, 341.5 .deg. C. The total amount of irradiated structure heat source is about 5.41 MWth and not effect to fluid temperature.

  10. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  11. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  12. Expandable antivibration bar for heat transfer tubes of a pressurized water reactor steam generator

    International Nuclear Information System (INIS)

    Appleman, R.H.

    1985-01-01

    An expandable antivibration bar for use in stabilizing the U-bend portion of heat transfer tubes in a pressurized water reactor steam generator comprises two adjustable rods connected together by an arcuate connector. The two adjustable rods preferably comprise two mating rod sections having complementary angular sliding surfaces thereon, with means provided to move the rod sections relative to each other along the sliding surfaces so as to expand the rods from a first mated cross-sectional width to a second larger cross-sectional width. The ends of the rod sections have means for aligning the two rod sections and maintaining them in alignment during expansion. (author)

  13. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  14. HTCC - a heat transfer model for gas-steam mixtures

    International Nuclear Information System (INIS)

    Papadimitriou, P.

    1983-01-01

    The mathematical model HTCC (Heat Transfer Coefficient in Containment) has been developed for RALOC after a loss-of-coolant accident in order to determine the local heat transfer coefficients for transfer between the containment atmosphere and the walls of the reactor building. The model considers the current values of room and wall temperature, the concentration of steam and non-condensible gases, geometry data and those of fluid dynamics together with thermodynamic parameters and from these determines the heat transfer mechanisms due to convection, radiation and condensation. The HTCC is implemented in the RALOC program. Comparative analyses of computed temperature profiles, for HEDL Standard problems A and B on hydrogen distribution, and of computed temperature profiles determined during the heat-up phase in the CSE-A5 experiment show a good agreement with experimental data. (orig.) [de

  15. The secure heating reactor

    International Nuclear Information System (INIS)

    Pind, C.

    1987-01-01

    The SECURE heating reactor was designed by ASEA-ATOM as a realistic alternative for district heating in urban areas and for supplying heat to process industries. SECURE has unique safety characteristics, that are based on fundamental laws of physics. The safety does not depend on active components or operator intervention for shutdown and cooling of the reactor. The inherent safety characteristics of the plant cannot be affected by operator errors. Due to its very low environment impact, it can be sited close to heat consumers. The SECURE heating reactor has been shown to be competitive in comparison with other alternatives for heating Helsinki and Seoul. The SECURE heating reactor forms a basis for the power-producing SECURE-P reactor known as PIUS (Process Inherent Ultimate Safety), which is based on the same inherent safety principles. The thermohydraulic function and transient response have been demonstrated in a large electrically heated loop at the ASEA-ATOM laboratories

  16. Heat transfer coefficient for lead matrixing in disposal containers for used reactor fuel

    International Nuclear Information System (INIS)

    Mathew, P.M.; Taylor, M.; Krueger, P.A.

    1985-02-01

    In the Canadian Nuclear Fuel Waste Management Program, metal matrices with low melting points are being evaluated for their potential to provide support for the shell of disposal containers for used fuel, and to act as an additional barrier to the release of radionuclides. The metal matrix would be incorporated into the container by casting. To study the heat transfer processes during solidification, a steady-state technique was used, involving lead as the cast metal, to determine the overall heat transfer coefficient between the lead and some of the candidate container materials. The existence of an air gap between the cast lead and the container material appeared to control the overall heat transfer coefficient. The experimental observations indicated that the surface topography of the container material influences the heat transfer and that a smoother surface results in a greater heat transfer than a rough surface. The experimental results also showed an increasing heat transfer coefficient with increasing temperature difference across the container base plates; a model developed to base-plate bending can explain the observed results

  17. Heat load imposed on reactor vessels during in-vessel retention of core melts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su-Hyeon; Chung, Bum-Jin, E-mail: bjchung@khu.ac.kr

    2016-11-15

    Highlights: • Angular heat load on reactor vessel by natural convection of oxide pool was measured. • High Ra was achieved by using mass transfer experiments based on analogy concept. • Measured Nusselt numbers agreed reasonably with the other existing studies. • Three different types of volumetric heat sources were compared. • They didn’t affect the heat flux of the top plate but affected those of the reactor vessel. - Abstract: We measured the heat load imposed on reactor vessels by natural convection of the oxide pool in severe accidents. Based on the analogy between heat and mass transfer, mass transfer experiments were performed using a copper sulfate electroplating system. A modified Rayleigh number of the order 10{sup 14} was achieved in a small facility with a height of 0.1 m. Three different types of volumetric heat sources were compared and the average Nusselt number of the curved surface was 39% lower, whereas in the case of the top plate was 6% higher than in previous studies with a two-dimensional geometry due to the high Sc value of this study. Reliable experimental data on the angular heat flux ratios were reported compared to those of the BALI and SIGMA CP facilities in terms of fluctuations and consistency.

  18. Production of molten UO2 pools by internal heating: apparatus and preliminary experimental heat transfer results

    International Nuclear Information System (INIS)

    Chasanov, M.G.; Gunther, W.H.; Baker, L. Jr.

    1977-01-01

    The capability for removal of heat from a pool of molten fuel under postaccident conditions is an important consideration in liquid-metal fast breeder reactor safety analysis. No experimental data for pool heat transfer from molten UO 2 under conditions simulating internal heat generation by fission product decay have been reported previously in the literature. An apparatus to provide such data was developed and used to investigate heat transfer from pools containing up to 7.5 kg of UO 2 ; the internal heat generation rates and pool depths attained cover most of the ranges of interest for postaccident heat removal analysis. It was also observed in these studies that the presence of simulated fission products corresponding to approximately 150,000 kW-day/kg burnup had no significant effect on the observed heat transfer

  19. Heat transfer for plasma facing components

    International Nuclear Information System (INIS)

    Boyd, R.D.; Meng, X.; Maughan, H.

    1995-01-01

    Although the high heat flux requirements for plasma-facing components have been reduced drastically from 40.0 MW/m 2 to near 10.0 MW/m 2 , there are still some refinements needed. This paper highlights: (1) recent accomplishments and pinpoints new thermal solutions and problem areas of immediate concern to the development of plasma-facing components, and (2) next generation thermal hydraulic problems which must be addressed to insure safety and reliability in component operation. More specifically the near-term thermal hydraulic problems entail: (1) generating an appropriate data base to insure the development of single-side heat flux correlations; and (2) adapting the existing vast uniform heat flux literature to the case of non-uniform heat flux distributions found in plasma facing components in fusion reactors. Results are presented for the latter task which includes: (a) an accurate subcooled flow boiling curve correlation for the partial nucleate boiling regime which can be adapted using previously proposed correlations relating single-side boundary heat flux to heat transfer, in uniformly heated channels, (b) the evaluation of the possibility of using the existing literature directly with redefined parameters, and (c) an estimation of circumferential variations in the heat transfer coefficient

  20. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  1. Heat transfer in vertical pipe flow at supercritical pressures of water

    International Nuclear Information System (INIS)

    Loewenberg, M.F.

    2007-05-01

    A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations combined with high heat

  2. Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure CO{sub 2} in a Vertical Annulus Passage

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji; Kim, Sin [Cheju National Univ., Cheju (Korea, Republic of); Kim, Hwan Yeol; Bae, Yoon Yeong [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    Heat transfer experiments at a vertical annulus passage were carried out in the SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation) to investigate the heat transfer behaviors of supercritical CO{sub 2}. The collected test data are to be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). The mass flux was in the range of 400 {approx}1200 kg/m{sup 2}s and the heat flux was chosen up to 150 kW/m{sup 2}. The selected pressures were 7.75 and 8.12 MPa. The heat transfer data were analyzed and compared with the previous tube test data. The test results showed that the heat transfer characteristics were similar to those of the tube in case of a normal heat transfer mode and degree of heat transfer deterioration became smaller than that in the tube. Comparison of the experimental heat transfer coefficients with the predicted ones by the existing correlations showed that there was not a distinct difference between the correlations.

  3. Experimental investigation of natural convection heat transfer in volumetrically heated spherical segments. Final report

    International Nuclear Information System (INIS)

    Asfia, F.; Dhir, V.

    1998-03-01

    One strategy for preventing the failure of lower head of a nuclear reactor vessel is to flood the concrete cavity with subcooled water in accidents in which relocation of core material into the vessel lower head occurs. After the core material relocates into the vessel, a crust of solid material forms on the inner wall of the vessel, however, most of the pool remains molten and natural convection exists in the pool. At present, uncertainty exists with respect to natural convection heat transfer coefficients between the pool of molten core material and the reactor vessel wall. In the present work, experiments were conducted to examine natural convection heat transfer in internally heated partially filled spherical pools with external cooling. In the experiments, Freon-113 contained in a Pyrex bell jar was used as a test liquid. The pool was bounded with a spherical segment at the bottom, and was heated with magnetrons taken from a conventional microwave oven. The vessel was cooled from the outside with natural convection of water or with nucleate boiling of liquid nitrogen

  4. Heat removal by natural convection in a RPR reactor

    International Nuclear Information System (INIS)

    Sampaio, P.A.B. de

    1987-01-01

    In this paper natural convection in RPR reactor is analysed. The effect of natural convection valves size on cladding temperature is studied. The reactor channel heat transfer problem is solved using finite elements in a two-dimensional analysis. Results show that two valves with Φ = 0.16 m are suited to keep coolant and cladding temperatures below 73 0 C. (author) [pt

  5. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  6. Modelling of heat transfer to fluids at a supercritical pressure

    International Nuclear Information System (INIS)

    Shuisheng, He

    2014-01-01

    A key feature of Supercritical Water-cooled Reactor (SCWR) is that, by raising the pressure of the reactor coolant fluid above the critical value, a phase change crisis is avoided. However, the changes in water density as it flows through the core of an SCWR are actually much higher than in the current water-cooled reactors. In a typical design, the ratio of the density of water at the core inlet to that at exit is as high as 7:1. Other fluid properties also vary significantly, especially around the pseudo-critical temperature (at which the specific heat capacity peaks). As a result, turbulent flow and heat transfer behaviour in the core is extremely complex and under certain conditions, significant heat transfer deterioration can potentially occur. Consequently, understanding and being able to predict flow and heat transfer phenomena under normal steady operation conditions and in start-up and hypothetical fault conditions are fundamental to the design of SCWR. There have been intensive studies on flow and heat transfer to fluids at supercritical pressure recently and several excellent review papers have been published. In the talk, we will focus on some turbulence modelling issues encountered in CFD simulations. The talk will first discuss some flow and heat transfer issues related to fluids at supercritical pressures and their potential implications in SCWR, and some recent developments in the understanding and modelling techniques of such problems, which will be followed by an outlook for some future developments.Factors which have a major influence on the flow and will be discussed are buoyancy and flow acceleration due to thermal expansion (both are due to density variations but involve different mechanisms) and the nonuniformity of other fluid properties. In addition, laminar-turbulent flow transition coupled with buoyancy and flow acceleration plays an important role in heat transfer effectiveness and wall temperature in the entrance region but such

  7. Heat Transfer Characteristics of the Supercritical CO2 Flowing in a Vertical Annular Channel

    International Nuclear Information System (INIS)

    Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol

    2010-01-01

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO 2 at several test sections with a different geometry. The loop uses CO 2 because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO 2 in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO 2 flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI

  8. Decay heat removal analyses on the heavy liquid metal cooled fast breeding reactor. Comparisons of the decay heat removal characteristics on lead, lead-bismuth and sodium cooled reactors

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Ohshima, Hiroyuki; Yamaguchi, Akira

    2000-04-01

    The feasibility study on several concepts for the commercial fast breeder reactor(FBR) in future has been conducted in JNC for the kinds of possible coolants and fuel types to confirm the direction of the FBR developments in Japan. In this report, Lead and Lead-Bismuth eutectic coolants were estimated for the decay heat removal characteristics by the comparison with sodium coolant that has excellent features for the heat transfer and heat transport performance. Heavy liquid metal coolants, such as Lead and Lead-Bismuth, have desirable chemical inertness for water and atmosphere. Therefore, there are many economical plant proposals without an intermediate heat transport system that prevents the direct effect on a reactor core by the chemical reaction between water and the liquid metal coolant at the hypocritical tube failure accidents in a steam generator. In this study, transient analyses on the thermal-hydraulics have been performed for the decay heat removal events in Equivalent plant' with the Lead, Lead-Bismuth and Sodium coolant by using Super-COPD code. And a resulted optimized lead cooled plant in feasibility study was also analyzed for the comparison. In conclusion, it is become clear that the natural circulation performance, that has an important roll in passive safety characteristic of the reactor, is more excellent in heavy liquid metals than sodium coolant during the decay heat removal transients. However, we need to confirm the heat transfer reduction by the oxidized film or the corrosion products expected to appear on the heat transfer surface in the Lead and Lead-Bismuth circumstance. (author)

  9. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  10. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Deepak; Pandey, Krishna Murari [National Institute of Technology Silchar, Assam (India). Dept. of Mechanical Engineering

    2017-03-15

    A novel and facile approach for size-tunable synthesis of ZnO nanoparticle (NPs) is reported. Size-tuning was attained by using PEG (polyethylene glycol) of molecular weights 400 and 4000. ZnO NPs was synthesized using homogeneous chemical precipitation followed by hydrothermal. Here triethylamine (TEA) was used as a hydroxylating agent. As-synthesized ZnO NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and Energy Dispersive Spectroscopy (EDS) analysis. Synthesized ZnO nanoparticle was used for the preparation of ZnO-water based nanofluid and its application in heat transfer enhancement in light water nuclear reactor. In this work, ZnO-water based nanofluid of different volume concentration (1%, 2% and 3%) and particle size of 10 nm and 20 nm is used for enhancement in heat transfer in annular channel by using two phase approach. The particle size of 10 nm gives better result for enhancing the heat transfer rate in comparison to 20 nm particle size in nuclear reactor.

  11. Direct contact heat transfer characteristics between melting alloy and water

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro

    1995-01-01

    As a candidate for an innovative steam generator for fast breeder reactors, a heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The evaluation of heat transfer characteristics of this heat exchanger is one of the research subjects for the design and development of the steam generator. In this study, the effect of the pressure on heat transfer characteristics and the required degree of superheating of melting alloy above water saturation temperature are evaluated during the direct contact heat transfer experiment by injecting water into Wood's alloy. In the experiment, the pressure, the temperature of the Wood's alloy, the flow rate of feed water, and the depth of the feed water injection point are varied as parameters. As a result of the experiment, the product of the degree of Wood's alloy superheating above water saturation temperature and the depth of the feed water injection point is constant for each pressure. This constant increases as the pressure rises. (author)

  12. Thermal striping heat transfer measurements in sodium AKB experiments

    International Nuclear Information System (INIS)

    Sheriff, N.; Sephton, K.P.; Gleave, C.

    1988-01-01

    Temperature fluctuations are produced in the sodium flow of fast reactors where hot and cold flow streams mix. A sodium experiment mounted on the Interatom facility AKB has been used to measure the heat transfer conditions in a flow stream with typical temperature fluctuations. The measurements were made at locations near to the leading edge of a plate, where in practice the most severe conditions are expected. With tests carried out over a wide range of flows good correlations of the heat transfer data with flow have been obtained. A simple theoretical model is proposed to explain the magnitude of the measured heat transfer coefficients, and the use of reasonable assumptions in the model produce good agreement with the experimental measurements

  13. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1978-01-01

    A new development in heat transfer is reported. It is concerned with heat transfer from a gaseous mixture that contains a condensable vapor and is at very high temperature. In the past, heat transfer associated with either a condensable mixture at low temperature or a noncondensable mixture at high temperature has been investigated. The former reduces to the classical problem of fog formation in, say, atmosphere where the rate of condensation is diffusion controlled (molecular or conductive diffusions). In the presence of noncondensable gases, heat transfer to a cooler boundary by this mechanism is known to be drastically reduced. In the latter case, where the high temperature mixture is noncondensable, radiative transfer may become dominant and a vast amount of existing literature exists on this class of problem. A fundamentally different type of problem of relevance to recent advances in open cycle MHD power plants and breeder reactor safety is considered. In the advanced coal-fired power plant using MHD as a topping cycle, a condensable mixture is encountered at temperatures of 2000 to 3000 0 . Condensation of the vaporized slag and seed materials at such a high temperature can take place in the MHD generator channel as well as in the radiant boiler. Similarly, in breeder reactor accident analyses involving hypothetical core disruptive accidents, a UO 2 vapor mixture at 400 0 K or higher is often considered. Since the saturation temperature of UO 2 at one atmosphere is close to 4000 0 K, condensation is also likely at a very high temperature. Accordingly, an objective of the present work is to provide an understanding of heat transfer and condensation mechanics insystems containing a high temperature condensable mixture. The results of the study show that, when a high temperature mixture is in contact with a cooler surface, a thermal boundary layer develops rapidly because of intensive radiative cooling from the mixture

  14. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  15. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    International Nuclear Information System (INIS)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos; Oliveira, Carlos Brayner de; Dominguez, Dany S.

    2015-01-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  16. Heat transfer to liquid sodium in the thermal entrance region

    International Nuclear Information System (INIS)

    Qiu, R.

    1981-01-01

    It is well known that the convective heat transfer in the regions of duct systems where the thermal boundary layers are not yet established can be far superior to heat transfer in the fully developed regions. A quantitative understanding of heat transfer in the thermal entrance region is essential in designing high heat-flux nuclear reactors. More specifically, if the thermal boundary layers have not been fully established in the system, the forced-convection relations for the fully developed regions cannot be used to predict the heat transfer characteristics. The present work is characterized by the following: 1. The behaviours in the thermal entrance region have been examined more completely. 2. To obtain a higher accuracy of analyses, in present study the method of SPARROW et al. for pipe was improved for annulus by utilizing a finite difference technique. Furthermore, an asymptotic solution was developed. 3. This is, in our knowledge, the first experimental investigation about the thermal development effect on turbulent heat transfer from rod element to liquid sodium in annulus with fully developed flow. (MDC)

  17. Reactor waste heat utilization and district heating reactors. Nuclear district heating in Sweden - Regional reject heat utilization schemes and small heat-only reactors

    International Nuclear Information System (INIS)

    Hannerz, K.; Larsson, Y.; Margen, P.

    1977-01-01

    A brief review is given of the current status of district heating in Sweden. In future, district heating schemes will become increasingly interesting as a means of utilizing heat from nuclear reactors. Present recommendations in Sweden are that large reactors should not be located closer than about 20 km from large population centres. Reject heat from such reactors is cheap at source. To minimize the cost of long distance hot water transmission large heat rates must be transmitted. Only areas with large populations can meet this requirement. The three areas of main interest are Malmoe/Lund/Helsingborg housing close to 0.5 million; Greater Stockholm housing 1 to 1.5 million and Greater Gothenburg housing about 0.5 million people. There is an active proposal that the Malmoe/Lund/Helsingborg region would be served by a third nuclear unit at Barsebaeck, located about 20 km from Malmoe/Lund and supplying 950 MW of base load heat. Preliminary proposals for Stockholm involve a 2000 MW heat supply; proposals for Gothenburg are more tentative. The paper describes progress on these proposals and their technology. It also outlines technology under development to increase the economic range of large scale heat transport and to make distribution economic even for low heat-density family housing estates. Regions apart from the few major urban areas mentioned above require the adoption of a different approach. To this end the development of a small, simple low-temperature reactor for heat-only production suitable for urban location has been started in Sweden in close contact with Finland. Some results of the work in progress are presented, with emphasis on the safety requirements. An outline is given in the paper as to how problems of regional heat planning and institutional and legislative issues are being approached

  18. A passive emergency heat sink for water-cooled reactors with particular application to CANDU reactors

    International Nuclear Information System (INIS)

    Spinks, N.J.

    1996-01-01

    Water in an overhead pool can serve as a general-purpose passive emergency heat sink for water-cooled reactors. It can be used for containment cooling, for emergency depressurization of the heat transport-system, or to receive any other emergency heat, such as that from the CANDU moderator. The passive emergency water system provides in-containment depressurization of steam generators and no other provision is needed for supply of low-pressure emergency water to the steam generators. For containment cooling, the pool supplies water to the tube side of elevated tube banks inside containment. The elevation with respect to the reactor heat source maximizes heat transport, by natural convection, of hot containment gases. This effective heat transport combines with the large heat-transfer coefficients of tube banks, to reduce containment overpressure during accidents. Cooled air from the tube banks is directed past the break in the heat-transport system, to facilitate removal of hydrogen using passive catalytic recombiners. (author)

  19. Heat transfer in tube bundles of heat exchangers with flow baffles induced forced mixing

    International Nuclear Information System (INIS)

    AbuRomia, M.M.; Chu, A.W.; Cho, S.M.

    1976-01-01

    Thermal analysis of shell-and-tube heat exchangers is being investigated through geometric modeling of the unit configuration in addition to considering the heat transfer processes taking place within the tube bundle. The governing equations that characterize the heat transfer from the shell side fluid to the tube side fluid across the heat transfer tubewalls are indicated. The equations account for the heat transfer due to molecular conduction, turbulent thermal diffusion, and forced fluid mixing among various shell side fluid channels. The analysis, though general in principle, is being applied to the Clinch River Breeder Reactor Plant-Intermediate Heat Exchanger, which utilizes flow baffles appropriately designed for induced forced fluid mixing in the tube bundle. The results of the analysis are presented in terms of the fluid and tube wall temperature distributions of a non-baffled and baffled tube bundle geometry. The former case yields axial flow in the main bundle region while the latter is associated with axial/cross flow in the bundle. The radial components of the axial/cross flow yield the necessary fluid mixing that results in reducing the thermal unbalance among the heat transfer to the allowable limits. The effect of flow maldistribution, present on the tube or shell sides of the heat exchangers, in altering the temperature field of tube bundles is also noted

  20. Falling film flow, heat transfer and breakdown on horizontal tubes

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1980-11-01

    Knowledge of falling film flow and heat transfer characteristics on horizontal tubes is required in the assessment of certain CANDU reactor accident sequences for those CANDU reactors which use moderator dump as one of the shut-down mechanisms. In these reactors, subsequent cooling of the calandria tubes is provided by falling films produced by sprays. This report describes studies of falling film flow and heat transfer characteristics on horizontal tubes. Analyses using integral methods are given for laminar and turbulent flow, ignoring and accounting for momentum effects in the film. Preliminary experiments on film flow stability on horizontal tubes are described and various mechanisms of film breakdown are examined. The work described in this report shows that in LOCA with indefinitely delayed ECI in the NPD or Douglas Point (at 70 percent power) reactors, the falling films on the calandria tubes will not be disrupted by any of the mechanisms considered, provided that the pressure tubes do not sag onto the calandria tubes. However, should the pressure tubes sag onto the calandria tubes, film disruption will probably occur

  1. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1993

    International Nuclear Information System (INIS)

    Boyd, Ronald D.

    2000-01-01

    Subcooled flow boiling in heated coolant channels is an important heat transfer enhancement technique in the development of fusion reactor components, where high heat fluxes must be accommodated. As energy fluxes increase in magnitude, additional emphasis must be devoted to enhancing techniques such as sub cooling and enhanced surfaces. In addition to subcooling, other high heat flux alternatives such as high velocity helium and liquid metal cooling have been considered as serious contenders. Each technique has its advantages and disadvantages [1], which must be weighed as to reliability and reduced cost of fusion reactor components. Previous studies [2] have set the stage for the present work, which will concentrate on fundamental thermal hydraulic issues associated with the h-international Thermonuclear Experimental Reactor (ITER) and the Engineering Design Activity (EDA). This proposed work is intended to increase our understanding of high heat flux removal alternatives as well as our present capabilities by: (1) including single-side heating effects in models for local predictions of heat transfer and critical heat flux; (2) inspection of the US, Japanese, and other possible data sources for single-side heating, with the aim of exploring possible correlations for both CHF and local heat transfer; and (3) assessing the viability of various high heat flux removal techniques. The latter task includes: (a) sub-cooled water flow boiling with enhancements such as twisted tapes, and hypervapotrons, (b) high velocity helium cooling, and (c) other potential techniques such as liquid metal cooling. This assessment will increase our understanding of: (1) hypervapotron heat transfer via fins, flow recirculation, and flow oscillation, and (2) swirl flow. This progress report contains selective examples of ongoing work. Section II contains an extended abstract, which is part of and evolving technical paper on single-side f heating. Section III describes additional details

  2. TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts

    Science.gov (United States)

    Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.

    2018-05-01

    Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.

  3. Heat Transfer Characteristics of the Supercritical CO{sub 2} Flowing in a Vertical Annular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO{sub 2} flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI

  4. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  5. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  6. Effect of heat transfer correlations on the fuel temperature prediction of SCWRs

    International Nuclear Information System (INIS)

    Espinosa-Martinez, E.G.; Martin-del-Campo, C.; Francois, J.L.; Espinosa-Paredes, G.

    2016-01-01

    In this paper, we present a numerical analysis of the effect of different heat transfer correlations on the prediction of the cladding wall temperature in a supercritical water reactor at nominal operating conditions. The neutronics process with temperature feedback effects, the heat transfer in the fuel rod, and the thermal-hydraulics in the core were simulated with a three-pass core design. (authors)

  7. Evaluation of upward heat flux in ex-vessel molten core heat transfer using MELCOR

    International Nuclear Information System (INIS)

    Park, S.Y.; Park, J.H.; Kim, S.D.; Kim, D.H.; Kim, H.D.

    2000-01-01

    The purpose of this study is to share experiences of MELCOR application to resolve the molten corium-concrete interaction (MCCI) issue in the Korea Next Generation Reactor (KNGR). In the evaluation of concrete erosion, the heat transfer modeling from the molten corium internal to the corium pool surface is very important and uncertain. MELCOR employs Kutateladze or Greene's bubble-enhanced heat transfer model for the internal heat transfer. The phenomenological uncertainty is so large that the model provides several model parameters in addition to the phenomenological model for user flexibility. However, the model parameters do not work on Kutateladze correlation at the top of the molten layer. From our experience, a code modification is suggested to match the upward heat flux with the experimental results. In this analysis, minor modification was carried out to calculate heat flux from the top molten layer to corium surface, and efforts were made to find out the best value of the model parameter based on upward heat flux of MACE test M1B. Discussion also includes its application to KNGR. (author)

  8. Heat insulation device for reactor pressure vessel in water

    International Nuclear Information System (INIS)

    Nakamura, Heiichiro; Tanaka, Yoshimi.

    1993-01-01

    Outer walls of a reactor pressure vessel are covered with water-tight walls made of metals. A heat insulation metal material is disposed between them. The water tight walls are joined by welding and flanges. A supply pipeline for filling gases and a discharge pipeline are in communication with the inside of the water tight walls. Further, a water detector is disposed in the midway of the gas discharge pipeline. With such a constitution, the following advantages can be attained. (1) Heat transfer from the reactor pressure vessel to water of a reactor container can be suppressed by filled gases and heat insulation metal material. (2) Since the pressure at the inside of the water tight walls can be equalized with the pressure of the inside of the reactor container, the thickness of the water-tight walls can be reduced. (3) Since intrusion of water to the inside of the walls due to rupture of the water tight walls is detected by the water detector, reactor scram can be conducted rapidly. (4) The sealing property of the flange joint portion is sufficient and detaching operation thereof is easy. (I.S.)

  9. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  10. Experimental heat transfer in tube bundle

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, A.; Habib, M.

    1983-01-01

    Previous work has looked for the problem of heat transfer with flow parallel to rod bundle either by treating each rod individually as a separate channel or by treating the bundle as one unit. The present work will consider the existence of both the central and corner rods simultaneously inside the cluster itself under the same working conditions. The test section is geometrically similar to the fuel assembly of the Egyptian Research Reactor-1. The hydro-thermal performance of bundle having 16 - stainless steel tubes arranged in square array of 1.5 pitch to diameter ratio is investigated. Surface temperature and pressure distributions are determined. Average heat transfer coefficient for both central and corner tubes are correlated. Also, pressure drop and friction factor correlations are predicted. The maximum experimental range of the measured parameters are determined in the nonboiling region at 1400 Reynolds number and 3.64 W/cm 2 . It is found that the average heat transfer coefficient of the central tube is higher than that of the corner tube by 27%. Comparison with the previous work shows satisfactory agreement particularly with the circular tubes correlation - Dittus et al. - at 104 Reynolds number

  11. Decay heat removal and heat transfer under normal and accident conditions in gas cooled reactors

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was convened by the International Atomic Energy Agency on the recommendation of the IAEA's International Working Group on Gas Cooled Reactors. It was attended by participants from China, France, Germany, Japan, Poland, the Russian Federation, Switzerland, the United Kingdom and the United States of America. The meeting was chaired by Prof. Dr. K. Kugeler and Prof. Dr. E. Hicken, Directors of the Institute for Safety Research Technology of the KFA Research Center, and covered the following: Design and licensing requirements for gas cooled reactors; concepts for decay heat removal in modern gas cooled reactors; analytical methods for predictions of thermal response, accuracy of predictions; experimental data for validation of predictive methods - operational experience from gas cooled reactors and experimental data from test facilities. Refs, figs and tabs

  12. Heat transfer in reactor cavity during core-concrete interaction

    International Nuclear Information System (INIS)

    Adroguer, B.; Cenerino, G.

    1989-08-01

    In the unlikely event of a severe accident in a nuclear power plant, the core may melt through the vessel and slump into the concrete reactor cavity. The hot mixture of the core material called corium interacts thermally with the concrete basemat. The WECHSL code, developed at K.f.K. Karlsruhe in Germany is used at the Protection and Nuclear Safety Institute (I.P.S.N.) of CEA to compute this molten corium concrete interaction (MCCI). Some uncertainties remain in the partition of heat from the corium between the basemat and the upper surrounding structures in the cavity where the thermal conditions are not computer. The CALTHER code, under development to perform a more mechanistic evaluation of the upward heat flux has been linked to WECHSL-MOD2 code. This new version enables the modelling of the feedback effects from the conditions in the cavity to the MCCI and the computation of the fraction of upward flux directly added to the cavity atmosphere. The present status is given in the paper. Preliminary calculations of the reactor case for silicate and limestone common sand (L.C.S.) concretes are presented. Significant effects are found on concrete erosion, gases release and temperature of the upper part of corium, particularly for L.C.S. concrete

  13. Validation of the TASS/SMR-S Code for the PRHRS Condensation Heat Transfer Model

    International Nuclear Information System (INIS)

    Jun, In Sub; Yang, Soo Hyoung; Chung, Young Jong; Lee, Won Jae

    2011-01-01

    When some accidents or events are occurred in the SMART, the secondary system is used to remove the core decay heat for the long time such as a feedwater system. But if the feedwater system can't remove the residual core heat because of its malfunction, the core decay heat is removed using the Passive Residual Heat Removal System (PRHRS). The PRHRS is passive type safety system adopted to enhance the safety of the SMART. It can fundamentally eliminate the uncertainty of operator action. TASS/SMR-S (Transient And Setpoint Simulation/ System-integrated Modular Reactor-Safety) code has various heat transfer models reflecting the design features of the SMART. One of the heat transfer models is the PRHRS condensation heat transfer model. The role of this model is to calculate the heat transfer coefficient in the heat exchanger (H/X) tube side using the relevant heat transfer correlations for all of the heat transfer modes. In this paper, the validation of the condensation heat transfer model was carried out using the POSTECH H/X heat transfer test

  14. Effect of fluid-to-structure heat transfer on the structural damage potential to a liquid-metal fast breeder reactor

    International Nuclear Information System (INIS)

    Hakim, S.J.; Abramson, P.B.

    1979-01-01

    Deterministic calculations simulating a hypothetical accident in a liquid-metal fast breeder reactor that leads to a hydrodynamic disassembly of the core have been carried out to estimate the system's damage potential due to the vapor-pressure-driven expansion of molten core material and its dependency on the heat transfer to the remaining structure. These calculations ignored the effect on the work potential of sodium left in the core during the disassembly. Results indicate that steel cladding in the upper axial blankets and fission gas plenum acts as a thermodynamic energy sink that could reduce the total thermodynamic work energy by between one and two orders of magnitude, provided little or no sodium is present in the core at the time of interaction. These results have been found to be insensitive to the rate of heat transferred from the molten fuel to the molten steel that comprises the molten core material

  15. Application of advanced model of radiative heat transfer in a rod geometry to QUENCH and PARAMETER tests

    International Nuclear Information System (INIS)

    Vasiliev, A.D.; Kobelev, G.V.; Astafieva, V.O.

    2007-01-01

    Radiative heat transfer is very important in different fields of mechanical engineering and related technologies including nuclear reactors, heat transfer in furnaces, aerospace, different high-temperature assemblies. In particular, in the course of a hypothetical severe accident at PWR-type nuclear reactor the temperatures inside the reactor vessel reach high values at which taking into account of radiative heat exchange between the structures of reactor (including core and other reactor vessel elements) gets important. Radiative heat transfer dominates the late phase of severe accident because radiative heat fluxes (proportional to T4, where T is the temperature) are generally considerably higher than convective and conductive heat fluxes in a system. In particular, heat transfer due to radiation determines the heating and degradation of the core and surrounding steel in-vessel structures and finally influences the composition, temperature and mass of materials pouring out of the reactor vessel after its loss of integrity. Existing models of radiative heat exchange use many limitations and approximations: approximate estimation of view factors and beam lengths; the geometry change in the course of the accident is neglected; the database for emissivities of materials is not complete; absorption/emission by steam-noncondensable medium is taken into account approximately. The module MRAD was developed in this paper to model the radiative heat exchange in rod-like geometry typical of PWR-type reactor. Radiative heat exchange is computed using dividing on zones (zonal method) as in existing radiation models implemented to severe accident numerical codes such as ICARE, SCDAP/RELAP, MELCOR but improved in following aspects: new approach to evaluation of view factors and mean beam length; detailed evaluation of gas absorptivity and emissivity; account of effective radiative thermal conductivity for the large core; account of geometry modification in the course of severe

  16. Pre-design stage of the intermediate heat exchanger for experimental fast reactor

    International Nuclear Information System (INIS)

    Luz, M.; Borges, E.M.; Braz Filho, F.A.; Hirdes, V.R.

    1986-09-01

    This report presents the outlines of a thermal-hydraulic calculation procedure for the pre-design stage of the Intermediate Heat Exchanger for a 5 MW Experimental Fast Reactor (EFR), which can be used in other similar projects, at the same stage of evolution. Heat transfer and heat loss computations for the preliminary design of the heat exchanger are presented. (author) [pt

  17. Scrap tyre recycling process with molten zinc as direct heat transfer and solids separation fluid: A new reactor concept.

    Science.gov (United States)

    Riedewald, Frank; Goode, Kieran; Sexton, Aidan; Sousa-Gallagher, Maria J

    2016-01-01

    Every year about 1.5 billion tyres are discarded worldwide representing a large amount of solid waste, but also a largely untapped source of raw materials. The objective of the method was to prove the concept of a novel scrap tyre recycling process which uses molten zinc as the direct heat transfer fluid and, simultaneously, uses this media to separate the solids products (i.e. steel and rCB) in a sink-float separation at an operating temperature of 450-470 °C. This methodology involved: •construction of the laboratory scale batch reactor,•separation of floating rCB from the zinc,•recovery of the steel from the bottom of the reactor following pyrolysis.

  18. Behavior study on Na heat pipe in passive heat removal system of new concept molten salt reactor

    International Nuclear Information System (INIS)

    Wang Chenglong; Tian Wenxi; Su Guanghui; Zhang Dalin; Wu Yingwei; Qiu Suizheng

    2013-01-01

    The high temperature Na heat pipe is an effective device for transporting heat, which is characterized by remarkable advantages in conductivity, isothermally and passively working. The application of Na heat pipe on passive heat removal system of new concept molten salt reactor (MSR) is significant. The transient performance of high temperature Na heat pipe was simulated by numerical method under the MSR accident. The model of the Na heat pipe was composed of three conjugate heat transfer zones, i.e. the vapor, wick and wall. Based on finite element method, the governing equations were solved by making use of FORTRAN to acquire the profiles of the temperature, velocity and pressure for the heat pipe transient operation. The results show that the high temperature Na heat pipe has a good performance on operating characteristics and high heat transfer efficiency from the frozen state. (authors)

  19. Specifics of forced-convective heat transfer in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Saltanov, A.E.; Mann, B.D.; Harvel, C.G.; Pioro, D.I., E-mail: Eugene.saltanov@hotmail.com [University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2015-07-01

    The appropriate description of heat-transfer to coolants at supercritical state is one of the main challenges in development of supercritical-fluids applications for the Generation-IV reactors. In this paper the basis for comparison of relatively recent experimental data on supercritical carbon dioxide (CO{sub 2}) obtained at facilities of the Korea Atomic Energy Research Institute (KAERI) and Chalk River Laboratories (CRL) of Atomic Energy of Canada Limited (AECL) is discussed, and a preliminary heat-transfer correlation for joint CRL and KAERI datasets is presented. (author)

  20. Heat transfer in a sodium-to-sodium heat exchanger under conditions of combined force and free convection

    International Nuclear Information System (INIS)

    Jackson, J.D.; Axcell, B.P.; Johnston, S.E.

    1987-01-01

    A combined experimental and theoretical investigation of heat transfer in a vertical tube and annulus, countercurrent flow heat exchanger is reported. The working fluid was liquid sodium. Included in the range of conditions covered were those which are of interest in connection with the low flow rate operation of fast reactor intermediate heat exchanger systems. The heat transfer process ranged from that of pure forced convection to combined forced and free convection. By changing the direction of fluid flow or the direction of heat flow four different configurations were studied. In two cases the convection process was buoyancy aided and in the other two it was buoyancy opposed. Results are presented showing the influence of flow rate and temperature difference on overall heat transfer coefficient for each case. A theoretical model of turbulent flow and heat transfer incorporating influences of buoyancy was used to produce results for the range of conditions covered in the experiments. The predictions of overall heat transfer coefficient were found to be in reasonable general agreement with the measurements. It was clear from these calculations that the influence of buoyancy on heat transfer stemmed largely, under the conditions of the present experiment, from the modification of the convection process due to the distortion of the velocity field. This led to an enhancement of the heat transfer for the buoyancy-aided process and an impairment for the buoyancy-opposed process. The contribution of the turbulent diffusion of heat was relatively small. (author)

  1. Heat extraction from HTGR reactor

    International Nuclear Information System (INIS)

    Balajka, J.; Princova, H.

    1986-01-01

    The analysis of an HTGR reactor energy balance showed that steam reforming of natural gas or methane is the most suitable process of utilizing the high-temperature heat. Basic mathematical relations are derived allowing to perform a general energy balance of the link between steam reforming and reactor heat output. The results of the calculation show that the efficiency of the entire reactor system increases with increasing proportion of heat output for steam reforming as against heat output for the steam generator. This proportion, however, is limited with the output helium temperature from steam reforming. It is thus always necessary to use part of the reactor heat output for the steam cycle involving electric power generation or low-potential heat generation. (Z.M.)

  2. Numerical Investigation of Turbulent Natural Convection Heat Transfer in an Internally-Heated Melt Pool and Metallic Layer

    International Nuclear Information System (INIS)

    Nourgaliev, R.R.; Dinh, A.T.; Dinh, T.N.; Sehgal, B.R.

    1999-01-01

    This paper presents results of numerical investigation of turbulent natural convection in an internally-heated oxidic pool, and in a metallic layer heated from below and cooled from top and sidewalls. Emphasis is placed upon applicability of the existing heat transfer correlations (obtained from simulant-material experiments) in assessments of a prototypic severe reactor accident. The objectives of this study are (i) to improve the current understanding of the physics of unstably stratified flows, and (ii) to reduce uncertainties associated with modeling and assessment of natural convection heat transfer in the above configuration. Prediction capabilities of different turbulence modeling approaches are first examined and discussed, based on extensive results of numerical investigations performed by present authors. Findings from numerical modeling of turbulent natural convection flow and heat transfer in melt pools and metallic layers are then described. (authors)

  3. EFLOD code for reflood heat transfer

    International Nuclear Information System (INIS)

    Gay, R.R.

    1979-01-01

    A computer code called EFLOD has been developed for simulation of the heat transfer and hydrodynamics of a nuclear power reactor during the reflood phase of a loss-of-coolant accident. EFLOD models the downcomer, lower plenum, core, and upper plenum of a nuclear reactor vessel using seven control volumes assuming either homogeneous or unequal-velocity, unequal-temperature (UVUT) models of two-phase flow, depending on location within the vessel. The moving control volume concept in which a single control volume models the quench region in the core and moves with the core liquid level was developed and implemented in EFLOD so that three control volumes suffice to model the core region. A simplified UVUT model that assumes saturated liquid above the quench front was developed to handle the nonhomogeneous flow situation above the quench region. An explicit finite difference routine is used to model conduction heat transfer in the fuel, gap, and cladding regions of the fuel rod. In simulation of a selected FLECHT-SET experimental run, EFLOD successfully predicted the midplane maximum temperature and turnaround time as well as the time-dependent advance of the core liquid level. However, the rate of advancement of the quench level and the ensuing liquid entrainment were overpredicted during the early part of the transient

  4. Heat transfer and thermal stress analysis in fluid-structure coupled field

    International Nuclear Information System (INIS)

    Li, Ming-Jian; Pan, Jun-Hua; Ni, Ming-Jiu; Zhang, Nian-Mei

    2015-01-01

    In this work, three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out. The structure considered is from the dual-coolant lithium-lead (DCLL) blanket, which is the key technology of International Thermo-nuclear Experimental Reactor (ITER). The model was developed based on finite element-finite volume method and was employed to investigate mechanical behaviours of Flow Channel Insert (FCI) and heat transfer in the blanket under nuclear reaction. Temperature distribution, thermal deformation and thermal stresses were calculated in this work, and the effects of thermal conductivity, convection heat transfer coefficient and flow velocity were analyzed. Results show that temperature gradients and thermal stresses of FCI decrease when FCI has better heat conductivity. Higher convection heat transfer coefficient will result in lower temperature, thermal deformations and stresses in FCI. Analysis in this work could be a theoretical basis of blanket optimization. - Highlights: • We use FVM and FEM to investigate FCI structural safety considering heat transfer and FSI effects. • Higher convective heat transfer coefficient is beneficial for the FCI structural safety without much affect to bulk flow temperature. • Smaller FCI thermal conductivity can better prevent heat leakage into helium, yet will increase FCI temperature gradient and thermal stress. • Three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out

  5. Effect of reactor heat transfer limitations on CO preferential oxidation

    Science.gov (United States)

    Ouyang, X.; Besser, R. S.

    Our recent studies of CO preferential oxidation (PrOx) identified systematic differences between the characteristic curves of CO conversion for a microchannel reactor with thin-film wall catalyst and conventional mini packed-bed lab reactors (m-PBR's). Strong evidence has suggested that the reverse water-gas-shift (r-WGS) side reaction activated by temperature gradients in m-PBR's is the source of these differences. In the present work, a quasi-3D tubular non-isothermal reactor model based on the finite difference method was constructed to quantitatively study the effect of heat transport resistance on PrOx reaction behavior. First, the kinetic expressions for the three principal reactions involved were formed based on the combination of experimental data and literature reports and their parameters were evaluated with a non-linear regression method. Based on the resulting kinetic model and an energy balance derived for PrOx, the finite difference method was then adopted for the quasi-3D model. This model was then used to simulate both the microreactor and m-PBR's and to gain insights into their different conversion behavior. Simulation showed that the temperature gradients in m-PBR's favor the reverse water-gas-shift (r-WGS) reaction, thus causing a much narrower range of permissible operating temperature compared to the microreactor. Accordingly, the extremely efficient heat removal of the microchannel/thin-film catalyst system eliminates temperature gradients and efficiently prevents the onset of the r-WGS reaction.

  6. Convective heat transfer characteristics in the turbulent region of molten salt in concentric tube

    International Nuclear Information System (INIS)

    Chen, Y.S.; Wang, Y.; Zhang, J.H.; Yuan, X.F.; Tian, J.; Tang, Z.F.; Zhu, H.H.; Fu, Y.; Wang, N.X.

    2016-01-01

    In order to better understand the heat transfer behavior and characteristics of molten salt in heat exchanger, the convective heat transfer characteristics of molten salt in salt-to-oil concentric tube are studied. Overall heat transfer coefficients of the heat exchanger are calculated using Wilson plots. Heat transfer coefficients of tube side molten salt with the range of Reynolds number from 10,000 to 50,000 and the Prandtl number from 11 to 27 are evaluated invoking the calculated overall heat transfer coefficients. The effects of velocity and temperature on the convective heat transfer in the turbulent region of molten salt are studied by comparing with the traditional correlations. The results show that the heat transfer characteristics of molten salt are in line with the empirical heat transfer correlation; however, Dittus–Boelter, Gnielinski, Sieder–Tate and Hausen correlations all give a larger deviation for the experimental data. Finally, based on the experimental data and Sieder–Tate correlation, a modified heat transfer correlation is proposed and good agreement is observed between the experimental data and the modified correlation. The results will also provide an important reference for the design of the heat exchangers in the Thorium-based Molten Salt Reactor.

  7. Thermal design of heat-exchangeable reactors using a dry-sorbent CO2 capture multi-step process

    International Nuclear Information System (INIS)

    Moon, Hokyu; Yoo, Hoanju; Seo, Hwimin; Park, Yong-Ki; Cho, Hyung Hee

    2015-01-01

    The present study proposes a multi-stage CO 2 capture process that incorporates heat-exchangeable fluidized-bed reactors. For continuous multi-stage heat exchange, three dry regenerable sorbents: K 2 CO 3 , MgO, and CaO, were used to create a three-stage temperature-dependent reaction chain for CO 2 capture, corresponding to low (50–150 °C), middle (350–650 °C), and high (750–900 °C) temperature stages, respectively. Heat from carbonation in the high and middle temperature stages was used for regeneration for the middle and low temperature stages. The feasibility of this process is depending on the heat-transfer performance of the heat-exchangeable fluidized bed reactors as the focus of this study. The three-stage CO 2 capture process for a 60 Nm 3 /h CO 2 flow rate required a reactor area of 0.129 and 0.130 m 2 for heat exchange between the mid-temperature carbonation and low-temperature regeneration stages and between the high-temperature carbonation and mid-temperature regeneration stages, respectively. The reactor diameter was selected to provide dense fluidization conditions for each bed with respect to the desired flow rate. The flow characteristics and energy balance of the reactors were confirmed using computational fluid dynamics and thermodynamic analysis, respectively. - Highlights: • CO 2 capture process is proposed using a multi-stage process. • Reactor design is conducted considering heat exchangeable scheme. • Reactor surface is designed by heat transfer characteristics of fluidized bed

  8. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.

  9. Expandable antivibration bar for heat transfer tubes of a pressurized water reactor steam generator

    International Nuclear Information System (INIS)

    Appleman, R.H.

    1987-01-01

    This patent describes a pressurized water reactor steam generator having spaced rows of heat transfer tubes through which primary coolant from the reactor flows, the tubes being of a U-shaped design, with the U-bend portions of the U-shaped tubes stabilized by antivibration bars. The improvement described here comprises expandable antivibration bars for stabilizing the U-bend portions of the U-shaped tubes, the expandable bars having a pair of adjustable rods, formed from a pair of rod sections affixed to a connector, one rod section of each of the pair of rod sections having a plurality of protrusions. Each of the protrusions has slidable surfaces thereon. The other rod section of each of the pair of rod sections has indentations, each of the indentations having slidable surfaces thereon complementary to the sliding surfaces of the protrusions, such that the rods are expandable from a first cross-sectional width less than the spacing between two adjacent rows of the tubes, to a second cross-sectional width greater than the first cross-sectional width. The expanded rods are adapted to contact tubes of the two adjacent rows of the tubes

  10. Effect of Tube Diameter on Heat Transfer to Vertically Upward Flowing Supercritical CO2

    International Nuclear Information System (INIS)

    Kang, Deog Ji; Kim, Sin; Bae, Yoon Yeong; Kim, Hwan Yeol; Kim, Hyung Rae

    2007-01-01

    Heat transfer characteristics of supercritical carbon dioxide are being investigated experimentally in the test loop named as SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt generation) at KAERI. The main purpose of the experiment is to provide a reliable heat transfer database for a SCWR (SuperCritical Water-cooled Reactor) by a prudent extension of the carbon dioxide test results to the estimation of a heat transfer for water. The produced data will be used in the thermo-hydraulic design of core and safety analysis for SCWR. The aim of the present paper is to study the influence of a tube diameter on a heat transfer. The experiments were completed for tubes of an inside diameter of 4.4mm and 9.0mm, respectively. The heat transfer characteristics from the two tubes of different diameters were compared and discussed

  11. Condensation heat transfer on natural convection at the high pressure

    International Nuclear Information System (INIS)

    Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park

    2007-01-01

    The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure

  12. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    International Nuclear Information System (INIS)

    McKellar, Michael G.

    2011-01-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  13. On heat transfer characteristics of real and simulant melt pool experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Nourgaliev R.R.; Sehgal, B.R. [Royal Institute of Technology, Stockholm (Sweden)

    1995-09-01

    The paper presents results of analytical studies of natural convection heat transfer in scaled and/or simulant melt pool experiments related to the PWR in-vessel melt retention issue. Specific reactor-scale effects of a large decay-heated core melt pool in the reactor pressure vessel lower plenum are first reviewed, and then the current analytical capability of describing physical processes under prototypical situations is examined. Experiments and experimental approaches are analysed by focusing on their ability to represent prototypical situations. Calculations are carried out in order to assess the significance of some selected effects, including variations in melt properties, pool geometry and heating conditions. Rayleigh numbers in the present analysis are limited to 10{sup 12}, where uncertainties in turbulence modeling are not overriding other uncertainties. The effects of fluid Prandtl number on heat transfer to the lowermost part of cooled pool walls are examined for square and semicircular cavities. Calculations are performed also to explore limitations of using side-wall heating and direct electrical heating in reproducing the physical picture of interest. Needs for further experimental and analytical efforts are discussed as well.

  14. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon-Joon; Choo, Yeon-Jun [FNC Tech., Yongin (Korea, Republic of); Ha, Sang-Jun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect.

  15. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    International Nuclear Information System (INIS)

    Hong, Soon-Joon; Choo, Yeon-Jun; Ha, Sang-Jun

    2016-01-01

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect

  16. Enhancement of heat transfer in HPLWR fuel assemblies

    International Nuclear Information System (INIS)

    Bastron, A.; Hofmeister, J.; Meyer, L.; Schulenberg, T.

    2005-01-01

    A study on different methods for enhancement of heat transfer in fuel assemblies for a High Performance Light Water Reactor has been performed to indicate the potential for a further increase of core outlet temperature at given cladding temperatures, or for reduction of peak cladding temperatures at the envisaged core outlet temperature. As a result, the introduction of an artificial surface roughness or the use of a staircase type grid spacer should increase the heat transfer coefficient of the coolant at the cladding surface by more than a factor of two, which will reduce the peak cladding temperature by at least 50 degC. The paper provides further details for realization of these measures. (author)

  17. Analysis of Heat Transfer

    International Nuclear Information System (INIS)

    2003-08-01

    This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.

  18. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  19. A passive emergency heat sink for water cooled reactors with particular application to CANDU reg-sign reactors

    International Nuclear Information System (INIS)

    Spinks, N.J.

    1996-01-01

    Water in an overhead pool can serve as a general-purpose passive emergency heat sink for water-cooled reactors. It can be used for containment cooling, for emergency depressurization of the heat transport-system, or to receive any other emergency heat, such as that from the CANDU reg-sign moderator. The passive emergency water system provides in-containment depressurization of steam generators and no other provision is needed for supply of low-pressure emergency water to the steam generators. For containment cooling, the pool supplies water to the tube side of elevated tube banks inside containment. The elevation with respect to the reactor heat source maximizes heat transport, by natural convection, of hot containment gases. This effective heat transport combines with the large heat-transfer coefficients of tube banks, to reduce containment overpressure during accidents. Cooled air from the tube banks is directed past the break in the heat-transport system, to facilitate removal of hydrogen using passive catalytic recombiners

  20. Heat transfer test in a vertical tube using CO2 at supercritical pressures

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Kim, Hyungrae; Song, Jin Ho; Cho, Bong Hyun; Bae, Yoon Yeong

    2007-01-01

    Heat transfer test facility, SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt Generation), was constructed at KAERI (Korea Atomic Energy Research Institute) for an investigation of the thermal-hydraulic behaviors of supercritical CO 2 at the various geometries of the test section. The test data will be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). As a working fluid, CO 2 was selected to make use of the low critical pressure and temperature of CO 2 compared with water. An experimental study was carried out in the SPHINX to investigate the characteristics of heat transfer and pressure drop at a vertical single tube with an inside diameter of 4.4 mm in case of an upward flow of supercritical CO 2 . The heat and mass fluxes were varied at a given pressure. The mass flux was in the range of 400-1,200 kg/m 2 s and the heat flux was chosen up to 150 kW/m 2 . The selected pressures were 7.75, 8.12, and 8.85 MPa. A heat transfer deterioration occurred at the lower mass fluxes. The experimental heat transfer coefficients were compared with the ones predicted by several existing correlations. The standard deviation was about 20% for each correlation and an apparent discrepancy was not found among the correlations. The major components of the pressure drop were a gravitational pressure drop and a frictional pressure drop. The frictional pressure drop increases as the mass flux and heat flux increase. (author)

  1. Micro-channel convective boiling heat transfer with flow instabilities

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  2. Micro-channel convective boiling heat transfer with flow instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Consolini, L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Transfert de Chaleur et de Masse], e-mail: lorenzo.consolini@epfl.ch, e-mail: john.thome@epfl.ch

    2009-07-01

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 {mu}m circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  3. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    Science.gov (United States)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface

  4. Theoretical and Numerical Study of Heat Transfer Deterioration in High Performance Light Water Reactor

    Directory of Open Access Journals (Sweden)

    David Palko

    2008-01-01

    Full Text Available A numerical investigation of the heat transfer deterioration (HTD phenomena is performed using the low-Re k-ω turbulence model. Steady-state Reynolds-averaged Navier-Stokes equations are solved together with equations for the transport of enthalpy and turbulence. Equations are solved for the supercritical water flow at different pressures, using water properties from the standard IAPWS (International Association for the Properties of Water and Steam tables. All cases are extensively validated against experimental data. The influence of buoyancy on the HTD is demonstrated for different mass flow rates in the heated pipes. Numerical results prove that the RANS low-Re turbulence modeling approach is fully capable of simulating the heat transfer in pipes with the water flow at supercritical pressures. A study of buoyancy influence shows that for the low-mass flow rates of coolant, the influence of buoyancy forces on the heat transfer in heated pipes is significant. For the high flow rates, buoyancy influence could be neglected and there are clearly other mechanisms causing the decrease in heat transfer at high coolant flow rates.

  5. Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment

    Science.gov (United States)

    Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.

    2008-01-01

    A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…

  6. Deterioration Criterion for Heat Transfer to a Vertically Upward Flowing Supercritical CO{sub 2} in a Circular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji; Kim, Sin [Cheju National University, Jeju (Korea, Republic of); Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    The Super Critical Water cooled Reactor (SCWR) concept for Generation IV has generated considerable interest recently and fair amount of research activities are being performed in several countries. A heat transfer at a supercritical pressure has been identified as one of the major research areas for the development of the SCWR. In relation to this, a heat transfer to carbon dioxide, a surrogate fluid for water, is being investigated experimentally in the test loop SPHINX at KAERI. In heat transfer processes at a supercritical pressure, two regsimes are distinguished for the flow of a medium. The first one is called 'normal heat transfer regime,' where the heat transfer coefficient varies continuously. The other one is 'deteriorated heat transfer regime,' where the heat transfer coefficient drops well below the expected value. Since the deterioration increases the fuel cladding wall temperature and may damage the fuel integrity, the knowledge of a function for describing the boundary between these two regimes is essentially required for the safety of fuel and reactor core. An experiment has been performed to examine the conditions for deterioration boundaries in a circular tube, and the criterion for the onset of deterioration is presented.

  7. Computation of turbulent flow and heat transfer in subassemblies

    International Nuclear Information System (INIS)

    Slagter, W.

    1979-01-01

    This research is carried out in order to provide information on the thermohydraulic behaviour of fast reactor subassemblies. The research work involves the development of versatile computation methods and the evaluation of combined theoretical and experimental work on fluid flow and heat transfer in fuel rod bundles. The computation method described here rests on the application of the distributed parameter approach. The conditions considered cover steady, turbulent flow and heat transfer of incompressible fluids in bundles of bare rods. Throughout 1978 main efforts were given to the development of the VITESSE program and to the validation of the hydrodynamic part of the code. In its present version the VITESSE program is applicable to predict the fully developed turbulent flow and heat transfer in the subchannels of a bundle with bare rods. In this paper the main features of the code are described as well as the present status of development

  8. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Dominques, Jesus A.

    2012-01-01

    The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.

  9. A porous media calculation for the isolation condenser heat transfer and circulation

    International Nuclear Information System (INIS)

    Jaakko, Miettinen; Ismo, Karppinen

    2003-01-01

    In the development of advanced light water reactors, thermohydraulic phenomena are versatile in comparison with the present concepts. The new features include, for example, passive safety systems, where energy transport takes place by natural circulation instead of forced flow. In the isolation condenser, the steam generated in the reactor vessel is conduced into the heat transfer tubes. The tube bundle has been submerged into a large water pool, where the heat flux through the tube wall initially is heating the subcooled water, but rather soon boiling take place. The temperature differences and void fraction in the pool create large two-phase circulation. For modeling of the entire condenser a combined application of two types of simulation models has been selected. For the whole geometry, a porous media solution has been developed, where the existence of the heat transfer tubes in the water pool and their heat generation is described by the porous media approach. The 3-dimensional solution of two-phase equations is based on the drift-flux formalism. The condensation and liquid film generation inside the heat transfer tube is modelled using a 1-dimensional model considering the steam core, liquid film and heat transfer tube. The heat flux through the tube wall defines the boundary conditions for the water pool. Parallel to the porous media development for the entire process facility, the phase change models have been improved for Fluent 6 mixture model, and the code is used for analysing in detail the heat transfer around the tubing. The purpose in the analyses is to obtain more detailed information of the flow field and vapour distribution around the tube bundle. By combining the porous media model for the entire facility, with the CFD models for the two-phase flow details around the heat transfer tubes and experimental studies the most important mechanisms around the condensation pool can be gathered. In this context the porous media model is considered. (author)

  10. Numerical investigation of a heat transfer within the prismatic fuel assembly of a very high temperature reactor

    International Nuclear Information System (INIS)

    Tak, Nam-il; Kim, Min-Hwan; Lee, Won Jae

    2008-01-01

    The complex geometry of the hexagonal fuel blocks of the prismatic fuel assembly in a very high temperature reactor (VHTR) hinders accurate evaluations of the temperature profile within the fuel assembly without elaborate numerical calculations. Therefore, simplified models such as a unit cell model have been widely applied for the analyses and designs of prismatic VHTRs since they have been considered as effective approaches reducing the computational efforts. In a prismatic VHTR, however, the simplified models cannot consider a heat transfer within a fuel assembly as well as a coolant flow through a bypass gap between the fuel assemblies, which may significantly affect the maximum fuel temperature. In this paper, a three-dimensional computational fluid dynamics (CFD) analysis has been carried out on a typical fuel assembly of a prismatic VHTR. Thermal behaviours and heat transfer within the fuel assembly are intensively investigated using the CFD solutions. In addition, the accuracy of the unit cell approach is assessed against the CFD solutions. Two example situations are illustrated to demonstrate the deficiency of the unit cell model caused by neglecting the effects of the bypass gap flow and the radial power distribution within the fuel assembly

  11. Development of heat transfer models for gap cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kohriyama, Tamio; Murase, Michio; Tamaki, Tomohiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In a severe accident of a light water reactor (LWR), heat transfer models in a narrow annular gap between superheated core debris and a reactor pressure vessel (RPV) are important to evaluate the integrity of RPV and emergency procedures. This paper discusses the effects of superheat on the heat flux based on existing data. In low superheat conditions, the heat flux in the narrow gap is higher than the heat flux in pool nucleate boiling due to restricted flow area. It approaches the nucleate boiling heat flux as superheat increasing and reaches a critical value subject to the counter-current flow limiting (CCFL) at the top end of the gap. A heat transfer correlation was derived as a function of dimensionless superheat and a Kutateladze-type CCFL correlation was deduced for critical heat flux (CHF) restricted by CCFL, which gave good prediction for a wide range of the CHF data. Effect of an angle of inclination of the gap could also be incorporated in the CCFL correlation. In high superheat conditions, the heat flux in the narrow gap maintains a similar shape to the pool boiling curve but shifts the position to a higher superheated side than the pool boiling except film boiling, which could be expressed by the typical pool film boiling correlation. Incorporating quench test data, the heat flux correlation was derived as a function of dimensionless superheat using the same formula for the low superheat and the Kutateladze-type CCFL correlation was deduced for CHF. The CHF at the high superheat was 3-4 times as large as CHF at the low superheat and this difference was well predicted by different flow patterns in the gap and the balance of pressure gradients between gas and liquid phases. (author)

  12. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  13. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  14. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger

    International Nuclear Information System (INIS)

    Chen, Minghui; Sun, Xiaodong; Christensen, Richard N.; Skavdahl, Isaac; Utgikar, Vivek; Sabharwall, Piyush

    2016-01-01

    Highlights: • Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger have been obtained. • Comparisons of experimental data and available correlations have been performed. • New Fanning friction factor and heat transfer correlations for the test PCHE are developed. - Abstract: Printed circuit heat exchanger (PCHE) is one of the leading intermediate heat exchanger (IHX) candidates to be employed in the very-high-temperature gas-cooled reactors (VHTRs) due to its capability for high-temperature, high-pressure applications. In the current study, a reduced-scale zigzag-channel PCHE was fabricated using Alloy 617 plates for the heat exchanger core and Alloy 800H pipes for the headers. The pressure drop and heat transfer characteristics of the PCHE were investigated experimentally in a high-temperature helium test facility (HTHF) at The Ohio State University. The PCHE helium inlet temperatures and pressures were varied up to 464 °C/2.7 MPa for the cold side and 802 °C/2.7 MPa for the hot side, respectively, while the maximum helium mass flow rates on both sides of the PCHE reached 39 kg/h. The corresponding maximum channel Reynolds number was approximately 3558, covering the laminar flow and laminar-to-turbulent flow transition regimes. New pressure drop and heat transfer correlations for the current zigzag channels with rounded bends were developed based on the experimental data. Comparisons between the experimental data and the results obtained from the available PCHE and straight circular pipe correlations were conducted. Compared to the heat transfer performance in straight circular pipes, the zigzag channels provided little advantage in the laminar flow regime but significant advantage near the transition flow regime.

  15. Control of reactor coolant flow path during reactor decay heat removal

    Science.gov (United States)

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  16. Microcomputer based program for predicting heat transfer under reactor accident conditions. Volume I

    International Nuclear Information System (INIS)

    Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.

    1987-07-01

    A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for the tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperatures and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtl number for saturated liquid, saturated vapour, subcooled liquid for superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its

  17. Microcomputer based program for predicting heat transfer under reactor accident conditions. Volume II

    International Nuclear Information System (INIS)

    Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.

    1987-07-01

    A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperature and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters are required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtle number for saturated liquid, saturated vapour, subcooled liquid of superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its structure

  18. Modeling of Heat Transfer in the Helical-Coil Heat Exchanger for the Reactor Facility "UNITERM"

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available Circuit heat sink plays an important role in the reactor system. Therefore it imposes high requirements for quality of determining thermal-hydraulic parameters. This article is aimed at modeling of heat exchange process of the helical-coil heat exchanger, which is part of the heat sink circuit of the reactor facility "UNITERM."The simulation was performed using hydro-gas-dynamic software package ANSYS CFX. Computational fluid dynamics of this package allows us to perform calculations in a threedimensional setting, giving an idea of the fluid flow nature. The purpose of the simulation was to determine the parameters of the helical-coil heat exchanger (temperature, velocity at the outlet of the pipe and inter-tubular space, pressure drop, and the nature of the fluid flow of primary and intermediate coolants. Geometric parameters of the model were determined using the preliminary calculations performed by the criterion equations. In calculations Turbulence models k-ε RNG, Shear Stress Transport (SST are used. The article describes selected turbulence models, and considers relationship with wall function.The calculation results allow us to give the values obtained for thermal-hydraulic parameters, to compare selected turbulence models, as well as to show distribution patterns of the coolant temperature, pressure, and velocity at the outlet of the intermediate cooler.Calculations have shown that:- maximum values of primary coolant temperature at the outlet of the heat exchanger surface are encountered in the space between the helical-coil tubes;- higher temperatures of intermediate coolant at the outlet of the coils (in space of helicalcoil tubes are observed for the peripheral row;- primary coolant movement in the inter-tubular space of helical-coil surface is formed as a spiral flow, rather than as a in-line tube bank cross flow.

  19. Experimental and numerical investigation on natural convection heat transfer in nanofluids

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.

    2014-01-01

    Currently, a lot of research is being carried out on the potential application of nanofluids as a coolant in nuclear reactors owing to their enhanced heat transfer characteristics as compared to base fluid. In this regards, an experimental study has been undertaken concerning natural convection heat transfer of nanofluids over a cylindrical heater with a constant wall heat flux condition. The heat flux was varied from 0-50000 W/m 2 and Rayleigh number range is 30000 to 1.65 X 10 5 . Results show that there was a reduction in natural convection heat transfer coefficient of nanofluids as compared to water. Experimental results were compared with existing models for similar geometry. However, the available correlation was found to be unable to predict experimental data. A new empirical model was developed based on the experimental data including the effect of nanoparticles concentration which predicts the experimental data satisfactorily. (author)

  20. Experimental investigations of heat transfer during sodium boiling in fuel assembly model in justification of advanced fast reactor safety

    International Nuclear Information System (INIS)

    Khafizov, R.R.; Poplavskij, V.M.; Rachkov, V.I.; Sorokin, A.P.; Ashurko, Yu.M.; Volkov, A.V.; Ivanov, E.F.; Privezentsev, V.V.

    2015-01-01

    The experimental facility is built up and investigation of heat exchange during sodium boiling in simulated fast reactor core assembly in conditions of natural and forced circulation with sodium plenum and upper end shield model are conducted. It is shown that in the presence of sodium plenum there is possibility to provide long-term cooling of fuel assembly when heat flux density on the surface of fuel element simulator up to 140 and 170 kW/m 2 in conditions of natural and forced circulation, respectively. The obtained data is used for improving calculational model of sodium boiling process in fuel assembly and calculational code COREMELT verification. It is pointed out that heat transfer coefficients in the case of liquid metal boiling in fuel assemblies are slightly over the ones in the case of liquid metals boiling in pipes and pool boiling [ru

  1. Flow pattern-based mass and heat transfer and frictional drag of gas-non-Newtonian liquid flow in helical coil: two- and three-phase systems

    Science.gov (United States)

    Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar

    2017-04-01

    Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube ( d t ), diameter of the coil ( D c ), diameter of the particle ( d p ), pitch difference ( p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.

  2. Effect of Tube Diameter on Heat Transfer to Vertically Upward Flowing Supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji; Kim, Sin [Cheju National University, Jeju (Korea, Republic of); Bae, Yoon Yeong; Kim, Hwan Yeol; Kim, Hyung Rae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    Heat transfer characteristics of supercritical carbon dioxide are being investigated experimentally in the test loop named as SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt generation) at KAERI. The main purpose of the experiment is to provide a reliable heat transfer database for a SCWR (SuperCritical Water-cooled Reactor) by a prudent extension of the carbon dioxide test results to the estimation of a heat transfer for water. The produced data will be used in the thermo-hydraulic design of core and safety analysis for SCWR. The aim of the present paper is to study the influence of a tube diameter on a heat transfer. The experiments were completed for tubes of an inside diameter of 4.4mm and 9.0mm, respectively. The heat transfer characteristics from the two tubes of different diameters were compared and discussed.

  3. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  4. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    Science.gov (United States)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in

  5. Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers, 4

    International Nuclear Information System (INIS)

    Matsushita, Hitoshi; Nakayama, Wataru; Yanagida, Takehiko; Kudo, Akio.

    1987-01-01

    Refering to the results of our previous works, a procedure for estimating the distribution of heat flux in shell-and-tube heat exchangers is proposed. The steam generator used in a high temperature reactor plant is taken up as the subject of analysis. Particular attention is paid to critical conditions for burnout and the strength of material in high temperature conditions. It is found that the distribution of heat transfer coefficient on the shell-side is crucial to the occurrence of burnout in the tubes. The use of a relatively large inlet nozzle (the ratio of its diameter to the shell is roughly half) is recommended. A low level of thermal stress on heat transfer tubes can be realized by the adoption of a relatively thin 2.25 Cr-1 Mo Steel tube wall of 1.24 mm thickness. (author)

  6. Indirectly heated biomass gasification using a latent-heat ballast-part 3: refinement of the heat transfer model

    International Nuclear Information System (INIS)

    Cummer, Keith; Brown, Robert C.

    2005-01-01

    An indirectly heated gasifier is under development at Iowa State University. This gasifier integrates a latent-heat ballast with a fluidized-bed reactor. The latent heat ballast is an array of stainless-steel tubes filled with lithium fluoride, which is a high-temperature phase-change material (PCM). Previous studies have presented experimental results from the gasifier and described a mathematical model of the pyrolysis phase of the cyclic gasification process. This model considers both heat transfer and chemical reactions that occur during pyrolysis, but discrepancies between model predictions and experimental data have demonstrated the need to refine the model. In particular, cooling curves for the ballasting system are not well predicted during phase change of the lithium fluoride. A reformulated model, known as the Receding Interface (RI) model, postulates the existence of a receding liquid phase within the ballast tubes as they cool, which progressively decreases the rate of heat transfer from the tubes. The RI model predicts behavior that is more consistent with experimental results during the phase-change process, while retaining accuracy before and after the process of phase change

  7. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  8. The encapsulated nuclear heat source reactor for proliferation-resistant nuclear energy

    International Nuclear Information System (INIS)

    Brown, N.W.; Hossain, Q.; Carelli, M.D.; Conway, L.; Dzodzo, M.; Greenspan, E.; Saphier, D.

    2001-01-01

    The encapsulated nuclear heat source (ENHS) is a modular reactor that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor concept. It is a fast neutron spectrum reactor cooled by Pb-Bi using natural circulation. It is designed for passive load following, for high level of passive safety, and for 15 years without refueling. One of the unique features of the ENHS is that the fission-generated heat is transferred from the primary coolant to the secondary coolant across the reactor vessel wall by conduction-providing for an essentially sealed module that is easy to install and replace. Because the fuel is encapsulated within a heavy steel container throughout its life it provides a unique improvement to the proliferation resistance of the nuclear fuel cycle. This paper presents the innovative technology of the ENHS. (author)

  9. Pump/heat exchanger assembly for pool-type reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Slepian, R.M.

    1987-01-01

    A heat exchanger and pump assembly comprising a heat exchanger including a housing for defining an annularly shaped cavity and supporting therein a plurality of heat transfer tubes. A pump is disposed beneath the heat exchanger and is comprised of a plurality of flow couplers disposed in a circular array. Each flow coupler is comprised of a pump duct for receiving a first electrically conductive fluid, i.e. the primary liquid metal, from a pool thereof, and a generator duct for receiving a second electrically conductive fluid, i.e. the intermediate liquid metal. The primary liquid metal is introduced from the reactor pool into the top, inlet ends of the tubes, flowing downward therethrough to be discharged from the tubes' bottom ends directly into the reactor pool. The primary liquid metal is variously introduced into the pump ducts directly from the reactor pool, either from the bottom or top end of the flow coupler. The intermediate fluid introduced into the generator ducts via the inlet duct and inlet plenum and after leaving the generator ducts passes through the annular cavity of the exchanger to cool the primary liquid in the tubes. The annular magnetic field of the pump is produced by a circular array of electromagnets having hollow windings cooled by a flow of the intermediate metal. (author)

  10. Subcooled boiling heat transfer correlation to calculate the effects of dissolved gas in a liquid

    International Nuclear Information System (INIS)

    Zarkasi, Amin S.; Chao, W.W.; Kunze, Jay F.

    2004-01-01

    The water coolant in most operating power reactor systems is kept free of dissolved gas, so as to minimize corrosion. However, in most research reactors, which operate at temperatures below 70 deg. C, and between 1 and 5 atm. pressure, the dissolved gas remains present in the water coolant system during operation. This dissolved gas can have a significant effect during accident conditions (i.e. a LOCA), when the fluid quickly reaches boiling, coincident with flow stagnation and subsequent flow reversal. A benchmark experiment was conducted, with an electrically heated, closed loop channel, modeling a research reactor fuel coolant channels (2 mm thick). The results showed 'boiling (bubble) noise' occurring before wall temperatures reached saturation, and a significant increase (up to 50%) in the heat transfer coefficient in the subcooled boiling region when in the presence of dissolved gas, compared to degassed water. Since power reactors do not involve dissolved gas, the RELAP safety analysis code does not include any provisions for the effect of dissolved gas on heat transfer. In this work, the effects of the dissolved gas are evaluated for inclusion in the RELAP code, including provision for initiating 'nucleate boiling' at a lower temperature, and a provision for enhancing the heat transfer coefficient during the subcooled boiling region. Instead of relying on Chen's correlation alone, a modification of the superposition method of Bjorge was adopted. (author)

  11. Convective heat transfer the molten metal pool heated from below and cooled by two-phase flow

    International Nuclear Information System (INIS)

    Cho, J. S.; Suh, K. Y.; Chung, C. H.; Park, R. J.; Kim, S. B.

    1998-01-01

    During a hypothetical servere accident in the nuclear power plant, a molten core material may form stratified fluid layers. These layers may be composed of high temperature molten debris pool and water coolant in the lower plenum of the reactor vessel or in the reactor cavity. This study is concerned with the experimental test and numerical analysis on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. This work examines the crust formation and the heat transfer characteristics of the molten metal pool immersed in the boiling coolant. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. Tests were performed under the condition of the bottom surface heating in the test section and the forced convection of the coolant being injected onto the molten metal pool. The constant temperature and constant heat flux conditions are adopted for the bottom heating. The test parameters included the heated bottom surface temperature of the molten metal pool, the input power to the heated bottom surface of the test section, and the coolant injection rate. Numerical analyses were simultaneously performed in a two-dimensional rectangular domain of the molten metal pool to check on the measured data. The numerical program has been developed using the enthalpy method, the finite volume method and the SIMPLER algorithm. The experimental results of the heat transfer show general agreement with the calculated values. In this study, the relationship between the Nusselt number and Rayleigh number in the molten metal pool region was estimated and compared with the dry experiment without coolant nor solidification of the molten metal pool, and with the crust formation experiment with subcooled coolant, and against other correlations. In the experiments, the

  12. Heat and mass transfer intensification and shape optimization a multi-scale approach

    CERN Document Server

    2013-01-01

    Is the heat and mass transfer intensification defined as a new paradigm of process engineering, or is it just a common and old idea, renamed and given the current taste? Where might intensification occur? How to achieve intensification? How the shape optimization of thermal and fluidic devices leads to intensified heat and mass transfers? To answer these questions, Heat & Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach clarifies  the definition of the intensification by highlighting the potential role of the multi-scale structures, the specific interfacial area, the distribution of driving force, the modes of energy supply and the temporal aspects of processes.   A reflection on the methods of process intensification or heat and mass transfer enhancement in multi-scale structures is provided, including porous media, heat exchangers, fluid distributors, mixers and reactors. A multi-scale approach to achieve intensification and shape optimization is developed and clearly expla...

  13. Heat removal tests for pressurized water reactor containment spray by largescale facility

    International Nuclear Information System (INIS)

    Motoki, Y.; Hashimoto, K.; Kitani, S.; Naritomi, M.; Nishio, G.; Tanaka, M.

    1983-01-01

    Heat removal tests for pressurized water reactor (PWR) containment spray were carried out to investigate effectiveness of the depressurization by Japan Atomic Energy Research Institute model containment (7-m diameter, 20 m high, and 708-m 3 volume) with PWR spray nozzles. The depressurization rate is influenced by the spray heat transfer efficiency and the containment wall surface heat transfer coefficient. The overall spray heat transfer efficiency was investigated with respect to spray flow rate, weight ratio of steam/air, and spray height. The spray droplet heat transfer efficiency was investigated whether the overlapping of spray patterns gives effect or not. The effect was not detectable in the range of large value of steam/air, however, it was better in the range of small value of it. The experimental results were compared with the calculated results by computer code CONTEMPT-LT/022. The overall spray heat transfer efficiency was almost 100% in the containment pressure, ranging from 2.5 to 0.9 kg/cm 2 X G, so that the code was useful on the prediction of the thermal hydraulic behavior of containment atmosphere in a PWR accident condition

  14. Heat transfer performance of multilayer insulation system under roof slab of pool-type LMFBR

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Naohara, Nobuyuki; Uotani, Masaki

    1986-01-01

    To cope with thermal expansion of stainless steel plate, about 90 insulation structures are installed under the roof-slab of pool-type LMFBR. The objective of this study is to evaluate from heat transfer experiment and visualized experiment, the effect of distance between each thermal insulation structure on heat transfer characteristics of insulation system under roof-slab. Two types of insulation structures are selected, one is open type and the other is closed type. Distance between each thermal insulation structure and hot surface temperatures are varied as a parameter. Furthermore, heat flux of the roof-slab insulation system of reactor are estimated from the results of heat transfer experiment. (author)

  15. Methodology used to calculate moderator-system heat load at full power and during reactor transients in CANDU reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.

    1998-01-01

    Nine components determine the moderator-system heat load during full-power operation and during a reactor power transient in a CANDU reactor. The components that contribute to the total moderator-system heat load at any time consist of the heat generated in the calandria tubes, guide tubes and reactivity mechanisms, moderator and reflector; the heat transferred from calandria shell, the inner tubesheets and the fuel channels; and the heat gained from moderator pumps and heat lost from piping. The contributions from each of these components will vary with time during a reactor transient. The sources of heat that arise from the deposition of nuclear energy can be divided into two categories, viz., a) the neutronic component (which is directly proportional to neutronic power), which includes neutron energy absorption, prompt-fission gamma absorption and capture gamma absorption; and b) the fission-product decay-gamma component, which also varies with time after initiation of the transient. An equation was derived to calculate transient heat loads to the moderator. The equation includes two independent variables that are the neutronic power and fission-product decay-gamma power fractions during the transient and a constant term that represents the heat gained from moderator pumps and heat lost from piping. The calculated heat load in the moderator during steady-state full-power operation for a CANDU 6 reactor was compared with available measurements from the Point Lepreau, Wolsong 1 and Gentilly-2 nuclear generating stations. The calculated and measured values were in reasonably good agreement. (author)

  16. Predictions for heat transfer characteristics in a natural draft reactor cooling system using a second moment closure turbulence model

    International Nuclear Information System (INIS)

    Nishimura, M.; Maekawa, I.

    2004-01-01

    A numerical study is performed on the natural draft reactor cavity cooling system (RCCS). In the cooling system, buoyancy driven heated upward flow could be in the mixed convection regime that is accompanied by heat transfer impairment. Also, the heating wall condition is asymmetric with regard to the channel cross section. These flow regime and thermal boundary conditions may invalidate the use of design correlation. To precisely simulate the flow and thermal fields within the RCCS, the second moment closure turbulence model is applied. Two types of the RCCS channel geometry are selected to make a comparison: an annular duct with fins on the outer surface of the inner circular wall, and a multi-rectangular duct. The prediction shows that the local heat transfer coefficient on the RCCS with finned annular duct is less than 1/6 of that estimated with Dittus-Boelter correlation. Much portion of the natural draft airflow does not contribute cooling at all because mainstream escapes from the narrow gaps between the fins. This result and thus the finned annulus design are unacceptable from the viewpoint for structural integrity of the RCCS wall boundary. The performance of the multi-rectangular duct design is acceptable that the RCCS maximum temperature is less than 400 degree centigrade even when the flow rate is halved from the designed condition. (author)

  17. Heat transfer for ultrahigh flux reactor

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Lake, J.A.; Oh, C.H.

    1987-01-01

    The use of a uniquely designed nuclear reactor to supply neutrons for materials research is the focus of recent reactor design efforts. The biological, materials, and fundamental physics aspects of research require neutron fluxes much higher than present research and testing facilities can produce. The most advanced research using neutrons as probing detectors is being done in the High Flux Reactor at the Institut Laue Langeuin, France. The design of a reactor that can produce neutron fluxes of 1.0 x 10 16 n/cm 2 .s requires a relatively high power (300 MW range) and a small core volume (approximately 30 liters). This combination of power and volume leads to a high power density which places increased demands on thermal hydraulic margins

  18. Heat transfer direction dependence of heat transfer coefficients in annuli

    Science.gov (United States)

    Prinsloo, Francois P. A.; Dirker, Jaco; Meyer, Josua P.

    2018-04-01

    In this experimental study the heat transfer phenomena in concentric annuli in tube-in-tube heat exchangers at different annular Reynolds numbers, annular diameter ratios, and inlet fluid temperatures using water were considered. Turbulent flow with Reynolds numbers ranging from 15,000 to 45,000, based on the average bulk fluid temperature was tested at annular diameter ratios of 0.327, 0.386, 0.409 and 0.483 with hydraulic diameters of 17.00, 22.98, 20.20 and 26.18 mm respectively. Both heated and cooled annuli were investigated by conducting tests at a range of inlet temperatures between 10 °C to 30 °C for heating cases, and 30 °C to 50 °C for cooling cases. Of special interest was the direct measurement of local wall temperatures on the heat transfer surface, which is often difficult to obtain and evasive in data-sets. Continuous verification and re-evaluation of temperatures measurements were performed via in-situ calibration. It is shown that inlet fluid temperature and the heat transfer direction play significant roles on the magnitude of the heat transfer coefficient. A new adjusted Colburn j-factor definition is presented to describe the heating and cooling cases and is used to correlate the 894 test cases considered in this study.

  19. Development of a revolving drum reactor for open-sorption heat storage processes

    International Nuclear Information System (INIS)

    Zettl, Bernhard; Englmair, Gerald; Steinmaurer, Gerald

    2014-01-01

    To evaluate the potential of an open sorption storage process using molecular sieves to provide thermal energy for space heating and hot water, an experimental study of adsorption heat generation in a rotating reactor is presented. Dehydrated zeolite of the type 4A and MSX were used in form of spherical grains and humidified room air was blown through the rotating bed. Zeolite batches of about 50 kg were able to generate an adsorption heat up to 12 kWh and temperature shifts of the process air up to 36 K depending on the inlet air water content and the state of dehydration of the storage materials. A detailed study of the heat transfer effects, the generated adsorption heat, and the evolving temperatures show the applicability of the reactor and storage concept. - Highlights: • Use of an open adsorption concept for domestic heat supply was proved. • A rotating heat drum reactor concept was successfully applied. • Zeolite batches of 50 kg generated up to 12 kWh adsorption heat (580 kJ/kg). • Temperature shift in the rotating material bed was up to 60 K during adsorption

  20. Wall heat transfer coefficient in a molten salt bubble column: testing the experimental setup

    CSIR Research Space (South Africa)

    Skosana, PJ

    2014-10-01

    Full Text Available reactors that are highly exothermic or endothermic. This paper presents the design and operation of experimental setup used for measurement of the heat transfer coefficient in molten salt media. The experimental setup was operated with tap water, heat...

  1. Calculations of combined radiation and convection heat transfer in rod bundles under emergency cooling conditions

    International Nuclear Information System (INIS)

    Sun, K.H.; Gonzalez-Santalo, J.M.; Tien, C.L.

    1976-01-01

    A model has been developed to calculate the heat transfer coefficients from the fuel rods to the steam-droplet mixture typical of Boiling Water Reactors under Emergency Core Cooling System (ECCS) operation conditions during a postulated loss-of-coolant accident. The model includes the heat transfer by convection to the vapor, the radiation from the surfaces to both the water droplets and the vapor, and the effects of droplet evaporation. The combined convection and radiation heat transfer coefficient can be evaluated with respect to the characteristic droplet size. Calculations of the heat transfer coefficient based on the droplet sizes obtained from the existing literature are consistent with those determined empirically from the Full-Length-Emergency-Cooling-Heat-Transfer (FLECHT) program. The present model can also be used to assess the effects of geometrical distortions (or deviations from nominal dimensions) on the heat transfer to the cooling medium in a rod bundle

  2. Heat and mass transfer in the HYLIFE ICF reactor cavity

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1981-01-01

    A quasi-one dimensional method was developed for calculating transient, compressible, viscous flow across a complex array of tubes or jets. The method also accounts for the diffusion of radiation and for heat and mass exchange between the fluid and the jets. The application was to the impulsive crossflow of a lithium plasma through a close-packed annular arrangement of liquid lithium jets, a problem that arises in the design of inertial confinement fusion reactors. It was found that approximately 2/3 of the energy initially contained in the plasma will diffuse into the liquid jets, not including an additional 7-10% which will go towards jet surface vaporization. Nevertheless, the peak hoop stress in the first wall of the reactor appears to derive from direct impact of the plasma, rather than from the subsequent impact of the jets or fragments thereof. (orig.)

  3. Laminar Mixed Convection Heat Transfer Correlation for Horizontal Pipes

    International Nuclear Information System (INIS)

    Chae, Myeong Seon; Chung, Bum Jin

    2013-01-01

    This study aimed at producing experimental results and developing a new heat transfer correlation based upon a semi-empirical buoyancy coefficient. Mixed convection mass transfers inside horizontal pipe were investigated for the pipe of various length-to-diameters with varying Re. Forced convection correlation was developed using a very short cathode. With the length of cathode increase and Re decrease, the heat transfer rates were enhanced and becomes higher than that of forced convection. An empirical buoyancy coefficient was derived from correlation of natural convection and forced convection with the addition of L/D. And the heat transfer correlation for laminar mixed convection was developed using the buoyancy coefficient, it describes not only current results, but also results of other studies. Mixed convection occurs when the driving forces of both forced and natural convections are of comparable magnitude (Gr/Re 2 ∼1). It is classical problem but is still an active area of research for various thermal applications such as flat plate solar collectors, nuclear reactors and heat exchangers. The effect of buoyancy on heat transfer in a forced flow is varied by the direction of the buoyancy force. In a horizontal pipe the direction of the forced and buoyancy forces are perpendicular. The studies on the mixed convections of the horizontal pipes were not investigated very much due to the lack of practical uses compared to those of vertical pipes. Even the definitions on the buoyancy coefficient that presents the relative influence of the forced and the natural convections, are different by scholars. And the proposed heat transfer correlations do not agree

  4. Heat removing device for reactor container

    International Nuclear Information System (INIS)

    Hisamochi, Kohei; Matsumoto, Tomoyuki; Matsumoto, Masayoshi; Sato, Ken-ichi.

    1996-01-01

    A recycling loop for reactor water is disposed in a reactor pressure vessel of a BWR type reactor. Extracted reactor water from the recycling loop passes through a extracted reactor water pipeline and flows into a reactor coolant cleanup system. A pipeline for connecting the extracted reactor water pipeline and a suppression pool is disposed, and a discharged water pressurizing pump is disposed to the pipeline. Upon occurrence of emergency, discharged water from the suppression pool is pressurized by a discharged water pressurizing pump and sent to a reactor coolant cleanup system. The discharged water is cooled while passing through a sucking water cooling portion of a regenerative heat exchanger and a non-regenerative heat exchanger. Then, it is sent to a feed water pipeline passing a bypass line of a filtering desalter and a bypass line of the sucked water cooling portion of the regenerative heat exchanger, injected to the inside of the pressure vessel to cool the reactor core and remove after-heat. Then, it cools the inside of the reactor container together with coolants flown out of the pressure vessel and then returns to the suppression pool. (I.N.)

  5. Heat exchange apparatus

    International Nuclear Information System (INIS)

    Thurston, G.C.; McDaniels, J.D.; Gertsch, P.R.

    1979-01-01

    The present invention relates to heat exchangers used for transferring heat from the gas cooled core of a nuclear reactor to a secondary medium during standby and emergency conditions. The construction of the heat exchanger described is such that there is a minimum of welds exposed to the reactor coolant, the parasitic heat loss during normal operation of the reactor is minimized and the welds and heat transfer tubes are easily inspectable. (UK)

  6. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    International Nuclear Information System (INIS)

    Huh, Seon Jeong; Lee, Hee Joon; Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In

    2016-01-01

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m"2/K from the 4×4 tube banks, and 4.92 W/m"2/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study

  7. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seon Jeong; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m{sup 2}/K from the 4×4 tube banks, and 4.92 W/m{sup 2}/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study.

  8. Feasibility study of the university of Utah TRIGA reactor power upgrade - part II: Thermohydraulics and heat transfer study in respect to cooling system requirements and design

    Directory of Open Access Journals (Sweden)

    Babitz Philip

    2013-01-01

    Full Text Available The thermodynamic conditions of the University of Utah's TRIGA Reactor were simulated using SolidWorks Flow Simulation, Ansys, Fluent and PARET-ANL. The models are developed for the reactor's currently maximum operating power of 90 kW, and a few higher power levels to analyze thermohydraulics and heat transfer aspects in determining a design basis for higher power including the cost estimate. It was found that the natural convection current becomes much more pronounced at higher power levels with vortex shedding also occurring. A departure from nucleate boiling analysis showed that while nucleate boiling begins near 210 kW it remains in this state and does not approach the critical heat flux at powers up to 500 kW. Based on these studies, two upgrades are proposed for extended operation and possibly higher reactor power level. Together with the findings from Part I studies, we conclude that increase of the reactor power is highly feasible yet dependable on its purpose and associated investments.

  9. Radiative heat transfer

    CERN Document Server

    Modest, Michael F

    2013-01-01

    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  10. Effect of heat transfer in the fog region during core reflooding

    International Nuclear Information System (INIS)

    Rouai, N. M.; El-sawy, H. M.

    1993-01-01

    Core reflooding following a loss of coolant accident (LOCA) in a pressurized water reactor (PWR) received considerable attention during the past thirty years. In this paper a one dimensional model is used to study the effect of the heat transfer in the fog region ahead of the wet front reflooding rate of a cylindrical fuel element following a LOCA in a PWR. The heat conduction equation in the cladding is solved in coordinate system moving with the wet front under a variety of condition to investigate the effects of such parameters as the initial cladding surface temperature, the decay heat generation rate in the fuel and the mode of heat transfer prevailing. The cladding surface is divided into three axial regions according to the mechanism of heat transfer, namely, a boiling region behind the wet front, a fog region ahead of the wet front and a dry region further downstream of the wet front. The effect of changing the heat transfer coefficient in the fog region on the rewetting rate and on the fog length is investigated. The results of this simple model show that increasing the heat transfer in the fog region increases the rewetting velocity and consequently decreases the fog length. The results are in general agreement with a more accurate two-dimensional model and experimental data. (author)

  11. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  12. Thermohydraulic behaviour and heat transfer in the molten core

    International Nuclear Information System (INIS)

    Reineke, H.H.

    1977-01-01

    Increasing the application of nuclear reactors to produce electrical power extremely unprobable accidents should be investigated too. In the Federal Republic of Germany, a research program is performed for some years engaged in accidents at light water reactors in which the melting of the reactor core is presumed. A part of this program is to investigate the thermohydraulic and the heat transfer behavior in an accumulation of molten core material. The knowledge of these events is necessary to analyse the accident exactly. Further on the results of this work are of great importance to build a catcher for the molten core material. As a result of the decay heat the molten material is heated up and the density differences induce a free convection motion. In this work the thermohydraulic behavior and the distribution of the escaping heat fluxes for several accumulations of molten core material were determined. The numerical methods for solving the system of partial differential equation were used to develop computer codes, able to compute the average and local heat fluxes at the walls enclosing the molten core material and the inside increase of the temperature. The numerical computations were confirmed and verified by experimental investigations. In these investigations the molten core material was always assumed as a homogeneous fluid. In this case, the results could be reproduced by simple power laws

  13. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs.

  14. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    Directory of Open Access Journals (Sweden)

    Phani Kumar Domalapally

    2015-04-01

    Full Text Available Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  15. Heat transfer tests conducted on full-scale model, to investigate cooling conditions of EL.3 experimental reactor

    International Nuclear Information System (INIS)

    Raievski, R.; Bousquet, M.; Braudeau, M.; Milliat, M.

    1958-01-01

    For such high heat flux density as is released in the channels of EL3 reactor (2.10 6 kcal/m 2 h on the hottest point) cooling conditions have proved to be satisfactory, that is free from nucleate boiling. The arrangements provided for these tests and the technique used for measurements (of temperature particularly) are specified. Two fields have been investigated: in the former (forced convection without nucleate boiling) a good agreement is found with Colburn's formula. The influence of the ratio L/D is pointed out. The latter field is of forced convection with beginning of nucleate boiling; there the observed raise of the transfer coefficient has been shown occurring with some delay. (author) [fr

  16. Local pool boiling heat transfer on a 3 Degree inclined tube surface

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2012-01-01

    Mechanisms of pool boiling heat transfer have been studied for a long time. Recently, it has been widely investigated in nuclear power plants for the purpose of acquiring inherent safety functions in case of no power supply. To design more efficient heat exchangers, effects of several parameters on heat transfer must be studied in detail. One of the major issues is variation in local heat transfer coefficients on a tube. Lance and Myers reported that the type of boiling liquid can change the trend of local heat transfer coefficients along the tube periphery. Lance and Myers said that as the liquid is methanol the maximum local heat transfer coefficient was observed at the tube bottom while the maximum was at the tube sides as the boiling liquid was n hexane. Corn well and Einarsson reported that the maximum local heat transfer coefficient was observed at the tube bottom, as the boiling liquid was R113. Corn well and Houston explained the reason of the difference in local heat transfer coefficients along the tube circumference with introducing effects of sliding bubbles on heat transfer. According to Gu pta et al., the maximum and the minimum local heat transfer coefficients were observed at the bottom and top regions of the tube circumference, respectively, using a tube bundle and water. Kang also reported the similar results using a single horizontal tube and water. However, the maximum heat transfer coefficient was observed at the angle of 45 deg. Sateesh et al. investigated variations in local heat transfer coefficients along a tube periphery as the inclination angle was changed. Summarizing the published results, some parts are still remaining to be investigated in detail. Although pool boiling analysis on a nearly horizontal tube is necessary for the design of the advanced power reactor plus, no previous results are published yet. Therefore, the present study is aimed to study variations in local pool boiling heat transfer coefficients for a 3 degree inclined

  17. Boiling heat transfer and dryout in helically coiled tubes under different pressure conditions

    International Nuclear Information System (INIS)

    Chung, Young-Jong; Bae, Kyoo-Hwan; Kim, Keung Koo; Lee, Won-Jae

    2014-01-01

    Highlights: • Heat transfer characteristics and dryout for helically coiled tube are performed. • A boiling heat transfer tends to increase with a pressure increase. • Dryout occurs at high quality test conditions investigated. • Steiner–Taborek’s correlation is predicted well based on the experimental results. - Abstract: A helically coiled once-through steam generator has been used widely during the past several decades for small nuclear power reactors. The heat transfer characteristics and dryout conditions are important to optimal design a helically coiled steam generator. Various experiments with the helically coiled tubes are performed to investigate the heat transfer characteristics and occurrence condition of a dryout. For the investigated experimental conditions, Steiner–Taborek’s correlation is predicted reasonably based on the experimental results. The pressure effect is important for the boiling heat transfer correlation. A boiling heat transfer tends to increase with a pressure increase. However, it is not affected by the pressure change at a low power and low mass flow rate. Dryout occurs at high quality test conditions investigated because a liquid film on the wall exists owing to a centrifugal force of the helical coil

  18. Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments

    International Nuclear Information System (INIS)

    Spring, J.P.; McLaughlin, D.M.

    2006-01-01

    Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local

  19. Experiments and Modelling Techniques for Heat and Mass Transfer in Light Water Reactors

    International Nuclear Information System (INIS)

    Ambrosini, W.; Bucci, M.; Forgione, N.; Manfredini, A.; Oriolo, F.

    2009-01-01

    The paper summarizes the lesson learned from theoretical and experimental activities performed at the University of Pisa, Pisa, Italy, in past decades in order to develop a general methodology of analysis of heat and mass transfer phenomena of interest for nuclear reactor applications. An overview of previously published results is proposed, highlighting the rationale at the basis of the performed work and its relevant conclusions. Experimental data from different sources provided information for model development and assessment. They include condensation experiments performed at SIET (Piacenza, Italy) on the PANTHERS prototypical PCCS module, falling film evaporation tests for simulating AP600-like outer shell spraying conditions, performed at the University of Pisa, experimental data concerning condensation on finned tubes, collected by CISE (Piacenza, Italy) in the frame of the INCON EU Project, and experimental tests performed in the CONAN experimental facility installed at the University of Pisa. The experience gained in these activities is critically reviewed and discussed to highlight the relevant obtained conclusions and the perspectives for future work

  20. Heat transfer mechanisms in poplar wood undergoing torrefaction

    Science.gov (United States)

    Sule, Idris O.; Mahmud, Shohel; Dutta, Animesh; Tasnim, Syeda Humaira

    2016-03-01

    Torrefaction, a thermal treatment process of biomass, has been proved to improve biomass combustible properties. Torrefaction is defined as a thermochemical process in reduced oxygen condition and at temperature range from 200 to 300 °C for shorter residence time whereby energy yield is maximized, can be a bridging technology that can lead the conventional system (e.g. coal-fired plants) towards a sustainable energy system. In efforts to develop a commercial operable torrefaction reactor, the present study examines the minimum input condition at which biomass is torrefied and explores the heat transfer mechanisms during torrefaction in poplar wood samples. The heat transfer through the wood sample is numerically modeled and analyzed. Each poplar wood is torrefied at temperature of 250, 270, and 300 °C. The experimental study shows that the 270 °C-treatment can be deduced as the optimal input condition for torrefaction of poplar wood. A good understanding of heat transfer mechanisms can facilitate the upscaling and downscaling of torrefaction process equipment to fit the feedstock input criteria and can help to develop treatment input specifications that can maximize process efficiency.

  1. Control of reactor coolant flow path during reactor decay heat removal

    International Nuclear Information System (INIS)

    Hunsbedt, A.N.

    1988-01-01

    This patent describes a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating the hot pool and the cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor coolant pumps having a suction on the lower pressure sodium cold pool and an outlet to a reactor core; the reactor core for heating the sodium and discharging the sodium to the reactor hot pool; a heat exchanger for receiving sodium from the hot pool, and removing heat from the sodium and discharging the sodium to the lower pressure cold pool; the improvement across the reactor vessel liner comprising: a jet pump having a venturi installed across the reactor vessel liner, the jet pump having a lower inlet from the reactor vessel cold pool across the reactor vessel liner and an upper outlet to the reactor vessel hot pool

  2. An introduction to one-phase heat transfer: deterministic and probabilistic formulae

    International Nuclear Information System (INIS)

    Colombino, A.; Pacilio, N.; Fiore, D.

    1979-01-01

    This work aims to formulating heat transfer processes via stochastic models. The bartlett formalism is introduced for treating the processes under analysis. The basic mathematical algorithms connected with the numerical description of stochastic variables are defined: factorial moments and cumulants, auto- and cross-correlation functions, auto- and cross-spectral density functions. Every thermal process is analyzed through the stochastic formalism previously introduced and the physical meaning of the analytical solutions found for each process is examined. The relevant features of the solution are collected in a synoptical box and theoretical formulae are given for the interpretation of heat transfer measurements in nuclear reactors

  3. Auxiliary reactor for a hydrocarbon reforming system

    Science.gov (United States)

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  4. Numerical simulation on coolant flow and heat transfer in core

    International Nuclear Information System (INIS)

    Yao Zhaohui; Wang Xuefang; Shen Mengyu

    1997-01-01

    To simulate the coolant flow and the heat transfer characteristics of a core, a computer code, THAPMA (Thermal Hydraulic Analysis Porous Medium Analysis) has been developed. In THAPMA code, conservation equations are based on a porous-medium formulation, which uses four parameters, i.e, volume porosity, directional surface porosity, distributed resistance, and distributed heat source (sink), to model the effects of fuel rods and other internal solid structures on flow and heat transfer. Because the scheme and the solution are very important in accuracy and speed of calculation, a new difference scheme (WSUC) has been used in the energy equation, and a modified PISO solution method have been employed to simulate the steady/transient states. The code has been proved reliable and can effectively solve the transient state problem by several numerical tests. According to the design of Qinshan NPP-II, the flow and heat transfer phenomena in reactor core have been numerically simulated. The distributions of the velocity and the temperature can provide a theoretical basis for core design and safety analysis

  5. Heat transfer from a plate cooled by a water film with countercurrent air flow

    International Nuclear Information System (INIS)

    Ambrosini, W.; Manfredini, A.; Mariotti, F.; Oriolo, F.; Vigni, P.

    1995-01-01

    An experimental program at the University of Pisa provides specific data for the evaluation of heat and mass transfer by falling film evaporation. The problem is addressed primarily because of its relevance to the study of the behavior of passive containment cooling systems in simplified pressurized water reactors. In these plants, after an accident that releases vapor from the primary circuit, the steel containment envelope is cooled either by an ascending stream of air in natural circulation or by the combination of air flow and falling film evaporation. To qualify models for the prediction of the heat transfer capabilities in postulated accident conditions, researchers have built an experimental facility consisting of a flat heated plate with water sprays and a fan to simulate a countercurrent air stream. The range of relevant parameters to be investigated has been determined on the basis of integral calculations performed for the AP600 reactor containment. The facility has enabled the collection of data that confirm the adequacy of the classical heat and mass transfer analogy in predicting evaporation phenomena. Further developments in the research are needed to confirm the first results and to extend the experimental database by considering more subtle aspects of the phenomenon such as the characteristics of surface waviness of the water film and its effect on heat transfer

  6. Study of passive residual heat removal system of a modular small PWR reactor

    International Nuclear Information System (INIS)

    Araujo, Nathália N.; Su, Jian

    2017-01-01

    This paper presents a study on the passive residual heat removal system (PRHRS) of a small modular nuclear reactor (SMR) of 75MW. More advanced nuclear reactors, such as generation III + and IV, have passive safety systems that automatically go into action in order to prevent accidents. The purpose of the PRHRS is to transfer the decay heat from the reactor's nuclear fuel, keeping the core cooled after the plant has shut down. It starts operating in the event of fall of power supply to the nuclear station, or in the event of an unavailability of the steam generator water supply system. Removal of decay heat from the core of the reactor is accomplished by the flow of the primary refrigerant by natural circulation through heat exchangers located in a pool filled with water located above the core. The natural circulation is caused by the density gradient between the reactor core and the pool. A thermal and comparative analysis of the PRHRS was performed consisting of the resolution of the mass conservation equations, amount of movement and energy and using incompressible fluid approximations with the Boussinesq approximation. Calculations were performed with the aid of Mathematica software. A design of the heat exchanger and the cooling water tank was done so that the core of the reactor remained cooled for 72 hours using only the PRHRS

  7. Analytical model for bottom reflooding heat transfer in light water reactors (the UCFLOOD code)

    International Nuclear Information System (INIS)

    Arrieta, L.; Yadigaroglu, G.

    1978-08-01

    The UCFLOOD code is based on mechanistic models developed to analyze bottom reflooding of a single flow channel and its associated fuel rod, or a tubular test section with internal flow. From the hydrodynamic point of view the flow channel is divided into a single-phase liquid region, a continuous-liquid two-phase region, and a dispersed-liquid region. The void fraction is obtained from drift flux models. For heat transfer calculations, the channel is divided into regions of single-phase-liquid heat transfer, nucleate boiling and forced-convection vaporization, inverted-annular film boiling, and dispersed-flow film boiling. The heat transfer coefficients are functions of the local flow conditions. Good agreement of calculated and experimental results has been obtained. A code user's manual is appended

  8. Facilities of fuel transfer for nuclear reactors

    International Nuclear Information System (INIS)

    Wade, E.E.

    1977-01-01

    This invention relates to sodium cooled fast breeder reactors. It particularly concerns facilities for the transfer of fuel assemblies between the reactor core and a fuel transfer area. The installation is simple in construction and enables a relatively small vessel to be used. In greater detail, the invention includes a vessel with a head, fuel assemblies housed in this vessel, and an inlet and outlet for the coolant covering these fuel assemblies. The reactor has a fuel transfer area in communication with this vessel and gear inside the vessel for the transfer of these fuel assemblies. These facilities are borne by the vessel head and serve to transfer the fuel assemblies from the vessel to the transfer area; whilst leaving the fuel assemblies completely immersed in a continuous mass of coolant. A passageway is provided between the vessel and this transfer area for the fuel assemblies. Facilities are provided for closing off this passageway so that the inside of the reactor vessel may be isolated as desired from this fuel transfer area whilst the reactor is operating [fr

  9. Heat transfer measurements of internally heated liquids in cylindrical convection cells

    International Nuclear Information System (INIS)

    Fieg, G.

    1978-10-01

    In hypothetical reactor accidents, the thermohydraulic behaviour of core melts heated by the after-heat must be analyzed. For this purpose model experiments have been performed to study the stationary, natural convective heat transfer of internally heated fluids in cylindrical convertion cells investigating also the influence of geometry (aspect ratio) as well as of difference thermal wall conditions on to the heat transport characteristics. Axial temperature profiles, local heat flux densities at the vertical walls and their dependence, on the external Rayleigh number ar in detail reported, besides the Nusselt vs Rayleigh correlations for the aspect ratios HID=1 and 0,25. The results of these experiments are compared, as for ar possible, with existing thermohydraulic codes and simpler model asoumptions like the zone-model of Baker et. al. and after experimental verification, be used to study realistic PAHR situations. Velocity measurements by means of Laser-Doppler-Method yield information about the flow characteristics near the vertical walls and within the central part of the convecting fluid. (GL) [de

  10. RELAP5 analysis of reflux condensation behavior in heat transfer tube bundle of a steam generator

    International Nuclear Information System (INIS)

    Minami, Noritoshi; Chikusa, Toshiaki; Nagae, Takashi; Murase, Michio

    2007-01-01

    In case of loss of the residual heat removal system and other alternative cooling methods under mid-loop operation during shutdown of the pressurized water reactor plant, reflux condensation in the steam generator (SG) may be an effective heat removal mechanism. In reflux condensation experiments 7.2c with injection of nitrogen gas using the BETHSY facility in France, which is a scale model of a pressurized water reactor plant, 34 heat transfer tubes were divided into two kinds of flow patterns, which were steam forward flow and nitrogen reverse flow. In this study, we simulated the BETHSY experiments using the transient analysis code RELAP5. Modifying calculation equations for interfacial friction force and wall friction force between the inlet plenum and heat transfer tubes, nitrogen reverse flow was successfully simulated. In calculations with alteration of the flow area ratio to two flow channels for the heat transfer tube bundle, the number of active tubes with the maximum nitrogen recirculation flow rate agreed rather well with the observed number of active tubes. In calculations with three flow channels for the heat transfer tube bundle, the average number of active tubes in several calculations with different flow area ratios of the three flow channels predicted the number of active tubes well. (author)

  11. Condensation heat transfer with noncondensable gas for passive containment cooling of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Tauna [Schlumberger, 14910 Airline Rd., Rosharon, TX 77583 (United States)]. E-mail: Tleonardi@slb.com; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: Ishii@ecn.purdue.edu

    2006-09-15

    Noncondensable gases that come from the containment and the interaction of cladding and steam during a severe accident deteriorate a passive containment cooling system's performance by degrading the heat transfer capabilities of the condensers in passive containment cooling systems. This work contributes to the area of modeling condensation heat transfer with noncondensable gases in integral facilities. Previously existing correlations and models are for the through-flow of the mixture of steam and the noncondensable gases and this may not be applicable to passive containment cooling systems where there is no clear passage for the steam to escape. This work presents a condensation heat transfer model for the downward cocurrent flow of a steam/air mixture through a condenser tube, taking into account the atypical characteristics of the passive containment cooling system. An empirical model is developed that depends on the inlet conditions, including the mixture Reynolds number and noncondensable gas concentration.

  12. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  13. Steady and Transient Analysis of Flow and Heat Transfer in SPND Assembly

    OpenAIRE

    Tijiboy, Jose Carlos

    2008-01-01

    This thesis presents the analysis of flow and heat transfer for the SPND (Self-Powered Neutron Detector) system used within the nuclear reactor core in the U.S. Evolutionary Power Reactor developed by AREVA. The SPND system is composed of six individual detectors which are used for in-core measurement of thermal neutron flux. The study of the SPND system is important since this system provides information and signals necessary for safe reactor operation and control. The main goal of the proj...

  14. HEXEREI: a multi-channel heat conduction convection code for use in transient thermal hydraulic analysis of high-temperature, gas-cooled reactors. Interim report

    International Nuclear Information System (INIS)

    Giles, G.E.; DeVault, R.M.; Turner, W.D.; Becker, B.R.

    1976-05-01

    A description is given of the development and verification of a generalized coupled conduction-convection, multichannel heat transfer computer program to analyze specific safety questions involving high temperature gas-cooled reactors (HTGR). The HEXEREI code was designed to provide steady-state and transient heat transfer analysis of the HTGR active core using a basic hexagonal mesh and multichannel coolant flow. In addition, the core auxiliary cooling systems were included in the code to provide more complete analysis of the reactor system during accidents involving reactor trip and cooling down on the auxiliary systems. Included are brief descriptions of the components of the HEXEREI code and sample HEXEREI analyses compared with analytical solutions and other heat transfer codes

  15. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  16. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    International Nuclear Information System (INIS)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan's investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra) n , where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan's aligned array results and to other studies of natural convection in horizontal tube arrays

  17. BWR type reactor system

    International Nuclear Information System (INIS)

    Morooka, Shin-ichi.

    1980-01-01

    Purpose: To reduce the internal structure in a reactor by rapidly and efficiently transferring heat generated in a reactor core out of the reactor and eliminating the danger of radiation exposure. Constitution: Steam generated in a pressure vessel is introduced into heat pipe group by inserting the heat pipe group into the steam dome of the pressure vessel. The introduced steam is condensed in the heat pipes to transfer the heat of the steam to the heat pipe group. The transferred heat is transmitted to a heat exchanger provided out of a containment vessel to generate steam to operate a turbine. Thus, it is not necessary to introduce the steam including radioactive substance externally and can remove only the heat so as to carry out the desired purpose. (Kamimura, M.)

  18. Natural convection heat transfer experiments of horizontal plates with fin arrays

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Je Young; Chung, Bum Jin [Jeju National University 102 Jejudaehakno, Jeju (Korea, Republic of)

    2012-10-15

    Core melt in a severe accident condition, forms a molten pool in the reactor vessel lower head. The molten pool is divided by a metallic pool (top) and an oxide pool (bottom) by the density difference. The crust between the metallic layer and the oxide pool may be formed by solidification of the molten metallic materials. So the surface of the crust is formed irregularly. Experiments were performed to investigate the irregular crust as a preparatory study before an in-depth severe accident study. The natural convection heat transfer were investigated experimentally varying the height and spacing of fins, top plate of different kinds and the plate separation distance with/without the side walls. In order to simulate irregular crust surface condition, the finned plates was used. Using the analogy concept, heat transfer experiments were replaced by mass transfer experiments. A cupric acid.copper sulfate (H{sup 2S}O{sup 4-}CuSO{sup 4)} electroplating system was adopted as the mass transfer system and the electric currents were measured rather than the heat transfer rates.

  19. Visualization of direct contact heat transfer between water and molten alloy

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi; Takenaka, Nobuyuki; Matsubayashi, Masahito.

    1996-01-01

    We have been developing an innovative Steam Generator concept of Fast Breeder Reactors by using liquid-liquid direct contact heat transfer. In this concept, the SG shell is filled with a molten alloys, which is heated by primary sodium. Water is fed into the high temperature molten alloy, and evaporates by direct contact heating. In order to obtain the fundamental information to discuss the heat transfer mechanisms of the direct contact between the water and the alloy, this phenomenon was visualized by real-time neutron radiography. JRR-3M real-time thermal neutron radiography in Japan Atomic Energy Research Institute was used. Followings are main results. (1) The vigorous evaporation occurs in the molten alloy. This phenomena is different from the known phenomenon such as the evaporation of refrigerant R-113 in the water. (2) The evaporation in the bubble has finished in a moment due to high heat transfer performance between the liquid and molten alloy. (3) It is confirmed that the velocity of bubble with the rapid evaporation and growth is about 50 cm/s. (author)

  20. COOLOD, Steady-State Thermal Hydraulics of Research Reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-01-01

    1 - Description of program or function: The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is a revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode. A 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is a subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. 2 - Method of solution: The 'Heat Transfer Package' is a subprogram for calculating heat transfer coefficients, ONB temperature, heat flux at onset of flow instability and DNB heat flux. The 'Heat transfer package' was especially developed for research reactors which are operated under low pressure and low temperature conditions using plate-type fuel, just like the JRR-3M. Heat transfer correlations adopted in the 'Heat Transfer Package' were obtained or estimated based on the heat transfer experiments in which thermal-hydraulic features of the upgraded JRR-3 core were properly reflected. The 'Heat Transfer Package' is applicable to upward and downward flow

  1. A Secondary Flow Effect on the Heat and Mass Transfer Processes in the Finned Rod Bundles of Gas-cooled Reactors

    Directory of Open Access Journals (Sweden)

    A. A. Dunaitsev

    2017-01-01

    Full Text Available In nuclear power engineering a need to justify an operability of products and their components is of great importance. In high-temperature gas reactors, the critical element affecting the facility reliability is the fuel rod cladding, which in turn leads to the need to gain knowledge in the field of gas dynamics and heat transfer in the reactor core and to increase the detail of the calculation results. For the time being, calculations of reactor core are performed using the proven techniques of per-channel calculations, which show good representativeness and count rate. However, these techniques require additional experimental studies to describe correctly the inter-channel exchange, which, being taken into account, largely affects the pattern of the temperature fields in the region under consideration. Increasingly more relevant and demandable are numerical simulation methods of fluid and gas dynamics, as well as of heat exchange, which consist in the direct solution of the system of differential equations of mass balance, kinetic moment, and energy. Calculation of reactor cores or rod bundles according these techniques does not require additional experimental studies and allows us to obtain the local distributions of flow characteristics in the bundle and the flow characteristics that are hard to measure in the physical experiment.The article shows the calculation results and their analysis for an infinite rod lattice of the reactor core. The results were obtained by the technique of modelling one rod of a regular lattice using the periodic boundary conditions, followed by translating the results to the neighbouring rods. In channels of complex shape, there are secondary flows caused by changes in the channel geometry along the flow and directed across the main front of the flow. These secondary flows in the reactor cores with rods spaced by the winding wire lead to a redistribution of the coolant along the channel section, which in turn

  2. Improving the understanding of thermal-hydraulics and heat transfer for super critical water cooled reactors

    International Nuclear Information System (INIS)

    Bilbao y Leon, S.; Aksan, N.

    2010-01-01

    Ensuring the exchange of information and fostering the collaboration among Member States on the development of technology advances for future nuclear power plants are among the key roles of the IAEA. There is high interest internationally in both developing and industrialized countries in the design of innovative super-critical water-cooled reactors (SCWRs). This interest arises from the high thermal efficiencies (44-45%) and improved economic competitiveness promised by for this concept, utilizing and building on the recent developments of highly efficient fossil power plants. The SCWR is one of the six concepts included in the Generation-IV International Forum (GIF). Following the advice of the IAEA Nuclear Energy Dept.'s Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and TWG-HWR), with the feedback from the Gen-IV SCWR Steering Committee, and in coordination with the OECD-NEA, IAEA is working on a Coordinated Research Project (CRP) in the areas of heat transfer behaviour and testing of thermo-hydraulic computer methods for Supercritical Water-Cooled Reactors. The second Research Coordination Meeting (RCM) of the CRP was held at the IAEA Headquarters, in Vienna (Austria)) in August 2009. This paper summarizes the current status of the CRP, as well as the major achievements to date. (authors)

  3. Liquid metal heat transfer issues

    International Nuclear Information System (INIS)

    Hoffman, H.W.; Yoder, G.L.

    1984-01-01

    An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept

  4. Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, K M; Chang, J S; Bai, C H; Chung, M [Yeungnam University, Kyungsan (Korea)

    1999-11-01

    To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52 mm and 7.0 mm, respectively. Used microfin tubes have different shape and number of fins with each other. The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film. 17 refs., 14 figs., 3 tabs.

  5. PWR-blowdown heat transfer separate effects program

    International Nuclear Information System (INIS)

    Thomas, D.G.

    1976-01-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results are obtained from the Thermal-Hydraulic Test Facility (THTF). Supporting experiments are carried out in several additional test loops - the Forced Convection Test Facility (FCTF), an air-water loop, a transient steam-water loop, and a low-temperature water mockup of the THTF heater rod bundle. The studies to date are described

  6. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  7. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  8. Investigation of the possibility of using residual heat reactor energy

    Science.gov (United States)

    Aminov, R. Z.; Yurin, V. E.; Bessonov, V. N.

    2017-11-01

    The largest contribution to the probable frequency of core damage is blackout events. The main component of the heat capacity at each reactor within a few minutes following a blackout is the heat resulting from the braking of beta-particles and the transfer of gamma-ray energy by the fission fragments and their decay products, which is known as the residual heat. The power of the residual heat changes gradually over a long period of time and for a VVER-1000 reactor is about 15-20 MW of thermal power over 72 hours. Current cooldown systems increase the cost of the basic nuclear power plants (NPP) funds without changing the amount of electricity generated. Such systems remain on standby, accelerating the aging of the equipment and accordingly reducing its reliability. The probability of system failure increases with the duration of idle time. Furthermore, the reactor residual heat energy is not used. A proposed system for cooling nuclear power plants involves the use of residual thermal power to supply the station’s own needs in emergency situations accompanied by a complete blackout. The thermal power of residual heat can be converted to electrical energy through an additional low power steam turbine. In normal mode, the additional steam turbine generates electricity, which makes it possible to ensure spare NPP and a return on the investment in the reservation system. In this work, experimental data obtained from a Balakovo NPP was analyzed to determine the admissibility of cooldown of the reactors through the 2nd circuit over a long time period, while maintaining high-level parameters for the steam generated by the steam generators.

  9. CFD analysis on heat transfer in low Prandtl number fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.; Sinha, R.K., E-mail: bananta@barc.gov.in [Bhabha Atomic Research Centre, Reactor Engineering Div., Trombay, Mumbai (India)

    2011-07-01

    Use of Computational Fluid Dynamics (CFD) code is helpful for designing liquid metal cooled nuclear reactor systems. Before using any CFD code proper evaluation of the code is essential for simulation of heat transfer in liquid metal flow. In this paper, a review of the literature on the correlations for liquid metal heat transfer is carried out and a comparison with experimental results is performed. CFD analysis is carried out using PHOENICS-3.6 code on heat transfer in molten Lead Bismuth Eutectic (LBE) flowing through tube. Turbulent flow analyses are carried out for the evaluation of the CFD code. The CFD results are compared with the available correlations. Assessment of various turbulence models and correlations for turbulent Prandtl number in the tube geometry are carried out. From the analysis it is found that, the CFD prediction can be improved with modified turbulent Prandtl number in the turbulence models. (author)

  10. A decay heat removal methodology for reuseable orbital transfer vehicles

    Science.gov (United States)

    McDaniel, Patrick J.; Perkins, David R.

    1992-07-01

    Operation of a nuclear thermal rocket(NTR) as the propulsion system for a reusable orbital transfer vehicle has been considered. This application is the most demanding in terms of designing a multiple restart capability for an NTR. The requirements on a NTR cooling system associated with the nuclear decay heat stored during operation have been evaluated, specifically for a Particle Bed Reactor(PBR) configuration. A three mode method of operation has been identified as required to adequately remove the nuclear decay heat.

  11. Feasibility study on applicability of direct contact heat transfer SGs or FBRs

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro

    1997-01-01

    As a candidate of an innovative steam generator for fast breeder reactors, heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The objectives of this study are to obtain the technical feasibility of this concept, to evaluate the heat transfer characteristics of direct contact heat transfer and to estimate the size and volume of this SG. Followings are main results. (1) In the case of sodium tube failure, it is considered that steam and water will not enter into the primary sodium under appropriate countermeasures. (2) Under the condition of temperature and pressure of SG for FBRs, the phenomenon such as vapor explosion is not take place in this SG concept. (3) as a result of material compatibility test and analysis, it is considered that 9Cr-1Mo steel and 21/4cr-1Mo steel will be a candidate structural material. (4) It is considered that the production of oxides by the chemical reaction between melting alloy and water is mitigated by dissolving hydrogen gas in feed water. (5) The fundamental direct contact heat transfer characteristics between a melting alloy and water is obtained in following two regions. One is the evaporating region and the other is the superheating region. The effect of the system pressure on the heat transfer characteristics and the required degree of superheat of a melting alloy above the water saturation temperature are evaluated during direct contact heat transfer experiments by injecting water into a high temperature melting alloy. (6) Due to the high heat transfer performance of direct contact heat transfer, it is found that compact steam generation section will be expected. However, because of the characteristics of direct contact heat exchanger, achievement of high efficiency was difficult. In order to make a good use of this SG concept, improvement of efficiency is necessary. (author)

  12. Approximate model for calculating overall heat transfer between overlying immiscible liquid layers with bubble-induced liquid entrainment

    International Nuclear Information System (INIS)

    Greene, G.A.; Schwarz, C.E.

    1982-01-01

    In the event a commercial power reactor is subjected to a Class 9 accident resulting in gross core melting and reactor pressure vessel penetration, it has been shown that the containment integrity may subsequently be threatened by steam overpressurization, combustible gas reactions, and basemat penetration. A major contributor to these events would be the interaction of molten core debris with the structural concrete. Modeling of core-concrete interactions involves many poorly understood and complicated heat transfer phenomena for which there exists a sparse data base. One of these phenomena, which has been shown to have significant impact upon code calculations of core-concrete interactions, is the rate of heat transfer between overlying immiscible layers of core oxides and molten metals whose interface is agitated by transverse gas flow. A mathematical model is developed to analyze this heat transfer

  13. Transference of know-how for the fabrication of heavy components for nuclear power reactors

    International Nuclear Information System (INIS)

    Meier, F.

    1977-01-01

    1) Heavy components for nuclear power reactors. Reactor pressure vessels with total weight of 540 tons; steam generators: heat exchangers with U-type tube bundles, total weight 420 tons. 2) Choice of know-how recipient. Technical criteria, i.e. manufacturing facilities, existing quality assurance system, location of the workshops, possibilities for training, infrastructures. 3. Measures for transferring know-how to a newly established company. Planning and erection of the factory: organisational set up of the company; personnel selection and training; transfer of documentation; transfer of know-how that cannot be transferred in a written form. 4) Contracts for assuring the transfer of know-how. Stipulation of mutual rights and obligations of the know-how owner and receiver in individual contracts: engineering services contract, technical information contract, personnel training contract, license contract. (orig.) [de

  14. Development of monitoring system using acoustic emission for detection of helium gas leakage for primary cooling system and flow-induced vibration for heat transfer tube of heat exchangers for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Kunitomi, Kazuhiko; Furusawa, Takayuki; Shinozaki, Masayuki; Satoh, Yoshiyuki; Yanagibashi, Minoru

    1998-10-01

    The High Temperature Engineering Test Reactor (HTTR) uses helium gas for its primary coolant, whose leakage inside reactor containment vessel is considered in design of the HTTR. It is necessary to detect leakage of helium gas at an early stage so that total amount of the leakage should be as small as possible. On the other hand, heat transfer tubes of heat exchangers of the HTTR are designed not to vibrate at normal operation, but the flow-induced vibration is to be monitored to provide against an emergency. Thus monitoring system of acoustic emission for detection of primary coolant leakage and vibration of heat transfer tubes was developed and applied to the HTTR. Before the application to the HTTR, leakage detection test was performed using 1/4 scaled model of outer tube of primary concentric hot gas duct. Result of the test covers detectable minimum leakage rate and effect of difference in gas, pressure, shape of leakage path and distance from the leaking point. Detectable minimum leakage rate was about 5 Ncc/sec. The monitoring system is promising in leakage detection, though countermeasure to noise is to be needed after the HTTR starts operating. (author)

  15. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author) 197 refs.

  16. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  17. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  18. Test facility for investigation of heat transfer of promising coolants for the nuclear power industry

    Science.gov (United States)

    Belyaev, I. A.; Sviridov, V. G.; Batenin, V. M.; Biryukov, D. A.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, E. V.

    2017-11-01

    The results are presented of experimental investigations into liquid metal heat transfer performed by the joint research group consisting of specialist in heat transfer and hydrodynamics from NIU MPEI and JIHT RAS. The program of experiments has been prepared considering the concept of development of the nuclear power industry in Russia. This concept calls for, in addition to extensive application of water-cooled, water-moderated (VVER-type) power reactors and BN-type sodium cooled fast reactors, development of the new generation of BREST-type reactors, fusion power reactors, and thermonuclear neutron sources. The basic coolants for these nuclear power installations will be heavy liquid metals, such as lead and lithium-lead alloy. The team of specialists from NRU MPEI and JIHT RAS commissioned a new RK-3 mercury MHD-test facility. The major components of this test facility are a unique electrical magnet constructed at Budker Nuclear Physics Institute and a pressurized liquid metal circuit. The test facility is designed for investigating upward and downward liquid metal flows in channels of various cross-sections in a transverse magnetic field. A probe procedure will be used for experimental investigation into heat transfer and hydrodynamics as well as for measuring temperature, velocity, and flow parameter fluctuations. It is generally adopted that liquid metals are the best coolants for the Tokamak reactors. However, alternative coolants should be sought for. As an alternative to liquid metal coolants, molten salts, such as fluorides of lithium and beryllium (so-called FLiBes) or fluorides of alkali metals (so-called FLiNaK) doped with uranium fluoride, can be used. That is why the team of specialists from NRU MPEI and JIHT RAS, in parallel with development of a mercury MHD test facility, is designing a test facility for simulating molten salt heat transfer and hydrodynamics. Since development of this test facility requires numerical predictions and verification

  19. Facility with a nuclear district heating reactor

    International Nuclear Information System (INIS)

    Straub, H.

    1988-01-01

    The district heating reactor has a pressure vessel which contains the reactor core and at least one coolant conducting primary heat carrier surrounded by a heat sink. The pressure vessel has two walls with a space between them. This space is connected with a container which contains air as heat isolating medium and water as heat conducting medium. During the normal reactor operation the space is filled by air from the container with the aid of a blower, whereas in the case of a break-down of the cooling system it is filled by water which flows out of the container by gravity after the blower has been switched off. The after-heat, generated in the reactor core during cooling break-down, is removed into the heat sink surrounding the pressure vessel in a safe and simple way. 6 figs

  20. Role of wall heat transfer and other system variables on fuel compaction and recriticality

    International Nuclear Information System (INIS)

    Dhir, V.K.; Castle, J.N.; Catton, I.; Kastenberg, W.E.; Doshi, J.B.

    1976-01-01

    The assessment of the molten fuel gaining recriticality after a hypothetical core disruptive accident in a fast reactor is an important safety consideration. Recriticality of the disrupted core can be envisioned to occur, if the fuel rearranges itself into a denser configuration either due to gravity slumping of the molten fuel or due to pressure or heat transfer driven compaction of the earlier dispersed fuel. In this paper the role played by wall heat transfer, internal radiation and the bottle pressure on the physical state of the molten fuel pool is discussed. It is suggested that in the absence of a solid crust the heat transfer process from the molten fuel to the surrounding steel will be very efficient because of melting and buoyancy driven removal of less dense steel through the pool of heavier UO 2 . The internal radiation at the high fuel temperature significantly increase the effective thermal conductivity of the molten fuel and lead to increased heat transfer in situations where a solid crust of UO 2 exists between molten UO 2 and molten steel. IN a boiled-up bottled pool, the pool pressure is shown to increase very rapidly with time and thus necessitate higher fission heating of the fuel to maintain it in a certain boiled up state. Finally, the results of the above discussion are applied to study the recriticality of a fuel pool formed during a hypothetical core disrupted accident in a fast reactor

  1. Transient core characteristics of small molten salt reactor coupling problem between heat transfer/flow and nuclear fission reaction

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi

    2004-01-01

    This paper performed the transient core analysis of a small Molten Salt Reactor (MSR). The emphasis is that the numerical model employed in this paper takes into account the interaction among fuel salt flow, nuclear reaction and heat transfer. The model consists of two group diffusion equations for fast and thermal neutron fluexs, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The results of transient analysis are that (1) fission reaction (heat generation) rate significantly increases soon after step reactivity insertion, e.g., the peak of fission reaction rate achieves about 2.7 times larger than the rated power 350 MW when the reactivity of 0.15% Δk/k 0 is inserted to the rated state, and (2) the self-control performance of the small MSR effectively works under the step reactivity insertion of 0.56% Δk/k 0 , putting the fission reaction rate back on the rated state. (author)

  2. CFD analysis of flow and heat transfer in Canadian supercritical water reactor bundle

    International Nuclear Information System (INIS)

    Podila, K.; Rao, Y.F.

    2015-01-01

    Highlights: • Flow and heat transfer in SCWR fuel bundle design by AECL is studied using CFD. • Bare-rod bundle geometry is tested at 23.5, 25 and 28 MPa using STAR-CCM+ code. • SST k–ω low-Re model was used to study occurrence of heat transfer deterioration. - Abstract: Within the Gen-IV International Forum, AECL is leading the effort in developing a conceptual design for the Canadian SCWR. AECL proposed a new fuel bundle design with two rings of fuel elements placed between central flow tube and the pressure tube. In line with the scope of the conceptual design, the objective of the present CFD work is to aid in developing a bundle heat transfer correlation for the Canadian SCWR fuel bundle design. This paper presents results from an ongoing effort in determining the conditions favorable for occurrence of HTD in the supercritical bundle flows. In the current investigation, bare-rod bundle geometry was tested for the proposed fuel bundle design at 23.5, 25 and 28 MPa using STAR-CCM+ CFD code. Taking advantage of the design symmetry of the fuel bundle, only 1/32 of the computational domain was simulated. The low-Reynolds number modification of SST k–ω turbulence model along with y + < 1 was used in the simulations. For lower mass flow simulations, the increase of inlet temperature and operational pressure was found effective in reducing the occurrence of HTD. For higher mass flow simulations, normal heat transfer behaviour was observed except for the lower pressure range (23.5 MPa)

  3. Heat transfer from internally heated hemispherical pools

    International Nuclear Information System (INIS)

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere

  4. Blowdown heat transfer surface in RELAP4/MOD6 and data comparisons

    International Nuclear Information System (INIS)

    Nelson, R.A.; Sullivan, L.H.

    1978-01-01

    RELAP4 is a thermal hydraulic analysis tool written to analyze transients in light water reactors (LWR). To date, most of the applications for RELAP4 have been to analyze postulated LOCA transients in LWR and the response of experimental systems to loss-of-coolant experiments. An important part of these analyses is the prediction of the fuel rod or heater surface temperature which involves the calculation of surface heat transfer coefficients. The paper describes the outcome of a significant blowdown heat transfer development effort which is incorporated in RELAP4/MOD6 (the current version of the code available to the United States public from the Argonne Code Center). The primary emphasis in the MOD6 development was on a PWR reflood capability. The best-estimate blowdown heat transfer correlation and logic were added to provide improved blowdown predictive capability

  5. Heat transfer and fluid flow in regular rod arrays with opposing flow

    International Nuclear Information System (INIS)

    Yang, J.W.

    1979-01-01

    The heat transfer and fluid flow problem of opposing flow in the fully developed laminar region has been solved analytically for regular rod arrays. The problem is governed by two parameters: the pitch-to-diameter ratio and the Grashof-to-Reynolds number ratio. The critical Gr/Re ratios for flow separation caused by the upward buoyancy force on the downward flow were evaluated for a large range of P/D ratios of the triangular array. Numerical results reveal that both the heat transfer and pressure loss are reduced by the buoyancy force. Applications to nuclear reactors are discussed

  6. Study on the nuclear heat application system with a high temperature gas-cooled reactor and its safety evaluation (Thesis)

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo

    2008-03-01

    Aiming at the realization of the nuclear heat application system with a High Temperature Gas-cooled Reactor (HTGR), research and development on the whole evaluation of the system, the connection technology between the HTGR and a chemical plant such as the safety evaluation against the fire and explosion and the control technology, and the vessel cooling system of the HTGR were carried out. In the whole evaluation of the nuclear heat application system, an ammonia production system using nuclear heat was examined, and the technical subjects caused by the connection of the chemical plant to the HTGR were distilled. After distilling the subjects, the safety evaluation method against the fire and explosion to the reactor, the mitigation technology of thermal disturbance to the reactor, and the reactor core cooling by the vessel cooling system were discussed. These subjects are very important in terms of safety. About the fire and explosion, the safety evaluation method was established by developing the process and the numerical analysis code system. About the mitigation technology of the thermal disturbance, it was demonstrated that the steam generator, which was installed at the downstream of the chemical reactor in the chemical plant, could mitigate the thermal disturbance to the reactor. In order to enhance the safety of the reactor in accidents, the heat transfer characteristic of the passive indirect core cooling system was investigated, and the heat transfer equation considering both thermal radiation and natural convection was developed for the system design. As a result, some technical subjects related to safety in the nuclear heat application system were solved. (author)

  7. Heat transfer from two-side heated helical channels

    International Nuclear Information System (INIS)

    Shimonis, V.; Ragaishis, V.; Poshkas, P.

    1995-01-01

    Experimental results are presented on the heat transfer from two-side heated helical channels to gas (air) flows. The study covered six configurations and wide ranges of geometrical (D/h=5.5 to 84.2) and performance (Re=10 3 to 2*10 5 ) parameters. Under the influence of Re and of the channel curvature, the heat transfer from both the convex and the concave surfaces for two-side heating (q w1 ≅ q w2 ) is augmented by 20-30% over one-side heating. Improved relations to predict the critical values of Reynolds Re cr1 and Re cr2 are suggested. They enable more exact predictions of the heat transfer from convex surface in transient flows for one-side heating. The relation for annular channels is suggested for the turbulent heat transfer from the convex and concave surfaces of two-side heated helical channels. It can be adapted by introducing earlier expresions for one-side heated helical channels. (author). 6 refs., 2 tabs., 3 figs

  8. Effects of ocean conditions upon the passive residual heat removal system (PRHRS) of ship reactor

    International Nuclear Information System (INIS)

    Su Guanghui; Zhang Jinling; Guo Yujun; Qiu Suizheng; Yu Zhenwan; Jia Dounan

    1996-01-01

    The authors investigate the influence of ocean conditions (heaving, listing, rolling) on the natural circulation flow and the ability of heat transfer of the ship reactor's PRHRS, and develops a mathematical model. A program, MISAP 02, is compiled with the structured FORTRAN 77 using the advanced Gear method. the program is used to calculate the above influence. The results show that the ocean conditions have some effects on the natural circulation flow and the ability of heat transfer

  9. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  10. Heat transfer characteristics of a direct contact heat exchanger

    International Nuclear Information System (INIS)

    Kinoshita, I.; Nishi, Y.

    1993-01-01

    As a first step for development of a direct contact steam generator for FBRs, fundamental heat transfer characteristics of a liquid-liquid contact heat exchanger were evaluated by heat transfer experiment with low melting point alloy and water. Distinctive characteristics of direct contact heat transfer with liquid metal and water was obtained. (author)

  11. Modelling of thermal and thermalhydraulic in a heat exchanger of a fusion thermonuclear reactor using 'GENEPI' computer code

    International Nuclear Information System (INIS)

    Langlais, Gilles

    1999-01-01

    The work presented in this report has been performed in the frame of fusion safety studies for thermonuclear reactors of ITER type (International Thermonuclear Experimental Reactor). It is particularly related to the thermal and two-phases thermalhydraulic studies of heat exchangers facing plasma. These components are submitted to unidirectional high heat flux between 1 to 10 MW/m 2 . The cooling fluid is then heat by an anisotropic heat flux. This non-uniform distribution induces the presence of different heat transfer on the cooling channel (single phase forced convection, subcooled nucleate boiling). The thermal and the thermalhydraulic three-dimensional study has been performed using experimental data and coupled computer calculations developed in the frame of this thesis work. The heat transfer between solid and fluid are modelled using correlations selected after the bibliography study. These heat exchange correlations as well as the CHF ones have been assessed by comparison to the available experimental data. This allowed to modify the single phase heat transfer correlation and to select two CHF correlations. (author) [fr

  12. Heat transfer 1990. Proceedings of the ninth international heat transfer conference

    International Nuclear Information System (INIS)

    Hetsroni, G.

    1990-01-01

    This book contains the proceedings of the Ninth International Heat Transfer Conference. Included in Volume 3 are the following chapters: Refrigerant vapor condensation on a horizontal tube bundle. Local heat transfer in a reflux condensation inside a closed two-phase thermosyphon and surface temperature by means of a pulsed photothermal effects

  13. Numerical study of heat and mass transfer in inertial suspensions in pipes.

    Science.gov (United States)

    Niazi Ardekani, Mehdi; Brandt, Luca

    2017-11-01

    Controlling heat and mass transfer in particulate suspensions has many important applications such as packed and fluidized bed reactors and industrial dryers. In this work, we study the heat and mass transfer within a suspension of spherical particles in a laminar pipe flow, using the immersed boundary method (IBM) to account for the solid fluid interactions and a volume of fluid (VoF) method to resolve temperature equation both inside and outside of the particles. Tracers that follow the fluid streamlines are considered to investigate mass transfer within the suspension. Different particle volume fractions 5, 15, 30 and 40% are simulated for different pipe to particle diameter ratios: 5, 10 and 15. The preliminary results quantify the heat and mass transfer enhancement with respect to a single-phase laminar pipe flow. We show in particular that the heat transfer from the wall saturates for volume fractions more than 30%, however at high particle Reynolds numbers (small diameter ratios) the heat transfer continues to increase. Regarding the dispersion of tracer particles we show that the diffusivity of tracers increases with volume fraction in radial and stream-wise directions however it goes through a peak at 15% in the azimuthal direction. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  14. Fuel-clad heat transfer coefficient of a defected fuel rod

    International Nuclear Information System (INIS)

    Bruet, M.; Stora, J.P.

    1976-01-01

    A special rod has been built with a stack of UO 2 pellets inside a thick zircaloy clad. The atmosphere inside the fuel rod can be changed and particularly the introduction of water is possible. The capsule was inserted in the Siloe pool reactor in a special device equipped with a neutron flux monitor. The fuel centerline temperature and the temperature at a certain radius of the clad were recorded by two thermocouples. The temperature profiles in the fuel and in the cladding have been calculated and then the heat transfer coefficient. In order to check the proper functioning of the device, two runs were successively achieved with a helium atmosphere. Then the helium atmosphere inside the fuel rod was removed and replaced by water. The heat transfer coefficients derived from the measurements at low power level are in agreement with the values given by the model based on thermal conductivity. However, for higher power levels, the heat transfer coefficients become higher than those based on the calculated gap

  15. Supercritical heat transfer correlation for carbon dioxide flowing upward in a vertical tube

    International Nuclear Information System (INIS)

    Mokry, S. J.; Pioro, I. L.; Farah, A.; King, K.

    2010-01-01

    The objective of the current study was to analyze heat-transfer at supercritical conditions using carbon dioxide as a modeling fluid, and to develop a heat-transfer correlation based on data published in open literature. Supercritical (SC) fluids have unique properties. Beyond the critical point (22.1 MPa and 374.1 deg.C for water and 7.38 MPa and 31.0 deg.C for carbon dioxide), the fluid resembles a dense gas. The transition from single-phase liquid to single-phase gas does not involve a distinct phase change under these conditions. Phenomena such as dryout (or critical heat flux) are therefore not relevant. However, at supercritical conditions, deteriorated heat-transfer regime, (i.e., lower Heat Transfer Coefficient (HTC) values, compared to those for the normal or regular heat-transfer regime) may exist. Experiments with Supercritical Water (SCW) are very expensive due to high critical parameters. Therefore, a number of experiments are performed in modeling fluids such as carbon dioxide or/and refrigerants. However, there is no common opinion if SC modeling fluids' correlations can be applied to SCW and vice versa. Thus, the objective of this work was to generalize SC carbon dioxide data with a new correlation, and also, to compare these data with SCW correlations The experimental data was analyzed, and a new correlation was developed as part of a larger project assessing the feasibility of Generation IV SCW reactor concepts. Results are given for supercritical heat-transfer for several combinations of wall and bulk-fluid temperatures that were below, at or above the pseudo critical temperature. Uncertainties of all primary parameters were estimated. Two modes of heat transfer at supercritical pressures have been identified: (I) Normal Heat Transfer (NHT), and (2) Deteriorated Heat Transfer (DHT) characterized by lower-than-expected HTCs (i.e., higher-than-expected wall temperatures) than in the normal heat-transfer regime. These heat-transfer data are

  16. An analytical solution to the heat transfer problem in thick-walled hunt flow

    International Nuclear Information System (INIS)

    Bluck, Michael J; Wolfendale, Michael J

    2017-01-01

    Highlights: • Convective heat transfer in Hunt type flow of a liquid metal in a rectangular duct. • Analytical solution to the H1 constant peripheral temperature in a rectangular duct. • New H1 result demonstrating the enhancement of heat transfer due to flow distortion by the applied magnetic field. • Analytical solution to the H2 constant peripheral heat flux in a rectangular duct. • New H2 result demonstrating the reduction of heat transfer due to flow distortion by the applied magnetic field. • Results are important for validation of CFD in magnetohydrodynamics and for implementation of systems code approaches. - Abstract: The flow of a liquid metal in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An important application of such flows is in the context of coolants in fusion reactors, where heat is transferred to a lead-lithium eutectic. It is vital, therefore, that the heat transfer mechanisms are understood. Forced convection heat transfer is strongly dependent on the flow profile. In the hydrodynamic case, Nusselt numbers and the like, have long been well characterised in duct geometries. In the case of liquid metals in strong magnetic fields (magnetohydrodynamics), the flow profiles are very different and one can expect a concomitant effect on convective heat transfer. For fully developed laminar flows, the magnetohydrodynamic problem can be characterised in terms of two coupled partial differential equations. The problem of heat transfer for perfectly electrically insulating boundaries (Shercliff case) has been studied previously (Bluck et al., 2015). In this paper, we demonstrate corresponding analytical solutions for the case of conducting hartmann walls of arbitrary thickness. The flow is very different from the Shercliff case, exhibiting jets near the side walls and core flow suppression which have profound effects on heat transfer.

  17. Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2016-01-01

    Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at

  18. Evaluation of the decay heat removal capability using the concept of a thermosyphon in the liquid metal reactor

    International Nuclear Information System (INIS)

    Kim, Y. S.; Sim, Y. S.; Kim, W. K.

    2000-01-01

    A study related to understand the characteristics of the heat pipe and thermosyphon was performed to evaluate their applicabilities to the current PSDRS (Passive Safety Decay heat Removal System) in the KALIMER (Korea Advanced LIquid MEtal Reactor) design. The possible heat transfer rate by the heat pipe and thermosyphon was reviewed to compare the required capability in the PSDRS. A quantitative comparison was done between the current PSDRS and the modified PSDRS with the thermosyphon. The result showed the dominant heat transfer rate in the air channel, e.g. radiation or convection, is different from each other. The total heat transfer rate is not sensitive to the operating temperature of the thermosyphon. The heat removal by the air in the modified case is relatively reduced and the resultant outlet temperature appears less than above 10 .deg. C. A reversal heat transfer between the air and the thermosyphon may exist near the exit of the active heat transfer region. The total heat transfer rate by the modified case showed about 20∼40% increase relative to the reference one

  19. Measurement of cooling coil film heat transfer coefficient with polymer reaction proceeding in a stirred batch reactor; Jugo sonai ni okeru hanno shinko ni tomonau reikyaku coil no kyomaku netsudentatsu keisu no keiji henka

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K [Soken Chemical and Engineering Co. Ltd., Saitama (Japan); Nishi, K; Kaminoyama, M; Kamiwano, M [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    1996-09-10

    In radical additional solution polymerization, the viscosity increases with reaction progress. It is important to evaluate beforehand the cooling capacity of the reactor, which worsens with the process. In this study, a stirred batch reactor with both a paddle and a helical screw impeller were studied, and measurements were made for the dynamic changes of the film heat transfer coefficient of the cooling coil with progress of the polymer reaction. We found the change could be evaluated by the calculating heat balance of the generated heat, the viscous dissipation energy and the sensible heat change under conditions of monomer conversion and changing viscosity. 11 refs., 7 figs.

  20. Numerical analysis of heat transfer in the first wall of CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Deng, Weiping; Ge, Zhihao; Li, Yuanjie

    2016-04-15

    Highlights: • Detailed numerical analysis of heat transfer in a water-cooling first wall was carried out based on the conceptual design of CFETR WCSB blanket. • Investigation of the influences of buoyancy effect and surface roughness on heat transfer in the water-cooling first wall was presented. • Analysis of the effect of the front wall thickness on temperature was carried out for the water-cooling first wall design. • Simulation results of two 1D CFD methods were evaluated by the 3D CFD data. - Abstract: China Fusion Engineering Test Reactor (CFETR), the first fusion reactor experiment project planned in China, is now being investigated in detail. Recently, a conceptual structural design of the Water-Cooled-Solid-Breeder (WCSB) blanket was proposed as one of the breeding blanket candidates for CFETR. In this research, based on the present design of the CFETR WCSB blanket, the heat transfer performance in the first wall (FW) under the pressurized water cooling condition was analyzed. The 3D computational fluid dynamics (CFD) results show that the maximal temperature of the FW will not exceed the limited temperature under normal or even higher heat flux condition. In addition, the effect of buoyancy on heat transfer is negligible under both conditions. The influence of roughness becomes increasingly important when the roughness height lies in the fully turbulent regime. The maximal temperature increases approximately linearly as the thickness of the front wall increases. It is also found that the heat flux and the local heat transfer coefficient are extremely non-uniform in the circumferential direction. Two 1D CFD methods are also evaluated by 3D CFD data, with the conclusion that both 1D results have some differences with the 3D data. The improved 1D method is more accurate than the former one. However, we ascertain that 1D methods should be used with caution for the water-cooling FW design.

  1. Heat transfer in an asymmetrically heated duct, 2

    International Nuclear Information System (INIS)

    Satoh, Isao; Kurosaki, Yasuo

    1986-01-01

    The objective of this article is to study theoretically and experimentally the effects of nonuniform heating on turbulent heat transfer characteristics for flow in a horizontal rectangular duct ; a vertical side wall was uniformly heated, and the other wall were insulated. In our theoretical approach, the zero-equation model for turbulent eddy viscosity was employed. The effects of mesh size of finite difference on the calculation results were examined, and some refined compensation for wall temperatures and wall shear stresses by no use of fine mesh were proposed to reduce the calculation time. The heat transfer coefficients in thermally developing region for a nonuniformly heated duct obtained from numerical solutions are larger than the one for uniformly heated case. The buoyancy effects on heat transfer were evaluated. However, it was seen that the secondary flow due to buoyancy force was hardly expected to enhance heat transfer in a turbulent duct flow. Experiments were performed to measure the velocity and temperature profiles in a turbulent duct flow with a nonuniform heated wall. The experimental results were in good agreement with the theoretical ones. (author)

  2. A test facility for heat transfer, pressure drop and stability studies under supercritical conditions

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2013-02-01

    Supercritical water (SCW) exhibits excellent heat transfer characteristics and high volumetric expansion coefficient (hence high mass flow rates in natural circulation systems) near pseudo-critical temperature. SCW is being considered as a coolant in some advanced nuclear reactor designs on account of its potential to offer high thermal efficiency, compact size, elimination of steam generator, separator and dryer, making it economically competitive. The elimination of phase change results in elimination of the Critical Heat Flux (CHF) phenomenon. Cooling a reactor at full power with natural instead of forced circulation is generally considered as enhancement of passive safety. In view of this, it is essential to study natural circulation, heat transfer and pressure drop characteristics of supercritical fluids. Carbon-dioxide can be considered to be a good simulant of water for natural circulation at supercritical conditions since the density and viscosity variation of carbon-dioxide follows a parallel curve as that of water at supercritical conditions. Hence, a supercritical pressure natural circulation loop (SPNCL) has been set up in Hall-7, BARC to investigate the heat transfer, pressure drop and stability characteristics of supercritical carbon-dioxide under natural circulation conditions. The details of the experimental facility are presented in this report. (author)

  3. Film boiling heat transfer and vapour film collapse for various geometries

    International Nuclear Information System (INIS)

    Jouhara, H.I.; Axcell, B.P.

    2005-01-01

    Full text of publication follows: Film boiling heat transfer has application to the safe operation of water-cooled nuclear reactors under fault conditions and it has been studied using nickel-plated copper specimens in transient and steady state experiments. In the transient tests the specimens were held in a water flow; in the steady state investigation a specimen was mounted in an essentially quiescent pool of water. The transient investigation was conducted on two spheres with different diameters, two cylindrical specimens of different lengths in parallel flow, a short cylinder in cross flow and two flat plates with different lengths. The heat transfer coefficient, vapour film thickness (which was estimated from the heat transfer coefficient) and heat flux followed a similar behaviour with changing experimental conditions for all specimens studied. The heat transfer coefficient increased and the vapour film thickness and heat flux decreased as the specimen temperature decreased. As the water subcooling increased the heat transfer coefficient and the heat flux increased while the vapour film thickness decreased. The water velocity was found to have little influence on the film boiling heat transfer results except for the short cylinder in cross flow. The sphere diameter was found to affect the heat transfer results; the heat transfer coefficient and the heat flux were larger, for the larger sphere. No significant effect of the cylinder length on the heat transfer data was observed. However, the heat transfer coefficient was higher (and the average vapour film thinner) for the longer plate than for the shorter plate. Three vapour/liquid interface types were observed namely: 'smooth', 'rippled' and 'turbulent' depending largely on specimen and water temperatures. For all specimens, the maximum heat transfer coefficient, minimum heat flux and minimum film boiling temperature, occurring just before vapour film collapse, were found to increase as the water subcooling

  4. Verification of calculational models of heat exchange crisis and overcrisis heat transfer, used in the KORSAR code

    International Nuclear Information System (INIS)

    Bezrukov, Yu.A.; Shchekoldin, V.I.

    2002-01-01

    On the basis of the Gidropress OKB (Special Design Bureau) experimental data bank one verified the KORSAR code design models and correlations as to heat exchange crisis and overcrisis heat transfer as applied to the WWER reactor normal and emergency conditions. The VI.006.000 version of KORSAR code base calculations is shown to describe adequately the conducted experiments and to deviate insignificantly towards the conservative approach. So it may be considered as one of the codes ensuring more precise estimation [ru

  5. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    International Nuclear Information System (INIS)

    Carlson, M.; Kruizenga, A.; Anderson, M.; Corradini, M.

    2012-01-01

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO 2 ) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO 2 Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO 2 Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO 2 flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  6. Numerical study on heat transfer characteristics of liquid-fueled molten salt using OpenFOAM

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2017-01-01

    To pursue sustainability and safety enhancement of nuclear energy, molten salt reactor is regarded as a promising candidate among various types of gen-IV reactors. Besides, pyroprocessing, which treats molten salt containing fission products, should consider safety related to decay heat from fuel material. For design of molten salt-related nuclear system, it is required to consider both thermal-hydraulic characteristics and neutronic behaviors for demonstration. However, fundamental heat transfer study of molten salt in operation condition is not easy to be experimentally studied due to its large scale, high temperature condition as well as difficulties of treating fuel material. >From that reason, numerical study can have benefit to investigate behaviors of liquid-fueled molten salt in real condition. In this study, open source CFD package OpenFOAM was used to analyze liquid-fueled molten salt loop having internal heat source as a first step of research. Among various molten salts considered as a candidate of liquid fueled molten salt reactors, in this study, FLiBe was chosen as liquid salt. For simulating heat generation from fuel material within fluid flow, volumetric heat source was set for fluid domain and OpenFOAM solver was modified as fvOptions as customized. To investigate thermal-hydraulic behavior of molten salt, CFD model was developed and validated by comparing experimental results in terms of heat transfer and pressure drop. As preliminary stage, 2D cavity simulations were performed to validate the modeling capacity of modified solver of OpenFOAM by comparison with those of ANSYS-CFX. In addition, cases of external heat flux and internal heat source were compared to configure the effect of heat source setting in various operation condition. As a result, modified solver of OpenFOAM considering internal heat source have sufficient modeling capacity to simulate liquid-fueled molten salt systems including heat generation cases. (author)

  7. Heat Transfer Experiments with Supercritical CO{sub 2} in a Vertical Circular Tube (9.0 mm)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sim, Woo Gun; Bae, Yoon Yeong [Hannam University, Daejeon (Korea, Republic of)

    2008-10-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic behaviors of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has critical pressure and temperature which is much lower than water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical circular tube with and inner diameter of 9.0mm has been performed. CO{sub 2} flows downward through the vertical circular tube for the simulation of the water rod which may be used for a moderation of the reactor. The heat transfer characteristics were analyzed and compared with the upward flow test results previously performed at the same test section at KAERI.

  8. Heat transfer--Orlando (Symposium), 1980

    International Nuclear Information System (INIS)

    Stein, R.P.

    1980-01-01

    This conference proceedings contains 36 papers of which 3 appear as abstracts. 23 papers are indexed separately. Topics covered include: thermodynamics of PWR and LMFBR Steam Generators; two-phase flow in parallel channels; geothermal heat transfer; natural circulation in complex geometries; heat transfer in non-Newtonian systems; and process heat transfer

  9. Experimental studies of direct contact heat transfer in a slurry bubble column at high gas temperature of a helium–water–alumina system

    International Nuclear Information System (INIS)

    Abdulrahman, M.W.

    2015-01-01

    In this paper, the direct contact heat transfer is investigated experimentally for a helium gas at 90 °C injected through a slurry of water at 22 °C and alumina solid particles in a slurry bubble column reactor. This work examines the effects of superficial gas velocity, static liquid height, solid particles concentration and solid particle size, on the volumetric heat transfer coefficient and slurry temperature of the slurry bubble column reactor. These effects are formulated in forms of empirical equations. From the experimental work, it is found that the volumetric heat transfer coefficient and the slurry temperature increase by increasing the superficial gas velocity with a higher rate of increase at lower superficial gas velocity. In addition, the volumetric heat transfer coefficient and the slurry temperature decrease by increasing the static liquid height and/or the solid concentration at any given superficial gas velocity. Furthermore, it is found that the rate of decrease of the volumetric heat transfer coefficient with the solid concentration is approximately the same for different superficial gas velocities, and the decrease of the slurry temperature with the solid concentration is negligible. - Highlights: • Direct contact heat transfer is investigated experimentally in a slurry bubble column. • Empirical equation of direct contact heat transfer Nusselt number is formulated. • The volumetric heat transfer coefficient increases with superficial gas velocity. • The volumetric heat transfer coefficient decreases with the static liquid height. • The volumetric heat transfer coefficient decreases with the solid concentration.

  10. Containment condensing heat transfer

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1983-01-01

    This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained

  11. Heat transfer enhancement for fin-tube heat exchanger using vortex generators

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun

    2002-01-01

    Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared

  12. Visualization of direct contact heat transfer between water and molten alloy by neutron radiography. 1

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi; Takenaka, Nobuyuki; Matsubayashi, Masahito.

    1997-01-01

    Design of an innovative Steam Generator (SG) for Liquid Metal Fast Reactors (LMFRs) using liquid-liquid direct contact heat transfer has been developing. In this concept, the SG shell is filled with a molten alloy, which is heated by primary sodium. Water is fed into the high-temperature, molten alloy, and evaporates by direct contact heating. In order to obtain the fundamental information needed to discuss the heat transfer mechanisms of direct contact between the water and molten alloy, this phenomenon was observed by neutron radiography. JRR-3M thermal neutron radiography at the Japan Atomic Energy Research Institute was used. This paper deals with the results of visualization of direct contact heat exchange in the molten alloy. (author)

  13. Radiation heat transfer in a pressurized water reactor lower head filled with molten corium

    International Nuclear Information System (INIS)

    Šadek, Siniša; Grgić, Davor; Debrecin, Nenad

    2013-01-01

    Highlights: ► We develop radiation heat exchange model for a reactor pressure vessel lower head. ► Model is used during a late in-vessel phase of severe accidents. ► View factors are calculated automatically for a time-dependent enclosure. ► Model is included in the RELAP5/SCDAPSIM computer code. ► Inclusion of heat radiation causes faster heat-up rate of RPV lower head structures. - Abstract: Following a core melt, molten material may slump to the lower head of a reactor pressure vessel (RPV). In that case, some structures like lower parts of fuel elements and a core support plate would remain intact. Since the melt is at high temperature and there are no obstacles between the melt and the supporting plate, the plate is exposed to an intense radiation heating. The radiation heat exchange model of the lower head was developed and applied to a finite element code COUPLE which is a part of the detailed mechanistic code RELAP5/SCDAPSIM. The radiation enclosure consisted of three surfaces: the upper surface of the relocated material, the inner surface of the RPV wall above the relocated material and the lower surface of the core support plate. View factors were calculated for the enclosure geometry that is changing in time because of intermittent accumulation of molten material. The enclosure surfaces were covered by mesh of polygonal areas and view factors were calculated, for each pair of the element areas, by solving the definite integrals using the algorithms for adaptive integrations by means of Gaussian quadrature. Algebraic equations for radiosity and irradiation vectors were solved by LU decomposition and the radiation model was explicitly coupled with the heat conduction model. The results show that there is a possibility of the core support plate failure after being heated up due to radiation heat exchange with the melt.

  14. Radiation and combined heat transfer in channels

    International Nuclear Information System (INIS)

    Tamonis, M.

    1986-01-01

    This book presents numerical methods of calculation of radiative and combined heat transfer in channel flows of radiating as well as nonradiating media. Results obtained in calculations for flow conditions of combustion products from organic fuel products are given and methods used in determining the spectral optical properties of molecular gases are analyzed. The book presents applications of heat transfer in solving problems. Topic covered are as follows: optical properties of molecular gases; transfer equations for combined heat transfer; experimental technique; convective heat transfer in heated gas flows; radiative heat transfer in gaseous media; combined heat transfer; and radiative and combined heat transfer in applied problems

  15. Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas; La pile de Saclay experience acquise en deux ans sur le transfert de chaleur par gaz comprime

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)

  16. Steady natural convection heat transfer experiments in a horizontal annulus for the United States Spent Fuel Shipping Cask Technology Program

    International Nuclear Information System (INIS)

    Boyd, R.D.

    1981-04-01

    This experimental study deals with the measurement of the heat transfer across a horizontal annulus which is formed by an inner hexagonal cylinder and an outer concentric circular cylinder. The geometry simulates, in two dimensions, a liquid metal fast breeder reactor radioactive fuel subassembly inside a shipping container. This geometry is also similar to a radioactive fuel pin inside a horizontal reactor subassembly. The objective of the experiments is to measure the local and mean heat transfer at the surface of the inner hexagonal cylinder

  17. Heat transfer between adsorbate and laser-heated hot electrons

    International Nuclear Information System (INIS)

    Ueba, H; Persson, B N J

    2008-01-01

    Strong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e.g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy (heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough

  18. Generalized irreversible heat-engine experiencing a complex heat-transfer law

    International Nuclear Information System (INIS)

    Chen Lingen; Li Jun; Sun Fengrui

    2008-01-01

    The fundamental optimal relation between optimal power-output and efficiency of a generalized irreversible Carnot heat-engine is derived based on a generalized heat-transfer law, including a generalized convective heat-transfer law and a generalized radiative heat-transfer law, q ∝ (ΔT n ) m . The generalized irreversible Carnot-engine model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat-leak, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities, besides heat resistance, are characterized by a constant parameter and a constant coefficient. The effects of heat-transfer laws and various loss terms are analyzed. The results obtained corroborate those in the literature

  19. Influence of single-phase heat transfer correlations on safety analysis of research reactors with narrow rectangular fuel channels

    International Nuclear Information System (INIS)

    Rawashdeh, A.; Altamimi, R.; Lee, B.; Chung, Y. J.; Park, S.

    2013-01-01

    The influence of different single-phase heat transfer correlations on the fuel temperature and minimum critical heat flux ratio (MCHFR) during a typical accident of a 5 MW research reactor is investigated. A reactor uses plate type fuel, of which the cooling channels have a narrow rectangular shape. RELAP5/MOD3.3 tends to over-predict the Nusselt number (Nu) at a low Reynolds number (Re) region, and therefore the correlation set is modified to properly describe the thermal behavior at that region. To demonstrate the effect of Nu at a low-Re region on an accident analysis, a two-pump failure accident was chosen as a sample problem. In the accident, the downward core flow decreases by a pump coast-down, and then reverses upward by natural convection. During the pump coast-down and flow reversal, the flow undergoes a laminar flow regime which has a different Nu with respect to the correlation sets. Compared to the results by the original RELAP5/MOD3.3, the modified correlation set predicts the fuel temperature to be a little higher than the original value, and the MCHFR to be a little lower than the original value. Although the modified correlation set predicts the fuel temperature and the MCHFR to be less conservative than those calculated from the original correlation of RELAP5/MOD3.3, the maximum fuel temperature and the MCHFR still satisfy the safety acceptance criteria

  20. Numerical study of turbulent heat transfer along a heated rod in an annular cavity

    International Nuclear Information System (INIS)

    Batta, A.; Class, A.; Daubner, M.; Gnieser, S.; Stieglitz, R.

    2008-01-01

    Fundamental knowledge on the turbulent convective heat transfer from a rod into liquid metal is of crucial importance for the design of advanced liquid metal operated nuclear systems since a single rod is the basic element of a fuel rod assembly. Therefore, a numerical investigation of the heated rod experiment at KALLA (KArlsruhe Liquid metal LAboratory) has been performed. This experiment investigates the turbulent heat transfer from a heated rod placed concentrically within in a cylindrical tube in a developing flow of a heavy liquid metal (HLM, here Pb 45 Bi 55 Eutectic) at reactor typical power levels and dimensions. It is set up with thermocouples (TCs), a traversable Pitot tube and three thermocouple rakes consisting of numerous thermocouples (TCs). The concentricity is ensured by means of mechanical spacers placed axially equidistant. This article concentrates on the numerical investigation of the impact of the experimental instrumentation on the developing flow pattern and temperature field. In particular, the influence of spacers which distort the velocity profile as well of a potential contact of the spacer with the heated rod changing the heat conduction regime are considered numerically in this paper using the STAR-CD code. The turbulent flow simulation assumes axis-symmetry and uses the SST turbulence model. The simulation results exhibit a flow pattern that is substantially altered by spacers. Hence, the flow can not be considered to be axis-symmetric. This in turn yields that the convective heat transfer from the heated rod towards the spacer region is reduced leading to a temperature rise in spacer region, which represents the maximum value in this domain. As a consequence the entire three-dimensional test section must be modelled in order to correctly represent the physics and to allow an adequate interpretation of the experimental data. (orig.)

  1. Condensing heat transfer following a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Krotiuk, W.J.; Rubin, M.B.

    1978-01-01

    A new method for calculating the steam mass condensation energy removal rates on cold surfaces in contact with an air-steam mixture has been developed. This method is based on the principles of mass diffusion of steam from an area of high concentration to the condensing surface, which is an area of low steam concentration. This new method of calculating mass condensation has been programmed into the CONTEMPT-LT Mod 26 computer code, which calculates the pressure and temperature transients inside a light water reactor containment following a loss-of-coolant accident. The condensing heat transfer coefficient predicted by the mass diffusion method is compared to existing semi-empirical correlations and to the experimental results of the Carolinas Virginia Tube Reactor Containment natural decay test. Closer agreement with test results is shown in the calculation of containment pressure, temperature, and heat sink surface temperature using the mass diffusion condensation method than when using any existing semi-empirical correlation

  2. CFD Simulation and Experimental Analyses of a Copper Wire Woven Heat Exchanger Design to Improve Heat Transfer and Reduce the Size of Adsorption Beds

    Directory of Open Access Journals (Sweden)

    John White

    2016-02-01

    Full Text Available The chief objective of this study is the proposal design and CFD simulation of a new compacted copper wire woven fin heat exchanger and silica gel adsorbent bed used as part of an adsorption refrigeration system. This type of heat exchanger design has a large surface area because of the wire woven fin design. It is estimated that this will help improve the coefficient of performance (COP of the adsorption phase and increase the heat transfer in this system arrangement. To study the heat transfer between the fins and porous adsorbent reactor bed, two experiments were carried out and matched to computational fluid dynamics (CFD results.

  3. Fuel assembly transfer and storage system for nuclear reactors

    International Nuclear Information System (INIS)

    Allain, Albert; Thomas, Claude.

    1981-01-01

    Transfer and storage system on a site comprising several reactors and at least one building housing the installations common to all these reactors. The system includes: transfer and storage modules for the fuel assemblies comprising a containment capable of containing several assemblies carried on a transport vehicle, a set of tracks for the modules between the reactors and the common installations, handling facilities associated with each reactor for moving the irradiated assemblies from the reactor to a transfer module placed in loading position on a track serving the reactor and conversely to move the new assemblies from the transfer module to the reactor, and at least one handling facility located in the common installation building for loading the modules with new assemblies [fr

  4. New systematic methodology for incorporating dynamic heat transfer modelling in multi-phase biochemical reactors.

    Science.gov (United States)

    Fernández-Arévalo, T; Lizarralde, I; Grau, P; Ayesa, E

    2014-09-01

    This paper presents a new modelling methodology for dynamically predicting the heat produced or consumed in the transformations of any biological reactor using Hess's law. Starting from a complete description of model components stoichiometry and formation enthalpies, the proposed modelling methodology has integrated successfully the simultaneous calculation of both the conventional mass balances and the enthalpy change of reaction in an expandable multi-phase matrix structure, which facilitates a detailed prediction of the main heat fluxes in the biochemical reactors. The methodology has been implemented in a plant-wide modelling methodology in order to facilitate the dynamic description of mass and heat throughout the plant. After validation with literature data, as illustrative examples of the capability of the methodology, two case studies have been described. In the first one, a predenitrification-nitrification dynamic process has been analysed, with the aim of demonstrating the easy integration of the methodology in any system. In the second case study, the simulation of a thermal model for an ATAD has shown the potential of the proposed methodology for analysing the effect of ventilation and influent characterization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Small heating reactors for local heating of communities

    International Nuclear Information System (INIS)

    Seifritz, W.

    1985-08-01

    The incentives to introduce relatively small heating reactors for local heating of communities are presented and the reasons why this vertically integrated energy system will meet the requirement of an emission - free substitution system are outlined. (author)

  6. Prediction and analysis of onset of turbulent convective heat transfer deterioration in supercritical water flows

    International Nuclear Information System (INIS)

    Anglart, H.; Gallaway, T.; Antal, St.P.; Podowski, M.Z.

    2007-01-01

    Supercritical water is considered as a coolant in one of the six systems defined as Generation IV reactors. Such reactor will operate at pressures higher than the thermodynamic critical point of water (374 C degrees and 22.1 MPa), allowing for a significant increase of the system thermal efficiency. During normal operation no boiling crisis will occur, thereby sudden temperature excursions will be avoided. However, since the physical properties of supercritical fluids change rapidly with temperature in the pseudo critical region, the local heat transfer coefficient may still show unusual behaviour depending upon the heat flux. It can be either enhanced or deteriorated, depending on flow conditions and heat flux. It has been shown that the complexity of the phenomena involved makes it very difficult to develop acceptable predictive capabilities solely based on phenomenological models and correlations. It has also been shown that a multidimensional approach based on CFD (computational fluid dynamics) concepts is capable of properly capturing local effects that may lead to either heat transfer deterioration or enhancement

  7. New set of convective heat transfer coefficients established for pools and validated against CLARA experiments for application to corium pools

    Energy Technology Data Exchange (ETDEWEB)

    Michel, B., E-mail: benedicte.michel@irsn.fr

    2015-05-15

    Highlights: • A new set of 2D convective heat transfer correlations is proposed. • It takes into account different horizontal and lateral superficial velocities. • It is based on previously established correlations. • It is validated against recent CLARA experiments. • It has to be implemented in a 0D MCCI (molten core concrete interaction) code. - Abstract: During an hypothetical Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR) severe accident with core meltdown and vessel failure, corium would fall directly on the concrete reactor pit basemat if no water is present. The high temperature of the corium pool maintained by the residual power would lead to the erosion of the concrete walls and basemat of this reactor pit. The thermal decomposition of concrete will lead to the release of a significant amount of gases that will modify the corium pool thermal hydraulics. In particular, it will affect heat transfers between the corium pool and the concrete which determine the reactor pit ablation kinetics. A new set of convective heat transfer coefficients in a pool with different lateral and horizontal superficial gas velocities is modeled and validated against the recent CLARA experimental program. 155 tests of this program, in two size configurations and a high range of investigated viscosity, have been used to validate the model. Then, a method to define different lateral and horizontal superficial gas velocities in a 0D code is proposed together with a discussion about the possible viscosity in the reactor case when the pool is semi-solid. This model is going to be implemented in the 0D ASTEC/MEDICIS code in order to determine the impact of the convective heat transfer in the concrete ablation by corium.

  8. Phase change heat transfer device for process heat applications

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred

    2010-01-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  9. Experimental investigation of tube length effect on nucleate pool boiling heat transfer

    International Nuclear Information System (INIS)

    Kang, Myeong-Gie

    1998-01-01

    The effect of a vertically installed tube length on the nucleate pool boiling heat transfer coefficient under atmospheric pressure has been empirically obtained using various combination of major parameters for application to advanced light water reactor design. The experimental data for q'' versus ΔT test are counted as 1,063 points and can cover the extent of D = 9.7 ∼ 25.4 mm, ε = 15.1 ∼ 60.9 nm, H = 5.25 ∼ 30.93, and q'' ≤ 160 kW/m 2 . The experimental results show that a shorter tube is more efficient to increase heat transfer rate due to smaller bubble slug formation on the tube surface. The effect of tube length is greatly observed before H(= L/D) gets 50. After that, the heat flux decreases linearly with H increase. To quantify tube length effect, a new empirical correlation has been developed based on the experimental data bank for pool boiling heat transfer and some parametric studies have been done using the newly developed empirical correlation to broaden its applicability. The newly developed empirical correlation has the form of q'' 0.019ε 0.570 ΔT 4.676 /(D 1.238 H 0.072 ) and can predict the experimental data within ± 20% bound. Heat transfer characteristics can be changed with tube length variation and the transition point is H ∼ 50. Before the transition point, bubble coalescence is active and heat transfer rate gets rapidly decreased with increasing tube length. After that, heat transfer gets somewhat slowly decreased since bubble coalescence effect gets nearly equilibrium with liquid agitation effect

  10. Heat transfer study under supercritical pressure conditions

    International Nuclear Information System (INIS)

    Yamashita, Tohru; Yoshida, Suguru; Mori, Hideo; Morooka, Shinichi; Komita, Hideo; Nishida, Kouji

    2003-01-01

    Experiments were performed on heat transfer and pressure drop of a supercritical pressure fluid flowing upward in a uniformly heated vertical tube of a small diameter, using HCFC22 as a test fluid. Following results were obtained. (1) Characteristics of the heat transfer are similar to those for the tubes of large diameter. (2) The effect of tube diameter on the heat transfer was seen for a 'normal heat transfer, but not for a 'deteriorated' heat transfer. (3) The limit heat flux for the occurrence of deterioration in heat transfer becomes larger with smaller diameter tube. (4) The Watts and Chou correlation has the best prediction performance for the present data in the 'normal' heat transfer region. (5) Frictional pressure drop becomes smaller than that for an isothermal flow in the region near the pseudocritical point, and this reduction was more remarkable for the deteriorated' heat transfer. (author)

  11. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores; Homogeneisation de modeles de transferts thermiques et radiatifs: application au coeur des reacteurs a caloporteur gaz

    Energy Technology Data Exchange (ETDEWEB)

    El Ganaoui, K

    2006-09-15

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  12. Mass and heat transfer at the outer surface of helical coils under single and two phase flow

    International Nuclear Information System (INIS)

    Abdel-Aziz, M.H.; Nirdosh, I.; Sedahmed, G.H.

    2016-01-01

    Highlights: • The work aims to develop reactors which need rapid temperature control. • Mass and heat transfer at the outer surface of helical coils was studied experimentally. • The experiments were conducted under gas sparing, single and two phase flow. • Variables were helical tube diameter, physical properties, and gas and liquid velocity. • Results verification in terms of natural convection and surface renewal mechanism was explained. - Abstract: The mass transfer behavior of the outer surface of vertical helical coil was studied by the electrochemical technique under single phase flow, gas sparging and two phase flow. Variables studied were helical tube diameter, physical properties of the solution, solution velocity and superficial gas velocity. The mass transfer data were correlated by dimensionless equations. Mass transfer enhancement ratio in case of two phase flow ranged from 1.1 to 4.9 compared to single phase flow. Implication of the results for the design and operation of helical coil reactors used to conduct L–S exothermic diffusion controlled reactions which need rapid temperature control were outlined. In this case the inner coil surface will act as a cooler while the outer surface will act a reaction surface. Immobilized enzyme catalyzed biochemical reactions where heat sensitive materials may be involved represent an example for the reactions which can employ the helical coil reactor. Also the importance of the results in the design of and operation of diffusion controlled membrane processes which employ helical coil membrane was noted. In view of the analogy between heat and mass transfer the possibility of using the results in the design and operation of helical coil heat exchangers was highlighted.

  13. Studies of Deteriorated Heat Transfer in Prismatic Cores Stemming from Irradiation-Induced Geometry Distortion

    International Nuclear Information System (INIS)

    Williams, Brian G.; Schultz, Richard R.; McEligot, Don M.; McCreery, Glenn

    2015-01-01

    A reference design for the Next Generation Nuclear Plant (NGNP) is to use General Atomics Modular High Temperature Gas-cooled Reactor (MHTGR). For such a configuration in normal operation, the helium coolant flow proceeds from the upper plenum to the lower plenum principally through the core coolant channels and the interstitial gaps (bypass flow) that separate the prismatic blocks from one another. Only the core prismatic blocks have coolant channels. The interstitial gaps are present throughout the core, the inner reflector region, and the out reflector region. The bypass flows in a prismatic gas-cooled reactor (GCR) are of potential concern because they reduce the desired flow rates in the coolant channels and, thereby, can increase outlet gas temperatures and maximum fuel temperatures. Consequently, it is appropriate to account for bypass flows in reactor thermal gas dynamic analyses. The objectives of this project include the following: fundamentally understand bypass flow and heat transfer at scaled, undistorted conditions and with geometry distortions; develop improved estimates of associated loss coefficients, surface friction and heat transfer for systems and network codes; and obtain related data for validation of CFD (computational fluid dynamic) or system (e.g., RELAP5) codes which can be employed in predictions for a GCR for normal power, reduced power, and residual heat removal operations.

  14. Studies of Deteriorated Heat Transfer in Prismatic Cores Stemming from Irradiation-Induced Geometry Distortion

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Brian G. [Idaho State Univ., Pocatello, ID (United States); Schultz, Richard R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McEligot, Don M. [Univ. of Idaho, Moscow, ID (United States); McCreery, Glenn [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-08-31

    A reference design for the Next Generation Nuclear Plant (NGNP) is to use General Atomics Modular High Temperature Gas-cooled Reactor (MHTGR). For such a configuration in normal operation, the helium coolant flow proceeds from the upper plenum to the lower plenum principally through the core coolant channels and the interstitial gaps (bypass flow) that separate the prismatic blocks from one another. Only the core prismatic blocks have coolant channels. The interstitial gaps are present throughout the core, the inner reflector region, and the out reflector region. The bypass flows in a prismatic gas-cooled reactor (GCR) are of potential concern because they reduce the desired flow rates in the coolant channels and, thereby, can increase outlet gas temperatures and maximum fuel temperatures. Consequently, it is appropriate to account for bypass flows in reactor thermal gas dynamic analyses. The objectives of this project include the following: fundamentally understand bypass flow and heat transfer at scaled, undistorted conditions and with geometry distortions; develop improved estimates of associated loss coefficients, surface friction and heat transfer for systems and network codes; and obtain related data for validation of CFD (computational fluid dynamic) or system (e.g., RELAP5) codes which can be employed in predictions for a GCR for normal power, reduced power, and residual heat removal operations.

  15. Experiments on the Heat Transfer and Natural Circulation Characteristics of the Passive Residual Heat Removal System for the Advanced Integral Type Reactor

    International Nuclear Information System (INIS)

    Park, Hyun-Sik; Choi, Ki-Yong; Cho, Seok; Park, Choon-Kyung; Lee, Sung-Jae; Song, Chul-Hwa; Chung, Moon-Ki; Lee, Un-Chul

    2004-01-01

    Experiments on the heat transfer characteristics and natural circulation performance of the passive residual heat removal system (PRHRS) for the SMART-P have been performed using the high temperature/high pressure thermal-hydraulic test facility (VISTA). The VISTA facility consists of the primary loop, the secondary loop, the PRHRS loop, and auxiliary systems to simulate the SMART-P, a pilot plant of the SMART. The primary loop is composed of the steam generator (SG) primary side, a simulated core, a main coolant pump, and loop piping, and the PRHRS loop consists of the SG secondary side, a PRHRS heat exchanger, and loop piping. The natural circulation performance of the PRHRS, the heat transfer characteristics of the PRHRS heat exchangers and the emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are intensively investigated. The experimental results show that the coolant flows steadily in the PRHRS loop and the heat transfers through the PRHRS heat exchanger and the emergency cooldown tank are sufficient enough to enable the natural circulation of the coolant. The results also show that the core decay heat can be sufficiently removed from the primary loop with the operation of the PRHRS. (authors)

  16. Heat transfer simulation in a furnace for steam reformer. Gas kaishitsu ronai no dennetsu simulation ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, K; Taniguchi, H; Guo, K [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Katayama, T; Nagata, T [Tokyo Gas Co. Ltd., Tokyo (Japan)

    1991-01-10

    This paper discusses the heat transfer analysis in a furnace for LPG reforming to produce gas enriched hydrogen. The three-dimensional combined radiative and convective heat transfer processes in a furnace for LPG reforming is simulated by introducing the radiosity concept into the radiative heat ray method for an accurate radiative heat transfer analysis. Together with an analysis of the chemical reaction in the reactor tubes of the furnace, the heat transfer simulation gives the three-dimensional profile of the combustion gas temperature in the furnace, the tube-surface heat-flux distribution and the composition of the reformed gas. From the results of the analysis, it was clarified that increasing the jet angle of the heating burner raises the gas temperature and the tube surface heat flux near the burner entrance, and that the flame shape is the most important factor for deciding the heat flux distribution of the tube surface because the heat transfer effect by flame radiation is much more than that by convection of the combustion gas. 18 refs., 9 figs., 2 tabs.

  17. The radiation safety assessment of the heating loop of district heating reactors

    International Nuclear Information System (INIS)

    Liu Yuanzhong

    1993-01-01

    The district heating reactors are used to supply heating to the houses in cities. The concerned problems are whether the radioactive materials reach the heated houses through heating loop, and whether the safety of the dwellers can be ensured. In order to prevent radioactive materials getting into the heated houses, the district heating reactors have three loops, namely, primary loop, intermediate loop, and heating loop. In the paper, the measures of preventing radioactive materials getting into the heating loop are presented, and the possible sources of the radioactivity in the water of the intermediate loop and the heating loop are given. The regulatory aim limit of radioactive concentration in the water of the intermediate loop is put forward, which is 18.5 Bq/l. Assuming that specific radioactivity of the water of contaminated intermediate loop is up to 18.5 Bq/l, the maximum concentration of radionuclides in water of the heating loop is calculated for the normal operation and the accident of district heating reactor. The results show that the maximum possible concentration is 5.7 x 10 -3 Bq/l. The radiation safety assessment of the heating loop is made out. The conclusions are that the district heating reactors do not bring any harmful impact to the dwellers, and the safety of the dwellers can be safeguarded completely

  18. Nuclear district heating. 1. Process heat reactors and transmission and distribution networks

    International Nuclear Information System (INIS)

    Caizergues, R.

    1979-01-01

    Three kinds of production station are considered: joint electricity and heat-producing stations, heat-producing stations with CAS reactors and heat-producing stations with Thermos reactors. The thermal energy supply possibilities of these stations, the cost price of this energy and the cost price per therm produced by the district heating source and conveyed to the user are studied [fr

  19. Perturbation Solutions for Hagen-Poiseuille Flow and Heat Transfer of Third-Grade Fluid with Temperature-Dependent Viscosities and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    B. Y. Ogunmola

    2016-01-01

    Full Text Available Regular perturbation technique is applied to analyze the fluid flow and heat transfer in a pipe containing third-grade fluid with temperature-dependent viscosities and heat generation under slip and no slip conditions. The obtained approximate solutions were used to investigate the effects of slip on the heat transfer characteristics of the laminar flow in a pipe under Reynolds’s and Vogel’s temperature-dependent viscosities. Also, the effects of parameters such as variable viscosity, non-Newtonian parameter, viscous dissipation, and pressure gradient at various values were established. The results of this work were compared with the numerical results found in literature and good agreements were established. The results can be used to advance the analysis and study of the behavior of third-grade fluid flow and steady state heat transfer processes such as those found in coal slurries, polymer solutions, textiles, ceramics, catalytic reactors, and oil recovery applications.

  20. Design of an Experimental Facility for Passive Heat Removal in Advanced Nuclear Reactors

    Science.gov (United States)

    Bersano, Andrea

    With reference to innovative heat exchangers to be used in passive safety system of Gen- eration IV nuclear reactors and Small Modular Reactors it is necessary to study the natural circulation and the efficiency of heat removal systems. Especially in safety systems, as the decay heat removal system of many reactors, it is increasing the use of passive components in order to improve their availability and reliability during possible accidental scenarios, reducing the need of human intervention. Many of these systems are based on natural circulation, so they require an intense analysis due to the possible instability of the related phenomena. The aim of this thesis work is to build a scaled facility which can reproduce, in a simplified way, the decay heat removal system (DHR2) of the lead-cooled fast reactor ALFRED and, in particular, the bayonet heat exchanger, which transfers heat from lead to water. Given the thermal power to be removed, the natural circulation flow rate and the pressure drops will be studied both experimentally and numerically using the code RELAP5 3D. The first phase of preliminary analysis and project includes: the calculations to design the heat source and heat sink, the choice of materials and components and CAD drawings of the facility. After that, the numerical study is performed using the thermal-hydraulic code RELAP5 3D in order to simulate the behavior of the system. The purpose is to run pretest simulations of the facility to optimize the dimensioning setting the operative parameters (temperature, pressure, etc.) and to chose the most adequate measurement devices. The model of the system is continually developed to better simulate the system studied. High attention is dedicated to the control logic of the system to obtain acceptable results. The initial experimental tests phase consists in cold zero power tests of the facility in order to characterize and to calibrate the pressure drops. In future works the experimental results will be

  1. Flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Zhuang, Nailiang; Lan, Shu

    2016-01-01

    Highlights: • Flow and heat transfer experiment in transitional flow regime under rolling motion. • Increases of average friction factor and Nu were found. • Periodic breakdown of laminar flow contributes to the increase. • Nonlinear variation of pressure drop or Nu with Re also contributes to the increase. • Effect of critical Reynolds number shift was discussed. - Abstract: Flow and heat transfer characteristics under rolling motion are extremely important to thermohydraulic analysis of offshore nuclear reactors. An experimental study was conducted in a heated rectangular channel to investigate flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion. The results showed that the average friction factor and Nusselt number are higher than that of the corresponding steady flow as the flow rate fluctuates in transitional flow regime. Larger relative flow rate fluctuation was observed under larger rolling amplitude or higher rolling frequency. In the same manner, larger increases of average friction factor and Nusselt number were achieved under larger rolling amplitude or higher rolling frequency. The increases were mainly caused by the flow rate fluctuation through periodic breakdown of laminar flow and development of turbulence in laminar–turbulent transitional flow regime. First, turbulence, which enhances the rate of momentum and energy exchange, occurs near the crest of flow rate wave even the flow is still in laminar flow regime according to the average Reynolds number. Second, as a result of rapid increases of the friction and heat transfer with Reynolds number in transitional flow regime, the increases of the friction and the heat transfer near the crest of flow rate wave are larger than the decreases of them near the trough of flow rate wave, which also contributes to increases of average friction and heat transfer. Additionally, the effect of critical Reynolds number shift under unsteady flow and heating

  2. Heat transfer and pressure drop of the reactor fuel element with polyzonal spiral finning; Prelaz toplote i pad pritiska reaktorskog gorivnog elementa sa polizonalno-spiralnim orebrenjem

    Energy Technology Data Exchange (ETDEWEB)

    Oka, S; Becirspahic, S [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1964-06-15

    Heat transfer and pressure drop of the reactor fuel element with polyzonal spiral finning were investigated. Longitudinal and circumferential distributions of Sr-number of finnings in the fuel element are given. Dependences of St{sub kmin} and St{sub ksr} on the Re number are derived. The influence of gap between two fuel elements on the heat transfer, pressure drop is presented dependent on the Re number. The influence of mutual position of flow separators of two neighbouring fuel elements on the pressure drop and heat transfer is shown as well. Investigations were performed in the range of Re numbers from 15000 to 100000. Ispitivan je prelaz toplote i pad pritiska modela reaktorskog gorivnog elementa sa polizonalno-spiralnim orebrenjem. Dat je uzduznu i obimni raspored Sr-broja na orebrenju gorivnog elementa. Izvedene su zavisnosti St{sub kmin} i St{sub ksr} u funkciji od Re-broja. Pokazan je uticaj prekida izmedju dva gorivna elementa na prelaz toplote i pad pritiska u zavisnosti od Re-broja. Pokazan je uticaj medjusobnog polozaja razdeljivaca struje dva susedna gorivna elementa na pad pritiska i prelaz toplote. Ispitivanja su vrsena u oblasti Re-brojeva od 15000 do 100000 (author)

  3. Two Dimensional CFD Analyses on the Heat Transfer for a Supercritical Pressure CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hyun; Kim, Young In; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The Supercritical Water Cooled Reactor(SCWR) operates in a pressure around 25MPa and temperature of 293{approx}510 .deg. C. In order to study the heat transfer behaviors and good comparisons between the various fluids, a heat transfer test loop(SPHINX) using CO{sub 2} has been constructed in KAERI as a part of international research program, I-NERI. At a supercritical pressure, the heat transfer coefficient is much larger than that estimated from the Dittus-Boelter correlation for a relatively large flow rate with moderate wall heat flux conditions. This phenomenon was explained by the rapid variations of the physical properties near the wall with the temperature. On the contrary, the heat transfer becomes worse when the bulk fluid enthalpy is below the pseudo-critical enthalpy under a low flow rate with large heat flux conditions. This phenomenon is called 'deteriorated heat transfer', and which is explained as the modification of the shear stress distribution across the tube to a buoyancy and/or acceleration in a low density layer near the wall, with the consequence of a turbulence. The upward vertical flow of CO{sub 2} through a uniformly heated tube of 4.4 mm in diameter and 3m long(heated length is 2.1m) was investigated numerically using the CFD code, FLUENT. Through the numerical simulations, we have attempted to obtain a physically meaningful insight into the heat transfer mechanisms at a supercritical pressure.

  4. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  5. Development of an ISI robot for the fast breeder reactor MONJU primary heat transfer system piping

    International Nuclear Information System (INIS)

    Tagawa, Akihiro; Ueda, Masashi; Yamashita, Takuya; Narisawa, Masataka; Haga, Kouichi

    2011-01-01

    This paper describes the development of a new inspection robot for the In-Service Inspection of the heat transfer system of the Fast Breeder Reactor MONJU. The inspection was carried out using a tire-type ultrasonic sensor for volumetric tests at high temperature (atmosphere, 55degC; piping surface, 80degC) and radiation exposure condition (dose rate, 10 mGy/h; piping surface dose rate, 15 mGy/h). An inspection robot using a new tire type for the ultrasonic testing sensor and a new control method was developed. A signal-to-noise ratio S/N over 2 was obtained during the functional test for a calibration defect with a depth of 50%t (from the tube wall thickness). In the automatic inspection test, an EDM slit with a depth of 9% from the pipe thickness was detectable and with an S/N ratio = 4.0 (12.0 dB). (author)

  6. Stokes flow heat transfer in an annular, rotating heat exchanger

    International Nuclear Information System (INIS)

    Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.

    2011-01-01

    The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.

  7. Investigations on post-dryout heat transfer in bilaterally heated annular channels

    International Nuclear Information System (INIS)

    Tian, W.X.; Qiu, S.Z.; Jia, D.N.

    2006-01-01

    Post-dryout heat transfer in bilaterally heated vertical narrow annular channels with 1.0, 1.5 and 2.0 mm gap size has been experimentally investigated with deionized water under the condition of pressure ranging from 1.38 to 5.9 MPa and low mass flow rate from 42.9 to 150.2 kg/m 2 s. The experimental data was compared with well known empirical correlations including Groeneveld, Mattson, etc., and none of them gave an ideal prediction. Theoretical investigations were also carried out on post-dryout heat transfer in annular channels. Based on analysis of heat exchange processes arising among the droplets, the vapor and two tube walls of annular channel, a non-equilibrium mechanistic heat transfer model was developed. Comparison indicated that the present model prediction showed a good agreement with our experimental data. Theoretical calculation result showed that the forced convective heat transfer between the heated wall and vapor dominate the overall heat transfer. The heat transfer caused by the droplets direct contact to the wall and the interfacial convection/evaporation of droplets in superheated vapors also had an indispensable contribution. The radiation heat transfer would be neglected because of its small contribution (less than 0.11%) to the total heat transfer

  8. Creep collapse of thick-walled heat transfer tube subjected to external pressure at high temperature

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Kaji, Yoshiyuki; Terunuma, Isao; Nekoya, Shin-ichi; Miyamoto, Yoshiaki

    1994-09-01

    A series of creep collapse tests of thick-walled heat transfer tube were examined experimentally and analytically to confirm an analytical method for creep deformation behavior of a heat transfer tube of an intermediate heat exchanger (IHX) at a depressurization accident of secondary cooling system of HTTR (High Temperature Engineering Test Reactor). The tests were carried out using thick-walled heat transfer tubes made of Hastelloy XR at 950degC in helium gas environment. The predictions of creep collapse time obtained by a general purpose FEM-code ABAQUS were in good agreement with the experimental results. A lot of cracks were observed on the outer surface of the test tubes after the creep collapse. However, the cracks did not pass through the tube wall and, therefore, the leak tightness was maintained regardless of a collapse deformation for all tubes tested. (author)

  9. After-heat removing system in FBR type reactor

    International Nuclear Information System (INIS)

    Ohashi, Yukio.

    1990-01-01

    The after-heat removing system of the present invention removes the after heat generated in a reactor core without using dynamic equipments such as pumps or blowers. There are disposed a first heat exchanger for heating a heat medium by the heat in a reactor container and a second heat exchanger situated above the first heat exchanger for spontaneously air-cooling the heat medium. Recycling pipeways connect the first and the second heat exchangers to form a recycling path for the heat medium. Then, since the second heat exchanger for spontaneously air-cooling the heat medium is disposed above the first heat exchanger and they are connected by the recycling pipeways, the heat medium can be circulated spontaneously. Accordingly, dynamic equipments such as pumps or blowers are no more necessary. As a result, the after-heat removing system of the FBR type reactor of excellent safety and reliability can be obtained. (I.S.)

  10. Integral analysis of debris material and heat transport in reactor vessel lower plenum

    International Nuclear Information System (INIS)

    Suh, K.Y.; Henry, R.E.

    1994-01-01

    An integral, fast-running, two-region model has been developed to characterize the debris material and heat transport in the reactor lower plenum under severe accident conditions. The debris bed is segregated into the oxidic pool and an overlying metallic layer. Debris crusts can develop on three surfaces: the top of the molten pool, the RPV wall, and the internal structures. To account for the decay heat generation, the crust temperature profile is assumed to be parabolic. The oxidic debris pool is homogeneously mixed and has the same material composition, and hence the same thermophysical properties, as the crusts, while the metallic constituents are assumed to rise to the top of the debris pool. Steady-state relationships are used to describe the heat transfer rates, with the assessment of solid or liquid state, and the liquid superheat in the pool being based on the average debris temperature. Natural convection heat transfer from the molten debris pool to the upper, lower and embedded crusts is calculated based on the pool Rayleigh number with the conduction heat transfer from the crusts being determined by the crust temperature profile. The downward heat flux is transferred to the lowest part of the RPV lower head through a crust-to-RPV contact resistance. The sideward heat flux is transferred to the upper regions of the RPV lower head as well as to the internal structures. The upward heat flux goes to the metal layer, water, or available heat sink structures above. Quenching due to water ingression is modeled separately from the energy transfer through the crust. The RPV wall temperature distribution and the primary system pressure are utilized to estimate challenges to the RPV integrity. ((orig.))

  11. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  12. Measurement of the fuel temperature and the fuel-to-coolant heat transfer coefficient of Super Phenix 1 fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1995-12-01

    A new measurement method for measuring the mean fuel temperature as well as the fuel-to-coolant heat transfer coefficient of fast breeder reactor subassemblies (SA) is reported. The method is based on the individual heat balance of fuel SA's after fast reactor shut-downs and uses only the plants normal SA outlet temperature and neutron power signals. The method was used successfully at the french breeder prototype Super Phenix 1. The mean SA fuel temperature as well as the heat transfer coefficient of all SPX SA's have been determined at power levels between 15 and 90% of nominal power and increasing fuel burn-up from 3 to 83 EFPD (Equivalent of Full Power-Days). The measurements also provided fuel and whole SA time constants. The estimated accuracy of measured fuel parameters is in the order of 10%. Fuel temperatures and SA outlet temperature transients were also calculated with the SPX1 systems code DYN2 for exactly the same fuel and reactor operating parameters as in the experiments. Measured fuel temperatures were higher than calculated ones in all cases. The difference between measured and calculated core mean values increases from 50 K at low power to 180 K at 90% n.p. This is about the double of the experimental error margins. Measured SA heat transfer coefficients are by nearly 20% lower than corresponding heat transfer parameters used in the calculations. Discrepancies found between measured and calculated results also indicate that either the transient heat transfer in the gap between fuel and cladding (gap conductance) might not be exactly reproduced in the computer code or that the gap in the fresh fuel was larger than assumed in the calculations. (orig.) [de

  13. Results of studying of turbulent heat transfer deterioration and their application for development of engineering methods of calculation of heat transfer and pressure drop in supercritical-pressure coolant flow

    International Nuclear Information System (INIS)

    Vladimir A Kurganov; Yuri A Zeigarnik

    2005-01-01

    . Generalized correlations for heat transfer of SCP water and CO 2 in vertical tubes under forced and mixed convection, which have been developed at OIVT RAN on the basis of numerous experimental data of different authors, are presented. Special emphasis is placed on the specifics of heat transfer and pressure drop in SCP coolant flows in nuclear reactors that are poorly studied at present. (authors)

  14. A literature survey on numerical heat transfer

    Science.gov (United States)

    Shih, T. M.

    1982-12-01

    Technical papers in the area of numerical heat transfer published from 1977 through 1981 are reviewed. The journals surveyed include: (1) ASME Journal of Heat Transfer, (2) International Journal of Heat and Mass Transfer, (3) AIAA Journal, (4) Numerical Heat Transfer, (5) Computers and Fluids, (6) International Journal for Numerical Methods in Engineering, (7) SIAM Journal of Numerical Analysis, and (8) Journal of Computational Physics. This survey excludes experimental work in heat transfer and numerical schemes that are not applied to equations governing heat transfer phenomena. The research work is categorized into the following areas: (A) conduction, (B) boundary-layer flows, (C) momentum and heat transfer in cavities, (D) turbulent flows, (E) convection around cylinders and spheres or within annuli, (F) numerical convective instability, (G) radiation, (H) combustion, (I) plumes, jets, and wakes, (J) heat transfer in porous media, (K) boiling, condensation, and two-phase flows, (L) developing and fully developed channel flows, (M) combined heat and mass transfer, (N) applications, (O) comparison and properties of numerical schemes, and (P) body-fitted coordinates and nonuniform grids.

  15. Heat transfer investigation of molten salts under laminar and turbulent flow regimes

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.

    2014-01-01

    High temperature reactor and solar thermal power plants use Molten Salt as a coolant, as it has low melting point and high boiling point, enabling us to operate the system at low pressure. Molten fluoride salt (eutectic mixture of LiF-NaF-KF) and molten nitrate salt (mixture of NaNO 3 and KNO 3 in 60:40 ratios by weight) are proposed as a candidate coolant for High Temperature Reactors (HTR) and solar power plant respectively. BARC is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of fluoride salt and capable of supplying process heat at 1000℃ to facilitate hydrogen production by splitting water. Beside this, BARC is also developing a 2MWe solar power tower system using molten nitrate salt as a primary coolant and storage medium. In order to design this, it is necessary to study the heat transfer characteristics of various molten salts. Most of the previous studies related to molten salts are based on the experimental works. These experiments essentially measured the physical properties of molten salts and their heat transfer characteristics. Ferri et al. introduced the property definitions for molten salts in the RELAP5 code to perform transient simulations at the ProvaCollettoriSolari (PCS) test facility. In this paper, a CFD analysis has been performed to study the heat transfer characteristics of molten fluoride salt and molten nitrate salt flowing in a circular pipe for various regimes of flow. Simulation is performed with the help of in-house developed CFD code, NAFA, acronym for Numerical Analysis of Flows in Axi-symmetric geometries. Uniform velocity and temperature distribution are set as the inlet boundary condition and pressure is employed at the outlet boundary condition. The inlet temperature for all simulation is set as 300℃ for nitrate salt and 500℃ for fluoride salt and the operating pressure is 1 atm in both the cases

  16. Heat transfer bibliography: russian works

    Energy Technology Data Exchange (ETDEWEB)

    Luikov, A V

    1965-02-01

    This bibliography of recent Russian publications in heat transfer is divided into the following categories: (1) books; (2) general; (3) experimental methods; (4) analytical calculation methods; (5) thermodynamics; (6) transfer processes involving phase conversions; ((7) transfer processes involving chemical conversions; (8) transfer processes involving very high velocities; (9) drying processes; (10) thermal properties of various materials, heat transfer agents and their determination methods; (11) high temperature physics and magneto- hydrodynamics; and (12) transfer processes in technological apparatuses. (357 refs.)

  17. Advances in heat transfer

    CERN Document Server

    Hartnett, James P; Cho, Young I; Greene, George A

    2001-01-01

    Heat transfer is the exchange of heat energy between a system and its surrounding environment, which results from a temperature difference and takes place by means of a process of thermal conduction, mechanical convection, or electromagnetic radiation. Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.

  18. Methodology for verification of heat transfer crisis in the nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Sharaevsky, I. G.; Sharaevskaya, E. I.; Domashev, E. D.; Arkhypov, A. P.; Kolochko, V. N.

    2003-01-01

    Reliable operation of water-water type nuclear energy units and design of new generation reactors are not to be provided with wide application of best estimate ThermalHydraulic (TH) codes. It is accepted to consider that up-to-date versions of the codes are featured not only by wide range of NPPs equipment modeling and high ergonomic characteristics of realized in the codes interfaces but comprehensive substantiation of its governing component viz correlations and closure relations systems The pointed correlations and closure relations provide mathematical restraint of the main differential equations system which are necessary for adequate description of the main classes of two-phase flow TH regimes. The principal fact is that without physically justificated correlations and adequate closure relations first of all concerning heat transfer crisis at boiling (DNB) the acceptable reliability of numerical solutions cannot be guaranteed by the codes. But the significant part of realized in the codes correlations mainly on heat transfer crisis are based on the experimental data obtained more than 30 years ago for cylindrical channels. It is known that for TH reliability calculations of the WWERs core with rod fuel elements, such correlations can be applied with caution as it give significantly conservative values of critical heat flux especially at under pressure accident regimes. Moreover because of irregularity of the flow TH parameters on fuel rod elements cross-section distribution the heat transfer crisis regimes are originated only in separate 'hot' cells. Additionally it should be underlined that realized in the codes correlations and closure relations do not consider possibility occurring in the steam generating channels high frequency oscillation instability which poses a threat to the reactor safety. The high frequency oscillations can bring to the fuel elements destruction at heat fluxes much less than the critical ones. Now this type of oscillation

  19. Heat transfer on liquid-liquid interface of molten-metal and water

    International Nuclear Information System (INIS)

    Tanaka, T.; Saito, Yasushi; Mishima, Kaichiro

    2001-01-01

    Molten-core pool had been formed in the lower-head of TMI-2 pressure vessel at the severe accident. The lower head, however, didn't receive any damage by reactor core cooling. Heat transfer at outside of the lower head and boiling heat transfer at liquid-liquid interface of molten-metal and water, however, are important for initial cooling process of the molten-core pool. The heat transfer experiments for the liquid-liquid interface of molten-metal and water are carried out over the range of natural convection to film boiling region. Phenomenon on the heat transfer experiments are visualized by using of high speed video camera. Wood's metal and U-alloy 78 are used as molten-metal. The test section of the experiments consists of a copper block with heater, wood's metal, and water. Three thermocouple probes are used for temperature measurement of water side and the molten-metal side. Stability of the liquid-liquid interface is depended on the wetness of container wall for molten metal and the temperature distribution of the interface. Entrainment phenomena of molten-metal occurs by a fluctuation of the interface after boiling on the container wall surface. The boiling curves obtained from the liquid-liquid interface experiments are agree with the nucleate boiling and the film boiling correlations of solid-liquid system. (Suetake, M.)

  20. Analysis of panthers full-scale heat transfer tests with RELAP5

    International Nuclear Information System (INIS)

    Parlatan, Y.; Boyer, B.D.; Jo, J.; Rohatgi, S.

    1996-01-01

    The RELAP5 code is being assessed on the full-scale Passive Containment Cooling System (PCCS) in the Performance ANalysis and Testing of HEat Removal Systems (PANTHERS) facility at Societa Informazioni Termoidrauliche (SIET) in Italy. PANTHERS is a test facility with fall-size prototype beat exchangers for the PCCS in support of the General Electric's (GE) Simplified Boiling Water Reactor (SBWR) program. PANTHERS tests with a low noncondensable gas concentration and with a high noncondensable gas concentration were analyzed with RELAP5. The results showed that beat transfer rate decreases significantly along the PCCS tubes. In the test case with a higher inlet noncondensable gas fraction, the PCCS removed 35% less heat than in the test case with the lower noncondensable gas fraction. The dominant resistance to the overall heat transfer is the condensation beat transfer resistance inside the tubes. This resistance increased by about 5-fold between the inlet and exit of the tube due to the build up of noncondensable gases along the tube. The RELAP5 calculations also predicted that 4% to 5% of the heat removed to the PCCS pool occurs in the inlet steam piping and PCCS upper and lower headers. These piping needs to be modeled for other tests systems. The full-scale PANTHERS predictions are also compared against 1/400 scale GIRAFFE tests. GIRAFFE has 33% larger heat surface area, but its efficiency is only 15% and 23% higher than PANTHERS for the two cases analyzed This was explained by the high heat transfer resistance inside the tubes near the exit

  1. Measuring heat transfer through TR-0 reactor fuel element

    International Nuclear Information System (INIS)

    Nemec, V.; Turzik, Z.; Vitek, M.

    1977-05-01

    The time course of temperatures of the peripheral and the central fuel pins of the TR-O reactor was studied during moderator temperature changes using a model. The formula T=Tsub(e)+(Tsub(o)-Tsub(e)).exp(-t/tsub(e)) applies, where T is the pin temperature, Tsub(o) the initial pin temperature, Tsub(e) is the steady-state bath temperature, tsub(e) the time constant of temperature equilibration and t the time required for a temperature change from value Tsub(o) to T. For the bath level height H=1 m the tsub(e) value for the central pin was determined to be 1.05 hours, for the peripheral pin 0.96 hour; for level height H=2 m the values were 2.1 and 2.12 hours, respectively. The dependence found will allow correcting the experimental results in measurements with heated moderator for fuel temperature changes. (Ha)

  2. Scale analysis of decay heat removal system between HTR-10 and HTR-PM reactors under accidental conditions

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Alvim, Antonio C.M.

    2017-01-01

    The 10 MW high-temperature gas-cooled test module (HTR-10) is a graphite-moderated and helium-cooled pebble bed reactor prototype that was designed to demonstrate the technical and safety feasibility of this type of reactor project under normal and accidental conditions. In addition, one of the systems responsible for ensuring the safe operation of this type of reactor is the passive decay heat removal system (DHRS), which operates using passive heat removal processes. A demonstration of the heat removal capacity of the DHRS under accidental conditions was analyzed based on a benchmark problem for design-based accidents on an HTR-10, i.e., the pressurized loss of forced cooling (PLOFC) described in technical reports produced by the International Atomic Energy Agency. In fact, the HTR-10 is also a proof-of-concept reactor for the high-temperature gas-cooled reactor pebble-bed module (HTR-PM), which generates approximately 25 times more heat than the HTR-10, with a thermal power of 250 MW, thereby requiring a DHRS with a higher system capacity. Thus, because an HTR-10 is a prototype reactor for an HTR-PM, a scaling analysis of the heat transfer process from the reactor to the DHRS was carried out between the HTR-10 and HTR-PM systems to verify the distortions of scale and the differences between the main dimensionless numbers from the two projects. (author)

  3. Scale analysis of decay heat removal system between HTR-10 and HTR-PM reactors under accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D.; Alvim, Antonio C.M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Lapa, Celso M.F., E-mail: thiagodbtr@gmail.com, E-mail: lapa@ien.gov.br, E-mail: alvim@nuclear.ufrj.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The 10 MW high-temperature gas-cooled test module (HTR-10) is a graphite-moderated and helium-cooled pebble bed reactor prototype that was designed to demonstrate the technical and safety feasibility of this type of reactor project under normal and accidental conditions. In addition, one of the systems responsible for ensuring the safe operation of this type of reactor is the passive decay heat removal system (DHRS), which operates using passive heat removal processes. A demonstration of the heat removal capacity of the DHRS under accidental conditions was analyzed based on a benchmark problem for design-based accidents on an HTR-10, i.e., the pressurized loss of forced cooling (PLOFC) described in technical reports produced by the International Atomic Energy Agency. In fact, the HTR-10 is also a proof-of-concept reactor for the high-temperature gas-cooled reactor pebble-bed module (HTR-PM), which generates approximately 25 times more heat than the HTR-10, with a thermal power of 250 MW, thereby requiring a DHRS with a higher system capacity. Thus, because an HTR-10 is a prototype reactor for an HTR-PM, a scaling analysis of the heat transfer process from the reactor to the DHRS was carried out between the HTR-10 and HTR-PM systems to verify the distortions of scale and the differences between the main dimensionless numbers from the two projects. (author)

  4. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall

  5. Thermal power calibrations of the IPR-R1 TRIGA reactor by the calorimetric and the heat balance methods

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias; Rezende, Hugo Cesar; Souza, Rose Mary Gomes do Prado

    2009-01-01

    Since the first nuclear reactor was built, a number of methodological variations have been evolved for the calibration of the reactor thermal power. Power monitoring of reactors is done by means of neutronic instruments, but its calibration is always done by thermal procedures. The purpose of this paper is to present the results of the thermal power calibration carried out on March 5th, 2009 in the IPR-R1 TRIGA reactor. It was used two procedures: the calorimetric and heat balance methods. The calorimetric procedure was done with the reactor operating at a constant power, with primary cooling system switched off. The rate of temperature rise of the water was recorded. The reactor power is calculate as a function of the temperature-rise rate and the system heat capacity constant. The heat balance procedure consists in the steady-state energy balance of the primary cooling loop of the reactor. For this balance, the inlet and outlet temperatures and the water flow in the primary cooling loop were measured. The heat transferred through the primary loop was added to the heat leakage from the reactor pool. The calorimetric method calibration presented a large uncertainty. The main source of error was the determination of the heat content of the system, due to a large uncertainty in the volume of the water in the system and a lack of homogenization of the water temperature. The heat balance calibration in the primary loop is the standard procedure for calibrating the power of the IPR-R1 TRIGA nuclear reactor. (author))

  6. Heat diffusion in cylindrical fuel elements of water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Randles, J [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1961-09-15

    This report contains a theoretical study of heat diffusion in the cylindrical fuel elements of water reactors. After setting up appropriate boundary conditions on the temperature, the steady state Fourier equation is solved both for a flat and a tilted fission power source. It is shown that source tilting does not have an appreciable effect on the peak fuel temperature while the heat flux to the coolant suffers a circumferential variation of less than a half of that of the fission power. In the last section, the theory is extended to include the effect of a flat, time dependent fission power. The time dependent Fourier equation is solved by means of a Dini series of Bessel functions which is shown to be rapidly convergent. From this series is derived expressions for the fuel element transfer functions required in reactor servo-analysis. These have the form of a rapidly convergent series of time-lag terms. (author)

  7. Magnetohydrodynamic flow and heat transfer around a heated cylinder of arbitrary conductivity

    Science.gov (United States)

    Tassone, A.; Nobili, M.; Caruso, G.

    2017-11-01

    The interaction of the liquid metal with the plasma confinement magnetic field constitutes a challenge for the design of fusion reactor blankets, due to the arise of MHD effects: increased pressure drops, heat transfer suppression, etc. To overcome these issues, a dielectric fluid can be employed as coolant for the breeding zone. A typical configuration involves pipes transverse to the liquid metal flow direction. This numerical study is conducted to assess the influence of pipe conductivity on the MHD flow and heat transfer. The CFD code ANSYS CFX was employed for this purpose. The fluid is assumed to be bounded by rectangular walls with non-uniform thickness and subject to a skewed magnetic field with the main component aligned with the cylinder axis. The simulations were restricted to Re = (20; 40) and M = (10; 50). Three different scenarios for the obstacle were considered: perfectly insulating, finite conductivity and perfectly conducting. The electrical conductivity was found to affect the channel pressure penalty due to the obstacle insertion only for M = 10 and just for the two limiting cases. A general increment of the heat transfer with M was found due to the tendency of the magnetic field to equalize the flow rate between the sub-channels individuated by the pipe. The best results were obtained with the insulating pipe, due to the reduced electromagnetic drag. The generation of counter-rotating vortices close to the lateral duct walls was observed for M = 50 and perfectly conducting pipe as a result of the modified currents distribution.

  8. Processes influencing cooling of reactor effluents

    International Nuclear Information System (INIS)

    Magoulas, V.E.; Murphy, C.E. Jr.

    1982-01-01

    Discharge of heated reactor cooling water from SRP reactors to the Savannah River is through sections of stream channels into the Savannah River Swamp and from the swamp into the river. Significant cooling of the reactor effluents takes place in both the streams and swamp. The majority of the cooling is through processes taking place at the surface of the water. The major means of heat dissipation are convective transfer of heat to the air, latent heat transfer through evaporation and radiative transfer of infrared radiation. A model was developed which incorporates the effects of these processes on stream and swamp cooling of reactor effluents. The model was used to simulate the effect of modifications in the stream environment on the temperature of water flowing into the river. Environmental effects simulated were the effect of changing radiant heat load, the effect of changes in tree canopy density in the swamp, the effect of total removal of trees from the swamp, and the effect of diverting the heated water from L reactor from Steel Creek to Pen Branch. 6 references, 7 figures

  9. Liquid-metal-gas heat exchanger for HTGR type reactors

    International Nuclear Information System (INIS)

    Werth, G.

    1980-01-01

    The aim of this study is to investigate the heat transfer characteristics of a liquid metal heat exchanger (HE) for a helium-cooled high temperature reactor. A tube-type heat exchanger is considered as well as two direct exchangers: a bubble-type heat exchanger and a heat exchanger according to the spray principle. Experiments are made in order to determine the gas content of bubble-type heat exchangers, the dependence of the droplet diameter on the nozzle diameter, the falling speed of the droplets, the velocity of the liquid jet, and the temperature variation of liquid jets. The computer codes developed for HE calculation are structured so that they may be used for gas/liquid HE, too. Each type of HE that is dealt with is designed by accousting for a technical and an economic assessment. The liquid-lead jet spray is preferred to all other types because of its small space occupied and its simple design. It shall be used in near future in the HTR by the name of lead/helium HE. (GL) [de

  10. On the prediction of single-phase forced convection heat transfer in narrow rectangular channels

    International Nuclear Information System (INIS)

    Ghione, Alberto; Noel, Brigitte; Vinai, Paolo; Demazière, Christophe

    2014-01-01

    In this paper, selected heat transfer correlations for single-phase forced convection are assessed for the case of narrow rectangular channels. The work is of interest in the thermal-hydraulic analysis of the Jules Horowitz Reactor (JHR), which is a research reactor under construction at CEA-Cadarache (France). In order to evaluate the validity of the correlations, about 300 tests from the SULTAN-JHR database were used. The SULTAN-JHR program was carried out at CEA-Grenoble and it includes different kinds of tests for two different vertical rectangular channels with height of 600 mm and gap of 1.51 and 2.16 mm. The experimental conditions range between 2 - 9 bar for the pressure; 0.5 - 18 m/s for the coolant velocity and 0.5 - 7.5 MW/m 2 for the heat flux (whose axial distribution is uniform). Forty-two thermocouples and eight pressure taps were placed at several axial locations, measuring wall temperature and pressure respectively. The analysis focused on turbulent flow with Reynolds numbers between 5.5 x 10 3 - 2.4 x 10 5 and Prandtl numbers between 1.5 - 6. It was shown that standard correlations as the Dittus-Boelter and Seider-Tate significantly under-estimate the heat transfer coefficient, especially at high Reynolds number. Other correlations specifically designed for narrow rectangular channels were also taken into account and compared. The correlation of Popov-Petukhov in the form suggested by Siman-Tov still under-estimates the heat transfer coefficient, even if slight improvements could be seen. A better agreement for the tests with gap equal to 2.16 mm could be found with the correlation of Ma and the one of Liang. However the heat transfer coefficient when the gap is equal to 1.51 mm could not be predicted accurately. Furthermore these correlations were based on data at low Reynolds numbers (up to 13000) and low heat flux, so the use of them for SULTAN-JHR may be questionable. According to the authors’ knowledge, existing models of heat transfer

  11. Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure CO{sub 2} in a Vertical Circular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji

    2008-02-15

    The SCWR(Super Critical Water-cooled Reactor) is one of the feasible options for the 4th generation nuclear power plant, which is being pursued by an international collaborative organization, the Gen IV International Forum(GIF). The major advantages of the SCWR include a high thermal efficiency and a maximum use of the existing technologies. In the SCWR, the coolant(water) of a supercritical pressure passes the pseudo-critical temperature as it flows upward through the sub-channels of the fuel assemblies. At certain conditions a heat transfer deterioration occurs near the pseudo-critical temperature and it may cause an excessive rise of the fuel surface temperature. Therefore, an accurate estimation of the heat transfer coefficient is necessary for the thermal-hydraulic design of the reactor core. A test facility, SPHINX(Supercritical Pressure Heat Transfer Investigation for the Next Generation), dedicated to produce heat transfer data and study flow characteristics, uses supercritical pressure CO{sub 2} as a surrogate medium to take advantage of the relatively low critical temperature and pressure: and similar physical properties with water. The produced data includes the temperature of the heating surface and the heat transfer coefficient at varying mass fluxes, heat fluxes, and operating pressures. The test section is a circular tube of ID 6.32 mm: it is almost the same as the hydraulic diameter of the sub-channel in the conceptional design presented by KAERI. The test range of the mass flux is 285 to 1200 kg/m{sup 2}s and the maximum heat flux is 170 kW/m{sup 2}. The tests were mainly performed for an inlet pressure of 8.12 MPa which is 1.1 times of critical pressure. With the test results of the wall temperature and the heat transfer coefficient, effects of mass flux, heat flux, inlet pressure, and the tube diameter on the heat transfer were studied. And the test results were compared with the existing correlations of the Nusselt number. In addition, New

  12. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  13. Heat exchanger network retrofit optimization involving heat transfer enhancement

    International Nuclear Information System (INIS)

    Wang Yufei; Smith, Robin; Kim, Jin-Kuk

    2012-01-01

    Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often result in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. Both of these problems can be avoided through the use of heat transfer enhancement in heat exchanger network retrofit. This paper presents a novel design approach to solve heat exchanger network retrofit problems based on heat transfer enhancement. An optimisation method based on simulated annealing has been developed to find the appropriate heat exchangers to be enhanced and to calculate the level of enhancement required. The physical insight of enhanced exchangers is also analysed. The new methodology allows several possible retrofit strategies using different retrofit methods be determined. Comparison of these retrofit strategies demonstrates that retrofit modification duration and payback time are reduced when heat transfer enhancement is utilised. Heat transfer enhancement can be also used as a substitute for increased heat exchanger network surface area to reduce retrofit investment costs.

  14. Prediction of transpiration effects on heat and mass transfer by different turbulence models

    International Nuclear Information System (INIS)

    Bucci, M.; Sharabi, M.; Ambrosini, W.; Forgione, N.; Oriolo, F.; He, S.

    2008-01-01

    The paper reports the results of a study related to transpirating flows, stimulated by the interest that these phenomena, occurring in the presence of simultaneous heat and mass transfer, have for nuclear reactor applications. The work includes a summary and the follow-up of previous experimental and numerical investigations on filmwise condensation and falling film evaporation and of a recent review of different forms of the heat and mass transfer analogy. The particular objective here pursued is to compare transpiration effects as predicted by different turbulence models with classical suction and blowing multipliers based on stagnant layer theories, in the attempt to clarify their quantitative implications on the predicted mass transfer rates. A commercial and an in-house CFD code have been adopted for evaluating the heat and mass transfer rates occurring over a flat plate exposed to an air-vapour stream, with uniform bulk steam mass fraction and temperature boundary conditions at the wall. This simple configuration was purposely selected since it is a simplified representation of the test section of an experimental facility presently in operation at the University of Pisa. This allows a direct comparison between the heat and mass transfer coefficients predicted by CFD models and classical correlations for Nusselt and Sherwood numbers

  15. Design Guideline for Primary Heat Exchanger in a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunil; Seo, Kyoung-Woo; Kim, Seong-Hoon; Chi, Dae-Young; Park, Cheol [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, analytical study is conducted to track the variation of the PCS outlet temperature in conditions of the constant core power and constant SCS inlet temperature. The PCS circulates demineralized water to remove the heat generated in reactor core. The heat is transferred to the cold water of the SCS through the primary heat exchanger. In JRTR, Plate-type Heat Exchanger (PHE) was used as the primary heat exchanger. The cooling tower automatically sets the SCS inlet temperature constant by fan speed control. The flow rate of SCS is adjusted to be identical with the PCS flow rate. To design the PHE, the inlet and outlet temperatures and the flow rates for both systems should be determined. The flow rate has the allowable band for the safe operation from the lower limit to upper limit resulting in different temperature distribution in the PHE. Specially, the PCS outlet temperature which is the core inlet temperature is used for a safety parameter for the reactor shutdown. Therefore, we need to figure out which limit for the flow rate should be used from the conservative point of view. At 200 kg/s of PCS and SCS flow rates, the inlet and outlet temperatures are 41.3℃and 34℃, respectively. With increase of the flow rate, both of PCS inlet and outlet temperatures decrease to 33.6℃ and 39.9℃. This result means the low limit of the allowable flow band should be used for the conservative design of primary heat exchanger. If the upper limit of the allowable flow band is used, the PCS outlet temperature which is the safety parameter used for the reactor shutdown increases with decrease of the flow rate.

  16. Design Guideline for Primary Heat Exchanger in a Research Reactor

    International Nuclear Information System (INIS)

    Lee, Sunil; Seo, Kyoung-Woo; Kim, Seong-Hoon; Chi, Dae-Young; Park, Cheol

    2016-01-01

    In this paper, analytical study is conducted to track the variation of the PCS outlet temperature in conditions of the constant core power and constant SCS inlet temperature. The PCS circulates demineralized water to remove the heat generated in reactor core. The heat is transferred to the cold water of the SCS through the primary heat exchanger. In JRTR, Plate-type Heat Exchanger (PHE) was used as the primary heat exchanger. The cooling tower automatically sets the SCS inlet temperature constant by fan speed control. The flow rate of SCS is adjusted to be identical with the PCS flow rate. To design the PHE, the inlet and outlet temperatures and the flow rates for both systems should be determined. The flow rate has the allowable band for the safe operation from the lower limit to upper limit resulting in different temperature distribution in the PHE. Specially, the PCS outlet temperature which is the core inlet temperature is used for a safety parameter for the reactor shutdown. Therefore, we need to figure out which limit for the flow rate should be used from the conservative point of view. At 200 kg/s of PCS and SCS flow rates, the inlet and outlet temperatures are 41.3℃and 34℃, respectively. With increase of the flow rate, both of PCS inlet and outlet temperatures decrease to 33.6℃ and 39.9℃. This result means the low limit of the allowable flow band should be used for the conservative design of primary heat exchanger. If the upper limit of the allowable flow band is used, the PCS outlet temperature which is the safety parameter used for the reactor shutdown increases with decrease of the flow rate

  17. Heat transfer enhancement on nucleate boiling

    International Nuclear Information System (INIS)

    Zhuang, M.; Guibai, L.

    1990-01-01

    This paper reports on enhancement of nucleate boiling heat transfer with additives that was investigated experimentally. More than fifteen kinds of additives were chosen and tested. Eight kinds of effective additives which can enhance nucleate boiling heat transfer were selected. Experimental results showed that boiling heat transfer coefficient of water was increased by 1 to 5 times and that of R-113 was increased by 1 to 4 times when trace amount additives were put in the two boiling liquids. There exist optimum concentrations for the additives, respectively, which can enhance nucleate boiling heat transfer rate best. In order to analyze the mechanism of the enhancement of boiling heat transfer with additives, the surface tension and the bubble departure diameter were measured. The nucleation sites were investigated by use of high-speed photograph. Experimental results showed that nucleation sites increase with additive amount increasing and get maximum. Increasing nucleation sites is one of the most important reason why nucleate boiling heat transfer can be enhanced with additives

  18. Fluidized-bed nuclear reactor

    International Nuclear Information System (INIS)

    Grimmett, E.S.; Kunze, J.F.

    1975-01-01

    A reactor vessel containing a fluidized-bed region of particulate material including both a neutron-moderating and a fertile substance is described. A gas flow including fissile material passes through the vessel at a sufficient rate to fluidize the particulate material and at a sufficient density to support a thermal fission reaction within the fluidized-bed region. The high-temperature portion of a heat transfer system is located within the fluidized-bed region of the reactor vessel in direct contact with the fluidized particles. Heat released by fission is thereby transferred at an enhanced rate to a coolant circulating within the heat transfer system. Fission products are continuously removed from the gas flow and supplemental fissile material added during the reactor operation. (U.S.)

  19. Improvement and validation of the wall heat transfer package of RELAP5/MOD3.3

    International Nuclear Information System (INIS)

    Wu, Pan; Xiong, Xiaofei; Shan, Jianqiang; Gou, Junli; Zhang, Bin; Zhang, Bo

    2016-01-01

    Highlights: • A new heat transfer package has been developed. • It has been incorporated into RELAP5/MOD3.3 to verify its advantages. • The results of modified code were compared with available experimental data. • The results showed that higher prediction accuracy was achieved. - Abstract: The process of energy transfer from heat structure to control volume is determined by the wall-to-fluid heat transfer package, which is crucial for nuclear reactor safety analysis codes. The current logic for selection of heat transfer modes of RELAP5/MOD3.3 code is too complex and may result in incorrect heat transfer mode judgment. Also, the narrow application scope of film boiling heat transfer correlations may result in large errors in film boiling region which is of paramount importance for the predicted peak clad temperatures during hypothetical LB-LOCAs in PWRs. In this study, a new heat transfer package has been developed and incorporated into the RELAP5/MOD3.3 code. Differing from the original package, the modified one consists of twelve heat transfer modes and proposes a new logic for selection of heat transfer modes. For each mode, the models in the existing safety analysis codes and the leading models in literature have been reviewed in order to determine the best model which can easily be applicable to the RELAP5/MOD3.3 code. Particularly (1) a new package of heat transfer correlations are produced; (2) a new logic for selection of film boiling and transition boiling heat transfer modes is proposed which use minimum film boiling temperature and critical heat flux temperature as distinguished points. The modified code has been validated by comparing the analysis results with available experimental data from tube post dryout experiments and loss-of-fluid test (LOFT) facility. The calculation results showed that the improved package could better predict the experimental phenomena with higher prediction accuracy.

  20. Improvement and validation of the wall heat transfer package of RELAP5/MOD3.3

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pan; Xiong, Xiaofei; Shan, Jianqiang, E-mail: jqshan@mail.xjtu.edu.cn; Gou, Junli; Zhang, Bin; Zhang, Bo

    2016-12-15

    Highlights: • A new heat transfer package has been developed. • It has been incorporated into RELAP5/MOD3.3 to verify its advantages. • The results of modified code were compared with available experimental data. • The results showed that higher prediction accuracy was achieved. - Abstract: The process of energy transfer from heat structure to control volume is determined by the wall-to-fluid heat transfer package, which is crucial for nuclear reactor safety analysis codes. The current logic for selection of heat transfer modes of RELAP5/MOD3.3 code is too complex and may result in incorrect heat transfer mode judgment. Also, the narrow application scope of film boiling heat transfer correlations may result in large errors in film boiling region which is of paramount importance for the predicted peak clad temperatures during hypothetical LB-LOCAs in PWRs. In this study, a new heat transfer package has been developed and incorporated into the RELAP5/MOD3.3 code. Differing from the original package, the modified one consists of twelve heat transfer modes and proposes a new logic for selection of heat transfer modes. For each mode, the models in the existing safety analysis codes and the leading models in literature have been reviewed in order to determine the best model which can easily be applicable to the RELAP5/MOD3.3 code. Particularly (1) a new package of heat transfer correlations are produced; (2) a new logic for selection of film boiling and transition boiling heat transfer modes is proposed which use minimum film boiling temperature and critical heat flux temperature as distinguished points. The modified code has been validated by comparing the analysis results with available experimental data from tube post dryout experiments and loss-of-fluid test (LOFT) facility. The calculation results showed that the improved package could better predict the experimental phenomena with higher prediction accuracy.

  1. Parametric study of boiling heat transfer in porous media

    International Nuclear Information System (INIS)

    Shi, B.; Jones, B.G.; Pan, C.

    1996-01-01

    Detailed numerical modeling and parametric variation studies were conducted on boiling heat transfer processes in porous deposits with emphasis on applications associated with light water nuclear power reactor systems. The processes of boiling heat transfer in the porous corrosion deposits typically involve phase changes in finite volumetric regions in the porous media. The study examined such processes in two porous media configurations, without chimneys (homogeneous porous structures) and with chimneys (heterogeneous porous structures). A 1-D model and a 2-D model were developed to simulate two-phase flows with phase changes, without dry-out, inside the porous media for both structural configurations. For closure of the governing equations, an empirical correlation of the evaporation rate for phase changes inside the porous media was introduced. In addition, numerical algorithms were developed to solve the coupled nonlinear equations of mass, momentum, energy, capillary pressure, and evaporation rate. The distributions of temperature, thermodynamic saturation, liquid pressure, vapor pressure, liquid velocity, and vapor velocity were predicted. Furthermore, the effects of heat flux, system pressure, porosity, particle diameter, chimney population density, chimney radius, and crud thickness on the all superheat, critical heat flux, and minimum saturation were examined. The predictions were found to be in good agreement with the available experimental results

  2. Natural-circulation flow pattern during the gamma-heating phase of an LBLOCA in a heavy-water moderated reactor

    International Nuclear Information System (INIS)

    Rodriguez, S.B.; Unal, C.; Pasamehmetoglu, K.O.; Motley, F.E.

    1992-01-01

    In a postulated large-break loss-of-coolant accident (LBLOCA), the core of the reactor is uncovered quickly as the liquid that drains out of the tank is replaced by air. During the LBLOCA, the reactor is scrammed. the moderator tank is drained, and fuel and control rod tubes are cooled internally by forced convection via the emergency cooling system (ECS) water. However, the safety rods, reflector assemblies, tank wall, and instrument rods continue to heat up as a result of gamma deposition. These components are primarily cooled by natural/mixed convection and radiation heat transfer. In this paper, the thermal-hydraulic analysis of a reactor moderator tank exposed to air during an LBLOCA is discussed. The analysis was performed using a special version of the Transient Reactor Analysis Code (TRAC). TRAC input and code modifications considered the appropriate modeling of ECS cooling, thermal radiation heat transfer, and natural convection. The major objective of the model was to calculate the limiting component temperature (that establishes the maximum operating power) as a result of gamma heating. In addition, the nature of the moderator tank air-circulation pattern and its effects on the limiting temperature under various conditions were analyzed. None of the components were found to exceed their structural limits when the pre-scram power level was 50% of historical power

  3. Heat transfer correlations in mantle tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren

    2005-01-01

    on calculations with a CFD-model, which has earlier been validated by means of experiments. The CFD-model is used to determine the heat transfer between the solar collector fluid in the mantle and the walls surrounding the mantle in all levels of the mantle as well as the heat transfer between the wall...... transfer correlations are suitable as input for a detailed simulation model for mantle tanks. The heat transfer correlations determined in this study are somewhat different from previous reported heat transfer correlations. The reason is that this study includes more mantle tank designs and operation......Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...

  4. Primary Issues of Mixed Convection Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.

  5. Study on neutron diffusion and time dependence heat ina fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Vilhena, M.T. de.

    1988-01-01

    The purpose of this work is to model the neutron diffusion and heat transfer for a Fluidized Bed Nuclear Reactor and its solution by Laplace Transform Technique with numerical inversion using Fourier Series. Also Gaussian quadrature and residues techniques were applied for numerical inversion. The neutron transport, diffusion, and point Kinetic equation for this nuclear reactor concept are developed. A matricial and Taylor Series methods are proposed for the solution of the point Kinetic equation which is a time scale problem of Stiff type

  6. Measurement of subcooled boiling pressure drop and local heat transfer coefficient in horizontal tube under LPLF conditions

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Bisht, G.S.; Gupta, S.K.; Prabhu, S.V.

    2013-01-01

    Highlights: ► Measured subcooled boiling pressure drop and local heat transfer coefficient in horizontal tubes. ► Infra-red thermal imaging is used for wall temperature measurement. ► Developed correlations for pressure drop and local heat transfer coefficient. -- Abstract: Horizontal flow is commonly encountered in boiler tubes, refrigerating equipments and nuclear reactor fuel channels of pressurized heavy water reactors (PHWR). Study of horizontal flow under low pressure and low flow (LPLF) conditions is important in understanding the nuclear core behavior during situations like LOCA (loss of coolant accidents). In the present work, local heat transfer coefficient and pressure drop are measured in a horizontal tube under LPLF conditions of subcooled boiling. Geometrical parameters covered in this study are diameter (5.5 mm, 7.5 mm and 9.5 mm) and length (550 mm, 750 mm and 1000 mm). The operating parameters varied are mass flux (450–935 kg/m 2 s) and inlet subcooling (29 °C, 50 °C and 70 °C). Infra-red thermography is used for the measurement of local wall temperature to estimate the heat transfer coefficient in single phase and two phase flows with water as the working medium at atmospheric pressure. Correlation for single phase diabatic pressure drop ratio (diabatic to adiabatic) as a function of viscosity ratio (wall temperature to fluid temperature) is presented. Correlation for pressure drop under subcooled boiling conditions as a function of Boiling number (Bo) and Jakob number (Ja) is obtained. Correlation for single phase heat transfer coefficient in the thermal developing region is presented as a function of Reynolds number (Re), Prandtl number (Pr) and z/d (ratio of axial length of the test section to diameter). Correlation for two phase heat transfer coefficient under subcooled boiling condition is developed as a function of boiling number (Bo), Jakob number (Ja) and Prandtl number (Pr)

  7. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids

    International Nuclear Information System (INIS)

    Solangi, K.H.; Kazi, S.N.; Luhur, M.R.; Badarudin, A.; Amiri, A.; Sadri, Rad; Zubir, M.N.M.; Gharehkhani, Samira; Teng, K.H.

    2015-01-01

    Nanofluids are fluid nanoparticle suspensions that exhibit enhanced properties at modest nanoparticle concentrations. Nanofluids have unique heat transfer properties and are utilized in high heat flux systems (e.g., electronic cooling systems, heat exchanger liquids, solar collectors, and nuclear reactors). However, suspension stability is critical in the development and application of these heat transfer fluids. Reynolds number, mass concentration, and particle size control the heat transfer behavior of fluids. Sedimentation and agglomeration of nanoparticles in nanofluids and their dispersion have rarely been investigated. Therefore, this paper explains the parameters that affect the stability of nanofluids and the different techniques used to evaluate the stability of nanofluids. This paper also presents an updated review of properties of nanofluids, such as physical (thermal conductivity) and rheological properties, with emphasis on their heat transfer enhancement characteristics. Studies on zeta potential as a function of pH are discussed and extended further to identify opportunities for future research. - Highlights: • Comprehensive review of nanofluids and latest methods of preparation. • Parameters that affect the stability of nanofluids and the different techniques are discussed. • Effect of different surfactants on the rheological properties of nanofluids has been presented. • Sedimentation and agglomeration of nanoparticles in nanofluids are discussed in detail. • zeta potential as a function of pH is discussed and opportunities for future research

  8. Condition monitoring of steam generator by estimating the overall heat transfer coefficient

    International Nuclear Information System (INIS)

    Furusawa, Hiroaki; Gofuku, Akio

    2013-01-01

    This study develops a technique for monitoring in on-line the state of the steam generator of the fast-breeder reactor (FBR) “Monju”. Because the FBR uses liquid sodium as coolant, it is necessary to handle liquid sodium with caution due to its chemical characteristics. The steam generator generates steam by the heat of secondary sodium coolant. The sodium-water reaction may happen if a pinhole or crack occurs at the thin metal tube wall that separates the secondary sodium coolant and water/steam. Therefore, it is very important to detect an anomaly of the wall of heat transfer tubes at an early stage. This study aims at developing an on-line condition monitoring technique of the steam generator by estimating overall heat transfer coefficient from process signals. This paper describes simplified mathematical models of superheater and evaporator to estimate the overall heat transfer coefficient and a technique to diagnose the state of the steam generator. The applicability of the technique is confirmed by several estimations using simulated process signals with artificial noises. The results of the estimations show that the developed technique can detect the occurrence of an anomaly. (author)

  9. A three-dimensional analyses of fluid flow and heat transfer for moderator integrity assessment in PHWR

    International Nuclear Information System (INIS)

    Bang, K. H.; Lee, J. Y.; Yoo, S. O.; Kim, M. W.; Kim, H. J.

    2002-01-01

    Three-dimensional analyses of fluid flow and heat transfer has been performed in this study. The simulation of SPEL experimental work and comparison with experimental data has been carried out to verify the analyses models. Moreover, to verify the CANDU-6 reactor type, analyses of fluid flow and heat transfer in the calandria under the condition of steady state has been performed using FLUENT code, which is the conventional code for a three-dimensional analyses of fluid flow and heat transfer for moderator integrity assessment in PHWR thermal-hydraulics. It is found that the maximum temperature in the moderator is 347K (74 ), so that the moderator has the enough subcoolability to ensure the integrity of pressure tube during LOCA conditions

  10. Numerical Simulation of Flow and Heat Transfer in Structured Packed Beds with Smooth or Dimpled Spheres at Low Channel to Particle Diameter Ratio

    Directory of Open Access Journals (Sweden)

    Shiyang Li

    2018-04-01

    Full Text Available Packed beds are widely used in catalytic reactors or nuclear reactors. Reducing the pressure drop and improving the heat transfer performance of a packed bed is a common research aim. The dimpled structure has a complex influence on the flow and heat transfer characteristics. In the present study, the flow and heat transfer characteristics in structured packed beds with smooth or dimpled spheres are numerically investigated, where two different low channel to particle diameter ratios (N = 1.00 and N = 1.15 are considered. The pressure drop and the Nusselt number are obtained. The results show that, for N = 1.00, compared with the structured packed bed with smooth spheres, the structured packed bed with dimpled spheres has a lower pressure drop and little higher Nusselt number at 1500 < ReH < 14,000, exhibiting an improved overall heat transfer performance. However, for N = 1.15, the structured packed bed with dimpled spheres shows a much higher pressure drop, which dominantly affects the overall heat transfer performance, causing it to be weaker. Comparing the different channel to particle diameter ratios, we find that different configurations can result in: (i completely different drag reduction effect; and (ii relatively less influence on heat transfer enhancement.

  11. Heat transfer II essentials

    CERN Document Server

    REA, The Editors of

    1988-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Heat Transfer II reviews correlations for forced convection, free convection, heat exchangers, radiation heat transfer, and boiling and condensation.

  12. Evaluation of Pressure Changes in HANARO Reactor Hall after a Reactor Shutdown

    International Nuclear Information System (INIS)

    Han, Geeyang; Han, Jaesam; Ahn, Gukhoon; Jung, Hoansung

    2013-01-01

    The major objective of this work is intended to evaluate the characteristics of the thermal behavior regarding how the decay heat will be affected by the reactor hall pressure change and the increase of pool water temperature induced in the primary coolant after a reactor shutdown. The particular reactor pool water temperature at the surface where it is evaporated owing to the decay heat resulting in the local heat transfer rate is related to the pressure change response in the reactor hall associated with the primary cooling system because of the reduction of the heat exchanger to remove the heat. The increase in the pool water temperature is proportional to the heat transfer rate in the reactor pool. Consequently, any limit on the reactor pool water temperature imposes a corresponding limit on the reactor hall pressure. At HANARO, the decay heat after a reactor shutdown is mainly removed by the natural circulation cooling in the reactor pool. This paper is written for the safety feature of the pressure change related leakage rate from the reactor hall. The calculation results show that the increase of pressure in the reactor hall will not cause any serious problems to the safety limits although the reactor hall pressure is slightly increased. Therefore, it was concluded that the pool water temperature increase is not so rapid as to cause the pressure to vary significantly in the reactor hall. Furthermore, the mathematical model developed in this work can be a useful analytical tool for scoping and parametric studies in the area of thermal transient analysis, with its proper representation of the interaction between the temperature and pressure in the reactor hall

  13. Transfer of heat to fluidized-solids beds

    Energy Technology Data Exchange (ETDEWEB)

    1952-10-16

    The improvement in the method described and claimed in patent application 14,363/47 (136,186) for supplying heat to a dense turbulent mass of solid fluidized by a gas flowing upwardly therethrough and subjected to a high temperature in a treating zone, by heat transfer through heat-transfer surfaces of heat-transfer elements in contact with the said turbulent mass of finely divided solid and heated by means of a fluid heating medium, including burning fuels comprising contacting the said heat-transfer surfaces with a fuel and a combustion supporting gas under such conditions that the combustion of the fuel is localized in the heat-transfer element near the point of entry of the fuel and combustion-supporting gas and a substantial temperature gradient is maintained along the path of said fuel combustion-supporting gas and combustion products through the said heat-transfer element.

  14. A study on transient heat transfer of the EU-ABWR external core catcher using the phase-change effective convectivity model

    International Nuclear Information System (INIS)

    Tran Chi Thanh; Nguyen Viet Hung; Tahara, Mika; Kojima, Yoshihiro; Hamazaki, Ryoichi; Kudinov, Pavel

    2015-01-01

    In advanced designs of Nuclear Power Plants (NPPs), for mitigation of severe accident consequences, on the one hand, the In-Vessel Retention (IVR) concept has been implemented. On the other hand in other new NPP designs (Generation III and III+) with large power reactors, the External Core Catcher (ECC) has been widely adopted. Assessment of ECC design robustness is largely based on analysis of heat transfer of a melt pool formed in the ECC. Transient heat transfer analysis of an ECC is challenging due to (i) uncertainty in the in-vessel accident progression and subsequent vessel failure modes; (ii) long transient, (iii) high Rayleigh number and complex flows involving phase change of the melt pool formed in an ECC. The present paper is concerned with analysis of transient melt pool heat transfer in the ECC of new Advanced Boiling Water Reactor (ABWR) designed by Toshiba Corporation (Japan). According to the ABWR severe accident management strategy, the ECC is initially dry. In order to prevent steam explosion flooding is initiated after termination of melt relocation from the vessel. The ECC full of melt is cooled from the top directly by water and from the bottom through the ECC walls. In order to assess sustainability of the ECC, heat transfer simulation of a stratified melt pool formed in the ECC is carried out. The problem addressed in this work is heat flux distribution at ECC boundaries when cooling is applied (i) from the bottom, (ii) from the top and from the bottom. To perform melt pool heat transfer simulation, we employ Phase-change Effective Convectivity Model (PECM) which was originally developed as a computationally efficient, sufficiently accurate, 2D/3D accident analysis tools for simulation of transient melt pool heat transfer in the reactor lower plenum. Thermal loads from the melt pool to ECC boundaries are determined for selected ex-vessel accident scenarios. Performance of the ECC, efficiency of severe accident management (SAM) measures and

  15. Analysis of relations for heat transfer at the post-CHF regime

    Energy Technology Data Exchange (ETDEWEB)

    Dorokhovich, S. L. [Obninsk State Techical Univ., Obninsk (Russian Federation); Kirillov, P. L. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    2003-07-01

    Information about heat transfer rates in two-fluid flow at the post-CHF regime is important for analysis of accidents of water-cooled nuclear reactors as well as calculations of steam generators (liquid metal-water). It is complicate to create analytical methods because there is a variety of two-fluid flow regimes dictated by channel size, pressure, mass flow rate, heat flux, droplet spectrum, flow quality, other factors and, finally, by crisis type. At crisis in subcooled liquid or low quality two-phase flows Inverted Annular Film Boiling (IAFB) takes place when liquid flow is separated from the wall by a thin superheated vapor film. For dispersed flow crisis is usually related to drying a liquid film moving along the heated surface (wall). In both cases two-phase flow is thermodynamically nonequilibrium since the temperatures of phases (liquid and vapor) are different. The mean (at the rate of heat content) flow temperature is not the determining parameter. Different boundary conditions of experiment s uniform heat fluxes or 'hot' spots, are able to lead to different relations for the heat transfer coefficient. Last years the great number of semiempirical models were elaborated, that become more and more complicate. It is difficult to examine many parameters of the models. An agreement between final results and separate experimental data is not yet the evidence for the verity of extension while prerequisites taken in the models are often doubtful and hardly examined. Thus the correlations obtained from experimental data, for example, are used in practice. The analysis of relations for heat transfer at the Deteriorated Heat Transfer (DHT) regime, the comparison of relations with the data of look up tables made on the basis of the Institute of Physics and Power Engineering and Chalk River Laboratories experimental data banks are the objective of current report.

  16. Analysis of relations for heat transfer at the post-CHF regime

    International Nuclear Information System (INIS)

    Dorokhovich, S. L.; Kirillov, P. L.

    2003-01-01

    Information about heat transfer rates in two-fluid flow at the post-CHF regime is important for analysis of accidents of water-cooled nuclear reactors as well as calculations of steam generators (liquid metal-water). It is complicate to create analytical methods because there is a variety of two-fluid flow regimes dictated by channel size, pressure, mass flow rate, heat flux, droplet spectrum, flow quality, other factors and, finally, by crisis type. At crisis in subcooled liquid or low quality two-phase flows Inverted Annular Film Boiling (IAFB) takes place when liquid flow is separated from the wall by a thin superheated vapor film. For dispersed flow crisis is usually related to drying a liquid film moving along the heated surface (wall). In both cases two-phase flow is thermodynamically nonequilibrium since the temperatures of phases (liquid and vapor) are different. The mean (at the rate of heat content) flow temperature is not the determining parameter. Different boundary conditions of experiment s uniform heat fluxes or 'hot' spots, are able to lead to different relations for the heat transfer coefficient. Last years the great number of semiempirical models were elaborated, that become more and more complicate. It is difficult to examine many parameters of the models. An agreement between final results and separate experimental data is not yet the evidence for the verity of extension while prerequisites taken in the models are often doubtful and hardly examined. Thus the correlations obtained from experimental data, for example, are used in practice. The analysis of relations for heat transfer at the Deteriorated Heat Transfer (DHT) regime, the comparison of relations with the data of look up tables made on the basis of the Institute of Physics and Power Engineering and Chalk River Laboratories experimental data banks are the objective of current report

  17. Containment for low temperature district nuclear-heating reactor

    International Nuclear Information System (INIS)

    He Shuyan; Dong Duo

    1992-03-01

    Integral arrangement is adopted for Low Temperature District Nuclear-heating Reactor. Primary heat exchangers, control rod drives and spent fuel elements are put in the reactor pressure vessel together with reactor core. Primary coolant flows through reactor core and primary heat exchangers in natural circulation. Primary coolant pipes penetrating the wall of reactor pressure vessel are all of small diameters. The reactor vessel constitutes the main part of pressure boundary of primary coolant. Therefore the small sized metallic containment closed to the wall of reactor vessel can be used for the reactor. Design principles and functions of the containment are as same as the containment for PWR. But the adoption of small sized containment brings about some benefits such as short period of manufacturing, relatively low cost, and easy for sealing. Loss of primary coolant accident would not be happened during the rupture accident of primary coolant pressure boundary inside the containment owing to its intrinsic safety

  18. Radiation heat transfer through the gas of a sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Pradel, P.; Frachet, S.; Petit, D.

    1984-04-01

    Analysis based on results from the COCA test campaign and Germinal mockup of Super Phenix upper shuttings, of the heat transfers and radiation attenuation due to sodium aerosols between the free surface of sodium and the upper shuttings

  19. Numerical Study on the Mixed Convection Heat Transfer between a Sphere Particle and High Pressure Water in Pseudocritical Zone

    Directory of Open Access Journals (Sweden)

    Liping Wei

    2013-01-01

    Full Text Available Mixed convection heat transfer between supercritical water and particles is a major basic problem in supercritical water fluidized bed reactor, but little work focused on this new area in the past. In this paper, a numerical model fully accounting for thermophysical property variation has been established to investigate heat transfer between supercritical water and a single spherical particle under gravity. Flow field, temperature field and Nusselt number are analyzed based on the simulation results. Results show that buoyancy force has a remarkable effect on flow and heat transfer process. When the direction of gravity and flow are opposite, the gravity enhances the heat transfer before the separation point and inhibits the heat transfer after the separation point. When gravity is incorporated in calculation, a higher temperature gradient and a thinner boundary layer in the vicinity of the particle surface are observed before separation point, and the situations are just the reverse after separation point. Variation of specific heat and conductivity plays a main role in determination of heat transfer coefficient.

  20. Chinese nuclear heating test reactor and demonstration plant

    International Nuclear Information System (INIS)

    Wang Dazhong; Ma Changwen; Dong Duo; Lin Jiagui

    1992-01-01

    In this report the importance of nuclear district heating is discussed. From the viewpoint of environmental protection, uses of energy resources and transport, the development of nuclear heating in China is necessary. The development program of district nuclear heating in China is given in the report. At the time being, commissioning of the 5 MW Test Heating Reactor is going on. A 200 MWt Demonstration Plant will be built. In this report, the main characteristics of these reactors are given. It shows this type of reactor has a high inherent safety. Further the report points out that for this type of reactor the stability is very important. Some experimental results of the driving facility are included in the report. (orig.)

  1. Tunable heat transfer with smart nanofluids.

    Science.gov (United States)

    Bernardin, Michele; Comitani, Federico; Vailati, Alberto

    2012-06-01

    Strongly thermophilic nanofluids are able to transfer either small or large quantities of heat when subjected to a stable temperature difference. We investigate the bistability diagram of the heat transferred by this class of nanofluids. We show that bistability can be exploited to obtain a controlled switching between a conductive and a convective regime of heat transfer, so as to achieve a controlled modulation of the heat flux.

  2. A swivelling transfer device for nuclear reactors

    International Nuclear Information System (INIS)

    Allain, Albert; Mulot, Pierre; Filloleau, Etienne

    1974-01-01

    The invention relates to a swivelling transfer device for fuel-assemblies. According to the invention, the device comprises, within a protective enclosure, a swivelling system comprising two sets of rails rotatable about an axis and so arranged that the lower and thereof penetrates into the extensions of the extremities of ramps dipped into the reactor and into a storage enclosure. This can apply to the transfer of nuclear reactor fuel assemblies, in particular for reactors of the molten sodium fast neutron type [fr

  3. Heat transfer and fluid flow in nuclear systems

    International Nuclear Information System (INIS)

    Fenech, H.

    1981-01-01

    The present publication is an attempt to provide a bridge between fundamental principles and current design practice. It is intended to serve the need of: engineers, scientists and graduate students active in thermal and hydraulics problems and to those interested to keep abreast of the field. The text is addressed to readers with previous knowledge in heat transfer and fluid flow equvalent to a one year university graduate course in that field. Because of the high degree of specialization covered in the six chapters of the book, individual authors of international reputation and active in their respective area of specialization were selected to contribute their knowledge. Each of the six chapters or sub-chapters are self-contained. They are followed by problem sets to enable the reader to check his level of comprehension of the material presented. The nuclear systems covered in separate chapters include: the pressurized and boiling water reactors (PWR, BWR), the helium cooled high temperature reactors (HTGR and HTR), the breeders helium cooled (GCFR) and sodium cooled (LMFBR). In addition the heat-exchangers and steam generators commonly associated with the above systems are covered in Chapter 6

  4. Liquid-Metal/Water Direct Contact Heat Exchange: Flow Visualization, Flow Stability, and Heat Transfer Using Real-Time X-Ray Imaging

    International Nuclear Information System (INIS)

    Abdulla, Sherif H.; Liu Xin; Anderson, Mark H.; Bonazza, Riccardo; Corradini, Michael L.; Cho, Dae; Page, Richard

    2005-01-01

    Advanced reactor system designs are being considered with liquid-metal cooling connected to a steam power cycle. In addition, current reactor safety systems are considering auxiliary cooling schemes that assure ex-vessel debris coolability utilizing direct water injection into molten material pools to achieve core quenching and eventual coolability. The phenomenon common in both applications is direct contact heat exchange. The current study focuses on detailed measurements of liquid-metal/water direct contact heat exchange that is directly applicable to improvements in effective heat transfer in devices that are being considered for both of these purposes.In this study, a test facility was designed at the University of Wisconsin-Madison to map the operating range of liquid-metal/water direct contact heat exchange. The test section (184-cm height, 45.75-cm width, and 10-cm depth) is a rectangular slice of a larger heat exchange device. This apparatus was used not only to provide measurements of integral thermal performance (i.e., volumetric heat transfer coefficient), but also local heat transfer coefficients in a bubbly flow regime with X-ray imaging based on measured parameters such as bubble formation time, bubble rise velocity, and bubble diameters.To determine these local heat transfer coefficients, a complete methodology of the X-ray radiography for two-phase flow measurement has been developed. With this methodology, a high-energy X-ray imaging system is optimized for our heat exchange experiments. With this real-time, large-area, high-energy X-ray imaging system, the two-phase flow was quantitatively visualized. An efficient image processing strategy was developed by combining several optimal digital image-processing algorithms into a software computational tool written in MATLAB called T-XIP. Time-dependent heat transfer-related variables such as bubble volumes and velocities, were determined. Finally, an error analysis associated with these measurements

  5. A heat transfer correlation based on a surface renewal model for molten core concrete interaction study

    International Nuclear Information System (INIS)

    Tourniaire, B. . E-mail bruno.tourniaire@cea.fr

    2006-01-01

    The prediction of heat transfer between corium pool and concrete basemat is of particular significance in the framework of the study of PWR's severe accident. Heat transfer directly governs the ablation velocity of concrete in case of molten core concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. From a restricted hydrodynamic point of view, this issue is related to heat transfer between a heated bubbling pool and a porous wall with gas injection. Several experimental studies have been performed with simulant materials and many correlations have been provided to address this issue. The comparisons of the results of these correlations with the measurements and their extrapolation to reactor materials show that strong discrepancies between the results of these models are obtained which probably means that some phenomena are not well taken into account. The main purpose of this paper is to present an alternative heat transfer model which was originally developed for chemical engineering applications (bubble columns) by Deckwer. A part of this work is devoted to the presentation of this model, which is based on a surface renewal assumption. Comparison of the results of this model with available experimental data in different systems are presented and discussed. These comparisons clearly show that this model can be used to deal with the particular problem of MCCI. The analyses also lead to enrich the original model by taking into account the thermal resistance of the wall: a new formulation of the Deckwer's correlation is finally proposed

  6. Turbulent flow heat transfer in ET-RR-1

    International Nuclear Information System (INIS)

    Khattab, M.; Mina, A.R.

    1990-01-01

    In nuclear reactors the effect of heat transfer coefficient, which depends on the constant C. Is primordial in calculating the clad surface temperatures. To determine the constant C of ET-RR-1 fuel bundles based on in-pile measurements different well known and recommended values of C are verified. A computer program is written to calculate steady thermal core characteristics at different operating conditions. The total flow rate is distributed considering same pressure drop across the core irrespective of bundle location. The total reactor power is readily distributed as Bessel function. The flow and power per bundle are equally distributed among the fuel rods irrespective of their positions inside the bundle. It is found that the constant C equals 0.047 gives acceptable compatibility between measurements and calculations. The maximum clad surface temperature is shifted from the core center

  7. Transient non-boiling heat transfer in a fuel rod bundle during accidental power excursions

    International Nuclear Information System (INIS)

    Bonaekdarzadeh, S.; Johannsen, K.; Ramm, H.

    1977-01-01

    The physical problem studied is the transient non-boiling heat transfer of a cylindrical fuel rod consisting of fuel, gap, and cladding to a steady, fully developed turbulent flow. The fuel pin is assumed to be located in the interior region of a subassembly with regular triangular or square arrangements. The turbulent velocity field as well as turbulent transport properties are specified as functions of the coordinates normal to the axial flow direction. The heat generation within the fuel may be specified as an arbitrary function of the three spatial coordinates and time. A digital computer program has been developed. On the basis of finite-difference techniques, to solve the governing partial differential equations with their associated subsidiary conditions. Results have been obtained for a series of exponential power transients of interest to safety of liquid-metal and water cooled nuclear reactors. The general physical features of transient convective heat transfer as explored by previous investigators have qualitatively been substantiated by the present analysis. Emphasis has been devoted to investigate the differences of heat-transfer (coefficient) results from multi-region analysis including a realistic fuel rod model and single-region analysis for the coolant region only. A comparison with the engineering relationships for turbulent liquid-metal cooling by Stein, which are an extension of the heat transfer coefficient concept to account for transient heat fluxes, clearly demonstrates that, at the parameters studied, Stein's approach tends to largely overestimate the convective heat transfer at early times

  8. Development of a Convective Heat Transfer Correlation of a Supercritical CO2 with Vertical Downward Flow in Circular Tubes

    International Nuclear Information System (INIS)

    Yoo, Tae Ho; Kim, Hwan Yeol; Bae, Yoon Yeong

    2009-01-01

    Pressure of coolant flowing through a SCWR core subchannel is supercritical and the heat transfer behavior is known to be quite different from those at a subcritical pressure. Therefore the heat transfer study in a supercritical pressure is required for the acquisition of a reliable heat transfer correlation. A downward flow as well as an upward flow occurs in a multi-pass reactor core. The heat transfer at a supercritical pressure in downward channel has been known to result in a quite different behavior from an upward flow. An experiment for a supercritical CO 2 flowing vertically downward in circular tubes with inner diameters of 6.32 mm and 9 mm was performed by using SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation) at KAERI. The obtained test results are compared with the estimations from the existing correlations and an empirical formula for a downward flow is suggested

  9. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  10. E-beam heated linear solenoid reactors

    International Nuclear Information System (INIS)

    Benford, J.; Bailey, V.; Oliver, D.

    1976-01-01

    A conceptual design and system analysis shows that electron beam heated linear solenoidal reactors are attractive for near term applications which can use low gain fusion sources. Complete plant designs have been generated for fusion based breeders of fissile fuel over a wide range of component parameters (e.g., magnetic fields, reactor lengths, plasma densities) and design options (e.g., various radial and axial loss mechanisms). It appears possible that a reactor of 100 to 300 meters length operating at power levels of 1000 MWt can economically produce 2000 to 8000 kg/yr of 233 U to supply light water reactor fuel needs beyond 2000 A.D. Pure fusion reactors of 300 to 500 meter lengths are possible. Physics and operational features of reactors are described. Beam heating by classical and anomalous energy deposition is reviewed. The technology of the required beams has been developed to MJ/pulse levels, within a factor of 20 of that needed for full scale production reactors. The required repetitive pulsing appears practical

  11. Radiative heat transfer in the Na mist dispersion over the hot surface of liquid Na in the cooling system of nuclear reactor

    International Nuclear Information System (INIS)

    Kunitomo, T.; Shafey, H.M.

    1980-01-01

    The analysis has been carried out for the radiative heat transfer in the Na mist dispersion enclosed between the hot surface of liquid Na at temperature Tsub(n) and the cold surface of Na deposit at Tsub(c). The model selected for the present study represents the Na mist formed in a sodium cooled fast breeder reactor in which the condensed liquid particles are dispersed in the mixture of the Ar cover gas and the Na vapor. The analysis is based on replacing the inhomogeneous dispersing medium by three discrete homogeneous layers, and formulating the transfer equation for the monochromatic radiation in each layer according to the Chandrasekhar theory. The numerical calculations of the radiative qsub(r) and convective qsub(c) heat transfers have been performed for the wave length range lambda=1.6-30 μm and are compared. The qsub(r) has the same order of magnitude as the qsub(c) for all conditions of the mist dispersions. Both qsub(r) and qsub(c) increase by nearly equal rates with the increase of Tsub(H) and decrease by different rates with increasing Tsub(c). Variations of the particle diameter of the Na mist do not change substantially the qsub(r). Both qsub(r) and qsub(c) decrease slightly with the increase in the total thickness of the Na mist dispersion

  12. Radial heat transfer from fuel to moderator during LOCAs for CANDU PHW reactors

    International Nuclear Information System (INIS)

    Hildebrandt, J.G.; So, C.B.; Gillespie, G.E.; MacLean, G.

    1983-01-01

    In a postulated CANDU-PHW loss-of-coolant accident (LOCA) with coincident impaired emergency cooling, the axial transport of heat from the fuel by convection is reduced. This reduction in heat removal causes the fuel to heat up and the radial heat transfer to the moderator to become significant. This paper deals with two codes that predict the thermal response of fuel channels under LOCA conditions. New channel thermal radiation models in both RAMA, a thermalhydraulic code, and CHAN II, a fuel channel thermo-chemical code, are presented and their predictions are compared with the experimental results of an electrically heated bundle of 37 fuel pins. A second experiment, involving a single heated pin in a channel with flowing steam, is presented. The predictions of RAMA and CHAN II are compared with this experiment to verify the codes' thermo-chemical models. There is good agreement between the predictions of both codes and the experimental results

  13. Boiling heat transfer on horizontal tube bundles

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed

  14. Heat transfer and fire spread

    Science.gov (United States)

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  15. Heat transfer in heterogeneous propellant combustion systems

    International Nuclear Information System (INIS)

    Brewster, M.Q.

    1992-01-01

    This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles

  16. Condensation heat transfer in plate heat exchangers

    International Nuclear Information System (INIS)

    Panchal, C.B.

    1985-01-01

    An Alfa-Laval plate heat exchanger, previously tested as an evaporator, was retested as a condenser. Two series of tests with different chevron-angle plates were carried out using ammonia as a working fluid. The overall heat-transfer coefficient and pressure drop were measured, and the effects of operating parameters were determined. The experimental data were compared with theoretical predictions. In the analysis, a gravity-controlled condensation process was modeled theoretically, and the overall performance was calculated. The analysis shows that the overall heat-transfer coefficient can be predicted with an average uncertainty of about 10%. It is, however, important to consider the interfacial shear stress, because the effective friction factor is high for flow in plate heat exchangers

  17. Component Cooling Heat Exchanger Heat Transfer Capability Operability Monitoring

    International Nuclear Information System (INIS)

    Mihalina, M.; Djetelic, N.

    2010-01-01

    The ultimate heat sink (UHS) is of highest importance for nuclear power plant safe and reliable operation. The most important component in line from safety-related heat sources to the ultimate heat sink water body is a component cooling heat exchanger (CC Heat Exchanger). The Component Cooling Heat Exchanger has a safety-related function to transfer the heat from the Component Cooling (CC) water system to the Service Water (SW) system. SW systems throughout the world have been the root of many plant problems because the water source, usually river, lake, sea or cooling pond, are conductive to corrosion, erosion, biofouling, debris intrusion, silt, sediment deposits, etc. At Krsko NPP, these problems usually cumulate in the summer period from July to August, with higher Sava River (service water system) temperatures. Therefore it was necessary to continuously evaluate the CC Heat Exchanger operation and confirm that the system would perform its intended function in accordance with the plant's design basis, given as a minimum heat transfer rate in the heat exchanger design specification sheet. The Essential Service Water system at Krsko NPP is an open cycle cooling system which transfers heat from safety and non-safety-related systems and components to the ultimate heat sink the Sava River. The system is continuously in operation in all modes of plant operation, including plant shutdown and refueling. However, due to the Sava River impurities and our limited abilities of the water treatment, the system is subject to fouling, sedimentation buildup, corrosion and scale formation, which could negatively impact its performance being unable to satisfy its safety related post accident heat removal function. Low temperature difference and high fluid flows make it difficult to evaluate the CC Heat Exchanger due to its specific design. The important effects noted are measurement uncertainties, nonspecific construction, high heat transfer capacity, and operational specifics (e

  18. After-heat removal system of fast reactor

    International Nuclear Information System (INIS)

    Otsuka, Masaya; Shibata, Yoji; Ikeda, Takashi; Iwashige, Kengo; Yoneda, Yoshiyuki.

    1988-01-01

    Purpose: To remove after-heat by natural convection without disposing a movable portion even in a large-scaled reactor. Constitution: The exit of a reactor wall air-cooling duct disposed to the outside of a safety vessel is connected to the secondary inlet of an air cooler that conducts heat exchange with sodium in a high temperature plenum. That is, after-heat is removed only through the natural convection by a structure in which the reactor wall air-cooling duct and the secondary side of the air cooler are connected in series. Air exhausted from the exit of the air-cooling duct by the air cooler is further heated with sodium in the high temperature plenum. The flow rate of air flowing through the air-cooling duct is increased as compared with the case where the air cooler is not present. Accordingly, the flow rate of air at low temperature flowing through the inlet of the air duct is increased to increase the heat conduction amount. In this way, after-heat can be removed only by means of natural convection without providing movable portions even in a large-scaled reactor with the thermal power in excess of 2,000 MW. (Horiuchi, T.)

  19. Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit

    International Nuclear Information System (INIS)

    Gunes, M.

    1998-01-01

    In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically

  20. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    Science.gov (United States)

    Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław

    2017-10-01

    The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.