WorldWideScience

Sample records for reactor fw blanket

  1. The state of the art report on the development of manufacturing technology of fusion reactor FW blanket and mock-up in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. Y.; Jeong, Y. H.; Baek, J. H.; Kim, J. H.; Kim, H. G

    2004-08-15

    The joining technology of first wall blanket has been developed by JAERI in collaboration with Kawasaki Heavy Industry, Isuau Motors and University of Tsukuba in Japan. A variety of joining technologies including HIP, brazing, casing and friction welding was applied to the manufacturing of SS/SS and Cu/SS joint. In Be/Cu joining, it was emphasized to find the optimal HIP temperature lower than 650 .deg. C in order to avoid excessive SS sensitization because the joining of Be tile to Cu heat sink is a final processing step in the manufacturing of FW blanket. The selected HIP condition were 620 .deg. C, 150MPa and 2hr with Cu interlayer. Sample tests for joints was completed by 1995. The small scale mockup was manufactured and its performance was qualified by end of 2000. From 2001, the manufacturing and the characterization has been carried out for the larger scale mockup.

  2. The State of the Art Report on the Development of Manufacturing Technology of Fusion Reactor FW Blanket and Mock-up in USA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gil; Jeong, Y. H.; Baek, J. H.; Park, J. Y.; Kim, J. H

    2004-08-15

    Researches on the development of the bonding method between Cu/SS and Be/Cu had been done early in 1990 in the USA. To introduce the optimized bonding method, the bonding of Cu/SS had been tried with HIP and EXP methods and its bonding properties was evaluated by means of the mechanical tests for such as tensile, sear, fatigue etc. Although a small mock-up sample had not been carried out to identify the Cu/SS bonding characteristics, it was found out that HIP or EXP was one of promising bonding methods. Especially, HIP method to bond Be/Cu was confirmed to be more favorable method than EXP from the study on the brazing and HIP. It was also tried to increase the bonding effectiveness of Be/Cu by appling various interplay to the bonding. The HIP application condition to bond Be/Cu was studied in the USA from the test of small mock-up. It appears that the HIP bonding condition can be applied to manufacture the FW blanket.

  3. The state of the art report on the fabrication of FW blanket for the fusion reactor and mock-up development in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Whan; Baek, Jong Hyuk; Park, Jeong Yong; Kim, Hyun Gil; Jeong, Yong Hwan

    2004-08-01

    Blanket-shield system in ITER is the component where it directly is faced with high-heat plasma. Function of blanket is to sustain extremely high temperature environment as well as to remove heat flux generated its surface. It mainly consists of plasma facing part, heat sinking part and structural part. Plasma facing part is made of armour materials such as beryllium, tungsten and carbon fiber composite. Heat sinking part is made of copper alloy to maximize heat transfer into flowing coolant inside of blanket. Structural material is used in 316LN stainless steel. As joining such dissimilar materials emerged as an issue, many developed countries have spurred the development of joint technology. This technical report was focused on the activities of EU regarding joining beryllium, copper and stainless steel. EU have adopted to Hot Isostatic Pressing (HIP) to join beryllium, copper and stainless steel. Although brazing process is not actively investigated compared as HIP, it still investigated in some countries to support HIP. Fabrication of mock-up is accomplished by CEA in France to finish small scale mock-up in 1996, medium and large scale mock-up in 1997. In recent, FRAMATOME in EU has focused on manufacturing prototype used for ITER.

  4. Packed fluidized bed blanket for fusion reactor

    Science.gov (United States)

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  5. Fusion reactor blanket/shield design study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Clemmer, R.G.; Harkness, S.D.

    1979-07-01

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  6. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    Optimization of up-flow anaerobic sludge blanket reactor for treatment of composite fermentation and distillation wastewater. ... treatment, biogas, granulated anaerobic sludge, industrial wastewater. African Journal of Biotechnology, Vol.

  7. Development of fusion blanket technology for the DEMO reactor.

    Science.gov (United States)

    Colling, B R; Monk, S D

    2012-07-01

    The viability of various materials and blanket designs for use in nuclear fusion reactors can be tested using computer simulations and as parts of the test blanket modules within the International Thermonuclear Experimental Reactor (ITER) facility. The work presented here focuses on blanket model simulations using the Monte Carlo simulation package MCNPX (Computational Physics Division Los Alamos National Laboratory, 2010) and FISPACT (Forrest, 2007) to evaluate the tritium breeding capability of a number of solid and liquid breeding materials. The liquid/molten salt breeders are found to have the higher tritium breeding ratio (TBR) and are to be considered for further analysis of the self sufficiency timing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Uranium self-shielding in fast reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kadiroglu, O.K.; Driscoll, M.J.

    1976-03-01

    The effects of heterogeneity on resonance self-shielding are examined with particular emphasis on the blanket region of the fast breeder reactor and on its dominant reaction--capture in /sup 238/U. The results, however, apply equally well to scattering resonances, to other isotopes (fertile, fissile and structural species) and to other environments, so long as the underlying assumptions of narrow resonance theory apply. The heterogeneous resonance integral is first cast into a modified homogeneous form involving the ratio of coolant-to-fuel fluxes. A generalized correlation (useful in its own right in many other applications) is developed for this ratio, using both integral transport and collision probability theory to infer the form of correlation, and then relying upon Monte Carlo calculations to establish absolute values of the correlation coefficients. It is shown that a simple linear prescription can be developed for the flux ratio as a function of only fuel optical thickness and the fraction of the slowing-down source generated by the coolant. This in turn permitted derivation of a new equivalence theorem relating the heterogeneous self-shielding factor to the homogeneous self-shielding factor at a modified value of the background scattering cross section per absorber nucleus. A simple version of this relation is developed and used to show that heterogeneity has a negligible effect on the calculated blanket breeding ratio in fast reactors.

  9. Elevator mode convection in liquid metal blankets for fusion reactors

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2015-11-01

    The work is motivated by the design of liquid-metal blankets for nuclear fusion reactors. Mixed convection in a downward flow in a vertical duct with strong contant-rate heating of one wall (the Grashof number up to 1012) and strong transverse magnetic field (the Hartmann number up to 104) is considered. It is found that in an infinitely long duct the flow is dominated by exponentially growing elevator modes having the form of a combination of ascending and descending jets. An analytical solution approximating the growth rate of the modes is derived. Analogous flows in finite-length pipes and ducts are analyzed using the high-resolution numerical simulations. The results of the recent experiments are reproduced and explained. It is found that the flow evolves in cycles consisting of periods of exponential growth and breakdowns of the jets. The resulting high-amplitude fluctuations of temperature is a feature potentially dangerous for operation of a reactor blanket. Financial support was provided by the US NSF (Grant CBET 1232851).

  10. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puyol, D.; Monsalvo, V.M.; Mohedano, A.F. [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Sanz, J.L. [Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Rodriguez, J.J., E-mail: juanjo.rodriguez@uam.es [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain)

    2011-01-30

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L{sup -1} day{sup -1}). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  11. Effect of reactor size on the breeding economics of LMFBR blankets

    Energy Technology Data Exchange (ETDEWEB)

    Tagishi, A.; Driscoll, M.J.

    1975-02-01

    The effect of reactor size on the neutronic and economic performance of LMFBR blankets driven by radially-power-flattened cores has been investigated using both simple models and state-of-the-art computer methods. Reactor power ratings in the range 250 to 3000 MW(e) were considered. Correlations for economic breakeven and optimum irradiation times and blanket thicknesses have been developed for batch-irradiated blankets. It is shown that a given distance from the core-blanket interface the fissile buildup rate per unit volume remains very nearly constant in the radial blanket as (radially-power-flattened, constant-height) core size increases. As a consequence, annual revenue per blanket assembly, and breakeven and optimum irradiation times and optimum blanket dimensions, are the same for all reactor sizes. It is also shown that the peripheral core fissile enrichment, hence neutron leakage spectra, of the (radially-power-flattened, constant-height) cores remains essentially constant as core size increases. Coupled with the preceding observations, this insures that radial blanket breeding performance in demonstration-size LMFBR units will be a good measure of that in much larger commercial LMFBR's.

  12. Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified.

  13. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    NARCIS (Netherlands)

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times

  14. Development of the breeding blanket and shield model for the fusion power reactors system SYCOMORE

    Energy Technology Data Exchange (ETDEWEB)

    Li-Puma, Antonella, E-mail: antonella.lipuma@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Jaboulay, Jean-Charles, E-mail: Jean-Charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Martin, Brunella, E-mail: brunella.martin@gmail.com [Incka, 19-21 Rue du 8 mai 1945, F-94110 Arcueil (France)

    2014-10-15

    SYCOMORE, a fusion reactor system code based on a modular approach is under development at CEA. Within this framework, this paper describes the relevant sub-modules which have been implemented to model the main outputs of the breeding blanket and shield block of the system code: tritium breeding ratio, peak energy deposition in toroidal field coils, reactor layout and power deposition, blanket pressure drops and materials inventory. Blanket and shield requirements are calculated by several sub-modules: the blanket assembly and layout sub-module, the neutronic sub-module, the blanket design sub-module (thermal hydraulic and thermo-mechanic pre-design tool). A power flow module has also been developed which is directly linked to the blanket thermo-dynamic performances, which is not described in this paper. For the blanket assembly and layout and the blanket module design sub-modules, explicit analytic models have been developed and implemented; for the neutronic sub-module neural networks that replicate the results of appropriate simplified 1D and 2D neutronic simulations have been built. Presently, relevant model for the Helium Cooled Lithium Lead is available. Sub-modules have been built in a way that they can run separately or coupled into the breeding blanket and shield module in order to be integrated in SYCOMORE. In the paper, the objective and main input/output parameters of each sub-module are reported and relevant models discussed. The application to previous studied reactor models (PPCS model AB, DEMO-HCLL 2006–2007 studies) is also presented.

  15. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    . Concentrated waste (usually sewage sludge) can be added continuously or periodically (semi-batch operation), where it is mixed with the contents of the reactor. Theoretically, the conventional digester is operated as a once-through, completely mixed, reactor. In this particular mode of operation the hydraulic retention time (HRT) is equal to the solids retention time (SRT). Basically, the required process efficiency is related to the sludge retention time (SRT), and hence longer SRT provided, results in satisfactory population (by reproduction) for further waste stabilization. By reducing the hydraulic retention time (HRT) in the conventional mode reactor, the quantity of biological solids within the reactor is also decreased as the solids escape with the effluent. The limiting HRT is reached when the bacteria are removed from the reactor faster than they can grow. Methanogenic bacteria are slow growers and are considered the rate-limiting component in the anaerobic digestion process. The first anaerobic process developed, which separated the SRT from the HRT was the anaerobic contact process. In 1963, Young and McCarty (1968) began work, which eventually led to the development of the anaerobic upflow filter (AF) process. The anaerobic filter represented a significant advance in anaerobic waste treatment, since the filter can trap and maintain a high concentration of biological solids. By trapping these solids, long SRT's could be obtained at large waste flows, necessary to anaerobically treat low strength wastes at nominal temperatures economically. Another anaerobic process which relies on the development of biomass on the surfaces of a media is an expanded bed upflow reactor. The primary concept of the process consists of passing wastewater up through a bed of inert sand sized particles at sufficient velocities to fluidize and partially expand the sand bed. One of the more interesting new processes is the upflow anaerobic sludge blanket process (UASB), which was developed

  16. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  17. FW-代数%FW-algebras

    Institute of Scientific and Technical Information of China (English)

    冯孝周; 张永锋; 王文锋

    2006-01-01

    通过一个特殊的代数Banach*-代数,定义了一个新的研究对象--FW-代数,并且给出了FW-代数的6条重要的性质及相关的证明,通过对FW-代数的定义及性质的研究,充分展示了泛函分析在代数学领域中的应用.%A new researching subject, FW-algebras is defined by a sepical algebra which is Banach* -algebra, and six important properties of FW-algebras are given and proved. An application of functional analysis in algebra is displayed from which FW-algebras is defined and its properties are discussed.

  18. First wall and blanket concepts for experimental fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Biggio, M.; Cardella, A.; Daenner, W.; Farfaletti-Casali, F.; Ponti, C.; Rieger, M.; Vieider, G.

    1985-07-01

    The paper describes the progress of the studies on first wall and liquid breeder blankets for tritium production in the Next European Torus (NET). Two concepts of first wall/blanket segments are described, using 17Li83Pb as breeder and water as coolant. In both concepts the first wall is integrated in a steel box enveloping the breeder units which are cylindrical vessels with an inside heat transfer system. The thermomechanical and neutronics features of the two concepts are evaluated. Finally, the questions related to tritium permeation into coolant and tritium recovery from breeder are discussed on the basis of the analysis in progress in Europe.

  19. Liquid immersion blanket design for use in a compact modular fusion reactor

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Barnard, Harold; Haakonsen, Christian; Hartwig, Zachary; Olynyk, Geoffrey; Sierchio, Jennifer; Whyte, Dennis

    2012-10-01

    Traditional tritium breeding blankets in fusion reactor designs include a large amount of structural material. This results in complex engineering requirements, complicated sector maintenance, and marginal tritium breeding ratios (TBR). We present a conceptual design of a fully liquid blanket. To maximize tritium breeding volume, the vacuum vessel is completely immersed in a continuously recycled FLiBe blanket, with the exception of small support posts. FLiBe has a wide liquid temperature window (459 C to 1430 C), low electrical conductivity to minimize MHD effects, similar thermal/fluid characteristics to water, and is chemically inert. While tritium breeding with FLiBe in traditional blankets is poor, we use MCNP neutronics analysis to show that the immersion blanket design coupled with a beryllium neutron multiplier results in TBR > 1. FLiBe is shown to be a sufficient radiation shield for the toroidal field magnets and can be used as a coolant for the vacuum vessel and divertor, allowing for a simplified single-phase, low-pressure, single-fluid cooling scheme. When coupled with a high-field compact reactor design, the immersion blanket eliminates the need for complex sector maintenance, allows the vacuum vessel to be a replaceable component, and reduces financial cost.

  20. First-wall/blanket materials selection for STARFIRE tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F.; Clemmer, R.G.; Davis, J.W.

    1980-01-01

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed.

  1. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters.

    Science.gov (United States)

    Latif, Muhammad Asif; Ghufran, Rumana; Wahid, Zularisam Abdul; Ahmad, Anwar

    2011-10-15

    The UASB process among other treatment methods has been recognized as a core method of an advanced technology for environmental protection. This paper highlights the treatment of seven types of wastewaters i.e. palm oil mill effluent (POME), distillery wastewater, slaughterhouse wastewater, piggery wastewater, dairy wastewater, fishery wastewater and municipal wastewater (black and gray) by UASB process. The purpose of this study is to explore the pollution load of these wastewaters and their treatment potential use in upflow anaerobic sludge blanket process. The general characterization of wastewater, treatment in UASB reactor with operational parameters and reactor performance in terms of COD removal and biogas production are thoroughly discussed in the paper. The concrete data illustrates the reactor configuration, thus giving maximum awareness about upflow anaerobic sludge blanket reactor for further research. The future aspects for research needs are also outlined.

  2. Study of thorium-uranium based molten salt blanket in a fusion-fission hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing, E-mail: zhao_jing@mail.tsinghua.edu.cn [INET, Tsinghua University, Beijing 100084 (China); Yang Yongwei; Zhou Zhiwei [INET, Tsinghua University, Beijing 100084 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A molten salt blanket has been designed for the fusion-fission hybrid reactor. Black-Right-Pointing-Pointer The use of Thorium in the molten salt fuels has been studied. Black-Right-Pointing-Pointer The molten salt was consisted of F-Li-Be and with the thickness of 40 cm. Black-Right-Pointing-Pointer The concentration of {sup 6}Li was chosen to be the natural enrichment ratio. Black-Right-Pointing-Pointer The result shows that TBR is greater than 1, M is about 15-16. - Abstract: Not only solid fuels, but also liquid fuels can be used for the fusion-fission symbiotic reactor blanket. The operational record of the molten salt reactor with F-Li-Be was very successful, so the F-Li-Be blanket was chosen for research. The molten salt has several features which are suited for the fusion-fission applications. The fuel material uranium and thorium were dissolved in the F-Li-Be molten salt. A combined program, COUPLE, was used for neutronics analysis of the molten salt blanket. Several cases have been calculated and compared. Not only the influence of the different fuels have been studied, but also the thickness of the molten salt, and the concentration of the {sup 6}Li in the molten salt. Preliminary studies indicate that when thorium-uranium-plutonium fuels were added into a F-Li-Be molten salt blanket and with a component of 71% LiF-2% BeF{sub 2}-13.5% ThF{sub 4}-8.5% UF{sub 4}-5% PuF{sub 3}, and also with the molten salt thickness of 40 cm and natural concentration of {sup 6}Li, the appropriate blanket energy multiplication factor and TBR can be obtained. The result shows that thorium-uranium molten salt can be used in the blanket of a fusion-fission symbiotic reactor. The research on the molten salt blanket must be valuable for the design of fusion-fission symbiotic reactor.

  3. Design of Upelow Anaerobic Sludge Blanket reactor for treatment of organic wastewaters.

    Science.gov (United States)

    Ghangrekar, M M; Kahalekar, U J; Takalkar, S V

    2003-04-01

    The Upflow Anaerobic Sludge Blanket (UASB) Reactor is widely applied anaerobic wastewater treatment method all over the world. Uniform distribution of wastewater at reactor bottom is necessary to establish proper contact between sludge and wastewater. In addition, proper functioning of Gas-Liquid-Solid (GLS) separator is crucial to ensure maximum sludge retention in the reactor and to achieve maximum COD removal rate in the reactor. Hence, proper design of reactor is necessary for appropriate functioning of various components for a given wastewater flow rate and COD concentration. The design procedure for UASB reactor taking due consideration to the GLS design and design of inlet arrangement is discussed in this paper for various wastewater strength and flow rates. A software is developed to make economical design of UASB reactor for different type of wastewater by adopting maximum loading conditions, based on literature recommendations, and at the same time to satisfy all design recommendation, as far as possible.

  4. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    OpenAIRE

    Zhang, Guanheng

    2015-01-01

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the 200 Displacements per Atom (DPA) radiation damage constraint of presently verified cladding materials. The S&B core is designed to have an elongated seed (or “driver”) to maximize the fraction of neutrons that radially leak into the su...

  5. Neutronics optimization study for D-D fusion reactor blanket/shield

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, T.; Kanda, Y.; Nakashima, H.

    1985-12-01

    Position-dependent optimization calculations have been carried out on a D-D fusion reactor blanket/shield to maximize the energy gain in the blanket and to minimize the atomic displacement rate of the copper stabilizer in the superconducting magnet. The results obtained by using the optimization code SWAN indicate the advantage of D/sub 2/O coolant over H/sub 2/O coolant with respect to increasing the energy gain, and the difference in the optimal shield distributions between D-T and D-D neutron sources. The possibility of improving both the energy gain and radiation shielding characteristics is also discussed.

  6. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-06-05

    Jun 5, 2013 ... petroleum refinery wastewater (Rastegar et al., 2011), poultry wastewater ... production of methane by methanogenic bacteria. Compared with ..... treatment of a recalcitrant distillery wastewater by thermophilic UASB reactor.

  7. Improved structure and long-life blanket concepts for heliotron reactors

    Science.gov (United States)

    Sagara, A.; Imagawa, S.; Mitarai, O.; Dolan, T.; Tanaka, T.; Kubota, Y.; Yamazaki, K.; Watanabe, K. Y.; Mizuguchi, N.; Muroga, T.; Noda, N.; Kaneko, O.; Yamada, H.; Ohyabu, N.; Uda, T.; Komori, A.; Sudo, S.; Motojima, O.

    2005-04-01

    New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius of over 14 m is selected to permit a blanket-shield thickness of about 1 m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armour tiles that soften the neutron energy spectrum incident on the self-cooled flibe-reduced activation ferritic steel blanket. In this adaptation of the spectral-shifter and tritium breeder blanket (STB) concept a local tritium breeding ratio over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the superconducting magnet coils is also significantly improved. Using constant cross sections of a helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armour tiles. The key R&D issues for developing the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated.

  8. Tar water digestion in an upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Skibsted Mogensen, A.; Angelidaki, I.; Schmidt, J.E.; Ahring, B.K. [Technical Univ., Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1998-08-01

    The water from the gasification and wet oxidised tar water has been digested anaerobically in UASB reactors and were digested in respectively 10 and 50% in batches. Though the tar water show inhibition at very low concentrations to aerobic microorganisms, the granular sludge used in UASB reactors degrades tar water in concentrations that reveal total inhibition of e.g. bacteria conducting the nitrification process. The value of waste waters are determined, showing that the tar water produces more biogas in the anaerobic digestion. A wide range of xenobiotics, especially phenolic compounds can be transformed in the anaerobic digestion process. Seven phenolic are followed in batch experiments and UASB reactor experiments, and their particular fate in the anaerobic systems embody large differences in the transformation pattern. (au) 24 refs.

  9. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2016-02-15

    Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.

  10. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F.J.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  11. A water cooled, lithium lead breeding blanket for a DEMO fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Rieger, M.; Biggio, M.; Farfaletti-Casali, F.; Tominetti, S.; Wu, J.; Zucchetti, M. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Labbe, P.; Baraer, L.; Gervaise, G.; Giancarli, L.; Roze, M.; Severi, Y.; Quintric-Bossy, J. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))

    1991-04-01

    The main features of a tritium breeding blanket for a Demonstration Power Reactor involving the eutectic Pb-17Li as liquid breeder and water as coolant are presented. The configuration of the blanket segments and breeder modules as well as their arrangement inside the reactor vacuum vessel are outlined. The main design aspects and the corresponding design limits are reviewed, namely those related to thermomechanics, neutronics, magneto-hydrodynamics, tritium permeation and recovery. First results of safety analysis, in particular those connected with the rupture of a coolant tube in the breeder module are presented and discussed. As a conclusion, the feasibility of the concept look attractive. A problem which requires further investigation is that of the tritium self-sufficiency. It is shown that a net tritium production near to one can be obtained if berylium tiles are placed in front of the plasma, provided that they are cooled by heavy water. (orig.).

  12. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru; Salahutdinov, G. H., E-mail: saip07@mail.ru; Kulikov, E. G., E-mail: egkulikov@mephi.ru; Apse, V. A., E-mail: apseva@mail.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  13. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Science.gov (United States)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  14. Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket (UASB) Reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1994-01-01

    Thermal extraction was used to quantify extracellular polymers (ECP) in granules from anaerobic upflow reactors. The optimal time for extraction was determined as the time needed before the intracellular material gives a significant contribution to the extracted extracellular material due to cell...... of an upflow anaerobic sludge blanket reactor from a sugar-containing waste-water to a synthetic waste-water containing acetate, propionate and butyrate resulted in a decrease in both the protein and polysaccharide content and an increase in the lipid content of the extracellular material. Furthermore...

  15. First wall fabrication of 1/3 scale china dual functional lithium lead blanket

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bo, E-mail: bo.huang@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zhai, Yutao [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zhang, Junyu [University of Science and Technology of China, Hefei, Anhui 230027 (China); Li, Chunjing; Wu, Qingsheng [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-10-15

    Highlights: • RAFM rectangular tubes were fabricated by cold drawing, and the dimensional accuracy and mechanical properties of rectangular tubes were tested. • Rectangular tubes were bent by rotary bending, and milled plates were curved by molding. Its accuracy meets the requirement for TBM assembly. • FW were pre-sealed by electron beam welding, and assembled by hot isostatic pressing–diffusion bonding. • The as-HIPed FW mock-up was tested by optical observation and X-ray detection, it revealed obviously that the tubes and plates were bonded well. - Abstract: The dual functional lithium lead blanket is chosen as one of the candidate blankets for China fusion reactor, for its advantages of tritium breeding and good heat exchange performance. As one of the most important components of the blanket, the first wall (FW) is assembled with China low activation martensitic (CLAM) rectangular tubes and plates by hot isostatic pressing (HIP)–diffusion bonding (DB). In this work, the rectangular tube fabrication and FW assembly were carried out in order to verify the feasibility of the FW fabrication scheme. The mechanical property and dimensional accuracy of CLAM rectangular tubes were tested, the microstructure observation and non-destructive detection revealed the sound of the FW mock-up, and the reliability of the FW mock-ups is under evaluation.

  16. STARTUP OF UPELOW ANAEROBIC SLUDGE BLANKET REACTOR FOR INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A.R. Mesdaghinia

    1994-06-01

    Full Text Available Up flow anaerobic sludge blanket (UASB reactors have been increasingly used for industrial wastewater treatment. Because of existing problems in startup step of these reactors, in this research the startup of a UASB in pilot scale and room temperature condition was studied. The total height of UASB reactor was 270 cm and effective height was 240 cm. Diameter of the reactor in lower part was 20 cm (reaction zone and 40 cm in upper part (solid-gas-liquid separator five sampling ports with interval of 32 cm were provided and the effective volume of the reactor was 100 liters. Septic tank digested sludge and cow manure were used for the seeding of UASB reactor. In the startup step of the reactor, volumetric loading was increased step by step. After 155 days granule formation was observed and after 215 days of the study the removal rate increased to 4.62 kg COD/m/ day. More than 98% of soluble COD removal was achieved in lower 160 cm of reactor.

  17. A helium-cooled blanket design of the low aspect ratio reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.; Baxi, C.B.; Reis, E.E. [General Atomics, San Diego, CA (United States); Cerbone, R.; Cheng, E.T. [TSI Research, Solana Beach, CA (United States)

    1998-03-01

    An aggressive low aspect ratio scoping fusion reactor design indicated that a 2 GW(e) reactor can have a major radius as small as 2.9 m resulting in a device with competitive cost of electricity at 49 mill/kWh. One of the technology requirements of this design is a high performance high power density first wall and blanket system. A 15 MPa helium-cooled, V-alloy and stagnant LiPb breeder first wall and blanket design was utilized. Due to the low solubility of tritium in LiPb, there is the concern of tritium migration and the formation of V-hydride. To address these issues, a lithium breeder system with high solubility of tritium has been evaluated. Due to the reduction of blanket energy multiplication to 1.2, to maintain a plant Q of > 4, the major radius of the reactor has to be increased to 3.05 m. The inlet helium coolant temperature is raised to 436 C in order to meet the minimum V-alloy temperature limit everywhere in the first wall and blanket system. To enhance the first wall heat transfer, a swirl tape coolant channel design is used. The corresponding increase in friction factor is also taken into consideration. To reduce the coolant system pressure drop, the helium pressure is increased from 15 to 18 MPa. Thermal structural analysis is performed for a simple tube design. With an inside tube diameter of 1 cm and a wall thickness of 1.5 mm, the lithium breeder can remove an average heat flux and neutron wall loading of 2 and 8 MW/m(2), respectively. This reference design can meet all the temperature and material structural design limits, as well as the coolant velocity limits. Maintaining an outlet coolant temperature of 650 C, one can expect a gross closed cycle gas turbine thermal efficiency of 45%. This study further supports the use of helium coolant for high power density reactor design. When used with the low aspect ratio reactor concept a competitive fusion reactor can be projected at 51.9 mill/kWh.

  18. ITER (International Thermonuclear Experimental Reactor) shield and blanket work package report

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs.

  19. Two-dimensional TBR calculations for conceptual compact reversed-field pinch reactor blanket

    Science.gov (United States)

    Davidson, J. W.; Battat, M. E.; Dudziak, D. J.

    A detailed two-dimensional nucleonic analysis was performed for a conceptual first wall, blanket, and shield design for the Compact Reversed-Field Pinch Reactor. The design includes significant two-dimensional aspects presented by the limiter, vacuum ducts, and coolant manifolds; these aspects seriously degrade the tritium-breeding reaction (TBR) predicted by one-dimensional calculations. A range of design change to increase the TBR were investigated within the two-dimensional analysis. The results of this investigation indicated that an adequate TBR could be achieved with a thinning copper first wall, a (6)Li enrichment near 90%, the proper selection of reflector, and a small addition to the blanket thickness, determined by the one-dimensional analysis.

  20. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  1. Anaerobic biodegradation of linear alkylbenzene sulfonate (LAS) in upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Sanz, José L; Culubret, Elayne; de Ferrer, Juan; Moreno, Alfonso; Berna, José L

    2003-01-01

    The anaerobic biodegradation of Linear Alkylbenzene Sulfonate (LAS) was studied in Upflow Anaerobic Sludge Blanket Reactors (UASB). One reactor was fed with easily degradable substrates and commercial LAS solution during a period of 3 months (Reactor 1), meanwhile a second reactor was fed with a commercial LAS solution without co-substrate (Reactor 2) during 4 months. Both reactors were operated with an organic loading rate of 4-5 mg-LAS/l x day and a hydraulic retention time of one day. The LAS biodegradation was determined by full mass balance. LAS was analysed by HPLC in the liquid phase (influent and effluent streams of the reactors) as well as in the solid phase (granular sludge used as biomass). The results indicate a high level of removal (primary biodegradation: 64-85%). Biodegradation was higher in the absence of external co-substrates than in the presence of additional sources of carbon. This indicates that the surfactant can be partially used as carbon and energy source by anaerobic bacteria. Under the operating conditions used, inhibition of the methanogenic activity or any other negative effects on the biomass due to the presence of LAS were not observed. The methanogenic activity remained high and stable throughout the experiment.

  2. Fusion Reactor and Fusion Reactor Materials:Concept Design of the ITER Test Blanket Modules

    Institute of Scientific and Technical Information of China (English)

    HUANGJinhua; LIZaixing; ZHUYukun; HUGang

    2003-01-01

    Performances required: prospect to be adopted in DEMO. Shielding for V.V. and TFC in ITER. Design principles: the peak temperature and stress should not exceed technical limits. The structure of test blanket modules (TBM) should be simple for easy fabrication, and TBM should be robust for reliability.

  3. Mathematical modeling of upflow anaerobic sludge blanket (UASB) reactor treating domestic wastewater.

    Science.gov (United States)

    Elmitwalli, Tarek

    2013-01-01

    Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (COD(ss)) concentration is directly proportional to the influent COD(ss) concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient COD(ss) removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved COD(ss) removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (COD(t)) concentration and HRT. The influent COD(t) concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of COD(t) removal, as compared with optimization of COD(t) conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance.

  4. ATP as an indicator of biomass activity in thermophilic upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This work investigated the biomass activity in a thermophilic upflow anaerobic sludge blanket (UASB) reactor of wastewater treatment. Synthetic textile wastewater with pH 10-11, COD level of 2000-3000 mg/L was tested. Cellular adenosine triphosphate (ATP) in volatile solids (VS; mg ATP/gVS) was measured and expressed as specific ATP content to compare the biomass activity in up zone and lower zone in UASB reactor. The result shows that the specific ATP content based on total volatile solids (VS)in lower zone (0. 046 mgATP/gVS average) is much lower than that in up zone (0.62 mgATP/gVS average) due to high content of inactive biomass and high pH in lower zone. The SATP in up zone increases as HRT increases and approaches to a maximum value of 0.85 mgATP/gVS at HRT of 7h, then decreases. It shows most of the total VS in up zone represent active bacterial biomass at HRT of 7h. Rate of subtract utilization is directly related to the activity of microorganisms in the reactor. The effect of HRT on SATP in lower zone is not as significant as on SATP in up zone. The buffer capacity of the thermophilic UASB reactor is very good. It is the activity of sludge granules in lower zone that give the UASB reactor such a good buffer capacity to the inlet high pH.

  5. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  6. Degradation of Methanethiol by Methylotrophic Methanogenic Archaea in a Lab-Scale Upflow Anaerobic Sludge Blanket Reactor

    NARCIS (Netherlands)

    Bok, de F.A.M.; Leerdam, van R.C.; Lomans, B.P.; Smidt, H.; Lens, P.N.L.; Janssen, A.J.H.; Stams, A.J.M.

    2006-01-01

    In a lab-scale upflow anaerobic sludge blanket reactor inoculated with granular sludge from a full-scale wastewater treatment plant treating paper mill wastewater, methanethiol (MT) was degraded at 30°C to H2S, CO2, and CH4. At a hydraulic retention time of 9 h, a maximum influent concentration of 6

  7. Improvement of Core Performance by Introduction of Moderators in a Blanket Region of Fast Reactors

    Directory of Open Access Journals (Sweden)

    Toshio Wakabayashi

    2013-01-01

    Full Text Available An application of deuteride moderator for fast reactor cores is proposed for power flattening that can mitigate thermal spikes and alleviate the decrease in breeding ratio, which sometimes occurs when hydrogen moderator is applied as a moderator. Zirconium deuteride is employed in a form of pin arrays at the inner most rows of radial blanket fuel assemblies, which works as a reflector in order to flatten the radial power distribution in the outer core region of MONJU. The power flattening can be utilized to increase core average burn-up by increasing operational time. The core characteristics have been evaluated with a continuous-energy model Monte Carlo code MVP and the JENDL-3.3 cross-section library. The result indicates that the discharged fuel burn-up can be increased by about 7% relative to that of no moderator in the blanket region due to the power flattening when the number of deuteride moderator pins is 61. The core characteristics and core safety such as void reactivity, Doppler coefficient, and reactivity insertion that occurred at dissolution of deuteron were evaluated. It was clear that the serious drawback did not appear from the viewpoints of the core characteristics and core safety.

  8. Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium

    Science.gov (United States)

    Yanqoritha, Nyimas; Turmuzi, Muhammad; Derlini

    2017-05-01

    The appropriate process to resolve sewage contamination which have a high organic using anaerobic technology. Hybrid Upflow Anaerobic Sludge Blanket reactor is one of the anaerobic process which consists of a suspended growth media and attached growth media. The reactor has the ability to work at high load rate, sludge produced easily settles, high biomass and the separation of gas, solid and liquid excelent. The purpose of research is to study the acclimatization process in the reactor of Hybrid Upflow Anaerobic Sludge Blanket using a polyvinl chloride ring as the attached growth medium. Reactor of Hybrid Upflow Anaerobic Sludge Blanket use a working volume of 8.6 L. The operation consisting of 3 L suspended reactor and 5.6 L attached reactor. Acclimatization is conducted by providing the substrate from the smallest concentration of COD up to a concentration that will be processed. During the 50th day, acclimatization process assumed the bacteria begin to work, indicated by the dissolved COD and VSS decrease and biogas production. Due to the wastewater containing the high of protein in consequence operational parameters should be controlled and some precautions should be taken to prevent process partially or totally inhibited.

  9. Maintaining granulation in a denitrifying upflow sludge-blanket reactor treating groundwater with low hardness.

    Science.gov (United States)

    Rouse, Joseph D; Nakashima, Takahiro; Furukawa, Kenji

    2003-01-01

    Maintenance of denitrifying granular sludge for treating soft groundwater (total hardness = 75 mg calcium carbonate/L) in an upflow sludge-blanket reactor was demonstrated with complete removal of applied nitrate (20 mg N/L) over extended operation and a hydraulic residence time of 34 minutes. A high pH of approximately 9.0 was shown to be important for generation of mineral precipitation needed for production of heavy granular sludge with good retention characteristics. As a method of increasing precipitation potential, pH adjustment was determined to be more economically favorable than calcium or alkalinity supplementation. In addition, temporary increases in substrate loading were shown to be effective for enhancing biomass levels in a manageable granular sludge. The significance of biomass in promoting mineral precipitation was discussed.

  10. Evaluation of reactor anaerobic sludge blanket in the treatment of wastewater slaughterhouse

    Directory of Open Access Journals (Sweden)

    Luciano dos Santos Rodrigues

    2014-10-01

    Full Text Available This study aimed to evaluate the efficiency of a full-scale treatment system effluent slaughterhouse. The full-scale Sewage Treatment Station was designed for a daily flow of 60 m³/d, corresponding to a slaughter of 60 cattle per day. The treatment system consists of a Parshall flume for flow measurement, followed by static sieve, gravimetric fat, sedimentation and anaerobic sludge blanket (UASB box and it was monitored weekly from January to August. The following parameters were analyzed: pH, alkalinity, biochemical oxygen demand (BOD, chemical oxygen demand (COD, total solids (TS, total suspended solids (TSS, ammonia nitrogen, and total nitrogen kjedhall. The average pH, COD and TSS in the UASB reactor effluent values were 6.96, 660 mg/L and 188 mg/L , respectively. The system proved to be efficient, with average removal of 96.40% to 89.92% for COD and TSS. The UASB reactor showed high performance in removing solids and organic load. Thus, this reactor becomes a viable alternative for treating wastewater slaughterhouse, offering good removal results and low cost of deployment.

  11. Performance evaluation of an Anaerobic Migrating Blanket Reactor in the biodegradation of perchloroethylene from industrial wastewaters

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2012-01-01

    Full Text Available Aims: The aim of this study is to determine the PCE biodegradation potential in an Anaerobic Migrating Blanket Reactor (AMBR that has not been used so far for the bioremediation of this compound, in high concentration, and to evaluate the system performance. Materials and Methods: This study was an Experimental - Interventional study that was done from April 2010 to March 2011, in the Isfahan University of Medical Sciences. The AMBR was used in a type of laboratory scale, with a volume of 10 L, which was divided into four compartments, for the biological degradation of PCE in a synthetic substrate. The startup was done using anaerobic digested sewage sludge. The performance of the reactor was evaluated during four periods, with a PCE loading rate of 3.75 until 75 mg PCE/L.d. The hydraulic retention time (HRT was 32 hours. Results: Optimum chemical oxygen demand (COD removal efficiency was obtained, 98%, with an organic loading rate (OLR equal to 3.1 g COD/L.d. For PCE removal, the optimum efficiency was observed to be 99.8%, with a PCE loading rate equal to 37.5 mg PCE/L.d. The average COD and PCE removal rates for the whole activity period of the reactor were 91.4 and 99.5%, respectively; 1.1 ± 0.7% from the influent PCE was adsorbed on the biomass and 20% was found in the headspace. Conclusions: The AMBR reactor, which provides full-scale studies and uses real industrial wastewater polluted with PCE, is a simple, efficient, and reliable method for the treatment of PCE.

  12. Anaerobic mesophilic treatment of cattle manure in an upflow anaerobic sludge blanket reactor with prior pasteurization.

    Science.gov (United States)

    Marañón, Elena; Castrillón, Leonor; Fernández, Juan José; Fernández, Yolanda; Peláez, Ana Isabel; Sánchez, Jesús

    2006-02-01

    Different autonomous communities located in northern Spain have large populations of dairy cattle. In the case of Asturias, the greatest concentration of dairy farms is found in the areas near the coast, where the elimination of cattle manure by means of its use as a fertilizer may lead to environmental problems. The aim of the present research work was to study the anaerobic treatment of the liquid fraction of cattle manure at mesophilic temperature using an upflow anaerobic sludge blanket (UASB) reactor combined with a settler after a pasteurization process at 70 degrees C for 2 hr. The manure used in this study came from two different farms, with 40 and 200 cows, respectively. The manure from the smaller farm was pretreated in the laboratory by filtration through a 1-mm mesh, and the manure from the other farm was pretreated on the farm by filtration through a separator screw press (0.5-mm mesh). The pasteurization process removed the pathogenic microorganisms lacking spores, such as Enterococcus, Yersinia, Pseudomonas, and coliforms, but bacterial spores are only reduced by this treatment, not removed. The combination of a UASB reactor and a settler proved to be effective for the treatment of cattle manure. In spite of the variation in the organic loading rate and total solids in the influent during the experiment, the chemical oxygen demand (COD) of the effluent from the settler remained relatively constant, obtaining reductions in the COD of approximately 85%.

  13. Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor.

    Science.gov (United States)

    Eiroa, M; Kennes, C; Veiga, M C

    2004-09-01

    Simultaneous formaldehyde biodegradation, urea hydrolysis and denitrification in anoxic batch assays and in a continuous laboratory anoxic reactor were investigated. In batch assays, the initial formaldehyde biodegradation rate was around 0.7 g CH(2)Og VSS(-1)d(-1) and independent of the urea concentration (90- 370 mg N-NH(2)CONH(2)l(-1)). Urea was completely hydrolyzed to ammonium in the presence of 430 mg l(-1) formaldehyde and complete denitrification took place in all cases (125 mg N-NO(-)(3)l(-1)). Formaldehyde removal efficiencies above 99.5% were obtained in a lab-scale denitrifying upflow sludge blanket reactor at organic loading rates between 0.37 and 2.96 kg CODm(-3)d(-1) (625-5000 mg CH(2)Ol(-1)). The urea loading rate was increased from 0.06 to 0.44 kg Nm(-3)d(-1) (100-800 mg N-NH(2)CONH(2)l(-1)) and hydrolysis to ammonium was around 77.5% at all loading rates. The denitrification process was always almost complete (100-800 mg N-NO(3)(-)l(-1)), due to the high COD/N ratio of 6.7 in the influent. A minimum value of 3.5 was found to be required for full denitrification. The composition of the biogas indicated that denitrification and methanogenesis occurred simultaneously in the same unit. A good granulation of the sludge was observed.

  14. Performance analysis of upflow anaerobic sludge blanket reactors in the treatment of swine wastewater

    Directory of Open Access Journals (Sweden)

    Luiz A. V. Sarmento

    2007-07-01

    Full Text Available The adoption of confined systems for swine production have been increased the use of water in these installations and, consequently, an each time greater production of wastewater. Diagnostics have been showed a high level of water pollution due the waste material release on lands without criterions and in waters without previous treatment. The utilization of anaerobic process to reduce the liquid residues pollutant power has been detaching because beyond reducing the environmental pollution they allow to recover the energetic potential as fertilizer and biogas. In this work the performance of two real scale upflow anaerobic sludge blanket reactors treating swine wastewater were evaluated through operational system analysis, physical-chemical parameters of pollution and biogas production measurement. The results permitted to verify upflow rate speeds above of the value for which these reactors were designed and hydraulic residence times under of the design value. These factors affected negatively the treatment and had reflected on the law removal of the physical-chemical parameters and biogas production. The maximum removal efficiencies reached for TSS, BOD and COD were 72,5%, 34,7% and 40,0%, respectively. The mean rate of biogas liberation was 0,011 m-³ m-².h-1.

  15. Verification test results of a cutting technique for the ITER blanket cooling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Shigematsu, Soichiro, E-mail: shigematsu.soichiro@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki (Japan); Tanigawa, Hisashi; Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki (Japan); Mori, Seiji; Nakahira, Masataka; Raffray, Rene; Merola, Mario [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France)

    2012-08-15

    For replacement of the first wall (FW) of the international thermonuclear experimental reactor (ITER), cutting and welding tools for the cooling pipes must be able to access a pipe from the surface side of the FW and cut/weld the pipe from the inside the cooling pipe (inner diameter: 42.72 mm, thickness: 2.77 mm). The cutting tool for the pipe end is required to cut a flat plate circularly from the surface side of the FW (cutting diameter: approximately 44 mm, plate thickness: 5 mm). To determine the specifications for both the tools and the blanket hydraulic connections, the ITER Organization (IO) and the Japan Domestic Agency (JADA) conducted research and development activities regarding the FW replacement. This paper describes the current status of the development of cutting tools for the cooling pipe connection.

  16. Research and development of the tritium recovery system for the blanket of the fusion reactor in JAEA

    Science.gov (United States)

    Kawamura, Y.; Isobe, K.; Iwai, Y.; Kobayashi, K.; Nakamura, H.; Hayashi, T.; Yamanishi, T.

    2009-05-01

    A water-cooling solid breeder blanket is a prime candidate for the blanket of the fusion reactor in Japan. In this case, the blanket tritium recovery system will be composed of three processes: tritium recovery from helium sweep gas as hydrogen, that as water vapour and tritium recovery from coolant water. The authors have proposed a set of advanced systems. For tritium recovery as hydrogen, an electrochemical hydrogen pump with a ceramic proton conductor has been proposed. The correlation between the proton concentration in the ceramic and the hydrogen gas pressure has been investigated to describe the pumping performance specifically. A ceramic electrolysis cell has been proposed to process the tritiated water vapour. The authors have developed a new electrode containing cerium oxide, and it has shown fairly good electrolysis efficiency. For tritium recovery from coolant water, reduction in the processing water by tritium concentration is necessary. The authors have proposed to apply the fixed-bed adsorption process of synthetic zeolite, and have developed new zeolite. It showed unique characteristics for water adsorption and desorption. The authors have determined the potential of these systems for the blanket of the fusion DEMO reactor.

  17. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conn, R.W.; Ghoniem, N.M.; Firestone, M.A. (eds.)

    1986-09-01

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m/sup 2/ and a surface heat flux of 1 MW/m/sup 2/. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO/sub 2/ rods. The helium coolant pressure is 5 MPa, entering the module at 297/sup 0/C and exiting at 550/sup 0/C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter.

  18. Simultaneous degradation of cyanide and phenol in upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Kumar, M Suresh; Mishra, Ram Sushil; Jadhav, Shilpa V; Vaidya, A N; Chakrabarti, T

    2011-07-01

    Coal coking, precious metals mining and nitrile polymer industries generate over several billion liters of cyanide-containing waste annually. Economic and environmental considerations make biological technologies attractive for treatment of wastes containing high organic content, in which the microbial cultures can remove concentrations of organics and cyanide simultaneously. For cyanide and phenol bearing waste treatment, an upflow anaerobic sludge blanket reactor has been developed, which successfully removed free cyanide 98% (with feed concentration of 20 mg 1(-1)) in presence of phenol. The effect of cyanide on phenol degradation was studied with varying concentrations of phenol as well as cyanide under anaerobic conditions. This study revealed that the methanogenic degradation of phenol can occur in the presence of cyanide concentration 30-38 mg 1(-1). Higher cyanide concentration inhibited the phenol degradation rate. The inhibition constant Ki was found to be 38 mg 1(-1) with phenol removal rate of 9.09 mg 1(-1.) x h.

  19. Assessment of active methanogenic archaea in a methanol-fed upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Cerrillo, Míriam; Morey, Lluís; Viñas, Marc; Bonmatí, August

    2016-12-01

    Methanogenic archaea enrichment of a granular sludge was undertaken in an upflow anaerobic sludge blanket (UASB) reactor fed with methanol in order to enrich methylotrophic and hydrogenotrophic methanogenic populations. A microbial community assessment, in terms of microbial composition and activity-throughout the different stages of the feeding process with methanol and acetate-was performed using specific methanogenic activity (SMA) assays, quantitative real-time polymerase chain reaction (qPCR), and high-throughput sequencing of 16S ribosomal RNA (rRNA) genes from DNA and complementary DNA (cDNA). Distinct methanogenic enrichment was revealed by qPCR of mcrA gene in the methanol-fed community, being two orders of magnitude higher with respect to the initial inoculum, achieving a final mcrA/16S rRNA ratio of 0.25. High-throughput sequencing analysis revealed that the resulting methanogenic population was mainly composed by methylotrophic archaea (Methanomethylovorans and Methanolobus genus), being also highly active according to the RNA-based assessment. SMA confirmed that the methylotrophic pathway, with a direct conversion of methanol to CH4, was the main step of methanol degradation in the UASB. The biomass from the UASB, enriched in methanogenic archaea, may bear great potential as additional inoculum for bioreactors to carry out biogas production and other related processes.

  20. Microbial populations of an upflow anaerobic sludge blanket reactor treating wastewater from a gelatin industry.

    Science.gov (United States)

    Vieira, A M; Bergamasco, R; Gimenes, M L; Nakamura, C V; Dias Filho, B P

    2001-12-01

    The microbial populations of an upflow anaerobic sludge blanket reactor, used for treating wastewater from the gelatin industry, were studied by microbiological methods and phase-contrast and electron microscopy. Microscopy examination of the sludge showed a complex mixture of various rod-shaped and coccoid bacterial pluslong filaments and verymobile curved rods. In addition free-living anaerobic ciliates and flagellates were also observed. The trophic group population observed in decreasing order of dominance were hydrolytic and acetogenic at 10(6) and sulfate reducing and methanogenic at 10(5). The rate of methane production in anaerobic granular sludge cultivated in growth medium supplement with formate pressurized with H2:CO2 showed a significant increase in methane yield compared with theseed culture containingthe same substrate and atmosphere of N2:CO2. Similar rates of methane production were observed when the growth medium was supplemented with acetate pressurized either with H2:CO2 or N2:CO2. The number of total anaerobic bacteria at 10(7), fecal coliforms and total coliforms at 10(6), and fecal streptococci at 10(3) is based on colony counts on solid media. The four prevalent species of facultative anaerobic gram-negative bacteria that belong to the family of Enterobacteriaceae were identified as Escherichia coli, Esherichia fergusonii, Klebsiella oxytoca, and Citrobacter freundii. The species Aeromonas hydrophila, Aeromonas veronii, Acinetobacter iwoffi and Stenotrophomonas maltophila were the most frequently isolated glucose fermenting and nonfermenting gram-negative bacilli.

  1. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor.

    Science.gov (United States)

    Tawfik, A; El-Gohary, F; Temmink, H

    2010-02-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT's) of 13.3, 10 and 5.0 h. An overall reduction of 80-86% for COD(total); 51-73% for COD(colloidal) and 20-55% for COD(soluble) was found at a total HRT of 5-10 h, respectively. By prolonging the HRT to 13.3 h, the removal efficiencies of COD(total), COD(colloidal) and COD(soluble) increased up to 92, 89 and 80%, respectively. However, the removal efficiency of COD(suspended) in the combined system remained unaffected when increasing the total HRT from 5 to 10 h and from 10 to 13.3 h. This indicates that, the removal of COD(suspended) was independent on the imposed HRT. Ammonia-nitrogen removal in MBBR treating UASB reactor effluent was significantly influenced by organic loading rate (OLR). 62% of ammonia was eliminated at OLR of 4.6 g COD m(-2) day(-1). The removal efficiency was decreased by a value of 34 and 43% at a higher OLR's of 7.4 and 17.8 g COD m(-2) day(-1), respectively. The mean overall residual counts of faecal coliform in the final effluent were 8.9 x 10(4) MPN per 100 ml at a HRT of 13.3 h, 4.9 x 10(5) MPN per 100 ml at a HRT of 10 h and 9.4 x 10(5) MPN per 100 ml at a HRT of 5.0 h, corresponding to overall log(10) reduction of 2.3, 1.4 and 0.7, respectively. The discharged sludge from UASB-MBBR exerts an excellent settling property. Moreover, the mean value of the net sludge yield was only 6% in UASB reactor and 7% in the MBBR of the total influent COD at a total HRT of 13.3 h. Accordingly, the use of the combined UASB-MBBR system for sewage treatment is recommended at a total HRT of 13.3 h.

  2. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H.; Enoeda, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  3. Progress in studies of Li/sub 17/Pb/sub 83/ as liquid breeder for fusion reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.

    1983-09-01

    A review of the experimental and conceptual design work in progress at JRC-Ispra to investigate the feasibility of the eutectic Li/sub 17/Pb/sub 83/ as a liquid breeder for experimental power reactors is presented. Results of recent measurements to implement the data base of this material are given in the following areas: physical parameters, hydrogen solubility and recovery, chemical reactivity with air and water, compatibility with steel. The studies carried out on blanket concepts for the INTOR (International Tokamak Reactor)/NET (Next European Torus) projects are outlined and discussed.

  4. Preliminary structural design and thermo-mechanical analysis of helium cooled solid breeder blanket for Chinese Fusion Engineering Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Min; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Zhou, Guangming; Liu, Qianwen; Wang, Shuai; Lv, Zhongliang; Ye, Minyou

    2015-02-15

    Highlights: • A helium cooled solid breeder blanket module was designed for CFETR. • Multilayer U-shaped pebble beds were adopted in the blanket module. • Thermal and thermo-mechanical analyses were carried out under normal operating conditions. • The analysis results were found to be acceptable. - Abstract: With the aim to bridge the R&D gap between ITER and fusion power plant, the Chinese Fusion Engineering Test Reactor (CFETR) was proposed to be built in China. The mission of CFETR is to address the essential R&D issues for achieving practical fusion energy. Its blanket is required to be tritium self-sufficient. In this paper, a helium cooled solid breeder blanket adopting multilayer U-shaped pebble beds was designed and analyzed. Thermo-mechanical analysis of the first wall and side wall combined with breeder unit was carried out for normal operating steady state conditions. The results showed that the maximum temperatures of the structural material, neutron multiplier and tritium breeder pebble beds are 523 °C, 558 °C and 787 °C, respectively, which are below the corresponding limits of 550 °C, 650 °C and 920 °C. The maximum equivalent stress of the structure is under the allowable value with a margin about 14.5%.

  5. Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors

    Science.gov (United States)

    Jolodosky, Alejandra

    The goal of this dissertation is to examine the neutronic properties of a novel type of fusion reactor blanket material in the form of lithium-based ternary alloys. Pure liquid lithium, first proposed as a blanket for fusion reactors, is utilized as both a tritium breeder and a coolant. It has many attractive features such as high heat transfer and low corrosion properties, but most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns including degradation of the concrete containment structure. The work of this thesis began as a collaboration with Lawrence Livermore National Laboratory in an effort to develop a lithium-based ternary alloy that can maintain the beneficial properties of lithium while reducing the reactivity concerns. The first studies down-selected alloys based on the analysis and performance of both neutronic and activation characteristics. First, 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and energy multiplication factor (EMF). Alloys with adequate results based on TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). The straightforward approach to obtain Monte Carlo TBR and EMF results required 231 simulations per alloy and became computationally expensive, time consuming, and inefficient. Consequently, alternate methods were pursued. A collision history-based methodology recently developed for the Monte Carlo code Serpent, calculates perturbation effects on practically

  6. Optimization process for the design of the DCLL blanket for the European DEMOnstration fusion reactor according to its nuclear performances

    Science.gov (United States)

    Palermo, Iole; Rapisarda, David; Fernández-Berceruelo, Iván; Ibarra, Angel

    2017-07-01

    The research study focuses on the neutronic design analysis and optimization of one of the options for a fusion reactor designed as DCLL (dual coolant lithium-lead). The main objective has been to develop an efficient and technologically viable modular DCLL breeding blanket (BB) using the DEMO generic design specifications established within the EUROfusion Programme. The final neutronic design has to satisfy the requirements of: tritium self-sufficiency; BB thermal efficiency; preservation of plasma confinement; temperature limits imposed by materials; and radiation limits to guarantee the largest operational life for all the components. Therefore, a 3D fully heterogeneous DCLL neutronic model has been developed for the DEMO baseline 2014 determining its behaviour under the real operational conditions of the DEMO reactor. Consequent actions have been adopted to improve its performances. Neutronic assessments have specially addressed tritium breeding ratio, multiplication energy factor, power density distributions, damage and shielding responses. The model has then been adapted to the subsequent DEMO baseline 2015 (with a more powerful and bigger plasma, smaller divertor and bigger blanket segments), implying new design choices to improve the reactor nuclear performances.

  7. Design of a high-temperature first wall/blanket for a d-d compact Reversed-Field-Pinch reactor (CRFPR)

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, A.E.; Glancy, J.E.

    1983-05-01

    A high-temperature first wall/blanket which would take full advantage of the absence of tritium breeding in a d-d reactor was designed. This design which produces steam at p = 7 MPa and T = 538/sup 0/C at the blanket exit eliminates the requirement for a separate steam generator. A steam cycle with steam-to-steam reheat yielding about 37.5 percent efficiency is compatible with this design.

  8. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  9. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, K.M.

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  10. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Oktem, Yalcin Askin; Ince, Orhan; Sallis, Paul; Donnelly, Tom; Ince, Bahar Kasapgil

    2008-03-01

    In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.

  11. Performance of down-flow hanging sponge (DHS) reactor coupled with up-flow anaerobic sludge blanket (UASB) reactor for treatment of onion dehydration wastewater.

    Science.gov (United States)

    El-Kamah, Hala; Mahmoud, Mohamed; Tawfik, Ahmed

    2011-07-01

    In this study, a promising system consisting of up-flow anaerobic sludge blanket (UASB) reactor followed by down-flow hanging sponge (DHS) reactor was investigated for onion dehydration wastewater treatment. Laboratory experiments were conducted at two different phases, i.e., phase (1) at overall hydraulic retention time (HRT) of 11h (UASB reactor: 6h and DHS reactor: 5h) and phase (2) at overall HRT of 9.4h (UASB reactor: 5.2h and DHS reactor: 4.2h). Long-term operation results of the proposed system showed that its overall TCOD, TBOD, TSS, TKN and NH(4)-N removal efficiencies were 92 ± 5, 95 ± 2, 95 ± 2, 72 ± 6 and 99 ± 1.3%, respectively (phase 1). Corresponding values for the 2nd phase were 85.4 ± 5, 86 ± 3, 87 ± 6, 65 ± 8 and 95 ± 2.8%. Based on the available results, the proposed system could be more viable option for treatment of wastewater generated from onion dehydration industry in regions with tropical or sub-tropical climates and with stringent discharge standards.

  12. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Suzuki, Sho; Shintani, Masaki; Sanchez, Zoe Kuizon; Kimura, Kohei; Numata, Mitsuru; Yamazoe, Atsushi; Kimbara, Kazuhide

    2015-12-01

    Ammonia inhibition of methane fermentation is one of the leading causes of failure of anaerobic digestion reactors. In a batch anaerobic digestion reactor with 429 mM NH3-N/L of ammonia, the addition of 25 mM phosphate resulted in an increase in methane production rate. Similar results were obtained with the addition of disodium phosphate in continuous anaerobic digestion using an upflow anaerobic sludge blanket (UASB) reactor. While methane content and production rate decreased in the presence of more than 143 mM NH3-N/L of ammonium chloride in UASB, the addition of 5 mM disodium phosphate suppressed ammonia inhibition at 214 mM NH3-N/L of ammonium chloride. The addition prevented acetate/propionate accumulation, which might be one of the effects of the phosphate on the ammonia inhibition. The effects on the microbial community in the UASB reactor was also assessed, which was composed of Bacteria involved in hydrolysis, acidogenesis, acetogenesis, and dehydrogenation, as well as Archaea carrying out methanogenesis. The change in the microbial community was observed by ammonia inhibition and the addition of phosphate. The change indicates that the suppression of ammonia inhibition by disodium phosphate addition could stimulate the activity of methanogens, reduce shift in bacterial community, and enhance hydrogen-producing bacteria. The addition of phosphate will be an important treatment for future studies of methane fermentation.

  13. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems.

  14. Conceptual design of a water cooled breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Pu, Yong; Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Jia; Peng, ChangHong [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Ma, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Chen, Lei [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-10-15

    Highlights: • We proposed a water cooled ceramic breeder blanket with superheated steam. • Superheated steam is generated at the first wall and the front part of breeder zone. • Superheated steam has negligible impact on neutron absorption by coolant in FW and improves TBR. • The superheated steam at higher temperature can improve thermal efficiency. - Abstract: China Fusion Engineering Test Reactor (CFETR) is an ITER-like superconducting tokamak reactor. Its major radius is 5.7 m, minor radius is 1.6 m and elongation ratio is 1.8. Its mission is to achieve 50–200 MW of fusion power, 30–50% of duty time factor, and tritium breeding ratio not less than 1.2 to ensure the self-sufficiency. As one of the breeding blanket candidates for CFETR, a water cooled breeder blanket with superheated steam is proposed and its conceptual design is being carried out. In this design, sub-cooling water at 265 °C under the pressure of 7 MPa is fed into cooling plates in breeding zone and is heated up to 285 °C with saturated steam generated, and then this steam is pre-superheated up to 310 °C in first wall (FW), final, the pre-superheated steam coming from several blankets is fed into the other one blanket to superheat again up to 517 °C. Due to low density of superheated steam, it has negligible impact on neutron absorption by coolant in FW so that the high energy neutrons entering into breeder zone moderated by water in cooling plate help enhance tritium breeding by {sup 6}Li(n,α)T reaction. Li{sub 2}TiO{sub 3} pebbles and Be{sub 12}Ti pebbles are chosen as tritium breeder and neutron multiplier respectively, because Li{sub 2}TiO{sub 3} and Be{sub 12}Ti are expected to have better chemical stability and compatibility with water in high temperature. However, Be{sub 12}Ti may lead to a reduction in tritium breeding ratio (TBR). Furthermore, a spot of sintered Be plate is used to improve neutron multiplying capacity in a multi-layer structure. As one alternative option

  15. Thermal assessment of Shippingport pressurized water reactor blanket fuel assemblies within a multi-canister overpack within the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    HEARD, F.J.

    1999-04-09

    A series of analyses were performed to assess the thermal performance characteristics of the Shippingport Pressurized Water Reactor Core 2 Blanket Fuel Assemblies as loaded within a Multi-Canister Overpack within the Canister Storage Building. A two-dimensional finite element was developed, with enough detail to model the individual fuel plates: including the fuel wafers, cladding, and flow channels.

  16. Design of a boiling water reactor core based on an integrated blanket-seed thorium-uranium concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Mexico, D.F. (Mexico); Francois, Juan Luis [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico)]. E-mail: jlfl@fi-b.unam.mx; Martin-del-Campo, Cecilia [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana, Avenida San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2005-04-15

    This paper is concerned with the design of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material in an integrated blanket-seed (BS) assembly. The integrated BS concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned out in a once-through cycle. The idea behind the lattice design is to use the thorium conversion capability in a BWR spectrum, taking advantage of the {sup 233}U build-up. A core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the fuel assembly.

  17. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  18. Light water reactor fuel element suitable for thorium employment in a discrete seed and blanket configuration with the aim to attain conversion ratios above the range of one

    Energy Technology Data Exchange (ETDEWEB)

    Hrovat, M.F.; Grosse, K.H.; Seemann, R. [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2008-07-01

    The thorium resources in the world are relatively large. According to the IAEA-NEA-publication ''Red Book'' they amount to 4.5 10E6 metric tons and are about 4 times greater than the resources of Uranium. The fuel element described in this paper could be used in light water reactor (LWR) preferably in pressurized water reactor (PWR). The seed (feed) rods contain uranium 235 as fissionable material and the blanket (breed) rods contain thorium and uranium. The thorium in the blanket rods is converted to fissionable U-233 by irradiation with thermal neutrons. The U-233 produced is a valuable fissionable material and is characterized by high revalues, where t is defined as the number of fission neutrons per absorption in fissile materials. By optimized configuration and loading of the seed- and blanket rods the thorium is converted to U-233 and the U-238 is converted to fissionable Plutonium isotopes. Consequently more fissionable material is generated than is used. The fuel cycle is also flexible. Thus U-235, Pu-239 or weapons-grade Plutonium can be used.Based on knowledge obtained in the development of fuel elements for material test reactors (MTR), high temperature reactors (HTR) and light water reactors (LWR), a new design of fuel element suitable for thorium employment in PWR is described.

  19. Degradation of phenol in an upflow anaerobic sludge blanket(UASB) reactor at ambient temperatureKE

    Institute of Scientific and Technical Information of China (English)

    KE Shui-zhou1; SHI Zhou; ZHANG Tong; Herbert H. P. FANG

    2004-01-01

    A synthetic wastewater containing phenol as sole substrate was treated in a 2.8 L upflow anaerobic sludge blanket(UASB) reactor at ambient temperature. The operation conditions and phenol removal efficiency were discussed, microbial population in the UASB sludge was identified based on DNA cloning, and pathway of anaerobic phenol degradation was proposed. Phenol in wastewater was degraded in an UASB reactor at loading rate up to 18 gCOD/(L·d), With a 1:1 recycle ratio, at 26(1℃, pH 7.0-7.5. An UASB reactor was able to remove 99% of phenol up to 1226 mg/L in wastewater with 24 h of hydraulic retention time(HRT). For HRT below 24 h, phenol degradation efficiency decreased with HRT, from 95.4% at 16 h to 93.8% at 12 h. It further deteriorated to 88.5% when HRT reached 8 h. When the concentration of influent phenol of the reactor was 1260 mg/L(corresponding COD 3000 mg/L), with the HRT decreasing(from 40 h to 4 h, corresponding COD loading increasing), the biomass yields tended to increase from 0.265 to 3.08 g/(L·d). While at 12 h of HRT, the biomass yield was lower. When HRT was 12 h, the methane yield was 0.308 L/(gCOD removed), which was the highest. Throughout the study, phenol was the sole organic substrate. The effluent contained only residual phenol without any detectable intermediates, such as benzoate, 4-hydrobenzoate or volatile fatty acids(VFAs). Based on DNA cloning analysis, the sludge was composed of five groups of microorganisms. Desulfotomaculum and Clostridium were likely responsible for the conversion of phenol to benzoate, which was further degraded by Syntrophus to acetate and H2/CO2. Methanogens lastly converted acetate and H2/CO2 to methane. The role of epsilon-Proteobacteria was, however, unsure.

  20. Extracellular polymeric substances (EPS) in upflow anaerobic sludge blanket (UASB) reactors operated under high salinity conditions.

    Science.gov (United States)

    Ismail, S B; de La Parra, C J; Temmink, H; van Lier, J B

    2010-03-01

    Considering the importance of stable and well-functioning granular sludge in anaerobic high-rate reactors, a series of experiments were conducted to determine the production and composition of EPS in high sodium concentration wastewaters pertaining to anaerobic granule properties. The UASB reactors were fed with either fully acidified substrate (FAS) consisting of an acetate medium (reactor R1) or partly acidified substrate (PAS) consisting of acetate, gelatine and starch medium (reactors R2, R3, and R4). For EPS extraction, the cation exchange resin (CER) method was used. Strength and particle size distribution were determined by assessing the formation of fines sludge under conditions of high shear rate and by laser diffraction, respectively. Batch tests were performed in 0.25L bottles to study Ca(2+) leaching from anaerobic granular sludge when incubated in 20g Na(+)/L in the absence of feeding for 30 days. Results show a steady increase in the bulk liquid Ca(2+) concentration during the incubation period. UASB reactor results show that the amounts of extracted proteins were higher from reactors R2 and R3, fed with PAS compared to the sludge samples from reactor R1, fed with FAS. Strikingly, the amount of extracted proteins also increased for all reactor sludges, irrespective of the Na(+) concentration applied in the feed, i.e. 10 or 20gNa(+)/L. PAS grown granular sludges showed an important increase in particle size during the operation of the UASB reactors. Results also show that, addition of 1gCa(2+)/L to the high salinity wastewater increases the granules' strength. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Hydrodynamical modelling of upflow anaerobic sludge blanket reactors; Modelagem hidrodinamica de reatores anaerobios de escoamento ascendente e manta de lodo (UASB)

    Energy Technology Data Exchange (ETDEWEB)

    Hanisch, Werner Siegfried

    1995-12-31

    The increasing need to treat wastewater consuming a minimum amount of energy is a clear indication of the appropriateness of anaerobic processes. One of them, the upflow anaerobic sludge blanket reactor (UASB), has shown to be a feasible option to treat industrial wastewater and domestic sewage. To improve this treatment system the knowledge if of its hydrodynamic behaviour is fundamental. In this work a mathematical model is proposed to describe physical simulations that were performed in bench scale UASB reactors. The results allow to conclude that the proposed mathematical model is adequate to describe the hydrodynamical behaviour of the above mentioned reactors 27 refs., 78 figs., 12 tabs.

  2. Trichloroethylene removal and bacterial variations in the up-flow anaerobic sludge blanket reactor in response to temperature shifts.

    Science.gov (United States)

    Zhang, Ying; Hu, Miao; Li, Pengfei; Wang, Xin; Meng, Qingjuan

    2015-07-01

    Trichloroethylene (TCE) degradation and the variations of bacteria composition and structure in the up-flow anaerobic sludge blanket (UASB) reactor were investigated by increasing the operating temperature from 20 to 40 °C. The influent was supplemented with 36.5 mg/L of TCE. There was a rise in the chemical oxygen demand (COD) removal efficiency from 20 to 35 °C and a decline when temperature enhanced to 40 °C. It reached maximum at 35 °C. In addition, TCE removal efficiency increased with temperature varying from 20 to 35 °C, and it dropped dramatically to 78.38 % at 40 °C, which presumably because the genus of Dehalobacter, a kind of bacteria with the ability to dechlorinate TCE to the corresponding chlorinated products, was not detected at 40 °C according to sequencing results. The Illumina MiSeq platform was adopted to explore the bacteria composition and structure in response to temperature shifts. The results indicated that temperature impacted greatly on the dominance and presence of specific populations at different taxonomic levels. Importantly, the class Dehalococcoidia was detected from 25 to 40 °C, in which there were many well-known Dehalococcoides sp. strains that were capable of complete dechlorination of TCE to ethene. It also suggested the potential function of the dominant genera (non-dechlorinating bacteria and dechlorinating bacteria) in the reactor.

  3. Numerical analysis of heat transfer in the first wall of CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Deng, Weiping; Ge, Zhihao; Li, Yuanjie

    2016-04-15

    Highlights: • Detailed numerical analysis of heat transfer in a water-cooling first wall was carried out based on the conceptual design of CFETR WCSB blanket. • Investigation of the influences of buoyancy effect and surface roughness on heat transfer in the water-cooling first wall was presented. • Analysis of the effect of the front wall thickness on temperature was carried out for the water-cooling first wall design. • Simulation results of two 1D CFD methods were evaluated by the 3D CFD data. - Abstract: China Fusion Engineering Test Reactor (CFETR), the first fusion reactor experiment project planned in China, is now being investigated in detail. Recently, a conceptual structural design of the Water-Cooled-Solid-Breeder (WCSB) blanket was proposed as one of the breeding blanket candidates for CFETR. In this research, based on the present design of the CFETR WCSB blanket, the heat transfer performance in the first wall (FW) under the pressurized water cooling condition was analyzed. The 3D computational fluid dynamics (CFD) results show that the maximal temperature of the FW will not exceed the limited temperature under normal or even higher heat flux condition. In addition, the effect of buoyancy on heat transfer is negligible under both conditions. The influence of roughness becomes increasingly important when the roughness height lies in the fully turbulent regime. The maximal temperature increases approximately linearly as the thickness of the front wall increases. It is also found that the heat flux and the local heat transfer coefficient are extremely non-uniform in the circumferential direction. Two 1D CFD methods are also evaluated by 3D CFD data, with the conclusion that both 1D results have some differences with the 3D data. The improved 1D method is more accurate than the former one. However, we ascertain that 1D methods should be used with caution for the water-cooling FW design.

  4. Utilization of high-strength wastewater for the production of biogas as a renewable energy source using hybrid upflow anaerobic sludge blanket (HUASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shivayogimath, C.B.; Ramanujam, T.K.

    1998-07-01

    Anaerobic digestion of distillery spentwash, a high-strength wastewater, was studied using a hybrid upflow anaerobic sludge blanket (HUASB) reactor for 240 days under ambient conditions. The HUASB reactor combined an open volume in the bottom two-thirds of the reactor for sludge blanket and polypropylene pall rings packing in the upper one-third of the reactor. The aim of the study was to achieve optimum biogas production and waste treatment. Using non-granular anaerobic sewage sludge as seed, the start-up of the HUASB reactor was successfully completed, with the production of active bacterial granules of 1--2 mm size, within 90 days. Examination of the bacterial granules under scanning electron microscope (SEM) revealed that Methanothrix like microorganisms were the dominant species besides Methanosarcina. An organic loading of 24 kg COD/m{sup 3}d at a low hydraulic retention time (HRT) of 6 hours was achieved with 82% reduction in COD. Biogas with high methane content (80%) was produced at these loadings. The specific biogas yield was 0.36 m{sup 3} CH{sub 4}/kg COD. Packing in the upper third of the reactor was very efficient as a gas-solid separator (GSS); and in addition it retained the biomass.

  5. Characterization of the planktonic microbiome in upflow anaerobic sludge blanket reactors during adaptation of mesophilic methanogenic granules to thermophilic operational conditions

    DEFF Research Database (Denmark)

    Zhu, Xinyu; Treu, Laura; Kougias, Panagiotis

    2017-01-01

    Upflow anaerobic sludge blanket (UASB) technology refers to reactor technology where granules, i.e. self-immobilised microbial associations, are the biological catalysts involved in the anaerobic digestion process. During the start-up period, UASB reactors operate at relatively long HRT and there......Upflow anaerobic sludge blanket (UASB) technology refers to reactor technology where granules, i.e. self-immobilised microbial associations, are the biological catalysts involved in the anaerobic digestion process. During the start-up period, UASB reactors operate at relatively long HRT...... and therefore the liquid phase of the reactor becomes a favourable environment for microbial growth. The current study aimed to elucidate the dynamicity of the suspended microbial community in UASB reactors, during the transition from mesophilic to thermophilic conditions. High throughput 16S rRNA amplicon...... sequencing was used to characterize the taxonomic composition of the microbiome. The results showed that the microbial community was mainly composed by hydrolytic and fermentative bacteria. Results revealed relevant shifts in the microbial community composition, which is mainly determined by the operational...

  6. Evaluation on the heat removal capacity of the first wall for water cooled breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng, E-mail: jiangkecheng@ipp.ac.cn; Cheng, Xiaoman; Chen, Lei; Huang, Kai; Ma, Xuebin; Liu, Songlin

    2016-02-15

    Highlights: • Heat removal capacity of the FW is evaluated under BWR, PWR and He coolant inlet conditions. • Heat transfer property of the gas–liquid two phase and the two boiling crises are analyzed. • Heat removal capacity of water is larger than helium coolant. - Abstract: The water cooled ceramic breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). As an important component of the blanket, the FW should satisfy with the thermal requirements in any case. In this paper, three parameters including the heat removal capacity, coolant pressure drop as well as the temperature rise of the FW were investigated under different coolant velocity and heat flux from the plasma. Using the same first wall structure, two main water cooled schemes including Boiling Water Reactor (BWR, 7 MPa pressure and 265 °C temperature inlet) and Pressurized Water Reactor (PWR, 15 MPa pressure and 285 °C temperature inlet) conditions are discussed in the thermal hydraulic calculation. For further research, the thermal hydraulic characteristics of using helium as coolant (8 MPa pressure, 300 °C temperature inlet) are also explored to provide CFETR blanket design with more useful data supports. Without regard to the outlet coolant condition requirements of the blanket, the results indicate that the ultimate heat flux that the FW can resist is 2.2 MW/m{sup 2} at velocity of 5 m/s for BWR, 2.0 MW/m{sup 2} at velocity of 5 m/s for PWR and 0.87 MW/m{sup 2} for helium at velocity 100 m/s under the chosen operation condition. The detrimental departure from nucleate boiling (DNB) crisis would occur at the velocity of 1 m/s under the heat flux of 3 MW/m{sup 2} and dry out crisis appears at the velocity of less than 0.2 m/s with the heat flux of more than 1 MW/m{sup 2} for BWR. The further blanket/FW optimization design is provided with more useful data references according to the abundant calculation results.

  7. Prospects and problems using vanadium alloys as a structural material of the first wall and blanket of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Votinov, S.N. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Solonin, M.I. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Kazennov, Yu.I. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Kondratjev, V.P. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Nikulin, A.D. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Tebus, V.N. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Adamov, E.O. [RDIPE, Moscow (Russian Federation); Bougaenko, S.E. [RDIPE, Moscow (Russian Federation); Strebkov, Yu.S. [RDIPE, Moscow (Russian Federation); Sidorenkov, A.V. [RDIPE, Moscow (Russian Federation); Ivanov, V.B. [Nauchno-Issledovatel`skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation); Kazakov, V.A. [Nauchno-Issledovatel`skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation); Evtikhin, V.A. [SE ``Krasnaya Zvezda``, Moscow (Russian Federation); Lyublinski, I.E. [SE ``Krasnaya Zvezda``, Moscow (Russian Federation); Trojanov, V.M. [SSC- IPPE, Obninsk (Russian Federation); Rusanov, A.E. [SSC- IPPE, Obninsk (Russian Federation); Chernov, V.M. [SSC- IPPE, Obninsk (Russian Federation); Birgevoj, G.A. [SSC- IPPE, Obninsk (Russian Federation)

    1996-10-01

    Vanadium-based alloys are most promising as low activation structural materials for DEMO. It was previously established that high priority is to be given to V-alloys of the V-Ti-Cr system as structural materials of a tritium breeding blanket and the first wall of a fusion reactor. However, there is some uncertainty in selecting a specific element ratio between the alloy components in this system. This is primarily explained by the fact that the properties of V-alloys are dictated not only by the ratio between the main alloying elements (here Ti and Cr), but also by impurities, both metallic and oxygen interstitials. Based on a number of papers today one can say that V-Ti-Cr alloys with insignificant variations in the contents of the main constituents within 5-10 mass% Ti and 4-6 mass% Cr must be taken as a base for subsequent optimization of chemical composition and thermomechanical working. However, the database is obviously insufficient to assess the ecological acceptability (activation), physical and mechanical properties, corrosion and irradiation resistance and, particularly, the commercial production of alloys. Therefore, there is a need for comprehensive studies of promising V-alloys, namely V-4Ti-4Cr and V-10Ti-5Cr. (orig.).

  8. Development of the water cooled lithium lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aiello, G.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The WCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • Preliminary CAD design of the equatorial outboard module of the WCLL blanket has been developed for DEMO. • Finite elements analyses have been carried out in order to assess the module thermal behavior in the straight part of the module. - Abstract: The water cooled lithium lead (WCLL) blanket, based on near-future technology requiring small extrapolation from present-day knowledge both on physical and technological aspect, is one of the breeding blanket concepts considered as possible candidates for the EU DEMOnstration power plant. In 2012, the EFDA agency issued new specifications for DEMO: this paper describes the work performed to adapt the WCLL blanket design to those specifications. Relatively small modules with straight surfaces are attached to a common Back Supporting Structure housing feeding pipes. Each module features reduced activation ferritic-martensitic steel as structural material, liquid Lithium-Lead as breeder, neutron multiplier and carrier. Water at typical Pressurized Water Reactors (PWR) conditions is chosen as coolant. A preliminary design of the equatorial outboard module has been achieved. Finite elements analyses have been carried out in order to assess the module thermal behavior. Two First Wall (FW) concepts have been proposed, one favoring the thermal efficiency, the other favoring the manufacturability. The Breeding Zone has been designed with C-shaped Double-Walled Tubes in order to minimize the Water/Pb-15.7Li interaction likelihood. The priorities for further development of the WCLL blanket concept are identified in the paper.

  9. Biomass granulation in an upflow anaerobic sludge blanket reactor treating 500 m(3)/day low-strength sewage and post treatment in high-rate algal pond.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M

    2017-09-01

    A pilot-scale upflow anaerobic sludge blanket-moving bed biofilm (UASB-MBB) reactor followed by a high-rate algal pond (HRAP) was designed and operated to remove organic matter, nutrients and pathogens from sewage and to facilitate reuse. For an influent chemical oxygen demand (COD) concentration of 233 ± 20 mg/L, final effluent COD was 50 ± 6 mg/L. Successful biomass granulation was observed in the sludge bed of the upflow anaerobic sludge blanket (UASB) reactor after 5 months of operation. Ammonia removal in HRAP was 85.1 ± 2.4% with average influent and effluent ammonia nitrogen concentrations of 20 ± 3 mg/L and 3 ± 1 mg/L, respectively. Phosphate removal after treatment in the HRAP was 91 ± 1%. There was a 2-3 log scale pathogen removal after treatment in HRAP with most probable number (MPN) of the final effluent being 600-800 per 100 mL, which is within acceptable standards for surface irrigation. The blackwater after treatment in UASB-MBBR-HRAP is being reused for gardening and landscaping. This proper hydro-dynamically designed UASB reactor demonstrated successful granulation and moving bed media improved sludge retention in UASB reactor. This combination of UASB-MBB reactor followed by HRAP demonstrated successful sewage treatment for a year covering all seasons.

  10. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    Science.gov (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  11. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor.

    Science.gov (United States)

    Kuşçu, Ozlem Selçuk; Sponza, Delia Teresa

    2009-01-30

    A laboratory scale anaerobic migrating blanket reactor (AMBR) was operated at different HRTs (1-10.38 days) in order to determine the para-nitrophenol (p-NP) and COD removal kinetic constants. The reactor was fed with 40 mg L(-1)p-NP and 3000 mg L(-1) glucose-COD. Modified Stover-Kincannon and Grau second-order kinetic models were applied to the experimental data. The predicted p-NP and COD concentrations were calculated using the kinetic constants. It was found that these data were in better agreement with the observed ones in the modified Stover-Kincannon compared to Grau second-order model. The kinetic constants calculated according to Stover-Kincannon model are as follows: the saturation value constant (K(B)) and maximum utilization rate constants (R(max)) were found as 31.55 g CODL(-1)day(-1), 29.49 g CODL(-1)day(-1) for COD removal and 0.428 g p-NPL(-1)day(-1), 0.407 g p-NPL(-1)day(-1) for p-NP removal, respectively (R(2)=1). The values of (a) and (b) were found to be 0.096 day and 1.071 (dimensionless) with high correlation coefficients of R(2)=0.85 for COD removal. Kinetic constants for specific gas production rate were evaluated using modified Stover-Kincannon, Van der Meer and Heerrtjes and Chen and Hasminoto models. It was shown that Stover-Kincannon model is more appropriate for calculating the effluent COD, p-NP concentrations in AMBR compared to the other models. The maximum specific biogas production rate, G(max), and proportionality constant, G(B), were found to be 1666.7 mL L(-1) day(-1) and 2.83 (dimensionless), respectively in modified Stover-Kincannon gas model. The bacteria had low Haldane inhibition constants (K(ID)=14 and 23 mg L(-1)) for p-NP concentrations higher than 40 mg L(-1) while the half velocity constant (K(s)) increased from 10 to 60 and 118 mg L(-1) with increasing p-NP concentrations from 40 to 85 and 125 mg L(-1).

  12. Anaerobic digestion of the liquid fraction of dairy manure separated by screw pressing and centrifugation in a upflow anaerobic sludge blanket reactor at 25 °C

    OpenAIRE

    Rico de la Hera, Carlos; Rico Gutiérrez, José Luis; Lasa Díaz, María Cristina

    2012-01-01

    Anaerobic digestion of the liquid fraction (LF) of dairy manure was studied in lab scale in a high-load anaerobic reactor (upflow anaerobic sludge blanket (UASB)) operated at 25 °C. The LF was obtained by a separation process in a pilot plant consisting of screw pressing and centrifugation enhanced by flocculation in a pilot plant. The separation process produced a LF free of suspended solids (SS), whose supernatant chemical oxygen demand (COD) and COD due to volatile fatty acids (VFA) were 9...

  13. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    Science.gov (United States)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  14. A novel application of red mud-iron on granulation and treatment of palm oil mill effluent using upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Ahmad, Anwar

    2014-01-01

    The performance of the upflow anaerobic sludge blanket reactor that used red mud-iron (RM-Fe) for methane production for the treatment of palm oil mill effluent (POME) at various hydraulic retention time (HRT) was determined. POME was used as the substrate carbon source. The biogas production rate was 1.7 l biogas/h with a methane yield of 0.78 l CH4/g CODremoved and chemical oxygen demand (COD) removal was 85% at POME concentration of 30 g COD/l at HRT 16 h. The reactor R2 showed average methane content of biogas and COD reduction of 78% and 85% at 400 mg/l RM-Fe. Significant increase in the granule diameter (up to 2900 μm) in R2 was compared to control R1 (up to 86 μm) at end of the experiment.

  15. A preliminary study of a D-T tokamak fusion reactor with advanced blanket using compact fusion advanced Brayton (CFAB) cycle

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, K.; Ohnishi, M.; Yamamoto, Y. [Kyoto Univ. (Japan)] [and others

    1994-12-31

    Key issues on a D-T Tokamak fusion reactor with advanced blanket concept using CFAB (Compact Fusion Advanced Brayton) cycle are presented. Although the previously proposed and studied compact fusion advanced Rankine cycle using mercury liquid metal has shown, in general, excellent performance characteristics in extracting energy and electricity with high efficiency by the {open_quotes}in-situ{close_quotes} nonequilibrium MHD disk generator, and in enhancing safety potential, there was a fear about uses of hazardous mercury as primary coolant as well as its limited natural resources. To overcome these disadvantages while retaining the advantage features of a ultra-high temperature coolant inherent in the synchrotron energy-enhanced D-T tokamak reactor, a compact fusion advanced Brayton cycle using helium was reexamined which was once considered relatively not superior in the CFAR study, at the expense of high, but acceptable circulation power, lower heat transfer characteristics, and probably of a little bit reduced safety.

  16. Hydraulic Experiment for Simulative Assemblies of Blanket Assembly and Np Transmutation Assembly of China Experimental Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    CHENG; Dao-xi; QI; Xiao-guang; ZHAI; Wei-ming; YANG; Bing; ZHOU; Ping

    2013-01-01

    The out-of reactor hydraulic experiment of fast reactor assembly is one of the important experiments in the process of the development of the fast reactor assembly.In this experiment,the size of the throttling element in the foot of the assembly is decided which is fit for the flow division in the reactor and the

  17. Safety analysis of a loss-of-coolant accident in a breeding blanket for experimental fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rocco, P.; Casini, G.; Djerassi, H.; Papa, L.; Pautasso, G.; Renda, V.; Rouyer, J.L.

    1985-07-01

    A LOCA in a blanket design proposed for NET (Next European Torus) is investigated. The structural analysis of a damaged breeder unit shows that this first containment barrier has a high probability of survival to this accident. The radioactive sources involved are evaluated and an assessment is made of all containment barriers and associated protection systems.

  18. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment--a state-of-the-art review.

    Science.gov (United States)

    Chong, Siewhui; Sen, Tushar Kanti; Kayaalp, Ahmet; Ang, Ha Ming

    2012-07-01

    Nowadays, carbon emission and therefore carbon footprint of water utilities is an important issue. In this respect, we should consider the opportunities to reduce carbon footprint for small and large wastewater treatment plants. The use of anaerobic rather than aerobic treatment processes would achieve this aim because no aeration is required and the generation of methane can be used within the plant. High-rate anaerobic digesters receive great interests due to their high loading capacity and low sludge production. Among them, the upflow anaerobic sludge blanket (UASB) reactors have been most widely used. However, there are still unresolved issues inhibiting the widespread of this technology in developing countries or countries with climate temperature fluctuations (such as subtropical regions). A large number of studies have been carried out in order to enhance the performance of UASB reactors but there is a lack of updated documentation. In face of the existing limitations and the increasing importance of this technology, the authors present an up-to-date review on the performance enhancements of UASB reactors over the last decade. The important aspects of this article are: (i) enhancing the start-up and granulation in UASB reactors, (ii) coupling with post-treatment unit to overcome the temperature constraint, and (iii) improving the removal efficiencies of the organic matter, nutrients and pathogens in the final effluent. Finally the authors have highlighted future research direction based on their critical analysis.

  19. Impact of aluminum chloride on process performance and microbial community structure of granular sludge in an upflow anaerobic sludge blanket reactor for natural rubber processing wastewater treatment.

    Science.gov (United States)

    Thanh, Nguyen Thi; Watari, Takahiro; Thao, Tran Phuong; Hatamoto, Masashi; Tanikawa, Daisuke; Syutsubo, Kazuaki; Fukuda, Masao; Tan, Nguyen Minh; Anh, To Kim; Yamaguchi, Takashi; Huong, Nguyen Lan

    In this study, granular sludge formation was carried out using an aluminum chloride supplement in an upflow anaerobic sludge blanket (UASB) reactor treating natural rubber processing wastewater. Results show that during the first 75 days after the start-up of the UASB reactor with an organic loading rate (OLR) of 2.65 kg-COD·m(-3)·day(-1), it performed stably with a removal of 90% of the total chemical oxygen demand (COD) and sludge still remained in small dispersed flocs. However, after aluminum chloride was added at a concentration of 300 mg·L(-1) and the OLR range was increased up to 5.32 kg-COD·m(-3)·day(-1), the total COD removal efficiency rose to 96.5 ± 2.6%, with a methane recovery rate of 84.9 ± 13.4%, and the flocs began to form granules. Massively parallel 16S rRNA gene sequencing of the sludge retained in the UASB reactor showed that total sequence reads of Methanosaeta sp. and Methanosarcina sp., reported to be the key organisms for granulation, increased after 311 days of operation. This indicates that the microbial community structure of the retained sludge in the UASB reactor at the end of the experiment gave a good account of itself in not only COD removal, but also granule formation.

  20. Effect of the temperature and of the organic load in two-stage up flow anaerobic sludge blanket reactors treating of swine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Bichuette, Alexandre Abud; Duda, Rose Maria; Oliveira, Roberto Alves de [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil). Dept. de Engenharia Rural], E-mail: oliveira@fcav.unesp.br

    2008-07-01

    In this work the acting of two-stage up flow anaerobic sludge blanket reactors (UASB) was evaluated, installed in series, in pilot scale (volumes of 908 L and 350 L, respectively) in the treatment swine wastewater, with concentrations of total solids suspended (TSS) around 10000 mg L{sup -1}. The organic loading rates (OLR) applied in first UASB were of 5,2 and of 8,6 g total COD (Ld){sup -1}. The medium efficiencies of removal of the chemical demand of total oxygen (total COD), TSS and TKN were higher than 89; 80 and 55%, respectively, for the system of anaerobic treatment composed by the reactors UASB in two apprenticeships. The rate of volumetric methane production in the system of anaerobic treatment with the reactors UASB were 0,08 and 0,16 m{sup 3}CH{sub 4} (m{sup 3} CH{sub 4} reactor d){sup -1}. The number of total coliforms was reduced to 2,6x10{sup 4} NMP/100 mL. (author)

  1. Optimization of the first wall for the DEMO water cooled lithium lead blanket

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Julien, E-mail: julien.aubert@cea.fr [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Aiello, Giacomo [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Bachmann, Christian [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Di Maio, Pietro Alessandro [Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, Rosario [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy); Li Puma, Antonella; Morin, Alexandre [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Tincani, Amelia [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy)

    2015-10-15

    Highlights: • This paper presents the optimization of the first wall of the water cooled lithium lead DEMO blanket with pressurized water reactor condition and circular channels in order to find the best geometry that can allow the maximum heat flux considering design criteria since an estimate of the engineering limit of the first wall heat load capacity is an essential input for the decision to implement limiters in DEMO. • An optimization study was carried out for the flat first wall design of the DEMO Water-Cooled Lithium Lead considering thermal and mechanical constraint functions, assuming T{sub inlet}/T{sub outlet} equal to 285 °C/325 °C, based on geometric design parameters. • It became clear that through the optimization the advantages of a waved First Wall are diminished. • The analysis shows that the maximum heat load could achieve 2.53 MW m{sup −2}, but considering assumptions such as a coolant velocity ≤8 m/s, pipe diameter ≥5 mm and a total first wall thickness ≤22 mm, heat flux is limited to 1.57 MW m{sup −2}. - Abstract: The maximum heat load capacity of a DEMO First Wall (FW) of reasonable cost may impact the decision of the implementation of limiters in DEMO. An estimate of the engineering limit of the FW heat load capacity is an essential input for this decision. This paper describes the work performed to optimize the FW of the Water Cooled Lithium-Lead (WCLL) blanket concept for DEMO fusion reactor in order to increase its maximum heat load capacity. The optimization is based on the use of water at typical Pressurised Water Reactors conditions as coolant. The present WCLL FW with a waved plasma-faced surface and with circular channels was studied and the heat load limit has been predicted with FEM analysis equal to 1.0 MW m{sup −2} with respect to the Eurofer temperature limit. An optimization study was then carried out for a flat FW design considering thermal and mechanical constraints assuming inlet and outlet

  2. Improved dechlorinating performance of upflow anaerobic sludge blanket reactors by incorporation of Dehalospirillum multivorans into granular sludge

    DEFF Research Database (Denmark)

    Hörber, Christine; Christiansen, Nina; Arvin, Erik

    1998-01-01

    .5 mM acetate and were operated under sterile conditions. In the test reactor, an average of 93% (mole/mole) of the effluent chloroethenes was dichloroethene (DCE), compared to 99% (mole/mole) in the Ri reactor. The R2 reactor, with no inoculation, produced only trichloroethene (TCE), averaging 43......% (mole/mole) of the effluent chloroethenes. No dechlorination of PCE was observed in an abiotic control consisting of sterile granules without inoculum, During continuous operation with stepwise-reduced hydraulic retention times (HRTs), both the test reactor and the R1 reactor showed conversion of PCE...

  3. Tritium management and anti-permeation strategies for three different breeding blanket options foreseen for the European Power Plant Physics and Technology Demonstration reactor study

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D., E-mail: david.demange@kit.edu [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Boccaccini, L.V.; Franza, F. [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Santucci, A.; Tosti, S. [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati (RM) (Italy); Wagner, R. [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    In DT fusion reactors like DEMO, the commonly accepted tritium (T) losses through the steam generator (SG) shall not exceed about 2 mg/d that are more than 5 orders of magnitude lower than the T production rate of about 360 g/d in the breeding blanket (BB). A very effective mitigation strategy is required balancing the size and efficiency of the processes in the breeding and cooling loops, and the availability and efficiency of anti-permeation barriers. A numerical study is presented using the T permeation code FUS-TPC that computes all T flows and inventories considering the design and operation of the BB, the SG, and the T systems. Many scenarios are numerically analyzed for three breeding blankets concepts – helium cooled pebbles bed (HCPB), helium cooled lithium lead (HCLL), and water cooled lithium lead (WCLL) – varying the T processes throughput and efficiency, and the permeation regimes through the BB and SG to be either surface-limited or diffusion-limited with possible permeation reduction factor. For each BB concept, we discuss workable operation scenarios and suggest specific anti-permeation strategies.

  4. Nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria with C2/C3 fatty acid in upflow anaerobic sludge blanket reactors.

    Science.gov (United States)

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Yin; Zhang, Jie

    2015-10-01

    In anaerobic ammonium oxidation (Anammox) process, a harsh ratio of nitrite to ammonia in influent was demanded, and the max nitrogen removal efficiency could only achieve to 89%, both of which limited the development of Anammox. The aim of this work was to study the nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria (AAOB) with C2/C3 fatty acid in upflow anaerobic sludge blanket (UASB) reactors. In this study, organotrophic AAOB was successfully enriched by adding acetate and propionate with the total organic carbon to nitrogen (TOC/N) ratio of 0.1. In the condition of low substrate, the TN removal efficiency reached 90%, with the effluent TN of around 11.8 mg L(-1). After the addition of acetate and propionate, the predominant species in Anammox granular sludge transformed to Candidatus Jettenia that belonging to organotrophic AAOB from the Candidatus Kuenenia relating to general AAOB.

  5. Metallurgical aspects of possibility of 9?12% chromium steel application as a structural material for first wall and blanket of fusion reactors

    Science.gov (United States)

    Ioltukhovsky, A. G.; Kondrat'ev, V. P.; Leont'eva-Smirnova, M. V.; Votinov, S. N.; Shamardin, V. K.; Povstyanko, A. V.; Bulanova, T. M.

    1996-10-01

    Steels containing 9-12% Cr are considered to be candidate structural materials for the first wall and blanket of a fusion reactor at the operation temperature up to 650°C. The optimal structure, phase composition and the specific chemical composition of the steels ensure their high heat resistance, yield strength and ductility as well as adequate thermophysical properties. The susceptibility of chromium steels for low temperature irradiation embrittlement can be influenced by changing their structural state via alloying, heat treatment and method of melting. Steels having a uniform martensite structure are less susceptible to irradiation conditions and have more stable tensile properties as compared to steels having δ-ferrite in their structures.

  6. Metallurgical aspects of possibility of 9-12% chromium steel application as a structural material for first wall and blanket of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ioltukhovsky, A.G. [State Sci. Center of Russian Feder., Moscow (Russian Federation). A.A. Bochvar All-Rusia Res Inst. of Inorg. Mater.; Kondrat`ev, V.P. [State Sci. Center of Russian Feder., Moscow (Russian Federation). A.A. Bochvar All-Rusia Res Inst. of Inorg. Mater.; Leont`eva-Smirnova, M.V. [State Sci. Center of Russian Feder., Moscow (Russian Federation). A.A. Bochvar All-Rusia Res Inst. of Inorg. Mater.; Votinov, S.N. [State Sci. Center of Russian Feder., Moscow (Russian Federation). A.A. Bochvar All-Rusia Res Inst. of Inorg. Mater.; Shamardin, V.K. [Nauchno-Issledovatel`skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation); Povstyanko, A.V. [Nauchno-Issledovatel`skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation); Bulanova, T.M. [Nauchno-Issledovatel`skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation)

    1996-10-01

    Steels containing 9-12% Cr are considered to be candidate structural materials for the first wall and blanket of a fusion reactor at the operation temperature up to 650 C. The optimal structure, phase composition and the specific chemical composition of the steels ensure their high heat resistance, yield strength and ductility as well as adequate thermophysical properties. The susceptibility of chromium steels for low temperature irradiation embrittlement can be influenced by changing their structural state via alloying, heat treatment and method of melting. Steels having a uniform martensite structure are less susceptible to irradiation conditions and have more stable tensile properties as compared to steels having {delta}-ferrite in their structures. (orig.).

  7. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    Science.gov (United States)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  8. Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Sridevi, K; Sivaraman, E; Mullai, P

    2014-08-01

    In a hybrid upflow anaerobic sludge blanket (HUASB) reactor, biodegradation in association with biohydrogen production was studied using distillery wastewater as substrate. The experiments were carried out at ambient temperature (34±1°C) and acidophilic pH of 6.5 with constant hydraulic retention time (HRT) of 24h at various organic loading rates (OLRs) (1-10.2kgCODm(-3)d(-1)) in continuous mode. A maximum hydrogen production rate of 1300mLd(-1) was achieved. A back propagation neural network (BPNN) model with network topology of 4-20-1 using Levenberg-Marquardt (LM) algorithm was developed and validated. A total of 231 data points were studied to examine the performance of the HUASB reactor in acclimatisation and operation phase. The statistical qualities of BPNN models were significant due to the high correlation coefficient, R(2), and lower mean absolute error (MAE) between experimental and simulated data. From the results, it was concluded that BPNN modelling could be applied in HUASB reactor for predicting the biodegradation and biohydrogen production using distillery wastewater.

  9. Organic loading rate and food-to-microorganism ratio shape prokaryotic diversity in a demo-scale up-flow anaerobic sludge blanket reactor treating domestic wastewater.

    Science.gov (United States)

    Cardinali-Rezende, Juliana; Araújo, Juliana C; Almeida, Paulo G S; Chernicharo, Carlos A L; Sanz, José L; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2013-12-01

    We investigated the microbial community in an up-flow anaerobic sludge blanket (UASB) reactor treating domestic wastewater (DW) during two different periods of organic loading rate (OLR) and food-to-microorganism (F/M) ratio. 16S rDNA clone libraries were generated, and quantitative real-time PCR (qPCR) analyses were performed. Fluctuations in the OLR and F/M ratio affected the abundance and the composition of the UASB prokaryotic community, mainly at the species level, as well as the performance of the UASB reactor. The qPCR analysis suggested that there was a decrease in the bacterial cell number during the rainy season, when the OLR and F/M ratio were lower. However, the bacterial diversity was higher during this time, suggesting that the community degraded more diversified substrates. The diversity and the abundance of the archaeal community were higher when the F/M ratio was lower. Shifts in the methanogenic community composition might have influenced the route of methane production, with methane produced by acetotrophic methanogens (dry season), and by hydrogenotrophic, methylotrophic and acetotrophic methanogens (rainy season). This study revealed higher levels of bacterial diversity, metabolic specialization and chemical oxygen demand removal efficiency of the DW UASB reactor during the rainy season.

  10. A new model for anaerobic processes of up-flow anaerobic sludge blanket reactors based on cellular automata

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2002-01-01

    characteristics and lead to different reactor behaviour. A dynamic mathematical model has been developed for the anaerobic digestion of a glucose based synthetic wastewater in UASB reactors. Cellular automata (CA) theory has been applied to simulate the granule development process. The model takes...... into consideration that granule diameter and granule microbial composition are functions of the reactor operational parameters and is capable of predicting the UASB performance and the layer structure of the granules....

  11. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane.

    Science.gov (United States)

    Bandara, Wasala M K R T W; Satoh, Hisashi; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2011-05-01

    In this study, we investigated the efficiency of dissolved methane (D-CH(4)) collection by degasification from the effluent of a bench-scale upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater. A hollow-fiber degassing membrane module was used for degasification. This module was connected to the liquid outlet of the UASB reactor. After chemical oxygen demand (COD) removal efficiency of the UASB reactor became stable, D-CH(4) discharged from the UASB reactor was collected. Under 35 °C and a hydraulic retention time (HRT) of 10 h, average D-CH(4) concentration could be reduced from 63 mg COD L(-1) to 15 mg COD L(-1); this, in turn, resulted in an increase in total methane (CH(4)) recovery efficiency from 89% to 97%. Furthermore, we investigated the effects of temperature and HRT of the UASB reactor on degasification efficiency. Average D-CH(4) concentration was as high as 104 mg COD L(-1) at 15 °C because of the higher solubility of CH(4) gas in liquid; the average D-CH(4) concentration was reduced to 14 mg COD L(-1) by degasification. Accordingly, total CH(4) recovery efficiency increased from 71% to 97% at 15 °C as a result of degasification. Moreover, degasification tended to cause an increase in particulate COD removal efficiency. The UASB reactor was operated at the same COD loading rate, but different wastewater feed rates and HRTs. Although average D-CH(4) concentration in the UASB reactor was almost unchanged (ca. 70 mg COD L(-1)) regardless of the HRT value, the CH(4) discharge rate from the UASB reactor increased because of an increase in the wastewater feed rate. Because the D-CH(4) concentration could be reduced down to 12 ± 1 mg COD L(-1) by degasification at an HRT of 6.7 h, the CH(4) recovery rate was 1.5 times higher under degasification than under normal operation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Crucial issues on liquid metal blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S. (Kernforschungszentrum Karlsruhe (Germany)); Leroy, P. (CEA, CEN Saclay, 91 - Gif-sur-Yvette (France)); Casini, G.P. (CEC, Joint Research Centre (JRC), Ispra (Italy)); Mattas, R.F. (Argonne National Lab., IL (United States)); Strebkov, Yu. (Research and Development Inst. of Power Engineering, Moscow (USSR))

    1991-12-01

    Typical design concepts of liquid metal breeder blankets for power reactors are explained and characterized. The major problems of these concepts are described for both water-cooled blankets and self-cooled blankets. Three crucial issues of liquid metal breeder blankets are investigated. They are in the fields of magnetohydrodynamics, tritium control and safety. The influence of the magnetic field on liquid metal flow is of special interest for self-cooled blankets. The main problems in this field and the status of the related R and D work are described. Tritium permeation losses to the cooling water is a crucial issue for water-cooled blankets. Methods for its reduction are discussed. An inherent problem of all liquid breeder blankets is the potential release of activated products in the case of chemical reactions between the breeder material and water or reactive gases. The most important issues in this field are described. (orig.).

  13. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Shen, Dong-Sheng; He, Ruo; Liu, Xin-Wen; Long, Yan

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L(-1) PCP and 1250-10000 mg L(-1) COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L(-1). [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L(-1) in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L(-1) to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L(-1), respectively. With the increase of [PCP] in influent, the range of variation

  14. Analysis of trichloroethylene removal and bacterial community function based on pH-adjusted in an upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Zhang, Ying; Hu, Miao; Li, Pengfei; Wang, Xin; Meng, Qingjuan

    2015-11-01

    The study reported the upflow anaerobic sludge blanket (UASB) reactor performance in treating wastewater containing trichloroethylene (TCE) and characterized variations of bacteria composition and structure by changing the pH from 6.0 to 8.0. A slightly acidic environment (pH < 7.0) had a greater impact on the TCE removal. Illumina pyrosequencing was applied to investigate the bacterial community changes in response to pH shifts. The results demonstrated that pH greatly influenced the dominance and presence of specific populations. The potential TCE degradation pathway in the UASB reactor was proposed. Importantly, the genus Dehalobacter which was capable of reductively dechlorinating TCE was detected, and it was not found at pH of 6.0, which presumably is the reason why the removal efficiency of TCE was the lowest (80.73 %). Through Pearson correlation analyses, the relative abundance of Dehalobacter positively correlated with TCE removal efficiency (R = 0.912). However, the relative abundance of Lactococcus negatively correlated with TCE removal efficiency according to the results from Pearson correlation analyses and redundancy analysis (RDA).

  15. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment.

    Science.gov (United States)

    Picos-Benítez, Alain R; López-Hincapié, Juan D; Chávez-Ramírez, Abraham U; Rodríguez-García, Adrián

    2017-03-01

    The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.

  16. Numerical studies on the heat transfer and friction characteristics of the first wall inserted with the screw blade for water cooled ceramic breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230037 (China); Ma, Xuebin; Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-03-15

    Highlights: • Enhanced heat transfer and friction characteristics of the FW inserted with screw blade is investigated. • The screw blade structure optimization was done on the screw pitch and diameter. • Decreasing screw pitch and increasing screw diameter could further enhance heat transfer accompanied with increasing flow resistance. • Evaluate the overall enhanced heat performance by using the PEC value. - Abstract: The Water Cooled Ceramic Breeder (WCCB) blanket based on Pressurized Water Reactor (PWR) condition is one of the blanket candidates for Chinese Fusion Engineering Test Reactor (CFETR). The first wall (FW) which plays an important part in the blanket design must remove the high heat flux radiated from plasma and nuclear heat deposition on the structure in any operating conditions. In this paper, the characteristics of enhanced heat transfer and friction for the FW with the inserted screw blade are studied by the numerical method. After the comparison between the numerical and experimental results, the standard k–ε turbulent model is selected to do the numerical calculation. The numerical results show that the peak temperature of RAFM steel could be reduced by decreasing screw pitch or increasing screw diameter, while accompanied with ascending flow resistance. Besides, among all of the chosen calculation cases compared with the smooth channel, the maximum value of temperature reduction is 10 °C under the conditions of heat flux of 0.5 MW/m{sup 2} as well as screw pitch of 18 mm and screw diameter of 6 mm. The maximum increment ratio of the friction factor is 257% under the conditions of screw pitch of 10 mm and screw diameter of 4 mm. Furthermore, screw blade of 74 mm pitch and 4 mm diameter presents the highest overall performance evaluation criterion (PEC) value of 0.93 under Reynolds number of 270 000 conditions, and shows the best overall heat transfer enhancement performance.

  17. Treatment of fish processing wastewater in a one-step or two-step upflow anaerobic sludge blanket (UASB) reactor

    NARCIS (Netherlands)

    Paluenzuela-Rollon, A.; Zeeman, G.; Lubberding, H.J.; Lettinga, G.; Alaerts, G.J.

    2002-01-01

    The performance of one-step UASB reactors treating fish processing wastewater of different lipid levels was determined using artificially generated influent simulating that of the canning of sardines and tuna. The organic loading rates (OLR) and the hydraulic retention times (HRT) were 5-8 g COD.l(-

  18. Treatment of fish processing wastewater in a one-step or two-step upflow anaerobic sludge blanket (UASB) reactor

    NARCIS (Netherlands)

    Paluenzuela-Rollon, A.; Zeeman, G.; Lubberding, H.J.; Lettinga, G.; Alaerts, G.J.

    2002-01-01

    The performance of one-step UASB reactors treating fish processing wastewater of different lipid levels was determined using artificially generated influent simulating that of the canning of sardines and tuna. The organic loading rates (OLR) and the hydraulic retention times (HRT) were 5-8 g

  19. Immobilization patterns and dynamics of acetate-utilizing methanogens in sterile granular sludge from upflow anaerobic sludge blanket (UASB) reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1999-01-01

    that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were...

  20. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1999-01-01

    that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were...

  1. IHI-FW circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Omata, K.; Ishimoto, R.; Asai, M. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1993-07-01

    The technology and application of the circulating fluidized bed boiler (IHI-FW) are outlined. Circulating fluidized bed boilers have various features as compared with bubbling fluidized bed boilers as follows; a high combustion efficiency, efficient use of limestone for desulfurization, low NOx emission, adaptability to various fuels and capability to cope with load change. The IHI-FW boiler is furthermore featured by water-wall furnace of all-welded structure, water-cooled/steam cooled cyclone, and simple circulating system. The 30 t/h circulating fluidized bed boiler was introduced into the Tsu Works, Omikenshi Co., Ltd., Japan for private power generation. The boiler equipped with a backup heavy oil burner mainly uses semi-anthracite coal, and besides sulfur capture and NOx reduction functions of a bed, a bag filter with a high dust collecting efficiency is installed in an exhaust gas system. The installation period was reduced to 2.5 months, a half of conventional ones, by more assembly in a factory followed by less field works. 7 figs., 2 tabs.

  2. Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches--a case study.

    Science.gov (United States)

    Singh, Kunwar P; Basant, Nikita; Malik, Amrita; Jain, Gunja

    2010-01-18

    The paper describes linear and nonlinear modeling of the wastewater data for the performance evaluation of an up-flow anaerobic sludge blanket (UASB) reactor based wastewater treatment plant (WWTP). Partial least squares regression (PLSR), multivariate polynomial regression (MPR) and artificial neural networks (ANNs) modeling methods were applied to predict the levels of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in the UASB reactor effluents using four input variables measured weekly in the influent wastewater during the peak (morning and evening) and non-peak (noon) hours over a period of 48 weeks. The performance of the models was assessed through the root mean squared error (RMSE), relative error of prediction in percentage (REP), the bias, the standard error of prediction (SEP), the coefficient of determination (R(2)), the Nash-Sutcliffe coefficient of efficiency (E(f)), and the accuracy factor (A(f)), computed from the measured and model predicted values of the dependent variables (BOD, COD) in the WWTP effluents. Goodness of the model fit to the data was also evaluated through the relationship between the residuals and the model predicted values of BOD and COD. Although, the model predicted values of BOD and COD by all the three modeling approaches (PLSR, MPR, ANN) were in good agreement with their respective measured values in the WWTP effluents, the nonlinear models (MPR, ANNs) performed relatively better than the linear ones. These models can be used as a tool for the performance evaluation of the WWTPs. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Bioaugmentation of an acetate-oxidising anaerobic consortium in up-flow sludge blanket reactor subjected to high ammonia loads

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    growth of the culture. The incubation period (duration of lag+exponential phase) of SAO culture was reduced more than 30% when it was cocultivated with Methanoculleus bourgensis, in fed-batch reactors. Therefore, the bioaugmentation of the SAO culture along with Methanoculleus bourgensis in a UASB......Ammonia is the major inhibitor of anaerobic digestion (AD) process leading to suboptimal utilisation of the biogas potential of the feedstocks and causing economical losses to the biogas plants. However, ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...

  4. Multi-flow-field heat transfer parameters optimization on first wall of dual-cooled lithium lead blanket for FDS-II

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weihua; Liu Songlin; Bai Yunqing; Chen Hongli; Wu Yican [Chinese Academy of Sciences, Anhui (China). Inst. of Plasma Physics

    2007-07-01

    The dual-cooled lithium lead (DLL) blanket, which is one of the most important parts of the fusion power reactor FDS-II, has been designed. Reduced activation ferritic/martensitic (e.g. China low activate martensitic CLAM) steel is selected as structural material and helium gas is used to cool the main structure and the self-cooled eutectic LiPb alloy serves both as breeder material and coolant. To decrease magnetohydrodynamic pressure drop and increase output temperature of lithium lead, insulating coating and flow channel inserts have been selected and assessed. The first wall (FW) as the key component of the DLL blanket must withstand and remove the heat flux from the plasma chamber and high power density LiPb Breeding zone. Consequently, the unique design of the blanket (e.g. multi-flow field and dual coolant) results in the complicated thermal-hydraulic characteristics like the coupling of multi-field. Under the limit of temperature 550 C and stress 3Sm of the CLAM steel structural material, Multiflow- field Heat transfer parameters of FW are studied by the computational fluid dynamics FLUENT code and finite element ANSYS code. Heat flux distribution, temperature field, heat transfer coefficients between liquid LiPb and RAFM steel are obtained and optimized accordingly while considering the helium gas flow velocity 20 m/s{proportional_to}120 m/s, heat flux 0.1MW/m{sup 2}{proportional_to}0.7MW/m{sup 2} from the plasma and LiPb Breeding zone. The results can benefit the thermal-hydraulic parameters selection and optimization of the FW. (orig.)

  5. EU contribution to the procurement of the ITER blanket first wall

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetto, Patrick, E-mail: Patrick.Lorenzetto@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Boireau, Bruno [AREVA NP, Centre Technique, 71200 Le Creusot (France); Bucci, Philippe [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Cicero, Tindaro [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Conchon, Denis [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Dellopoulos, Georges [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Hardaker, Stephen [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Marshall, Paul [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Nogué, Patrice [AREVA NP, Centre Technique, 71200 Le Creusot (France); Pérez, Marcos [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Gutierrez, Leticia Ruiz [Iberdrola Ingeniería y Construcción S.A.U., Avenida Manoteras 20, 28050 Madrid (Spain); Samaniego, Fernando [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Sherlock, Paul [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Zacchia, Francesco [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain)

    2016-11-01

    Highlights: • Presentation of the blanket first wall design concept to be procured by Europe. • Presentation of the main outcome of the R&D programme with the resulting FW fabrication route. • Presentation of the ITER first wall pre-qualification programme with the results achieved so far. • Presentation of the on-going irradiation experiments. • Presentation of the EU procurement strategy. - Abstract: Fusion for Energy (F4E), the European Union’s Domestic Agency for ITER, is responsible for the procurement of about 50% of the ITER blanket first wall (FW), called normal heat flux FW. A procurement strategy has been implemented by the In-Vessel Project Team at F4E aimed at mitigating technical and commercial risks for the procurement of ITER blanket FW panels, promoting as far as possible competition among industrial partners. This procurement strategy has been supported by an extensive Research and Development (R&D) programme, implemented over more than 15 years in Europe, to develop various fabrication technologies. It includes in particular the manufacture and testing of small-scale, medium-scale mock-ups and full-scale prototypes of blanket FW panels. In this R&D programme, significant efforts have been devoted to the development of a reliable materials joining technique. Hot Isostatic Pressing was selected for the manufacture of the FW panels made from beryllium, copper–chromium–zirconium alloy and 316L(N)-IG austenitic stainless steel. This paper presents the main outcome of the on-going R&D programme, the latest results of the FW qualification programme together with the procurement strategy implemented by F4E for the supply of the European contribution to the procurement of the ITER blanket FW.

  6. Electromagnetic analysis for blanket of fusion reactor under plasma disruption%等离子体破裂工况下的聚变堆包层组件电磁分析

    Institute of Scientific and Technical Information of China (English)

    陈明锋; 刘素梅; 孙朋飞; 雷明准; 王忠伟

    2015-01-01

    In a fusion reactor, the blanket is one of the core components inside the vacuum vessel, it is directly facing the plasma, and the working environment is very harsh. In this paper, the induced eddy current and suffered electromagnetic force in the blanket of China Fusion Engineering Test Reactor (CFETR) has been calculated by the vector electromagnetic method of ANSYS in the major plasma disruption or the vertical displacement event. The modeling, the current source loading, boundary conditions setting, solving and calculated results are presented. This will provides the necessary reference data and method for future detailed design and optimization of the blanket components.%在聚变堆中,包层是真空室内的核心部件之一,它直接面对等离子体,工作环境十分恶劣.利用ANSYS软件的矢量电磁法,计算了中国聚变工程实验堆(CFETR)包层在离子体破裂和垂直位移事件中感应的涡电流和电磁力.介绍了建模、电流源加载、边界条件的设置、求解和计算结果.这为今后包层组件结构的详细设计和优化提供了必要的参考数据和方法.

  7. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP).

    Science.gov (United States)

    Sponza, Delia Teresa; Uluköy, Ayşen

    2008-01-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP) was evaluated at different hydraulic retention times (HRTs) using synthetic wastewater in order to obtain the growth substrate (glucose-COD) and 2,4 DCP removal kinetics. Treatment efficiencies of the UASB reactor were investigated at different hydraulic retention times (2-20 h) corresponding to a food to mass (F/M) ratio of 1.2-1.92 g-COD g(-1) VSS day(-1). A total of 65-83% COD removal efficiencies were obtained at HRTs of 2-20 h. In all, 83% and 99% 2,4 DCP removals were achieved at the same HRTs in the UASB reactor. Conventional Monod, Grau Second-order and Modified Stover-Kincannon models were applied to determine the substrate removal kinetics of the UASB reactor. The experimental data obtained from the kinetic models showed that the Monod kinetic model is more appropriate for correlating the substrate removals compared to the other models for the UASB reactor. The maximum specific substrate utilization rate (k) (mg-COD mg(-1) SS day(-1)), half-velocity concentration (K(s)) (mg COD l(-1)), growth yield coefficient (Y) (mg mg(-1)) and bacterial decay coefficient (b) (day(-1)) were 0.954 mg-COD mg(-1) SS day(-1), 560.29 mg-COD l(-1), 0.78 mg-SS g(-1)-COD, 0.093 day(-1) in the Conventional Monod kinetic model. The second-order kinetic coefficient (k(2)) was calculated as 0.26 day(-1) in the Grau reaction kinetic model. The maximum COD removal rate constant (U(max)) and saturation value (K(B)) were calculated as 7.502 mg CODl(-1)day(-1) and 34.56 mg l(-1)day(-1) in the Modified Stover-Kincannon Model. The (k)(mg-2,4 DCP mg(-1) SS day(-1)), (K(s)) (mg 2,4 DCPl(-1)), (Y) (mg SS mg(-1) 2,4 DCP) and (k(d)) (day(-1)) were 0.0041 mg-2,4 DCP mg(-1) SS day(-1), 2.06 mg-COD l(-1), 0.0017 mg-SS mg(-1) 2,4 DCP and 3.1 x 10(-5) day(-1) in the Conventional Monod kinetic model for 2,4 DCP degradation. The second-order kinetic coefficient (k(2)) was calculated as 0.30 day

  8. Exploratory Study of Blanket Liquid Curtain

    Institute of Scientific and Technical Information of China (English)

    HUGang; HUANGJinhua; FENGKaiming

    2003-01-01

    Blankets and other in-vessel components are easily damaged owing to their circumstance of high radiation and high heat. To protect them, first wall design should be considered. Owing to its high heat removal nd self-refreshing capability, liquid metal first wall has been seen as a potential first wall for a fusion reactor in the future. Blanketliquid curtain is actually a special liquid metal wall to protect blanket.

  9. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system

    Energy Technology Data Exchange (ETDEWEB)

    Kuscu, Ozlem Selcuk, E-mail: oselcuk@mmf.sdu.edu.tr [Department of Environmental Engineering, Engineering and Architecture Faculty, Sueleyman Demirel University, Cuenuer Campus, 32260 Isparta (Turkey); Sponza, Delia Teresa [Dokuz Eyluel University, Engineering Faculty, Environmental Engineering Department, Buca Kaynaklar campus, Izmir (Turkey)

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  10. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system.

    Science.gov (United States)

    Kuşçu, Özlem Selçuk; Sponza, Delia Teresa

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  11. Preliminary Neutronics Design of Breed Blanket for Fusion-fission Hybrid Reactor%聚变-裂变增殖堆包层的初步中子学设计

    Institute of Scientific and Technical Information of China (English)

    赵奉超; 栗再新

    2012-01-01

    基于国际热核实验堆ITER的堆芯参数和套管结构,对聚变-裂变增殖堆包层进行了初步中子学设计.基于国际热核实验堆的堆芯参数提出了采用套管结构,以天然金属铀为燃料和硅酸锂为氚增殖剂的快裂变-增殖堆包层的初步中子学设计方案.使用FENDL 2.1核数据库及MCNP程序自带的核数据库,用MCNP程序对套管结构快裂变-增殖堆包层进行一维的方案筛选及三维中子学的计算分析.计算分析包层内的一维功率密度分布、产氚率、钚增殖率分布,通过优化设计分析给出合理的包层设计方案,并计算氚增殖率TBR、能量放大倍数M、有效增值系数(Keff)、裂变增殖比等参数.%A preliminary neutronics design of breed blanket for fusion-fission hybrid reactor has been carried out based on the plasma parameters of International Thermonuclear Experimental Reactor (ITER) and casing structure. In the design of fast-fission breed blanket, the natural Uranium pebble bed is used as fuel and neutron multiplication and the Lithium silicate pebble bed is used as tritium breed material. By using FENDL2.1 nuclear database cross section library with native cross section library of MCNP nuclear database, the calculation and analysis are carried out with MCNP program. Through one-dimension calculation and analysis on different design proposals, a proper design proposal has been screened and then the three-dimension calculation and analysis have been implemented with the parameters of ITER. The calculation shows that the TBR of fusion-fission hybrid reactor is 1.13, it indicates that the design of breed blanket is able to meet self-sustaining of tritium and the calculation also indicates that the energy enlargement of fusion-ission hybrid reactor is 6.5 and Polonium breeding rate is 1.35, it means that the reactor is able to also product large quantities energy and Polonium and they could be used by light water reactor. Meanwhile, fission

  12. ITER Blanket First Wall (WBS 1.6{sub 1}A)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; Kim, H. G.; Kim, J. H. (and others)

    2008-03-15

    International Thermonuclear Experimental Reactor (ITER) project is the international collaboration one for the commercialization of nuclear fusion energy through the technical and engineering verification. In ITER project, we plan to procure the blanket systems which has the risk of technology and cost when it is newly developed. We are developing the manufacturing process and joining technology for the ITER blanket to complete the procurement with qualified blanket system. To evaluate the soundness of manufacturing process, specimen and mock-up tests are being prepared. Finally, we can obtain the key technology of nuclear fusion reactor especially on the blanket design, joining and manufacturing technology through the present project and these technologies will help the construction of Korea fusion DEMO reactor and the development of commercial nuclear fusion reactor in Korea. In 1st year, through the fabrication of the Cu/SS and Be/Cu joint specimen, fabrication procedure such as material preparation, canning, degassing, HIP (Hot Isostatic Pressing), PHHT (Post HIP heat treatment) was established. The optimized HIP conditions (1050 .deg. C, 150 MPa, 2 hr for Cu/SS and 580 - 620 .deg. C, 100-150 MPa, 2 hr for Be/Cu) were developed through the investigation on joint specimen fabricated with the various HIP conditions; the destructive tests of joint and NDT such as UT (10 MHz, 0.25 inch D, flat type) and ECT. Several mock-ups were fabricated for confirming the joint integrity and NDT. specimens fabricated with these mock-ups were used in mechanical tests including microstructure observation. The mock-ups were used in the HHF test after the developed NDT. In 2nd year, PHHT of Cu was investigated in order to recover its mechanical properties, and the pre-qualification mock-up were fabricated against the Qualification Program and sent to RF for HHF testing in TSEFEY. FW fabrication and joining procedure were documented in the form of the TSD. Qualification mock

  13. Conceptual design description for the tritium recovery system for the US ITER (International Thermonuclear Experimental Reactor) Li sub 2 O/Be water cooled blanket

    Energy Technology Data Exchange (ETDEWEB)

    Finn, P.A.; Sze, D.K. (Argonne National Lab., IL (USA). Fusion Power Program); Clemmer, R.G. (Pacific Northwest Lab., Richland, WA (USA))

    1990-11-01

    The tritium recovery system for the US ITER Li{sub 2}O/Be water cooled blanket processes two separate helium purge streams to recover tritium from the Li{sub 2}O zones and the Be zones of the blanket, to process the waste products, and to recirculate the helium back to the blanket. The components are selected to minimize the tritium inventory of the recovery system, and to minimize waste products. The system is robust to either an increase in the tritium release rate or to an in-leak of water in the purge system. Three major components were used to process these streams, first, 5A molecular sieves at {minus}196{degree}C separate hydrogen from the helium, second, a solid oxide electrolysis unit is used to reduce all molecular water, and third, a palladium/silver diffuser is used to ensure that only hydrogen (H{sub 2}, HT) species reach the cryogenic distillation unit. Other units are present to recover tritium from waste products but the three major components are the basis of the blanket tritium recovery system. 32 refs.

  14. Breeding blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Proust, E. (Commissariat a l' Energie Atomique (CEA), DRN/DMT/SERMA, CE, Saclay (France)); Anzidei, L. (ENEA/FUS, C.R.E., Frascati (Italy)); Casini, G. (Commission of the European Communities, Joint Research Center, Ispara (Italy)); Dalle Donne, M. (Kernforschungszentrum Karlsruhe GmbH (Germany)); Giancarli, L. (Commissariat a l' Energie Atomique (CEA), DRN/DMT/SERMA, CE, Saclay (France)); Malang, S. (Kernforschungszentrum Karlsruhe GmbH (Germany))

    1993-03-01

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently being investigated within the framework of the European Test-Blanket Development Programme. (orig.)

  15. Breeding blanket for Demo

    Energy Technology Data Exchange (ETDEWEB)

    Proust, E.; Giancarli, L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Anzidei, L. [ENEA, Frascati (Italy). Centro Ricerche Energia; Casini, G. [Commission of the European Communities, Ispra (Italy). Joint Research Centre; Dalle Donne, M.; Malang, S. [Kernforschungszentrum Karlsruhe GmbH (Germany)

    1992-12-31

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently investigated within the framework of the European Test-Blanket Development Programme.

  16. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  17. 扩散连接技术在核聚变反应堆包层模块制造中的应用%Application of Diffusion Bonding Technique in Fabrication of Blanket Module Components of Nuclear Fusion Reactor

    Institute of Scientific and Technical Information of China (English)

    刘晨曦; 刘永长; 周晓胜; 马宗青; 王颖; 李会军; 杨建国

    2015-01-01

    国际受控热核聚变实验堆计划是全球规模最大、影响最深远的国际科研合作项目之一,有望彻底解决能源危机。核聚变反应堆关键部件———包层模块的结构复杂、体积庞大,且服役环境恶劣,焊接接头成为影响反应堆安全运行的薄弱环节。以扩散连接为代表的固相焊接技术对接头性能及组织影响较小,已逐渐取代熔化焊应用于包层模块复杂构件制造。在简要介绍扩散连接及其原理的基础上,对包层模块构件扩散连接的研究进展进行了阐述,包括低活化铁素体/马氏体钢及氧化物弥散强化钢构件的扩散连接,Be,W,SiC等其他先进高温材料的扩散连接等。%International Thermonuclear Experimental Reactor is one of the world′s largest and the most far-reaching in-ternational scientific collaborative projects, which is expected to solve the energy crisis.As a key built-up part, blanket module has complex structure and large size, and serves under harsh service conditions.The welding joints of blanket mod-ule have become the weak links affecting the operation of the nuclear fusion reactor.Solid-phase welding technology, repre-sented by diffusion bonding, have relatively low effect on the mechanical properties and microstructure of the joints, and has gradually taken the place of the fusion welding technology used for fabrication of the blanket module complex compo-nents.Based on the brief presentation of diffusion bondingand its bonding mechanism, the research progress in diffusion bonding of blanket module components was discussed in this paper, including the diffusion bonding of reduced activation ferritic/martensitic steels and oxide dispersion strengthened steels, and the diffusion bonding of Be, W, SiC and/or other advanced high-temperature materials.

  18. Materials needs for compact fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m/sup 3/ versus 0.3 to 0.5 MW/m/sup 3/), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.).

  19. Review: BNL graphite blanket design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J.A.; Powell, J.R.

    1976-03-01

    A review of the Brookhaven National Laboratory (BNL) minimum activity graphite blanket designs is made. Three designs are identified and discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a thick graphite screen (typically 30 cm or greater, depending on type as well as application-experimental power reactor or commercial reactor). Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy. This energy is then either radiated to a secondary blanket with coolant tubes, as in types A and B, or is removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the structural material of the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude by the graphite screen, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma, whatever the degree of radiation damage.

  20. Power Flattening and Rejuvenation of PWR Spent Fuel Blanket for Hybrid Fusion-Fission Reactor%功率展平的压水堆乏燃料发电包层中子学初步研究

    Institute of Scientific and Technical Information of China (English)

    马续波; 陈义学; 王继亮; 王悦; 韩静茹; 陆道纲

    2011-01-01

    The hybrid fusion-fission reactor has advantages of breeding of the nuclear fuel and transmutation of the long-life nuclear waste and having inherent safety. Meanwhile, the engineering and technological demand of hybrid reactor is significantly reduced comparing with that of pure fusion reactor. A generating electricity blanket concept using the PWR spent fuel directly was proposed, which was based on ITER parameter level achieved. Different volume fractions of the fuel in blanket enabled to realize a power flattening in the fissile zone. The results show that the peak-to-average power factor becomes less than no power flattening, and the output power of the fuel zone raises more than 21. 7%. At the end of the operation, the maximum fuel enrichment is 5. 23%. The blanket is feasible from the neutronics viewpoint.%聚变裂变混合堆在增殖核燃料、嬗变长寿命核废料及固有安全性等方面具有较大优势,同时,它比纯聚变堆在工程及技术方面要求低,因此较聚变堆更易实现.本工作基于目前国际聚变实验堆(ITER)所能达到的技术水平,提出一种直接利用乏燃料进行发电的聚变裂变混合堆包层概念,利用在不同位置放置不同乏燃料体积分数的方法对燃料增殖区实现了功率展平.计算结果表明:功率展平后的包层功率不均匀系数更小,且包层中燃料区的能量输出要比不展平情况下的能量输出高约21.7%.燃料富集度到运行末期最大可达5.23%.从中子学角度初步论证了该包层的可行性.

  1. Effects of shock 2,4-dichlorophenol (DCP) and cod loading rates on the removal of 2,4-DCP in a sequential upflow anaerobic sludge blanket/aerobic completely stirred tank reactor system.

    Science.gov (United States)

    Uluköy, A; Sponza, D T

    2008-04-01

    The treatability of 2,4-dwichlorophenol (DCP) was studied in an anaerobic/aerobic sequential reactor system. Laboratory scale upflow anaerobic sludge blanket (UASB) reactor/completely stirred tank reactors (CSTR) were operated at constant 2,4-DCP concentrations, and increasing chemical oxygen demand (COD) loading rates. The effect of shock organic loading rates on 2,4-DCP, COD removal efficiencies and methane gas production were investigated in the UASB reactor. When the organic loading rate was increased from 3.6 g l(-1) d(-1) to 30.16 g l(-1) d(-1), the COD and 2,4-DCP removal efficiencies decreased from 80 to 25% and from 99 to 60% in the UASB reactor. The optimum organic loading rates for maximum 2,4-DCP (E=99-100%) and COD (E=65-85%) removal efficiencies were 25-30 and 8-20 g-COD l(-1) d(-1), respectively. The percentage of methane of the total gas varied between 70 and 80 while the organic loadings were 18 g-COD l(-1) d(-1) and 20.36 g-COD l(-1) d(-1), respectively. During 80 days of operation, 2,4-DCP concentration was found to be below 0.5 and 0.1 mg l(-1) in aerobic reactor effluent resulting in 78 and 100% removal efficiencies. When the hydraulic retention time (HRT) was 18.72 h, the 2,4-DCP removal efficiency was 97% in the aerobic reactor. The optimum COD removal efficiency was 78.83% in anaerobic reactor effluent at an influent COD loading rate of 7.238 g-COD l(-1) d(-1) while 83.6% maximum COD removal efficiency was obtained in the aerobic reactor, resulting in a total COD removal efficiency of 96.83% in the whole system. The 2,4-DCP removal efficiency was 99% in the sequential anaerobic (UASB)/aerobic (CSTR) reactor system at COD loading rates varying between 11.46 and 30.16 g-COD l(-1) d(-1).

  2. FW190战斗机制作教程

    Institute of Scientific and Technical Information of China (English)

    王钊(教程)

    2011-01-01

    这次为大家带来的是FW-190的制作流程。作为BF109的后继机种,德国的福克-乌尔夫飞机厂(Focke—Wulf Flugzeugbau GmbH)于30年代未研计成功新一代单座单发活塞战斗机FW190,该机最终成为大战中、后期性能超群的主战机种。在战争中,许多个人击落过100架以上或200架以上敌机的超级王牌飞行员使用的就是FW190。

  3. Conceptual design of Blanket Remote Handling System for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianghua, E-mail: weijh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  4. 聚变堆液态包层提氚鼓泡器的概念设计%Conceptual design of tritium bubbler for fusion reactor liquid blanket

    Institute of Scientific and Technical Information of China (English)

    谢波; 翁葵平; 侯建平; 古梅

    2015-01-01

    The conceptual design of liquid blanket tritium bubbler (LBTB) with the gas-liquid exchange column as core was proposed, based on the works of hydrogen extraction from liquid lithium alloys by gas-liquid contact method. LBTB consists of the gas sample purifier, gas-liquid exchange column system, saturator-desorption and auxiliary system. The LBTB was Ar-H2 as carrier, and would on line monitor the tritium behavior of liquid blanket main loop, and test the tritium recovery efficiency whether or not reaching 90%after multi-column cascade.%在气-液接触法提取液态锂合金中的氢的实验基础上,提出了以气-液交换柱为核心的提氚鼓泡器(LBTB)的概念设计。LBTB 主要由气体进样纯化器、气-液交换柱系统、饱和器-解吸器和辅助系统构成。LBTB以氩氢混合气为吹洗气,其主要功能是在线监测液态包层主回路中的氚行为,并检验多柱级联后的氚回收率是否可以达到90%的期望值。

  5. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors

    DEFF Research Database (Denmark)

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470mL-CH4/g......L-CH4/gVS-added. The treatment of reactor effluent was also investigated. By acidification with sulfuric acid to pH lower than 5, almost 100% of the ammonia content in the effluent could be retained during the successive up-concentration process step. The reactor effluent could be up...

  6. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    A new technology for in-situ biogas upgrading and recovery of CH4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO2 from the liquid phase of a biogas reactor. The degassing membrane was submerged into a dega......A new technology for in-situ biogas upgrading and recovery of CH4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO2 from the liquid phase of a biogas reactor. The degassing membrane was submerged......, the COD removal efficiency and CH4 yield were not obviously affected by the gas desorption....

  7. Low activity aluminum blanket

    Energy Technology Data Exchange (ETDEWEB)

    Benenati, R.; Tichler, P.; Powell, J.R.

    1976-03-01

    The basic design of the breeding blanket consists of cylindrical aluminium canisters filled with a ceramic bed of moderating, shielding, and breeding materials all suitably cooled. A technical analysis of the blanket for an EPR design is given. Activation studies are presented. The effect of pulsed magnetic fields on module structure is investigated. (MOW)

  8. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-12-31

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  9. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  10. Design analyses of self-cooled liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.

    1986-12-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations.

  11. 用升流式厌氧污泥床处理高盐度稠油采出水研究%Study on treating high salinity wastewater from heavy oil production with up-flow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    刘春爽; 赵东风; 国亚东; 蔡芸

    2012-01-01

    An up-flow anaerobic sludge blanket ( UASB) reactor was applied to treat the low nutrient and high salinity wastewater from heavy oil production process. A model was developed for the UASB reactor using the back propagation neural network (BPNN) theory. The impacts of various process parameters on UASB reactor performance were described based on three-dimensional graphs and the reactor operation control strategies were gained. The results indicate that under the COD: TN:TP ratio of 1200:10:1, high salt concentration of 1. 50% and influent COD loading rate of 0. 80 kg/(m3 . d) condition, the COD removal could reach 70% and average oil removal rate was 70% . UASB could be used to treat low nutrient and high salinity heavy oil-produced wastewater efficiently. Based on the partitioning connection weights, the (HRT is the key factor and the comparative influences on the performance are: THRT> salinity > COD>pH.%采用升流式厌氧污泥床(UASB)处理低营养盐高盐度稠油废水,采用BP神经网络建立UASB反应器处理高含盐油田废水的数学模型,以三维谱图为基础,直观表征各主要影响因子对系统运行效果的影响过程,得到反应器运行调控优化对策.结果表明:在m(COD)∶m(TN)∶m(TP)为1200∶10∶1(其中COD为化学需氧量,TN为总氮,TP为总磷)、含盐量为1.50%、进水COD负荷为0.80 kg/(m3·d)的条件下,COD去除率能够达到70%,原油平均去除率达到70%;UASB反应器能够在低营养条件下高效处理高含盐油田废水;以分离权法为依据,得出水力停留时间(tHRT)为限制因子,各影响因素相对重要性依次为tHRT、进水盐度、进水COD、进水pH值.

  12. Lithium as a blanket coolant

    Energy Technology Data Exchange (ETDEWEB)

    Wells, W.M.

    1977-01-01

    Recent re-assessment of tokamak reactors which move towards smaller size and lower required field strength (higher beta)/sup 2/ change the picture as regards the magnitude of MHD effects on flow resistance for lithium coolant. Perhaps the most important consequence of this as regards use of this coolant is that of clear acceptability of such effects when the flow is predominantly transverse to the magnetic field. This permits defining a blanket that consists entirely of round tubes containing the circulated lithium with voids between the tubes. Required thermal-hydraulic calculations are then on bases which are well established, especially in view of recent results dealing with perturbations of ducts and magnetic fields. Mitigation of MHD effects is feasible through tapering of tube wall thickness or use of insulated layers, but their use was not mandatory for the assumed conditions. Blanket configurations utilizing flowing lithium in round tubes immersed in static lithium may be suitable, but calculational methods do not now exist for this situation. Use of boiling potassium or cesium appears to be prohibitive in terms of vapor flow area when temperature levels are consistent with stainless steel. Liquid sodium, in addition to not being a breeding material, requires higher velocity than lithium for the same heat removal.

  13. Objectives and status of EUROfusion DEMO blanket studies

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, L.V., E-mail: lorenzo.boccaccini@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Aiello, G.; Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Bachmann, C. [EUROfusion, PPPT, Garching (Germany); Barrett, T. [CCFE, Abingdon OX14 3DB (United Kingdom); Del Nevo, A. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Demange, D. [Karlsruhe Institute of Technology (KIT) (Germany); Forest, L. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Hernandez, F.; Norajitra, P. [Karlsruhe Institute of Technology (KIT) (Germany); Porempovic, G. [Fuziotech Engineering Ltd (Hungary); Rapisarda, D. [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Sardain, P. [CEA/IRFM, 13115 Saint-Paul-lès-Durance (France); Utili, M. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Vala, L. [Centrum výzkumu Řež, 250 68 Husinec-Řež (Czech Republic)

    2016-11-01

    Highlights: • Short description of the new Breeding Blanket Project in the EUROfusion consortium for the design of the EU PPPT DEMO: objectives. • Presentation of the design approach used in the development of the Breeding Blanket design: requirements. • Breeding Blanket design; in particular the four blanket concepts included in the study are presented, recent results highlighted and the status discussed. • Auxiliary systems and related R&D programme: in particular the work areas addressed in the Project (Tritium Technology, Pb-Li and Solid Breeders Technology, First Wall Design and R&D, Manufacturing) are presented, recent results highlighted and the status discussed. - Abstract: The design of a DEMO reactor requires the design of a blanket system suitable of reliable T production and heat extraction for electricity production. In the frame of the EUROfusion Consortium activities, the Breeding Blanket Project has been constituted in 2014 with the goal to develop concepts of Breeding Blankets for the EU PPPT DEMO; this includes an integrated design and R&D programme with the goal to select after 2020 concepts on fusion plants for the engineering phase. The design activities are presently focalized around a pool of solid and liquid breeder blanket with helium, water and PbLi cooling. Development of tritium extraction and control technology, as well manufacturing and development of solid and PbLi breeders are part of the programme.

  14. Detection of Breeding Blankets Using Antineutrinos

    Science.gov (United States)

    Cogswell, Bernadette; Huber, Patrick

    2016-03-01

    The Plutonium Management and Disposition Agreement between the United States and Russia makes arrangements for the disposal of 34 metric tons of excess weapon-grade plutonium. Under this agreement Russia plans to dispose of its excess stocks by processing the plutonium into fuel for fast breeder reactors. To meet the disposition requirements this fuel would be burned while the fast reactors are run as burners, i.e., without a natural uranium blanket that can be used to breed plutonium surrounding the core. This talk discusses the potential application of antineutrino monitoring to the verification of the presence or absence of a breeding blanket. It is found that a 36 kg antineutrino detector, exploiting coherent elastic neutrino-nucleus scattering and made of silicon, could determine the presence of a breeding blanket at a liquid sodium cooled fast reactor at the 95% confidence level within 90 days. Such a detector would be a novel non-intrusive verification tool and could present a first application of coherent elastic neutrino-nucleus scattering to a real-world challenge.

  15. FLUKA Simulations of DPA in 6H-SiC Reactor Blanket Material Induced by Different Radiation Fields Frequently Mentioned in Literature

    Science.gov (United States)

    Korkut, Turgay; Korkut, Hatun

    2013-02-01

    Silicon carbide (SiC) is used extensively for the production of high-tech semiconductor devices. Today the use of this material in radiation environments such as fusion reactors creates excitement in the nuclear industry. Specific radiation types and energies which semiconductors were frequently exposed are of great value in terms of high-tech device studies. We used FLUKA simulation code to investigate radiation induced effects in 6H-SiC for different energetic protons, neutrons, photons and electrons in this paper. We analyzed displacement per atom values taking account of the simulation results in a very large perspective of radiation type and energy.

  16. Flexible armored blanket development

    Energy Technology Data Exchange (ETDEWEB)

    Roth, E.S.

    1978-05-01

    An exploratory development contract was undertaken on December 23, 1977 which had as its purpose the development and demonstration of a flexible armored blanket design suitable for providing ballistic protection to nuclear weapons during shipment. Objectives were to design and fabricate a prototype blanket which will conform to the weapon shape, is troop-handleable in the field, and which, singly or in multiple layers, can defeat a range of kinetic energy armor piercing (AP) ammunition potentially capable of damaging the critical portion of the nuclear weapon. Following empirical testing, including the firing of threat ammunition under controlled laboratory and field test conditions, materials were selected and assembled into two blanket designs, each weighing approximately 54 kg/m{sup 2} (11 lbs/ft{sup 2}) and estimated to cost from $111 to $180 per ft{sup 2} in production. A firing demonstration to evidence blanket performance against terrorist/light infantry weapons, heavy infantry weapons, and aircraft cannon was conducted for representatives of the DOD and interested Sandia employees on April 12, 1978. The blankets performed better than anticipated defeating bullets up to 7.62 mm x 51 mm AP with one layer and projectiles up to 23 mm HEI with two layers. Based on these preliminary tests it is recommended that development work be continued with the following objectives: (1) the selection by the DOD of priority applications, (2) the specific design and fabrication of sufficient quantities of armored blankets for field testing, (3) the evaluation of the blankets by DOD operational units, with reports to Sandia Laboratories to enable final design.

  17. Operation performance and granule characterization of upflow anaerobic sludge blanket (UASB) reactor treating wastewater with starch as the sole carbon source.

    Science.gov (United States)

    Lu, Xueqin; Zhen, Guangyin; Estrada, Adriana Ledezma; Chen, Mo; Ni, Jialing; Hojo, Toshimasa; Kubota, Kengo; Li, Yu-You

    2015-03-01

    Long-term performance of a lab-scale UASB reactor treating starch wastewater was investigated under different hydraulic retention times (HRT). Successful start-up could be achieved after 15days' operation. The optimal HRT was 6h with organic loading rate (OLR) 4g COD/Ld at COD concentration 1000mg/L, attaining 81.1-98.7% total COD removal with methane production rate of 0.33L CH4/g CODremoved. Specific methane activity tests demonstrated that methane formation via H2-CO2 and acetate were the principal degradation pathways. Vertical characterizations revealed that main reactions including starch hydrolysis, acidification and methanogenesis occurred at the lower part of reactor ("main reaction zone"); comparatively, at the up converting acetate into methane predominated ("substrate-shortage zone"). Further reducing HRT to 3h caused volatile fatty acids accumulation, sludge floating and performance deterioration. Sludge floating was ascribed to the excess polysaccharides in extracellular polymeric substances (EPS). More efforts are required to overcome sludge floating-related issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of pH, acidity and alkalinity on the microbiota activity of an anaerobic sludge blanket reactor (UASB treating pigmanure effluents

    Directory of Open Access Journals (Sweden)

    Fabricio Moterani

    2009-12-01

    Full Text Available The anaerobic processes used for treating wastewater have been often applied mainly for optimizing treatment systems. Among many of these systems, the UASB is one of the most successfully used. This type of reactor presents a good condition for microorganisms development, and therefore, for organic matter degradation. As a result, the goal of this research was to evaluate the effect of parameters, such as: temperature, pH, acidity and alkalinity on the microorganisms consortia, acclimatized in an UASB reactor, and simultaneously, observing the sludge morphology through a scanning electronic microscopy (SEM, in order to identify the response of the bacteria consortia under this environmental circumstances. The biomass operated under a mesophilic temperature, varying from 190C to 210C. The maximum concentration of volatile acids was 100 mg L-1, and the volumetric organic loading rate was 59 kgCOD m-3d-1. The total alkalinity concentration values were between 2500 and 5550 mgCaCO3 L-1. The average pH value of the sludge was 7.3. Under these conditions it was observed the development of a well acclimatized granular biomass, composed mainly of filamentous bacteria.

  19. Remoción anaerobia del colorante azul directo brl en Reactor Anaerobio de Flujo Ascendente UASB (Upflow Anaerobic Sludge Blanket con carbón activado

    Directory of Open Access Journals (Sweden)

    Christian Zavala-Rivera

    2015-11-01

    Full Text Available In this research the brl direct blue dye was used for anaerobic removal with a bacterial consortium of industrial effluents from Industrial Park Río Seco (IPRS, Arequipa, Peru; in an anaerobic reactor of UASB Upflow with activated carbon. The reactor had a capacity of 14.4 L with sludge and activated carbon of 40% of volume, with an organic load of 6 Kg COD/m3•dia and a hydraulic retention time of 1 day with an upward flow. The objective was to measure the efficiency of the anaerobic removal of coloring in a time of 28 days. The results showed an increase of 41% of the solids suspended volatile (SSV 12894 mg•L-1 up to 21546 mg•L-1 under the conditions of the experiment, with a removal of 57% of the chemical demand of oxygen (COD from 484 mg•L-1 to 122 mg•L-1 and a removal of 87% of the dye Blue direct the 69.61 brl mg•L-1 to 9 mg•L-1. Results with activated charcoal granular only, they showed a removal of 61% of the dye Blue direct 70.67 brl mg•L-1 to 27.83 mg•L-1 at 28 days.

  20. Biocatalysis conversion of methanol to methane in an upflow anaerobic sludge blanket (UASB) reactor: Long-term performance and inherent deficiencies.

    Science.gov (United States)

    Lu, Xueqin; Zhen, Guangyin; Chen, Mo; Kubota, Kengo; Li, Yu-You

    2015-12-01

    Long-term performance of methanol biocatalysis conversion in a lab-scale UASB reactor was evaluated. Properties of granules were traced to examine the impact of methanol on granulation. Methanolic wastewater could be stably treated during initial 240d with the highest biogas production rate of 18.6 ± 5.7 L/Ld at OLR 48 g-COD/Ld. However, the reactor subsequently showed severe granule disintegration, inducing granule washout and process upsets. Some steps (e.g. increasing influent Ca(2+) concentration, etc.) were taken to prevent rising dispersion, but no clear improvement was observed. Further characterizations in granules revealed that several biotic/abiotic factors all caused the dispersion: (1) depletion of extracellular polymeric substances (EPS) and imbalance of protein/polysaccharide ratio in EPS; (2) restricted formation of hard core and weak Ca-EPS bridge effect due to insufficient calcium supply; and (3) simplification of species with the methanol acclimation. More efforts are required to solve the technical deficiencies observed in methanolic wastewater treatment.

  1. Design and Analysis of HIP joined W and Ferritic-Martensitic Steel Mockup for Fusion Reactor Divertor Development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. W.; Shin, K. I.; Kim, S. K.; Jin, H. G.; Lee, E. H.; Yoon, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Moon, S. Y.; Hong, B. G. [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2013-10-15

    Korea has developed a Helium Cooled Ceramic Reflector (HCCR) based Test Blanket System (TBS) for an ITER, which consists of the First Wall (FW), Breeding Zone (BZ), Side Wall (SW), and BZ box. Among them, the FW is an important component which faces the plasma directly and, therefore, it is subjected to high heat and neutron loads. The FW of the TBM is considered to be composed of a beryllium (Be) armor as a plasma-facing material and Ferritic-Martensitic (FM) steel as a structure material, or a tungsten (W) armor and FM steel, or bare FM steel. Since Be/FMS and bare FMS were developed and proved by high heat flux (HHF) test, W armor and FM steel joining, fabricated mock-ups, and preparation of the high heat flux (HHF) test for integrity investigation are introduced in the present study. For the application to fusion reactor, joining methods with W to FMS has been developed. The W mock-up was fabricated with HIP considering Ti interlayer and PHHT condition. And the HHF test was prepared by performing the preliminary analysis to determine the test conditions. From the analysis heating and cooling conditions were determined for 0.5 and 1.0 MW/m2 heat fluxes. In the near future, the thermal life-time will be evaluated to determine the test period of the mockups by the mechanical analysis with ANSYS.

  2. Design and safety analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuai; Zhou, Guangming; Lv, Zhongliang; Jin, Cheng; Chen, Hongli [University of Science and Technology of China, Anhui (China). School of Nuclear Science and Technology

    2016-05-15

    This paper reports the design and safety analysis results of the helium cooled solid breeder blanket of the Chinese Fusion Engineering Test Reactor (CFETR). Materials selection and basic structure of the blanket have been presented. Performance analysis including neutronics analysis and thermo-mechanical analysis has shown good results. And the safety analysis of the blanket under Loss Of Coolant Accident (LOCA) conditions has been described. Results showed the current design can deal well with the selected accident scenarios.

  3. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.

  4. Heat transfer problems in gas-cooled solid blankets

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    In all fusion reactors using the deuterium-tritium fuel cycle, a large fraction approximately 80 percent of the fusion energy will be released as approximately 14 MeV neutrons which must be slowed down in a relatively thick blanket surrounding the plasma, thereby, converting their kinetic energy to high temperature heat which can be continuously removed by a coolant stream and converted in part to electricity in a conventional power turbine. Because of the primary goal of achieving minimum radioactivity, to date Brookhaven blanket concepts have been restricted to the use of some form of solid lithium, with inert gas-cooling and in some design cases, water-cooling of the shell structure. Aluminum and graphite have been identified as very promising structural materials for fusion blankets, and conceptual designs based on these materials have been made. Depending on the thermal loading on the ''first'' wall which surrounds the plasma as well as blanket design, heat transfer problems may be noticeably different in gas-cooled solid blankets. Approaches to solution of heat removal problems as well as explanation of: (a) the after-heat problems in blankets; (b) tritium breeding in solids; and (c) materials selection for radiation shields relative to the minimum activity blanket efforts at Brookhaven are discussed.

  5. Preliminary three-dimensional neutronics design and analysis of helium-cooled blanket for a multi-functional experimental fusion-fission hybrid reactor%多功能聚变裂变混合实验堆FDS-MFX氦冷包层三维中子学初步设计与分析

    Institute of Scientific and Technical Information of China (English)

    刘金超; FDS团队; 金鸣; 王明煌; 蒋洁琼; 王国忠; 邱岳峰; 宋婧; 邹俊; 吴宜灿

    2011-01-01

    FDS-MFX(Multi-Functional eXperimental fusion-fission hybrid reactor)是一个基于现实可行技术的多功能聚变裂变混合实验堆概念,分3个阶段相继开展实验研究,分别采用纯氚增殖包层、铀燃料包层和乏燃料包层.本文重点对其中铀燃料包层后期阶段中高浓缩铀模块的摆放方式和尺寸进行优化,给出一个区平均最大功率密度约为100 MW/m3,235U装料量约为1 t,氚增殖率为1.05的三维初步中子学方案.%A multi-functional experimental fusion-fission hybrid reactor concept named FDS-MFX , which is based on viable fusion and fission technologies, has been proposed. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this paper,the design optimization for the layout and the size of high enriched uranium modules inlater stage of uranium-fueled blanket has been performed.Finally,proposing a preliminarythree-dimension neutronies design with maximum average Power Density(Pdmax)100 MW/m3,loaded mass of the 235U 1 000 kg and TBR(Tritium Breeding Ratio)1.05.

  6. The Haida Button Blanket.

    Science.gov (United States)

    Johnson, Vesta

    In the Haida nation, there are two phratries, Eagle and Raven, divided into a number of clans sharing one or more emblems. These emblems, inherited from the mother's line, adorn the button blankets which are the traditional ceremonial robes that serve to identify the family of the wearer. Written instructions and diagrams guide students in…

  7. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  8. Status of the EU domestic agency electromagnetic analyses of ITER vacuum vessel and blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, P., E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy, Josep Plá n. 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Albanese, R. [Association Euratom/ENEA/CREATE, DIEL, Università Federico II di Napoli, Napoli 80125 (Italy); Lucca, F.; Roccella, M. [L.T. Calcoli S.a.S. Piazza Prinetti, 26/B, Merate, Lecco (Italy); Portone, A. [Fusion for Energy, Josep Plá n. 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Rubinacci, G. [Association Euratom/ENEA/CREATE, DIEL, Università Federico II di Napoli, Napoli 80125 (Italy); Ventre, S.; Villone, F. [Association Euratom/ENEA/CREATE, DAEIMI, Università di Cassino, Cassino 03043 (Italy)

    2013-10-15

    Highlights: Eddy and halo currents and corresponding Lorentz forces on the ITER vacuum vessel and blanket modules have been computed. VDEs and MDs belonging to cat III, II and I, and a magnet fast discharge have been simulated. The maximum vertical force in the VV (about 120 MN downwards) is experienced in VDE-DW-SLOW cat III. For the FW panel of blanket 18 the most demanding load case is the VDE downward cat III producing a radial torque of about 110 kNm. For the FW of blanket module 10 the most demanding load case is the VDE upward exp cat III producing a poloidal torque of about 130 kNm. -- Abstract: This paper presents the results of the electromagnetic analyses of the ITER vacuum vessel and blanket modules. A wide collection of electromagnetic transients has been simulated: VDEs and MDs belonging to cat III, II and I, and a magnet fast discharge. Eddy and halo currents and corresponding Lorentz forces have been computed using 3D solid FE models implemented in ANSYS and CARIDDI. The plasma equilibrium configurations (displacement and quench of the plasma current, toroidal flux variation due to the β drop and halo currents wetting the first wall) used as an input for the EM analyses have been supplied by the 2D axisymmetric code DINA. The paper describes in detail the methodology used for the analyses and the main results obtained.

  9. Study on heat transfer performance of flow channels in first-wall of fusion reactor blanket%聚变堆包层第一壁流道换热性能研究

    Institute of Scientific and Technical Information of China (English)

    曹浩然; 黄荣华; 孟宪超; 黎俊亨

    2015-01-01

    以聚变堆包层第一壁内流道作为研究对象,设计了以空气为介质的包层第一壁U型流道换热性能实验台架。通过测量第一壁流道沿流动方向的温度和压力分布,研究了在不同管径和雷诺数下,温度、流速和弯头形状等因素对第一壁流道换热性能的影响,并与数值模拟结果进行了对比分析。实验结果表明:30mm×30mm最大的U型方管可以在不增加流动阻力的情况下,提高流体与管壁之间换热强度23%,并且通过弯头处渐缩的优化改进可进一步提高换热强度15%,数值分析结果与之也较符合。本研究表明通过改变包层第一壁流道的形状和尺寸可以有效提高第一壁流道的换热性能。%A set of apparatus of the U‐shape flow channels with air as coolant was designed to study the flow channels in the first‐wall of fusion reactor blanket .The temperature distributions of the flow channels in the first‐wall were measured along the flowing direction ,and the impacts of flow channel diameter ,Reynolds number ,temperature ,inlet velocity and corner shape on heat transfer perform‐ance of the first wall were investigated by comparing the measured data with numerical simulation re‐sults .The experiment results show that the largest U‐shape flow channel with 30 mm × 30 mm square cross‐section could increase performance of heat transfer between coolant and flow channel wall by 23% without the increasing coolant flow resistance ,the modified flow channel design with the conver‐ging flow area could further enhance the heat transfer by almost 15% ,with which the numerical simu‐lation results agree well .Research results show that the heat transfer performance of flow channels could be efficiently increased by modifying the size and shape .

  10. ITER solid breeder blanket materials database

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States); Dienst, W. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Material- und Festkoerperforschung; Flament, T. [CEA Centre d`Etudes de Fontenay-aux-Roses (France). Commissariat A L`Energie Atomique; Lorenzetto, P. [NET Team, Garching (Germany); Noda, K. [Japan Atomic Energy Research Inst., Takai, Ibaraki, (Japan); Roux, N. [CEA Centre d`Etudes et de Recherches Les Materiaux (France). Commissariat a L`Energie Atomique

    1993-11-01

    The databases for solid breeder ceramics (Li{sub 2},O, Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3} and LiAlO{sub 2}) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized.

  11. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    Science.gov (United States)

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  12. Transient analyses on the cooling channels of the DEMO HCPB blanket concept under accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuming, E-mail: Yuming.chen@kit.edu; Ghidersa, Bradut-Eugen; Jin, Xue Zhou

    2016-11-01

    Highlights: • This paper presents transient CFD analyses on the cooling channels of the DEMO HCPB FW for accidental scenarios LOCA and LOFA. • In both LOCA & LOFA, the wall temperature increases quickly to an unacceptable level within seconds. • If the coolant flow rate is maintained at a half of nominal value in case of LOFA (partial LOFA), the wall temperature rises much slower, but will still leads to a damage of structure within minutes. • The simulated heat transfer coefficients were compared with empirical correlations. - Abstract: Helium Cooled Pebble Bed (HCPB) blanket concept is one of the DEMO (Demonstration Power Plant) blanket concepts running for the final DEMO design selection. In this paper, transient analyses on the cooling channels of the FW are carried out by means of CFD simulations for the selected accidental scenarios loss-of-coolant-accident (LOCA) and loss-of-flow-accident (LOFA). ANSYS-CFX is used for the simulations. The simulation results help to understand how fast the temperature of the FW can increase and what is the time window that is available until the temperature of the structural material reaches the design limit in order to be able to define a suitable protection strategy for the system. In view of later developments of the models, the heat transfer coefficients calculated with CFD are compared with the values predicted by two widely used correlations for turbulent pipe flows.

  13. Updated conceptual design of helium cooling ceramic blanket for HCCB-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suhao [University of Science and Technology of China, Hefei, Anhui (China); Southwestern Institute of Physics, Chengdu, Sichuan (China); Cao, Qixiang; Wu, Xinghua; Wang, Xiaoyu; Zhang, Guoshu [Southwestern Institute of Physics, Chengdu, Sichuan (China); Feng, Kaiming, E-mail: fengkm@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China)

    2016-11-15

    Highlights: • An updated design of Helium Cooled Ceramic breeder Blanket (HCCB) for HCCB-DEMO is proposed in this paper. • The Breeder Unit is transformed to TBM-like sub-modules, with double “banana” shape tritium breeder. Each sub-module is inserted in space formed by Stiffen Grids (SGs). • The performance analysis is performed based on the R&D development of material, fabrication technology and safety assessment in CN ITER TBM program. • Hot spots will be located at the FW bend side. - Abstract: The basic definition of the HCCB-DEMO plant and preliminary blanket designed by Southwestern Institution of Physics was proposed in 2009. The DEMO fusion power is 2550 MW and electric power is 800 MW. Based on development of R&D in breeding blanket, a conceptual design of helium cooled blanket with ceramic breeder in HCCB-DEMO was presented. The main design features of the HCCB-DEMO blanket were: (1) CLF-1 structure materials, Be multiplier and Li{sub 4}SiO{sub 4} breeder; (2) neutronic wall load is 2.3 MW/m{sup 2} and surface heat flux is 0.43 MW/m{sup 2} (2) TBR ≈ 1.15; (3) geometry of breeding units is ITER TBM-like segmentation; (4)Pressure of helium is 8 MPa and inlet/outlet temperature is 300/500 °C. On the basis of these design, some important analytical results are presented in aspects of (i) neutronic behavior of the blanket; (ii) design of 3D structure and thermal-hydraulic lay-out for breeding blanket module; (iii) structural-mechanical behavior of the blanket under pressurization. All of these assessments proved current stucture fulfill the design requirements.

  14. Tailorable Advanced Blanket Insulation (TABI)

    Science.gov (United States)

    Sawko, Paul M.; Goldstein, Howard E.

    1987-01-01

    Single layer and multilayer insulating blankets for high-temperature service fabricated without sewing. TABI woven fabric made of aluminoborosilicate. Triangular-cross-section flutes of core filled with silica batting. Flexible blanket formed into curved shapes, providing high-temperature and high-heat-flux insulation.

  15. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  16. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Babineau, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Vaquer, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-13

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed.  The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations.  This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. 

  17. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  18. Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Li, Min; Lv, Zhongliang; Zhou, Guangming; Liu, Qianwen; Wang, Shuai; Wang, Xiaoliang; Zheng, Jie; Ye, Minyou

    2015-10-15

    Highlights: • A helium cooled solid blanket was proposed as a candidate blanket concept for CFETR. • Material selection, basic structure and gas flow scheme of the blanket were introduced. • A series of performance analyses for the blanket were summarized. - Abstract: To bridge the gap between ITER and DEMO and to realize the fusion energy in China, a fusion device Chinese Fusion Engineering Test Reactor (CFETR) was proposed and is being designed mainly to demonstrate 50–200 MW fusion power, 30–50% duty time factor, tritium self-sustained. Because of the high demand of tritium production and the realistic engineering consideration, the design of tritium breeding blanket for CFETR is a challenging work and getting special attention. As a blanket candidate, a helium cooled solid breeder blanket has been designed with the emphasis on conservative design and realistic blanket technology. This paper introduces the basic blanket scheme, including the material selection, structural design, cooling scheme and purge gas flow path. In addition, some results of neutronics, thermal-hydraulic and stress analysis are presented.

  19. Tratamento de águas residuárias de suinocultura em reatores anaeróbios de fluxo ascendente com manta de lodo (uasb em dois estágios seguidos de reator operado em batelada sequencial (RBS Swine wastewater treatment in upflow anaerobic sludge blanket reactor (uasb in two-stages followed by sequencing batch reactor (SBR

    Directory of Open Access Journals (Sweden)

    Roberto A. de Oliveira

    2011-02-01

    Full Text Available Neste trabalho, avaliou-se o desempenho de dois reatores anaeróbios de fluxo ascendente com manta de lodo (UASB, em série, seguidos de um reator operado em batelada sequencial (RBS com etapa aeróbia, no tratamento de águas residuárias de suinocultura. O sistema de tratamento anaeróbio em dois estágios foi alimentado com águas residuárias de suinocultura com concentrações médias de sólidos suspensos totais (SST, de 4.427 a 16.425 mg L-1 . As cargas orgânicas volumétricas (COV aplicadas no reator UASB do primeiro estágio variaram de 14,8 a 24,4 g DQO (L d-1. Os tempos de detenção hidráulica (TDH foram de 28 e 11 h e de 14 e 6 h no primeiro e segundo reatores UASB, respectivamente. O RBS foi operado com 1 e 2 ciclos diários de alimentação e com concentrações de SST do afluente, de 1.348 a 2.036 mg L-1 . As maiores eficiências de remoção de DQOtotal ocorreram com os maiores TDH, com valores médios de 78 a 88% nos reatores UASB, em dois estágios. Com o tratamento do efluente dos reatores UASB no RBS, as eficiências médias de remoção aumentaram para 93 a 97%, 92 a 98%, 57 a 78%, 71 a 88% e 68 a 85% para a DQO total, SST, P-total, nitrogênio total Kjeldahl (NTK e nitrogênio total (NT, respectivamente. Para os coliformes termotolerantes, as remoções foram de 93,80 a 99,99%.This work aimed to evaluate the performance of two aerobic-anaerobic combination system of upflow anaerobic sludge blanket digestion reactor (UASB in line followed by an aerobic sequencing bath reactor (SBR, used in swine wastewater treatment. The UASB system was fed with swine wastewater containing from 4427 to 16425 mg L-1 of total suspended solids (TSS. The treatment system was evaluated using organic loading (OLR of 14,8 to 24,4 g total COD (L d-1 in the first UASB reactor. The hydraulic detention times (HDT were of 28 and 11 h, and 14 and 6 h, in the first and second UASB reactor, respectively. The SBR was operated with one and two cycles

  20. Activation Characteristics of Fuel Breeding Blanket Module in Fusion Driven Subcritical System

    Institute of Scientific and Technical Information of China (English)

    HUANG Qun-Ying; LI Jian-Gang; CHEN Yi-Xue

    2004-01-01

    @@ Shortage of energy resources and production of long-lived radioactivity wastes from fission reactors are among the main problems which will be faced in the world in the near future. The conceptual design of a fusion driven subcritical system (FDS) is underway in Institute of Plasma Physics, Chinese Academy of Sciences. There are alternative designs for multi-functional blanket modules of the FDS, such as fuel breeding blanket module (FBB)to produce fuels for fission reactors, tritium breeding blanket module to produce the fuel, i.e. tritium, for fusion reactor and waste transmutation blanket module to try to permanently dispose of long-lived radioactivity wastes from fission reactors, etc. Activation of the fuel breeding blanket of the fusion driven subcritical system (FDS-FBB) by D-T fusion neutrons from the plasma and fission neutrons from the hybrid blanket are calculated and analysed under the neutron wall loading 0.5 MW/m2 and neutron fluence 15 MW. yr/m2. The neutron spectrum is calculated with the worldwide-used transport code MCNP/4C and activation calculations are carried out with the well known European inventory code FISPACT/99 with the latest released IAEA Fusion Evaluated Nuclear Data Library FENDL-2.0 and the ENDF/B-V uranium evaluated data. Induced radioactivities, dose rates and afterheats, etc, for different components of the FDS-FBB are compared and analysed.

  1. Overview of design activities for Li/V blankets

    Energy Technology Data Exchange (ETDEWEB)

    Sze, D.K.; Mattas, R.F.

    1997-12-31

    Recent fusion power plant design studies in the US have been conducted within the ARIES project. The most recent design of Li/V blankets was conducted as part of the ARIES-RS design. The ARIES-RS fusion power plant design study is based on reversed-shear (RS) physics with a Li/V (lithium breeder and vanadium structure) blanket. The reversed-shear discharge has been documented in many large tokamak experiments. The plasma in the RS mode has a high beta, low current, and low current drive requirement. Therefore, it is an attractive physics regime for a fusion power plant. The blanket system based on a Li/V has high temperature operating capability, good tritium breeding, excellent high heat flux removal capability, long structural life time, low activation, low after heat and good safety characteristics. For these reasons, the ARIES-RS reactor study selected Li/V as the reference blanket. The combination of attractive physics and attractive blanket engineering is expected to result in a superior power plant design.

  2. Blanket comparison and selection study. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies. (MOW)

  3. Desempenho de processo anaeróbio em dois estágios (reator compartimentado seguido de reator UASB para tratamento de águas residuárias de suinocultura Performance of two-stage anaerobic process (baffled reactor (ABR followed by an upflow sludge blanket reactor (UASB treating swine wastewater

    Directory of Open Access Journals (Sweden)

    Gracie F. R. Fernandes

    2006-04-01

    Full Text Available Avaliou-se o efeito das águas residuárias de suinocultura com concentrações de sólidos suspensos totais em torno de 6.000 mg L-1 (DQOtotal variando de 7.557 a 11.640 mg L-1 no desempenho de processo anaeróbio em dois estágios compostos por reator compartimentado (ABR e reator de fluxo ascendente com manta de lodo (UASB, instalados em série, em escala-piloto (volumes de 530 e 120 L, respectivamente, submetidos a tempos de detenção hidráulica (TDH de 56 a 18 h no primeiro reator e de 13 a 4 h no segundo reator. As eficiências médias de remoção de DQOtotal variaram de 71,1 a 87,5% no reator ABR e de 41,5 a 50,1% no reator UASB, resultando em valores médios de 86,8 a 94,9% para o sistema de tratamento anaeróbio em dois estágios com carga orgânica volumétrica (COV, na faixa de 5,05 a 10,12 kg DQOtotal (m³ d-1, no reator ABR, e de 2,83 a 9,63 kg DQOtotal (m³ d-1, no reator UASB. As eficiências de remoção de SST e SSV foram da ordem de 95,6%. O teor de metano no biogás manteve-se acima de 70% para os dois reatores. A produção volumétrica de metano máxima de 0,755 m³ CH4 (m³ d-1 ocorreu no reator 1, com COV de 10,12 kg DQOtotal (m³ d-1 e TDH de 18 h. Os valores médios de pH variaram na faixa de 7,2 a 8,0 para os efluentes dos reatores 1 e 2. Os ácidos voláteis totais mantiveram-se estáveis com concentrações abaixo de 200 mg L-1. Com variações abruptas e acentuadas de concentrações de SST e DQOtotal do afluente, os reatores mantiveram as eficiências de remoção de DQO e sólidos suspensos, em torno de 70%, e a qualidade do biogás, com 80% de CH4.In this work it was evaluated the effect of swine wastewater with total suspended solid (TSS concentration around 6000 mg L-1 (CODtotal from 7557 to 11640 mg L-1 on the performance of two stage anaerobic process constituted of anaerobic baffled reactors (ABR and an upflow sludge blanket reactor (UASB installed in series, in pilot scale testing (volumes of 530 L and

  4. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  5. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    Science.gov (United States)

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added).

  6. Progress on DCLL Blanket Concept

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Clement; Abdou, M.; Katoh, Yutai; Kurtz, Richard J.; Lumsdaine, A.; Marriott, Edward P.; Merrill, Brad; Morley, Neil; Pint, Bruce A.; Sawan, M.; Smolentsev, S.; Williams, Brian; Willms, Scott; Youssef, M.

    2013-09-01

    Under the US Fusion Nuclear Science and Technology Development program, we have selected the Dual Coolant Lead Lithium concept (DCLL) as a reference blanket, which has the potential to be a high performance DEMO blanket design with a projected thermal efficiency of >40%. Reduced activation ferritic/martensitic (RAF/M) steel is used as the structural material. The self-cooled breeder PbLi is circulated for power conversion and for tritium breeding. A SiC-based flow channel insert (FCI) is used as a means for magnetohydrodynamic pressure drop reduction from the circulating liquid PbLi and as a thermal insulator to separate the high-temperature PbLi (~700°C) from the helium-cooled RAF/M steel structure. We are making progress on related R&D needs to address critical Fusion Nuclear Science and Facility (FNSF) and DEMO blanket development issues. When performing the function as the Interface Coordinator for the DCLL blanket concept, we had been developing the mechanical design and performing neutronics, structural and thermal hydraulics analyses of the DCLL TBM module. We had estimated the necessary ancillary equipment that will be needed at the ITER site and a detailed safety impact report has been prepared. This provided additional understanding of the DCLL blanket concept in preparation for the FNSF and DEMO. This paper will be a summary report on the progress of the DCLL TBM design and R&Ds for the DCLL blanket concept.

  7. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  8. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  9. Mass and energy balance: application to the sanitary sewage treatment with an upflow anaerobic sludge blanket (UASB) reactors to temperature of 20 deg C; Balanco de massa e energia: aplicacao ao tratamento de esgotos sanitarios com reatores anaerobicos de manta de lodo (UASB) a temperatura de 20 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, Katherine Ivonne Alcocer

    1992-07-01

    A feasibility study of an Upflow Anaerobic Sludge Blanket (UASB) reactor use as a sewage treatment plant component for areas with average temperature bellow 20 deg C was performed. The literature on UASB reactor indicates that a 70 % chemical oxygen demand (COD) removal al 20 and 6 to 17 hr hydraulic detention time is possible in sewage treatment plants. This study was developed for a Oruro (Bolivia) district and the plant was designed for a population of up to 10,000 inhabitants. This city presents average temperatures lower than 20 deg C being necessary to heat the sewage if is used the UASB reactor. Based on the performance simulation of mass and energy balances it was found that 84 % COD removal and 92 % total suspended solids removal are possible. The potential average energy production (61 kW due to methane combustion) is less than 10 % of the power consumption for heating, which indicates that the use of the methane may be expensive. The evaluated energy rate to be applied to the sewage for heating is 0.33 kW/m{sup 3} d{sup -1} which is significantly greater than the necessary energy to introduce oxygen in aerobic treatment systems. However total energy demand for aerobic systems must be evaluated for each particular case. (author)

  10. First wall and blanket module safety enhancement by material selection and design decision

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems.

  11. Model problem of MHD flow in a lithium blanket

    Energy Technology Data Exchange (ETDEWEB)

    Cherepanov, V.Y.

    1978-01-01

    A model problem is considered for a feasibility study concerning controlled MHD flow in the blanket of a Tokamak nuclear reactor. The fundamental equations for the steady flow of an incompressible viscous fluid in a uniform transverse magnetic field are solved in rectangular coordinates, in the zero-induction approximation and with negligible induced currents. A numerical solution obtained for a set of appropriate boundary constraints establishes the conditions under which no stagnation zones will be formed.

  12. Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept

    Science.gov (United States)

    Ma, Xuebin; Liu, Songlin; Li, Jia; Pu, Yong; Chen, Xiangcun

    2014-04-01

    CFETR is the “ITER-like” China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT—HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits.

  13. 聚变-裂变混合堆高功率密度包层的设计研究%High Power Density Blanket Design Study for Fusion-fission Hybrid Reactors

    Institute of Scientific and Technical Information of China (English)

    黄锦华; 邓培智

    2001-01-01

    A conceptual design study of a high power density blanket was carried out. The blanket is cooled by high-pressure helium in tubes in the form of cooling panels. A great number of cooling panels is arranged inside the blanket yet maintaining a fairly simple configuration. The module is robust and fabricable. The concept of LiPb eutectic/transuranium oxide suspension is adopted. The neutronics design is performed giving a flattened power density distribution with the peak value of 70 W/cm3. Thermal analysis shows the design can satisfy technical requirements. Preliminary structural analysis has also been done.%进行了高功率密度包层的概念设计研究。包层冷却采用管道承压的氦气。虽然引入了众多的氦冷却管道,包层结构仍然比较简单、坚固并便于制造。采用了超铀氧化物颗粒悬浮在锂铅共熔体的方案,中子学计算给出峰值功率密度为70 MW*m-3,功率密度分布比较平坦。热工分析计算表明设计能满足技术要求。此外,进行了初步的结构分析计算。

  14. Assessment of alkali metal coolants for the ITER blanket

    Science.gov (United States)

    Natesan, K.; Reed, C. B.; Mattas, R. F.

    1994-06-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The blanket comparison and selection study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water, and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper addresses the thermodynamics of interactions between the liquid metals (e.g., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data are used to assess the long-term performance of the first wall in a liquid metal environment. Other key issues include development of electrical insulator coatings on the first-wall structural material to MHD pressure drop, and tritium permeation/inventory in self-cooled and indirectly cooled concepts. Acceptable types of coatings (based on their chemical compatibility and physical properties) are identified, and surface-modification avenues to achieve these coatings on the first wall are discussed. The assessment examines the extent of our knowledge on structural materials performance in liquid metals and identifies needed research and development in several of the areas in order to establish performance envelopes for the first wall in a liquid-metal environment.

  15. Thermal Hydraulic Analysis of K-DEMO Single Blanket Module for Preliminary Accident Analysis using MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    To develop the Korean fusion commercial reactor, preliminary design concept for K-DEMO (Korean fusion demonstration reactor) has been announced by NFRI (National Fusion Research Institute). This pre-conceptual study of K-DEMO has been introduced to identify technical details of a fusion power plant for the future commercialization of fusion reactor in Korea. Before this consideration, to build the K-DEMO, accident analysis is essential. Since the Fukushima accident, which is severe accident from unexpected disaster, safety analysis of nuclear power plant has become important. The safety analysis of both fission and fusion reactors is deemed crucial in demonstrating the low radiological effect of these reactors on the environment, during severe accidents. A risk analysis of K-DEMO should be performed, as a prerequisite for the construction of a fusion reactor. In this research, thermal-hydraulic analysis of single blanket module of K-DEMO is conducted for preliminary accident analysis for K-DEMO. Further study about effect of flow distributer is conducted. The normal K-DEMO operation condition is applied to the boundary condition and simulated to verify the material temperature limit using MELCOR. MELCOR is fully integrated, relatively fast-running code developed by Sandia National Laboratories. MELCOR had been used for Light Water Reactors and fusion reactor version of MELCOR was developed for ITER accident analysis. This study shows the result of thermal-hydraulic simulation of single blanket module with MELCOR which is severe accident code for nuclear fusion safety analysis. The difference of mass flow rate for each coolant channel with or without flow distributer is presented. With flow distributer, advantage of broadening temperature gradient in the K-DEMO blanket module and increase mass flow toward first wall is obtained. This can enhance the safety of K-DEMO blanket module. Most 13 .deg. C temperature difference in blanket module is obtained.

  16. Investigation of effect of post weld heat treatment conditions on residual stress for ITER blanket shield blocks

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun-Chea, E-mail: hcjung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Sa-Woong [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Yun-Hee [Division of Convergence Technology, Korea Research Institute of Standard and Science (KRISS), Daejeon (Korea, Republic of); Baek, Seung-Wook [Division of Industrial Metrology, Korea Research Institute of Standard and Science (KRISS), Daejeon (Korea, Republic of); Ha, Min-Su; Shim, Hee-Jin [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • PWHT for ITER blanket shield block should be performed for dimensional stability. • Investigation of the effect of PWHT conditions on properties was performed. • Instrumented indentation method for evaluation of properties was used. • Residual stress and hardness decreased with increasing PWHT temperature. • Optimization of PWHT conditions would be needed for satisfaction of requirement. - Abstract: The blanket shield block (SB) shall be required the tight tolerance because SB interfaces with many components, such as flexible support keypads, First Wall (FW) support contact surfaces, FW central bolt, electrical strap contact surfaces and attachment inserts for both FW and Vacuum Vessel (VV). In order to fulfil the tight tolerance requirement, stress relieving shall be performed for dimensional stability after cover welding operation. In this paper, effect of Post Weld Heat Treatment (PWHT) conditions, temperature and holding time, was investigated on the residual stress and hardness. The 316L Stainless Steel (SS) was prepared and welded by manual TIG welding by using filler material with 2.4 mm of diameter. Welded 316L SS plate was machined to prepare the specimen for PWHT. PWHT was implemented at 250, 300, 400 °C for 2 and 3 h (400 °C only) and residual stress after relaxation were determined. The evaluation of residual stress and hardness for each specimen was carried out by instrumented indentation technique. The residual stress and hardness were decreased with increasing the heat treatment temperature and holding time.

  17. Avaliação do desempenho do reator anaeróbio de manta de lodo (uasb em escala laboratorial na remoção da carga orgânica de águas residuárias da suinocultura Performance evaluation of a lab-scale upflow anaerobic sludge blanket reactor (UASB removing organic loading rate from swine manure

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos

    2005-04-01

    Full Text Available Objetivou-se com o presente trabalho avaliar o desempenho do reator anaeróbio de manta de lodo (UASB-Upflow Anaerobic Sludge Blanket construído em escala laboratorial na redução da carga orgânica poluidora dos despejos suinícolas brutos. O sistema completo foi composto de um tanque de acidificação e equalização, reator UASB e lagoa aerada facultativa. O tempo de detenção hidráulica (TDH e temperatura adotada para o reator UASB foram de 30 horas e 30 ºC, respectivamente. Os valores médios afluentes de DQO T, ST e SVT foram de 1806, 1810 e 1240 mg.L-1. As eficiências de remoção de DQO T, ST e SVT foram de 84, 58 e 73%, respectivamente. O sistema se apresentou-se estável, com boas condições de tamponamento, retenção e digestibilidade de sólidos, demonstrando que os critérios adotados foram adequados, principalmente aqueles referentes ao TDH, carga orgânica volumétrica (COV e temperatura.The present work was carried out in order to evaluate the performance of a lab scale Upflow Anaerobic Sludge Blanket reactor (UASB treating liquid effluent from swine manure without solids separation. The treatment system consisted of one acidification tank, which also equalized the substrate, an UASB reactor, and an aerated facultative pound. The hydraulic retention time (HRT and temperature adopted for the UASB reactor were 30h and 30ºC, respectively. The influent average values of Chemical Oxygen Demand (COD, Total Solids (TS and Total Volatile Solids (TVS were 1806, 1810 and 1240 mg.L-1. The removal efficiencies were 84, 58 and 73 %, respectively. The system presented good stability and buffering conditions, and also a good solids digestibility, showing that the research criteria adopted was adequate, mainly those parameters referred to the HRT, Volumetric Organic Loading Rate (VOLR and temperature.

  18. Desenvolvimento e operação de reator anaeróbio de manta de lodo (UASB no tratamento dos efluentes da suinocultura em escala laboratorial Development and operation of an upflow anaerobic sludge blanket reactor (UASB treating liquid effluent from swine manure in laboratory scale

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos

    2006-02-01

    Full Text Available A atividade suinícola vem, desde meados da década de 70, sendo uma das mais poluidoras atividades agroindustriais no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver um Reator Anaeróbio de Manta de Lodo (UASB-Upflow Anaerobic Sludge Blanket visando tratar os dejetos produzidos com máxima eficiência dentro de um tempo e com custo reduzidos. Para tanto um experimento em escala laboratorial foi projetado e monitorado no Laboratório de Análise de Água do Departamento de Engenharia da Universidade Federal de Lavras (LAADEG, sendo composto por um Tanque de Acidificação e Equalização (TAE, um Reator Anaeróbio de Manta de Lodo e uma Lagoa Aerada Facultativa (LAF, o qual foi alimentado com fluxo contínuo. As análises físico-químicas realizadas foram: DQO, DBO5, Sólidos Totais (Fixos e Voláteis, Temperatura, pH, Nitrogênio, Fósforo, Acidez e Alcalinidade Total. O sistema proporcionou eficiência de remoção média de 93% de DQO, 84% de DBO5 e 85% de Sólidos Totais Voláteis, demonstrando adequada adaptação aos diversos tempos de detenção hidráulica adotados (55, 40, 30, 25, 18 e 15 horas. Os parâmetros adotados na partida do reator UASB foram: COV: 1,11kgDQO.m-3.d-1, COB: 0,019 kgDBO5.kgSVT-1.d-1 e TDH: 55h.The swine production, since 70th , is one of the most pollutant agro-industrial activities in the Minas Gerais State, Brazil. The objective of this research was to develop an Upflow Anaerobic Sludge Blanket Reactor (UASB, aiming at treating the effluent generated within a maximum efficiency and minimum time and cost. Therefore, a lab-scale reactor was built up and monitored in the laboratory of Engineering Department at the Federal University of Lavras (UFLA. The system consisted of an Acidification and Equalization Tank (AET, an Upflow Anaerobic Sludge Blanket reactor (UASB, and an Aerated Facultative Pond (AFP. The system was fed continuously. The physical-chemical analyses carried out were: COD, BOD5, Total

  19. Development of blanket remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  20. Uso de lagoa aerada facultativa como polimento do reator anaeróbio de manta de lodo UASB no tratamento de dejetos de suínos em escala laboratorial The efficiency of an aerated pond used for treating the effluent of an UASB reactor (upflow anaerobic sludge blanket reactor treating swine manure in a lab-scale system

    Directory of Open Access Journals (Sweden)

    Fernanda Ribeiro do Carmo

    2004-06-01

    Full Text Available As atividades agroindustriais têm se voltado não somente para o aumento da produtividade, mas também para a conservação do meio ambiente. A suinocultura é, sem dúvida, uma das atividades agroindustriais mais poluidoras, principalmente no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver e operar uma Lagoa Aerada Facultativa (LAF em escala de bancada (laboratorial, e como polimento de um Reator Anaeróbio de Manta de Lodo (UASB, visando a tratar os dejetos de suínos com máxima eficiência e custo mínimo. O experimento foi conduzido no Laboratório de Análise de Água do Departamento de Engenharia (LAADEG da Universidade Federal de Lavras (UFLA, sendo composto por um tanque de acidificação e equalização (TAE, um reator anaeróbio de manta de lodo (UASB e uma lagoa aerada facultativa (LAF para polimento. As análises fisico-químicas realizadas foram: pH, DBO5, DQO T, Sólidos Totais (fixos e voláteis, Temperatura, Nitrogênio, Fósforo, Alcalinidade e Acidez Total. A unidade LAF mostrou uma eficiência média de 83 e 42% de DQO T e Nitrogênio Total, respectivamente. O sistema proporcionou remoção média de 93, 84 e 85% de DQO T, DBO5 e Sólidos Totais Voláteis, respectivamente.Nowadays the agro-industry activities have not only focused its direction to the production increasing, but also, to the environmental preservation. The swine production is amo doubt, an activity, which can be considered, one of the most pollutants, mainly in the Minas Gerais State (BRAZIL. Therefore, this research aimed at developing and operating an Upflow Anaerobic Sludge Blanket Reactor (UASB, followed by an Aerobic Facultative Pound (AFP (Lab-Scale, with the objective of treating the liquid effluent originated from swine with the maximum efficiency and lower costs. The experiment was carried out in the Laboratory of Water Analysis of the Engineering Department of the Federal University of Lavras (UFLA. The system was assembled with an

  1. 47 CFR 22.353 - Blanketing interference.

    Science.gov (United States)

    2010-10-01

    ... are not required to resolve blanketing interference to mobile receivers or non-RF devices or... 47 Telecommunication 2 2010-10-01 2010-10-01 false Blanketing interference. 22.353 Section 22.353... Operational and Technical Requirements Technical Requirements § 22.353 Blanketing interference. Licensees of...

  2. Neutronic analyses of the preliminary design of a DCLL blanket for the EUROfusion DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Iole, E-mail: iole.palermo@ciemat.es; Fernández, Iván; Rapisarda, David; Ibarra, Angel

    2016-11-01

    Highlights: • We perform neutronic calculations for the preliminary DCLL Blanket design. • We study the tritium breeding capability of the reactor. • We determine the nuclear heating in the main components. • We verify if the shielding of the TF coil is maintained. - Abstract: In the frame of the newly established EUROfusion WPBB Project for the period 2014–2018, four breeding blanket options are being investigated to be used in the fusion power demonstration plant DEMO. CIEMAT is leading the development of the conceptual design of the Dual Coolant Lithium Lead, DCLL, breeding blanket. The primary role of the blanket is of energy extraction, tritium production, and radiation shielding. With this aim the DCLL uses LiPb as primary coolant, tritium breeder and neutron multiplier and Eurofer as structural material. Focusing on the achievement of the fundamental neutronic responses a preliminary blanket model has been designed. Thus detailed 3D neutronic models of the whole blanket modules have been generated, arranged in a specific DCLL segmentation and integrated in the generic DEMO model. The initial design has been studied to demonstrate its viability. Thus, the neutronic behaviour of the blanket and of the shield systems in terms of tritium breeding capabilities, power generation and shielding efficiency has been assessed in this paper. The results demonstrate that the primary nuclear performances are already satisfactory at this preliminary stage of the design, having obtained the tritium self-sufficiency and an adequate shielding.

  3. ORNL fusion power demonstration study: the concept of the cassette blanket

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R. W.

    1977-10-01

    The cassette blanket introduces four major improvements in fusion reactor blanket design. These are: (1) the cassette itself which by design furnishes the key unit for simplification of blanket replacement and maintenance and also isolates the lithium moderator from the plasma by enveloping it in the coolant; (2) the concept of blanket zoning, which uses to advantage the fact that radiation damage to structure decreases exponentially with distance. With the use of cassettes in series, only the front fraction of the blanket, the first cassette, need be changed due to damage over the life of the plant; (3) the rectangular blanket concept, which recognizes that blankets must envelop the plasma but need not conform to plasma shape. With this rectangular geometry, cassettes may be installed or removed by simple linear motion between magnet coils; (4) internal tritium recovery, which uses a favorable temperature gradient and ''MHD-frozen'' lithium to diffuse tritium out of the cassette. Supporting calculations and illustrative cases are provided for these four areas using two coolants: helium and HITEC, a eutectic mixture of inorganic salts (potassium nitrate, sodium nitrate, and sodium nitrite).

  4. Resolution of proliferation issues for a SFR blanket with a specific application

    Energy Technology Data Exchange (ETDEWEB)

    Stauff, N.E. [31 rue baudelaire, voisins le bretonneux, 78960 (France); Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Forget, B.; Driscoll, M.J. [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2009-06-15

    The Sodium Fast Reactor is seen as the most realistic Gen-IV reactor to be built in the near future. France and the US are still developing their designs; these will require improved safety, competitive economics, and also proliferation resistance. To meet this last requirement, both French and American designers show some concerns with the use of breeding blankets. France and the USA won't need breeding blankets to produce plutonium because they already have large amounts of plutonium bred from their LWR fleet to start a new SFR fleet, thus breeding blankets are mainly of interest for minor actinide burning. On the contrary, India and China express great interest in blankets for their SFR designs, to reach a positive breeding gain. For example, the Indian PFBR, a 500 MWe oxide-fueled SFR has a breeding ratio of 1.05. Blankets are used in a Fast Reactor to increase the breeding ratio of the core, by breeding a significant amount of plutonium. The Plutonium bred within these blankets, if these are loaded with Uranium only, is generally of a very high quality, which makes it easily used in a nuclear explosive device. Our research has shown that the plutonium in breeding blankets can be made less attractive to make a nuclear explosive device than LWR-bred plutonium with a burnup of 50 MWd/Kg. Minor actinide doping and moderator addition were the two options studied, as they increase Pu{sup 238} and Pu{sup 240} production. In the work reported here, the methodology developed for securing a breeding blanket was successfully applied to the Indian PFBR. The full paper will describe a design of the PFBR breeding proliferation resistant plutonium within its blankets. The blankets were rendered secure by adding a zirconium hydride moderator and a small volume of MAs. It was demonstrated that reducing the attractiveness of the blanket plutonium would require no external MA dependency by choosing an adequate fuel cycle. The characteristics and performance of this design

  5. An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR

    Science.gov (United States)

    Yu, Guanying; Liu, Xufeng; Liu, Songlin

    2016-10-01

    The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)

  6. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2017-01-01

    Full Text Available Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  7. Heating performances of a IC in-blanket ring array

    Science.gov (United States)

    Bosia, G.; Ragona, R.

    2015-12-01

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  8. Heating performances of a IC in-blanket ring array

    Energy Technology Data Exchange (ETDEWEB)

    Bosia, G., E-mail: gbosia@to.infn.it [Department of Physics, University of Turin (Italy); Ragona, R. [Laboratory for Plasma Physics-LPP-ERM/KMS, Brussels (Belgium)

    2015-12-10

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  9. Electrically insulating coatings for V-Li self-cooled blanket in a fusion system

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Reed, C. B.; Uz, M.; Park, J. H.; Smith, D. L.

    2000-05-17

    The blanket system is one of the most important components in a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The liquid-metal blanket concept requires an electrically insulating coating on the first-wall structural material to minimize the magnetohydrodynamic pressure drop that occurs during the flow of liquid metal in a magnetic field. Based on the thermodynamics of interactions between the coating and the liquid lithium on one side and the structural V-base alloy on the other side, several coating candidates are being examined to perform the insulating function over a wide range of temperatures and lithium chemistries.

  10. Desempenho de reatores anaeróbios de fluxo ascendente com manta de lodo em dois estágios tratando águas residuárias de suinocultura Performance of two-stage up flow anaerobic sludge blanket reactors treating swine wastewater

    Directory of Open Access Journals (Sweden)

    Adriana M. de Santana

    2005-12-01

    Full Text Available Avaliou-se o desempenho de dois reatores anaeróbios de fluxo ascendente com manta de lodo (UASB em escala-piloto com volumes de 908 L e 188 L, instalados em série, alimentados com águas residuárias de suinocultura com concentrações médias de sólidos suspensos totais (SST variando de 2.216 mg L-1 a 7.131 mg L-1 e submetidos a tempos de detenção hidráulica (TDH de 62,3 e 31,1 h, no primeiro reator, e de 12,9 e 6,5 h, no segundo reator. As eficiências médias de remoção de DQOtotal variaram de 74,0% a 89,6% no Reator 1 e de 34,3% a 45,1% no Reator 2, resultando em valores médios de 86,6% a 93,1% para o sistema de tratamento em dois estágios com carga orgânica volumétrica (COV na faixa de 3,40 a 14,44 kg DQOtotal m-3 reator d-1 no Reator 1. As concentrações de metano no biogás foram acima de 75% para o Reator 1 e de 80% para o Reator 2. Os valores médios de pH variaram na faixa de 6,9 a 8,2 para o efluente do Reator 1 e de 7,0 a 8,3 para o efluente do Reator 2. Os ácidos voláteis totais mantiveram-se estáveis com concentrações médias abaixo de 200 mg L-1. Esses resultados indicaram que as condições de carga orgânica, em termos de DQO e SSV, impostas ao sistema de tratamento anaeróbio em dois estágios, não foram limitantes para que houvesse o desenvolvimento de lodo com microbiota adaptada e com alta atividade, propiciando altas eficiências médias de remoção de matéria orgânica (86,6 a 93,1% para DQOtotal e 85,6 a 88,2% para SSV e taxas de produção de metano de 0,156 a 0,289 m³ CH4 kg-1 de DQO removida.The objective of this work was monitoring the performance of two up flow anaerobic sludge blanket reactors (UASB in a pilot-scale testing with volumes of 908 L and 188 L, installed in series, loaded with swine wastewater with total suspended solids (TSS ranging from 2216 to 7131 mg L-1, submitted to an hydraulic detention time (HDT of 62.3 and 31.1 h, in the first reactor, and 12.9 and 6.5 h, in the second

  11. Automatic mesh adaptivity for CADIS and FW-CADIS neutronics modeling of difficult shielding problems

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, A. M.; Peplow, D. E.; Mosher, S. W.; Wagner, J. C.; Evans, T. M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Wilson, P. P.; Sawan, M. E. [University of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States)

    2013-07-01

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macro-material approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm de-couples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, obviating the need for a world-class super computer. (authors)

  12. Development of Thermal-hydraulic Analysis Methodology for Multi-module Breeding Blankets in K-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this paper, the purpose of the analyses is to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. Afterwards, the plan for the whole blanket system analysis using MARS-KS is introduced and the result of the multiple blanket module analysis is summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for the conceptual design of the K-DEMO breeding blanket thermal analysis. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering pressure drops arises in each module. For a feasibility test of the proposed methodology, 10 outboard blankets in a toroidal field sector were simulated, which are connected with each other through the inlet and outlet common headers. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation and thanks to the parallelization using MPI, almost linear speed-up could be obtained.

  13. CIWS-FW: a Customizable InstrumentWorkstation Software Framework for instrument-independent data handling

    CERN Document Server

    Conforti, Vito; Bulgarelli, Andrea; Gianotti, Fulvio; Franceschi, Enrico; Nicastro, Luciano; Zoli, Andrea; Dadina, Mauro; Smart, Ricky; Morbidelli, Roberto; Frailis, Marco; Sartor, Stefano; Zacchei, Andrea; Lodi, Marcello; Cirami, Roberto; Pasian, Fabio

    2014-01-01

    The CIWS-FW is aimed at providing a common and standard solution for the storage, processing and quick look at the data acquired from scientific instruments for astrophysics. The target system is the instrument workstation either in the context of the Electrical Ground Support Equipment for space-borne experiments, or in the context of the data acquisition system for instrumentation. The CIWS-FW core includes software developed by team members for previous experiments and provides new components and tools that improve the software reusability, configurability and extensibility attributes. The CIWS-FW mainly consists of two packages: the data processing system and the data access system. The former provides the software components and libraries to support the data acquisition, transformation, display and storage in near real time of either a data packet stream and/or a sequence of data files generated by the instrument. The latter is a meta-data and data management system, providing a reusable solution for the...

  14. ON THE NATURE OF THE TERTIARY COMPANION TO FW TAU: ALMA CO OBSERVATIONS AND SED MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Claudio; Hardy, Adam; Schreiber, Matthias R.; Cánovas, Héctor [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, 2360102 Valparaíso (Chile); Cieza, Lucas A. [Núcleo de Astronomía, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Williams, Jonathan P. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Hales, Antonio [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, 763-0355 Santiago (Chile); Pinte, Christophe [Univ. Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble (France); Ménard, Francois [UMI-FCA, CNRS/INSU, UMI 3386 (France); Wahhaj, Zahed [European Southern Observatory, Av. Alonso de Córdova 3107, Vitacura, 19001 Santiago (Chile)

    2015-06-20

    It is thought that planetary mass companions may form through gravitational disk instabilities or core accretion. Identifying such objects in the process of formation would provide the most direct test for the competing formation theories. One of the most promising candidates for a planetary mass object still in formation is the third object in the FW Tau system. We present here ALMA cycle 1 observations confirming the recently published 1.3 mm detection of a dust disk around this third object and present for the first time a clear detection of a single peak {sup 12}CO (2–1) line, providing direct evidence for the simultaneous existence of a gas disk. We perform radiative transfer modeling of the third object in FW Tau and find that current observations are consistent with either a brown dwarf embedded in an edge-on disk or a planet embedded in a low inclination disk, which is externally irradiated by the binary companion. Further observations with ALMA, aiming for high SNR detections of non-contaminated gas lines, are required to conclusively unveil the nature of the third object in FW Tau.

  15. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  16. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  17. Production of bioenergy in anaerobic baffled reactor (ABR) and sludge blanket (UASB) in the treatment os swine waste water; Producao de bioenergia em reatores anaerobios compartimentado (RAC) e de manta de lodo (UASB) no tratamento de efluentes de suinocultura

    Energy Technology Data Exchange (ETDEWEB)

    Moterani, Fabricio; Pereira, Erlon Lopes; Campos, Claudio M.M. [Universidade Federal de Lavras (DEG/UFLA), MG (Brazil). Dept. de Engenharia], email: fabricio_moterani@yahoo.com.br

    2011-07-01

    The biogas is obtained in the processes of degradation of organic matter by the action of bacterial consortium in the environment. The aim of this study was to evaluate the biogas production in anaerobic UASB and ABR in swine wastewater treatment. For this we used the theoretical estimated and actual production of biogas measured by anaerobic gasometers installed in the units. Methane was determined by gas chromatography (GC) and its theoretical output was 66 LCH4 kgSVT d{sup -1} and 11.9 LCH4 kgSVT d{sup -1} and 24.7 m{sup 3} d{sup -1} and 5.4 m{sup 3} d{sup -1} to ABR and UASB, respectively. Regarding the actual production of biogas in the reactor provided by the gas tank, found the values of 1,166.4 m{sup 3}; 0.1 m{sup 3}; 27.4 m{sup 3} and 12,598.5 m{sup 3} of biogas for compartments 1, 2 and 3 and ABR for the UASB reactor, respectively, totaling, production of 13,792.4 m{sup 3} in the units together, with an average of 113 m{sup 3} of biogas per day. But, it concludes with this research that the use of effluent from produce energy through biogas in swine farming is effective, which can be used in rural productive system itself. (author)

  18. The State of the Art Report on the Development and Manufacturing Technology of Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Kim, K. H

    2006-07-15

    The main objective of the present R and D on breeder blanket is the development of test blanket modules (TBMs) to be installed and tested in International Thermonuclear Experimental Reactor (ITER). In the program of the blanket development, a blanket module test in the ITER is scheduled from the beginning of the ITER operation, and the performance test of TBM in ITER is the most important milestone for the development of the DEMO blanket. The fabrication of TBMs has been required to test the basic performance of the DEMO blanket, i.e., tritium production/recovery, high-grade heat generation and radiation shielding. Therefore, the integration of the TBM systems into ITER has been investigated with the aim to check the safety, reliability and compatibility under nuclear fusion state. For this reason, in the Test Blanket Working Group (TBWG) as an activity of the International Energy Association (IEA), a variety of ITER TBMs have been proposed and investigated by each party: helium-cooled ceramic (WSG-1), helium-cooled LiPb (WSG-2), water-cooled ceramic (WSG-3), self-cooled lithium (WSG-4) and self-cooled molten salt (WSG-5) blanket systems. Because we are still deficient in investigation of TBM development, the need of development became pressing. In this report, for the development of TBM sub-module and mock-up, it is necessary to analyze and examine the state of the art on the development of manufacturing technology of TBM in other countries. And we will be applied as basic data to establish a manufacturing technology.

  19. Blanket comparison and selection study. Final report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  20. Blanket comparison and selection study. Final report. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concepts are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  1. Blanket comparison and selection study. Final report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  2. Beryllium in the ITER blanket

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C.

    1995-01-01

    This paper consists of viewgraphs used in a presentation on the application of beryllium in breeding blankets for ITER and JET. The paper brings together data on the physical, thermal, mechanical, and chemical properties of beryllium and beryllium oxide for this type of application, as well as issues of compatibility with construction materials, and irradiation experience. It includes the results from testing programs carried out to arrive at some of the information, including fabrication work, irradiation experiments, and sample tests performed both in and out of the irradiation piles.

  3. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    Science.gov (United States)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-10-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  4. Design and analysis of ITER shield blanket

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Junji; Hatano, Toshihisa; Ezato, Kouichiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-12-01

    This report includes electromagnetic analyses for ITER shielding blanket modules, fabrication methods for the blanket modules and the back plate, the design and the fabrication methods for port limiter have been investigated. Studies on the runaway electron impact for Be armor have been also performed. (J.P.N.)

  5. Bodies at the brink. [Discovery of 1992 QB and 1993 FW

    Science.gov (United States)

    Weissman, Paul

    1994-01-01

    The discovery of two objects beyond the orbit of Pluto has extended the heliocentric range of the planetary system and provided tantalizing hints that a large swarm of comets may exist in similarly distant orbits. This discovery has important implications for understanding both the origin of the solar system and the origin of the short-period comets. Subjects covered include the following: the big break -- finding 1992 QB; Kuiper's hypothesis -- an idea takes hold; the dynamicists debate; clues in a disk; Neptune the perturber; discovery of 1993 FW; and unlocking the secrets in primordial ice and dust.

  6. Improving the culturability of freshwater bacteria using FW70, a low-nutrient solid medium amended with sodium pyruvate.

    Science.gov (United States)

    Imazaki, Iori; Kobori, Youichi

    2010-04-01

    Bacterial culture based on the use of plate media is an effective method for investigating bacterial populations in the environment. To improve the culturability of bacteria from freshwater lakes, we developed a new medium, FW70, which contains sodium pyruvate, casamino acids, and lake water and is solidified using gellan gum. To test the importance of these components, we prepared a series of media in which one or more of the components was absent. Water was sampled 31 times from 3 Japanese lakes and was passed through a membrane filter (pore size = 0.45 microm) to remove fast-growing microbes before the water was spread onto the plates. In most cases, significantly larger numbers of bacterial colonies were detected on FW70 than on other media. Furthermore, to test the practicality of FW70, we compared it with standard nutrient agar and R2A agar. In all cases, the culturability was significantly greater on FW70 than on standard nutrient agar or R2A agar. Some isolates recovered by means of FW70 belonged to bacteria that had not previously been classified. These results suggest that FW70 improves the culturability of freshwater bacteria and can be used for the isolation of novel bacteria as a result of the filtration step.

  7. Classification Using Markov Blanket for Feature Selection

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Luo, Jian

    2009-01-01

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...

  8. Multiple Module Simulation of Water Cooled Breeding Blankets in K-DEMO Using Thermal-Hydraulic Analysis Code MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A preliminary concept for the Korean fusion demonstration reactor (K-DEMO) has been studied by the National Fusion Research Institute (NFRI) based on the National Fusion Roadmap of Korea. The feasibility studies have been performed in order to establish the conceptual design guidelines of the breeding blanket. As a part of the NFRI research, Seoul National University (SNU) is conducting thermal design, evaluation and validation of the water-cooled breeding blanket for the K-DEMO reactor. The purpose of this study is to extend the capability of MARS-KS to the overall blanket system analysis which includes 736 blanket modules in total. The strategy for the multi-module blanket system analysis using MARS-KS is introduced and the analysis result of the 46 blanket modules of single sector was summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for thermal analysis of the conceptual design of the K-DEMO breeding blanket. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering the pressure drop that occurs in each module. For a feasibility test of the proposed methodology, 46 blankets in a sector, which are connected with each other through the common headers for the sector inlet and outlet, were simulated. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation. Because of parallelization using the MPI system, the computational time could be reduced significantly. In future, this methodology will be extended to an efficient simulation of multiple sectors, and further validation for transient simulation will be carried out for more practical applications.

  9. Establishment of design and fabrication technology and domestic qualification for ITER blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; In, S. R.; Bae, Y. D. (and others)

    2006-02-15

    To obtain and analyze the detailed design and manufacturing technology of the blanket system for each components, the related data are collected through the various sources. And also, design processes and results of the FWs, shield blocks, and TBMs are investigated. From these analysis of the blanket R and D status of each party, we develop the KO R and D plan and it is used in the selection of manufacturing method and the materials. For the ITA16-10 subtask1, we had the official agreement with ITER IT in December 2004 for the qualification of the FW panel fabrication methods and to establish the NDT methods for the FW panel. From the technical reports we published, we compare the manufacturing methods and the proposed material for each component according to the parties. Be is proposed as a plasma facing material and most parties have interest in S-65C. Cu alloy is proposed as a heat sink material and DSCu or CuCrZr are investigated now. For the structural material, stainless steel such as SS316L(N) is investigated internationally. HIP and brazing are proposed as the manufacturing methods. In order to establish the blanket system technology, design contents of shield block by ITER IT and other parties were investigated through participating the international workshop and meeting, dispatching the researcher to the ITER IT or other parties to collect the drafting and 3D modeling files. The modification items of blanket design were investigated and a researcher was dispatched in the ITER IT and participated in the analysis on cooling problem in shield block such as front header and drilled manifold. To investigate the development status of TBM, we participated the 14th TBWG meeting and proposed the KO HCSB and HCML as candidates. And also, we obtain the R and D results of other parties and make document about the R and D status of other parties for the TBM. Finally, we establish the KO TBM R and D plan and proposed it to ITER IT and other parties. In which, the

  10. Radiochemical problems of fusion reactors. 1. Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M.B.A.

    1984-02-01

    A list of fusion reactor candidate materials is given, for use in connection with blanket structure, breeding, moderation, neutron multiplication, cooling, magnetic field generation, electrical insulation and radiation shielding. The phenomena being studied for each group of materials are indicated. Suitable irradiation test facilities are discussed under the headings (1) accelerator-based neutron sources, (2) fission reactors, and (3) ion accelerators.

  11. Numerical design of the Seed-Blanket Unit for the thorium nuclear fuel cycle

    Directory of Open Access Journals (Sweden)

    Oettingen Mikołaj

    2016-01-01

    Full Text Available In the paper we present the Monte Carlo modelling by the means of the Monte Carlo Continuous Energy Burn-up Code of the 17x17 Pressurized Water Reactor fuel assembly designed according to the Radkowsky Thorium Fuel concept. The design incorporates the UO2 seed fuel located in the centre and (Th,UO2 blanket fuel located in the peripheries of fuel assembly. The high power seed region supplies neutrons for the low power blanket region and thus induces breeding of fissile 233U from fertile 232Th. The both regions are physically separated and thus this approach is also known as either the heterogonous approach or the Seed-Blanket Unit. In the numerical analysis we consider the time evolutions of infinite neutron multiplication factor, axial/radial power density profile, 233U, 235U and 232Th.

  12. Compatibility of structural materials with fusion reactor coolant and breeder fluids

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H.

    1979-01-01

    Fusion reactors are characterized by a lithium-containing blanket, a heat transfer medium that is integral with the blanket and first wall, and a heat engine that couples to the heat transfer medium. A variety of lithium-containing substances have been identified as potential blanket materials, including molten lithium metal, molten LiF--BeF/sub 2/, Pb--Li alloys, and solid ceramic compounds such as Li/sub 2/O. Potential heat transfer media include liquid lithium, liquid sodium, molten nitrates, water, and helium. Each of these coolants and blankets requires a particular set of chemical and mechanical properties with respect to the associated reactor and heat engine structural materials. This paper discusses the materials factors that underlie the selection of workable combinations of blankets and coolants. It also addresses the materials compatibility problems generic to those blanket-coolant combinations currently being considered in reactor design studies.

  13. An ALMA Disk Mass for the Candidate Protoplanetary Companion to FW Tau

    CERN Document Server

    Kraus, Adam L; Bowler, Brendan P; Herczeg, Gregory; Ireland, Michael J; Liu, Michael C; Metchev, Stanimir; Cruz, Kelle L

    2014-01-01

    We present ALMA observations of the FW Tau system, a close binary pair of M5 stars with a wide-orbit (300 AU projected separation) substellar companion. The companion is extremely faint and red in the optical and near-infrared, but boasts a weak far-infrared excess and optical/near-infrared emission lines indicative of a primordial accretion disk of gas and dust. The component-resolved 1.3 mm continuum emission is found to be associated only with the companion, with a flux (1.78 +/- 0.03 mJy) that indicates a dust mass of 1-2 M_Earth. While this mass reservoir is insufficient to form a giant planet, it is more than sufficient to produce an analog of the Kepler-42 exoplanetary system or the Galilean satellites. The mass and geometry of the disk-bearing FW Tau companion remains unclear. Near-infrared spectroscopy shows deep water bands that indicate a spectral type later than M5, but substantial veiling prevents a more accurate determination of the effective temperature (and hence mass). Both a disk-bearing "pl...

  14. Design of the helium cooled lithium lead breeding blanket in CEA: from TBM to DEMO

    Science.gov (United States)

    Aiello, G.; Aubert, J.; Forest, L.; Jaboulay, J.-C.; Li Puma, A.; Boccaccini, L. V.

    2017-04-01

    The helium cooled lithium lead (HCLL) blanket concept was originally developed in CEA at the beginning of 2000: it is one of the two European blanket concepts to be tested in ITER in the form of a test blanket module (TBM) and one of the four blanket concepts currently being considered for the DEMOnstration reactor that will follow ITER. The TBM is a highly optimized component for the ITER environment that will provide crucial information for the development of the DEMO blanket, but its design needs to be adapted to the DEMO reactor. With respect to the TBM design, reduction of the steel content in the breeding zone (BZ) is sought in order to maximize tritium breeding reactions. Different options are being studied, with the potential of reaching tritium breeding ratio (TBR) values up to 1.21. At the same time, the design of the back supporting structure (BSS), which is a DEMO specific component that has to support the blanket modules inside the vacuum vessel (VV), is ongoing with the aim of maximizing the shielding power and minimizing pumping power. This implies a re-engineering of the modules’ attachment system. Design changes however, will have an impact on the manufacturing and assembly sequences that are being developed for the HCLL-TBM. Due to the differences in joint configurations, thicknesses to be welded, heat dissipation and the various technical constraints related to the accessibility of the welding tools and implementation of non-destructive examination (NDE), the manufacturing procedure should be adapted and optimized for DEMO design. Laser welding instead of TIG could be an option to reduce distortions. The time-of-flight diffraction (TOFD) technique is being investigated for NDE. Finally, essential information expected from the HCLL-TBM program that will be needed to finalize the DEMO design is discussed.

  15. ITER breeding blanket module design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Toshimasa; Enoeda, Mikio; Kikuchi, Shigeto [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-11-01

    The ITER breeding blanket employs a ceramic breeder and Be neutron multiplier both in small spherical pebble form. Radial-poloidal cooling panels are arranged in the blanket box to remove the nuclear heating in these materials and to reinforce the blanket structure. At the first wall, Be armor is bonded onto the stainless steel (SS) structure to provide a low Z plasma-compatible surface and to protect the first wall/blanket structure from the direct contact with the plasma during off-normal events. Thermo-mechanical analyses and investigation of fabrication procedure have been performed for this breeding blanket. To evaluate thermo-mechanical behavior of the pebble beds including the dependency of the effective thermal conductivity on stress, analysis methods have been preliminary established by the use of special calculation option of ABAQUS code, which are briefly summarized in this report. The structural response of the breeding blanket module under internal pressure of 4 MPa (in case of in-blanket LOCA) resulted in rather high stress in the blanket side (toroidal end) wall, thus addition of a stiffening rib or increase of the wall thickness will be needed. Two-dimensional elasto-plastic analyses have been performed for the Be/SS bonded interface at the first wall taking a fabrication process based on HIP bonding and thermal cycle due to pulsed plasma operation into account. The stress-strain hysteresis during these process and operation was clarified, and a procedure to assess and/or confirm the bonding integrity was also proposed. Fabrication sequence of the breeding blanket module was preliminarily developed based on the procedure to fabricate part by part and to assemble them one by one. (author)

  16. Heterogeneous Recycling in Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  17. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  18. Multifractal Framework Based on Blanket Method

    Science.gov (United States)

    Paskaš, Milorad P.; Reljin, Irini S.; Reljin, Branimir D.

    2014-01-01

    This paper proposes two local multifractal measures motivated by blanket method for calculation of fractal dimension. They cover both fractal approaches familiar in image processing. The first two measures (proposed Methods 1 and 3) support model of image with embedded dimension three, while the other supports model of image embedded in space of dimension three (proposed Method 2). While the classical blanket method provides only one value for an image (fractal dimension) multifractal spectrum obtained by any of the proposed measures gives a whole range of dimensional values. This means that proposed multifractal blanket model generalizes classical (monofractal) blanket method and other versions of this monofractal approach implemented locally. Proposed measures are validated on Brodatz image database through texture classification. All proposed methods give similar classification results, while average computation time of Method 3 is substantially longer. PMID:24578664

  19. Reference design for the standard mirror hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bender, D.J.; Fink, J.H.; Galloway, T.R.; Kastenberg, W.E.; Lee, J.D.; Devoto, R.S.; Neef, W.S. Jr.; Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-05-22

    This report describes the results of a two-year study by Lawrence Livermore Laboratory and General Atomic Co. to develop a conceptual design for the standard (minimum-B) mirror hybrid reactor. The reactor parameters have been chosen to minimize the cost of producing nuclear fuel (/sup 239/Pu) for consumption in fission power reactors (light water reactors). The deuterium-tritium plasma produces approximately 400 MW of fusion power with a plasma Q of 0.64. The fast-fission blanket, which is fueled with depleted uranium and lithium, generates sufficient tritium to run the reactor, has a blanket energy multiplication of M = 10.4, and has a net fissile breeding ratio of Pu/n = 1.51. The reactor has a net electrical output of 600 MWe, a fissile production of 2000 kg of plutonium per year (at a capacity factor of 0.74), and a net plant efficiency of 0.18. The plasma-containment field is generated by a Yin-Yang magnet using NbTi superconductor, and the neutral beam system uses positive-ion acceleration with beam direct conversion. The spherical blanket is based on gas-cooled fast reactor technology. The fusion components, blanket, and primary heat-transfer loop components are all contained within a prestressed-concrete reactor vessel, which provides magnet restraint and supports the primary heat-transfer loop and the blanket.

  20. Overview on ITER and DEMO blanket fabrication activities of the KIT INR and related frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Heiko, E-mail: heiko.neuberger@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Karlsruhe (Germany); Rey, Joerg; Weth, Axel von der; Hernandez, Francisco [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Karlsruhe (Germany); Martin, Tatiana [Karlsruhe Institute of Technology (KIT), Institute for Applied materials, Karlsruhe (Germany); Zmitko, Milan [Fusion for energy, ITER Department, Test Blanket Modules and Materials Development Project Team, Barcelona (Spain); Felde, Alexander [Institut für Umformtechnik (IFU), Universität Stuttgart (Germany); Niewöhner, Reinhard [Forschungsgesellschaft Umformtechnik (FGU), Stuttgart (Germany); Krüger, Friedhelm [Krüger Erodiertechnik, Biedenkopf (Germany)

    2015-10-15

    Highlights: • Recent achievements in fabricaition within different frameworks. • First Wall mockup with erosion technology. • Manufacturing of a HCPB TBM Cooling Plate Mockup (F4E) - Abstract: Fabrication experiments have been carried out in the KIT with the goal to qualify manufacturing technologies for the realization of fusion reactor components. The main focus of the activities managed by the fabrication team in the Institute of Neutron Physics and reactor technologies (INR) has been on the Test Blanket Module for ITER. Sets of fabrication and welding procedure specifications have been demonstrated and qualified in relevant scale for TBM structural and functional components. This paper presents interactions in between the different frameworks on domestic and European level to underline backgrounds of developments. It also summarizes results of development and their relevancy for DEMO and gives an outlook on the future development strategy for the DEMO blanket fabrication.

  1. Safety analysis of the US dual coolant liquid lead lithium ITER test blanket module

    Science.gov (United States)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2007-07-01

    The US is proposing a prototype of a dual coolant liquid lead-lithium DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER test blanket module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER international team (IT) to address specific reactor safety concerns, such as vaccum vessel (VV) pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  2. D-D tokamak reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K.E. Jr.; Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Finn, P.A.; Jung, J.; Mattas, R.F.; Misra, B.; Smith, D.L.; Stevens, H.C.

    1980-11-01

    A tokamak D-D reactor design, utilizing the advantages of a deuterium-fueled reactor but with parameters not unnecessarily extended from existing D-T designs, is presented. Studies leading to the choice of a design and initial studies of the design are described. The studies are in the areas of plasma engineering, first-wall/blanket/shield design, magnet design, and tritium/fuel/vacuum requirements. Conclusions concerning D-D tokamak reactors are stated.

  3. Hydrodynamic behavior of a lab-scale upflow anaerobic sludge blanket reactor (UASB operated with an adopted hydraulic retention time (HRT of 12 hours Comportamento hidrodinâmico de um reator anaeróbio de manta de lodo (UASB em escala de bancada operando com tempo de detenção hidráulica (TDH de 12 horas

    Directory of Open Access Journals (Sweden)

    Aguinaldo Menegassi Pereira Lourenço

    2009-08-01

    Full Text Available The present research was carried out in the Laboratory of Water Analysis at the Engineering Department at Federal University of Lavras (LWAED-UFLA, in order to evaluate the hydrodynamic behavior of a lab-scale upflow anaerobic sludge blanket reactor (UASB that was continuously fed with liquid effluent from swine manure with solid separation over 2mm. The hydrodynamic parameters were determined by a tracer study, under hydraulic retention time (HRT of 12 hours, using Lithium Chloride (LiCl as a tracer. The system was monitored periodically through physical analysis of samples collected at UASB, during the steady-state operational conditions. The physical-chemical analyses were accomplished using a flame photometry. The operational average temperature in the UASB reactor was 23.9ºC .The UASB hydrodynamic parameters determined were: average residence time ( of 38.3 h, number of dispersion d= 0.27, and the flow type was characterized as dispersed flow of great intensity. This research is of great importance due to the fact that the scaling-up of biological reactors is based on the hydrodynamic behavior, through which the bacterial kinetic is directly influenced, as reported by Saleh (2004.A presente pesquisa foi realizada no Laboratório de Análise de Água do Departamento de Engenharia na Universidade Federal de Lavras (LAADEG-UFLA, para avaliar o comportamento hidrodinâmico de um reator anaeróbio de manta de lodo (UASB, em escala laboratorial, alimentado continuamente com água residuária do confinamento de suínos isenta de sólidos com diâmetro acima de 2 mm. Na avaliação dos parâmetros hidrodinâmicos foi utilizado o cloreto de lítio (LiCl como traçador, sob tempo de detenção hidráulica (TDH de 12 horas. O monitoramento foi realizado, quando o reator UASB apresentava condições permanentes "steady-state". As análises físico-químicas foram realizadas em fotômetro de chama, de amostras retiradas na saída da unidade de

  4. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  5. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  6. A compact Tokamak transmutation reactor

    Institute of Scientific and Technical Information of China (English)

    QiuLi-Jian; XiaoBing-Jia

    1997-01-01

    The low aspect ration tokamak is proposed for the driver of a transmutation reactor.The main parameters of the reactor core,neutronic analysis of the blanket are given>the neutron wall loading can be lowered from the magnitude order of 1 MW/m2 to 0.5MW/m2 which is much easier to reach in the near future,and the transmutation efficiency (fission/absorption ratio)is raised further.The blanket power density is about 200MW/m3 which is not difficult to deal with.The key components such as diverter and center conductor post are also designed and compared with conventional TOkamak,Finally,by comparison with the other drivers such as FBR,PWR and accelerator,it can be anticipated that the low aspect ratio transmutation reactor would be one way of fusion energy applications in the near future.

  7. Helias reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C.D. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Grieger, G. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Harmeyer, E. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Kisslinger, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Karulin, N. [Nuclear Fusion Institute, Moscow (Russian Federation); Maurer, W. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Nuehrenberg, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Rau, F. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Wobig, H. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1995-10-01

    The present status of Helias reactor studies is characterised by the identification and investigation of specific issues which result from the particular properties of this type of stellarator. On the technical side these are issues related to the coil system, while physics studies have concentrated on confinement, alpha-particle behaviour and ignition conditions. The usual assumptions have been made in those fields which are common to all toroidal fusion reactors: blanket and shield, refuelling and exhaust, safety and economic aspects. For blanket and shield sufficient space has been provided, a detailed concept will be developed in future. To date more emphasis has been placed on scoping and parameter studies as opposed to fixing a specific set of parameters and providing a detailed point study. One result of the Helias reactor studies is that physical dimensions are on the same order as those of tokamak reactors. However, it should be noticed that this comparison is difficult in view of the large spectrum of tokamak reactors ranging from a small reactor like Aries, to a large device such as SEAFP. The notion that the large aspect ratio of 10 or more in Helias configurations also leads to large reactors is misleading, since the large major radius of 22 m is compensated by the average plasma radius of 1.8 m and the average coil radius of 5 m. The plasma volume of 1400 m{sup 3} is about the same as the ITER reactor and the magnetic energy of the coil system is about the same or even slightly smaller than envisaged in ITER. (orig.)

  8. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  9. Enumeração e isolamento de bactérias anaeróbias facultativas num reator de fluxo ascendente e manta de lodo tratando efluente de uma indústria de gelatina - DOI: 10.4025/actascibiolsci.v25i2.1977 Enumeration and isolation of facultative anaerobic bacteria in an upflow anaerobic sludge blanket reactor treating wastewater from a gelatine industry- DOI: 10.4025/actascibiolsci.v25i2.1977

    Directory of Open Access Journals (Sweden)

    Celso Vataru Nakamura

    2003-04-01

    Full Text Available Neste trabalho foram determinados os níveis de bactérias anaeróbias facultativas em Reator de Fluxo Ascendente e Manta de Lodo (UASB utilizado no tratamento de efluente de industria de gelatina. A quantificação dos microrganismos apresentou similar valor na manta de lodo granular e na zona de fluidização. No compartimento de sedimentação do reator as bactérias foram dois logs menores. Estas comunidades são compostas principalmente de bacilos Gram-negativos. Os mais abundantes gêneros foram Acinetobacter, Aeromonas, Citrobacter, Escherichia, Klebsiella e Stenotrophomonas. O significado para a saúde pública das bactérias isoladas no reator UASB é desconhecido. Algumas espécies são residentes permanentes, outras são encontradas em somente uma parte da população, e ainda outras espécies são patógenos oportunistas que causam infecção humana. No presente estudo, nenhuma das bactérias predominantes pertence ao grupo dos patógenos estritosThis experiment measured levels of facultative anaerobic bacteria in an Upflow Anaerobic Sludge Blanket (UASB reactor treating wastewater from a gelatin industry. The microorganism quantification showed similar values in granular sludge bed and fluidized zone. In the settling compartment of reactor, the bacteria were two logs lower. These communities are composed mainly of Gram-negative rods. The most abundant genera isolated were Acinetobacter, Aeromonas, Citrobacter, Escherichia, Klebsiella and Stenotrophomonas. The significance of the bacteria isolated from UASB reactor for public health is unknown. Some species are permanent residents; other are found only in a fraction of the population, and still other species are opportunistic pathogens that cause human infections. In the present study, none of the predominant bacteria belonged to the group of strict pathogens

  10. CLONING AND GENETIC TRANSFORMATION OF fw2.2 GENE IN PEANUT%花生fw2.2基因的克隆及遗传转化

    Institute of Scientific and Technical Information of China (English)

    刘强; 王晶珊; 乔利仙; 赵春梅; 隋炯明

    2011-01-01

    fw2.2基因是影响番茄果重的一个重要数量性状基因,在心皮的细胞分裂中起负调控作用。本研究以番茄fw2.2基因的序列为探针,从花生EST数据库中筛选同源序列。根据花生的EST拼接序列设计引物对花生进行扩增,目标产物测序后,将推测的氨基酸序列与其他植物fw2.2基因编码的氨基酸序列进行比对,同源性为34.78%~66.85%。半定量RT-PCR结果表明,该基因在野生种和栽培种中的表达存在差异。将fw2.2基因连接到植物表达载体,通过农杆菌介导法转化花生品种花育23号,获得了12个PCR阳性的独立转化子。%fw2.2 gene is an important quantative trait locus(QTL) affecting fruit weight in tomato,and can reduce cell division in carpels as a negative regulator.In this experiment,fw2.2 gene in tomato was prepared as probe to screen homologous sequence from peanut EST database.Then,according to the joint EST sequence,a pair of primer was designed to amplified the fw2.2 gene of peanut.Compared with other plants,the similarity range of amino acid sequence was between 34.78% and 66.85%.Expression difference was detected between wild and cultivated materials by semi-quantitative RT-PCR.After transformation mediated by Agrobacterium tumefaciens,12 independent transformants of peanut cultivar Huayu 23 were identificated by PCR amplification.

  11. 升流式厌氧污泥床和连续流搅拌槽式反应器的废水处理效能及产甲烷菌群组成的对比分析%Comparative Analysis of the Efficiency and the Methanogens Composition in Upflow Anaerobic Sludge Blanket and Continuous Stirred-Tank Reactor

    Institute of Scientific and Technical Information of China (English)

    张立国; 李建政; 班巧英; 许一平

    2012-01-01

    分别运行升流式厌氧污泥床(UASB)反应器和连续流搅拌槽式反应器(CSTR)并使其达到稳定运行状态,在有机负荷率(OLR)均为6.0kg·m-3·d-1的条件下,对比分析了二者在稳定期的运行特性和产甲烷菌群的组成.结果表明,UASB的化学需氧量(COD)去除率为95%,显著高于CSTR的COD去除率(84%).然而,CSTR系统中的活性污泥的比产甲烷速率(315L·kg-1·d-1)和比COD去除率(0.85kg·kg-1·d-1)则显著高于UASB的260L·kg-1·d-1和0.67kg·kg-1·d-1.采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)指纹分析技术对系统稳定期的活性污泥进行分析的结果表明,UASB系统的优势产甲烷菌为Methanosaeta concilii 和 Methanospirillum hungatei,而CSTR系统中的优势产甲烷菌为Methanosarcina mazeii和Methanobacterium formicicum.污泥微生物群落组成及其代谢特征的不同是造成厌氧处理系统效能差异的内在原因.UASB和CSTR在COD去除效能和污泥比活性方面各有所长,在实际应用中,须根据废水水质和预期处理程度合理选用.%The efficiency and the methanogens composition in an Upflow Anaerobic Sludge Blanket (UASB) reactor and a Continuous Stirred-Tank Reactor (CSTR) are investigated after achieving steady states at the same Organic Loading Rate (OLR) of 6.0kg· m-3 · d-1. The results show that the average removal rate of COD reaches 95% in the UASB, significantly higher than 84% of the CSTR. However, the specific methane production rate and the specific COD removal rate of the activated sludge are SlSL·kg-1·d-1 and 0.85kg·kg-1·d-1, respectively, in the CSTR, notably higher than those of the UASB of 260L·kg-1·d-1 and 0.67kg· kg-1·d-1, respectively. The analysis of the methanogens composition of the activated sludge by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) indicates that Methanosaeta concilii and Methanospirillum hungatei are the dominant methanogens in the UASB, while

  12. The Contribution of F.W. Taylor to Industrial and Organizational Psychology

    Directory of Open Access Journals (Sweden)

    E. C. Thomas

    1982-11-01

    Full Text Available This article demonstrates that Frederick Winslow Taylor, acknowledged "Father of Scientific Management", also merits acknowledgement as the spiritual if not actual founder of Industrial and Organizational Psychology. His work in performance motivation and satisfaction; selection, training, and placement of workers; management and organizational development; and in labour relations is shown probably to have preceded that of acknowledged psychologists in these several fields. It is proposed that, whilst not a trained psychologist, Dr. Taylor should be recognized for advocating, and with his colleagues, practising most of the principles and tenets of modern Industrial and Organizational psychology.OpsommingIn die artikel word getoon dat F.W. Taylor die erkende "vader van wetenskaplike bestuur" ook erkenning behoort te geniet as grondlegger van die Bedryf en -organisasiesielkunde. Sy werk op die terreine van prestasiemotivering en tevredenheid, opleiding, plasing van werkers, bestuurs- en organisasieontwikkeling en arbeidsverhoudinge het waarskynlik die werk van erkende sielkundiges op hierdie gebiede vooruitgeloop, of grondslag daarvoor gelê. Daar word tot die slotsom gekom dat alhoewel Taylor nie 'n opgeleide sielkundige was nie, hy en sy kollegas erkenning moet kry vir die praktiese implimentering van die beginsels en teorieë van die moderne Bedryf- en Organisasiesielkunde.

  13. On the nature of the tertiary companion to FW Tau: ALMA CO observations and SED modeling

    CERN Document Server

    Caceres, Claudio; Schreiber, Matthias R; Canovas, Hector; Cieza, Lucas A; Williams, Jonathan P; Hales, Antonio; Pinte, Christophe; Menard, Francois; Wahhaj, Zahed

    2015-01-01

    It is thought that planetary mass companions may form through gravitational disk instabilities or core accretion. Identifying such objects in the process of formation would provide the most direct test for the competing formation theories. One of the most promising candidates for a planetary mass object still in formation is the third object in the FWTau system. We here present ALMA cycle 1 observations confirming the recently published 1.3 mm detection of a dust disk around this third object and present for the first time a clear detection of a single peak 12CO(2-1) line, providing direct evidence for the simultaneous existence of a gas disk. We perform radiative transfer modeling of the third object in FW Tau and find that current observations are consistent with a planetary mass object embedded in a disk which is externally irradiated by the binary companion and seen at an inclination of i<15 deg. However, we also find that a near edge-on disk around a more massive substellar object can explain the obse...

  14. Options and methods for instrumentation of Test Blanket Systems for experiment control and scientific mission

    Energy Technology Data Exchange (ETDEWEB)

    Calderoni, Pattrick, E-mail: pcalderoni@gmail.com; Ricapito, Italo; Zmitko, Milan; Panayotov, Dobromir; Vallory, Joelle; Leichtle, Dieter; Poitevin, Yves

    2014-10-15

    Highlights: • This work defined options and methods to instrument ITER TBSs based on functional categories: safety, interlock and control and scientific exploitation based on the ITER research program. • Presented the general architecture of the HCLL and HCPB Test Blanket System Instrumentation and Control. • Defined safety and interlock sensors count and technology selection based on preliminary safety analysis. • Discussed the development status of scientific instrumentation, with focus on integration with design and fulfillment of TBM research program. - Abstract: Europe is currently developing two reference breeder blankets concepts for DEMO reactor specifications that will be tested in ITER under the form of Test Blanket Modules (TBMs): the Helium-Cooled Lithium-Lead (HCLL) concept which uses the eutectic Pb-16Li as both breeder and neutron multiplier; the Helium-Cooled Pebble-Bed (HCPB) concept which features lithiated ceramic pebbles as breeder and beryllium pebbles as neutron multiplier. Each TBM is associated with several sub-systems required for their operation; together they form the Test Blanket System (TBS). This paper presents the state of HCLL and HCPB TBS instrumentation design. The discussion is based on the systems functional analysis, from which three main categories of instrumentation are defined: those relevant to safety functions; those relevant to interlock functions; those designed for the control and scientific exploitation of the devices based on the TBM program objectives.

  15. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  16. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    Energy Technology Data Exchange (ETDEWEB)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse

    1988-03-01

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs.

  17. Lightweight IMM PV Flexible Blanket Assembly

    Science.gov (United States)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  18. 48 CFR 613.303 - Blanket purchase agreements (BPAs).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 613.303 Section 613.303 Federal Acquisition Regulations System DEPARTMENT OF STATE....303 Blanket purchase agreements (BPAs)....

  19. 48 CFR 1313.303 - Blanket Purchase Agreements (BPAs).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Blanket Purchase Agreements (BPAs). 1313.303 Section 1313.303 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE....303 Blanket Purchase Agreements (BPAs)....

  20. 48 CFR 13.303 - Blanket purchase agreements (BPAs).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 13.303 Section 13.303 Federal Acquisition Regulations System FEDERAL ACQUISITION... Methods 13.303 Blanket purchase agreements (BPAs)....

  1. 48 CFR 313.303 - Blanket purchase agreements.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Blanket purchase agreements. 313.303 Section 313.303 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES....303 Blanket purchase agreements....

  2. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    Science.gov (United States)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  3. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    Science.gov (United States)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  4. Avaliação de desempenho de lagoa de polimento para pós-tratamento de reator anaeróbio de manta de lodo (UASB no tratamento de águas residuárias de suinocultura Evaluation of the performance of a polishing pond for the post-treatment of the effluent from an upflow anaerobic sludge blanket (UASB reactor treating swine wastewater

    Directory of Open Access Journals (Sweden)

    L.S. Rodrigues

    2009-12-01

    Full Text Available Avaliou-se o desempenho de uma lagoa de polimento, no tratamento de efluentes de águas residuárias de suinocultura de um reator anaeróbio de manta de lodo (UASB. O sistema foi composto de decantador, reator UASB, em escala real, e lagoa de polimento em escala experimental. As análises físico-químicas realizadas foram: temperatura, pH, demanda bioquímica de oxigênio (DBO, demanda química de oxigênio (DQO, sólidos suspensos totais (SST e sólidos suspensos voláteis (SSV, nitrogênio total kjedhal (NTK, nitrogênio amoniacal (N-am. e orgânico (N-org., fósforo total (Pt, coliformes totais e termotolerantes. A lagoa de polimento apresentou alto desempenho, com remoção média de 58,9% de DBO, 60,1% de NTK, 57% de N-am. e 95,34% de coliformes termotolerantes.The performance of a polishing pond for treating swine wastewater from an upflow anaerobic sludge blanket (UASB reactor was evaluated. The system was assembled with a slat settler, followed by an UASB reactor, on a real scale, and a post-treatment pond, on a demonstration scale. The following parameters were analyzed: temperature, pH, biochemical oxygen demand (BOD, chemical oxygen demand (COD, total suspended solids (TSS, volatile suspended solids (VSS, total Kjedahl nitrogen (NTK, ammonia nitrogen (N-am., organic nitrogen, total phosphorus, and total and thermotolerant coliforms. The polishing pond was highly efficient, removing an average of 58.9% of BOD, 60.1% of NTK, 57% of N-am., and 95.34% of thermotolerant coliforms.

  5. Helminth Egg Removal Capacity of UASB Reactors under Subtropical Conditions

    NARCIS (Netherlands)

    Yaya-Beas, R.E.; Ayala-Limaylla, C.; Kujawa-Roeleveld, K.; Van Lier, J.B.; Zeeman, G.

    2015-01-01

    This research was conducted to study the anaerobic sludge filtration capacity regarding helminth egg removal in upflow anaerobic sludge blanket (UASB) reactors. Two 25 L lab-scale UASB reactors were operated at an ambient temperature which varied between 17.1 and 28.6 °C. Ascaris suum egg was select

  6. Degradation of Chlorinated Aromatic Compounds in UASB Reactors

    DEFF Research Database (Denmark)

    Christiansen, Nina; Hendriksen, Hanne Vang; Järvinen, Kimmo T.;

    1995-01-01

    Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded...

  7. The climatic impact of supervolcanic ash blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Morgan T.; Sparks, R.S.J. [University of Bristol, Department of Earth Sciences, Bristol (United Kingdom); Valdes, Paul J. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)

    2007-11-15

    Supervolcanoes are large caldera systems that can expel vast quantities of ash, volcanic gases in a single eruption, far larger than any recorded in recent history. These super-eruptions have been suggested as possible catalysts for long-term climate change and may be responsible for bottlenecks in human and animal populations. Here, we consider the previously neglected climatic effects of a continent-sized ash deposit with a high albedo and show that a decadal climate forcing is expected. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, covering much of North America. Reflectivity measurements of dry volcanic ash show albedo values as high as snow, implying that the effects of an ash blanket would be severe. The modeling results indicate major disturbances to the climate, particularly to oscillatory patterns such as the El Nino Southern Oscillation (ENSO). Atmospheric disruptions would continue for decades after the eruption due to extended ash blanket longevity. The climatic response to an ash blanket is not significant enough to investigate a change to stadial periods at present day boundary conditions, though this is one of several impacts associated with a super-eruption which may induce long-term climatic change. (orig.)

  8. Fidget Blankets: A Sensory Stimulation Outreach Program.

    Science.gov (United States)

    Kroustos, Kelly Reilly; Trautwein, Heidi; Kerns, Rachel; Sobota, Kristen Finley

    2016-01-01

    Behavioral and Psychological Symptoms of Dementia (BPSD) include behaviors such as aberrant motor behavior, agitation, anxiety, apathy, delusions, depression, disinhibition, elation, hallucinations, irritability, and sleep or appetite changes. A student-led project to provide sensory stimulation in the form of "fidget blankets" developed into a community outreach program. The goal was to decrease the use of antipsychotics used for BPSD.

  9. Start-up of horizontal anaerobic reactors with sludge blanket and fixed bed for wastewater treatment from coffee processing by wet method Partida de reatores anaeróbios horizontais com manta de lodo e de leito fixo para tratamento de águas residuárias do beneficiamento de frutos do cafeeiro por via úmida

    Directory of Open Access Journals (Sweden)

    Roberto A. de Oliveira

    2013-04-01

    Full Text Available In this study it was evaluated the start-up procedures of anaerobic treatment system with three horizontal anaerobic reactors (R1, R2 and R3, installed in series, with volume of 1.2 L each. R1 had sludge blanket, and R2 and R3 had half supporter of bamboo and coconut fiber, respectively. As an affluent, it was synthesized wastewater from mechanical pulping of the coffee fruit by wet method, with a mean value of total chemical oxygen demand (CODtotal of 16,003 mg L-1. The hydraulic retention time (HRT in each reactor was 30 h. The volumetric organic loading (VOL applied in R1 varied from 8.9 to 25.0 g of CODtotal (L d-1. The mean removal efficiencies of CODtotal varied from 43 to 97% in the treatment system (R1+R2+R3, stabilizing above 80% after 30 days of operation. The mean content of methane in the biogas were of 70 to 76%, the mean volumetric production was 1.7 L CH4 (L reactor d-1 in the system, and the higher conversions were around at 0.20 L CH4 (g CODremoved-1 in R1 and R2. The mean values of pH in the effluents ranged from 6.8 to 8.3 and the mean values of total volatile acids remained below 200 mg L-1 in the effluent of R3. The concentrations of total phenols of the affluent ranged from 45 to 278 mg L-1, and the mean removal efficiency was of 52%. The start-up of the anaerobic treatment system occurred after 30 days of operation as a result of inoculation with anaerobic sludge with active microbiota.Foram avaliados os procedimentos de partida de sistema de tratamento com três reatores anaeróbios horizontais (R1, R2 e R3, instalados em série, com volume de 1,2 L cada. O R1 com manta de lodo e o R2 e R3 através de suporte de bambu e fibra de coco, respectivamente. Como afluente,foram sintetizadas águas residuárias do despolpamento mecânico dos frutos do cafeeiro por via úmida, com valor médio de demanda química de oxigênio total (DQOtotal de 16.003 mg L-1. O tempo de detenção hidráulica (TDH em cada reator foi de 30 h. As

  10. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab.

  11. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  12. Fast Breeder Blanket Facility (FBBF). Annual report, January 31, 1976--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Ott, K.O. (ed.)

    1978-01-01

    The work performed in the reporting period was primarily concerned with the construction of the Fast Breeder Blanket Facility (FBBF), acquisition of experimental equipment, outlining the experimental program, preanalysis of the initial loading configuration and investigation of the safety of the initial loading and advanced loadings. The detailed physical description of the FBBF, operational procedures and controls, radiation shielding and experimental equipment are presented. The ability of the FBBF to simulate the blanket spectrum of a large fast breeder reactor is illustrated by comparison of spectra. The source axial distribution, reaction rate comparisons, breeding of plutonium and gamma-ray energy deposition rates are also discussed. Some of the safety aspects of the initial loading and advanced loadings are described. Experimental capabilities of the facility are outlined.

  13. Preliminary lifetime predictions for 304 stainless steel as the LANL ABC blanket material

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.J.; Buksa, J.J.; Houts, M.G.; Arthur, E.D.

    1997-11-01

    The prediction of materials lifetime in the preconceptual Los Alamos National Laboratory (LANL) Accelerator-Based Conversion of Plutonium (ABC) is of utmost interest. Because Hastelloy N showed good corrosion resistance to the Oak Ridge National Laboratory Molten Salt Reactor Experiment fuel salt that is similar to the LANL ABC fuel salt, Hastelloy N was originally proposed for the LANL ABC blanket material. In this paper, the possibility of using 304 stainless steel as a replacement for the Hastelloy N is investigated in terms of corrosion issues and fluence-limit considerations. An attempt is made, based on the previous Fast Flux Test Facility design data, to predict the preliminary lifetime estimate of the 304 stainless steel used in the blanket region of the LANL ABC.

  14. Equalization characteristics of an upflow sludge blanket-aerated biofilter (USB-AF) system.

    Science.gov (United States)

    Jun, H B; Park, S M; Park, J K; Lee, S H

    2005-01-01

    Equalization characteristics of the upflow sludge blanket-aerated bio-filter (USB-AF) were investigated with the fluctuated raw domestic sewage. Recycle of nitrified effluent from AF to USB triggered the equalization characteristics of the sludge blanket on both soluble and particulate organic matter. Increment of EPS in sludge blanket by nitrate recycle was detected and removal of turbidity and particulates increased at higher recycle ratios by bio-flocculation. Increased TCOD removal in the USB was due to both denitrification of recycled nitrate and entrapment of the particulate organic matter in sludge blanket. Capture of both soluble and particulate organic matter increased sludge blanket layer in the USB, which improved the reactor performances and reduced the organic load on the subsequent AF. Overall TCOD and SS removal efficiencies were about 98% and 96%, respectively in the USB-AF system. Turbidity in the USB effluent was about 44, 20 and 5.5 NTU, at recycle ratios of 0, 100 and 200%, respectively. Particle counts in the range 2-4 microm in the USB effluent were higher than those in influent without nitrate recycle, while particle counts in the range of 0.5-15 microm in the USB effluent decreased 70% at recycle ratio of 200%. The major constituent of EPS extracted from anaerobic sludge was protein and total EPS increased from 109.1 to 165.7 mg/g-VSS with nitrate recycle of 100%. Removal efficiency and concentration of T-N in the UBS-AF effluent was over 70% and below 16 mg/L, respectively.

  15. FW-CADIS Method for Global and Semi-Global Variance Reduction of Monte Carlo Radiation Transport Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, John C [ORNL; Peplow, Douglas E. [ORNL; Mosher, Scott W [ORNL

    2014-01-01

    This paper presents a new hybrid (Monte Carlo/deterministic) method for increasing the efficiency of Monte Carlo calculations of distributions, such as flux or dose rate distributions (e.g., mesh tallies), as well as responses at multiple localized detectors and spectra. This method, referred to as Forward-Weighted CADIS (FW-CADIS), is an extension of the Consistent Adjoint Driven Importance Sampling (CADIS) method, which has been used for more than a decade to very effectively improve the efficiency of Monte Carlo calculations of localized quantities, e.g., flux, dose, or reaction rate at a specific location. The basis of this method is the development of an importance function that represents the importance of particles to the objective of uniform Monte Carlo particle density in the desired tally regions. Implementation of this method utilizes the results from a forward deterministic calculation to develop a forward-weighted source for a deterministic adjoint calculation. The resulting adjoint function is then used to generate consistent space- and energy-dependent source biasing parameters and weight windows that are used in a forward Monte Carlo calculation to obtain more uniform statistical uncertainties in the desired tally regions. The FW-CADIS method has been implemented and demonstrated within the MAVRIC sequence of SCALE and the ADVANTG/MCNP framework. Application of the method to representative, real-world problems, including calculation of dose rate and energy dependent flux throughout the problem space, dose rates in specific areas, and energy spectra at multiple detectors, is presented and discussed. Results of the FW-CADIS method and other recently developed global variance reduction approaches are also compared, and the FW-CADIS method outperformed the other methods in all cases considered.

  16. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  17. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  18. The GmFWL1 (FW2-2-like) nodulation gene encodes a plasma membrane microdomain-associated protein.

    Science.gov (United States)

    Qiao, Zhenzhen; Brechenmacher, Laurent; Smith, Benjamin; Strout, Gregory W; Mangin, William; Taylor, Christopher; Russell, Scott D; Stacey, Gary; Libault, Marc

    2017-08-01

    The soybean gene GmFWL1 (FW2-2-like1) belongs to a plant-specific family that includes the tomato FW2-2 and the maize CNR1 genes, two regulators of plant development. In soybean, GmFWL1 is specifically expressed in root hair cells in response to rhizobia and in nodules. Silencing of GmFWL1 expression significantly reduced nodule numbers supporting its role during soybean nodulation. While the biological role of GmFWL1 has been described, its molecular function and, more generally, the molecular function of plant FW2-2-like proteins is unknown. In this study, we characterized the role of GmFWL1 as a membrane microdomain-associated protein. Specifically, using biochemical, molecular and cellular methods, our data show that GmFWL1 interacts with various proteins associated with membrane microdomains such as remorin, prohibitins and flotillins. Additionally, comparative genomics revealed that GmFWL1 interacts with GmFLOT2/4 (FLOTILLIN2/4), the soybean ortholog to Medicago truncatula FLOTILLIN4, a major regulator of the M. truncatula nodulation process. We also observed that, similarly to MtFLOT4 and GmFLOT2/4, GmFWL1 was localized at the tip of the soybean root hair cells in response to rhizobial inoculation supporting the early function of GmFWL1 in the rhizobium infection process. © 2017 John Wiley & Sons Ltd.

  19. FW: An R Package for Finlay-Wilkinson Regression that Incorporates Genomic/Pedigree Information and Covariance Structures Between Environments.

    Science.gov (United States)

    Lian, Lian; de Los Campos, Gustavo

    2015-12-29

    The Finlay-Wilkinson regression (FW) is a popular method among plant breeders to describe genotype by environment interaction. The standard implementation is a two-step procedure that uses environment (sample) means as covariates in a within-line ordinary least squares (OLS) regression. This procedure can be suboptimal for at least four reasons: (1) in the first step environmental means are typically estimated without considering genetic-by-environment interactions, (2) in the second step uncertainty about the environmental means is ignored, (3) estimation is performed regarding lines and environment as fixed effects, and (4) the procedure does not incorporate genetic (either pedigree-derived or marker-derived) relationships. Su et al. proposed to address these problems using a Bayesian method that allows simultaneous estimation of environmental and genotype parameters, and allows incorporation of pedigree information. In this article we: (1) extend the model presented by Su et al. to allow integration of genomic information [e.g., single nucleotide polymorphism (SNP)] and covariance between environments, (2) present an R package (FW) that implements these methods, and (3) illustrate the use of the package using examples based on real data. The FW R package implements both the two-step OLS method and a full Bayesian approach for Finlay-Wilkinson regression with a very simple interface. Using a real wheat data set we demonstrate that the prediction accuracy of the Bayesian approach is consistently higher than the one achieved by the two-step OLS method. Copyright © 2016 Lian and Campos.

  20. Multi-Sensor Data Fusion Technologies for Blanket Jamming Localization

    Institute of Scientific and Technical Information of China (English)

    WANG Ju; WU Si-liang; ZENG Tao

    2005-01-01

    The localization of the blanket jamming is studied and a new method of solving the localization ambiguity is proposed. Radars only can acquire angle information without range information when encountering the blanket jamming. Netted radars could get position information of the blanket jamming by make use of radars' relative position and the angle information, when there is one blanket jamming. In the presence of error, the localization method and the accuracy analysis of one blanket jamming are given. However, if there are more than one blanket jamming, and the two blanket jamming and two radars are coplanar, the localization of jamming could be error due to localization ambiguity. To solve this confusion, the Kalman filter model is established for all intersections, and through the initiation and association algorithm of multi-target, the false intersection can be eliminated. Simulations show that the presented method is valid.

  1. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  2. Evaluation of the breed/burn fast reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Atefi, B.; Driscoll, M.J.; Lanning, D.D.

    1979-12-01

    A core design concept and fuel management strategy, designated breed/burn, has been evaluated for heterogeneous fast breeder reactors. In this concept internal blanket assemblies after fissile material is bred in over several incore cycles, are shuffled into a moderated radial blanket and/or central island. The most promising materials combination identified used thorium in the internal blankets (due to the superior performance of epithermal Th-U233 systems) and zirconium hydride (ZrH/sub 16/) as the moderator (because of the compact assembly and core designs it permitted).

  3. Blanket selection for the Starlite project

    Energy Technology Data Exchange (ETDEWEB)

    Sze, D.K. [Argonne National Lab., IL (United States); Tillack, M.S. [Univ. of California, La Jolla, CA (United States); Sviatoslavsky, I.N.; El-Guebaly, L.A. [Univ. of Wisconsin, Madison, WI (United States); Waganer, L.M. [McDonnell Douglas Aerospace, St. Louis, MO (United States)

    1996-12-31

    The Starlite team was asked to develop a power plant study for the US Demo. To define the mission of the Demo, a Utility Advisory Committee (UAC) was organized to establish the mission and requirement for the Demo power plant. Based on this input, the Starlite team outlined a set of top level requirements based on the advice provided by the UAC. With the mission and requirements thus established, the Starlite engineering team investigated various combinations of the structural material, breeding material and coolant for the blanket and shield. The reference design selected was with V-alloy as the structural material and Li as the coolant and breeder. The ability of this blanket to satisfy the top level requirements was also assessed. 11 refs., 1 fig., 1 tab.

  4. A Precambrian proximal ejecta blanket from Scotland

    Science.gov (United States)

    Amor, Kenneth; Hesselbo, Stephen P.; Porcelli, Don; Thackrey, Scott; Parnell, John

    2008-04-01

    Ejecta blankets around impact craters are rarely preserved onEarth. Although impact craters are ubiquitous on solid bodiesthroughout the solar system, on Earth they are rapidly effaced,and few records exist of the processes that occur during emplacementof ejecta. The Stac Fada Member of the Precambrian Stoer Groupin Scotland has previously been described as volcanic in origin.However, shocked quartz and biotite provide evidence for high-pressureshock metamorphism, while chromium isotope values and elevatedabundances of platinum group metals and siderophile elementsindicate addition of meteoritic material. Thus, the unit isreinterpreted here as having an impact origin. The ejecta blanketreaches >20 m in thickness and contains abundant dark green,vesicular, devitrified glass fragments. Field observations suggestthat the deposit was emplaced as a single fluidized flow thatformed as a result of an impact into water-saturated sedimentarystrata. The continental geological setting and presence of groundwatermake this deposit an analogue for Martian fluidized ejecta blankets.

  5. Stellar model atmospheres with magnetic line blanketing

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2004-01-01

    Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...

  6. Assessment of torsatrons as reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, J.F. (Oak Ridge National Lab., TN (United States)); Painter, S.L. (Australian National Univ., Canberra, ACT (Australia))

    1992-12-01

    Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors because stellarators have no dangerous disruptions and no need for continuous current drive or power recirculated to the plasma, both easing the first wall, blanket, and shield design; less severe constraints on the plasma parameters and profiles; and better access for maintenance. This study shows that a reactor based on the torsatron configuration (a stellarator variant) could also have up to double the mass utilization efficiency (MUE) and a significantly lower cost of electricity (COE) than a conventional tokamak reactor (ARIES-I) for a range of assumptions. Torsatron reactors can have much smaller coil systems than tokamak reactors because the coils are closer to the plasma and they have a smaller cross section (higher average current density because of the lower magnetic field). The reactor optimization approach and the costing and component models are those used in the current stage of the ARIES-I tokamak reactor study. Typical reactor parameters for a 1-GW(e) Compact Torsatron reactor example are major radius R[sub 0] = 6.6-8.8 m, on-axis magnetic field B[sup 0] = 4.8-7.5 T, B[sub max] (on coils) = 16 T, MUE 140-210 kW(e)/tonne, and COE (in constant 1990 dollars) = 67-79 mill/kW(e)h. The results are relatively sensitive to assumptions on the level of confinement improvement and the blanket thickness under the inboard half of the helical windings but relatively insensitive to other assumptions.

  7. Chicxulub Ejecta Blanket Deposits From Belize

    Science.gov (United States)

    Ocampo, A.

    1995-01-01

    The Chicxulub impact into a thick sequence of carbonates and sulfates released over a trillion tons of volatiles. The importance of the explosive release of such a large mass of volatiles has been greatly underestimated in studies of ejecta depositional processes. Proximal Chicxulub ejecta blanket deposits recent discovered on Albion Island in Belize provide a key to understanding the role of volatile-rich target material during large impact events.

  8. Analysis of Consistency of Printing Blankets using Correlation Technique

    Directory of Open Access Journals (Sweden)

    Lalitha Jayaraman

    2010-01-01

    Full Text Available This paper presents the application of an analytical tool to quantify material consistency of offset printing blankets. Printing blankets are essentially viscoelastic rubber composites of several laminas. High levels of material consistency are expected from rubber blankets for quality print and for quick recovery from smash encountered during the printing process. The present study aims at determining objectively the consistency of printing blankets at three specific torque levels of tension under two distinct stages; 1. under normal printing conditions and 2. on recovery after smash. The experiment devised exhibits a variation in tone reproduction properties of each blanket signifying the levels of inconsistency also in thicknessdirection. Correlation technique was employed on ink density variations obtained from the blanket on paper. Both blankets exhibited good consistency over three torque levels under normal printing conditions. However on smash the recovery of blanket and its consistency was a function of manufacturing and torque levels. This study attempts to provide a new metrics for failure analysis of offset printing blankets. It also underscores the need for optimizing the torque for blankets from different manufacturers.

  9. Analysis of Consistency of Printing Blankets using Correlation Technique

    Directory of Open Access Journals (Sweden)

    Balaraman Kumar

    2010-06-01

    Full Text Available This paper presents the application of an analytical tool to quantify material consistency of offset printing blankets. Printing blankets are essentially viscoelastic rubber composites of several laminas. High levels of material consistency are expected from rubber blankets for quality print and for quick recovery from smash encountered during the printing process. The present study aims at determining objectively the consistency of printing blankets at three specific torque levels of tension under two distinct stages; 1. under normal printing conditions and 2. on recovery after smash. The experiment devised exhibits a variation in tone reproduction properties of each blanket signifying the levels of inconsistency also in thickness direction. Correlation technique was employed on ink density variations obtained from the blanket on paper. Both blankets exhibited good consistency over three torque levels under normal printing conditions. However on smash the recovery of blanket and its consistency was a function of manufacturing and torque levels. This study attempts to provide a new metrics for failure analysis of offset printing blankets. It also underscores the need for optimising the torque for blankets from different manufacturers.

  10. Tokamak blanket design study, final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.

  11. Molecule-surface interaction processes of relevance to gas blanket type fusion device divertor design

    Energy Technology Data Exchange (ETDEWEB)

    Snowdon, K.J. [Newcastle Univ. (United Kingdom). Dept. of Physics; Tawara, H.

    1997-01-01

    The mechanisms which may lead to the departure of molecular species from surfaces exposed to low energy (0.1-100 eV) particle or photon and electron irradiation are reviewed. Where possible, the charge and electronic state, angular, translational and internal energy distributions of the departing molecules are described and the physical origin of the nature of those distributions identified. The consequences, for the departing molecules, of certain material choices become apparent from such an analysis. Such information may help guide the choice of appropriate materials for plasma facing components of gas-blanket type divertors such as that recently proposed for the International Thermonuclear Experimental Reactor (ITER). (author). 71 refs.

  12. Experimental facility for studying MHD effects in liquid metal cooled blankets

    Science.gov (United States)

    Reed, C. B.; Picologlou, B. F.; Dauzvardis, P. V.

    The capabilities of a facility, brought into service to collect data on magnetohydrodynamic (MHD) effects, pertinent to liquid metal cooled fusion reactor blankets, are presented. The facility, design to extend significantly the existing data base on liquid metal MHD, employs eutectic NaK as the working fluid in a room temperature closed loop. The instrumentation system is capable of collecting detailed data on pressure, voltage, and velocity distributions at any axial position within the base of a 2 Tesla conventional magnet. The axial magnetic field distribution can be uniform or varying with either rapid or slow spatial variations.

  13. Numerical modelling of dynamic sludge blanket behaviour in secondary clarifiers.

    Science.gov (United States)

    Armbruster, M; Krebs, P; Rodi, W

    2001-01-01

    New developments in numerical modelling of turbulent and density-affected flow in secondary clarifiers are reported. The sludge blanket is included in the computation domain which allows us to account for sedimentation and resuspension of sludge as well as the growth and diminution of the sludge blanket and at the same time respecting mass conservation. It is shown how strongly the prediction of the sludge-blanket height depends on the approaches to describe the settling behaviour of the sludge and the rheological properties within the sludge blanket. Further, an example of dynamic simulation is presented and discussed. This demonstrates how the sludge blanket behaves during load variation and that instabilities may occur at the interface of sludge blanket and supernatant, potentially resulting in sludge wash-off during transient phases, which is not only during load increase but also during load decrease.

  14. Pre-conceptual design study on K-DEMO ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Sung, E-mail: jspark@nfri.re.kr [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kwon, Sungjin; Im, Kihak; Kim, Keeman [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Brown, Thomas; Neilson, George [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-11-15

    A pre-conceptual design study has been carried out for the Korean fusion demonstration reactor (K-DEMO) tokamak featured by high magnetic field (B{sub T0} = 7.4 T), R = 6.8 m, a = 2.1 m, and a steady-state operation. The design concepts of the K-DEMO blanket system considering the cooling in-vessel components with pressurized water and a solid pebble breeder are described herein. The structure of the K-DEMO blanket is toroidally subdivided into 16 inboard and 32 outboard sectors, in order to allow the vertical maintenance. Each blanket module is composed of plasma-facing first wall, layers of breeding parts, shielding and manifolds. A ceramic breeder using Li{sub 4}SiO{sub 4} pebbles with Be{sub 12}Ti as neuron multiplier is employed for study. MCNP neutronic simulations and thermo-hydraulic analyses are interactively performed in order to satisfy two key aspects: achieving a global Tritium Breeding Ratio (TBR) >1.05 and operating within the maximum allowable temperature ranges of materials.

  15. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

  16. Noise Attenuation Performance of the Joint Service Aircrew Mask (JSAM) Fixed Wing (FW) Variant with Flight Helmets

    Science.gov (United States)

    2013-04-01

    Measurements (cm) Head Length Head Width Nasal Root to Supramentale Neck Circumference 1482 20.1 15.2 8.9 38.7 1427 19.2 15.3 9.0 37.3 1379...1. Anthropometric head and neck measurements for participating subjects ........................ 3 Table 2. Mean and standard deviation passive...mounted equipment assembly. The system was designed to be worn with all the current below-the- neck ensembles. Aircrews wear the JSAM-FW based on threat

  17. The development of ferritic steels for DEMO blanket

    Energy Technology Data Exchange (ETDEWEB)

    Kohyama, A. [Kyoto Univ. (Japan). Inst. of Advanced Energy; Hishinuma, A.; Shiba, K. [Tokai Establishment, JAERI, Tokai, Ibaraki (Japan); Kohno, Y. [Department of Materials Science, University of Tokyo, Hongo, Tokyo 113 (Japan); Sagara, A. [National Institute for Fusion Science, Toki, Gifu (Japan)

    1998-09-01

    The development of low-activation ferritic/martensitic steels is a key to the achievement of nuclear fusion as a safe, environmentally attractive and economically competitive energy source. The Japanese and the European Fusion Materials programs have put low-activation ferritic and martensitic steels R and D at the highest priority for a demonstration reactor (DEMO) and the beyond. An international collaborative test program on low-activation ferritic/martensitic steels for fusion is in progress as an activity of the International Energy Agency (IEA) fusion materials working group to verify the feasibility of using ferritic/martensitic steels for fusion by an extensive test program covering the most relevant technical issues for the qualification of a material for a nuclear application. The development of a comprehensive data base on the representative industrially processed reduced-activation steels of type 8-9Cr-2WVTa is underway for providing designers a preliminary set of material data for the mechanical design of components, e.g. for DEMO relevant blanket modules. The current design status of FFHR and SSTR utilizing low-activation ferritic steels is reviewed and future prospects are defined. (orig.) 12 refs.

  18. High power density self-cooled lithium-vanadium blanket.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  19. High power density self-cooled lithium-vanadium blanket.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  20. In vivo experimental testing of the FW axial blood pump for left ventricular support in Fu Wai Hospital.

    Science.gov (United States)

    Zhang, Yan; Hu, Sheng-Shou; Zhou, Jian-Ye; Sun, Han-Song; Tang, Yue; Zhang, Hao; Zheng, Zhe; Li, Guo-Rong; Zhu, Xiao-Dong; Gui, Xin-Min

    2009-01-01

    A fully implantable, axial flow blood pump has been developed in Fu Wai Hospital aiming for clinical use. This ventricular assist device (VAD), which was developed after numerous CFD analyses for the flow characteristics of the pump, is 58.5-mm long, 30-mm wide (including DC motor), and weighs 240 g. The pump can deliver 5 L/min for pressures of 100 mm Hg over 8,000 rpm. In this study, short-term hemocompatibility effects of the axial left ventricular assist device (LVAD) (FW blood pump) were evaluated in four healthy sheep. The device was implanted into the left ventricular apex of beating hearts. The outflow graft of each device was anastomosed to the descending aorta. The hemolysis, which was evaluated in vivo by free hemoglobin value, was below 30 mg/dL. Evaluation of serum biochemical data showed that implantation of the FW blood pump in sheep with normal hearts did not impair end organ function. Gross and microscopic sections of kidney, liver, and lung revealed no evidence of microemboli. Performance of the pump in vivo was considered sufficient for a LVAD, although further design improvement is necessary in terms of hemolysis and antithrombosis to improve biocompatibility of the pump.

  1. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  2. Short term in vivo thrombosis evaluation of FW-Ⅱ axial blood pump for left ventricular assist%FW-Ⅱ型轴流泵短期辅助抗体内血栓形成性能评价

    Institute of Scientific and Technical Information of China (English)

    陈海波; 胡盛寿; 周建业; 孙寒松; 唐跃; 张岩; 柳光茂; 朱晓东

    2011-01-01

    Objective To evaluate in vivo antithrombosis property of optimized FW-Ⅱ axial blood pump and provides evidence for future clinical use.Methods A left ventricle-pump-descending aorta bypass model was established in five healthy sheep (60-70 kg) and the circulation of these sheep was assisted by FW-Ⅱ axial blood pump for 2 weeks.In preoperative and postoperative day 1,2,3,7,10 and 14,blood was drawn from the jugular vein to examine platelet activation and leukocyte-platelet aggregation respectively quantified with Annexin V,CD41/61 and CD14-PE by flow cytometry assays.Immediately after termination of the experiment,FW-Ⅱ axial blood pumps were explanted and each part was inspected for thrombus formation.Macroscopic and histological examinations were checked on heart,brain,kidney and spleen,respectively for thrombosis.Results Compared with preoperative baseline,the number of platelet activation and leukocyte-platelet aggregation reached a peak at postoperative day 2,it retained a high level within 7 days,then gradually decreased,but was still higher than preoperative level at dayl4.According to rotating speed,the number of platelet activation and platelet-leukocyte aggregation were lowest at the speed of 8000 r/min Minus thrombus were found in the front and rear hub of the pump rotor,and there was no thrombus at other components (flow straighter,impeller and pump housing).There were no ischemia and infarction evidences in macroscopic and histological examination of the heart,brain,kidney and spleen.Conclusion FW-II axial blood pump can be used to assist left ventricular circulation for 2 weeks with a satisfactory antithrombosis property.The level of platelet activation and leukocyte-platelet aggregation can be reduced to a lowest level at an optimized pump rotating speed.%目的 对优化设计FW-Ⅱ轴流泵短期辅助的抗血栓性能进行评价,为后期临床应用提供依据.方法 5只60~70 kg成年小尾寒羊,建立心室-泵-降主动脉旁路循

  3. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Ki Hak [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds.

  4. Characterization of lighted upflow anaerobic sludge blanket (LUASB) method under sulfate-rich conditions.

    Science.gov (United States)

    Sawayama, S; Tsukahara, K; Yagishita, T; Hanada, S

    2001-01-01

    Growth of phototrophic bacteria was induced from granules in a lighted upflow anaerobic sludge blanket (LUASB) reactor supplied with an organic-acid-based medium containing 141.7 mg S.l(-1) of SO4(2-) under light conditions (100 microE.m(-2).s(-1)). We investigated the population dynamics of phototrophic bacteria in the LUASB reactor and the performance of the LUASB reactor for wastewater treatment and poly-beta-hydroxybutyrate (PHB) production under anaerobic light and sulfate-rich conditions. In vivo absorption spectra and a colony count suggested that populations of Rhodopseudomonas palustris and Blastochloris sulfoviridis in the LUASB reactor supplied with a medium containing 574.4 mg S.l(-1) of SO4(2-) under light conditions were lower than those supplied with a medium containing 1.0 or 141.7 mg S.l(-1) of SO4(2-) under parallel conditions. Removal efficiencies of ammonium and phosphate in the LUASB reactor supplied with the medium containing 141.7 mg S.l(-1) of SO4(2-) under light conditions were higher than those under parallel conditions but without illumination. The difference in the results of runs under light or dark conditions suggested that the ammonium and phosphate ion removal efficiencies were improved by increasing the amount of phototrophic bacterial biomass in the LUASB reactor under sulfate-rich conditions. The average PHB production rates of the bacterial cells recovered from the effluent of the LUASB reactor supplied with a medium containing 141.7, 283.5 or 574.4 mg S.l(-1) of SO4(2-) were 1.0-2.9 mg.l(-1)-reactor.d(-1) and the average PHB content based on the dry bacterial biomass was 1.4-3.6%.

  5. Development of the Helium Cooled Lithium Lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, G., E-mail: giacomo.aiello@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aubert, J.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The HCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • The new design has been developed with the aim to capitalize on TBM experience in ITER. • A new attachment system for the modules has been proposed. - Abstract: The Helium Cooled Lithium Lead (HCLL) blanket is one of the candidate European blanket concepts selected for the DEMOnstration fusion power plant that should follow ITER. In a fusion power plant, the blanket is one of the key components because of its impact on the plant performance, availability, safety and economics. In 2012, the European Fusion Development Agreement (EFDA) agency issued new specifications for DEMO: this paper describes the work performed to adapt the previous 2007 HCLL-DEMO blanket design to those specifications. A new segmentation has been defined assuming straight surfaces for all blanket modules. Following the Multi Module Segment (MMS) option, all modules are attached to a common back supporting structure which also serves as manifold for Helium and PbLi distribution. A detailed CAD design of the central outboard module has been defined. Thermo-hydraulic and thermo-mechanical analyses on of the First Wall and Breeder Zone have been carried out. For the attachment of the modules to the common backplate, a new solution based on the use of Tie Rods, derived from the design of the corresponding HCLL Test Blanket Module for ITER, has been proposed. This paper also identifies the priorities for further development of the HCLL blanket design.

  6. 75 FR 51482 - Woven Electric Blankets From China

    Science.gov (United States)

    2010-08-20

    ... publishing the notice in the Federal Register of March 11, 2010 (75 FR 11557). The hearing was held in... COMMISSION Woven Electric Blankets From China Determination On the basis of the record \\1\\ developed in the... United States is materially injured by reason of imports from China of woven electric blankets,...

  7. 48 CFR 213.303 - Blanket purchase agreements (BPAs).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 213.303 Section 213.303 Federal Acquisition Regulations System DEFENSE ACQUISITION... PROCEDURES Simplified Acquisition Methods 213.303 Blanket purchase agreements (BPAs)....

  8. 48 CFR 8.405-3 - Blanket purchase agreements (BPAs).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Blanket purchase... Blanket purchase agreements (BPAs). (a)(1) Establishment. Ordering activities may establish BPAs under any..., before placing an order exceeding the micro-purchase threshold, the ordering activity shall— (i)...

  9. fw 2.2:a major QTL controlling fruit weight is common to both red- and green-fruited tomato species.

    Science.gov (United States)

    Alpert, K B; Grandillo, S; Tanksley, S D

    1995-11-01

    We have shown that a major QTL for fruit weight (fw2.2) maps to the same position on chromosome 2 in the green-fruited wild tomato species, Lycopersicon pennellii and in the red-fruited wild tomato species, L. pimpinellifolium. An introgression line F2 derived from L. esculentum (tomato) x L. pennellii and a backcross 1 (BC1) population derived from L. esculentum x L. pimpinellifolium both place fw2.2 near TG91 and TG167 on chromosome 2 of the tomato highdensity linkage map. fw2.2 accounts for 30% and 47% of the total phenotypic variance in the L. pimpinellifolium and L. pennellii populations, respectively, indicating that this is a major QTL controlling fruit weight in both species. Partial dominance (d/a of 0.44) was observed for the L. pennellii allele of fw 2.2 as compared with the L. esculentum allele. A QTL with very similar phenotypic affects and gene action has also been identified and mapped to the same chromosomal region in other wild tomato accessions: L. cheesmanii and L. pimpinellifolium. Together, these data suggest that fw2.2 represents an orthologous QTL (i.e., derived by speciation as opposed to duplication) common to most, if not all, wild tomato species. High-resolution mapping may ultimately lead to the cloning of this key locus controlling fruit development in tomato.

  10. Experimental devices in the osiris reactor to study effects of radiations on fusion reactor materials

    Science.gov (United States)

    Lefevre, F.; Thevenot, G.

    1986-11-01

    Within the framework of the Technology Research Program on controlled fusion initiated by the European Communities, the Services des Piles de Saclay (SPS) of Commissariat à l'Energie Atomique (CEA) have been requested to perform some necessary experiments to study the irradiation behaviour of materials which are possible candidates for controlled fusion reactors. This paper describes the devices, generally adapted from a standard model "The COLIBRI", which allow one to carry out, in the OSIRIS reactor, irradiations on the three great families of fusion reactor materials: - lithium containing materials of breeding blanket for in-situ tritium production, - protection materials, and - structural materials.

  11. Experimental devices in the OSIRIS reactor to study effects of radiations on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, F.; Thevenot, G.

    Within the framework of the Technology Research Program on controlled fusion initiated by the European Communities, the Services des Piles de Saclay (SPS) of Commissariat a l'Energie Atomique (CEA) have been requested to perform some necessary experiments to study the irradiation behaviour of materials which are possible candidates for controlled fusion reactors. This paper describes the devices, generally adapted from a standard model The COLIBRI, which allow one to carry out, in the OSIRIS reactor, irradiations on the three great families of fusion reactor materials: Lithium containing materials of breeding blanket for in-situ tritium production, protection materials, and structural materials.

  12. Simulation of sludge blanket height in clarifiers

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhen; WU Zhi-chao; WANG Zhi-wei; GU Guo-wei

    2009-01-01

    Sludge blanket height (SBH) is an important parameter in the clarifier design,operation and control.Based on an overview and classification of SBH algorithms,a modifed SBH algorithm is proposed by incorporating a threshold concentration limit into a relative concentration sharp change algorithm to eliminate the disturbance of compression interfaces on the correct simulation of SBH.Pilot-scale test data are adopted to compare reliability of three SBH algorithms reported in literature and the modified SBH algorithm developed in this paper.Calculated results demonstrate that the three SBH algorithms give results with large deviation (>50%) from measured SBH,especially under low solid flux conditions.The modified algorithm is computationally efficient and reliable in matching the measured data.It is incorporated into a onedimensional clarifier model for stable simulation of pilot-scale experimental clarifier data and into dynamic simulation of a full-scale wastewater treatment plant (WWTP) clarifier data.

  13. Blanket concept with liquid Li/sub 17/Pb/sub 83/ for tritium breeding in INTOR-NET

    Energy Technology Data Exchange (ETDEWEB)

    Airola, J.; Biggio, M.; Casini, G.; Farfaletti-Casali, F.; Li Bassi, P.; Ponti, C.; Rieger, M. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Piana, C. (Milan Univ. (Italy))

    1984-04-01

    A blanket concept with eutectic Li/sub 17/Pb/sub 83/ as liquid breeder, suited for tritium production in an experimental Tokamak power reactor is outlined and discussed. This design has been developed to satisfy the INTOR-Phase-I specifications, in particular: (I) modular arrangement of the blanket units inside the vacuum vessel; (II) no use of the heat deposited for electricity production, (III) a net tritium breeding of a least 60%. In this article the main results of the neutronics and thermohydraulics analysis are reviewed and the problems identified. Methods to keep liquid in the breeder during operation are proposed and discussed. The consequences of a coolant tube rupture in a breeder unit appears to be the most serious problem.

  14. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Polytechnic University of Catalonia (UPC), Barcelona (Spain); Department of Applied Physics, Ghent University, Ghent (Belgium); Noterdaeme, J.-M. [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Department of Applied Physics, Ghent University, Ghent (Belgium); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Dies, J. [Polytechnic University of Catalonia (UPC), Barcelona (Spain)

    2015-12-10

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is −0.349% for the HCPB blanket and −0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.

  15. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    Science.gov (United States)

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2015-12-01

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is -0.349% for the HCPB blanket and -0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.

  16. Fission-suppressed hybrid reactor: the fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  17. CFD analysis of a Sphere-Packed Pipe for potential application in the molten salt blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Nazififard, Mohammad [Kashan Univ. (Iran, Islamic Republic of). Dept. of Energy Systems; Suh, Kune Y. [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering and PHILOSOPHIA

    2016-08-15

    This computational fluid dynamics (CFD) analysis aims to evaluate the flow structures and heat transfer characteristics in Sphere Packed Pipe (SPP) for potential application in fusion reactors. The SPP consists of metal spheres which are packed in a pipe and disturb the flow inside of the pipe to boost the heat transfer. One of the potential applications of SPP is using it at the first wall of Force Free Helical Reactors (FFHR). The numerical model has improved on the numerical model, gaps between pebbles and channel wall, and turbulent model compared to previous numerical studies. The standard κε- model, Omega Reynolds stress model, the Shear Stress Transport (SST) model and κε EARSM/BSL have been applied as turbulence model to examine the effect of turbulence model on validation of numerical results. The present numerical model can be used in the design of the blanket of fusion reactor.

  18. Concept of a demonstrational hybrid reactor—a tokamak with molten-salt blanket for 233U fuel production: 1. Concept of a stationary Tokamak as a neutron source

    Science.gov (United States)

    Azizov, E. A.; Gladush, G. G.; Dokuka, V. N.; Khayrutdinov, R. R.

    2015-12-01

    On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of 233U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket based on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.

  19. Concept of a demonstrational hybrid reactor—a tokamak with molten-salt blanket for {sup 233}U fuel production: 1. Concept of a stationary Tokamak as a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, E. A.; Gladush, G. G., E-mail: gladush@triniti.ru; Dokuka, V. N.; Khayrutdinov, R. R. [State Research Center of the Russian Federation, Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-12-15

    On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of {sup 233}U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket based on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.

  20. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    Science.gov (United States)

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume.

  1. Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, M.L.; Price, M.E. (eds.)

    1984-07-01

    Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen. (MOW)

  2. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed Phase II research effort is to develop heterogeneous (HG) blankets for improved sound reduction in aircraft structures. Phase I...

  3. Lightweight IMM Multi-Junction Photovoltaic Flexible Blanket Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — DSS's recently completed successful NASA SBIR Phase 1 program has established a TRL 3/4 classification for an innovative IMM PV Integrated Modular Blanket Assembly...

  4. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project advanced acoustic blankets for improved low frequency interior noise control in aircraft will be developed and demonstrated. The improved performance...

  5. 18 CFR 284.402 - Blanket marketing certificates.

    Science.gov (United States)

    2010-04-01

    ... effective for an affiliated marketer with respect to transactions involving affiliated pipelines when an affiliated pipeline receives its blanket certificate pursuant to § 284.284. (2) Should a marketer...

  6. Performance of uncoated AFRSI blankets during multiple Space Shuttle flights

    Science.gov (United States)

    Sawko, Paul M.; Goldstein, Howard E.

    1992-01-01

    Uncoated Advanced Flexible Reusable Surface Insulation (AFRSI) blankets were successfully flown on seven consecutive flights of the Space Shuttle Orbiter OV-099 (Challenger). In six of the eight locations monitored (forward windshield, forward canopy, mid-fuselage, upper wing, rudder/speed brake, and vertical tail) the AFRSI blankets performed well during the ascent and reentry exposure to the thermal and aeroacoustic environments. Several of the uncoated AFRSI blankets that sustained minor damage, such as fraying or broken threads, could be repaired by sewing or by patching with a surface coating called C-9. The chief reasons for replacing or completely coating a blanket were fabric embrittlement and fabric abrasion caused by wind erosion. This occurred in the orbiter maneuvering system (OMS) pod sidewall and the forward mid-fuselage locations.

  7. Verification of dimensional stability on ITER blanket shield block after stress relieving

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa-Woong, E-mail: swkim12@nfri.re.kr; Jung, Hun-Chea; Ha, Min-Su; Shim, Hee-Jin

    2016-11-01

    Highlights: • The SB#08 FSP were manufactured by using conventional manufacturing processes such as cutting, milling, drilling and welding. • Especially, a strong back system was adopted in order to prevent welding deformation during cover plate welding process. • Post-Welding Heat Treatment (PWHT) for stress relieving and Hot He Leak Test (HHLT) were waived from the lake of huge test facility in the pre-qualification program. • The PWHT combined with the HHLT, however, were implemented to remove the residual stress and to confirm the soundness of welded parts as an internal R&D activities after the pre-qualification program. • Three dimensional inspection also carried out after the PWHT to check the dimensional stabilization. - Abstract: The tight tolerance requirement is one of key issue to manufacture the ITER blanket shield blocks (SBs) which have many interfaces with the First Wall (FW) and Vacuum Vessel (VV). Manufactured SB shall be satisfied with general tolerances (Class “C” of ISO 2768-1 and “L” of ISO 2768-2) and specific tolerance in 2D general assembly drawings. In order to fulfill the tight tolerance requirements in the final stage of SB, stress relieving after welding operations in the manufacturing process shall be performed. Hot helium leak test, Post Welding Heat Treatment (PWHT) and three-dimensional inspection before and after heat treatment were implemented by using the Full Scale Prototype (FSP) of SB in the framework of domestic R&D activities. The hot He leak test was performed at 250 °C for 30 min, and the result was satisfied the requirements. PWHT was carried out at 400 °C for 24 h by brazing furnace with test chamber. The deformation value before and after was measured by contact type coordinate measuring machine. The objective of this study is to verify dimensional stability of SB after stress relieving. The results will support to determine the machining allowance prior to welding process.

  8. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  9. Axial blanket for 16NGF Angra 1 fuel type

    Energy Technology Data Exchange (ETDEWEB)

    Sadde, Luciano Martins; Faria, Eduardo Fernandes [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil)]. E-mails: sadde@inb.gov.br; faria@inb.gov.br; Sang-Keun You [Korea Nuclear Fuel Co. Ltd. (KNFC), Taejon (Korea, Republic of)]. E-mail: skyou@knfc.co.kr

    2007-07-01

    Angra-1, Kori-2 and Krsko are nuclear power plants with the same design. However, the fuel assemblies have some differences in design due to the countries strategies and the differences in the fabrication process. The 16NGF (16x16 Next Generation Fuel) was developed by INB, KNFC and Westinghouse in order to be used in these three nuclear power plants and the 'Axial Blanket' is one of the new features for the 16NGF design. The main purpose of the Axial Blanket Optimization study is to determine which axial blanket enrichment and length would provide the better fuel cycle cost benefit. All of the calculations were performed using Gadolinium as Burnable Absorber and solid pellets type for Axial Blanket. The results indicate 1.8 w/o U235 enrichment and 8 inches length as the best option of Axial Blanket from the fuel cycle cost benefit standpoint. The economy is about 1.8%. The difference in the reload cost in the range between 1.5 and 2.6 w/o U235 enrichment and for the 6 and 8 inches length is not so significant. Due that, from the Fq limit standpoint and also for longer cycle length requirements, a higher axial blanket enrichment (2.6 w/o) and shorter length (6 inches) is recommended. (author)

  10. System assessment of helical reactors in comparison with tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-{beta}{sub N} tokamak reactors. (author)

  11. A fail–safe and cost effective fabrication route for blanket First Walls

    Energy Technology Data Exchange (ETDEWEB)

    Commin, L., E-mail: lorelei.commin@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rieth, M.; Dafferner, B.; Zimmermann, H.; Bolich, D.; Baumgärtner, S.; Ziegler, R. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dichiser, S.; Fabry, T.; Fischer, S.; Hildebrand, W.; Palussek, O.; Ritz, H.; Sponda, A. [Karlsruhe Institute of Technology (KIT), Technische Infrastruktur und Dienste (TID), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-11-15

    Helium Cooled Lithium Lead and Helium Cooled Pebble Bed concepts have been selected as European Test Blanket Modules (TBM) for ITER. The TBM fabrication will need the assembly of six Reduced Activation Ferritic Martensitic steel sub-components, namely First Wall, Caps, Stiffening Grid, Breeding Units, Back Plates/Manifolds, and Attachment system. The fabrication of the First Wall requires the production of cooling channels inside 30 mm thick bended plates. For this specific component, the main issues consist of the lack of accessibility of some areas to join, the process tolerances, the dimensional stability and the resulting assembly mechanical properties. Several fabrication routes have been already investigated, which involve diffusion welding and fusion welding (electron beam, laser beam, hybrid MIG/laser). In this study, an alternative processing method was developed, based on Hot Isostatic Pressing of inner pipes within two half-shells. This method presents some major advantages over the existing ones, in particular its inherent fail–safe design due to the application of the double containment principle, the solely use of cost effective standard fabrication processes and the resulting component dimensional stability. A four channel mock-up was fabricated and analyzed to validate the fabrication procedure. The joint quality was assessed using microstructural characterization and Charpy tests. The results confirm the predicted perfect weld lines as well as the preservation of the mechanical properties. Therefore, the presented fabrication procedure is very appropriate for the fabrication of First Walls for fusion reactor blankets.

  12. Octalithium plumbate as breeding blanket ceramic: Neutronic performances, synthesis and partial characterization

    Energy Technology Data Exchange (ETDEWEB)

    Colominas, S., E-mail: sergi.colominas@iqs.es [Universitat Ramon Llull, ETS Institut Quimic de Sarria, Electrochemical Methods Laboratory - Analytical Chemistry Department, Via Augusta, 390, 08017 Barcelona (Spain); Palermo, I., E-mail: iole.palermo@ciemat.es [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain); Abella, J., E-mail: jordi.abella@iqs.es [Universitat Ramon Llull, ETS Institut Quimic de Sarria, Electrochemical Methods Laboratory - Analytical Chemistry Department, Via Augusta, 390, 08017 Barcelona (Spain); Gomez-Ros, J.M., E-mail: jm.gomezros@ciemat.es [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain); Sanz, J., E-mail: jsanz@ind.uned.es [UNED, Department of Nuclear Energy, c./Juan del Rosal 12, E-28040 Madrid (Spain); Sedano, L., E-mail: luis.sedano@ciemat.es [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Definition of a suitable configuration for the Li{sub 8}PbO{sub 6} breeding blanket design. Black-Right-Pointing-Pointer Demonstration of the feasibility of Li{sub 8}PbO{sub 6} as a breeding material. Black-Right-Pointing-Pointer Synthesis optimization in the Li{sub 8}PbO{sub 6} production. Black-Right-Pointing-Pointer Characterization of Li{sub 8}PbO{sub 6} by X-ray phase analysis is discussed. - Abstract: A neutronic assessment of the performances of a helium-cooled Li{sub 8}PbO{sub 6} breeding blanket (BB) for the conceptual design of a DEMO fusion reactor is given. Different BB configurations have been considered in order to minimize the amount of beryllium required for neutron multiplication, including the use of graphite as reflector material. The calculated neutronic responses: tritium breeding ratio (TBR), power deposition in TF coils and power amplification factor, indicate the feasibility of Li{sub 8}PbO{sub 6} as breeding material. Furthermore, the synthesis and characterization of Li{sub 8}PbO{sub 6} by X-ray phase analysis are also discussed.

  13. APT Blanket System Loss-of-Helium-Gas Accident Based on Initial Conceptual Design - Helium Supply Rupture into Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    The model results are used to determine if beam power shutdown is necessary (or not) as a result of the LOHGA accident to maintain the blanket system well below any of the thermal-hydraulic constraints imposed on the design. The results also provide boundary conditions to the detailed bin model to study the detailed temperature response of the hot blanket module structure. The results for these two cases are documented in the report.

  14. Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket

    Science.gov (United States)

    Tanigawa, H.; Shiba, K.; Möslang, A.; Stoller, R. E.; Lindau, R.; Sokolov, M. A.; Odette, G. R.; Kurtz, R. J.; Jitsukawa, S.

    2011-10-01

    The status and key issues of reduced activation ferritic/martensitic (RAFM) steels R&D are reviewed as the primary candidate structural material for fusion energy demonstration reactor blankets. This includes manufacturing technology, the as-fabricated and irradiates material database and joining technologies. The review indicated that the manufacturing technology, joining technology and database accumulation including irradiation data are ready for initial design activity, and also identifies various issues that remain to be solved for engineering design activity and qualification of the material for international fusion material irradiation facility (IFMIF) irradiation experiments that will validate the data base.

  15. Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hiroyasu [ORNL; Stoller, Roger E [ORNL; Sokolov, Mikhail A [ORNL; Odette, G.R. [University of California, Santa Barbara; Jitsukawa, Shiro [Japan Atomic Energy Agency (JAEA); Shiba, K. [Japan Atomic Energy Agency (JAEA); Kurtz, Richard [Pacific Northwest National Laboratory (PNNL); Moeslang, A. [Forschungszentrum Karlsruhe, Karlsruhe, Germany; Lindau, R. [Forschungszentrum Karlsruhe, Karlsruhe, Germany

    2011-01-01

    The status and key issues of reduced activation ferritic/martensitic (RAFM) steels R&D are reviewed as the primary candidate structural material for fusion energy demonstration reactor blankets. This includes manufacturing technology, the as-fabricated and irradiates material database and joining technologies. The review indicated that the manufacturing technology, joining technology and database accumulation including irradiation data are ready for initial design activity, and also identifies various issues that remain to be solved for engineering design activity and qualification of the material for international fusion material irradiation facility (IFMIF) irradiation experiments that will validate the data base.

  16. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    DEFF Research Database (Denmark)

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan

    2011-01-01

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME...

  17. Formation of metabolites during biodegradation of linear alkylbenzene sulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2002-01-01

    Biodegradation of linear alkylbenzene sulfonate (LAS) was shown in an upflow anaerobic sludge blanket reactor under thermophilic conditions. The reactor was inoculated with granular biomass and fed with a synthetic medium and 3 mumol/L of a mixture of LAS with alkylchain length of 10 to 13 carbon...

  18. Heterogeneous Transmutation Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Bays

    2007-09-01

    The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.

  19. Design activities on helical DEMO reactor FFHR-d1

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, A., E-mail: sagara.akio@LHD.nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Goto, T.; Miyazawa, J.; Yanagi, N.; Tanaka, T.; Tamura, H.; Sakamoto, R.; Tanaka, M.; Tsumori, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Mitarai, O. [Tokai University, 9-1-1 Toroku, Kumamoto 862-8652 (Japan); Imagawa, S.; Muroga, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Conceptual design studies of the helical DEMO reactor FFHR-d1 have been conducted. Black-Right-Pointing-Pointer Design window analyses with core plasma and engineering designs have been carried out. Black-Right-Pointing-Pointer R and Ds on blanket, magnet, tritium control, fuelling and heating systems are discussed. - Abstract: Based on high-density and high-temperature plasma experiments in the large helical device (LHD), conceptual design studies of the LHD-type helical DEMO reactor FFHR-d1 have been conducted by integrating wide-ranged R and D activities on core plasmas and reactor technologies through cooperative researches under the fusion engineering research project, which has been launched newly in NIFS. Current activities for the FFHR-d1 in this project are presented on design window analyses with designs on core plasma, neutronics for liquid blankets, continuous helical magnets, pellet fueling, tritium systems and plasma heating devices.

  20. Transformation of tetrachloroethene in an upflow anaerobic sludgeblanket reactor

    DEFF Research Database (Denmark)

    Christiansen, N.; Christensen, S.R.; Arvin, E.;

    1997-01-01

    Reductive dechlorination of tetrachloroethene was studied in a mesophilic upflow anaerobic sludge blanket reactor. Operating the reactor in batch mode the dynamic transformation of tetrachloroethene, trichloroethene and dichloroethene (DCE) was monitored. Tetrachloroethene was reductively...... dechlorinated to trichloroethene, which again was dechlorinated at the same rate as DCE was produced. DCE showed a lag period of 40 h before transformation was observed. During normal reactor operation trans-1,2-DCE was the major DCE isomer, followed by cis-1,2-DCE. Small amounts of 1,1-DCE but no vinyl...

  1. 75 FR 38459 - Certain Woven Electric Blankets From the People's Republic of China: Final Determination of Sales...

    Science.gov (United States)

    2010-07-02

    ... Antidumping Investigations involving Non-Market Economy Countries,'' which states: \\23\\ See Certain Woven... International Trade Administration Certain Woven Electric Blankets From the People's Republic of China: Final... Department'') has determined that certain woven electric blankets (``woven electric blankets'') from...

  2. Performance of a UTC FW-4S solid propellant rocket motor under the command effects of simulated altitude and rotational spin

    Science.gov (United States)

    Merryman, H. L.; Smith, L. R.

    1974-01-01

    One United Technology Center FW-4S solid-propellant rocket motor was fired at an average simulated altitude of 103,000 ft while spinning about its axial centerline at 180 rpm. The objectives of the test program were to determine motor altitude ballistic performance including the measurement of the nonaxial thrust vector and to demonstrate structural integrity of the motor case and nozzle. These objectives are presented and discussed.

  3. Determination of kinetic parameters of an upflow anaerobic sludge blanket reactor (uasb, treating swine wastewater Determinação dos parâmetros cinéticos de um reator anaeróbio de manta de lodo (UASB, tratando efluente líquido de suinocultura

    Directory of Open Access Journals (Sweden)

    Mario Tauzene Afonso Matangue

    2011-12-01

    Full Text Available This research aimed to estimate the kinetic parameters of a UASB reactor treating swine wastewater from farming. The system consisted of: a degritter with a triangular-notch weir in order to measure the flow; a static sieve; an acidification/equalization tank (AET; ABR and UASB reactors; a settling tank; two infiltration ponds and a greenhouse for fertirrigation. The hydraulic retention times (HRT adopted for the UASB reactor, were: 8.0; 9.6; 8.4; 6.0 and 4.8 hours. The operational temperature was 23.4º C±1.5º C. The analyzed physical-chemical parameters were temperature COD (total and filtered, BOD (total and filtered, total volatile solids (affluent, effluent and of the reactor's profile sludge, flow rate and nutrients (N and P. The kinetic coefficients estimated were: growth coefficient Y=0.091 mg tCOD mg TVS-1.d-1, decay coefficient Kd=0.01 d-1; concentration of limiting substrate Ks=282.5 tCOD mg L-1 and maximum growth rate µmax= 0.051 d-1. For data validation, simple linear regression models were applied and their interaction verified with a "t" test. The results matched with the those found in other references for the same type of kinetic studies.Foram estimados e analisados os parâmetros cinéticos em um reator UASB construído com a finalidade de reduzir a carga orgânica de efluentes líquidos originados de uma granja suinícola. O sistema foi composto de caixa de areia equipada com vertedor Thompson para a medição da vazão, uma peneira estática para a separação de sólidos, tanque de acidificação e equalização (TAE, um RAC e um UASB, tanque de decantação, duas lagoas de infiltração e uma casa de vegetação destinada a fertirrigação. Os tempos de detenção hidráulica (TDH adotados no reator UASB foram de 8.0; 9.6; 8.4; 6.0 e 4.8 horas. A temperatura média operacional foi de 23,4º C±1,5º C. Foram analisados os seguintes parâmetros físico-químicos: temperatura, vazão, sólidos totais (SFT e SVT afluente

  4. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  5. MHD pressure drop in ferritic pipes of fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, J.; Buehler, Leo E-mail: leo.buehler@iket.fzk.de; Messadek, K.; Stieglitz, R

    2003-09-01

    Magnetohydrodynamic flows in pipes of ferromagnetic material is an important issue for liquid metal blanket concepts using MANET as wall material. Fusion relevant magnetic fields of 4-8 T cause high pressure drop in the blanket header where a massive structure of ferromagnetic material exists. It is briefly outlined that in the blanket the reduction of pressure drop due to magnetic shielding is limited to about 10%. Remarkable reduction of pressure drop is possible by means of electrical insulation that prevents currents from short-circuiting through the very thick walls of the headers. Direct contact of the insulating material with the liquid metal is excluded by using metallic liners. Results are reported on the fabrication of such a test section and corresponding pressure drop measurements confirm the effective contribution of the electrical decoupling.

  6. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  7. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  8. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, D.J., E-mail: d.hughes@warwick.ac.uk [WMG, University of Warwick, Coventry CV4 7AL (United Kingdom); Koukovini-Platia, E. [CERN, CH-1211 Geneva 23 (Switzerland); Heeley, E.L. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2014-02-15

    Highlights: • Residual stresses were determined in a welded EUROFER blanket assembly with integrated cooling channels. • Good agreement was seen between experimentally determined and predicted stresses. • We show that microstructure changes that occur in EUROFER steels during welding must be considered for residual stress determination. • An experimental route is proposed for validation of predicted stresses in reactor components using non-destructive diffraction techniques. - Abstract: Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  9. Effect of off-normal events on the reactor first wall

    Science.gov (United States)

    Igitkhanov, Yu; Bazylev, B.

    2011-12-01

    In this paper, we analyse the energy deposition and erosion of the W/EUROFER blanket module for the first wall (FW) of DEMO due to the runaway electrons (RE) and vertical displacements events (VDEs). The DEMO data for transients were extrapolated from ITER data by using the scaling arguments. The simulations were performed at an RE deposition energy in the range 30-100 MJ m-2 over 0.05-0.3 s. In the case of a 'hot' VDE, all stored plasma energy is deposited on the FW area for ~1 s. For a VDE following the thermal quench phase the remaining magnetic energy is deposited on the FW for ~0.3 s. It is shown that the minimum W thickness needed for preventing failure of the W/EUROFER bond (assumed to be the EUROFER creep point) is large enough, causing armour melting. Both RE and VDE in DEMO will pose a major life-time issue depending on their frequency.

  10. Blanket-relevant liquid metal MHD channel flows: Data base and optimization simulation development

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, I.A.; Kirillov, I.R.; Sidorenkov, S.I. [D.V. Efremov Inst. of Electrophysical Apparatus, St Petersburg (Russian Federation)

    1995-12-31

    The problems of generalization and integration of test, theoretical and design data relevant to liquid metal (LM) blanket are discussed in present work. First results on MHD data base and LM blanket optimization codes are presented.

  11. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  12. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  13. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    Energy Technology Data Exchange (ETDEWEB)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  14. Development of pipe welding, cutting and inspection tools for the ITER blanket

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Ito, Akira; Taguchi, Kou; Takiguchi, Yuji; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-07-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, internal access pipe welding/cutting/inspection tools for manifolds and branch pipes are being developed according to the agreement of the ITER R and D task (T329). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In the same way, a design concept of inspection head with a non-destructive inspection probe (including a leak-testing probe) has been developed and the basic characteristic tests are performed using welded stainless steel pipes. In this report, the details of welding/cutting/inspection heads for manifolds and branch pipes are described, together with the basic experiment results relating to the welding/cutting and inspection. In addition, details of a composite type optical fiber, which can transmit both the high-power YAG laser and visible rays, is described. (author)

  15. Technical issues for beryllium use in fusion blanket applications

    Energy Technology Data Exchange (ETDEWEB)

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented.

  16. 75 FR 11557 - Woven Electric Blankets From China

    Science.gov (United States)

    2010-03-11

    ... permitted by section 201.8 of the Commission's rules, as amended, 67 FR 68036 (November 8, 2002). Even where... specified in II (C) of the Commission's Handbook on Electronic Filing Procedures, 67 FR 68168, 68173... COMMISSION Woven Electric Blankets From China AGENCY: United States International Trade Commission....

  17. Remote handling assessment of attachment concepts for DEMO blanket segments

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Daniel, E-mail: daniel.iglesias@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Bastow, Roger; Cooper, Dave; Crowe, Robert; Middleton-Gear, Dave [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sibois, Romain [VTT, Technical Research Centre of Finland, Industrial Systems, ROViR, Tampere (Finland); Carloni, Dario [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT) (Germany); Vizvary, Zsolt; Crofts, Oliver [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Harman, Jon [EFDA Close Support Unit Garching, Boltzmannstaße 2, D-85748 Garching bei München (Germany); Loving, Antony [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • Challenges are identified for the remote handling of blanket segments’ attachments. • Two attachment design approaches are assessed for remote handling (RH) feasibility. • An alternative is proposed, which potentially simplifies and speeds-up RH operations. • Up to three different assemblies are proposed for the remote handling of the attachments. • Proposed integrated design of upper port is compatible with the attachment systems. - Abstract: The replacement strategy of the massive Multi-Module Blanket Segments (MMS) is a key driver in the design of several DEMO systems. These include the blankets themselves, the vacuum vessel (VV) and its ports and the Remote Maintenance System (RMS). Common challenges to any blanket attachment system have been identified, such as the need for applying a preload to the MMS manifold, the effects of the decay heat and several uncertainties related to permanent deformations when removing the blanket segments after service. The WP12 kinematics of the MMS in-vessel transportation was adapted to the requirements of each of the supports during 2013 and 2014 design activities. The RM equipment envisaged for handling attachments and earth connections may be composed of up to three different assemblies. An In-Vessel Mover at the divertor level handles the lower support and earth bonding, and could stabilize the MMS during transportation. A Shield Plug crane with a 6 DoF manipulator operates the upper attachment and earth straps. And a Vertical Maintenance Crane is responsible for the in-vessel MMS transportation and can handle the removable upper support pins. A final proposal is presented which can potentially reduce the number of required systems, at the same time that speeds-up the RMS global operations.

  18. Membrane reactor. Membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y.; Wakabayashi, K. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-08-05

    Many reaction examples were introduced of membrane reactor, to be on the point of forming a new region in the field of chemical technology. It is a reactor to exhibit excellent function, by its being installed with membrane therein, and is generally classified into catalyst function type and reaction promotion type. What firstly belongs to the former is stabilized zirconia, where oxygen, supplied to the cathodic side of membrane with voltage, impressed thereon, becomes O {sup 2 {minus}} to be diffused through the membrane and supplied, as variously activated oxygenous species, on the anodic side. Examples with many advantages can be given such as methane coupling, propylene oxidation, methanating reaction of carbon dioxide, etc. Apart, palladium film and naphion film also belong to the former. While examples of the latter comprise, among others, decomposition of hydrogen sulfide by porous glass film and dehydrogenation of cyclohexane or palladium alloy film, which are expected to be developed and materialized in the industry. 33 refs., 8 figs.

  19. Inclusion and difusion studies of D in fusion breeding blanket candidate materials

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.

    2015-07-01

    Deuterium-Tritium (D-T) reaction is the most practical fusion reaction on the way to harness fusion energy. As tritium presents trace quantities on Earth [1], tritium fuel is essential to be generated simultaneously with the D-T reaction in a commerical fusion power plant. Tritium can be obtained in the lithium contained breeding blanket as a transmutation product of nuclear reaction 6Li (n, a)T. Li2T iO3 is considered to be one promising candidate solid tritium breeder material, due to its high lithium density, low activation, compatiblity with structure materials and high chemical stability. The tritium generated in Li2T iO3 breeding blanket needs to be collected and recycled back to the fusion reaction. Therefore, the study of the diffusion characteristic of breeder material Li2T iO3 is necessary to determine tritium mobility and tritium extraction efficiency. In order to study tritium release mechanism of Li2T iO3 breeding material in a fusion power plant environment, a fusion like neutron spectrum is essential while it is now not availble in any laboratory. One alternative is using ion accelerator or implantor to get energetic hydrogenic (H,D,T) ions impacting on breeding material, to simulate the tritium distribution situation. Because of the radioactive property of tritium which will complicate processing procedure, another isotope of hydrogen Deuterium is actually used to be studied. The defect structure in Li2T iO3, due to reactor exposure to fusion generated particles and ? ray irradiation, is achieved by energetic Ti ions. SRIM program is implemented to simulate the D ion or Ti ion distributions after bombarding, as well as the defects. X-ray diffraction technique helps to identify phase compositions. Transmission electron microscopy technique is used to observe the microstructures (Author)

  20. 龙眼胚性愈伤组织fw2.2家族2个基因的克隆与分析%Cloning and Sequence Analysis of Two Members of fw2.2 Gene Family from Embryogenic Callus in Dimocarpus longan Lour

    Institute of Scientific and Technical Information of China (English)

    陈裕坤; 林玉玲; 赖钟雄

    2012-01-01

    fruit weight 2.2 (fw>2.2) is an important quantitative trait locus (QTL) gene in controlling the fruit weight of plants. Based on the database of longan transcriptome, two members of fu>2.2 family genes from longan embryogenic callus were obtained by the homologous cloning and RACE technology. They were named as Dlfw2.2-1 and Dlfw2.2-2, respectively. Bioinformatics ananlyses showed that the complete cDNA sequences of Dlfw2.2-1 were 970 bp, encoding 184 amino acids and the Dlfiv2.2-2 were 941 bp, encoding 175 amino acids. Both the nucleotides and amino acids sequences of the two members were high homologous with those of the known fw2.2 genes in other species. Their proteins had no signal peptide, locating in the plasma membrane with transmembrane structure and the typical cysteine-rich protein domain. Phylogenetic tree analyses indicated that Dlfw2.2-1 and Dlfw2.2-2 belonged to the same branch with a close genetic relationship with Lycopenicon esculentum and Persea amerscarea.Therefore, the 2 members putatively belonged to the fw.2 family.%fruit weight 2.2(fw2.2)是植物中控制果实重量的重要数量性状的主效基因.以龙眼转录组数据库为基础,采用同源克隆法及RACE技术,从龙眼的胚性愈伤组织中获得fw2.2家族的2个cDNA全长序列,命名为Dlfiv2.2-1与Dlfw2.2-1,并对其核甘酸序列及推导的氨基酸序列进行生物信息学分析.结果表明:Dlfw2.2-1基因的cDNA全长为970 bp,编码184个氨基酸;Dlfw2.2-2基因的cDNA全长为941 bp,编码175个氨基酸.Dlfw2.2-1与Dlfw2.2-2的核甘酸序列及其推导的氨基酸序列与其它植物的fw2.2具有较高的同源性,亚细胞定位于细胞质膜,不含信号肽,具有跨膜结构与典型的与PLAC8同源的富半胱氨酸蛋白(Cysteine-rich Protein)的保守结构域.植物中fw2.2系统进化树分析结果表明,Dlfw2.2-1和Dlfw2.2-2为同一分枝,与番茄和油梨的fw2.2的距离最近.因此,推测Dlfw2.2-1与Dlfw2.2-2属于fw2.2

  1. Tokamak fusion reactors with less than full tritium breeding

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.; Gilligan, J.G.; Jung, J.

    1983-05-01

    A study of commercial, tokamak fusion reactors with tritium concentrations and tritium breeding ratios ranging from full deuterium-tritium operation to operation with no tritium breeding is presented. The design basis for these reactors is similar to those of STARFIRE and WILDCAT. Optimum operating temperatures, sizes, toroidal field strengths, and blanket/shield configurations are determined for a sequence of reactor designs spanning the range of tritium breeding, each having the same values of beta, thermal power, and first-wall heat load. Additional reactor parameters, tritium inventories and throughputs, and detailed costs are calculated for each reactor design. The disadvantages, advantages, implications, and ramifications of tritium-depleted operation are presented and discussed.

  2. Domestic wastewater anaerobic treatment I : Performance of one-step UASB and HUSB reactors; Tratamiento anaerobio de aguas residuales urbanas I : Aplicacion de reactores UASB y HUSB de etapa unica

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Rodriguez, J. A.; Gomez Lopez, M.; Soto Castineira, M.

    2005-07-01

    Domestic wastewater treatment was carried out on a pilot scale anaerobic digester, with an active volume of 25.5 m''3. The digester operated at different conditions: (a) as an UASB reactor (up-flow anaerobic sludge blanket), with the aim of reaching a complete anaerobic treatment of domestic wastewater, and (b) as a HUSB (hydrolytic upflow sludge blanket) reactor, working in this case as a wastewater pre-treatment that removes suspended solid matter and increase the effluent biodegradability. The advantages of these treatment systems are its economic feasibility, no energy consumption and low excess sludge generation. (Author) 17 refs.

  3. A proposed conserved role for an avocado FW2.2-like gene as a negative regulator of fruit cell division.

    Science.gov (United States)

    Dahan, Yardena; Rosenfeld, Revital; Zadiranov, Victor; Irihimovitch, Vered

    2010-08-01

    Previous studies using 'Hass' avocado and its small fruit (SF) phenotype as a model showed that SF is limited by cell number, not by cell size. In an attempt to explore the molecular mechanisms regulating avocado fruit cell division, we isolated four distinct avocado cell proliferation-related genes and investigated their expression characteristics, comparing normal fruit (NF) and SF developmental patterns. Three cDNAs termed PaCYCA1, PaCYCB1 and PaPCNA, encoding two mitotic cyclins and a proliferating cell nuclear antigen (PCNA), were first isolated from young NF tissues. The accumulation of their transcripts was predominant in mitotically active organs, including young fruitlets, leaves and roots. Furthermore, a fourth full-length cDNA, designated Pafw2.2-like, encoding a FW2.2 (fruit-weight)-like protein, was isolated from SF tissues. FW2.2 is postulated to function as a negative regulator of cell division in tomato fruit. Remarkably, northern analysis revealed that the accumulation of the mitotic cyclins and of PCNA transcripts gradually decreased in NF tissues during growth, whereas in SF, their levels had already decreased at earlier stages of fruit development, concomitant with an earlier arrest of fruit cell division activity. In contrast, parallel sq-RT-PCR analysis showed that Pafw2.2-like mRNA accumulation was considerably higher in SF tissues than in the same NF tissues essentially at all examined stages of fruit growth. Together, our data suggest essential roles for the two mitotic cyclins genes and the PCNA gene in regulating avocado fruit development. Furthermore, the possibility that Pafw2.2-like acts as does fw2.2 in tomato, is discussed.

  4. The effect of operational conditions on the hydrodynamic characteristics of the sludge bed in UASB reactors

    NARCIS (Netherlands)

    Leitao, R.C.; Santaellla, S.T.; Haandel, van A.C.; Zeeman, G.; Lettinga, G.

    2011-01-01

    This work aims to evaluate the hydrodynamic properties of the sludge bed of Upflow Anaerobic Sludge Blanket (UASB) reactors based on its settleability and expansion characteristics. The methodologies used for the evaluation of the settleability of aerobic activated sludge, and for the expansibility

  5. Bicarbonate dosing: a tool to performance recovery of a thermophilic methanol-fed UASB reactor

    NARCIS (Netherlands)

    Paulo, P.L.; Lier, van J.B.; Lettinga, G.

    2003-01-01

    The thermophilic-anaerobic treatment of methanol-containing wastewater in an upflow anaerobic sludge blanket (UASB) reactor, was found to be quite sensitive to pH shocks, both acid and alkaline. The results of the recovery experiments of sludge exposed to an alkaline shock, indicated that the

  6. Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate

    NARCIS (Netherlands)

    Calli, B.; Mertoglu, B.; Roest, C.; Inanc, B.

    2006-01-01

    Laboratory scale anaerobic upflow filter, sludge blanket and hybrid bed reactors were operated for 860 days in the treatment of high ammonia landfill leachate. Organic loading was gradually increased from 1.3 to 23.5 kg COD/m3 day in the start-up period and then fluctuated according to the COD conce

  7. Impact of ozone pre-treatment on the performance of upflow anaerobic sludge blanket treating pre-treated grain distillery wastewater.

    Science.gov (United States)

    Robertson, L; Britz, T J; Sigge, G O

    2014-01-01

    Two 2 L laboratory-scale upflow anaerobic sludge blanket (UASB) reactors were operated for 277 days. The substrate of the control reactor (Rc) contained grain distillery wastewater (GDWW) that had undergone coagulant pre-treatment, and the substrate of the second UASB reactor consisted of GDWW that had undergone coagulant pre-treatment and ozone pre-treatment (Ro). Both reactors treated pre-treated GDWW successfully at ca. 9 kgCOD m(-3) d(-1). Chemical oxygen demand (COD) reductions of ca. 96% for Rc and 93% for Ro were achieved. Fats, oils and grease (FOG) reductions (%) showed variations throughout the study, and reductions of ca. 88 and 92% were achieved for Rc and Ro, respectively. Rc produced more biogas, and the methane percentage was similar in both reactors. UASB granule washout in Rc suggested possible toxicity of unsaturated fatty acids present in non-ozonated substrate. The feasibility of FOG removal was demonstrated as both reactors successfully treated pre-treated GDWW. Better results were obtained for Ro effluent during post-ozonation. The ozone pre-treatment possibly led to easier degradable wastewater, and better results could potentially be obtained when other post-treatment steps are applied. Ozone pre-treatment did not, however, show an added benefit in the reactor performance results.

  8. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  9. Fusion reactors for hydrogen production via electrolysis

    Science.gov (United States)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of 50 to 70% are projected for fusion reactors using high temperature blankets.

  10. Evaluation of the cool-down behaviour of ITER FW beryllium tiles for an early failure detection

    Directory of Open Access Journals (Sweden)

    Thomas Weber

    2016-12-01

    Full Text Available The design of the first wall in ITER foresees several hundred thousand beryllium tiles, which are bonded to the water-cooled CuCrZr supporting structure. Due to the nature of a Tokamak reactor this bonding is faced to thermal fatigue. Since the failure of a single tile might already have a major impact on the operability of ITER, comprehensive high heat flux tests are performed on prototypes prior to the acceptance of manufacturing procedures. For a deeper understanding of the temperature curves, which were and will be measured by IR devices of these first wall prototypes, thermo-mechanical FEM simulations shall demonstrate the possibilities of an early bonding failure detection. Hereby, the maximum temperatures for each cycle as well as the cool-down behaviour are the input data.

  11. (Meeting on fusion reactor materials)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H. (Pacific Northwest Lab., Richland, WA (USA)); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. (Oak Ridge National Lab., TN (USA)); Loomis, B.A. (Argonne National Lab., IL (USA))

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  12. Neutronic predesign tool for fusion power reactors system assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jaboulay, J.-C., E-mail: jean-charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Li Puma, A. [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Martínez Arroyo, J. [ETSEIB, Internship in CEA (Spain)

    2013-10-15

    SYCOMORE, a fusion reactor system code based on a modular approach, is under development at CEA. In this framework, this paper describes a methodology developed to build the neutronic module of SYCOMORE. This neutronic module aims to evaluate main neutronic parameters characterising a fusion reactor (tokamak): tritium breeding ratio, multiplication factor, nuclear heating as a function of the reactor main geometrical parameters (major radius, elongation, etc.), of the radial build, Li enrichment, blanket and shield thickness, etc. It is based on calculations carried out with APOLLO2 and TRIPOLI-4 CEA transport code on simplified 1D and 2D neutronic models. These models are validated versus a more detailed 3D Monte-Carlo model (using TRIPOLI-4). To ease the integration of this neutronic module in SYCOMORE and provide results instantly, a surrogate model that replicates the 1D and 2D neutronic model results was used. Among the different surrogate models types (polynomial interpolation, responses functions, interpolating by Kriging, artificial neural network, etc.) the neural networks were selected for their efficiency and flexibility. The methodology described in this paper to build SYCOMORE neutronic module is devoted to HCLL blanket, but it could be applied to any breeder blanket concept provided that appropriate validation could be carried out.

  13. The influence of external source intensity in accelerator/target/blanket system on conversion ratio and fuel cycle

    Science.gov (United States)

    Kochurov, Boris P.

    1995-09-01

    The analysis of neutron balance relation for a subcritical system with external source shows that a high ratio of neutron utilization (conversion ratio, breeding ratio) much exceeding similar values for nuclear reactors (both thermal or fast spectrum) is reachable in accelerator/target/blanket system with high external neutron source intensity. An accelerator/target/blanket systems with thermal power in blanket about 1850 Mwt and operating during 30 years have been investigated. Continual feed up by plutonium (fissile material) and Tc-99 (transmuted material) was assumed. Accelerator beam intensity differed 6.3 times (16 mA-Case 1, and 100 mA-Case 2). Conversion ratio (CR) was defined as the ratio of Tc-99 nuclei transmuted to the number of Pu nuclei consumed. The results for two cases are as follows: Case 1Case 2CR 0.77 1.66N(LWR) 8.6 19.1Power MWt(el) 512 225 where N(LWR)-number of LWRs(3000 MWt(th)) from which yearly discharge of Tc-99 is transmuted during 30 years. High value of conversion ratio considerably exceeding 1 (CR=1.66) was obtained in the system with high source intensity as compared with low source system (CR=0.77). Net output of electric power of high source intensity system is about twice lower due to consumption of electric power for accelerator feed up. The loss of energy for Tc-99 transmutation is estimated as 40 Mev(el)/nuclei. Yet high conversion ratio (or breeding ratio) achievable in electronuclear installations with high intensity of external source can effectively be used to close fuel cycle (including incineration of wastes) or to develop growing nuclear power production system.

  14. Hybrid reactors: Nuclear breeding or energy production?

    Energy Technology Data Exchange (ETDEWEB)

    Piera, Mireia [UNED, ETSII-Dp Ingenieria Energetica, c/Juan del Rosal 12, 28040 Madrid (Spain); Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M. [ETSII-UPM, c/Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2010-09-15

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid. (author)

  15. Liquid lithium self-cooled breeding blanket design for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, I.R.; Sidorenkov, S.I. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Danilov, I.V.; Strebkov, Yu.S. [Research and Development Institute of Power Engineering, 101100 Moscow (Russian Federation); Mattas, R.F.; Hua, T.Q.; Smith, D.L. [Fusion Power Program, Argonne National Laboratory, Chicago, IL 60439 (United States); Gohard, Y. [ITER Garching Joint Work Site, Max-Planck-Institut fur Plasmaphysik, D-85748 Garching bei Munchen (Germany)

    1998-09-01

    To meet the technical objectives of the ITER extended performance phase (EPP) an advanced tritium breeding lithium/vanadium (Li/V) blanket was developed by two home teams (US and RF). The design is based on the use of liquid Li as coolant and breeder and vanadium alloy (V-Cr-Ti) as structural material. The first wall is coated with a beryllium protection layer. Beryllium is also integrated in the blanket for neutron multiplication and improved shielding. The use of tungsten carbide in the primary shield and in vacuum vessel provides adequate protection for toroidal field coils. A self-healing electrical insulator in the form of CaO or AlN coating layer is utilized to reduce MHD pressure drop in the system. To have a self-consistent ITER design, liquid metal cooling of the divertor and vacuum vessel is considered as well. (orig.) 16 refs.

  16. APT {sup 3}He target/blanket. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The {sup 3}He target/blanket (T/B) preconceptual design for the 3/8-Goal facility is based on a 1000-MeV, 200-mA accelerator to produce a high-intensity proton beam that is expanded and then strikes one of two T/B modules. Each module consists of a centralized neutron source made of tungsten and lead, a proton beam backstop region made of zirconium and lead, and a moderator made of D{sub 2}O. Helium-3 gas is circulated through the neutron source region and the blanket to create tritium through neutron capture. The gas is continually processed to extract the tritium with an online separation process.

  17. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Directory of Open Access Journals (Sweden)

    Karcher Patrick

    2005-08-01

    Full Text Available Abstract This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent or form flocs/aggregates (also called granules without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR, packed bed reactor (PBR, fluidized bed reactor (FBR, airlift reactor (ALR, upflow anaerobic sludge blanket (UASB reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.

  18. Evaluation of US demo helium-cooled blanket options

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; McQuillan, B.W.; Schleicher, R.W. [and others

    1995-10-01

    A He-V-Li blanket design was developed as a candidate for the U.S. fusion demonstration power plant. This paper presents an 18 MPa helium-cooled, lithium breeder, V-alloy design that can be coupled to the Brayton cycle with a gross efficiency of 46%. The critical issue of designing to high gas pressure and the compatibility between helium impurities and V-alloy are addressed.

  19. MFTF-B Upgrade for blanket-technology testing

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, K.I.; Doggett, J.N.; Logan, B.G.

    1982-10-22

    Based on preliminary studies at Lawrence Livermore National Laboratory (LLNL), we believe the Mirror Fusion Test Facility (MFTF-B) could be upgraded for operation in a hot-ion Kelley mode in a portion of the central cell to provide fusion nuclear engineering data, particularly blanket technology information, by the end of the decade. Cost of this mode of operation would be modest compared with that of the other fusion devices considered in the last few years for such purposes.

  20. Laboratory experiments on drought and runoff in blanket peat

    OpenAIRE

    Holden, J; Burt, T. P.

    2002-01-01

    Global warming might change the hydrology of upland blanket peats in Britain. We have therefore studied in laboratory experiments the impact of drought on peat from the North Pennines of the UK. Runoff was dominated by surface and near-surface flow; flow decreased rapidly with depth and differed from one type of cover to another. Infiltration depended on the intensity of rain, and runoff responded rapidly to rain, with around 50% of rainwater emerging as overland flow. Drought changed the str...

  1. RAMI analysis for DEMO HCPB blanket concept cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  2. Heat Loads Due to Small Penetrations in Multilayer Insulation Blankets

    Science.gov (United States)

    Johnson, W. L.; Heckle, K. W.; Fesmire, J. E.

    2017-01-01

    The main penetrations (supports and piping) through multilayer insulation systems for cryogenic tanks have been previously addressed by heat flow measurements. Smaller penetrations due to fasteners and attachments are now experimentally investigated. The use of small pins or plastic garment tag fasteners to each the handling and construction of multilayer insulation (MLI) blankets goes back many years. While it has long been understood that penetrations and other discontinuities degrade the performance of the MLI blanket, quantification of this degradation has generally been lumped into gross performance multipliers (often called degradation factors or scale factors). Small penetrations contribute both solid conduction and radiation heat transfer paths through the blanket. The conduction is down the stem of the structural element itself while the radiation is through the hole formed during installation of the pin or fastener. Analytical models were developed in conjunction with MLI perforation theory and Fouriers Law. Results of the analytical models are compared to experimental testing performed on a 10 layer MLI blanket with approximately 50 small plastic pins penetrating the test specimen. The pins were installed at 76-mm spacing inches in both directions to minimize the compounding of thermal effects due to localized compression or lateral heat transfer. The testing was performed using a liquid nitrogen boil-off calorimeter (Cryostat-100) with the standard boundary temperatures of 293 K and 78 K. Results show that the added radiation through the holes is much more significant than the conduction down the fastener. The results are shown to be in agreement with radiation theory for perforated films.

  3. Development of insulating coatings for liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S.; Borgstedt, H.U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Farnum, E.H. [Los Alamos National Lab., NM (United States); Natesan, K. [Argonne National Lab., IL (United States); Vitkovski, I.V. [Efremov Inst., St. Petersburg (Russian Federation). MHD-Machines Lab.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed.

  4. Reactor applications of the compact fusion advanced Rankine (CFAR) cycle for a D-T tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.A.; Logan, B.G.; Campbell, R.B.

    1988-03-01

    We have made a preliminary design of a D-T fusion reactor blanket and MHD power conversion system based on the CFAR concept, and found that the performance and costs for the reference cycle are very attractive. While much remains to be done, the potential advantage of liquid metal Rankine cycles for fusion applications are much clearer now. These include low pressures and mass flow rates, a nearly isothermal module shell which minimizes problems of thermal distortion and stresses, and an insensitivity to pressure losses in the blanket so that the two-phase MHD pressure drops in the boilling part of the blanket and the ordinary vapor pressure drops in the pebble-bed superheating zones are acceptable (the direct result of pumping a liquid rather than having to compress a gas). There are no moving parts in the high-temperature MHD power generators, no steam bottoming plant is required, only small vapor precoolers and condensers are needed because of the high heat rejection trmperatures, and only a relatively small natural-draft heat exhanger is required to reject the heat to the atmosphere. The net result is a very compact fusion reactor and power conversion system which fit entirely inside an 18 meter radius reactor vault. Although we have not yet performed a detailed cost analysis, preliminary cost estimates indicate low capital costs and a very attractive cost of electricity. 11 refs., 5 figs., 2 tabs.

  5. Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, C. [EUROfusion—Programme Management Unit, Boltzmannstr. 2, 85748 Garching (Germany); Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, SERMA, LPEC, 91191 Gif-sur-Yvette (France); Moro, F. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Villari, R. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy)

    2016-11-01

    Highlights: • Breeder blanket concepts for DEMO—design features. • Neutronic characteristics of breeder blankets. • Evaluation of Tritium breeding potential. • Evaluation of shielding performance. - Abstract: This paper presents nuclear performance issues of the HCPB, HCLL, DCLL and WCLL breeder blankets, which are under development within the PPPT (Power Plant Physics and Technology) programme of EUROfusion, with the objective to assess the potential and suitability of the blankets for the application to DEMO. The assessment is based on the initial design versions of the blankets developed in 2014. The Tritium breeding potential is considered sufficient for all breeder blankets although the initial design versions of the HCPB, HCLL and DCLL blankets were shown to require further design improvements. Suitable measures have been proposed and proven to be sufficient to achieve the required Tritium Breeding Ratio (TBR) ≥ 1.10. The shielding performance was shown to be sufficient to protect the super-conducting toroidal field coil provided that efficient shielding material mixtures including WC or borated water are utilized. The WCLL blanket does not require the use of such shielding materials due to a very compact blanket support structure/manifold configuration which yet requires design verification. The vacuum vessel can be safely operated over the full anticipated DEMO lifetime of 6 full power years for all blanket concepts considered.

  6. Nuclear reactor for breeding U.sup.233

    Science.gov (United States)

    Bohanan, Charles S.; Jones, David H.; Raab, Jr., Harry F.; Radkowsky, Alvin

    1976-01-01

    A light-water-cooled nuclear reactor capable of breeding U.sup.233 for use in a light-water breeder reactor includes physically separated regions containing U.sup.235 fissile material and U.sup.238 fertile material and Th.sup.232 fertile material and Pu.sup.239 fissile material, if available. Preferably the U.sup.235 fissile material and U.sup.238 fertile material are contained in longitudinally movable seed regions and the Pu.sup.239 fissile material and Th.sup.232 fertile material are contained in blanket regions surrounding the seed regions.

  7. Vanadium-base alloys for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  8. ITER屏蔽包层活化分析%Activation analysis for ITER shielding blanket

    Institute of Scientific and Technical Information of China (English)

    杨琪; 李斌; 郑剑; 何桃; 蒋洁琼; 吴宜灿

    2016-01-01

    作为国际热核聚变实验堆(ITER)的重要部件之一,屏蔽包层承受高强度聚变中子辐照,需要定期更换和维修。当活化的屏蔽包层从 ITER 托卡马克装置移到热室时,可能会给工作人员造成严重的辐射照射,是 ITER大厅和热室屏蔽设计的重要辐射源。文中基于 ITER最新中子学分析基准模型和“二步法”停堆剂量计算方法,使用超级蒙特卡罗核计算仿真软件系统 SuperMC针对15号屏蔽包层建立精细的中子学模型,并计算分析包层的活化情况及最严重情况下的周围辐射剂量率,并初步应用于 ITER赤道窗口室的屏蔽分析。计算结果显示,单个包层周围最大剂量率为350 Sv/hr,当传送小车停留在赤道窗口室内时,窗口室屏蔽门外剂量率高于10 mSv/hr,不足以满足设计要求。%As one of the key components of the International thermonuclear experiment reactor (ITER),blankets will sustain radiation from fusion neutrons with high intensity and may need to be replaced and maintained regularly. During the maintenance,the cask with activated blankets will be transferred to hot cell from Tokamak,which will cause high level of radiation in the building and radiation exposure for workers. Employing the Super Monte Carlo Simulation Program for Nuclear and Radiation Process (SuperMC),the activation of No.1 5 shielding blanket and the shutdown dose around was analyzed based on the latest ITER neutronics model named Blite-3. The results were applied in the shielding analysis for ITER equatorial port cell. From the results,the dose rate around one activated blanket should be as high as 350 Sv/hr. When the cask carrying four activated first walls was transferred to the equatorial port cell,the dose rate in the gallery outside the port cell could be more than 10 mSv/hr,not meeting with the design criteria.

  9. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  10. APT Blanket Safety Analysis: Preliminary Analyses of Downflow Through a Lateral Row 1 Blanket Model Under Near RHR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    To address a concern about a potential maldistribution of coolant flow through an APT blanket module under low flow near RHR conditions, a scoping study of downflow mixed convection in parallel channels was conducted. Buoyancy will adversely effect the flow distribution in module bins with downflow and non-uniform power distributions. This study consists of two parts: a simple analytical model of flow in a two channel network, and a lumped eleven channel FLOWTRAN-TF model of a front lateral Row-1 blanket module bin. Results from both models indicate that the concern about coolant flow in a vertical model being diverted away from high power regions by buoyancy is warranted. The FLOWTRAN-TF model predicted upflow (i.e., a flow reversal) through several of the high power channels, under some low flow conditions. The transition from the regime with downflow in all channels to a regime with upflow in some channels was abrupt.

  11. Methodology for accident analyses of fusion breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Dobromir Panayotov; Andrew Grief; Brad J. Merrill; Julian T. Murgatroyd; Paul Humrickhouse; Yves Poitevin; Simon Owen; Markus Iseli

    2015-06-01

    'Fusion for Energy' (F4E) develops designs and implements the European Test Blanket Systems (TBS) in ITER - Helium-Cooled Lithium-Lead (HCLL) and Helium-Cooled Pebble-Bed (HCPB). Safety demonstration is an essential element for the integration of TBS in ITER and accident analyses are one of its critical segments. A systematic approach to the accident analyses had been acquired under the F4E contract on TBS safety analyses. F4E technical requirements and AMEC and INL efforts resulted in the development of a comprehensive methodology for fusion breeding blanket accident analyses. It addresses the specificity of the breeding blankets design, materials and phenomena and at the same time is consistent with the one already applied to ITER accident analyses. Methodology consists of several phases. At first the reference scenarios are selected on the base of FMEA studies. In the second place elaboration of the accident analyses specifications we use phenomena identification and ranking tables to identify the requirements to be met by the code(s) and TBS models. Thus the limitations of the codes are identified and possible solutions to be built into the models are proposed. These include among others the loose coupling of different codes or code versions in order to simulate multi-fluid flows and phenomena. The code selection and issue of the accident analyses specifications conclude this second step. Furthermore the breeding blanket and ancillary systems models are built on. In this work challenges met and solutions used in the development of both MELCOR and RELAP5 codes models of HCLL and HCPB TBSs will be shared. To continue the developed models are qualified by comparison with finite elements analyses, by code to code comparison and sensitivity studies. Finally, the qualified models are used for the execution of the accident analyses of specific scenario. When possible the methodology phases will be illustrated in the paper by limited number of tables and

  12. Optimization of fermentation conditions for FW-04-806, a macrolide dilactone compound with two oxazole ring%含双噁唑环的大环双内酯化合物FW-04-806发酵条件优化

    Institute of Scientific and Technical Information of China (English)

    陈宏; 贾纬; 黄维; 傅慧灵; 江红; 郑卫

    2012-01-01

    目的 对链霉菌FIM-04-806的次级代谢产物,含双噁唑环的大环双内酯化合物FW-04-806进行发酵条件研究.方法采用单因素试验进行培养基优化,探讨装液量、初始pH值等发酵参数的影响,同时逐级放大进行中试验证.结果 确定了最佳培养条件:种子培养基为葡萄糖3%,蔗糖3%,玉米浆粉2%,CaCO30.75%,pH7.5;发酵培养基为可溶性淀粉3%,葡萄糖2%,黄豆粉1%,玉米浆粉2%,CaCO30.7%,pH7.5,接种量10%.优化后的摇瓶效价较初始水平提高了7倍以上,并在100L自动发酵罐及1.5吨发酵罐上得到验证.结论FW-04-806优化的发酵条件为其工业化生产奠定了基础.%Objective To study the fermentation conditions of FW-04-806, a macrolide dilactone compound with two oxazole ring, which was produced by Streptomyces sp. FIM-04-806. Methods Several basic fermentation conditions were designed in shake flasks, such as inoculums size, broth volum and the initial pH of the fermentation process, further optimization of the culture conditions was perfomed in the fermentation scale-up process. Results The yield of FW-04-806 from Streptomyces sp. FIM-04-806 was seven times increased under the optimized conditions: seed medium contains 3% glucose, 3% sucrose, 2% corn syrup powder, CaCO3 0.75%, pH7.5; fermentation medium contains 3% starch, 2% glucose, 1% soybean flour, 2% corn syrup powder , CaCO3 0.7%, pH7.5; and the cultivation parameters were verified in 100L automatic bioreactor and 1.5 ton fermenter tank. Conclusion It had established the foundation for producing efficiently FW-04-806 on industrial scale.

  13. Fusion reactor theory and conceptual design. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The bibliography contains citations concerning theoretical and conceptual aspects of fusion reactor physics and designs. A variety of fusion reactors is discussed, including Tokamak, experimental, commercial, tandem mirror, and superconducting magnetic. Topics also include fusion reactor materials, Tokamak devices, blanket design, divertors, fusion plasma production, superconducting magnets, and cryogenic systems. (Contains a minimum of 159 citations and includes a subject term index and title list.)

  14. Enriquiment d’una població d’arqueobacteris metanogènics hidrogenotròfics en un reactor UASB

    OpenAIRE

    Morey Gual, Lluís

    2015-01-01

    Abstract Anaerobic digestion is a technology widely known for the treatment of organic wastes. By this process the organic matter is partially mineralized and a fuel gas, biogas, is obtained, with a high methane content. Various types of reactors, including reactors with biomass retention are most suitable when the substrate to be treated particulate solids and has a relatively low COD. The UASB (Upflow Anaerobic Sludge Blanket) is one of the reactors with retention of biomass most widely use...

  15. Studies on use of reflector material and its position within FBR core for reducing U{sup 232} content of U produced in ThO{sub 2} radial blankets

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sujoy, E-mail: sujoy@igcar.gov.in [Core Design Group, IGCAR, Kalpakkam (India); Prasad, Rajeev Ranjan; Bagchi, Subhrojit [Core Design Group, IGCAR, Kalpakkam (India); Mohanakrishnan, P. [MCNS, Manipal University, Manipal (India); Arul, A. John; Puthiyavinayagam, P. [Core Design Group, IGCAR, Kalpakkam (India)

    2015-11-15

    Highlights: • Nuclear data processing for multigroup neutron transport calculation. • Discrete ordinate and Monte Carlo neutron transport. • Breeding of Thorium in Fast Reactor. • Minimization of U{sup 232} in U{sup 233}. • Fuel burn up using Neutron Diffusion. - Abstract: Presence of U{sup 232} in U{sup 233} bred in thorium blanket of fast reactor is a major concern in fuel reprocessing. The former's daughter products being hard gamma emitter and the isotope itself having substantial half life, its presence beyond 10 ppm makes fuel recycle complicated and expensive. In this study possibility of decreasing U{sup 232} production in a typical FBR blanket by means of spectrum modification is examined. SS, depleted B{sub 4}C, SiC, Mo and W regions were introduced between core and radial blanket and evolution of isotopes were studied to arrive at an optimal configuration that satisfies requirements of breeding U{sup 233} and lowering U{sup 232}concentration. SS, B{sub 4}C, SiC, Mo and W are known to be high temperature material with appropriate stability in harsh fast reactor environment. Study has shown that introducing two SS reflector rows can achieve the required low value of U{sup 232}concentration without greatly compromising the U{sup 233}production.

  16. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    Science.gov (United States)

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-09-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes.

  17. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    CERN Document Server

    Hughes, D J; Heeley, E L

    2014-01-01

    Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  18. Thorium utilization in a small long-life HTR. Part II: Seed-and-blanket fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ming, E-mail: dingming@hrbeu.edu.cn [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Harbin Engineering University, Nantong Street 145, 150001 Harbin (China); Kloosterman, Jan Leen [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-02-15

    Highlights: • Seed-and-blanket (S and B) fuel blocks are proposed for a small block-type HTR. • S and B fuel blocks consist of a seed region (UO{sub 2}) and a blanket region (ThO{sub 2}). • The neutronic performance of S and B fuel blocks are analyzed using SCALE 6. • Three S and B fuel blocks with a reactivity swing of 0.1 Δk are recommended. • S and B fuel blocks are compared with thorium MOX fuel blocks. - Abstract: In order to utilize thorium in high temperature gas-cooled reactors (HTRs), the concept of seed-and-blanket (S and B) fuel block is introduced into the U-Battery, which is a long-life block-type HTR with a thermal power of 20 MWth. A S and B fuel block consists of a seed region with uranium in the center, and a blanket region with thorium. The neutronic performance, such as the multiplication factor, conversion ratio and reactivity swing, of a typical S and B fuel block was investigated by SCALE 6.0 by parametric analysis of the composition parameters and geometric parameters of the fuel block for the U-Battery application. Since the purpose of U-235 in the S and B fuel block is to ignite the fission reactions in the fuel block, 20% enriched uranium is recommended for the S and B fuel block. When the ratio of the number of carbon to heavy metal atoms changes with the geometric parameters of the fuel block in the range of 200–250, the reactivity swing reaches very small values. Furthermore, for a reactivity swing of 0.1 Δk during 10 effective full power years, three configurations with 36, 54 and 78 UO{sub 2} fuel rods are recommended for the application of the U-Battery. The comparison analysis of the S and B fuel block with the Th/U MOX fuel block shows that the former has a longer lifetime and a lower reactivity swing.

  19. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  20. ANAEROBIC DIGESTION AND THE DENITRIFICATION IN UASB REACTOR

    Directory of Open Access Journals (Sweden)

    José Tavares de Sousa

    2008-01-01

    Full Text Available The environmental conditions in Brazil have been contributing to the development of anaerobic systems in the treatment of wastewaters, especially UASB - Upflow Anaerobic Sludge Blanket reactors. The classic biological process for removal of nutrients uses three reactors - Bardenpho System, therefore, this work intends an alternative system, where the anaerobic digestion and the denitrification happen in the same reactor reducing the number of reactors for two. The experimental system was constituted by two units: first one was a nitrification reactor with 35 L volume and 15 d of sludge age. This system was fed with raw sanitary waste. Second unit was an UASB, with 7.8 L and 6 h of hydraulic detention time, fed with ¾ of effluent nitrification reactor and ¼ of raw sanitary waste. This work had as objective to evaluate the performance of the UASB reactor. In terms of removal efficiency, of bath COD and nitrogen, it was verified that the anaerobic digestion process was not affected. The removal efficiency of organic material expressed in COD was 71%, performance already expected for a reactor of this type. It was also observed that the denitrification process happened; the removal nitrate efficiency was 90%. Therefore, the denitrification process in reactor UASB is viable.

  1. Prevalence of enterobiasis and its incidence after blanket chemotherapy in a male orphanage.

    Science.gov (United States)

    Sirivichayakul, C; Pojjaroen-anant, C; Wisetsing, P; Lalitphiphat, A; Chanthavanich, P; Kabkaew, K

    2000-03-01

    A prospective observational study was conducted in a male orphanage to find out the prevalence of enterobiasis and its incidence after blanket chemotherapy using mebendazole. We found that the prevalence of enterobiasis was 28.9%. The incidence density of enterobiasis after blanket chemotherapy was 379.82 per 1,000 person-years which was quite high. We suggest that blanket chemotherapy should be repeated at every 6 months interval to control enterobiasis in orphanages.

  2. Neutronic analysis of a high power density hybrid reactor using innovative coolants

    Indian Academy of Sciences (India)

    Senay Yalçin; Mustafa Übeylı; Adem Acir

    2005-08-01

    In this study, neutronic investigation of a deuterium–tritium (DT) driven hybrid reactor using ceramic uranium fuels, namely UC, UO2 or UN under a high neutron wall load (NWL) of 10 MW/m2 at the first wall is conducted over a period of 24 months for fissile fuel breeding for light water reactors (LWRs). New substances, namely, Flinabe or Li20Sn80 are used as coolants in the fuel zone to facilitate heat transfer out of the blanket. Natural lithium is also utilized for comparison to these two innovative coolants. Neutron transport calculations are performed on a simple experimental hybrid blanket with cylindrical geometry with the help of the SCALE 4·3 System by solving the Boltzmann transport equation with the XSDRNPM code in 238 neutron groups and an S8-P3 approximation. The investigated blanket using Flinabe or Li20Sn80 shows better fissile fuel breeding and fuel enrichment characteristics compared to that with natural lithium which shows that these two innovative coolants can be used in hybrid reactors for higher fissile fuel breeding performance. Furthermore, using a high NWL of 10 MW/m2 at the first wall of the investigated blanket can decrease the time for fuel rods to reach the level for charging in LWRs.

  3. Reactor vessel

    OpenAIRE

    Makkee, M.; Kapteijn, F.; Moulijn, J.A

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...

  4. 76 FR 44903 - Kinder Morgan Interstate Gas Transmission, LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2011-07-27

    ...-000] Kinder Morgan Interstate Gas Transmission, LLC; Notice of Request Under Blanket Authorization Take notice that on June 30, 2011 Kinder Morgan Interstate Gas Transmission, LLC (KMIGT), Post...

  5. Neutronics calculations for the Oak Ridge National Laboratory Tokamak Reactor Studies

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.T.; Baker, V.C.; Barnes, J.M.

    1976-01-01

    Neutronics calculations have been carried out to analyze the nuclear performance of conceptual blanket and shield designs for the Tokamak Experimental Power Reactor (EPR) and the Tokamak Demonstration Reactor Plant (DRP) being considered at the Oak Ridge National Laboratory. These reactor designs represent a sequence in the commercialization of fusion-generated electrical power. All of the calculations were carried out using the one-dimensional discrete ordinates code ANISN and the latest available ENDF/B-IV coupled neutron-gamma-ray transport cross-section data, fluence-to-kerma conversion factors, and radiation damage cross-section data. The calculations include spatial and integral heating-rate estimates in the reactor with emphasis on the recovery of fusion neutron energy in the blanket and limiting the heat-deposition rate in the superconducting toroidal field coils. Radiation damage due to atomic displacements and gas production produced in the reactor structural material and in the toroidal field coil windings were also estimated. The tritium-breeding ratio when natural lithium is used as the fertile material in the DRP blanket and in the experimental breeding modules in the EPR is also given.

  6. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    Science.gov (United States)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  7. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  8. Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Kiyoyuki, E-mail: Shiba.kiyoyuki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Tanigawa, Hiroyasu; Hirose, Takanori; Sakasegawa, Hideo; Jitsukawa, Shiro [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2011-12-15

    Thermal aging properties of reduced activation ferritic/martensitic steel F82H was researched. The aging was performed at temperature ranging from 400 Degree-Sign C to 650 Degree-Sign C up to 100,000 h. Microstructure, precipitates, tensile properties, and Charpy impact properties were carried out on aged materials. Laves phase was found at temperatures between 550 and 650 Degree-Sign C and M{sub 6}C type carbides were found at the temperatures between 500 and 600 Degree-Sign C over 10,000 h. These precipitates caused degradation in toughness, especially at temperatures ranging from 550 Degree-Sign C to 650 Degree-Sign C. Tensile properties do not have serious aging effect, except for 650 Degree-Sign C, which caused large softening even after 10,000 h. Increase of precipitates also causes some degradation in ductility, but it is not critical. Large increase in ductile-to-brittle transition temperature was observed in the 650 Degree-Sign C aging. It was caused by the large Laves phase precipitation at grain boundary. Laves precipitates at grain boundary also degrades the upper-shelf energy of the aged materials. These aging test results indicate F82H can be used up to 30,000 h at 550 Degree-Sign C.

  9. Welding state of art for Eurofer 97 application to Tritium Blanket Module for ITER Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, P. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DM2S/DIR), 91 - Gif sur Yvette (France); Janin, F. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DPC/SCP/Gerailp), 91 - Gif sur Yvette (France)

    2007-07-01

    Full text of publication follows: Eurofer weldability must be established for data base assessment and TBM manufacturing support. Electron Beam, Hybrid (Laser combined with MIG/MAG), Laser and Narrow Gap TIG processes have been carried out on Eurofer samples from 0.5 mm to 40 mm. Electron Beam produces very narrow fusion zone width, in the range of 3 to 4 mm, that yields brittle joints with (5-ferrite. This process is considered only for low penetration depth (cooling plates). The other processes produce similar results, with attenuation or enhanced effects, depending on cooling rates and weld penetration depth. Pre- and post-heating have been applied on hybrid and laser welds. High hardness values, increasing brittleness and softening effects in the Heat Affected Zone are observed for each welding configuration that could signal creep problems. The Fusion Zones are typically composed of martensite laths, with small grain sizes. In the Heat Affected Zones, martensite grains are observed with M23C6 carbide precipitation. Delta ferrite has been observed only in Electron Beam welds, due to very high cooling rate during the solidification phase, related to strong enhanced weld shape. Eurofer filler wire with optimized chemical composition is developed for producing welds with good properties. To restore properties after welding, PWHT seems is necessary and several treatments including one at 750 deg. C for 2 hours have been performed. Also tries is a re-austenisation treatment of 10 h at 1050 deg. C. affecting order to improve results, pre- and post-heating has been applied. The heating produced by the resistive heater was too low, and new welding tests are planned at higher temperatures (400 deg. C). However, the pre- and post-heating at higher temperatures will complicate manufacturing of TBM clamping For penetration depths below 10 mm, laser process is the reference method and TIG second. Distortion level performed by laser process is acceptable for manufacturing stage. For TIG and laser processes, no metallurgical defect or damage has been observed. HAZ and Fusion Zones are larger in TIG welds compared with laser welds. Six TIG welding passes are necessary, compared to the two passes for laser process. For laser and Hybrid (MIG/Laser) welding process, joint coefficient can be considered as 1. All tensile specimens have broken outside the welds, and in the parent base material. For laser welds, tempering Post Welding Heat Treatment has markedly reduced the hardening level in fusion zone, to acceptable values in the range of 300 HV 10. Impact tests have shown good results. Welding simulation has been carried out, and numerical martensitic weld width is close to real one. (authors)

  10. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  11. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  12. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  13. Reactor Engineering

    Science.gov (United States)

    Lema, Juan M.; López, Carmen; Eibes, Gemma; Taboada-Puig, Roberto; Moreira, M. Teresa; Feijoo, Gumersindo

    In this chapter, the engineering aspects of processes catalyzed by peroxidases will be presented. In particular, a discussion of the existing technologies that utilize peroxidases for different purposes, such as the removal of recalcitrant compounds or the synthesis of polymers, is analyzed. In the first section, the essential variables controlling the process will be investigated, not only those that are common in any enzymatic system but also those specific to peroxidative reactions. Next, different reactor configurations and operational modes will be proposed, emphasizing their suitability and unsuitability for different systems. Finally, two specific reactors will be described in detail: enzymatic membrane reactors and biphasic reactors. These configurations are especially valuable for the treatment of xenobiotics with high and poor water solubility, respectively.

  14. A Phased Development of Breed-and-Burn Reactors for Enhanced Nuclear Energy Sustainability

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available Several options for designing fast reactors to operate in the Breed-and-Burn (B&B mode are compared and a strategy is outlined for early introduction of B&B reactors followed by a gradual increase in the fuel utilization of such reactors. In the first phase the fast reactor core will consist of a subcritical B&B blanket driven by a relatively small critical seed. As the required discharge burnup/radiation-damage to both driver and blanket fuel had already been proven, and as the depleted uranium fueled B&B blanket could generate close to 2/3 of the core power and will have very low fuel cycle cost, the deployment of such fast reactors could start in the near future. The second phase consists of deploying self-sustaining stationary wave B&B reactors. It will require development of fuel technology that could withstand peak burnups of ~30% and peak radiation damage to the cladding of ~550 dpa. The third phase requires development of a fuel reconditioning technology that will enable using the fuel up to an average burnup of ~50%—the upper bound permitted by neutron balance considerations when most of the fission products are not separated from the fuel. The increase in the uranium ore utilization relative to that provided by contemporary power reactors is estimated to be 20, 40 and 100 folds for, respectively, phase 1, 2 and 3. The energy value of the depleted uranium stockpiles (“waste” accumulated in the US is equivalent to, when used in the B&B reactors, up to 20 centuries of the total 2010 USA supply of electricity. Therefore, a successful development of B&B reactors could provide a great measure of energy sustainability and cost stability.

  15. Reactor Neutrinos

    OpenAIRE

    Lasserre, T.; Sobel, H.W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrin...

  16. Detailed 3-D nuclear analysis of ITER outboard blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, Tim, E-mail: tdbohm@wisc.edu [Fusion Technology Institute, University of Wisconsin-Madison, Madison, WI (United States); Davis, Andrew; Sawan, Mohamed; Marriott, Edward; Wilson, Paul [Fusion Technology Institute, University of Wisconsin-Madison, Madison, WI (United States); Ulrickson, Michael; Bullock, James [Formerly, Fusion Technology, Sandia National Laboratories, Albuquerque, NM (United States)

    2015-10-15

    Highlights: • Nuclear analysis was performed on detailed CAD models placed in a 40 degree model of ITER. • The regions examined include BM09, the upper ELM coil region (BM11–13), the neutral beam (NB) region (BM13–16), and BM18. • The results show that VV nuclear heating exceeds limits in the NB and upper ELM coil regions. • The results also show that the level of He production in parts of BM18 exceeds limits. • These calculations are being used to modify the design of the ITER blanket modules. - Abstract: In the ITER design, the blanket modules (BM) provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40 degree partially homogenized ITER global model. The regions analyzed include BM09, BM16 near the heating neutral beam injection (HNB) region, BM11–13 near the upper ELM coil region, and BM18. For the BM16 HNB region, the VV nuclear heating behind the NB region exceeds the design limit by up to 80%. For the BM11–13 region, the nuclear heating of the VV exceeds the design limit by up to 45%. For BM18, the results show that He production does not meet the limit necessary for re-welding. The results presented in this work are being used by the ITER Organization Blanket and Tokamak Integration groups to modify the BM design in the cases where limits are exceeded.

  17. A Cylindrical Shielding Design Concept for the Prototype Gen-IV Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sunghwan; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR), a metal fueled, blanket-free, pool type SFR concept is adopted to acquire the inherent safety characteristics and high proliferation-resistance. In the pool type fast reactor, the intermediate heat exchangers (IHXs), which transfer heat from the primary sodium pool to a secondary sodium loop, are placed inside of the reactor vessel. Hence, secondary sodium passing the IHXs can be radioactivated by a {sup 23}Na(n,g){sup 24}Na reaction, and radioactivated secondary sodium causes a significant dose in the Steam Generator Building (SGB). Therefore, a typical core of a pool type fast reactor is usually surrounded by a massive quantity of shields. In addition, the blanket composed of depleted uranium plays a role as superior shielding material; a significant increase in shields is required in the blanket-free pool type SFR. In this paper, a new cylindrical shielding design concept is proposed for a blanket-free pool type SFR. In a conventional shielding design, massive axial shields are required to prevent irradiation of secondary sodium passing IHXs and they should be replaced according to the subassembly replacement in spite of negligible depletion of the shielding material. The proposed shielding design concept minimizes the quantity of shields without their replacement. In this paper, a new cylindrical shielding design concept is proposed for a blanket-free pool type SFR such as a PGSFR. The proposed design concept satisfied the dose limit in the steam generator building successfully without introducing a large quantity of B{sub 4}C shielding inside the subassembly.

  18. Start- up strategies of UASB reactor for treatment of pharmaceutical wastewater

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two start-up strategies of upflow anaerobic sludge blanket (UASB) reactor for treatment of pharmaceutical wastewater were investigated. The results showed that both of them were workable. Compared with the strategy that started up the reactor directly using chloromycetin wastewater, the strategy that started up the reactor first using mixed wastewater and then using chloromycetin wastewater could save time by 23%. When the latter strategy was adopted the development of sludge activity fluctuated more largely and its final activity was lower, but the sludge grew faster in the course of start-up.

  19. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program (July to December 1981).

  20. Thermophilic co-digestion of cattle manure and food waste supplemented with crude glycerin in induced bed reactor (IBR).

    Science.gov (United States)

    Castrillón, L; Marañón, E; Fernández-Nava, Y; Ormaechea, P; Quiroga, G

    2013-05-01

    The aim of the present research work was to boost biogas production from cattle manure (CM) by adding food waste (FW) and crude glycerin (Gly) from the biodiesel industry as co-substrates. For this purpose, different quantities of FW and Gly were added to CM and co-digested in an induced bed reactor (IBR) at 55 °C. Sonication pre-treatment was implemented in the CM+Gly mixture, applying 550 kJ/kg TS to enhance the biodegradability of these co-substrates. The best results were obtained with mixtures of 87/10/3 (CM/FW/Gly) (w/w) operating at an organic loading rate of 7 g COD/L day, obtaining 92% COD removal, a specific methane yield of 640 L CH4/kg VS and a methane production rate of 2.6L CH4/L day. These results doubled those obtained in the co-digestion of CM and FW without the addition of Gly (330 L CH4/kg VS and 1.2L CH4/L day).

  1. Models and analyses for inertial-confinement fusion-reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Bohachevsky, I.O.

    1981-05-01

    This report describes models and analyses devised at Los Alamos National Laboratory to determine the technical characteristics of different inertial confinement fusion (ICF) reactor elements required for component integration into a functional unit. We emphasize the generic properties of the different elements rather than specific designs. The topics discussed are general ICF reactor design considerations; reactor cavity phenomena, including the restoration of interpulse ambient conditions; first-wall temperature increases and material losses; reactor neutronics and hydrodynamic blanket response to neutron energy deposition; and analyses of loads and stresses in the reactor vessel walls, including remarks about the generation and propagation of very short wavelength stress waves. A discussion of analytic approaches useful in integrations and optimizations of ICF reactor systems concludes the report.

  2. Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.

    Science.gov (United States)

    Totani, Nagao; Inoue, Ryota; Yawata, Miho

    2016-06-01

    The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control.

  3. 76 FR 58488 - Dominion Cove Point LNG, LP; Application for Blanket Authorization to Export Previously Imported...

    Science.gov (United States)

    2011-09-21

    ... Dominion Cove Point LNG, LP; Application for Blanket Authorization to Export Previously Imported Liquefied... (Application), filed on August 8, 2011, by Dominion Cove Point LNG, LP (DCP), requesting blanket authorization to export liquefied natural gas (LNG) that previously had been imported into the United States...

  4. 75 FR 60095 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2010-09-29

    ... LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY..., by Sempra LNG Marketing, LLC (Sempra), requesting blanket authorization to export up to a total of 250 billion cubic feet (Bcf) of foreign sourced liquefied natural gas (LNG) for a two-year...

  5. 78 FR 35263 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously...

    Science.gov (United States)

    2013-06-12

    ... Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously Imported... receipt of an application (Application), filed on April 19, 2013, by Freeport LNG Development, L.P. (Freeport LNG), requesting blanket authorization to export liquefied natural gas (LNG) that previously...

  6. 77 FR 76013 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2012-12-26

    ... LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported Liquefied... application (Application), filed on October 26, 2012, by Sempra LNG Marketing, LLC (Sempra LNG Marketing), requesting blanket authorization to export liquefied natural gas (LNG) that previously had been imported...

  7. 75 FR 38092 - The Dow Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2010-07-01

    ... Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY: Office of... The Dow Chemical Company (Dow), requesting blanket authorization to export liquefied natural gas (LNG... equivalent of 390 billion cubic feet (Bcf) of natural gas on a short-term or spot market basis. The LNG...

  8. 48 CFR 313.303-5 - Purchases under blanket purchase agreements.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Purchases under blanket purchase agreements. 313.303-5 Section 313.303-5 Federal Acquisition Regulations System HEALTH AND HUMAN... Methods 313.303-5 Purchases under blanket purchase agreements. (e)(5) HHS personnel that sign...

  9. 77 FR 31004 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-05-24

    ...] Southern Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on May 9, 2012, Southern Natural Gas Company (Southern), 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209, filed... Commission's regulations under the Natural Gas Act (NGA), and Southern's blanket certificate issued in...

  10. 78 FR 4400 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2013-01-22

    ... USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported Liquefied... and order (Order No. 2923) that granted Eni USA Gas Marketing authority to export a cumulative total... Application, Eni USA Gas Marketing requests blanket authorization to export LNG from the Cameron Terminal...

  11. Wash resistance and repellent properties of Africa University mosquito blankets against mosquitoes

    Directory of Open Access Journals (Sweden)

    N. Lukwa

    2013-04-01

    Full Text Available The effect of permethrin-treated Africa University (AU mosquito blankets on susceptible female Anopheles gambiae sensu lato mosquitoes was studied under laboratory conditions at Africa University Campus in Mutare, Zimbabwe. Wash resistance (ability to retain an effective dose that kills ≥80% of mosquitoes after a number of washes and repellence (ability to prevent ≥80% of mosquito bites properties were studied. The AU blankets were wash resistant when 100% mortality was recorded up to 20 washes, declining to 90% after 25 washes. Untreated AU blankets did not cause any mortality on mosquitoes. However, mosquito repellence was 96%, 94%, 97.9%, 87%, 85% and 80.7% for treated AU blankets washed 0, 5, 10, 15, 20 and 25 times, respectively. Mosquito repellence was consistently above 80% from 0-25 washes. In conclusion, AU blankets washed 25 times were effective in repelling and killing An. gambiae sl mosquitoes under laboratory conditions.

  12. Development of a virtual reality simulator for the ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Nobukazu [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan)], E-mail: takeda.nobukazu@jaea.go.jp; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan); Tesini, Alessandro [ITER International Fusion Energy Organization, 13108 St. Paul Lez Durance (France)

    2008-12-15

    The authors developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robotic simulation software, ENVISION. The simulator is connected to the control system of the manipulator, which was developed as part of the blanket maintenance system during the Engineering Design Activity (EDA), and can reconstruct the positions of the manipulator and blanket module using position data transmitted from motors through a LAN. In addition, it can provide virtual visual information (e.g., about the interface structures behind the blanket module) by making the module transparent on the screen. It can also be used for confirming a maintenance sequence before the actual operation. The simulator will be modified further, with addition of other necessary functions, and will finally serve as a prototype of the actual simulator for the blanket remote handling system, which will be procured as part of an in-kind contribution.

  13. Bioconversion reactor

    Science.gov (United States)

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  14. Vinasses treatment in anaerobic fludized bed reactor.

    Directory of Open Access Journals (Sweden)

    Francisco J. C. Terán

    2009-03-01

    Full Text Available The agricultural use of vinasse produced by the sugar industry has gone through many changes over the years. Coupled with concern over the increased agronomic efficiency and optimizing the management of the use of such waste, you can highlight the major global ecological awareness, developed after 90s. This study aims at the construction and operation of a reactor anaerobic cracker (RALF on pilot scale to verify the burden of chemical demand of oxygen (DQO of vinasse, under mesophilic. The stillage used for feeding the reactor was from a sugar cane processing plant, located in the city of Regente Feijó, São Paulo State. The inoculum was anaerobic sludge from a reactor and upward flow anaerobic sludge blanket (UASB treating wastewater from a factory of soda. The concentrations of vinasse to be treated ranged 17,239 mg DQO L-1 up to 28,174 mg DQO L-1. The effluent pH was maintained between 6.4 and 8.6 during the research. The productivity of biogas in the reactor has not achieved the expected rates, reaching only 46 mL day-1. Maximum efficiency attained during operation was 51.1 %, corresponding to a 14-day operation time, vinasses organic loading of 19.5 kg DQO m-3 dia-1 and to an hydraulic detention time of one day.

  15. Clinical evaluation of FW-Ⅱ axial blood pump short-term assistance for treating acute left heart failure%FW-Ⅱ轴流泵短期辅助治疗急性左心衰初步临床评价

    Institute of Scientific and Technical Information of China (English)

    胡盛寿; 孙寒松; 李立环; 陈祖君; 石丽; 张岩; 陈海波

    2014-01-01

    目的 初步评价FW-Ⅱ轴流泵短期辅助治疗急性左心衰的安全性和有效性.方法 选择术后撤除体外循环困难的重症冠状动脉硬化性心脏病(冠心病)患者5例,经左心房牛颈静脉-肝素涂层管道-FW-Ⅱ轴流泵-肝素涂层管道-股动脉循环支持和卸负荷,观察围手术期血流动力学和心肌损伤标记物,对比分析不同转速下血浆vW因子含量和白细胞-血小板聚集体的表达.结果 FW-Ⅱ轴流泵辅助(24.0±2.6)h,最高流量3.2 L/min,辅助期间泵转速7 000~9000 r/min,流量1.9~3.0 L/min,均无机械故障发生.1例患者术后第7天死于多器官功能衰竭,其余4例均顺利出院,近期随访结果良好.置入FW-Ⅱ轴流泵前平均动脉压(MAP)为(50.29±6.98) mmHg(1 mmHg=0.133 kPa),心脏指数(CI)为(1.70±0.23) L·min-1 ·m-2,全身外周血管阻力(SVR)为(2009.86±129.46) dyn·s·cm-5;置入后8 000 r/min时MAP (65.43±6.90) mmHg,CI(2.53 ±0.27)L·min-1·m-2,SVR(1 578.14±356.70)dyn·s·cm-5,其中MAP和CI显著增加,SVR显著下降,P<0.01,差异均有统计学意义.置入前外周血中肌酸激酶同功酶(CK-MB)和肌钙蛋白Ⅰ(cTnI)含量为(147±20) IU/L和(12.6±5.7)μg/L,置入后12h时CK-MB和cTnI水平降至(66±11) IU/L和(8.4±3.8) μg/L,差异均有统计学意义,P<0.01.同7 000 r/min比较,vW因子含量在8 500 r/min时显著增加[(2.59 ±0.57) U/L对(1.26±0.43) U/L,P<0.01];血小板活化和白细胞-血小板聚集体数变化呈V形变化,其中8000 r/min时最低(15±3)%,7 000 r/min和9000 r/min时达最高值(33±3)%和(31±5)%.结论 FW-Ⅱ轴流泵短期辅助可有效促进急性左心衰后心脏功能复苏,8 000 r/min是最佳平衡转速.%Objective To evaluate the safety and efficacy of FW-Ⅱ axial blood pump short term assistance for treating acute heart failure.Methods We selected 5 patients who were difficult to remove cardiopulmonary bypass,and implanted FW-Ⅱ axial blood pump by left atrium-pump-femoral artery

  16. Irradiation behavior of Ti 4Al 2V (ΠT-3B) alloy for ITER blanket modules flexible attachment

    Science.gov (United States)

    Rodchenkov, B. S.; Kozlov, A. V.; Kuznetsov, Yu. G.; Kalinin, G. M.; Strebkov, Yu. S.

    2007-08-01

    Titanium alloys are recommended as a material to manufacture flexible attachments of the shield blanket modules in the ITER reactor owing to their advantageous combination of properties, i.e., high resistance to impact loading, strength, density and low thermal expansion coefficient. An additional factor for selecting Ti alloys is their fast induced radioactivity decay. The (α + β)-Ti alloys have higher strength than (α)-Ti alloys but are less developed. The data base on the irradiation behavior of these materials is limited. Neutron irradiation of (α)-Ti-4Al-2V (ΠT-3B) alloy has been performed in the framework of the ITER R&D programme. Specimens from a forging of Ti-4Al-2V alloy were irradiated in the IVV-2M reactor to doses of (0.32-0.43) dpa at temperatures of (240-260) °C. This paper describes the results of tensile, low cycle fatigue and fracture toughness tests of alloy in the unirradiated and neutron irradiated conditions. The results obtained are compared with those of the (α + β)-Ti-6Al-4V alloy.

  17. Model and simulation of a vacuum sieve tray for T extraction from liquid PbLi breeding blankets

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, M.A.J., E-mail: merlijn.mertens@ugent.be [Ghent University, Department of Materials Science and Engineering, Center of Molecular Modeling, Technologiepark 903, B-9052 Zwijnaarde (Belgium); Demange, D., E-mail: david.demange@kit.edu [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Frances, L., E-mail: laetitia.frances@kit.edu [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-15

    Highlights: • A simulation tool was developed to analyse, optimise and scale up VST set-ups. • This tool predicts that efficiencies higher than 90% can be reached. • Upscaling to DEMO breeding blanket flow rates results in feasibly sized designs. - Abstract: Tritium self-sufficiency within a nuclear fusion reactor is necessary to demonstrate nuclear fusion as a viable source of energy. Tritium can be produced within liquid eutectic PbLi but then has to be extracted to be refuelled to the plasma. The vacuum sieve tray (VST) method is based on the extraction of tritium from millimetre-scaled oscillating PbLi droplets falling inside a vacuum chamber. A simulation tool was developed describing the fluid dynamics occurring along the PbLi flow and was used to study the influence of the different geometrical and operational parameters on the VST performance. The simulation predicts that extraction efficiencies over 90% can be easily reached according to theory and previous experimental results. The size of the VST extraction unit for a fusion reactor is estimated based on the findings from our single-nozzle model and assuming no T reabsorption. It is found to be in the feasible range. Nevertheless, two approaches are discussed which may further reduce this size by up to 90%. The simulation tool proved to be an easy and powerful way to analyse and optimise VST set-ups at any scale.

  18. Sonochemical Reactors.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  19. Effect on the Tritium Breeding Ratio due to a distributed ICRF antenna in a DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Polytechnic University of Catalonia (UPC), Barcelona (Spain); Department of Applied Physics, Ghent University, Ghent (Belgium); Noterdaeme, J.-M. [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Department of Applied Physics, Ghent University, Ghent (Belgium); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Dies, J. [Polytechnic University of Catalonia (UPC), Barcelona (Spain)

    2016-11-15

    This thesis reports results of MCNP-5 calculations, with the nuclear data library FENDL-2.1, to assess the effect on the Tritium Breeding Ratio (TBR) due to a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna integrated in the blanket of a DEMO fusion power reactor. A preliminary design of the antenna with a reference configuration of the DEMO reactor was used together with a parametric analysis for different parameters that strongly affect the TBR. These are the type of breeding blanket (Helium Cooled Pebble Bed, Helium Cooled Lithium Lead and Water Cooled Lithium Lead), the covering ratio of the straps of the antenna (the ratio between the surface of all the straps and the projected surface of the antenna slot: 0.49, 0.72 and 0.94), the antenna radial thickness (20 cm and 40 cm), the thickness of the straps (2 cm, 4 cm and a double layer of 0.2 cm plus 2.5 cm with the composition of the First Wall), and finally the poloidal position of the antenna (0°, which is the equatorial port, 40° and 90°, which is the upper port). For an antenna with a full toroidal circumference of 360°, located poloidaly at 40° with a poloidal extension of 1 m and a total First Wall surface of 67 m{sup 2}, the reduction of the TBR is −0.35% for a HCPB blanket concept, −0.53% for a HCLL blanket concept and −0.51% for a WCLL blanket concept. In all cases covered by the parametric analysis, the loss of TBR remains below 0.61%. Such a distributed ICRF antenna has thus only a marginal effect on the TBR for a DEMO reactor.

  20. Physics Characterization of a Heterogeneous Sodium Fast Reactor Transmutation System

    Energy Technology Data Exchange (ETDEWEB)

    Samuel E. Bays

    2007-09-01

    The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even mass number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both a non-flattened and a pancake core geometry. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of the same size.

  1. Plasma engineering analysis of a small torsatron reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lacatski, J.T.; Houlberg, W.A.; Uckan, N.A.

    1985-10-01

    This study examines the plasma physics and reactor engineering feasibility of a small, medium aspect ratio, high-beta, l = 2, D-T torsatron power reactor, based on the magnetic configuration of the Advanced Toroidal Facility, Oak Ridge National Laboratory. Plasma analyses are performed to assess whether confinement in a small, average radius plasma is sufficient to yield an ignited or high-Q driven device. Much of the physics assessment focuses on an evaluation of the radial electric field created by the nonambipolar particle flux. Detailed transport simulations are done with both fixed and self-consistent evolution of the radial electric field. Basic reactor engineering considerations taken into account are neutron wall loading, maximum magnetic field at the helical coils, coil shield thickness, and tritium breeding blanket-shield thickness.

  2. Physical and mechanical characteristics and chemical compatibility of aluminum nitride insulator coatings for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Rink, D.L. [Argonne National Lab., IL (United States). Energy Technology Div.

    1996-04-01

    The blanket system is one of the most important components in a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of various concepts, including liquid metal, molten salt, water, and helium. Based on the requirements for an electrically insulating coating on the first-wall structural material to minimize the MHD pressure drop during the flow of liquid metal in a magnetic field, AlN was selected as a candidate coating material for the Li self-cooled blanket concept. This report discusses the results from an ongoing study of physical and mechanical characteristics and chemical compatibility of AlN electrical insulator coatings in a liquid Li environment. Details are presented on the AlN coating fabrication methods, and experimental data are reported for microstructures, chemistry of coatings, pretreatment of substrate, heat treatment of coatings, hardness data for coatings, coating/lithium interactions, and electrical resistance before and after exposure to lithium. Thermodynamic calculations are presented to establish regions of stability for AlN coatings in an Li environment as a function of O concentration and temperature, which can aid in-situ development of AlN coatings in Li.

  3. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  4. Movement of tritiated water injected into blanket peat

    Directory of Open Access Journals (Sweden)

    R.S. Clymo

    2016-04-01

    Full Text Available In 1966, tritiated water was injected at five sites at depths between 25 and 100 cm into blanket bog at Moor House National Nature Reserve. The distribution of tritium activity on a logarithmically spaced grid around these sites was sampled in 1990, 24 years after placement. The proportions of tritium accounted for ranged from 80 % for the injection at 100 cm deep, to 20 % for the injection at 25 cm deep. Both 80 and 20 should be considered as ± 10 %. Results imply that diffusion close to the injection may have played a part in movement of tritium; evapotranspiration is not inconsistent with the losses inversely proportional to depth of placement; but the main process of movement is probably bulk (mass flow of water through the peat.

  5. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meier, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frantoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reyes, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  6. Characterization of a novel alkaline arylsulfatase from Marinomonas sp. FW-1 and its application in the desulfation of red seaweed agar.

    Science.gov (United States)

    Wang, Xueyan; Duan, Delin; Xu, Jiachao; Gao, Xin; Fu, Xiaoting

    2015-10-01

    A bacterial strain capable of hydrolyzing sulfate ester bonds of p-nitrophenyl sulfate (pNPS) and agar was isolated from the coast area of Qingdao, China. It was identified as Marinomonas based on its 16S rRNA gene sequence and named as Marinomonas sp. FW-1. An arylsulfatase with a recovery of 13 % and a fold of 12 was purified to a homogeneity using ion exchange and gel filtration chromatographies. The enzyme was composed of a single polypeptide chain with the molecular mass of 33 kDa estimated using SDS-PAGE. The optimal pH and temperature of arylsulfatase were pH 9.0 and 45, respectively. Arylsulfatase was stable over pH 8-11 and at temperature below 55 °C. The K m and V max of this enzyme for the hydrolysis of pNPS were determined to be 13.73 and 270.27 μM/min, respectively. The desulfation ratio against agar from red seaweed Gelidium amansii and Gracilaria lemaneiformis were 86.11 and 89.61 %, respectively. There was no difference between the DNA electrophoresis spectrum on the gel of the arylsulfatase-treated G. amansii agar and that of the commercial agarose. Therefore, this novel alkaline arylsulfatase might have a great potential for application in enzymatic conversion of agar to agarose.

  7. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase.

    Science.gov (United States)

    Shen, Fei; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zhu, Baoning; Zou, Dexun; Liu, Yanping; Ma, Jingwei; Yu, Liang; Li, Xiujin

    2013-09-01

    The co-digestion of fruit & vegetable waste (FVW) and food waste (FW) was performed at various organic loading ratios (OLRs) in single-phase and two-phase system, respectively. The results showed that the ethanol-type fermentation dominated in both digestion processes when OLR was at low levels (2.0 g(VS) L(-1) d(-1)), which could cause unstable anaerobic digestion. Single-phase digestion was better than two-phase digestion in term of 4.1% increase in CH4 production at lower OLRs (two-phase digestion achieved higher CH4 production of 0.351-0.455 L(g VS)(-1) d(-1), which were 7.0-15.8% more than that of single-phase. Additionally, two-phase digestion presented more stable operation, and higher OLR treatment capacity. Furthermore, comparison of these two systems with bioenergy recovery revealed that two-phase system overall presented higher bioenergy yield than single-phase.

  8. Improving the Sandia Test Protocols with Advanced Inverter Functionality Testing of INV3, VV11, FW21, and L/HVRT

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Dean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    Sandia National Laboratories has created a test protocol for IEC TR 61850-90-7 advanced distributed energy resource (DER) functions, titled "Test Protocols for Advanced Inverter Interoperability Functions," often referred to as the Sandia Test Protocols. This document is currently in draft form, but has been shared with stakeholders around the world with the ultimate goal of collaborating to create a consensus set of test protocols which can be then incorporated into an International Electrotechnical Commission (IEC) and/or Underwriters Laboratories (UL) certification standard. The protocols are designed to ensure functional interoperability of DER (primarily photovoltaic (PV) inverters and energy storage systems) as specified by the IEC technical report through communication and electrical tests. In this report, Sandia exercises the electrical characterization portion of the test protocols for four functions: constant power factor (INV3), volt-var (VV11), frequency-watt (FW21), and Low and High Voltage Ride Through (L/HVRT). The goal of the tests reported here was not to characterize the performance of the equipment under test (EUT), but rather to (a) exercise the draft Sandia Test Protocols in order to identify any revisions needed in test procedures, conditions, or equipment and (b) gain experience with state-of-the-art DER equipment to determine if the tests put unrealistic or overly aggressive requirements on EUT operation. In performing the work according to the current versions of the protocols, Sandia was able to identify weaknesses in the current versions and suggest improvements to the test protocols.

  9. Needs and gaps in the development of aluminum-based corrosion and T-permeation barriers for DEMO blankets

    Energy Technology Data Exchange (ETDEWEB)

    Wulf, Sven-Erik, E-mail: sven-erik.wulf@kit.edu; Krauss, Wolfgang; Konys, Jürgen

    2015-10-15

    Highlights: • New processes for barriers based on electroplating introduced in the last years. • New processes ECA and ECX able to overcome former fabrication problems. • Scales by ECA showed long-term compatibility in flowing Pb–Li (>12,000 h). • Further fusion relevant characterization and optimization of scales is required. • Qualification of T-permeation properties is urgently needed. - Abstract: Low-activation-ferritic–martensitic (RAFM) steels are candidates for structural materials in different blanket designs foreseen for DEMO and partly for TBM's tested in ITER. In all designs the liquid breeder Pb–15.7Li is in direct contact with the structural material, and thus two major topics – corrosion and T-permeation – influence the reliable, safe and economical application of such combination of breeder and structural material. As bare RAFM steels exhibit high corrosion rates of up to 400 μm/h in flowing Pb–15.7Li, Al-based coatings made by different coating processes were developed during the last 15 years and showed promising results in protecting RAFM steels from corrosion and T-permeation reduction. Especially barriers made by HDA, and electroplating (ECA, ECX), proved their ability to protect Eurofer against corrosion in flowing Pb–15.7Li. However, available T-permeation data for coated RAFM steels are rare and partly ambiguous for these coatings. This paper summarizes the state-of-the-art of aluminum-based barrier development and points out gaps and needs in future scale characterization and T-permeation barrier development. Additionally, necessary qualification steps on the path toward a reliable fabrication route are presented that is required to produce aluminum-based corrosion and T-permeation barriers on RAFM steels for blanket applications in future fusion reactors like DEMO.

  10. Synthesis and Characterization of Fibre Reinforced Silica Aerogel Blankets for Thermal Protection

    Directory of Open Access Journals (Sweden)

    S. Chakraborty

    2016-01-01

    Full Text Available Using tetraethoxysilane (TEOS as the source of silica, fibre reinforced silica aerogels were synthesized via fast ambient pressure drying using methanol (MeOH, trimethylchlorosilane (TMCS, ammonium fluoride (NH4F, and hexane. The molar ratio of TEOS/MeOH/(COOH2/NH4F was kept constant at 1 : 38 : 3.73 × 10−5 : 0.023 and the gel was allowed to form inside the highly porous meta-aramid fibrous batting. The wet gel surface was chemically modified (silylation process using various concentrations of TMCS in hexane in the range of 1 to 20% by volume. The fibre reinforced silica aerogel blanket was obtained subsequently through atmospheric pressure drying. The aerogel blanket samples were characterized by density, thermal conductivity, hydrophobicity (contact angle, and Scanning Electron Microscopy. The radiant heat resistance of the aerogel blankets was examined and compared with nonaerogel blankets. It has been observed that, compared to the ordinary nonaerogel blankets, the aerogel blankets showed a 58% increase in the estimated burn injury time and thus ensure a much better protection from heat and fire hazards. The effect of varying the concentration of TMCS on the estimated protection time has been examined. The improved thermal stability and the superior thermal insulation of the flexible aerogel blankets lead to applications being used for occupations that involve exposure to hazards of thermal radiation.

  11. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Pereslavtsev, Pavel, E-mail: pavel.pereslavtsev@kit.edu [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Boltzmannstrasse 2, 85748 Garching (Germany); Fischer, Ulrich [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, {sup 6}Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  12. Upflow anaerobic sludge blanket (UASB) treatment of supernatant of cow manure by thermal pre-treatment.

    Science.gov (United States)

    Yoneyama, Y; Nishii, A; Nishimoto, M; Yamada, N; Suzuki, T

    2006-01-01

    Upflow anaerobic sludge blanket (UASB) methane fermentation treatment of cow manure that was subjected to screw pressing, thermal treatment and subsequent solid-liquid separation was studied. Conducting batch scale tests at temperatures between 140 and 180 degrees C, the optimal temperature for sludge settling and the color suppression was found to be between 160-170 degrees C. UASB treatment was carried out with a supernatant obtained from the thermal treatment at the optimal conditions (170 degrees C for 30 minutes) and polymer-dosed solid-liquid separation. In the UASB treatment with a COD(Cr) loading of 11.7 kg/m3/d and water temperature of 32.2 degrees C, the COD(Cr) level dropped from 16,360 mg/L in raw water to 3,940 mg/L in treated water (COD(Cr), removal rate of 75.9%), and the methane production rate per COD(Cr) was 0.187 Nm3/kg. Using wastewater thermal-treated at the optimal conditions, also a methane fermentation treatment with a continuously stirred tank reactor (CSTR) was conducted (COD(Cr) in raw water: 38,000 mg/L, hydraulic retention time (HRT): 20 days, 35 degrees C). At the COD(Cr) loading of 1.9 kg/m3/d, the methane production rate per COD(Cr), was 0.153 Nm3/kg. This result shows that UASB treatment using thermal pre-treatment provides a COD(Cr), loading of four times or more and a methane production rate of 1.3 times higher than the CSTR treatment.

  13. Preliminary Analysis of Liquid Metal MHD Pressure Drop in the Blanket for the FDS

    Institute of Scientific and Technical Information of China (English)

    王红艳; 吴宜灿; 何晓雄

    2002-01-01

    Preliminary analysis and calculation of liquid metal Li17Pb83 magnetohydrodynamic (MHD) pressure drop in the blanket for the FDS have been presented to evaluate the significance of MHD effects on the thermal-hydraulic design of the blanket. To decrease the liquid metal MHD pressure drop, Al2O3 is applied as an electronically insulated coating onto the inner surface of the ducts. The requirement for the insulated coating to reduce the additional leakage pressure drop caused by coating imperfections has been analyzed. Finally, the total liquid metal MHD pressure drop and magnetic pump power in the FDS blanket have been given.

  14. Calculation of Radioactivity and Dose Rate of Activated Corrosion Products in Water-Cooled Fusion Reactor

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-01-01

    Full Text Available In water-cooled reactor, the dominant radioactive source term under normal operation is activated corrosion products (ACPs, which have an important impact on reactor inspection and maintenance. A three-node transport model of ACPs was introduced into the new version of ACPs source term code CATE in this paper, which makes CATE capable of theoretically simulating the variation and the distribution of ACPs in a water-cooled reactor and suitable for more operating conditions. For code testing, MIT PWR coolant chemistry loop was simulated, and the calculation results from CATE are close to the experimental results from MIT, which means CATE is available and credible on ACPs analysis of water-cooled reactor. Then ACPs in the blanket cooling loop of water-cooled fusion reactor ITER under construction were analyzed using CATE and the results showed that the major contributors are the short-life nuclides, especially Mn-56. At last a point kernel integration code ARShield was coupled with CATE, and the dose rate around ITER blanket cooling loop was calculated. Results showed that after shutting down the reactor only for 8 days, the dose rate decreased nearly one order of magnitude, which was caused by the rapid decay of the short-life ACPs.

  15. Experimental facilities for investigation of structural material properties for fusion reactor under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G.M.; Strebkov, Yu.S.; Sidorenkov, A.V.; Zyryanov, A.P.; Barsanov, V.I.; Shushlebin, V.V. (Research and Development Inst. of Power Engineering, Moscow (Russia)); Rybin, V.V.; Vinokurov, V.F.; Odintsov, N.B. (Central Scientific and Research Inst. of Structural Materials, St. Petersburg (Russia)); Zykanov, V.A.; Shamardin, V.K.; Kazakov, V.A. (Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russia))

    1992-09-01

    The study of sturctural and breeding materials for fusion reactors covers a wide range of investigations including the effect of different operating factors; irradiation is the main factor. This paper presents basic reactor characteristics, the types of investigations on structural and breeding materials carried out at these reactors, and the reactor irradiation conditions. The design of equipment used for parameter control during the irradiations is also discussed. CM-2 and BOR-60 reactors are primarily used to irradiate structural materials for the blanket, first wall and divertor at temperatures of 80 and 350deg C and fluences up to 5x10[sup 22] n/cm[sup 2]. The IVV-2 reactor is used to investigate breeding blanket materials and to study the problems of hydrogen/tritium permeability and recovery from Li-Pb eutectic and through 0.4C-16Cr-11Ni-3Mo-Ti steel. In addition, there are facilities for carrying out irradiation experiments at cryogenic temperatures as well as in different media. (orig.).

  16. ATP content and biomass activity in sequential anaerobic/aerobic reactors

    Institute of Scientific and Technical Information of China (English)

    陈红

    2004-01-01

    Specific ATP content of volatile solids was measured to characterize the sludge activity in a sequential anaerobic/aerobic wastewater treatment system, with an upflow anaerobic sludge blanket (UASB) reactor and a three-phase aerobic fluidized bed (AFB) reactor. The wastewater COD level was 2000(3000 mg/L in simulation of real textile wastewater. The ATP content and the specific ATP contents of volatile solids at different heights of the UASB reactor and those of the suspended and immobilized biomass in the AFB reactor were measured. In the UASB reactor, the maximum value of specific ATP (0.85 mg ATP/g VS) was obtained at a hydraulic retention time (HRT) 7.14 h in the blanket solution. In the AFB reactor, the specific ATP content of suspended biomass was higher than that of immobilized biomass and increased with hydraulic retention time reaching a maximum value of 1.6 mg ATP/g VS at hydraulic retention time 4.35 h. The ATP content of anaerobes in the UASB effluent declined rapidly under aerobic conditions following a 2nd-order kinetic model.

  17. ATP content and biomass activity in sequential anaerobic/aerobic reactors

    Institute of Scientific and Technical Information of China (English)

    陈红

    2004-01-01

    Specific ATP content of volatile solids was measured to characterize the sludge activity in a sequential anaerobic/aerobic wastewater treatment system, with an upflow anaerobic sludge blanket (UASB) reactor and a three-phase aerobic fluidized bed (AFB) reactor. The wastewater COD level was 2000-3000 mg/L in simulation of real textile wastewater. The ATP content and the specific ATP contents of volatile solids at different heights of the UASB reactor and those of the suspended and immobilized biomass in the AFB reactor were measured. In the UASB reactor, the maximum value of specific ATP (0.85 mg ATP/g VS) was obtained at a hydraulic retention time (HRT) 7.14 h in the blanket solution. In the AFB reactor, the specific ATP content of suspended biomass was higher than that of immobilized biomass and increased with hydraulic retention time reaching a maximum value of 1.6 mg ATP/g VS at hydraulic retention time 4.35 h. The ATP content of anaerobes in the UASB effluent declined rapidly under aerobic conditions following a 2nd-order kinetic model.

  18. 根癌农杆菌介导fw2.2和PL基因对Micro-Tom番茄的遗传转化研究%A Study on Genic Transformation of PL and fw 2.2 Genes Mediated by Agrobacterium tumefaciens

    Institute of Scientific and Technical Information of China (English)

    孙瑶; 田嘉; 林静; 李疆

    2015-01-01

    This experiment aims at rapidly verifying whether the fw 2.2 and PL genes related to the firm-ness and size of pear fruit and whether they could smoonthly express throuth transgenic plants.In this ex-periment,the tomato Micro-Tom technology mediated by agrobacterium tumefaciens were applied,and cot-yledons were used as explants to analyze the effects of different pre-incubation time,bacterial concentra-tion,dip-dye time,co-culture time and delayed screening on the induced resistance buds and obtain the opti-mal transformation system:the cotyledons were pre-cultured for 36 h,and dipped in bacteria with an OD 600nm of 0.4 for 6 min,totaly co-cultured for 60 h,subsequently delayed screening with Cef of 300 mg/L and Kan of 25 mg/L for 14 d,at last differentiation-cultured with Cef of 300 mg/L and Kan of 40 mg/L. The result showed that the obtained positive transgenic plants were 42 strains and 38 strains respectively, and the transformation rate was 14.9% and 13.1% respectively.Meanwhile,the experiment preliminarily verified that the fw 2.2 and PL genes had been integrated into the Micro-Tom tomato.%为了快速验证与梨果实大小、硬度相关基因 fw 2.2、PL 是否能够通过转基因植株顺利表达.本研究利用根癌农杆菌介导 Micro-Tom 番茄技术,以子叶为外植体,分析不同预培养时间、菌液浓度、浸染时间、共培养时间、延迟筛选对抗性芽诱导的影响,得出最优转化体系为:子叶预培养36 h,在 OD 600nm 值为0.4菌液中浸染6 min,共培养60 h,在300 mg/L 头孢霉素(Cef)、25 mg/L 卡那霉素(Kan)延迟筛选14 d,转入300 mg/L Cef、40 mg/L Kan 分化培养.分别得到转基因阳性株为42株、38株,转化率为14.9%,13.1%.初步验证了 fw 2.2、PL 基因已经整合到 Micro-Tom 番茄中.

  19. In plain sight: the Chesapeake Bay crater ejecta blanket

    Directory of Open Access Journals (Sweden)

    D. L. Griscom

    2012-02-01

    Full Text Available The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v the (overlying loam member of the upland deposits is attributable to base-surge-type deposition, (vi several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction

  20. Effect of redox mediator, AQDS, on the decolourisation of a reactive azo dye containing triazine group in a thermophilic anaerobic EGSB reactor

    NARCIS (Netherlands)

    Bezerra Dos Santos, A.; Cervantes-Carillo, F.J.; Yaya Beas, R.E.; Lier, van J.B.

    2003-01-01

    The feasibility of thermophilic (55 degreesC) anaerobic treatment applied to colour removal of a triazine contained reactive azo dye was investigated in two 0.531 expanded granular sludge blanket (EGSB) reactors in parallel at a hydraulic retention time (HRT) of 10 h. Generally, this group of azo dy

  1. Fusion-power-core design of a Compact Reversed-Field Pinch Reactor (CRFPR)

    Science.gov (United States)

    Copenhaver, C.; Schnurr, N. M.; Krakowski, R. A.; Hagenson, R. L.; Mynard, R. C.; Cappiello, C.; Lujan, R. E.; Davidson, J. W.; Chaffee, A. D.; Battat, M. E.

    A conceptual design of a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, coils) based on a Reversed-Field Pinch (RFP) has been completed. After a brief statement of rationale and description of the reactor configuraton, the FPC integration is described in terms of power balance, thermal-hydraulics, and mechanical design. The engineering versatility, promise, and problems of this high-power-density approach to fusion are addressed.

  2. Development of ITER shielding blanket prototype mockup by HIP bonding

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi; Furuya, Kazuyuki; Hatano, Toshihisa; Kuroda, Toshimasa; Enoeda, Mikio; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Office of ITER Project Promotion, Tokyo (Japan)

    2000-07-01

    A prototype ({approx}900{sup H} x 1700{sup W} x 350{sup T} mm) of the ITER shielding blanket module has been fabricated following the previous successful fabrication of a small-scale ({approx}500{sup H} x 400{sup W} x 150{sup T} mm) and mid-scale ({approx}800{sup H} x 500{sup W} x 350{sup T} mm) mock-ups. This prototype incorporates most of key design features essential to the fabrication of the ITER shielding blanket module such as 1) the first wall heat sink made of Al{sub 2}O{sub 3} dispersion strengthened Cu (DSCu) with built-in SS316L coolant tubes bonded to a massive SS316LN shield block, 2) toroidally curved first wall with a radius of 5106 mm while straight in poloidal direction, 3) coolant channels oriented in poloidal direction in the first wall and in toroidal direction in the shield block, 4) the first wall coolant channel routing to avoid the interference with the front access holes, 5) coolant channels drilled through the forged SS316LN-IG shield block, and 6) four front access holes of 30 mm in diameter penetrated through the first wall and the shield block. For the joining method, especially for the first wall/side wall parts and the shield block, the solid HIP (Hot Isostatic Pressing) process was applied. It is difficult to apply conventional joining methods such as field welding, brazing, explosion bonding and mechanical one-axial diffusion bonding to a wide area bonding because sufficient mechanical strengths can not be obtained and excessive deformations occurs. In order to solve these fabrication issues, HIP bonding was applied. The first wall stainless steel (SS) coolant tubes of 10 mm in inner diameter and l mm in thickness were sandwiched by semi-circular grooved DSCu plates at the first wall and the front region of the side wall, and by semi-circular grooved SS plates at the back region of the side wall. After assembling of these first wall/side wall parts with the shield block, they were simultaneously bonded by single step HIP in order to

  3. The Expression of the fim Operon Is Crucial for the Survival of Streptococcus parasanguinis FW213 within Macrophages but Not Acid Tolerance.

    Directory of Open Access Journals (Sweden)

    Yi-Ywan M Chen

    Full Text Available The acquisition of transition metal ions is essential for the viability and in some cases the expression of virulence genes in bacteria. The fimCBA operon of Streptococcus parasanguinis FW213 encodes a Mn(2+/Fe(2+-specific ATP-binding cassette transporter. FimA, a lipoprotein in the system, is essential for the development of endocarditis, presumably by binding to fibrin monolayers on the damaged heart tissue. Recent sequence analysis revealed that Spaf_0344 was homologous to Streptococcus gordonii scaR, encoding a metalloregulatory protein for the Sca Mn(2+-specific transporter. Based on the homology, Spaf_0344 was designated fimR. By using various fim promoter (p fim derivatives fused with a promoterless chloramphenicol acetyltransferase gene, the functions of the cis-elements of p fim were analyzed in the wild-type and fimR-deficient hosts. The result indicated that FimR represses the expression of p fim and the palindromic sequences 5' to fimC are involved in repression of p fim . A direct interaction between FimR and the palindromic sequences was further confirmed by in vitro electrophoresis gel mobility shift assay and in vivo chromatin immunoprecipitation assay (ChIP-quantitative real-time PCR (qPCR. The result of the ChIP-qPCR analysis also indicated that FimR is activated by Mn(2+ and, to a lesser degree, Fe(2+. Functional analysis indicated that the expression of FimA in S. parasanguinis was critical for wild-type levels of survival against oxidative stress and within phagocytes, but not for acid tolerance. Taken together, in addition to acting as an adhesin (FimA, the expression of the fim operon is critical for the pathogenic capacity of S. parasanguinis.

  4. An investigation of pulsed phase thermography for detection of disbonds in HIP-bonded beryllium tiles in ITER normal heat flux first wall (NHF FW) components

    Energy Technology Data Exchange (ETDEWEB)

    Bushell, J., E-mail: joe.bushell@amec.com [AMEC Foster Wheeler, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ, England (United Kingdom); Sherlock, P. [AMEC Foster Wheeler, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ, England (United Kingdom); Mummery, P. [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, England (United Kingdom); Bellin, B.; Zacchia, F. [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, Barcelona (Spain)

    2015-10-15

    Highlights: • Pulsed phase thermography was trialled on Be-tiled plasma facing components. • Two components, one with known disbonds, one intact, were inspected and compared. • Finite element analysis was used to verify experimental observations. • PPT successfully detected disbonds in the failed component. • Good agreement found with ultrasonic test, though defect geometry was uncertain. - Abstract: Pulsed phase thermography (PPT) is a non destructive examination (NDE) technique, traditionally used in the Aerospace Industry for inspection of composite structures, which combines characteristics and benefits of flash thermography and lock-in thermography into a single, rapid inspection technique. The aim of this work was to evaluate the effectiveness of PPT as a means of inspection for the bond between the beryllium (Be) tiles and the copper alloy (CuCrZr) heatsink of the ITER NHF FW components. This is a critical area dictating the functional integrity of these components, as single tile detachment in service could result in cascade failure. PPT has advantages over existing thermography techniques using heated water which stress the component, and the non-invasive, non-contact nature presents advantages over existing ultrasonic methods. The rapid and non-contact nature of PPT also gives potential for in-service inspections as well as a quality measure for as-manufactured components. The technique has been appraised via experimental trials using ITER first wall mockups with pre-existing disbonds confirmed via ultrasonic tests, partnered with finite element simulations to verify experimental observations. This paper will present the results of the investigation.

  5. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: Absorption Versus Transmission

    CERN Document Server

    Doutres, Olivier; 10.1121/1.3458845

    2010-01-01

    The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound ...

  6. Normal Operation (NO) of APT Blanket System and its Components Based on Initial Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  7. Facilities, testing program and modeling needs for studying liquid metal magnetohydrodynamic flows in fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Bühler, L., E-mail: leo.buehler@kit.edu [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Mistrangelo, C.; Konys, J. [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Bhattacharyay, R. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Huang, Q. [Institute of Nuclear Energy Safety Technology (INEST), Chinese Academy of Sciences (CAS) (China); Obukhov, D. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA) (Russian Federation); Smolentsev, S. [University of California Los Angeles (UCLA) (United States); Utili, M. [ENEA C.R. Brasimone, Camugnano 40032 (Italy)

    2015-11-15

    Since many years, liquid metal flows for applications in fusion blankets have been investigated worldwide. A review is given about modeling requirements and existing experimental facilities for investigations of liquid metal related issues in blankets with the focus on magnetohydrodynamics (MHD). Most of the performed theoretical and experimental works were dedicated to fundamental aspects of MHD flows under very strong magnetic fields as they may occur in generic elements of fusion blankets like pipes, ducts, bends, expansions and contractions. Those experiments are required to progressively validate numerical tools with the purpose of obtaining codes capable to predict MHD flows at fusion relevant parameters in complex blanket geometries, taking into account electrical and thermal coupling between fluid and structural materials. Scaled mock-up experiments support the theoretical activities and help deriving engineering correlations for cases which cannot be calculated with required accuracy up to now.

  8. Properties of Ejecta Blanket Deposits Surrounding Morasko Meteorite Impact Craters (Poland)

    Science.gov (United States)

    Szokaluk, M.; Muszyński, A.; Jagodziński, R.; Szczuciński, W.

    2016-08-01

    Morasko impact craters are a record of the fall of a meteorite into the soft sediments. The presented results illustrate the geological structure of the area around the crater as well as providing evidence of the occurrence of ejecta blanket.

  9. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    Science.gov (United States)

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW.

  10. HHF test with 80x80x1 Be/Cu/SS Mock-ups for verifying the joining technology of the ITER blanket First Wall

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Bae, Young Dug; Kim, Suk Kwon; Hong, Bong Guen; Jeong, Yong Hwan; Park, Jeong Yong; Choi, Byung Kwon; Jung, Hyun Kyu

    2008-11-15

    Through the fabrication of the Cu/SS and Be/Cu joint specimens, fabrication procedure such as material preparation, canning, degassing, HIP (Hot Isostatic Pressing), PHHT (Post HIP heat treatment) was established. The HIP conditions (1050 .deg. C, 100 MPa 2 hr for Cu/SS, 580 .deg. C 100 MPa 2 hr for Be/Cu) were developed through the investigation on joint specimen fabricated with the various HIP conditions; the destructive tests of joint include the microstructure observation of the interface with the examination of the elemental distribution, tension test, bend test, Charpy impact test and fracture toughness test. However, since the joint should be tested under the High Heat Flux (HHF) conditions like the ITER operation for verifying its joint integrity, several HHF tests were performed like the previous HHF test with the Cu/SS, Be/Cu, Be/Cu/SS Mock-ups. In the present study, the HHF test with Be/Cu/SS Mock-ups, which have 80 mm x 80 mm single Be tile and each material depths were kept to be the same as the ITER blanket FW. The Mock-ups fabricated with three kinds of interlayers such as Cr/Ti/Cu, Ti/Cr/Cu, Ti/Cu, which were different from the developed interlayer (Cr/Cu), total 6 Mock-ups were fabricated. Preliminary analysis were performed to decide the test conditions; they were tested with up to 2.5 MW/m2 of heat fluxes and 20 cycles for each Mock-up in a given heat flux. They were tested with JUDITH-1 at FZJ in Germany. During tests, all Mock-ups showed delamination or full detachment of Be tile and it can be concluded that the joints with these interlayers have a bad joining but it can be used as a good data for developing the Be/Cu joint with HIP.

  11. On the role of fusion neutron source with thorium blanket in forming the nuclide composition of the nuclear fuel cycle of the Russian Federation

    Science.gov (United States)

    Shmelev, A. N.; Kulikov, G. G.

    2016-12-01

    The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U-Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction 232+233+234U and 231Pa are formulated. (1) The fuel cycle would shift from fissile 235U to 233U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most "protected" in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of 231Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian

  12. Climate-driven expansion of blanket bogs in Britain during the Holocene

    Directory of Open Access Journals (Sweden)

    A. V. Gallego-Sala

    2015-10-01

    Full Text Available Blanket bog occupies approximately 6 % of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland, Wales and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre-Neolithic blanket-bog initiation at over half of the sites in the core areas of Scotland, and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later

  13. Gas core reactor power plants designed for low proliferation potential

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, L.L. (comp.)

    1977-09-01

    The feasibility of gas core nuclear power plants to provide adequate power while maintaining a low inventory and low divertability of fissile material is studied. Four concepts were examined. Two used a mixture of UF/sub 6/ and helium in the reactor cavities, and two used a uranium-argon plasma, held away from the walls by vortex buffer confinement. Power levels varied from 200 to 2500 MWth. Power plant subsystems were sized to determine their fissile material inventories. All reactors ran, with a breeding ratio of unity, on /sup 233/U born from thorium. Fission product removal was continuous. Newly born /sup 233/U was removed continuously from the breeding blanket and returned to the reactor cavities. The 2500-MWth power plant contained a total of 191 kg of /sup 233/U. Less than 4 kg could be diverted before the reactor shut down. The plasma reactor power plants had smaller inventories. In general, inventories were about a factor of 10 less than those in current U.S. power reactors.

  14. Cs--U--O phase diagram and its application to uranium--plutonium oxide fast reactor fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Fee, D C; Johnson, I; Davis, S A; Shinn, W A; Staahl, G E; Johnson, C E

    1977-08-01

    Portions of the cesium-uranium-oxygen system have been investigated between 873 and 1273/sup 0/K and a phase diagram has been constructed using our data and the data of other workers in the field. Thermodynamic and kinetic data have been used to examine the reactions that occur in fast-reactor fuel pins between fission-product cesium and the uranium oxide blanket. It was concluded that at the low oxygen potentials existing at the interface between the uranium-plutonium mixed-oxide and the uranium oxide blanket, Cs/sub 2/UO/sub 4/ is the only Cs-U-O compound expected to be formed in the uranium oxide blanket.

  15. Wash resistance and repellent properties of Africa University mosquito blankets against mosquitoes

    OpenAIRE

    N. Lukwa; A. Makuwaza; T. Chiwade; Mutambu, S L; M. Zimba; P. Munosiyei

    2013-01-01

    The effect of permethrin-treated Africa University (AU) mosquito blankets on susceptible female Anopheles gambiae sensu lato mosquitoes was studied under laboratory conditions at Africa University Campus in Mutare, Zimbabwe. Wash resistance (ability to retain an effective dose that kills ≥80% of mosquitoes after a number of washes) and repellence (ability to prevent ≥80% of mosquito bites) properties were studied. The AU blankets were wash resistant when 100% mortality was recorded up t...

  16. Biological sulphide removal from anaerobically treated domestic sewage: reactor performance and microbial community dynamics.

    Science.gov (United States)

    Garcia, Graziella Patrício Pereira; Diniz, Renata Côrtes Oliveira; Bicalho, Sarah Kinaip; Franco, Vitor Araujo de Souza; Gontijo, Eider Max de Oliveira; Toscano, Rodrigo Argolo; Canhestro, Kenia Oliveira; Santos, Merly Rita Dos; Carmo, Ana Luiza Rodrigues Dias; Lobato, Livia Cristina S; Brandt, Emanuel Manfred F; Chernicharo, Carlos A L; Calabria de Araujo, Juliana

    2015-01-01

    We developed a biological sulphide oxidation system and evaluated two reactors (shaped similar to the settler compartment of an up-flow anaerobic sludge blanket [UASB] reactor) with different support materials for biomass retention: polypropylene rings and polyurethane foam. The start-up reaction was achieved using microorganisms naturally occurring on the open surface of UASB reactors treating domestic wastewater. Sulphide removal efficiencies of 65% and 90% were achieved with hydraulic retention times (HRTs) of 24 and 12 h, respectively, in both reactors. However, a higher amount of elemental sulphur was formed and accumulated in the biomass from reactor 1 (20 mg S(0) g(-1) VTS) than in that from reactor 2 (2.9 mg S(0) g(-1) VTS) with an HRT of 24 h. Denaturing gradient gel electrophoresis (DGGE) results revealed that the the pink and green biomass that developed in both reactors comprised a diverse bacterial community and had sequences related to phototrophic green and purple-sulphur bacteria such as Chlorobium sp., Chloronema giganteum, and Chromatiaceae. DGGE band patterns also demonstrated that bacterial community was dynamic over time within the same reactor and that different support materials selected for distinct bacterial communities. Taken together, these results indicated that sulphide concentrations of 1-6 mg L(-1) could be efficiently removed from the effluent of a pilot-scale UASB reactor in two sulphide biological oxidation reactors at HRTs of 12 and 24 h, showing the potential for sulphur recovery from anaerobically treated domestic wastewater.

  17. Application of the heterogeneous (HG) blankets for controlling the base structure vibration levels

    Science.gov (United States)

    Gautam, Ashwini; Fuller, C. R.; Carneal, James

    2005-09-01

    This work presents an extensive analysis of the properties of the heterogeneous blankets (HGs) and their effectiveness in controlling the vibration of the base structures. The HG blankets act as a distributed vibration absorbers consisting of mass inhomogeneities inside a layer of porous media (acoustic foam). To asses the effectiveness of these HG blankets in controlling the vibration of the base structure (plate), detailed finite element (FE) models of the foam, the HG blanket, and the plate have been developed. The foam has been dicretized using the eight node hexahedral elements. The HG blanket model consists of the foam model with point masses attached to the nodes of the elements. The structural (plate) domain is discretized using four node rectangular plate elements. Each of the FE models has been individually validated by comparing the numerical results with their respective analytical and experimental results. The structural and the HG blanket FE models were then combined into a larger FE model comprised of a base plate with the HG treatment on its surface. The results from this numerical model have shown that there is a significant reduction in the vibration levels of the base plate due to the HG treatment on it.

  18. Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.

    1999-10-07

    The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.

  19. Materials development for ITER shielding and test blanket in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.M., E-mail: Chenjm@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wu, J.H.; Liu, X.; Wang, P.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wang, Z.H.; Li, Z.N. [Ningxia Orient Non-ferrous Metals Group Co. Ltd., P.O. Box 105, Shizuishan (China); Wang, X.S.; Zhang, P.C. [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621900 (China); Zhang, N.M.; Fu, H.Y.; Liu, D.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)

    2011-10-01

    China is a member of the ITER program and is developing her own materials for its shielding and test blanket modules. The materials include vacuum-hot-pressing (VHP) Be, CuCrZr alloy, 316L(N) and China low activation ferritic/martensitic (CLF-1) steels. Joining technologies including Be/Cu hot isostatic pressing (HIP) and electron beam (EB) weldability of 316L(N) were investigated. Chinese VHP-Be showed good properties, with BeO content and ductility that satisfy the ITER requirements. Be/Cu mock-ups were fabricated for Be qualification tests at simulated ITER vertical displacement event (VDE) and heat flux cycling conditions. Fine microstructure and good mechanical strength of the CuCrZr alloy were achieved by a pre-forging treatment, while the weldability of 316L(N) by EB was demonstrated for welding depths varying from 5 to 80 mm. Fine microstructure, high strength, and good ductility were achieved in CLF-1 steel by an optimized normalizing, tempering and aging procedure.

  20. Vacuum Permeator Analysis for Extraction of Tritium from DCLL Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse, Paul Weston [Idaho National Laboratory; Merrill, Brad Johnson [Idaho National Laboratory

    2014-11-01

    It is envisioned that tritium will be extracted from DCLL blankets using a vacuum permeator. We derive here an analytical solution for the extraction efficiency of a permeator tube, which is a function of only two dimensionless numbers: one that indicates whether radial transport is limited in the PbLi or in the solid membrane, and another that is the ratio of axial and radial transport times in the PbLi. The permeator efficiency is maximized by decreasing the velocity and tube diameter, and increasing the tube length. This is true regardless of the mass transport correlation used; we review several here and find that they differ little, and the choice of correlation is not a source of significant uncertainty here. The PbLi solubility, on the other hand, is a large source of uncertainty, and we identify upper and lower bounds from the literature data. Under the most optimistic assumptions, we find that a ferritic steel permeator operating at 550 °C will need to be at least an order of magnitude larger in volume than previous conceptual designs using niobium and operating at higher temperatures.

  1. Detailed 3-D nuclear analysis of ITER blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, T.D., E-mail: tdbohm@wisc.edu [University of Wisconsin-Madison, Madison, WI (United States); Sawan, M.E.; Marriott, E.P.; Wilson, P.P.H. [University of Wisconsin-Madison, Madison, WI (United States); Ulrickson, M.; Bullock, J. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-10-15

    In ITER, the blanket modules (BM) are arranged around the plasma to provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. As a part of the BM design process, nuclear analysis is required to determine the level of nuclear heating, helium production, and radiation damage in the BM. Additionally, nuclear heating in the VV is also important for assessing the BM design. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40-degree partially homogenized ITER global model. The regions analyzed include BM01, the neutral beam injection (NB) region, and the upper port region. For BM01, the results show that He production meets the limit necessary for re-welding, and the VV heating behind BM01 is acceptable. For the NBI region, the VV nuclear heating behind the NB region exceeds the design limit by a factor of two. For the upper port region, the nuclear heating of the VV exceeds the design limit by up to 20%. The results presented in this work are being used to modify the BM design in the cases where limits are exceeded.

  2. Status of the EU test blanket systems safety studies

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu; Poitevin, Yves; Ricapito, Italo; Zmitko, Milan

    2015-10-15

    Highlights: • TBS safety demonstration files. • Safety functions and related design features – detailed TBS components classifications. • Nuclear analyses, radiation shielding and protection. • TBS radiological waste management strategy and categorization. • Selection and definition of reference accidents scenarios and accidents analyses. - Abstract: The European joint undertaking for ITER and the development of fusion energy (‘Fusion for Energy’ – F4E) provides the European contributions to the ITER international fusion energy research project. Among others it includes also the development, design, technological demonstration and implementation of the European test blanket systems (TBS) in ITER. Currently two EU TBS designs are in the phase of conceptual design – helium-cooled lithium-lead (HCLL) and helium-cooled pebble-bed (HCPB). Safety demonstration is an important part of the work devoted to the achievement of the next key project milestone the conceptual design review. The paper reveals the details of the work on EU TBS safety performed in the last couple of years: update of the TBS safety demonstration files; safety functions and related design features; detailed TBS components classifications; nuclear analyses, radiation shielding and protection; TBS radiological waste management strategy and categorization; selection and definition of reference accidents scenarios, and accidents analyses. Finally the authors share the information on on-going and planned future EU TBS safety activities.

  3. Nuclear analysis of ITER Test Blanket Module Port Plug

    Energy Technology Data Exchange (ETDEWEB)

    Villari, Rosaria, E-mail: rosaria.villari@enea.it [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Kim, Byoung Yoon; Barabash, Vladimir; Giancarli, Luciano; Levesy, Bruno; Loughlin, Michael; Merola, Mario [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France); Moro, Fabio [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Pascal, Romain [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France); Petrizzi, Luigino [European Commission, DG Research & Innovation G5, CDMA 00/030, B-1049 Brussels (Belgium); Polunovsky, Eduard; Van Der Laan, Jaap G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France)

    2015-10-15

    Highlights: • 3D nuclear analysis of the ITER TBM Port Plug (PP). • Calculations of neutron fluxes, nuclear heating, damage and He-production in TBM PP components. • Shutdown dose rate assessment with Advanced D1S method considering different configurations. • Potential design improvements to reduce the shutdown dose rate in the port interspace. - Abstract: Nuclear analyses have been performed for the ITER Test Blanket Module Port Plug (TBM PP) using the MCNP-5 Monte Carlo Code. A detailed 3D model of the TBM Port Plug with dummy TBM has been integrated into the ITER MCNP model (B-lite v.3). Neutron fluxes, nuclear heating, helium production and neutron damage have been calculated in all the TBM PP components. Global shutdown dose rate calculations have also been performed with Advanced D1S method for different configurations of the TBM PP system. This paper presents the results of these analyses and discusses potential design improvements aiming to further reduce the shutdown dose rate in the port interspace.

  4. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  5. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  6. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. 条件期望作为初等算子在冯-代数上的描述%Representing as Elementary Operators Conditional Expectations on FW-Algebras

    Institute of Scientific and Technical Information of China (English)

    冯孝周; 王文锋

    2006-01-01

    定义并研究了冯-代数.条件期望基于冯-代数的描述,即作为初等算子的良好性质,会较之一般代数简洁许多.这是因为冯-代数包含一些特殊的子代数.给出了此类代数上置信的初等条件期望的描述及其最小存在的充要条件.并且定义了指标冯-有限条件期望.作为以上结果的推论,得出了条件期望指标有限的充分必要条件和一个重要不等式.%In this work, we define FW-algebras, which contain some special elements, and prove that if A is a FW-algebra, then we can give necessary and sufficient conditions for the minimal conditional expectation to be a faithful elementary conditional expectation of A. We give a description of all faithful elementary conditional expectations on FW-algebras. We then use these results to give necessary and sufficient conditions for certain conditional expectations to be index-finite and we derive an inequality for the index.

  8. Distribution and change of microbial activity in combined UASB and AFB reactors for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Chen, H.; Ji, M.; Yue, P.L. [Hong Kong Univ. of Science and Technology, Kowloon (Hong Kong). Dept. of Chemical Engineering

    2000-04-01

    A thermophilic upflow anaerobic sludge blanket (UASB) reactor was combined with a mesophilic aerobic fluidized bed (AFB) reactor for treatment of a medium strength wastewater with 2,700 mg COD l{sup -1}. The COD removal efficiency reached 75% with a removal rate of 0.2 g COD l{sup -1} h{sup -1} at an overall hydraulic retention time 14 hours. The distribution of microbial activity and its change with hydraulic retention time in the two reactors were investigated by measuring ATP concentration in the reactors and specific ATP content of the biomass. In the UASB reactor, the difference in specific ATP was significant between the sludge bed and blanket solution (0.02 mg ATP g VS{sup -1} versus 0.85 mg ATP g VS{sup -1}) even though the ATP concentrations in these two zones were similar. A great pH gradient up to 4 was developed along the UASB reactor. Since a high ATP or biological activity in the blanket solution could only be maintained in a narrow pH range from 6.5 to 7.5, the sludge granules showed a high pH tolerance and buffering capacity up to pH 11. The suspended biomass in AFB reactor had a higher specific ATP than the biomass fixed in polyurethane carriers (1.6 mg ATP g VS{sup -1} versus 1.1 mg ATP g VS{sup -1}), which implies a starvation status of the immobilized cells due to mass transfer limitation. The aerobes had to work under starvation conditions in this polishing reactor. The anaerobic biomass brought into AFB reactor contributed to an increase in suspended solids, but not the COD removal because of its fast deactivation under aerobic conditions. A second order kinetic model was proposed for ATP decline of the anaerobes. The results on distribution of microbial activity in the two reactors as well as its change with hydraulic retention time lead to further performance improvement of the combined anaerobic/aerobic reactor system. (orig.)

  9. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding

  10. Nuclear reactor neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  11. Report of the second joint Research Committee for Fusion Reactor and Materials. July 12, 2002, Tokyo, Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    Joint research committees in purpose of the discussion on DEMO blanket in view point of the both of reactor technology and materials were held by the Research Committee for Fusion Reactor and Fusion Materials. The joint research committee was held in Tokyo on July 12, 2002. In the committee, the present status of development of solid and liquid breeding blanket, the present status of development of reduced activation structure materials, and IFMIF (International Fusion Materials Irradiation Facility) program were discussed based on the discussions of the development programs of the blanket and materials at the first joint research committee. As a result, it was confirmed that high electric efficiency with 41% would be obtained in the solid breeding blanket system, that neutron radiation data of reduced activation ferritic steel was obtained by HFIR collaboration, and that KEP (key element technology phase) of IFMIF would be finished at the end of 2002 and the data base for the next step, i.e. EVEDA (engineering validation/engineering design activity) was obtained. In addition, the present status of ITER CTA, which was a transient phase for the construction, and the outline of ITER Fast Track, which was an accelerated plan for the performance of the power plants, were reported. This report consists of the summary of the discussion and the viewgraphs which were used at the second joint research committee, and these are very useful for the researchers of the fusion area in Japan. (author)

  12. Reactor and method of operation

    Science.gov (United States)

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  13. Progress in design and study of ITER test blanket modules%ITER氚增殖实验包层设计研究进展

    Institute of Scientific and Technical Information of China (English)

    刘松林; 柏云清; 陈红丽; 李春京; 黄群英; 吴宜灿; FDS团队

    2009-01-01

    The International Thermonuclear Experimental Reactor (ITER) will be the first experimental D-T fusion reactor to provide an exclusive test platform of physics and engineering technology for research and development of fusion, where the technology of Test Blanket Module (TBM) in ITER is one of the most critical kernels to achieve fusion power in the future. According to defined concepts of DEMO blanket, the parties had proposed DEMOrelevant TBM, respectively, which would be to be tested during ITER operation. Design of proposed TBM concepts, R&D status, and recommended port allocation in ITER are introduced in this contribution.%国际热核实验反应堆(ITER)为人类开发聚变能提供重要的物理和工程技术实验平台,ITER氚增殖实验包层模块(TBM)技术是必须掌握的关键技术.参与ITER计划的成员国根据本国商用演示堆包层发展策略,分别提出了各自的实验包层概念,以便在ITER运行期间进行实验.本文对ITER-TBM目前已经开展和正在进行的主要设计研究工作进展进行总结,介绍了各方提出的设计方案、支撑设计的相关技术研究进展,以及合作实验窗口的分配现状.

  14. Axial Neutron Flux Evaluation in a Tokamak System: a Possible Transmutation Blanket Position for a Fusion-Fission Transmutation System

    Science.gov (United States)

    Velasquez, Carlos E.; de P. Barros, Graiciany; Pereira, Claubia; Fortini Veloso, Maria A.; Costa, Antonella L.

    2012-08-01

    A sub-critical advanced reactor based on Tokamak technology with a D-T fusion neutron source is an innovative type of nuclear system. Due to the large number of neutrons produced by fusion reactions, such a system could be useful in the transmutation process of transuranic elements (Pu and minor actinides (MAs)). However, to enhance the MA transmutation efficiency, it is necessary to have a large neutron wall loading (high neutron fluence) with a broad energy spectrum in the fast neutron energy region. Therefore, it is necessary to know and define the neutron fluence along the radial axis and its characteristics. In this work, the neutron flux and the interaction frequency along the radial axis are evaluated for various materials used to build the first wall. W alloy, beryllium, and the combination of both were studied, and the regions more suitable to transmutation were determined. The results demonstrated that the best zone in which to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements of W alloy/W alloy and W alloy/beryllium would be able to meet the requirements of the high fluence and hard spectrum that are needed for transuranic transmutation. The system was simulated using the MCNP code, data from the ITER Final Design Report, 2001, and the Fusion Evaluated Nuclear Data Library/MC-2.1 nuclear data library.

  15. The preliminary thermal–hydraulic analysis of a water cooled blanket concept design based on RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guanghuai; Peng, Changhong; Guo, Yun, E-mail: guoyun79@ustc.edu.cn

    2016-11-01

    Highlights: • The superheated steam and PWR schemes are analyzed by RELAP5 code. • The influence of non-uniform heating sources is include. • A supposed slow flow decrease case is discussed and the PWR scheme is better. - Abstract: Water cooled blanket (WCB) is very important in the conceptual design and energy transfer in future fusion power plant. One conceptual design of WCB is under computational testing. RELAP5 code, which is mature and often used in transient analysis in Pressurizer water reactor (PWR), is selected as the simulation tool. The complex inner flow channels and heat sources are simplified according to its thermal–hydraulic characteristics. Then the nodal model for REALP5 is built for approximating the conceptual design. Two typical operating plans, superheated steam scheme and PWR scheme, are analyzed. After some adjustments of the inlet flow resistance coefficients of some flow channels, the reasonable stable conditions of both operation plans can be obtained. The stable fluid and wall temperature distributions and pressure drops are studied. At last, a supposed slow flow decreasing is discussed under two operating conditions separately. According to present results, the superheated steam scheme still needs to be further optimized. The PWR scheme shows a very good safety feature.

  16. Key achievements in elementary R&D on water-cooled solid breeder blanket for ITER test blanket module in JAERI

    Science.gov (United States)

    Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Hayashi, K.; Tanigawa, H.; Ochiai, K.; Nishitani, T.; Tobita, K.; Akiba, M.

    2006-02-01

    This paper presents the significant progress made in the research and development (R&D) of key technologies on the water-cooled solid breeder blanket for the ITER test blanket modules in JAERI. Development of module fabrication technology, bonding technology of armours, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup and tritium release behaviour from a Li2TiO3 pebble bed under neutron-pulsed operation conditions are summarized. With the improvement of the heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H can be obtained by homogenizing it at 1150 °C followed by normalizing it at 930 °C after the hot isostatic pressing process. Moreover, a promising bonding process for a tungsten armour and an F82H structural material was developed using a solid-state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it has been confirmed that a fatigue lifetime correlation, which was developed for the ITER divertor, can be made applicable for the F82H first wall mockup. As for R&D on the breeder material, Li2TiO3, the effect of compression loads on effective thermal conductivity of pebble beds has been clarified for the Li2TiO3 pebble bed. The tritium breeding ratio of a simulated multi-layer blanket structure has successfully been measured using 14 MeV neutrons with an accuracy of 10%. The tritium release rate from the Li2TiO3 pebble has also been successfully measured with pulsed neutron irradiation, which simulates ITER operation.

  17. Reactor physics studies in the GCFR phase-II critical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Pond, R B [ed.

    1976-09-01

    The reactor physics studies performed in the gas cooled fast reactor (GCFR) mockup on ZPR-9 are covered. This critical assembly, designated Phase II in the GCFR program, had a single zone PuO/sub 2/-UO/sub 2/ core composition and UO/sub 2/ radial and axial blankets. The assembly was built both with and without radial and axial stainless steel reflectors. The program included the following measurements: small-sample reactivity worths of reactor constituent materials (including helium); /sup 238/U Doppler effect; uranium and plutonium reaction rate distributions; thorium, uranium, and plutonium ..cap alpha.. and reactor kinetics. Analysis of the measurements used ENDF/B-IV nuclear data; anisotropic diffusion coefficients were used to account for neutron streaming effects. Comparison of measurements and calculations to GCFR Phase I are also made.

  18. Safeguards in the prototype fast breeder reactor MONJU

    Energy Technology Data Exchange (ETDEWEB)

    Usami, S.; Deshimaru, T.; Tomura, K. [Power Reactor and Nuclear Fuels Development Corporation, Ibaraki-ken (Japan)

    1995-12-31

    MONJU is a prototype fast breeder reactor in Japan designed to have a 280-MW(electric) output. The Power Reactor and Nuclear Fuel Development Corporation (PNC) started its construction in the autumn of 1985 in Tsuruga. The loading of the core fuel assemblies was started in October 1993, and the preoperational test is ongoing. MONJU uses 198 mixed-oxide (MOX) fuel assemblies as core fuel and 172 depleted uranium assemblies as blanket fuel. Assemblies loaded in-core and stored in the ex-vessel storage tank (EVST) reside in liquid sodium. These plutonium-containing fuel assemblies, MOX, and irradiated depleted uranium are regarded as in the difficult-to-access area, and the flows of fuel assemblies into and out of the area must be verified. Flow is verified by fuel flow monitors measuring radiation, which can limit inspector attendance during fuel handling.

  19. Advanced Space Nuclear Reactors from Fiction to Reality

    Science.gov (United States)

    Popa-Simil, L.

    The advanced nuclear power sources are used in a large variety of science fiction movies and novels, but their practical development is, still, in its early conceptual stages, some of the ideas being confirmed by collateral experiments. The novel reactor concept uses the direct conversion of nuclear energy into electricity, has electronic control of reactivity, being surrounded by a transmutation blanket and very thin shielding being small and light that at its very limit may be suitable to power an autonomously flying car. It also provides an improved fuel cycle producing minimal negative impact to environment. The key elements started to lose the fiction attributes, becoming viable actual concepts and goals for the developments to come, and on the possibility to achieve these objectives started to become more real because the theory shows that using the novel nano-technologies this novel reactor might be achievable in less than a century.

  20. Systems study of tokamak fusion--fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations.