WorldWideScience

Sample records for reactor fuel programmes

  1. IAEA activities related to research reactor fuel conversion and spent fuel return programmes

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Adelfang, P.; Goldman, I.N.

    2004-01-01

    Full text: The IAEA has been involved for more than twenty years in supporting international nuclear non-proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly associated efforts to return research reactor fuel to the country of origin where it was originally enriched. IAEA efforts have included the development and maintenance of several data bases with information related to research reactors and research reactor spent fuel inventories that have been essential in planning and managing both RERTR and spent fuel return programmes. Other IAEA regular budget programmes have supported research reactor fuel conversion from HEU to low enriched uranium, and in addressing issues common to many member states with spent fuel management problems and concerns. The paper briefly describes IAEA involvement since the early 1980's in these areas, including regular budget and Technical Co-operation programme activities, and focuses on efforts in the past five years to continue to support and accelerate U.S. and Russian research reactor spent fuel return programmes. It is hoped that an announcement of the extension of the U.S. Acceptance Programme, which is expected in the very near future, will facilitate the life extensions of many productive TRIGA reactors around the world. (author)

  2. Alternative fuels for the French fast breeder reactors programme

    International Nuclear Information System (INIS)

    Bailly, H.; Bernard, H.; Mansard, B.

    1989-01-01

    French fast breeder reactors use mixed oxide as reference fuel. A great deal of experience has been gained in the behaviour and manufacture of oxide fuel, which has proved to be the most suitable fuel for future commercial breeder reactors. However, France is maintaining long-term alternative fuels programme, in order to be in a position to satisfy eventually new future reactor design and operational requirements. Initially, the CEA in France developed a carbide-based, sodium-bonded fuel designed for a high specific power. The new objective of the alternative fuels programme is to define a fuel which could replace the oxide without requiring any significant changes to the operating conditions, fuel cycle processes or facilities. The current program concentrates on a nitride-based, helium-bonded fuel, bearing in mind the carbide solution. The paper describes the main characteristics required, the manufacturing process as developed, the inspection methods, and the results obtained. Present indications are that the industrial manufacture of mixed nitride is feasible and that production costs for nitride and oxide fuels would be not significantly different. (author) 8 refs., 2 figs

  3. Development, Fabrication and Characterization of Fuels for Indian Fast Reactor Programme

    International Nuclear Information System (INIS)

    Kumar, Arun

    2013-01-01

    Development of Fast Reactor fuels in India started in early Seventies. The successful development of Mixed Carbide fuels for FBTR and MOX fuel for PFBR have given confidence in manufacture of fuels for Fast Reactors. Effort is being put to develop high Breeding Ratio Metallic fuel (binary/ternary). Few fuel pins have been fabricated and is under test irradiation. However, this is only a beginning and complete fuel cycle activities are under development. Metal fuelled Fast Reactors will provide high growth rate in Indian Fast Reactor programme

  4. Ten years of IAEA cooperation with the Russian research reactor fuel return programme

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, S.; Adelfang, P.; Bradley, E. [International Atomic Energy Agency, Vienna (Austria)

    2013-01-15

    The Russian Research Reactor Fuel Return (RRRFR) Programme was launched in 2001. Over the duration, the programme successfully completed 43 safe shipments of 1.6 tons of fresh and spent HEU fuel from different countries using Russian fuelled research reactors to the country of origin. The IAEA has been a very active supporter of the RRRFR Programme since its inception. Under the auspices of the RRRFR Programme, the Agency has been ensuring a broad range of technical advisory and organizational support to the HEU fuel repatriation, as well as training and advisory assistance for supporting RR conversion from HEU to LEU. The presentation gives an overview of the RRRFR programme achievements with special consideration of the IAEA contribution. These include an overview of the shipments' history in terms of fresh and spent fuel, as well as a summary of experiences gained during the shipments' preparation and termination. The presentation focuses on technical advisory support given by the IAEA during the programme implementation, captures the consolidated knowledge of the unique international programme and shares the most important lessons learned. (orig.)

  5. Current and prospective fuel test programmes in the MIR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Izhutov, A.L.; Burukin, A.V.; Iljenko, S.A.; Ovchinnikov, V.A.; Shulimov, V.N.; Smirnov, V.P. [State Scientific Centre of Russia Research Institute of Atomic Reactors, Ulyanovsk region (Russian Federation)

    2007-07-01

    MIR reactor is a heterogeneous thermal reactor with a moderator and a reflector made of metal beryllium, it has a channel-type design and is placed in a water pool. MIR reactor is mainly designed for testing fragments of fuel elements and fuel assemblies (FA) of different nuclear power reactor types under normal (stationary and transient) operating conditions as well as emergency situations. At present six test loop facilities are being operated (2 PWR loops, 2 BWR loops and 2 steam coolant loops). The majority of current fuel tests is conducted for improving and upgrading the Russian PWR fuel, these tests involve issues such as: -) long term tests of short-size rods with different modifications of cladding materials and fuel pellets; -) further irradiation of power plant re-fabricated and full-size fuel rods up to achieving 80 MW*d/kg U; -) experiments with leaking fuel rods at different burnups and under transient conditions; -) continuation of the RAMP type experiments at high burnup of fuel; and -) in-pile tests with simulation of LOCA and RIA type accidents. Testing of the LEU (low enrichment uranium) research reactor fuel is conducted within the framework of the RERTR programme. Upgrading of the gas cooled and steam cooled loop facilities is scheduled for testing the HTGR fuel and sub-critical water-cooled reactor, correspondingly. The present paper describes the major programs of the WWER high burn-up fuel behavior study in the MIR reactor, capabilities of the applied techniques and some results of the performed irradiation tests. (authors)

  6. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  7. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  8. An overview of the fuels and materials testing programme at the OECD Halden Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenack, W [Institutt for Energiteknikk, Halden (Norway). OECD Halden Reaktor Projekt

    1997-08-01

    The fuels and materials testing programme of the OECD Halden Reactor Project is aimed at investigations of fuel and cladding properties at high burnup, water chemistry effects and in-core materials ageing problems. For the execution of this programme, different types of irradiation rigs and experimental facilities providing typical power reactors conditions are available. Data are obtained from in-core sensors developed at the Halden Project; these are shortly described. An overview of the current test programme and the scope of the following years are briefly presented. (author). 5 refs, 3 figs.

  9. UKAEA fast reactor project research and development programme on fuel element cladding and sub-assembly wrapper materials

    International Nuclear Information System (INIS)

    Harries, D.R.

    1977-01-01

    Research and development work on fuel element component (cladding, subassembly wrappers, etc.) materials for the U.K. sodium cooled fast reactor programme has been conducted at the United Kingdom Atomic Energy Authority (UKAEA) establishments at Dounreay, Harwell, Risley, and Springfields during the past fifteen years or so. This work has formed an integral part of, and has been co-ordinated by, the UKAEA Fast Reactor Project and has involved close liaison with the Nuclear Power Company (NPC) and the Central Electricity Generating Board (CEGB). The research and development were initially related to the Prototype Fast Reactor (PFR) but the scope has now been extended to cover the first Civil Fast Reactor (CFR1), which has recently been re-designated the Civil Demonstration Fast Reactor (CDFR). The paper outlines the present status of the development of sodium cooled fast reactors in the U.K. and proceeds to summarize the principal PFR and CDFR core and fuel element parameters which have determined the planning and direction of the fuel element materials programme. The current position on the fuel element cladding and wrapper research and development programme is reviewed, and the facilities and future irradiation programme to be carried out in PFR are described

  10. A quality assurance programme for reload fuel for light-water reactors

    International Nuclear Information System (INIS)

    Nilson, R.

    1976-01-01

    The Exxon Nuclear quality assurance programme for the design and fabrication of reload fuel for light-water reactors is described. The programme is based on the 18 quality assurance criteria used for the design and construction of nuclear facilities in the United States of America, but is broadened considerably to reflect other inputs and experiences unique to nuclear fuel production. The government and utility interfaces with the fuel supplier in the area of quality assurance, and future trends, for example, the development of topical quality assurance reports, are also discussed. Quality assurance is discussed in terms of three fundamental categories: management control, engineering assurance and quality control. Examples of specific design, processing and inspection considerations which relate to known fuel failure mechanisms are discussed. The results of irradiated fuel examinations to date have shown that certain fuel failure mechanisms can be alleviated by the considerations described and that fuel of the requisite quality can be consistently produced. (author)

  11. Alternative fuels for the French fast breeder reactors programme

    International Nuclear Information System (INIS)

    Bailly, H.; Bernard, H.; Mansard, B.

    1988-01-01

    At the present time, due to the very competitive cost per kWh produced in France by the PWRs, it appears clear that, despite the improved use of uranium by FBRs, they will only be developed if the cost of the fuel cycle is sufficiently lower than that of the PWRs to compensate for the additional investment. The current economic programme has fixed the following fuel related objectives: - burn-up as high possible, the value of 150 000 MWd/t being considered as a minimum, and not a final target to be achieved, - extension of the duration of reactor operation cycles, leading to high in-pile times for fuel. Reaching the latter objective depends on obtaining high internal breeding gain performances, so that the total reactivity drop related to fuel impoverishment can be minimized. In this respect, a large diameter oxide fuel and/or an axial heterogeneous core concept can be envisaged. Dense fuels could form another solution. The feasibility of the fabrication of carbide and nitride fuels has been demonstrated in several countries and there is currently convergence towards a single type of process based on a carbothermic reaction. The optimization of fabrication procedures for these fuels must be continued to satisfy economic requirements and to obtain a fabrication cost of the same order or magnitude as that of oxide, although higher. If this target is achieved, fabrication will not be the major criterion for the selection of the FBR fuel, which will then be a function of the cost of reprocessing, performances under irradiation and reactor operating requirements

  12. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1982-01-01

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  13. Summary of the OECD Halden Reactor Project Programme on high burn-up fuel performance relevant for BWRs

    International Nuclear Information System (INIS)

    McGrath, M.A.

    1998-01-01

    The basis for the Halden Reactor Project Programme is presented together with an overview of the content of the programme for the time period 1997-1999. The concept of using both separate effects studies, to determine particular fuel properties, and integral rod behaviour studies of commercial fuel is explained. Each of the items in the programme relevant for BWRs are introduced, with most being discussed in further detail. (author)

  14. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  15. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Picker, C.; Ainsworth, K.F.

    1998-01-01

    The general position with regard to nuclear power and fast reactors in the UK during 1996 is described. The main UK Government-funded fast reactor research and development programme was concluded in 1993, to be replaced by a smaller programme which is mainly funded and managed by British Nuclear Fuels plc. The main focus of this programme sustains the UK participation in the European Fast Reactor (EFR) collaboration and the broader international links built-up over the previous decades. The status of fast reactor studies made in the UK in 1996 is outlined and, with respect to the Prototype Fast Reactor at Dounreay, a report of progress with the closure studies, fuel reprocessing and decommissioning activities is provided. (author)

  16. Fuel R and D international programmes, a way to demonstrate future fuel performances

    International Nuclear Information System (INIS)

    Vanderborck, Y.; Mertens, L.; Dekeyser, J.; Sannen, L.

    1997-01-01

    As a MOX fuel manufacturer, BELGONUCLEAIRE have spent more than 15 years promoting and managing International R and D Programmes, many of them in close cooperation with SCK''centrdot'' CEN. Such programmes dedicated to MOX versus UO 2 fuel behaviour are most of the time based on irradiation in research reactors in which the investigated fuel is submitted to power variations and to ramp testing or are performed in commercial reactors. This paper is focused on recent programmes concerned by high and medium burn-up in BWR and PWR conditions for MOX fuel. It will present also the new opportunities for new programmes. The goals, the programmes descriptions and the expected data being part of these R and D programmes is presented. (author)

  17. IAEA activities related to research reactor fuel conversion and spent fuel return programs

    International Nuclear Information System (INIS)

    Goldman, Ira N.; Adelfang, Pablo; Ritchie, Iain G.

    2005-01-01

    The IAEA has been involved for more than twenty years in supporting international nuclear non-proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly associated efforts to return research reactor fuel to the country where it was originally enriched. IAEA efforts have included the development and maintenance of several data bases with information related to research reactors and research reactor spent fuel inventories that have been essential in planning and managing both RERTR and spent fuel return programmes. Other IAEA regular budget programs have supported research reactor fuel conversion from HEU to low enriched uranium (LEU), and in addressing issues common to many member states with spent fuel management problems and concerns. The paper briefly describes IAEA involvement since the early 1980's in these areas, including regular budget and Technical Co-operation programme activities, and focuses on efforts in the past five years to continue to support and accelerate U.S. and Russian research reactor spent fuel return programmes. (author)

  18. Fast-reactor fuel reprocessing in the United Kingdom

    International Nuclear Information System (INIS)

    Allardice, R.H.; Buck, C.; Williams, J.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the United Kingdom since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium-based fast-reactor system, and the importance of establishing at an early stage fast-reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high-burnup thermal-reactor oxide fuel. The United Kingdom therefore decided to reprocess irradiated fuel from the 250MW(e) Prototype Fast Reactor (PFR) as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small-scale fully active demonstration plant has been carried out since 1972, and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste-management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant, a parallel development programme has been initiated to provide the basis for the design of a large-scale fast-reactor fuel-reprocessing plant to come into operation in the late 1980s to support the projected UK fast-reactor installation programme. The paper identifies the important differences between fast-reactor and thermal-reactor fuel-reprocessing technologies and describes some of the development work carried out in these areas for the small-scale PFR fuel-reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast-reactor fuel-reprocessing plant is outlined and the current design philosophy discussed. (author)

  19. IAEA activities in support of the international programmes to return fresh and spent research reactor nuclear fuel to the conuntry of origin

    International Nuclear Information System (INIS)

    Adelgang, P.; Tozser, S.; Marshall, F.; Borio di Tigliole, A.

    2017-01-01

    The IAEA has been involved for more than thirty years in supporting international nuclear non-proliferation efforts associated with reducing the amount of Highly Enriched Uranium (HEU), whose enrichment is ≥ 20% in 235U, in international commerce. In particular, IAEA projects and activities have directly supported the two main international efforts to return fresh and spent HEU research reactor fuel to the country where it was originally enriched: the United States Foreign Research Reactor Spent Nuclear Fuel (FRRSNF) Acceptance Programme and the United States-IAEA-Russian Federation tripartite initiative known as the Russian Research Reactor Fuel Return (RRRFR) Programme. This report gives an account of IAEA efforts in support of both programmes including a historical overview of fuel return shipments and a brief description of associated cooperation activities carried out by the IAEA. [es

  20. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Alcala, F.; Di Meglio, A.F.

    1995-01-01

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  1. A review of the UK fast reactor programme. March 1977

    International Nuclear Information System (INIS)

    Smith, R.D.

    1977-01-01

    This paper reports on the Fast Reactor Programme of United Kingdom. These are the main lines: Dounreay Fast Reactor; Prototype Fast Reactor; Commercial Fast Reactor; engineering development; materials development; chemical engineering/sodium technology; fast reactor fuel; fuel cycle; safety; reactor performance study

  2. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Smith, R.D.

    1982-01-01

    A review of the United Kingdom Fast Reactor Programme is introduced. Operational experience with the Prototype Fast Reactor (PFR) is briefly summarized. The design concept of the Commercial Demonstration Fast Reactor (CDFR) is given in some detail. The emphasis is on materials development, chemical engineering/sodium technology, fuel reprocessing and fuel cycle, engineering component development and reactor safety

  3. Spent fuel management in France: Programme status

    International Nuclear Information System (INIS)

    Chaudat, J.P.

    1990-01-01

    France's programme is best characterized as a closed fuel cycle including reprocessing, Plutonium recycling in PWR and use of breeder reactors. The current installed nuclear capacity is 52.5 GWe from 55 units. The spent fuel management scheme chosen is reprocessing. This paper describes the national programme, spent nuclear fuel storage, reprocessing and contracts for reprocessing of spent fuel from various countries. (author). 5 figs, 2 tabs

  4. IAEA Activities in the Area of Fast Reactors and Related Fuels and Fuel Cycles

    International Nuclear Information System (INIS)

    Monti, S.; Basak, U.; Dyck, G.; Inozemtsev, V.; Toti, A.; Zeman, A.

    2013-01-01

    Summary: • The IAEA role to support fast reactors and associated fuel cycle development programmes; • Main IAEA activities on fast reactors and related fuel and fuel cycle technology; • Main IAEA deliverables on fast reactors and related fuel and fuel cycle technology

  5. A Review of the UK Fast Reactor Programme: March 1980

    International Nuclear Information System (INIS)

    Smith, R.D.

    1980-01-01

    Towards the end of 1979 the Government announced a new programme of thermal reactor stations to be built over ten years (totalling 15GW), in addition to the two AGR stations at Torness and Heysham 'B' which had been approved by the previous Government. The first station of the new programme will be based on a Westinghouse PWR, subject to safety clearance and the outcome of a public inquiry, and it is envisaged that the remaining stations of the programme would be split between PWRs and AGRs. The AEA Chairman wrote formally to the Secretary of State for Energy in December 1979, putting forward on behalf of the Electricity Supply Authorities, NNC, BNFL and the AEA a recommended strategy for building the Commercial Demonstration Fast Reactor (CDFR), subject to normal licensing procedure and to public inquiry, so as to ensure that the key options for introducing commercial fast reactors, when required, should remain open. A Government statement is expected during the next few months. Meanwhile the level of effort on fast reactor research and development in the UK has been maintained, the fast reactor remaining the largest of the UKAEA's reactor development projects with expenditure totalling somewhat over £80M per annum. The main feature of the UK fast reactor programme has continued to be the operation of PFR (Sections 2 and 7) which is yielding a wealth of experience and of information relevant to the design of commercial fast reactors. Bum-up of standard driver fuel has reached 6-7% by heavy atoms, while specially enriched lead fuel pins have reached 11 % without failure. An extensive programme of work in the reactor and its associated steam plant was completed in March 1980 and the reactor then started its fifth power run. The fuel reprocessing plant at DNE is being commissioned and has reprocessed some of the spent fuel remaining from the DFR. It will start soon on reprocessing fuel discharged from the PFR. During the year improvements to the design of the future

  6. Experimental Irradiations of Materials and Fuels in the BR2 Reactor: An Overview of Current Programmes

    International Nuclear Information System (INIS)

    Van Dyck, S.; Koonen, E.; Verwerft, M.; Wéber, M.

    2013-01-01

    The BR2 material test reactor offers a variety of experimental irradiation possibilities for testing of materials, fuels and instruments. The current paper gives an overview of the recent and ongoing programmes in order to illustrate the experimental potential of the reactor. Three domains of applications are reviewed: Irradiation of materials and fuels for pressurised water reactors (PWR); irradiation of materials for accelerator driven systems (ADS), cooled by liquid lead alloys; and irradiation of fuel for Material Test Reactors (MTR). For PWR relevant tests, a dedicated loop is available, providing a full simulation of the thermo hydraulic conditions of a PWR. ADS related tests require particular control of the irradiation environment and the necessary safety precautions in order to avoid 210 Po contamination. In-core mechanical testing of materials is done in comparison and complimentarily to post-irradiation examinations in order to assess flux related effects on the deformation behaviour of materials. (author)

  7. Status of power reactor fuel reprocessing in India

    International Nuclear Information System (INIS)

    Kansra, V.P.

    1999-01-01

    Spent fuel reprocessing in India started with the commissioning of the Trombay Plutonium Plant in 1964. This plant was intended for processing spent fuel from the 40 MWth research reactor CIRUS and recovering plutonium required for the research and development activities of the Indian Atomic Energy programme. India's nuclear energy programme aims at the recycle of plutonium in view of the limited national resources of natural uranium and abundant quantities of thorium. This is based on the approach which aims at separating the plutonium from the power reactor spent fuel, use it in the fast reactors to breed 233 U and utilise the 233 U generated to sustain a virtually endless source of power through thorium utilisation. The separated plutonium is also being utilised to fabricate MOX fuel for use in thermal reactors. Spent fuel treatment and extracting plutonium from it makes economic sense and a necessity for the Indian nuclear power programme. This paper describes the status and trends in the Indian programme for the reprocessing of power reactor fuels. The extraction of plutonium can also be seen as a far more positive approach to long-term waste management. The closed cycle approach visualised and pursued by the pioneers in the field is now steadily moving India towards the goal of a sustainable source of power through nuclear energy. The experience in building, operating and refurbishing the reprocessing facilities for uranium and thorium has resulted in acquiring the technological capability for designing, constructing, operating and maintaining reprocessing plants to match India's growing nuclear power programme. (author)

  8. Reviewing reactor engineering and fuel handling

    International Nuclear Information System (INIS)

    1991-12-01

    Experience has shown that the better operating nuclear power plants have well defined and effectively administered policies and procedures for governing reactor engineering and fuel handling (RE and FH) activities. This document provides supplementary guidance to OSART experts for evaluating the RE and FH programmes and activities at a nuclear power plant and assessing their effectiveness and adequacy. It is in no way intended to conflict with existing regulations and rules, but rather to exemplify those characteristics and features that are desirable for an effective, well structured RE and FH programme. This supplementary guidance addresses those aspects of RE and FH activities that are required in order to ensure optimum core operation for a nuclear reactor without compromising the limits imposed by the design, safety considerations of the nuclear fuel. In the context of this document, reactor engineering refers to those activities associated with in-core fuel and reactivity management, whereas fuel handling refers to the movement, storage, control and accountability of unirradiated and irradiated fuel. The document comprises five main sections and several appendices. In Section 2 of this guide, the essential aspects of an effective RE and FH programme are discussed. In Section 3, the various types of documents and reference materials needed for the preparatory work and investigation are listed. In Section 4, specific guidelines for investigation of RE and FH programmes are presented. In Section 5, the essential attributes of an excellent RE and FH programme are listed. The supplementary guidance is concluded with a series of appendices exemplifying the various qualities and attributes of a sound, well defined RE and FH programme

  9. The SCARABEE experimental fast reactor safety programme already completed

    International Nuclear Information System (INIS)

    Schmitt, A.P.; Teague, H.; Heusener, G.

    1979-08-01

    The SCARABEE in-pile experimental programme comprised a series of tests on unirradiated fuel pins, either single or in seven-pin clusters. The main objective was to obtain information on the mode and consequences of fast reactor fuel pin failure in conditions representative of loss of cooling in a LMFBR. The application of such programmes in full scale reactors leads to the great importance of the interpretation of experimental observations. The interpretation of that programme was carried out jointly by CEA, KFK and UKAEA; this international collaboration led to a sharper focusing on essential features to be modelled in experiments and computer codes and to a valuable convergence of views

  10. HFR irradiation testing of light water reactor (LWR) fuel

    International Nuclear Information System (INIS)

    Markgraf, J.F.W.

    1985-01-01

    For the materials testing reactor HFR some characteristic information with emphasis on LWR fuel rod testing capabilities and hot cell investigation is presented. Additionally a summary of LWR fuel irradiation programmes performed and forthcoming programmes are described. Project management information and a list of publications pertaining to LWR fuel rod test programmes is given

  11. Fast Reactor Programme. Third Quarter 1969. Progress Report

    International Nuclear Information System (INIS)

    Hoekstra, E.K.

    1970-02-01

    The RCN research programme on fast spectrum nuclear reactors comprises reactor physics, fuel performance, radiation damage in canning materials, corrosion behaviour in canning materials, aerosol research and heat transfer and hydraulics. An overview is given of the fast reactor experiments at the STEK critical facility in Petten, the Netherlands, in the third quarter of 1969

  12. A review of the U.K. fast reactor programme: March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R D [United Kingdom Atomic Energy Authority, Risley (United Kingdom)

    1978-07-01

    The review of the UK fast reactor programme covers the description of Dounreay Fast Reactor shut down after seventeen years of successful operation; description of prototype fast reactor (PFR); core design parameters safety features and plant design for commercial demonstration fast reactor (CDFR). Engineering development is related to large sodium rigs, coolant circuit hydraulics and vibration, instrumentation and components. The subjects of interest are material development, sodium technology, fast reactor fuel, fuel cycle, reactor safety, reactor performance studies.

  13. A review of the U.K. fast reactor programme: March 1978

    International Nuclear Information System (INIS)

    Smith, R.D.

    1978-01-01

    The review of the UK fast reactor programme covers the description of Dounreay Fast Reactor shut down after seventeen years of successful operation; description of prototype fast reactor (PFR); core design parameters safety features and plant design for commercial demonstration fast reactor (CDFR). Engineering development is related to large sodium rigs, coolant circuit hydraulics and vibration, instrumentation and components. The subjects of interest are material development, sodium technology, fast reactor fuel, fuel cycle, reactor safety, reactor performance studies

  14. CEA programme on gas cooled reactors

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Chapelot, Ph.; Gauthier, J.C.

    2002-01-01

    partly builds on the past experience of the CEA on gas cooled reactors (UNGG, HTR) and on the current effort to revive and update High Temperature Reactor technologies to support the development of modular helium cooled reactors (∼300 MWe) by Framatome-ANP and international partners. In this context, the CEA decided to focus prospective R and D work on the development of a consistent set of gas cooled nuclear systems ranging from medium term reactor projects for electricity generation and other applications (robust and secure export model, process heat, hydrogen production at very high temperature, plutonium burning) to a longer term vision of sustainable nuclear systems using fast neutrons with a closed and integrated fuel cycle. This range of gas cooled nuclear systems covers a wide variety of high temperature applications as well as a broad range of fuel cycles, including synergistic fuel cycles with light water reactors (i.e. burning plutonium and possibly also minor actinides from PWR spent fuels). A specific research and development programme is being currently implemented to support the development of this consistent set of gas cooled systems. The major emphasis is put on fuel particles re-fabrication and possible adaptations to fast neutrons, on high temperature materials, high temperature systems technology, and compact spent fuel processing and re-fabrication processes. This programme anticipates the construction of large experimental facilities in the next decade, such as an He integral test loop (2007), a technology testing reactor and a lab scaled integrated fuel cycle (2012). A substantial effort is also invested in the validation of computational tools and procedures for feasibility and performance studies. Strong connections with fundamental research (nuclear physics, materials science, nuclear chemistry) are essential to improve the modelling capability and to achieve effective breakthroughs for the development of high temperature and high irradiation

  15. Conversion of research reactors to low-enrichment uranium fuels

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1983-01-01

    There are at present approximately 350 research reactors in 52 countries ranging in power from less than 1 watt to 100 Megawatt and over. In the 1970's, many people became concerned about the possibility that some fuels and fuel cycles could provide an easy route to the acquisition of nuclear weapons. Since enrichment to less than 20% is internationally recognized as a fully adequate barrier to weapons usability, certain Member States have moved to minimize the international trade in highly enriched uranium and have established programmes to develop the technical means to help convert research reactors to the use of low-enrichment fuels with minimum penalties. This could involve modifications in the design of the reactor and development of new fuels. As a result of these programmes, it is expected that most research reactors can be converted to the use of low-enriched fuel

  16. Calculation of fuel burn-up and fuel reloading for the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Nguyen Phuoc; Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Binh, Do Quang [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Calculation of fuel burnup and fuel reloading for the Dalat Nuclear Research Reactor was carried out by using a new programme named HEXA-BURNUP, realized in a PC. The programme is used to calculate the following parameters of the Dalat reactor: a/Critical configurations of the core loaded with 69, 72, 74, 86, 88, 89 and 92 fuel elements. The effective multiplication coefficients equal 1 within the error ranges of less than 0.38%. b/ The thermal neutron flux distribution in the reactor. The calculated results agree with the experimental data measured at 11 typical positions. c/The average fuel burn-up for the period from Feb. 1984 to Sep. 1992. The difference between calculation and experiment is only about 1.9%. 10 fuel reloading versions are calculated, from which an optimal version is proposed. (author). 9 refs., 4 figs., 5 tabs.

  17. Transmutation studies in France, R and D programme on fuels and targets

    International Nuclear Information System (INIS)

    Boidron, M.; Chauvin, N.; Garnier, J.C.; PIllon, S.; Vambenepe, G.

    2001-01-01

    For the management of high level and long-lived radioactive waste, a large and continuous research and development effort is carried out in France, to provide a wide range of scientific and technical alternatives along three lines, partitioning and transmutation, disposal in deep geological formations and long term interim surface or subsurface storage. For the line one, and in close link with the partitioning studies, research is carried out to evaluate the transmutation potential of long-lived waste in appropriate reactors configurations (scenarios) relying on current technologies as well as innovative reactors. Performed to evaluate the theoretical feasibility of the Pu consumption and waste transmutation from the point of view of the reactor cores physics to reach the equilibrium of the material fluxes (i.e. consumption = production) and of the isotopic compositions of the fuels, these studies insure the 'scientific' part of the transmutation feasibility. For the technological part of the feasibility of waste transmutation in reactors, a large programme on fuel development is underway. This includes solutions based on the advanced concepts for plutonium fuels in PWR and the development of specific fuels and targets for transmutation in fast reactors in the critical or sub-critical state. For the waste transmutation in fast reactors, an important programme has been launched to develop specific fuels and targets with experiments at various stages of preparation in different experimental reactors including Phenix. Composite fuels as well as particle fuels are considered. This programme is presented and recent results concerning the preparation of the experiments, the characterisation of the compounds properties, the thermal and mechanical modelling and the behaviour of U free fuels are given. (author)

  18. Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2017-01-01

    The high enriched uranium (HEU) take back programmes will soon have achieved their goals. When there are no longer HEU inventories at research reactors and no commerce in HEU for research reactors, the primary driver for the take back programmes will cease. However, research reactors will continue to operate in order to meet their various mission objectives. As a result, inventories of low enriched uranium spent nuclear fuel will continue to be created during the research reactors' lifetime and, therefore, there is a need to develop national final disposition routes. This publication is designed to address the issues of available reprocessing and recycling services for research reactor spent fuel and discusses the various back end management aspects of the research reactor fuel cycle.

  19. URANUS - a computer programme for the thermal and mechanical analysis of the fuel rods in a nuclear reactor

    International Nuclear Information System (INIS)

    Lassmann, K.

    1978-01-01

    The URANUS code, a digital computer programme for the thermal and mechanical analysis of integral fuel rods, is described. With this code the fuel rods found in the majority of power reactors can be analyzed. URANUS is built around a quasi two-dimensional analysis of fuel and cladding. The mechanical analysis can accommodate seven components of strain: elastic, time-independent plastic, creep and thermal strains, as well as strains due to swelling, cracking and densification. The heat generation and temperature distribution, cladding/fuel gap closure, pellet cracking and crack healing, fission-gas release, corrosion, O/M-distribution and plutonium redistribution are modelled. Geometric non-linearities (large displacements) are included; steady state or transient loading (pressure, temperature) is possible. In this paper special attention is paid to a theory for determining crack structures. The present status of the URANUS computer programme and a critical comparison with other fuel rod codes as well as sample analyses are given. (Auth.)

  20. Fast Reactor Programme. Second Quarter 1969. Progress Report. RCN Report

    International Nuclear Information System (INIS)

    Hoekstra, E.K.

    1969-12-01

    This progress report covers fast reactor research carried out by RCN during the second quarter 1969 forming part of the integrated fast breeder research and development programme also in progress at the national nuclear research centres Karlsruhe and Mol. The combined effort is based on a memorandum of co-operation in this field signed by the respective governments in 1968 and on a memorandum of understanding signed by the research centres. The RCN contribution is mainly concerned with the core of the fast breeder reactor and related safety aspects and, as such, must be looked upon as being complementary to the industrial research pro- field of fast reactors. The contribution comprises the following six items: - A Æéatîtôr , physics programme to determine the influence of fission products on several main characteristics of the reactor core such as void coefficient, Doppler coefficient and breeding ratio; - A fuel performance programme in which both stationary and transient irradiations are being carried out to establish the temperature and power limits of fuel rods; also the consequences of loss- of-cooling will be investigated; - Investigation into the change in mechanical properties of fuel canning materials due to high fast neutron doses; - A study of the corrosion behaviour of canning materials and their compatibility with the fuel under conditions of high temperature and high pressure; - Investigation into the behaviour of aerosols of fission products which could be formed after a fast reactor accident; a thorough understanding is of utmost importance for the reactor safety assessment ; - Studies on heat transfer in the reactor core. As fast breeders operate at high power densities, an accurate knowledge on the heat transfer phenomena is required

  1. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  2. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Wheeler, R.C.; Bramman, J.I.

    1988-04-01

    The fast reactor programme in the United Kindom is reviewed under the following headings: Progress with PFR; Reprocessing: Commercial Design Studies; Structural Integrity; Engineering and Components; Materials; Sodium Chemistry; Core and Fuel; Safety; Plant Performance. (author)

  3. Growing dimensions. Spent fuel management at research reactors

    International Nuclear Information System (INIS)

    Ritchie, I.G.

    1998-01-01

    More than 550 nuclear research reactors are operating or shout down around the world. At many of these reactors, spent fuel from their operations is stored, pending decisions on its final disposition. In recent years, problems associated with this spent fuel storage have loomed larger in the international nuclear community. In efforts to determine the overall scope of problems and to develop a database on the subject, the IAEA has surveyed research reactor operators in its Member States. Information for the Research Reactor Spent Fuel Database (RRSFDB) so far has been obtained from a limited but representative number of research reactors. It supplements data already on hand in the Agency's more established Research Reactor Database (RRDB). Drawing upon these database resources, this article presents an overall picture of spent fuel management and storage at the world's research reactors, in the context of associated national and international programmes in the field

  4. Review of the United Kingdom fast reactor programme - March 1986

    International Nuclear Information System (INIS)

    Bramman, J.I.; John, C.T.; Wheeler, R.C.

    1986-01-01

    The UK programme in the field of fast reactors has continued successfully towards the following main objectives, details of which are contained in subsequent sections of this report: (2) progress with the prototype fast reactor (PFR) which achieved its design power on 4 March 1985; (3) nuclear fuel reprocessing; (4) commercial design studies; (5) structural integrity of LMFBR during its lifetime; (6) R and D work on components of LMFBR; (7) materials study; (8) sodium chemistry; (9) reactor core and fuel design philosophy; (10) safety problems; (11) plant performance studies

  5. Guidebook on non-destructive examination of water reactor fuel

    International Nuclear Information System (INIS)

    1991-01-01

    To date, a significant quantity of data has been collected and published on power reactor fuel examination to determine the performance when subjected to radiation. The data have been published in technical reports and papers in technical journals. However, the usefulness of the published data to the IAEA Member States is limited. This is due to a number of reasons, including the large variety of examination methods, incomplete documentation of the data and lack of sufficiently detailed information on pre-irradiation data and irradiation history. To alleviate some of these problems, the Agency initiated a Co-ordinated Research Programme in 1983 entitled ''Examination and Documentation Methodology for Water Reactor Fuel''. The programme meetings usually involved technical contributions from the programme participants, followed by a detailed discussion of the various examination methods presented in these contributions. Based on these discussions and contributions, a guidebook on the examination and documentation methodology for light and heavy water reactor fuel has been prepared. The guidebook addresses the most commonly used examination methods for the various water reactor fuel systems. Limitations of each of the measurement techniques are also discussed, including their accuracy and precision. A detailed description of the measurement equipment is given and the common methods of documenting the data are also addressed. With the adoption of the uniform set of procedures and documentation methods, it is hoped that the IAEA Member States will be able to use effectively both the existing data and the future data from the various national programmes. It is also expected that this guidebook will be useful for adaptation of measurement techniques that are unique to specific fuel systems to other fuel types. 59 refs, 33 figs, 4 tabs

  6. Fuel element load/unload machine for the PEC reactor

    International Nuclear Information System (INIS)

    Clayton, K.F.

    1984-01-01

    GEC Energy Systems Limited are providing two fuel element load/unload machines for use in the Italian fast reactor programme. One will be used in the mechanism test facility (IPM) at Casaccia, to check the salient features of the machine operating in a sodium environment prior to the second machine being installed in the PEC Brasimone Reactor. The machine is used to handle fuel elements, control rods and other reactor components in the sodium-immersed core of the reactor. (U.K.)

  7. Fast reactors fuel cycle core physics results from the CAPRA-CADRA programme

    Energy Technology Data Exchange (ETDEWEB)

    Vasile, A.; Rimpault, G.; Tommasi, J.; Saint Jean, C. de; Delpech, M. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Hesketh, K. [BNFL, Inc., Denver, CO (United States); Beaumont, H.M.; Sunderland, R.E. [NNC Ltd. (United Kingdom); Newton, T.; Smith, P. [AEA Technology (United Kingdom); Raedt, Ch. de [SCK.CEN, Mol (Belgium); Vambenepe, G. [Electricite de France (EDF), 75 - Paris (France); Lefevre, J.C. [FRAMATOME, 92 - Paris-La-Defence (France); Maschek, W.; Haas, D

    2001-07-01

    This paper presents an overview of fast reactor core physics results obtained in the context of the CAPRA-CADRA European collaborative programme, whose aim is to investigate a broad range of possible options for plutonium and radioactive waste management. Different types of fast reactors have been studied to evaluate their potential capabilities with respect to the long term management of plutonium, minor actinides (MAs) and long- lived fission products (LLFPs). Among the several options aiming at reducing waste and consequently radio toxicity are: homogeneous recycling of Minor Actinides, heterogeneous recycling of Minor Actinides either without or with moderation, dedicated critical cores (fuelled mainly with Minor Actinides) and Accelerator Driven System (ADS) variants. In order to achieve a detailed understanding of the potential of the various options, advanced core physics methods have been implemented and tested and applied, for example, to improving control rod modeling and to studying safety aspects. There has also been code development and experimental work carried out to improve the understanding of fuel performance behaviors. (author)

  8. Fast reactors fuel cycle core physics results from the CAPRA-CADRA programme

    International Nuclear Information System (INIS)

    Vasile, A.; Rimpault, G.; Tommasi, J.; Saint Jean, C. de; Delpech, M.; Hesketh, K.; Beaumont, H.M.; Sunderland, R.E.; Newton, T.; Smith, P.; Raedt, Ch. de; Vambenepe, G.; Lefevre, J.C.; Maschek, W.; Haas, D

    2001-01-01

    This paper presents an overview of fast reactor core physics results obtained in the context of the CAPRA-CADRA European collaborative programme, whose aim is to investigate a broad range of possible options for plutonium and radioactive waste management. Different types of fast reactors have been studied to evaluate their potential capabilities with respect to the long term management of plutonium, minor actinides (MAs) and long- lived fission products (LLFPs). Among the several options aiming at reducing waste and consequently radio toxicity are: homogeneous recycling of Minor Actinides, heterogeneous recycling of Minor Actinides either without or with moderation, dedicated critical cores (fuelled mainly with Minor Actinides) and Accelerator Driven System (ADS) variants. In order to achieve a detailed understanding of the potential of the various options, advanced core physics methods have been implemented and tested and applied, for example, to improving control rod modeling and to studying safety aspects. There has also been code development and experimental work carried out to improve the understanding of fuel performance behaviors. (author)

  9. In-core fuel management programs for nuclear power reactors

    International Nuclear Information System (INIS)

    1984-10-01

    In response to the interest shown by Member States, the IAEA organized a co-ordinated research programme to develop and make available in the open domain a set of programs to perform in-core fuel management calculations. This report summarizes the work performed in the context of the CRP. As a result of this programme, complete in-core fuel management packages for three types of reactors, namely PWR's, BWR's and PHWR are now available from the NEA Data Bank. For some reactor types, these program packages are available with three levels of sophistication ranging from simple methods for educational purposes to more comprehensive methods that can be used for reactor design and operation. In addition some operating data have been compiled to allow code validation. (author)

  10. Advanced spent fuel processing technologies for the United States GNEP programme

    International Nuclear Information System (INIS)

    Laidler, J.J.

    2007-01-01

    Spent fuel processing technologies for future advanced nuclear fuel cycles are being developed under the scope of the Global Nuclear Energy Partnership (GNEP). This effort seeks to make available for future deployment a fissile material recycling system that does not involve the separation of pure plutonium from spent fuel. In the nuclear system proposed by the United States under the GNEP initiative, light water reactor spent fuel is treated by means of a solvent extraction process that involves a group extraction of transuranic elements. The recovered transuranics are recycled as fuel material for advanced burner reactors, which can lead in the long term to fast reactors with conversion ratios greater than unity, helping to assure the sustainability of nuclear power systems. Both aqueous and pyrochemical methods are being considered for fast reactor spent fuel processing in the current US development programme. (author)

  11. Research reactor utilization, safety, decommissioning, fuel and waste management. Posters of an international conference

    International Nuclear Information System (INIS)

    2005-01-01

    self assessments. Current developments in research reactor design criteria. Calculation methods and codes. Regulatory aspects and experience with current research reactor issues. Quality assurance programmes during the various stages of a reactor life. Training and qualification of reactor operating personnel and regulators. Modifications in operating procedures and training and qualification. In-service and special inspections with respect to ageing. c) Fuel cycle issues covering new high-density fuel development. Fuel fabrication and performance. Fuel qualification programmes. Core conversion. Fuel management (including spent fuel storage). Spent fuel transportation. Final disposition. d) Reactor Decommissioning including Preliminary decommissioning planning (long term). Creation of data base for decommissioning (e.g. during refurbishment). Final decommissioning planning. Extensive research and development activities associated with decommissioning of research reactors. On-going/recently completed research reactor decommissioning projects. e) Waste management (operational waste management) and decommissioning waste management

  12. Programme and current status of fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    Suita, T.; Oyama, A.

    1977-01-01

    In 1967 the Japan Atomic Energy Commission revised her long term programme after a two year study for giving principles to her nuclear energy development programme, which indicated the dominant role of nuclear energy mid 1980's in the electric power generation and stressed the necessity of developing fast breeder reactors. It also recommended to organize a nucleus to undertake this nation-wide project, bringing together the total capability available throughout the country. Accordingly, the Power Reactor and Nuclear Fuel Development Corporation (PNC) was established in 1967 to develop two sodium-cooled fast reactors, an experimental fast reactor of about 100 MW thermal and a prototype fast breeder reactor of about 300 MW electrical, both using mixed oxide fuels. Construction of the experimental fast reactor started in 1970 and was essentially completed at the end of in 1974. The precommissioning test was followed in parallel with re-evaluating quality assurance of all systems. Physics test will be initiated around the end of 1976. The conceptual design of the prototype fast breeder reactor is now toward its final stage. Surveys on its proposed site have just started. Construction will start in 1978. Beside R and D works conducted by many organizations in Japan as well as under the international cooperation, several key test facilities were installed by PNC itself to conduct in-sodium test of full-size prototype components including 50 MW steam generators and post-irradiation-examination of fuels and materials. Recently an interim report was issued to an ad-hoc committee organized by JAEC to evaluate future prospect of the fuel cycle and power reactors. This recommended start of construction of the prototype reactor as scheduled and the large demonstration reactor to be followed to the prototype. Thus the fast breeder reactor is indicated as the most indispensable in 1990's

  13. Pyrometric fuel particle measurements in pressurised reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    A fiberoptic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurized reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverized coal particles at the pressurized entrained flow reactor in Jyvaeskylae was developed and several series of measurements were made. In Orleans a fiberoptic pyrometric device was installed to a pressurised thermogravimetric reactor and the two-colour temperatures of fuel samples were measured. Some results of these measurements are presented. The project belongs to EU`s Joule 2 extension research programme. (author)

  14. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  15. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor Miklos; Adelfang, Pablo; Bradley, Ed [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris (France)

    2015-05-15

    International activities in the back-end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals and the SNF take-back programmes will cease. However, the needs of the nuclear community dictate that the majority of the research reactors continue to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back-end solution of RR SNF remains a critical issue. In view of this fact, the IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, will draw up a report presenting available reprocessing and recycling services for research reactor spent nuclear fuel. This paper gives an overview of the guiding document which will address all aspects of Reprocessing and Recycling Services for RR SNF, including an overview of solutions, decision making support, service suppliers, conditions (prerequisites, options, etc.), services offered by the managerial and logistics support providers with a focus on available transport packages and applicable transport modes.

  16. Programme of research and development on plutonium recycling in light-water reactors

    International Nuclear Information System (INIS)

    1979-01-01

    This is the third annual progress report concerning the programme on plutonium recycling in light-water reactors (indirect action) of the Commission of the European Communities. It covers the year 1978 and follows the annual reports for 1977 (EUR 6002 EN) and 1976 (EUR 5780). The preliminary results obtained under the 1975-79 programme indicate that: (a) assuming that plutonium recycling in light-water reactors is industrially developed by the end of the century, the foreseeable radiological impact on both workers and the general public can be maintained within the limits of current radiation protection standards; (b) on the whole, there is a good knowledge and mastery of the specific aspects involved in the plutonium recycling in light-water reactors and in particular they indicate that plutonium fuels have a similar behaviour to uranium fuels

  17. A review of the UK fast reactor programme. April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Bramman, J I [International Relations Department, United Kingdom Atomic Energy Authority, Risley, Warrington (United Kingdom)

    1992-07-01

    Total energy consumption in the UK in 1991 was 351.6 million tones of coal or coal equivalent, an increase of 2.1% on 1990. Nuclear electricity accounted for 19.5% of the total electricity consumption of about 300 TWh. The technical part of the report is principally concerned with progress with the Prototype Fast Reactor (PFR) and its associated fuel reprocessing plant and with some aspects of international cooperation on fast reactors. The total gross electrical generation of PFR for 1991 was 34,767 MWd, equivalent to annual load factor of 41.6%. The principal factor depressing the load factor figure was an ingress of lubricating oil from bearing on primary sodium pump 2 into the primary coolant which led to the station being out of service for six months. Two PFR fuel reprocessing campaigns were undertaken during the year. In the first, 18 subassemblies at burnup levels up to 12%, plus some loose pins from the fuel post-irradiation examination facility, were processed. In the second, a further 7 subassemblies at burnup levels up to 17.3%, plus some more loose pins were dealt with. The cumulative total amount of fuel reprocessed to date is now 17.99 tons of heavy metal, containing 3.17 tonnes of plutonium. The reduction of Government funding to the fast reactor research and development programme since 1989 has led to termination of fuel cycle research and development work. However, valuable information continues to be obtained from operation of the PFR fuel reprocessing plant and its support facilities and from development work on the manufacture of thermal MOX fuel. Information exchanges and cooperative work programmes conducted under the UKAEA's agreements with Japan (PNC and JAERI), the USA (US Department of energy), and the CIS are now coordinated with those of the UKAEA's European Fast Reactor research and development partners.

  18. A review of the UK fast reactor programme. April 1992

    International Nuclear Information System (INIS)

    Bramman, J.I.

    1992-01-01

    Total energy consumption in the UK in 1991 was 351.6 million tones of coal or coal equivalent, an increase of 2.1% on 1990. Nuclear electricity accounted for 19.5% of the total electricity consumption of about 300 TWh. The technical part of the report is principally concerned with progress with the Prototype Fast Reactor (PFR) and its associated fuel reprocessing plant and with some aspects of international cooperation on fast reactors. The total gross electrical generation of PFR for 1991 was 34,767 MWd, equivalent to annual load factor of 41.6%. The principal factor depressing the load factor figure was an ingress of lubricating oil from bearing on primary sodium pump 2 into the primary coolant which led to the station being out of service for six months. Two PFR fuel reprocessing campaigns were undertaken during the year. In the first, 18 subassemblies at burnup levels up to 12%, plus some loose pins from the fuel post-irradiation examination facility, were processed. In the second, a further 7 subassemblies at burnup levels up to 17.3%, plus some more loose pins were dealt with. The cumulative total amount of fuel reprocessed to date is now 17.99 tons of heavy metal, containing 3.17 tonnes of plutonium. The reduction of Government funding to the fast reactor research and development programme since 1989 has led to termination of fuel cycle research and development work. However, valuable information continues to be obtained from operation of the PFR fuel reprocessing plant and its support facilities and from development work on the manufacture of thermal MOX fuel. Information exchanges and cooperative work programmes conducted under the UKAEA's agreements with Japan (PNC and JAERI), the USA (US Department of energy), and the CIS are now coordinated with those of the UKAEA's European Fast Reactor research and development partners

  19. The Storage of Power Development and Research Reactor Fuel at Sellafield

    International Nuclear Information System (INIS)

    Standring, P.N.; Callaghan, A.H.C.

    2009-01-01

    Sellafield Limited has extensive experience of building and operating spent nuclear fuel storage facilities on the Sellafield site. Since the first operation in 1952, a total of six storage facilities have been built in support of reprocessing spent fuel. Currently, four of these facilities are operational and two are undergoing decommissioning activities. Whilst the routine spent fuel operations are primarily associated with managing Magnox, Advanced Gas Reactor and LWR fuel from power generation reactors, management services to other fuel types are offered. Examples of these services include the storage of British naval training reactor fuel; the reprocessing of two skips of aluminium clad uranium metal fuel from Swedish AB SVAFO and the management of fuel from the UK Power Development Programme. The current paper provides an account of the management of the UK's Power Development Programme fuel stored on the Sellafield site. The fuel has been pond stored for up to 42 years and periodic inspection during this time has revealed no significant deterioration of the fuel, particularly that which has been containerised during its storage period. The paper also outlines some of the issues associated with the recovery and transfer of long stored fuel and assessment of the fuel storage can longevity if the material is not reprocessed. (author)

  20. A review of the United Kingdom fast reactor programme - March 1984

    International Nuclear Information System (INIS)

    Smith, R.D.

    1984-01-01

    The UK programme in the field of fast reactors has continued successfully towards the following main objectives, details of which are contained in subsequent sections of this report: (a) Full power operation of the PFR. (b) Development work supporting the NNC designed CDFR. (c) Demonstration and development of the fast reactor fuel cycle

  1. Fuel performance and fission product behaviour in gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport. Refs, figs, tabs.

  2. Performance of MOX fuel: An overview of the experimental programme of the OECD Halden Reactor Project and review of selected results

    International Nuclear Information System (INIS)

    Wiesenack, W.; McGrath, M.

    2000-01-01

    The OECD Halden Reactor Project has defined an extensive experimental programme related to MOX fuels which is being executed with the objective to provide a performance data base similar to that available for UO 2 . In addition to utilising fresh MOX fuel and re-instrumented segments from LWR irradiations to high burnup, the concept of inert matrix fuel is being addressed. The irradiation in the Halden reactor is performed in rigs allowing steady state, power ramping and cyclic operation. In-pile data are obtained from instrumentation such as fuel centreline thermocouples, pressure transducers, fuel and cladding elongation detectors, and movable gauges for measuring the diametral deformation. Various phenomena can be assessed in this way, e.g. thermal performance, swelling and densification, PCMI and fission gas release. The paper describes the objectives of various experiments and provides examples of temperature, pressure and cladding elongation measurements performed on MOX fuel. Salient results are related to the threshold for the onset of significant fission gas release and the relaxation behaviour in a power ramp-PCMI situation. (author)

  3. Experience of shipping Russian-origin research reactor spent fuel to the Russian Federation

    International Nuclear Information System (INIS)

    2009-11-01

    The primary goal of the Russian Research Reactor Fuel Return (RRRFR) programme is to advance nuclear non-proliferation objectives by eliminating stockpiles of Russian-origin highly enriched uranium (HEU). The RRRFR programme was first conceived during trilateral discussions among the USA, the Russian Federation and the IAEA, initiated in 1999, when participants identified more than 20 research reactors in 17 countries having Russian/Soviet supplied fuel. In 2000, the Director General of the IAEA sent a letter to 15 countries asking for their willingness to return HEU spent fuel to the Russian Federation. Fourteen countries responded positively to the Director General's letter. In 2004, the Russian Federation and the USA signed a Government-to-Government Agreement concerning cooperation to return the Russian produced research reactor nuclear fuel to the Russian Federation. This agreement established the legal framework necessary for the cooperation between the Russian Federation and the USA for the return of Russian supplied research reactor fuel from eligible countries. Under the Bratislava agreements concluded by Presidents George W. Bush and Vladimir Putin in February 2005, both countries committed to completing all shipments of Russian-origin HEU spent fuel currently stored outside research reactors by the end of 2010. Up to the time of writing (May 2009) the programme has completed 19 shipments totalling over 838 kg of Russian-origin HEU spent and fresh fuel which has been returned from Bulgaria, the Czech Republic, Germany, Kazakhstan, Latvia, the Libyan Arab Jamahiriya, Poland, Romania, Serbia, Uzbekistan and Vietnam. During this time, the programme successfully removed all HEU from two countries, Latvia and Bulgaria. HEU spent fuel shipments have been the most complex shipments under the RRRFR programme, which will be the focus of this publication. The first shipment of HEU spent fuel from Uzbekistan was completed in January 2006, followed by HEU spent fuel

  4. A review of the Italian fast reactor programme

    International Nuclear Information System (INIS)

    Pierantoni, F.; Tavoni, R.

    1984-01-01

    This review sums up the Italian situation in the field of the fast reactors on the eve of the fifth five year plan (1985-1989), in which the country undertakes to implement an important activity of research and development in the context of a greater European collaboration. Italian participation in the development of European nuclear power stations together with the completion of the PEC plant which will be used to develop a fuel element with the necessary economic and safety characteristics, remain the two principal goals of the Italian fast reactor programme. In 1983 the sum assigned by ENEA for fast reactors was about 220 billion lire of which 145 billion was for the PEC reactor

  5. Fabrication of Fast Reactor Fuel Pins for Test Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Karsten, G. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Dippel, T. [Institute for Radiochemistry, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Laue, H. J. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany)

    1967-09-15

    An extended irradiation programme is being carried out for the fuel element development of the Karlsruhe fast breeder project. A very important task within the programme is the testing of plutonium-containing fuel pins in a fast-reactor environment. This paper deals with fabrication of such pins by our laboratories at Karlsruhe. For the fast reactor test positions at present envisaged a fuel with 15% plutonium and the uranium fully enriched is appropriate. Hie mixed oxide is both pelletized and vibro-compacted with smeared densities between 80 and 88% theoretical. The pin design is, for example, such that there are two gas plena at the top and bottom, and one blanket above the fuel with the fuel zone fitting to the test reactor core length. The specifications both for fuel and cladding have been adapted to the special purpose of a fast-breeder reactor - the outer dimensions, the choice of cladding and fuel types, the data used and the kind of tests outline the targets of the development. The fuel fabrication is described in detail, and also the powder line used for vibro-compaction. The source materials for the fuel are oxalate PuO{sub 2} and UO{sub 2} from the UF{sub 6} process. The special problems of mechanical mixing and of plutonium homogeneity have been studied. The development of the sintering technique and grain characteristics for vibratory compactive fuel had to overcome serious problems in order to reach 82-83% theoretical. The performance of the pin fabrication needed a major effort in welding, manufacturing of fits and decontamination of the pin surfaces. This was a stimulation for the development of some very subtle control techniques, for example taking clear X-ray photographs and the tube testing. In general the selection of tests was a special task of the production routine. In conclusion the fabrication of the pins resulted in valuable experiences for the further development of fast reactor fuel elements. (author)

  6. A review of the United Kingdom fast reactor programme: March 1987

    International Nuclear Information System (INIS)

    Bramman, J.I.; Wheeler, R.C.

    1987-03-01

    The UK fast reactor programme is reviewed under the following headings: Progress with PFR; Reprocessing; Commercial Design Studies: Structural Integrity; Engineering and Components; Materials; Sodium Chemistry; Core and Fuel; Safety; Plant Performance Studies. (U.K.)

  7. Status of sodium cooled fast reactors with closed fuel cycle in India

    International Nuclear Information System (INIS)

    Raj, B.

    2007-01-01

    Fast reactors form the second stage of India's 3-stage nuclear power programme. The seed for India's fast reactor programme was sown through the construction of the Fast Breeder Test Reactor (FBTR) at IGCAR, Kalpakkam, that was commissioned in 1985. FBTR has operated with an unique, indigenously developed plutonium rich mixed carbide fuel, which has reached a burn up as high as 155 GWd/t without any fuel failure in the core. The sodium systems in the reactor have performed excellently. The availability of the reactor has been as high as 92% in the recent campaigns. The fuel discharged from FBTR up to 100 GWd/t has been reprocessed successfully. The experience gained in the construction, commissioning and operation of FBTR has provided the necessary confidence to launch a Prototype FBR of 500 MWe capacity (PFBR). This reactor will be fuelled by uranium, plutonium mixed oxide. The reactor construction started in 2003 and the reactor is scheduled to be commissioned by 2010. The design of the reactor has incorporated the worldwide operating experience from the FBRs and has addressed various safety issues reported in literature, besides introducing a number of innovative features which have reduced the unit energy cost and contributed to its enhanced safety. Simultaneous with the construction of the reactor, the fuel cycle of the reactor has been addressed in a comprehensive manner and construction of a fuel cycle facility has been initiated. Subsequent to the PFBR, 4 more reactors with identical design are proposed to be constructed. Various elements of reactor design are being carefully analysed with the aim of introducing innovative features towards further reduction in unit energy cost and enhancing safety in these reactors

  8. RETU. The Finnish research programme on reactor safety. Interim report 1995 - May 1997

    International Nuclear Information System (INIS)

    Vanttola, T.; Puska, E.K.

    1997-08-01

    The Finnish national research programme on Reactor Safety (RETU, 1995-1998) concentrates on the search of safe limits of nuclear fuel and the reactor core, accident management methods and risk management of the operation of nuclear power plants. The annual volume of the programme has been about 26 person years and the annual funding FIM 15 million. This report summarises the structure and objectives of the programme, research fields included and the main results obtained during the period 1995 - May 1997. In the field of operational margins of a nuclear reactor, the behaviour of high burnup nuclear fuel is studied both in normal operation and during power transients. The static and dynamic reactor analysis codes are developed and validated to cope with new fuel designs and complicated three-dimensional reactivity transients and accidents. Research on accident management aims at development and validation of calculation methods needed to plan preventive measures and to train the personnel to severe accident mitigation. Other goals are to reduce uncertainties in phenomena important in severe accidents and to study actions planned for accident management. In the field of risk management probabilistic methods are developed for safety related decision making and for complex phenomena and event sequences. Effects of maintenance on nuclear power plant safety are studied and more effective methods for the assessment of human reliability and safety critical organisations are searched

  9. RETU. The Finnish research programme on reactor safety. Interim report 1995 - May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Vanttola, T; Puska, E K [VTT Energy, Espoo (Finland). Nuclear Energy; eds.

    1997-08-01

    The Finnish national research programme on Reactor Safety (RETU, 1995-1998) concentrates on the search of safe limits of nuclear fuel and the reactor core, accident management methods and risk management of the operation of nuclear power plants. The annual volume of the programme has been about 26 person years and the annual funding FIM 15 million. This report summarises the structure and objectives of the programme, research fields included and the main results obtained during the period 1995 - May 1997. In the field of operational margins of a nuclear reactor, the behaviour of high burnup nuclear fuel is studied both in normal operation and during power transients. The static and dynamic reactor analysis codes are developed and validated to cope with new fuel designs and complicated three-dimensional reactivity transients and accidents. Research on accident management aims at development and validation of calculation methods needed to plan preventive measures and to train the personnel to severe accident mitigation. Other goals are to reduce uncertainties in phenomena important in severe accidents and to study actions planned for accident management. In the field of risk management probabilistic methods are developed for safety related decision making and for complex phenomena and event sequences. Effects of maintenance on nuclear power plant safety are studied and more effective methods for the assessment of human reliability and safety critical organisations are searched. 135 refs.

  10. Preliminary Assessment of Heavy-Water Thorium Reactors in the Brazilian Nuclear Programme

    Energy Technology Data Exchange (ETDEWEB)

    Salvo Brito, S. de; Lepecki, W. P.S. [Instituto de Pesquisas Radioativas, Belo Horizonte (Brazil)

    1968-04-15

    Since December 1965, the Instituto de Pesquisas Radioativas has been studying for the Brazilian Nuclear Energy Commission the feasibility of a thorium reactor programme in Brazil; since June 1966, the programme has been developed in close co-operation with the French Atomic Energy Commission. A reference conceptual design of a heavy-water-cooled and -moderated thorium converter reactor has been developed. The main features of that concept are the use of a prestressed-concrete pressure vessel, integrated arrangement of the primary circuit and the possibility of on-load fuel management. Economic competitiveness could be the result of high compactness, low capital costs and low fuel consumption. The technology involved is not very sophisticated; intensive engineering development work must be done in areas like fuel charge machine, concrete vessel insulation, and proper design of heat exchangers, but it is the feeling of the Group that these problems could be solved without seriously compromising the economic feasibility of the concept. Preliminary studies were made on the alternative use of enriched uranium or plutonium as a feed for the programme; in the latter case, plutonium could be produced in natural uranium reactors of the same type. The general conditions favouring each of these approaches to the thorium cycle have been determined, in particular those related to the costs of the fissile materials in the world market and to the country's policy related to nuclear fuel imports. The results of the preliminary studies are very encouraging and could justify the beginning of a research and development programme leading to the construction of a prototype in the 1970's. (author)

  11. Experimental programmes related to high burnup fuel

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.; Vidhya, R.; Ananthasivan, K.; Srinivasan, T.G.; Nagarajan, K.

    2002-01-01

    The experimental programmes undertaken at IGCAR with regard to high burn-up fuels fall under the following categories: a) studies on fuel behaviour, b) development of extractants for aqueous reprocessing and c) development of non-aqueous reprocessing techniques. An experimental programme to measure the carbon potential in U/Pu-FP-C systems by methane-hydrogen gas equilibration technique has been initiated at IGCAR in order to understand the evolution of fuel and fission product phases in carbide fuel at high burn-up. The carbon potentials in U-Mo-C system have been measured by this technique. The free energies and enthalpies of formation of LaC 2 , NdC 2 and SmC 2 have been measured by measuring the vapor pressures of CO over the region Ln 2 O 3 -LnC 2 -C during the carbothermic reduction of Ln 2 O 3 by C. The decontamination from fission products achieved in fuel reprocessing depends strongly on the actinide loading of the extractant phase. Tri-n-butyl phosphate (TBP), presently used as the extractant, does not allow high loadings due to its propensity for third phase formation in the extraction of Pu(IV). A detailed study of the allowable Pu loadings in TBP and other extractants has been undertaken in IGCAR, the results of which are presented in this paper. The paper also describes the status of our programme to develop a non-aqueous route for the reprocessing of fast reactor fuels. (author)

  12. Highlights from the IAEA coordinated research programme on fuel performance and fission product data

    International Nuclear Information System (INIS)

    Nabielek, H.; Schenk, W.; Verfondern, K.

    1996-01-01

    Seven countries are cooperating with the objectives (i) to document the status of the experimental data base and of the predictive methods for Gas-Cooled Reactor fuel performance and fission product behaviour; (ii) to verify and validate methods in fuel performance and fission product retention prediction. These countries are China, France, Germany, Japan, Russia, USA and the UK. Duration of the programme is 1993-96. The technology areas addressed in this IAEA Coordinated Research Programme are: Fuel design and manufacture, Normal operation fuel performance and fission product behaviour, Accident condition fuel performance and fission product behaviour, -core heatup, -fast transients, -oxidising conditions (water and air ingress), Plateout, re-entrainment of plateout, fission product behaviour in the reactor building, and Performance of advanced fuels. Work performed so far has generated a 300-page draft document with important information for normal operations (Germany, Japan, China, Russia) and accident conditions (USA, Japan, Germany, Russia) and, additionally, a special chapter on advanced fuels (Japan). (author)

  13. Refurbishment programme for the BR2-reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koonen, E [Centre d' Etude de l' Energie Nucleaire, Studiecentrum voor Kernenergie, BR2 Department, Boeretang, Mol (Belgium)

    1992-07-01

    BR2 is a high flux engineering test reactor, which differs from comparable material testing reactors by its specific core array (fig. 1). It is a heterogeneous, thermal, tank-in-pool type reactor, moderated by beryllium and light water, which serves also as coolant. The fuel elements consist of cylindrical assemblies loaded in channels materialized by hexagonal beryllium prisms. The central 200 mm channel is vertical, while all others are inclined and form a hyperbolical arrangement around the central one. This feature combines a very compact core with the requirement of sufficient space for individual access to all channels through penetrations in the top cover of the aluminium pressure vessel. Each channel may hold a fuel element, a control rod, an experiment, an irradiation device or a beryllium plug. The refurbishment Program According to the present programme of C.E.N./S.C.K., BR2 will be in operation until 1996. At that time, the beryllium matrix will reach its foreseen end-of-life. In order to continue operation beyond this point, a thorough refurbishment of the reactor is foreseen, in addition to the unavoidable replacement of the matrix, to ensure quality of the installation and compliance with modern standards. Some fundamental options have been taken as a starting point: BR2 will continue to be used as a classical MTR, i.e. fuel and material irradiations and safety experiments with some additional service-activities. The present configuration is optimized for that use and there is no specific experimental requirement to change the basic concepts and performance characteristics. From the customers viewpoint, it is desirable to go ahead with the well-known features of BR2, to maintain a high degree of availability and reliability and to minimize the duration of the long shutdown. It is also important to limit the amount of nuclear liabilities. So the objective of the refurbishment programme is the life extension of BR2 for about 15 years, corresponding to

  14. Refurbishment programme for the BR2-reactor

    International Nuclear Information System (INIS)

    Koonen, E.

    1992-01-01

    BR2 is a high flux engineering test reactor, which differs from comparable material testing reactors by its specific core array (fig. 1). It is a heterogeneous, thermal, tank-in-pool type reactor, moderated by beryllium and light water, which serves also as coolant. The fuel elements consist of cylindrical assemblies loaded in channels materialized by hexagonal beryllium prisms. The central 200 mm channel is vertical, while all others are inclined and form a hyperbolical arrangement around the central one. This feature combines a very compact core with the requirement of sufficient space for individual access to all channels through penetrations in the top cover of the aluminium pressure vessel. Each channel may hold a fuel element, a control rod, an experiment, an irradiation device or a beryllium plug. The refurbishment Program According to the present programme of C.E.N./S.C.K., BR2 will be in operation until 1996. At that time, the beryllium matrix will reach its foreseen end-of-life. In order to continue operation beyond this point, a thorough refurbishment of the reactor is foreseen, in addition to the unavoidable replacement of the matrix, to ensure quality of the installation and compliance with modern standards. Some fundamental options have been taken as a starting point: BR2 will continue to be used as a classical MTR, i.e. fuel and material irradiations and safety experiments with some additional service-activities. The present configuration is optimized for that use and there is no specific experimental requirement to change the basic concepts and performance characteristics. From the customers viewpoint, it is desirable to go ahead with the well-known features of BR2, to maintain a high degree of availability and reliability and to minimize the duration of the long shutdown. It is also important to limit the amount of nuclear liabilities. So the objective of the refurbishment programme is the life extension of BR2 for about 15 years, corresponding to

  15. Programmes and projects for high-temperature reactor development

    International Nuclear Information System (INIS)

    Bogusch, Edgar; Hittner, Dominique

    2009-01-01

    An increasing attention has to be recognised worldwide on the development of High-Temperature Reactors (HTR) which has started in Germany and other countries in the 1970ies. While pebble bed reactors with spherical fuel elements have been developed and constructed in Germany, countries such as France, the US and Russia investigated HTR concepts with prismatic block-type fuel elements. The concept of a modular HTR formerly developed by Areva NP was an essential basis for the HTR-10 in China. A pebble bed HTR for electricity production is developed in South Africa. The construction is planned after the completion of the licensing procedure. Also the US is planning an HTR under the NGNP (Next Generation Nuclear Plant) Project. Due to the high temperature level of the helium coolant, the HTR can be used not only for electricity production but also for supply of process heat. Including its inherent safety features the HTR is an attractive candidate for heat supply to various types of plants e.g. for hydrogen production or coal liquefactions. The conceptual design of an HTR with prismatic fuel elements for the cogeneration of electricity and process heat has been developed by Areva NP. On the European scale the HTR development is promoted by the RAPHAEL (ReActor for Process heat, Hydrogen And ELectricity generation) project. RAPHAEL is an Integrated Project of the Euratom 6th Framework Programme for the development of technologies towards a Very High-Temperature Reactor (VHTR) for the production of electricity and heat. It is financed jointly by the European Commission and the partners of the HTR Technology Network (HTR-TN) and coordinated by Areva NP. The RAPHAEL project not only promotes HTR development but also the cooperation with other European projects such as the material programme EXTREMAT. Furthermore HTR technology is investigated in the frame of Generation IV International Forum (GIF). The development of a VHTR with helium temperatures above 900 C for the

  16. Irradiated Fuel Management Advisory Programme (IFMAP). An interregional technical co-operation project

    International Nuclear Information System (INIS)

    1993-04-01

    Delays in the implementation of the fuel reprocessing option in some countries, the complete abandonment of this option in other countries, and delays in the availability of final spent fuel disposal in almost all countries, has led to increasingly long periods of 'interim' spent fuel storage. The problem of the management of irradiated fuels has therefore increased in importance for many Member States. For power reactors or research reactors, irradiated fuel management includes all of the procedures involving irradiated fuel from the time that it is discharged from the reactor core until it is either reprocessed or placed in a permanent disposal site. Although the IAEA has had programmes in this area in the past and has ongoing activities at present, there is a clear need to provide support to individual Member States which require advice and/or assistance in the resolution of particular questions and concerns

  17. BNFL's experience in the sea transport of irradiated research reactor fuel to the USA

    International Nuclear Information System (INIS)

    Hudson, I.A.; Porter, I.

    2000-01-01

    BNFL provides worldwide transport for a wide range of nuclear materials. BNFL Transport manages an unique fleet of vessels, designed, built, and operated to the highest safety standards, including the highest rating within the INF Code recommended by the International Maritime Organisation. The company has some 20 years of experience of transporting irradiated research reactor fuel in support of the United States' programme for returning US obligated fuel from around the world. Between 1977 and 1988 BNFL performed 11 shipments of irradiated research reactor fuel from the Japan Atomic Energy Research Institute to the US. Since 1997, a further 3 shipments have been performed as part of an ongoing programme for Japanese research reactor operators. Where possible, shipments of fuel from European countries such as Sweden and Spain have been combined with those from Japan for delivery to the US. (author)

  18. Good Practices for Water Quality Management in Research Reactors and Spent Fuel Storage Facilities

    International Nuclear Information System (INIS)

    2011-01-01

    for water chemistry control in research reactors; defines parameters recommended, techniques applicable, sampling procedures and sampling frequency to monitor water quality in RRs, and describes the importance of a quality assurance programme, and the implementation of a corrosion surveillance programme (CSP) as part of the water management programme. Whenever applicable, considerations are made for primary cooling system, spent fuel storage basins, secondary cooling system, emergency cooling systems, make-up systems and water reservoirs of RRs.

  19. A review of fast reactor programme in India - April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Paranjpe, S R [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    1992-07-01

    There is no change in the basic policy for development of nuclear energy in India. Fast Breeder Reactors are required to be available commercially to supply increasing quantities of nuclear energy when the first phase programme of deployment of Pressurised Heavy Water Reactors would be reaching the limit imposed by indigenously available natural uranium. Based on presently proven reserves of economically exploitable uranium one cannot expect to support more than 10 to 15 million kilowatt of installed capacity of PHWRs. The immediate goal of the Fast Reactor Programme therefore, remains completion by 2002-2003 of the first 500 MWe Prototype Fast Breeder Reactor which will become the first reactor in the series of reactors to be built there afterwards. This will enable addition of one 500 MWe reactor each year even if the first phase of programme of PHWR is limited to 6.0 million kilowatt. The capital cost of installed kilowatt for FBRs is expected to be comparable to the capital cost per kilowatt for PHWRS. It is expected to launch the construction of PFBR in the next 2 or 3 years as soon as the over all economic condition shows some improvement. In the meantime, manufacturing development of important NSS components like Steam Generators, Sodium Pumps, Main Vessel and Inner Vessel has been initiated. Detailed designs of Control Rod Drive Mechanism (Primary) has been completed and contacts with the manufacturers are being established to identify the industry which would be entrusted with the responsibility of manufacturing the Control Rod Drive Mechanisms. Manufacturing technology for making cladding tubes of D9 stainless steel has been developed and significant progress has been made towards the production of hexagonal wrapper (i.e. Hex-Cans). Inclined Fuel Transfer Machine for loading and unloading the fuel from the Main Vessel has been designed and manufacturing of the prototype machine has been initiated. It is hoped that these steps will enable timely completion

  20. Consolidated fuel reprocessing programme: Analysis of various options for the breeder fuel cycle in the USA

    International Nuclear Information System (INIS)

    Stradley, J.G.; Burch, W.D.; Yook, H.R.

    1986-01-01

    The United States Department of Energy (DOE) has established a programme to develop innovative liquid metal reactor (LMR) designs to assist in developing future U.S. reactor strategy. The paper describes studies in progress to examine various fuel cycle strategies that relate to the reactor strategy. Three potential fuel cycle options that focus on supporting an initial 1300 MW(e) reactor station have been defined: (1) Completion and utilization of the Breeder Reprocessing Engineering Test/Secure Automated Fabrication (BRET/SAF) in the Fuels and Materials Examination Facility (FMEF) at Hanford, Washington; (2) a co-located fuel cycle facility; and (3) delayed closure of the fuel cycle for five to ten years. The BRET, designed as a development facility, has sufficient capacity to service the needs of an initial module at an LMR station. It appears feasible to increase this capacity and to utilize SAF in the FMEF to accommodate the projected output (up to 35 MtHM/year) from the 1300 MW(e) liquid-metal concepts under study. Plans developed within the United States Consolidated Management Office for an initial reactor project have envisioned that cost savings could be realized by delaying the closure of the fuel cycle as long as supplies of plutonium could be obtained relatively inexpensively. This might prove to be only five to ten years, but even that period might be long enough for the fuel cycle costs to be spread over more than one reactor rather than loaded on the initial project. This concept is being explored as is the question of the future coupling of a light water reactor reprocessing industry for plutonium supply to breeder recycle

  1. A premature demise for RERTR [Reduced Enrichment for Research and Test Reactors programme]?

    International Nuclear Information System (INIS)

    Rydell, R.J.

    1990-01-01

    A common commitment from France, Belgium, Germany and the US to eliminate highly enriched uranium from their research reactors is needed to help guard against this material falling into the wrong hands. In the US, an essential part of this commitment would be rekindling the weakened Reduced Enrichment for Research and Test Reactors programme (RERTR). This is an American initiative to develop low-enrichment uranium fuel for research reactors that have previously required weapons-usable material. Underway since 1978 at Argonne National Laboratory, RERTR has achieved some impressive results: the development of higher density, low enriched fuels that are suitable for use at over 90% of the world's research reactors; a net reduction of US exports of highly enriched uranium (HEU) from the annual 700kg levels in the late 1970s to a 1990 level of just over 100kg; the encouragement of international scientific co-operation aimed at developing new fuels and facilitating the conversion of existing reactors to these fuels. However, in recent years, the US commitment to RERTR has been declining -budgets have fallen and advanced fuel development work has terminated. (author)

  2. Storage of spent fuel from power reactors in India management and experience

    International Nuclear Information System (INIS)

    Changrani, R.D.; Bajpai, D.D.; Kodilkar, S.S.

    1999-01-01

    The spent fuel management programme in India is based on closing the nuclear fuel cycle with reprocessing option. This will enable the country to enhance energy security through maximizing utilization of available limited uranium resources while pursuing its Three Stage Nuclear Power Programme. Storage of spent fuel in water pools remains as prevailing mode in the near term. In view of inventory build up of spent fuel, an Away-From-Reactor (AFR) On-Site (OS) spent fuel storage facility has been made operational at Tarapur. Dry storage casks also have been developed as 'add on' system for additional storage of spent fuels. The paper describes the status and experience pertaining to spent fuel storage practices in India. (author)

  3. The French R and D programme for fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Auchapt, P.; Bourgeois, M.; Calame-Longjean, A.; Miquel, P.; Sauteron, J.

    1979-01-01

    The process employed is the Purex process adapted to the specific case of fast breeder reactor fuels. The results achieved have demonstrated that the aqueous method can be applied to these fuels: nearly ten years of operation in the ATl workshop which reprocesses RAPSODIE fuels, and the good results obtained at the Marcoule pilot facility on large batches of fuel attest to this achievement. The CEA effort continues principally on extrapolation to industrial scale, thanks mainly to experiments conducted on industrial prototypes and to the launching of the TOR project, which will, as of 1984, allow reprocessing of FBR fuels on a significant scale, and which will provide extensive additional resources for R and D activities

  4. GENIUS & the Swedish Fast Reactor programme

    International Nuclear Information System (INIS)

    Wallenius, Janne

    2012-01-01

    Concluding remarks: Sweden’s growing fast reactor programme focuses on LFR technology, but we also participate in ASTRID. • An innovative facility for UN fabrication, an LBE thermal hydraulics loop and a lead corrosion facility are operational. • A plutonium fuel fabrication lab is is under installation (this week!) • The government is assessing the construction of ELECTRA-FCC, a centre for Gen IV-system R&D, at a tentative cost of ~ 140±20 M€. • Location: Oskarshamn (adjacent to intermediate repository) • Date of criticality: 2023 (best case) • Swedish participation in IAEA TWG-FR should intensify

  5. Technologies for gas cooled reactor decommissioning, fuel storage and waste disposal. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-09-01

    Gas cooled reactors (GCRs) and other graphite moderated reactors have been important part of the world's nuclear programme for the past four decades. The wide diversity in status of this very wide spectrum of plants from initial design to decommissioning was a major consideration of the International Working group on Gas Cooled Reactors which recommended IAEA to convene a Technical Committee Meeting dealing with GCR decommissioning, including spent fuel storage and radiological waste disposal. This Proceedings includes papers 25 papers presented at the Meeting in three sessions entitled: Status of Plant Decommissioning Programmes; Fuels Storage Status and Programmes; waste Disposal and decontamination Practices. Each paper is described here by a separate abstract

  6. Fabrication of metallic fuel for fast breeder reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arbind; Mittal, R.K.; Prasad, R.S.; Mahule, N.; Kumar, Arun; Prasad, G.J.

    2012-01-01

    Natural uranium oxide fuelled PHWRs comprises of first stage of Indian nuclear power programme. Liquid metal fast breeder reactors fuelled by Pu (from PHWR's) form the second stage. A shorter reactor doubling time is essential in order to accelerate the nuclear power growth in India. Metallic fuels are known to provide shorter doubling times, necessitating to be used as driver fuel for fast breeder reactors. One of the fabrication routes for metallic fuels having random grain orientation, is injection casting technique. The technique finds its basis in an elementary physical concept - the possibility of supporting a liquid column within a tube, by the application of a pressure difference across the liquid interface inside and outside the tube. At AFD, BARC a facility has been set-up for injection casting of uranium rods in quartz tube moulds, demoulding of cast rods, end-shearing of rods and an automated inspection system for inspection of fuel rods with respect to mass, length, diameter and diameter variation along the length and internal and external porosities/voids. All the above facilities have been set-up in glove boxes and have successfully been used for fabrication of uranium bearing fuel rods. The facility has been designed for fabrication and inspection of Pu-bearing metallic fuels also, if required

  7. Safety considerations in the fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Baker, A.R.; Burton, W.R.; Taylor, H.A.

    1977-01-01

    The fuel cycle safety problems for fast reactors, as compared with thermal reactors, are enhanced by the higher fissile content and heat rating of the fuel. Additionally recycling leads to the build up of substantial isotopes which contribute to the alpha and neutron hazards. The plutonium arisings in a nuclear power reactor programme extending into the next century are discussed. A requirement is to be able to return the product plutonium to a reactor about 9 months after the end of irradiation and it is anticipated that progress will be made slowly towards this fuel cycle, having regard to the necessity for maintaining safe and reliable operations. Consideration of the steps in the fuel cycle has indicated that it will be best to store the irradiated fuel on the reactor sites while I131 decays and decay heat falls before transporting and a suitable transport flask is being developed. Reprocessing development work is aimed at the key area of fuel breakdown, the inter-relation of the fuel characteristics on the dissolution of the plutonium and a solvent extract cycle leading to a product suitable for a co-located fabrication plant. Because of the high activity of recycled fuel it is considered that fabrication must move to a fully remote operation as is already the case for reprocessing, and a gel precipitation process producing a vibro compacted fuel is under development for this purpose. The waste streams from the processing plants must be minimised, processed for recovery of plutonium where applicable and then conditioned so that the final products released from the processing cycle are acceptable for ultimate disposal. The safety aspects reviewed cover protection of operators, containment of radioactive materials, criticality and regulation of discharges to the environment

  8. RETU The Finnish research programme on reactor safety 1995-1998. Final Symposium

    International Nuclear Information System (INIS)

    Vanttola, T.

    1998-01-01

    The Reactor Safety (RETU, 1995-1998) research programme concentrated on search of safe limits for nuclear fuel and the reactor core, accident management methods and risk management of nuclear power plants. The total volume of the programme was 100 person years and funding FIM 58 million. This symposium report summarises the research fields, the objectives and the main results obtained. In the field of operational margins of a nuclear reactor, the behaviour of high burnup nuclear fuel was studied both in normal operation and during power transients. The static and dynamic reactor analysis codes were developed and validated to cope with new fuel designs and complicated three-dimensional reactivity transients. Advanced flow models and numerical solution methods for the dynamics codes were developed and tested. Research on accident management developed and validated calculation methods needed to plan preventive measures and to train the personnel to severe accident mitigation. Efforts were made to reduce uncertainties in phenomena important in severe accidents and to study actions planned for accident management. The programme included experimental work, but also participation in large international tests. The Finnish thermal-hydraulic test facility PACTEL was used extensively for the evaluation of the VVER-440 plant accident behaviour, for the validation of the accident analysis computer codes and for the testing of passive safety system concepts for future plant designs. In risk management probabilistic methods were developed for safety related decision making and for complex event sequences. Effects of maintenance on safety were studied and effective methods for assessment of human reliability and safety critical organisations were searched. To enhance human competencies in control of complex environments, practical tools for training and continuous learning were worked out, and methods to evaluate appropriateness of control room design were developed. (orig)

  9. Status of national programmes on fast reactors

    International Nuclear Information System (INIS)

    1994-04-01

    Based on the International Working Group on Fast reactors (IWGFR) members' request, the IAEA organized a special meeting on Fast Reactor Development and the Role of the IAEA in May 1993. The purpose of the meeting was to review and discuss the status and recent development, to present major changes in fast reactor programmes and to recommend future activities on fast reactors. The IWGFR took note that in some Member States large prototypes have been built or are under construction. However, some countries, due to their current budget constraints, have reduced the level of funding for research and development programmes on fast reactors. The IWGFR noted that in this situation the international exchange of information and cooperation on the development of fast reactors is highly desirable and stressed the importance of the IAEA's programme on fast reactors. These proceedings contain important and useful information on national programmes and new developments in sodium cooled fast reactors in Member States. Refs, figs and tabs

  10. Pyrometric fuel particle measurements in pressurised reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R; Joutsenoja, T [Tampere Univ. of Technology (Finland)

    1997-10-01

    A fibre-optic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurised reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverised coal particles at the pressurised entrained flow reactor of VTT Energy in Jyvaeskylae was developed and several series of measurements were made in order to study the effects of oxygen concentration (3-30 vol%) and pressure (0.2-1.0 MPa) on the particle temperature. The fuels used in the experiments were Westerholt, Polish and Goettelborn hvb coals, Gardanne lignite and Niederberg anthracite. The initial nominal fuel particle size varied in the experiments from 70 to 250 ,{mu}m and the gas temperature was typically 1173 K. For the anthracite also the effects of gas temperature (1073-1423K) and CO{sub 2} concentration (6-80 vol%) were studied. In Orleans a fibreoptic pyrometric device was installed to a pressurised thermogravimetric reactor of CNRS and the two-colour temperatures of fuel samples were measured. The fuel in the experiments was pulverised Goettelborn char. The reliability of optical temperature measurement in this particular application was analysed. In Essen a fibre-optic pyrometric technique that is capable to measure bed and fuel particle temperatures was applied to an atmospheric fluidised bed reactor of DMT. The effects of oxygen concentration (3-8 vol%) and bed temperature (1123-1193 K) on the fuel particle temperature were studied. The fuels in these were Westerholt coal and char and EBV-coal. Some results of these measurements are presented. The project belonged to EU`s Joule 2 extension research programme (contract JOU2-CT93-0331). (orig.)

  11. Some Main Results of Commissioning of the Dalat Research Reactor with Low Enriched Fuel

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Luong Ba Vien; Pham Van Lam; Le Vinh Vinh; Huynh Ton Nghiem

    2014-01-01

    After completion of design calculation of the Dalat Nuclear Research Reactor (DNRR) for conversion from high-enriched uranium fuel (HEU) to low-enriched uranium (LEU) fuel, the commissioning programme for DNRR with entire core loaded with LEU fuel was successfully carried out from 24 November 2011 to 13 January 2012. The experimental results obtained during the implementation of commissioning programme showed a good agreement with design calculations and affirmed that the DNRR with LEU core have met all safety and exploiting requirements. (author)

  12. Overview of current research and development programmes for fuel in Japan

    International Nuclear Information System (INIS)

    Shiozawa, S.

    1991-01-01

    The Research and Development (R and D) programmes for HTGR fuel have been performed since 1969 by Japan Atomic Energy Research Institute (JAERI) as a leading organization in Japan. The R and D covers all fields necessary for the construction of the High Temperature Engineering Test Reactor (HTTR), which is the first HTGR in Japan. This R and D includes fuel fabrication, fuel property data, irradiation performance under normal operating conditions, safety-related research and fuel inspection technology. The R and D for the HTTR has been completed from a licensing point of view. Some R and D including future advanced fuel development continue. 2 figs, 3 tabs

  13. Calculation of optimum control rod operation programme for boiling water reactor

    International Nuclear Information System (INIS)

    Fehr, L.

    1978-01-01

    Control rod operation programmes are calculated based on a three dimensional Boiling Water Reactor situation model. The position of the control rods at variosu burn-ups is chosen by an optimisation so that the sum of the square deviations of the load density distribution from an optimum distribution ('Haling' distribution) are minimised. Other conditions are remaining critical and observing the thermal limits for central fuel element melting and critical heat surface loading. As an example, an optimum control rod operation programme for the first cycle in Lengen nuclear power station is calculated and is compared with the programme actually used. (orig.) 891 HP [de

  14. Underwater inspection, repair and reconstitution of water reactor fuel

    International Nuclear Information System (INIS)

    1988-06-01

    On-site fuel examination plays an important role for evaluation of fuel irradiation performance under reactor operating conditions. Also fuel assembly repairs are economically very attractive for operating nuclear utilities. The status of the processes of examination and repair, equipment used and research plans in Member States are reviewed in these Proceedings. All presentations were divided into three sessions: inspection diagnostic: facilities, techniques, and programmes (8 papers); repair and reconstitution techniques (6 papers); power plant experience (6 papers). A separate abstract was prepared for each of these 20 papers. Refs, figs and tabs

  15. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    International Nuclear Information System (INIS)

    Roudier, S.; Badel, D.; Beraha, R.; Champ, M.; Tricot, N.; Tran Dai, P.

    1994-01-01

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: 1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; 2) guidelines for nuclear design and manufacturing requirements related to safety and 3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs

  16. Practice and trends in nuclear fuel licensing in France (pressurized water reactor fuels)

    Energy Technology Data Exchange (ETDEWEB)

    Roudier, S [Direction de la Surete des Installations Nucleaires, Fontenay-aux-Roses (France); Badel, D; Beraha, R [Direction Regionale de l` Industrie, de la Recherche et de l` Environnement Rhone-Alpes, Lyon (France); Champ, M; Tricot, N; Tran Dai, P [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1994-12-31

    The activities of governmental French authorities responsible for safety of nuclear installations are outlined. The main bodies involved in nuclear safety are: the CSSIN (High Council for Nuclear Safety and Information), CINB (Inter-ministerial Commission for Basic Nuclear Installations) and DSIN (Nuclear Installations Safety Directorate). A brief review of the main fuel licensing issues supported by DSIN is given, which includes: (1) formal regularity procedure ensuring the safety of nuclear installations and especially the pressurized water reactors; (2) guidelines for nuclear design and manufacturing requirements related to safety and (3) safety goals and associated limits. The fuel safety documents for reloading as well as the research and development programmes in the field of technical safety are also described. The ongoing experiments in CABRI reactor, aimed at determining the high burnup fuel behaviour under reactivity initiated accidents until 65 GW d/Mt U, are one of these programs.

  17. Replacement of the Pumps for Fuel Channel Cooling Circuit of the Maria Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krzysztoszek, G.; Mieleszczenko, W.; Moldysz, A. [National Centre for Nuclear Research, Otwock–Świerk (Poland)

    2014-08-15

    The high flux Maria research reactor is operated by the National Centre for Nuclear Research in Świerk. It is a pool type reactor with pressurized fuel channels located in the beryllium matrix. According to the Global Threat Reduction Initiative programme our goal is to convert the Maria reactor from HEU to LEU fuel. Hydraulic losses in the new LEU fuel produced by CERCA are about 30% higher than the existing HEU fuel of type MR-6. For the MR-6 fuel were installed four two speed pumps. These pumps performed the function of the main circulations pumps during reactor operation with residual pumping power provided by emergency pumps. In the new system four main pumps will be used for circulating coolant while the reactor is operation with three auxiliary pumps for decay heat removal after reactor shutdown, meaning that the conversion of Maria research reactor will be possible after increasing flow in the primary cooling circuit of the fuel channels. The technical design of replacement of the pumps in the primary fuel channel cooling circuit was finished in April 2011 and accepted by the Safety Committee. After delivery of the new pumps we are planning to upgrade the primary fuel channel cooling circuit during October–November 2012. (author)

  18. The gas-cooled high temperature reactor. Perspectives, problems and programmes

    International Nuclear Information System (INIS)

    Beckurts, K.H.; Engelmann, P.; Erb, D.E.

    1977-01-01

    For nearly 20 years extensive research and development programmes on helium-cooled high temperature reactors (HTR) have been carried out in several countries of the world. As a result of the long-standing efforts, satisfactory solutions have been found for many of the basic problems of this new reactor system, particularly in the field of high temperature fuels and materials technology. Three small experimental plants have been operated successfully over extended periods of time. Prototype steam-cycle plants of 300MW(e) are under way at Fort St. Vrain (full-power operation scheduled for 1977) and at Schmehausen (scheduled for 1979). Major delays have occurred in the construction and commissioning of these plants for various reasons but do not reveal specific problems of the HTR. Commercial market introduction of the steam-cycle electricity generating system has been attempted, but the first approach has not been successful. Major efforts both by governments and industry are now required to ensure a successful second approach. To reach competitivity with established nuclear power systems and to take full advantage of the fuel conservation potential of the HTR requires the implementation of the closed thorium fuel cycle on a commercial scale. While some key steps of this cycle have been implemented on a laboratory scale, progress towards a prototype recycling facility has been slow. Closing the thorium fuel cycle represents a major challenge and can only be achieved in a close international collaboration. The paper discusses the world-wide status and potential of HTR technology and reviews the major international development programmes. (author)

  19. 1982 Annual Status Report Plutonium Fuels and Actinide Programme

    International Nuclear Information System (INIS)

    Lindner, R.

    1983-01-01

    The programme of the Transuranium Institute has long included work on advanced fuels for fast breeder reactors. Study of the swelling of carbide and nitride fuels is now nearing completion, the retention of fission gases in bubbles of different sizes in the fuel having been quantified as function of burn-up and temperature. An important step forward has been achieved in the studies of the Equation of State of Nuclear Fuels up to 5000 K. Formation of some of the less abundant isotopes in PWR fuel has been determined experimentally. Aerosol formation during the fabrication of plutonium containing fuels, part of the activity Safe Handling of Plutonium Fuel has been studied. Head-End Processing of carbide fuels has continued experiments with high burn up mixed carbides. In the field of actinide research the preparation and characterisation of pure specimens is carried out. Effect of actinides on the properties of waste glasses is investigated

  20. Corrosion surveillance programme for Latin American research reactor Al-clad spent fuel in water

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Haddad, R.; Ritchie, I.

    2002-01-01

    The objectives of the IAEA sponsored Regional Technical Co-operation Project for Latin America (Argentina, Brazil, Chile, Mexico, and Peru) are to provide the basic conditions to define a regional strategy for managing spent fuel and to provide solutions, taking into consideration the economic and technological realities of the countries involved. In particular, to determine the basic conditions for managing research reactor spent fuel during operation and interim storage as well as final disposal, and to establish forms of regional cooperation in the four main areas: spent fuel characterization, safety, regulation and public communication. This paper reports the corrosion surveillance activities of the Regional Project and these are based on the IAEA sponsored co-ordinated research project (CRP) on 'Corrosion of research reactor Al-clad spent fuel in water'. The overall test consists of exposing corrosion coupon racks at different spent fuel basins followed by evaluation. (author)

  1. Water reactor fuel characterization. Part of a coordinated programme on non-destructive techniques for reactor fuel characterization

    International Nuclear Information System (INIS)

    Levai, F.

    1983-06-01

    The report describes an optical/mechanical system of examining nuclear reactor fuel bundles by tomographic imaging using high contrast X-ray film. This low cost system does not use expensive detectors or digital computers. The apparatus assembled from ordinary and available components consists of a 2π scanner, a back projector and filters. Although the system described and tested is based on transmission tomography, the report also discusses the extension of the concept to emission tomography

  2. Nuclear fuel burnup calculation in a Voronezh type reactor; Analiza izgaranja nuklearnog goriva u reaktoru tipa Voronjez

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M; Marinkovic, N; Kocic, A [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1977-07-01

    In order to summarize and present our abilities to perform a complex computation of the nuclear fuel burn-up, a systematic review of the available methods, algorithms and computer programmes is given in this paper. The computer programmes quoted have all been developed, modified and tested in our department, so that they can be successfully used in the analysis of nuclear power plants from both physics and economic points of view. For a commercially proven nuclear reactor - reactor of the Voronezh type - an illustrative computation of the fuel burn-up is performed. The typical results are presented and discussed. The conclusion concerns the completion of a modular scheme for the fuel burn-up calculation and the fuel cycle analysis (author)

  3. RERTR programme. French situation in 1996

    International Nuclear Information System (INIS)

    Guidez, J.; Ballagny, A.

    1996-01-01

    This paper summarizes the status of the RERTR Programme in France in 1996. The reactors which are affected by the RERTR Programme are those that consume a considerable amount of fuel. These are the neutron beam reactors Orphee (at Saclay) and RHF (at Grenoble) and the irradiation reactors Osiris (at Saclay) and Siloe (at Grenoble). Plans to construct a new 100 MW, multi-purpose MTR reactor using LEU fuel at the Atomic Research Center at Cadarache are described. Two main topics of fuel research and development are summarized: (1) improving knowledge on the reference silicide fuel, including optimization of the manufacturing process, thermal properties, behavior with cladding failure, etc., and (2) research into low-enriched uranium fuel with a higher U-235 content in order to limit fuel assembly consumption and to improve performance levels. Tests planned in the research and development programme for the silicide fuel are tabulated. The fuel cycle option adopted by the CEA to get rid of spent fuel elements is reprocessing. The 'Caramel' fuel elements consumed in the Osiris reactor until 1995 are currently being reprocessed in CEA facilities at Marcoule. The UAl and UAlx fuel elements irradiated in Siloe and Orphee are currently being reprocessed in the Cogema facilities at Marcoule (Plant UP1). However, the U3Si2 fuel elements irradiated in the Osiris reactor since 1995 will be progressively sent to interim storage dry facilities located at Cadarache. (author)

  4. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs

  5. An evaluation of the results of the HTR fuel programme conducted in the Dragon reactor experiment

    International Nuclear Information System (INIS)

    Shepherd, L.R.

    1982-01-01

    The Dragon Reactor Experiment was used over a period of ten years to investigate the behaviour of HTR fuel elements under realistic service conditions. The purpose of the work was to develop fuel capable of meeting the requirements of commercial power reactors. The studies divided into areas concerned with the mechanical behaviour of the graphite core structure under fast neutron irradiation and the ability of the coated particle fuel to retain fissile products over commercially viable life-cycles. (author)

  6. Status of fast breeder reactors and associated fuel cycle in India

    International Nuclear Information System (INIS)

    Chellapandi, P.

    2009-01-01

    Full text: India is the largest democracy with the current population of about 1.05 billion and is on a road to rapid growth in economy. An impressive average domestic product (GDP) growth rate of about 8 % per year has been achieved in 2006-07 and it is targeted to touch 10 % per year for the next 10 years. Towards realizing this targeted growth, development activities are planned based on well-conceived road map and clear vision. Like elsewhere, the energy and electricity growth in India are also closely linked to growth in economy. Indices of socio-economic development like literacy, longevity, GDP and human development are directly dependent upon the per capita energy consumption of a country. India is aiming to reach at least per capita energy consumption equal to the present world average (2200 kWh/a) by 2030 from the current value of (660 kWh/a). The current installed capacity of ∼138 GW(e) needs to be increased to about 600 GWe by 2030 assuming the population of about 1.4 billion. Energy strategists in the country have realized the importance of judicious mix of energy resources to meet this challenge. A large share of nuclear energy is an inevitable choice in this judicious energy mix from resources, sustainability and environment considerations. The nuclear is expected to contribute about 63 GWe by 2030, which will be steadily increased to 275 GWe by 2052, against the total projected capacity of 1344 GWe. The three stage visionary programme of India envisages Water Reactors (first stage), Fast Breeders with high breeding (second stage) and Thorium based Reactors as third stage. Closed fuel cycle in all stages is an essential ingredient. The success of each stage depends upon expeditious maturity of the earlier stage as India has limited indigenous resources of uranium, but vast resources of thorium. India ranks high in nuclear technology scale with strong R and D, high quality human resources, sound infrastructure, unwavering Government support and

  7. Water reactor fuel research at the Joint Research Centre of the Commission of the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Markgraf, J [HFR Unit, Inst. for Advanced Materials, Petten (Netherlands)

    1997-12-01

    The JRC programmes 1995-1998 are in progress within 8 JRC Institutes located within different research centres situated in five member states of the European Union. Except for the area of reactor safety and waste management, there are no JRC research programmes related to water reactor fuel directly. However, the JRC is providing support on basis of contracts and cooperations to bilateral and international R and D programmes through access to its large test facilities like the High Flux Reactor at the JRC Petten and the hot cell facilities of the Transuranium Institute at the JRC Karlsruhe. Access is available to customers from all over the world. 3 tabs.

  8. Pellet-clad interaction observations in boiling water reactor fuel elements

    International Nuclear Information System (INIS)

    Sahoo, K.C.; Bahl, J.K.; Sivaramakrishnan, K.S.; Roy, P.R.

    1981-01-01

    Under a programme to assess the performance of fuel elements of Tarapur Atomic Power Station, post-irradiation examination has been carried out on 18 fuel elements in the first phase. Pellet-clad mechanical interaction behaviour in 14 elements with varying burnup and irradiation history has been studied using eddy current testing technique. The data has been analysed to evaluate the role of pellet-clad mechanical interaction in PCI/SCC failure in power reactor operating conditions. (author)

  9. Development of French programme on fast reactors, from March 1976 to March 1977

    International Nuclear Information System (INIS)

    Vautrey, L.

    1977-01-01

    The following milestones of the French LMFBR programme are reported: RAPSODIE (irradiation experiments in order to study the behaviour of the different fuel components of a sodium cooled fast reactor); PHENIX (the burn-up of the first core has reached the nominal value of 50,000MWD/T); SUPER-PHENIX (status of construction)

  10. Experiences in the application of quality control and quality assurance programmes in water reactor fuel fabrication

    International Nuclear Information System (INIS)

    Balaramamoorthy, K.; Vijayaraghavan, R.; Kulkarni, P.G.; Raghavan, S.V.; Bandyopadhyay, A.K.

    1984-01-01

    Nuclear fuel for Research Reactors and Pressurised Heavy Water Reactors (PHWRs) is being fabricated in India for a period of over two decades. The fuel is produced to conform to stringent quality control specifications. Generally, the performance of the fuel has been very good in the reactors. This is not only due to the high quality workmanship in the various stages of production but also to the meticulous care exercised in the planning and application of quality control and quality assurance procedures. For the nuclear fuel used in Water Reactors, extensive material specifications have been compiled and they are periodically reviewed and revised. The specifications cover various aspects such as metallurgical and mechanical properties, non-destructive testing, dimensional and visual standard requirements. Similarly, detailed manufacturing engineering instructions (MEIs) and quality control instructions (QCIs) have been drawn. For any deviations from the specified requirements, design concession committee considers all deviations and acceptance or rejection criteria are evolved. In this task, the design concession committee is supported by experimentation in various laboratories of the Department of Atomic Energy. The Quality Assurance procedures have been evolved over a long period of time. They generally conform to the latest code and recommended guides of IAEA regarding Quality Assurance in the manufacture of fuel. (orig.)

  11. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sakurai, Shungo; Ogiya, Shunsuke.

    1990-01-01

    In a fuel assembly, if the entire fuels comprise mixed oxide fuels, reactivity change in cold temperature-power operation is increased to worsen the reactor shutdown margin. The reactor shutdown margin has been improved by increasing the burnable poison concentration thereby reducing the reactivity of the fuel assembly. However, since unburnt poisons are present at the completion of the reactor operation, the reactivity can not be utilized effectively to bring about economical disadvantage. In view of the above, the reactivity change between lower temperature-power operations is reduced by providing a non-boiling range with more than 9.1% of cross sectional area at the inside of a channel at the central portion of the fuel assembly. As a result, the amount of the unburnt burnable poisons is decreased, the economy of fuel assembly is improved and the reactor shutdown margin can be increase. (N.H.)

  12. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  13. Advanced Research Reactor Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Park, H. D.; Kim, K. H. (and others)

    2006-04-15

    RERTR program for non-proliferation has propelled to develop high-density U-Mo dispersion fuels, reprocessable and available as nuclear fuel for high performance research reactors in the world. As the centrifugal atomization technology, invented in KAERI, is optimum to fabricate high-density U-Mo fuel powders, it has a great possibility to be applied in commercialization if the atomized fuel shows an acceptable in-reactor performance in irradiation test for qualification. In addition, if rod-type U-Mo dispersion fuel is developed for qualification, it is a great possibility to export the HANARO technology and the U-Mo dispersion fuel to the research reactors supplied in foreign countries in future. In this project, reprocessable rod-type U-Mo test fuel was fabricated, and irradiated in HANARO. New U-Mo fuel to suppress the interaction between U-Mo and Al matrix was designed and evaluated for in-reactor irradiation test. The fabrication process of new U-Mo fuel developed, and the irradiation test fuel was fabricated. In-reactor irradiation data for practical use of U-Mo fuel was collected and evaluated. Application plan of atomized U-Mo powder to the commercialization of U-Mo fuel was investigated.

  14. Research reactor de-fueling and fuel shipment

    International Nuclear Information System (INIS)

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-01-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures

  15. Behaviour of gas cooled reactor fuel under accident conditions

    International Nuclear Information System (INIS)

    1991-11-01

    The Specialists Meeting on Behaviour of Gas Cooled Reactor Fuel under Accident Conditions was convened by the International Atomic Energy Agency on the recommendation of the International Working Group on Gas Cooled Reactors. The purpose of the meeting was to provide an international forum for the review of the development status and for the discussion on the behaviour of gas cooled reactor fuel under accident conditions and to identify areas in which additional research and development are still needed and where international co-operation would be beneficial for all involved parties. The meeting was attended by 45 participants from France, Germany, Japan, Switzerland, the Union of Soviet Socialists Republics, the United Kingdom, the United States of America, CEC and the IAEA. The meeting was subdivided into five technical sessions: Summary of Current Research and Development Programmes for Fuel; Fuel Manufacture and Quality Control; Safety Requirements; Modelling of Fission Product Release - Part I and Part II; Irradiation Testing/Operational Experience with Fuel Elements; Behaviour at Depressurization, Core Heat-up, Power Transients; Water/Steam Ingress - Part I and Part II. 22 papers were presented. A separate abstract was prepared for each of these papers. At the end of the meeting a round table discussion was held on Directions for Future R and D Work and International Co-operation. Refs, figs and tabs

  16. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  17. Power ramping test in the JMTR for PCI study of water reactor fuel

    International Nuclear Information System (INIS)

    Nakata, H.; Kanbara, M.; Ichikawa, M.

    1984-01-01

    Power ramping test is essential for PCI study of water reactor fuel. Boiling water capsules have been used for the tests in the JMTR. Heat generation of fuel rod in the capsule can be changed by the He-3 power control facility during reactor operation. Four specially designed fuel rods have been ramped to about 41-43 kW/m; two of them have small gaps filled with iodine, the other two are equipped with centerline temperature thermocouple. Fuel rod elongation detector is equipped to each capsule. For the fuel rods with small gap, unique contraction followed by ordinary fuel relaxation behaviour was observed right after the fast ramping. None of them failed. Future programme includes a series of tests of fuel rods irradiated in the high-pressure water loop at the JMTR and a verification test of remedy fuel which allows daily-load-following operation of BWRs. (author)

  18. In-pile measurements and PCI fuel modelling of WWER reactors

    International Nuclear Information System (INIS)

    Krett, V.; Novak, J.; Pazdera, F.; Smid, J.

    1984-01-01

    Summary information concerning development of the CEFEUS modular code for the fuel element reliability evaluation is presented in the paper. A concise description of particular modules connected with appropriate experiments is given. The results and aims of irradiation experiments with light water reactor diagnostic assemblies and the post-irradiation examination programme of these assemblies are also briefly discussed. (author)

  19. High Temperature Gas Cooled Reactor Fuels and Materials

    International Nuclear Information System (INIS)

    2010-03-01

    At the third annual meeting of the technical working group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), held in Vienna, in 2004, it was suggested 'to develop manuals/handbooks and best practice documents for use in training and education in coated particle fuel technology' in the IAEA's Programme for the year 2006-2007. In the context of supporting interested Member States, the activity to develop a handbook for use in the 'education and training' of a new generation of scientists and engineers on coated particle fuel technology was undertaken. To make aware of the role of nuclear science education and training in all Member States to enhance their capacity to develop innovative technologies for sustainable nuclear energy is of paramount importance to the IAEA Significant efforts are underway in several Member States to develop high temperature gas cooled reactors (HTGR) based on either pebble bed or prismatic designs. All these reactors are primarily fuelled by TRISO (tri iso-structural) coated particles. The aim however is to build future nuclear fuel cycles in concert with the aim of the Generation IV International Forum and includes nuclear reactor applications for process heat, hydrogen production and electricity generation. Moreover, developmental work is ongoing and focuses on the burning of weapon-grade plutonium including civil plutonium and other transuranic elements using the 'deep-burn concept' or 'inert matrix fuels', especially in HTGR systems in the form of coated particle fuels. The document will serve as the primary resource materials for 'education and training' in the area of advanced fuels forming the building blocks for future development in the interested Member States. This document broadly covers several aspects of coated particle fuel technology, namely: manufacture of coated particles, compacts and elements; design-basis; quality assurance/quality control and characterization techniques; fuel irradiations; fuel

  20. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.

    1987-01-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. The concept evolved in the 1960's with the objective of developing a reactor design which could be used for a wide range of mobile power generation systems including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests and in-reactor irradiation tests using cermet fuel were carried out by General Electric in the 1960's as part of the 710 Development Program and by Argonne National laboratory in a subsequent activity. Cermet fuel development programs are currently underway at Argonne National laboratory and Pacific Northwest Laboratory as part of the Multi-Megawatt Space Power Program. Key features of the cermet fueled reactor design are 1) the ability to achieve very high coolant exit temperatures, and 2) thermal shock resistance during rapid power changes, and 3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, there is a potential for achieving a long operating life because of 1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and 2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core

  1. PWR and BWR light water reactor systems in the USA and their fuel cycle

    International Nuclear Information System (INIS)

    Crawford, W.D.

    1977-01-01

    Light water reactor operating experience in the USA can be considered to date from the choice of the PWR for use in the naval reactor programme and the subsequent construction and operation of the nuclear power plant at Shippingport in 1957. The development of the BWR in 1954 and its selection for the plant at Dresden in 1959 established this concept as the other major reactor type in the US nuclear power programme. The subsequent growth profile is presented. A significant operating record has been accumulated concerning the availability of each of these reactor types. In addition, the use and performance of BWRs and PWRs in meeting system load requirements is discussed. The growing concern regarding possible terrorist activities and other potential threats has resulted in systems and procedures designed to ensure effective safeguards at nuclear power installations; current measures are described. Environmental effects of operating plants are subject to both radiological and non-radiological monitoring. The operating results achieved and the types of modifications that have been required of operating plants by the Nuclear Regulatory Commission are reviewed. Both fuel cycles are examined in terms of: fuel burnup experience and prospects for improvement; natural uranium resources; enrichment capacity; reprocessing and recycle; and the interrelationships among the latter three factors. High-level waste management currently involving on-site storage of spent fuel is discussed in terms of available capacity and plans for expansion. The US electric utility industry viewpoint regarding an ultimate programme for waste management is outlined. Finally, the current economics and future cost trends of nuclear power plants are evaluated. (author)

  2. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  3. Status and programme for the fast breeder reactor in the UK

    International Nuclear Information System (INIS)

    Franklin, N.L; Hill, J.

    1977-01-01

    The paper briefly reviews the long standing objectives and strategy for the introduction of the Fast Breeder Reactor in the U.K. and goes on to comment upon the early operation of the prototype PFR and on the status of the design of the first commercial demonstration plant DFR 1. The arrangements for the supporting technology and component development are discussed together with the contributions that can follow from collaboration. The out-of-pile fuel cycle, so critical to the success of the fast reactor power programme, has its principal objectives and timescales identified and these form the bases of the several U.K. papers that follow in this Conference

  4. Data for FUMEX: Results from fuel behavior studies at the OECD Halden Reactor Project for model validation and development

    International Nuclear Information System (INIS)

    Wiesenack, W.

    1997-01-01

    Investigations of phenomena associated with extended or high burn-up are an important part of the fuel and materials testing programme carried out at the OECD Halden Reactor Project. The in-core studies comprise long term fuel rod behavior as well as the response to power ramps. Performance is assessed through measurements of fuel centre temperature, rod pressure, elongation of cladding and fuel stack, and cladding diameter changes obtained during full power reactor operation. Data from fuel behavior studies at the OECD Halden Reactor Project, provided for the IAEA co-ordinated research programme FUMEX, are used to elucidate short and long-term developments of fuel behavior. The examples comprise: fuel conductivity degradation manifested as a gradual temperature increase with burn-up; the influence of a combination of small gap/high fission gas release on fuel centre temperature (situation at high burn-up); fission gas release during normal operation and power ramps, and the possibility of a burn-up enhancement; PCMI reflected by cladding elongation, also for the case of a nominally open gap, and the change of interaction onset with burn-up. (author). 10 refs, 9 figs, 1 tab

  5. Data for FUMEX: Results from fuel behavior studies at the OECD Halden Reactor Project for model validation and development

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenack, W [Institutt for Energiteknikk, Halden (Norway). OECD Halden Reaktor Projekt

    1997-08-01

    Investigations of phenomena associated with extended or high burn-up are an important part of the fuel and materials testing programme carried out at the OECD Halden Reactor Project. The in-core studies comprise long term fuel rod behavior as well as the response to power ramps. Performance is assessed through measurements of fuel centre temperature, rod pressure, elongation of cladding and fuel stack, and cladding diameter changes obtained during full power reactor operation. Data from fuel behavior studies at the OECD Halden Reactor Project, provided for the IAEA co-ordinated research programme FUMEX, are used to elucidate short and long-term developments of fuel behavior. The examples comprise: fuel conductivity degradation manifested as a gradual temperature increase with burn-up; the influence of a combination of small gap/high fission gas release on fuel centre temperature (situation at high burn-up); fission gas release during normal operation and power ramps, and the possibility of a burn-up enhancement; PCMI reflected by cladding elongation, also for the case of a nominally open gap, and the change of interaction onset with burn-up. (author). 10 refs, 9 figs, 1 tab.

  6. UK experience on fuel and cladding interaction in oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Batey, W [Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom); Findlay, J R [AERE, Harwell, Didcot, Oxon (United Kingdom)

    1977-04-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed.

  7. UK experience on fuel and cladding interaction in oxide fuels

    International Nuclear Information System (INIS)

    Batey, W.; Findlay, J.R.

    1977-01-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed

  8. Reactor transients tests for SNR fuel elements in HFR reactor

    International Nuclear Information System (INIS)

    Plitz, H.

    1989-01-01

    In HFR reactor, fuel pins of LMFBR reactors are putted in irradiation specimen capsules cooled with sodium for reactor transients tests. These irradiation capsules are instrumented and the experiences realized until this day give results on: - Fuel pins subjected at a continual variation of power - melting fuel - axial differential elongation of fuel pins

  9. IAEA programme on nuclear fuel cycle and materials technologies - 2009

    International Nuclear Information System (INIS)

    Killeen, J.

    2009-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) Delayed Hydride Cracking (DHC); 2) Structural Materials Radiation Effects (SMoRE); 3) Water Chemistry (FUWAC) and 4) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel assembly damage that did not result in breach of the fuel rod cladding, such as assembly bow or crud deposition an the experience with these unexpected fuel issues shows that they can seriously affect plant operations, and it is clear that concerns about reliability in this area are of similar importance today as fuel rod failures, at least for LWR fuel are discussed. Detection, examination and analysis of fuel failures and description of failures and mitigation measures as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications, including extraction, forming, properties and irradiation experience are presented

  10. Interim dry fuel storage for magnox reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, N [National Nuclear Corporation, Risley, Warrington (United Kingdom); Ealing, C [GEC Energy Systems Ltd, Whetstone, Leicester (United Kingdom)

    1985-07-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility.

  11. Interim dry fuel storage for magnox reactors

    International Nuclear Information System (INIS)

    Bradley, N.; Ealing, C.

    1985-01-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility

  12. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  13. Fuel exchanger in FBR type reactor

    International Nuclear Information System (INIS)

    Shinden, Kazuhiko; Tanaka, Osamu.

    1990-01-01

    The present invention concerns a fuel exchanger for exchanging fuels in an LMFBR type reactor using liquid metals as coolants. An outer gripper cylinder rotating device for rotating an outer gripper cylinder that holds a gripper is driven, to lower the gripper driving portion and the outer gripper cylinder, fuels are caught by the finger at the top end of the outer gripper cylinder and elevated to extract the fuels from the reactor core. Then, the gripper driving portion casing and the outer gripper cylinder are rotated to rotate the fuels caught by the gripper. Subsequently, the gripper driving portion and the outer gripper cylinder are lowered to charge the fuels in the reactor core. This can directly shuffle the fuels in the reactor core without once transferring the fuels into a reactor storing pot and replacing with other fuels, thereby shortening the shuffling time. (I.N.)

  14. Reactor fuel charging equipment

    International Nuclear Information System (INIS)

    Wade, Elman.

    1977-01-01

    In many types of reactor fuel charging equipment, tongs or a grab, attached to a trolley, housed in a guide duct, can be used for withdrawing from the core a selected spent fuel assembly or to place a new fuel assembly in the core. In these facilities, the trolley may have wheels that roll on rails in the guide duct. This ensures the correct alignment of the grab, the trolley and fuel assembly when this fuel assembly is being moved. By raising or lowering such a fuel assembly, the trolley can be immerged in the coolant bath of the reactor, whereas at other times it can be at a certain level above the upper surface of the coolant bath. The main object of the invention is to create a fuel handling apparatus for a sodium cooled reactor with bearings lubricated by the sodium coolant and in which the contamination of these bearings is prevented [fr

  15. Overview of EU research activities in transmutation and innovative reactor systems within the Euratom framework programmes

    International Nuclear Information System (INIS)

    Bhatnagar, V.

    2009-01-01

    European Community (EC) (currently 27 Member States) shared-cost research has been organised in Framework Programmes (FP) of durations of 4 - 5 years since 1984. The 6th European Atomic Energy Community (EURATOM) Framework Programme (2002 - 06) and the current 7th FP (2007 - 11) have been allocated a fission research budget respectively of 209 and 287 Million Euro from the EC. There are 10 projects (total budget 70 M Euro, EC contribution 38 M Euro) in all aspects of transmutation ranging from road-mapping exercise to large integrated projects on accelerator driven systems, lead-cooled fast critical systems for waste transmutation, technology, fuel, accelerator facilities for nuclear data etc. In Innovative Reactor concepts, there are about half-a-dozen projects (total budget 30 M Euro, EC contribution 16 M Euro) including High Temperature Reactors, Gas-cooled Fast reactors, road-mapping exercise on sodium fast reactors etc. The main research and training activities in FP7 are: management of radioactive waste, reactor systems, radiation protection, infrastructures, human resources and mobility and training. In the two call for proposals (2007 and 2008) in FP7, 8 projects have been accepted in transmutation and innovative reactor concepts (total budget 53 M Euro, EC contribution 32 M Euro). These research projects cover activities ranging from materials, fuels, treatment of irradiated graphite waste, European sodium fast reactor to the establishment of a Central Design Team of a fast-spectrum transmutation device in Europe. The third call for proposals is underway requesting proposals on nuclear data, thermal hydraulics, gas and lead-cooled fast reactor systems with a total EC budget of 20 M Euro. International collaboration is an important element of the EU research policy. This overview paper will present elements of the strategy of EURATOM research and training in waste management including accelerator driven transmutation systems and Innovative reactor concepts

  16. Power from plutonium: fast reactor fuel

    International Nuclear Information System (INIS)

    Bishop, J.F.W.

    1981-01-01

    Points of similarity and of difference between fast reactor fuel and fuels for AGR and PWR plants are established. The flow of uranium and plutonium in fast and thermal systems is also mentioned, establishing the role of the fast reactor as a plutonium burner. A historical perspective of fast reactors is given in which the substantial experience accumulated in test and prototype is indicated and it is noted that fast reactors have now entered the commercial phase. The relevance of the data obtained in the test and prototype reactors to the behaviour of commercial fast reactor fuel is considered. The design concepts employed in fuel are reviewed, including sections on core support styles, pin support and pin detail. This is followed by a discussion of current issues under the headings of manufacture, performance and reprocessing. This section includes a consideration of gel fuel, achievable burn-up, irradiation induced distortions and material choices, fuel form, and fuel failure mechanisms. Future development possibilities are also discussed and the Paper concludes with a view on the logic of a UK fast reactor strategy. (U.K.)

  17. CANDU reactors with reactor grade plutonium/thorium carbide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Atilim Univ., Ankara (Turkey). Faculty of Engineering; Khan, Mohammed Javed; Ahmed, Rizwan [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Gazi Univ., Ankara (Turkey). Faculty of Technology

    2011-08-15

    Reactor grade (RG) plutonium, accumulated as nuclear waste of commercial reactors can be re-utilized in CANDU reactors. TRISO type fuel can withstand very high fuel burn ups. On the other hand, carbide fuel would have higher neutronic and thermal performance than oxide fuel. In the present work, RG-PuC/ThC TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 60%. The fuel compacts conform to the dimensions of sintered CANDU fuel compacts are inserted in 37 zircolay rods to build the fuel zone of a bundle. Investigations have been conducted on a conventional CANDU reactor based on GENTILLYII design with 380 fuel bundles in the core. Three mixed fuel composition have been selected for numerical calculation; (1) 10% RG-PuC + 90% ThC; (2) 30% RG-PuC + 70% ThC; (3) 50% RG-PuC + 50% ThC. Initial reactor criticality values for the modes (1), (2) and (3) are calculated as k{sub {infinity}}{sub ,0} = 1.4848, 1.5756 and 1.627, respectively. Corresponding operation lifetimes are {proportional_to} 2.7, 8.4, and 15 years and with burn ups of {proportional_to} 72 000, 222 000 and 366 000 MW.d/tonne, respectively. Higher initial plutonium charge leads to higher burn ups and longer operation periods. In the course of reactor operation, most of the plutonium will be incinerated. At the end of life, remnants of plutonium isotopes would survive; and few amounts of uranium, americium and curium isotopes would be produced. (orig.)

  18. Crud deposition on fuel in WWER reactors

    International Nuclear Information System (INIS)

    Kysela, J.; Svarc, V.; Androva, K.; Ruzickova, M.

    2008-01-01

    Reliability of nuclear fuel and radiation fields surrounding primary systems are important aspects of overall nuclear reactor safety. Corrosion product (crud) deposition on fuel surfaces has implications for fuel performance through heat transfer and local chemistry modifications. Crud is currently one of the key industry issues and has been implicated in several recent cases of crud-related fuel failures and core plugging. Activated crud is deposited on out-of-core surfaces, mainly steam generators, resulting in high radiation fields and high doses of plant staff. Due to radiation build-up in primary circuit systems, decontamination of primary systems components and steam generators is used. Several issues involving decontamination were observed in some cases. After decontamination higher corrosion product release occurs followed by subsequent crud deposition on fuel surfaces. The paper summarizes experience with water chemistry and decontamination that can influence crud deposition on fuel surfaces. The following areas are discussed: 1) Experience with crud deposition, primary water chemistry and decontamination under operating conditions; 2) The behaviour of organic compounds in primary coolant and on fuel surfaces; 3) A proposed experimental programme to study crud deposition. (authors)

  19. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor; Marshall, Frances M.; Adelfang, Pablo; Bradley, Edward [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina Elena [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris La Defense (France)

    2016-03-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. In the future inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. The IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, drew up a report presenting available reprocessing and recycling services for RR SNF. This paper gives an overview of the report, which will address all aspects of reprocessing and recycling services for RR SNF.

  20. Research reactor fuel - an update

    International Nuclear Information System (INIS)

    Finlay, M.R.; Ripley, M.I.

    2003-01-01

    In the two years since the last ANA conference there have been marked changes in the research reactor fuel scene. A new low-enriched uranium (LEU) fuel, 'monolithic' uranium molybdenum, has shown such promise in initial trials that it may be suitable to meet the objectives of the Joint Declaration signed by Presidents Bush and Putin to commit to converting all US and Russian research reactors to LEU by 2012. Development of more conventional aluminium dispersion UMo LEU fuel has continued in the meantime and is entering the final qualification stage of multiple full sized element irradiations. Despite this progress, the original 2005 timetable for UMo fuel qualification has slipped and research reactors, including the RRR, may not convert from silicide to UMo fuel before 2007. The operators of the Swedish R2 reactor have been forced to pursue the direct route of qualifying a UMo lead test assembly (LTA) in order to meet spent fuel disposal requirements of the Swedish law. The LTA has recently been fabricated and is expected to be loaded shortly into the R2 reactor. We present an update of our previous ANA paper and details of the qualification process for UMo fuel

  1. Asymptotic estimation of reactor fueling optimal strategy

    International Nuclear Information System (INIS)

    Simonov, V.D.

    1985-01-01

    The problem of improving the technical-economic factors of operating. and designed nuclear power plant blocks by developino. internal fuel cycle strategy (reactor fueling regime optimization), taking into account energy system structural peculiarities altogether, is considered. It is shown, that in search of asymptotic solutions of reactor fueling planning tasks the model of fuel energy potential (FEP) is the most ssuitable and effective. FEP represents energy which may be produced from the fuel in a reactor with real dimensions and power, but with hypothetical fresh fuel supply, regime, providing smilar burnup of all the fuel, passing through the reactor, and continuous overloading of infinitely small fuel portion under fule power, and infinitely rapid mixing of fuel in the reactor core volume. Reactor fuel run with such a standard fuel cycle may serve as FEP quantitative measure. Assessment results of optimal WWER-440 reactor fresh fuel supply periodicity are given as an example. The conclusion is drawn that with fuel enrichment x=3.3% the run which is 300 days, is economically justified, taking into account that the cost of one energy unit production is > 3 cop/KW/h

  2. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 3. Programmer's manual. Final report

    International Nuclear Information System (INIS)

    Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.

    1983-05-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear-reactor-core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This is Volume 3, the Programmer's Manual. It explains the codes' structures and the computer interfaces

  3. Reactor physics modelling of accident tolerant fuel for LWRs using ANSWERS codes

    International Nuclear Information System (INIS)

    Lindley, B.A.; Lillington, J.N.; Kotlyar, D.; Parks, G.T.; Petrovic, B.

    2016-01-01

    The majority of nuclear reactors operating in the world today and similarly the majority of near-term new build reactors will be LWRs. These currently accommodate traditional Zr clad UO_2/PuO_2 fuel designs which have an excellent performance record for normal operation. However, the events at Fukushima culminated in significant hydrogen production and hydrogen explosions, resulting from high temperature Zr/steam interaction following core uncovering for an extended period. These events have resulted in increased emphasis towards developing more accident tolerant fuels (ATFs)-clad systems, particularly for current and near-term build LWRs. R and D programmes are underway in the US and elsewhere to develop ATFs and the UK is engaging in these international programmes. Candidate advanced fuel materials include uranium nitride (UN) and uranium silicide (U_3Si_2). Candidate cladding materials include advanced stainless steel (FeCrAl) and silicon carbide. The UK has a long history in industrial fuel manufacture and fabrication for a wide range of reactor systems including LWRs. This is supported by a national infrastructure to perform experimental and theoretical R and D in fuel performance, fuel transient behaviour and reactor physics. In this paper, an analysis of the Integral Inherently Safe LWR design (I"2S-LWR), a reactor concept developed by an international collaboration led by the Georgia Institute of Technology, within a US DOE Nuclear Energy University Program (NEUP) Integrated Research Project (IRP) is considered. The analysis is performed using the ANSWERS reactor physics code WIMS and the EDF Energy core simulator PANTHER by researchers at the University of Cambridge. The I"2S-LWR is an advanced 2850 MWt integral PWR with inherent safety features. In order to enhance the safety features, the baseline fuel and cladding materials that were chosen for the I"2S-LWR design are U_3Si_2 and advanced stainless steel respectively. In addition, the I"2S-LWR design

  4. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Aoyama, Motoo; Koyama, Jun-ichi; Uchikawa, Sadao; Bessho, Yasunori; Nakajima, Akiyoshi; Maruyama, Hiromi; Ozawa, Michihiro; Nakamura, Mitsuya.

    1990-01-01

    The present invention concerns fuel assemblies charged in a BWR type reactor and the reactor core. The fuel assembly comprises fuel rods containing burnable poisons and fuel rods not containing burnable poisons. Both of the highest and the lowest gadolinia concentrations of the fuel rods containing gadolinia as burnable poisons are present in the lower region of the fuel assembly. This can increase the spectral shift effect without increasing the maximum linear power density. (I.N.)

  5. Preparation of the National Radioactive Waste and Spent Fuel Management Programme in Slovenia

    International Nuclear Information System (INIS)

    Kralj, M.; Zeleznik, N.; Mele, I.; Veselic, M.

    2006-01-01

    spent fuel: nuclear power plant, research reactor, small producers in the industry, medicine, research and army, uranium mine in decommissioning, storage facilities and naturally occurring radioactive material with a considerable radiation. ARAO identified the existing and possible future problems and proposed the technical solutions and action plans for two distinctive periods: 2005-2008 and 2009-2013. The necessary financial, technical and human resources were evaluated and the requirements to fulfil the programme were described. The core activities of the radioactive waste management in this period is siting and construction of the LILW repository, the final closure and decommissioning of the uranium mine, providing the complete control over the institutional waste, identification of TENORM sources and harmonisation of nuclear legislation with the environmental, spatial and construction legislation. (author)

  6. Method of reactor fueling

    International Nuclear Information System (INIS)

    Saito, Toshiro.

    1983-01-01

    Purpose: To decrease the cost and shorten the working time by saving fueling neutron detectors and their components. Method: Incore drive tubes for the neutron source range monitor (SRM) and intermediate range monitor (IRM) are disposed respectively within in a reactor core and a SRM detector assembly is inserted to the IRM incore drive tube which is most nearest to the neutron source upon reactor fueling. The reactor core reactivity is monitored by the SRM detector assembly. The SRM detector asesembly inserted into the IRM drive tube is extracted at the time of charging fuels up to the frame connecting the SRM and, thereafter, IRM detection assembly is inserted into the IRM drive tube and the SRM detector assembly is inserted into the SRM drive tube respectively for monitoring the reactor core. (Sekiya, K.)

  7. Gaseous fuel reactors for power systems

    Science.gov (United States)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  8. Research activities on high-temperature gas-cooled reactors (HTRs) in the 5. EURATOM RTD Framework programme

    International Nuclear Information System (INIS)

    Martin-Bermejo, J.; Hugon, M.; Van Goethem, G.

    2002-01-01

    One of the areas of research of the 'nuclear fission' key action of the 5. EURATOM RTD Framework Programme (FP5) is the safety and efficiency of future systems. The main objective of this area is to investigate and evaluate new or revisited concepts (both reactors and alternative fuels) for nuclear energy that offer potential longer term benefits in terms of cost, safety, waste management, use of fissile material, less risk of diversion and sustainability. Several projects related to high-temperature gas-cooled reactors (HTRs) were retained by the European Commission (EC) services. They address important issues such as HTR fuel technology, HTR fuel cycle, HTR materials, power conversion systems and licensing. Most of these projects have already started and are progressing according to the schedule. They are the initial core of activities of a European Network on 'High-temperature Reactor Technology' (HTR-TN) recently set up by 18 EU organisations. (authors)

  9. Research reactor support

    International Nuclear Information System (INIS)

    2005-01-01

    spent research reactor fuel to the country of origin under the U.S. Spent Fuel Acceptance Program and the Russian Research Reactor Fuel Return program. This includes the provision of handbooks on technical and administrative preparations for shipping the fuel, as well as training courses. In addition the IAEA provides evaluation of the current status, progress and trends of research reactor spent fuel storage projects or national programmes in this field, present proven technologies and/or organizational/managerial practices that can serve as models to solve specific issues. It also assists in specific areas such as: assessment of infrastructure required to plan and implement research reactor spent fuel storage (wet or dry), improvement of management practices, implementation of water quality programmes, implementation of corrosion surveillance programmes and assessment of costs associated with research reactors spent fuel storage

  10. Design of the Fuel Element for the RRR Reactor (Australia)

    International Nuclear Information System (INIS)

    Estevez, E.A.; Markiewicz, M.E.; Gerding, R.

    2003-01-01

    The supply to the Replacement Research Reactor ( RRR ) to Australia represents a technological goal for our country, as much for the designers and manufacturers of this irradiation facility ( Invap SE ), as well for the responsibles of the fuel elements ( FE ) design and the suppliers of the first core ( CNEA ).In relation with the FE, although the conceptual design and fabrication technology of the FE are similar to the just developed and qualified by CNEA ( plane plates MTR fuel type ), the characteristics of this new reactor imposes most severe operation conditions on them than in previous supplies.In that sense, two distinguishing characteristics deserve to be shown: a) The magnitude of the hydrodynamics loads acting on the FE due to the coolant ascendent flow direction, and mainly, the very high flow velocities between the fuel plates ( aproximately five times higher than which presents in others Argentine FE actually in operation. b) The use of U3Si2 as fuel material.CNEA has started a programme to qualify this type of fuel.As result of these higher loads under irradiations and with the objective to maintain the high reliability level reached by our FE ( very low failure rates ), it was necessary to introduce FE mechanical-structural design modifications respect to the ECBE or standard design version, and to verify these changes through hydrodynamics tests on a 1:1 scale prototype.In this paper it is described the mechanical-structural FE design with special emphasis in the innovatives aspects incorporated.The design criteria established in function of the solicitations and limitating effects present under irradiation conditions.Also, a brief description of the proposed programme to verify and evaluate this design is presented, including analytical and numerical calculus of stresses acting on the fuel plates and others FE components, pressure loss hydrodynamics tests and endurance essays

  11. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  12. Fast reactor fuel design and development

    International Nuclear Information System (INIS)

    Bishop, J.F.W.; Chamberlain, A.; Holmes, J.A.G.

    1977-01-01

    Fuel design parameters for oxide and carbide fast reactor fuels are reviewed in the context of minimising the total uranium demands for a combined thermal and fast reactor system. The major physical phenomena conditioning fast reactor fuel design, with a target of high burn-up, good breeding and reliable operation, are characterised. These include neutron induced void swelling, irradiation creep, pin failure modes, sub-assembly structural behaviour, behaviour of defect fuel, behaviour of alternative fuel forms. The salient considerations in the commercial scale fabrication and reprocessing of the fuels are reviewed, leading to the delineation of possible routes for the manufacture and reprocessing of Commercial Reactor fuel. From the desiderata and restraints arising from Surveys, Performance and Manufacture, the problems posed to the Designer are considered, and a narrow range of design alternatives is proposed. The paper concludes with a consideration of the development areas and the conceptual problems for fast reactors associated with those areas

  13. Administrative Aspects of the Criticality Controls Used in Programmes for Basic Criticality Research, Reactor Development and Materials Processing

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D. P.; Giessing, D. F. [Operational Safety Division, USAEC Albuquerque Operations Office, NM (United States)

    1966-05-15

    This paper describes the administrative and procedural aspects of criticality controls used by a field office of the United States Atomic Energy Commission in programmes that include reactor criticals, research and materials testing reactors, and power reactor development. Situations encountered include handling, storing, and processing large quantities of uranium-235 and plutonium-239 of various configurations and compositions in laboratories and operations which gather basic criticality data, processing of fissile material, and varied reactor research and development, programmes including fuel materials. Similar situations exist for uranium-233 and plutonium-238 on a smaller laboratory scale. The administrative controls and interactions of the USAEC field office and the operating contractors, who operate these installations for the USAEC, are outlined. Also, the purpose and scope of the direct examination by USAEC personnel of these contractor facilities are analysed. The programme has been in effect for three years and is believed to be successful in maintaining efficient operations and an acceptable low level of risk of inadvertent criticality. Success of this programme is in good measure due to the close working relationship between the staffs of the USAEC field office and the operating contractors. (author)

  14. Irradiation Experiments on Plutonium Fuels for Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Frost, B. R.T.; Wait, E. [Atomic Energy Research Establishment Harwell, Berks. (United Kingdom)

    1967-09-15

    An assessment carried out some years ago indicated that cermet fuels might provide the high burn-up and integrity required for fast reactors. An irradiation programme was started at Harwell on (U, Pu)O{sub 2} -SS cermet plates and rods, mainly In thermal neutron fluxes, to gain experience of dimensional stability at temperatures typical of modern sodium-cooled fast reactor designs (600-650 Degree-Sign C). A subsequent assessment showed that cermets carried a large penalty as far as breeding was concerned and (U, Pu)C was chosen by Harwell for long-term study as an alternative, economic, fast reactor fuel. However, the results from the cermet experiments were of sufficient promise to proceed with parallel irradiation programmes on cermets and carbide. The studies of cermets showed that dimensional instability (swelling and cladding rupture) were caused by the pressures exerted on the steel matrix by the fuel particles, and that the initial density of the fuel particles was important in determining the burn-up at which failure occurred. Further, it was shown that cermets provided a useful vehicle for studying the changes occurring in oxide fuel particles with increasing burn-up. The disappearance of initial porosity and its replacement by fission gas bubbles and segregated solid fission products was studied in some detaiL No significant differences were observed between UO{sub 2} and(U,Pu)O{sub 2} particles. The initial studies of (U, Pu)C were concerned with the effect of varying composition and structure on swelling and fission gas release. A tantalum-lined nickel alloy cladding material was used to contain both pellet and powder specimens In an irradiation experiment in the core of the Dounreay fast reactor. This showed that the presence of a metal phase in the fuel led to a high swelling rate, that fission gas release was low up to {approx} 3% bum-up, and that a low density powder accommodated the swelling without excessive straining of the can. A subsequent

  15. Fuel assembly for FBR type reactor and reactor core thereof

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru.

    1998-01-01

    The present invention provides a fuel assembly to be loaded to a reactor core of a large sized FBR type reactor, in which a coolant density coefficient can be reduced without causing power peaking in the peripheral region of neutron moderators loaded in the reactor core. Namely, the fuel assembly for the FBR type reactor comprises a plurality of fission product-loaded fuel rods and a plurality of fertile material-loaded fuel rods and one or more rods loading neutron moderators. In this case, the plurality of fertile material-loaded fuel rods are disposed to the peripheral region of the neutron moderator-loaded rods. The plurality of fission product-loaded fuel rods are disposed surrounding the peripheral region of the plurality of fertile material-loaded fuel rods. The neutron moderator comprises zirconium hydride, yttrium hydride and calcium hydride. The fission products are mixed oxide fuels. The fertile material comprises depleted uranium or natural uranium. (I.S.)

  16. Corrosion of research reactor aluminium clad spent fuel in water. Additional information

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  17. Cermet fuel behaviour and properties in ADS reactors

    International Nuclear Information System (INIS)

    Haas, D.; Fernandez, A.; Staicu, D.; Somers, J.; Maschek, W.; Chen, X.

    2007-01-01

    Within the EUROTRANS Integrated Project co- financed within the 6th Framework Programme of the European commission, the sub-critical Accelerator Driven System (ADS) is now being considered as a potential means to burn long-lived transuranium nuclides. Within the EUROTRANS Programme, the domain AFTRA is responsible to develop and provide the data basis for the fuels to be used in the European Facility for Industrial Transmutation (EFIT). The preferred fuel for such a fast neutron reactor is uranium-free, highly enriched with plutonium and minor actinides. Requirements for ADS transmuter fuels are strongly linked with the core design and safety parameters, the fuel properties and the ease of fabrication and reprocessing. This study concerns the behaviour and properties of fuels with molybdenum as inert matrix. The status of the development work was presented at the last ICENES conference [1]. Since then, the design of the European Facility for Industrial Transmutation (EFIT) was developed and the transmutation capability, the burn-up behaviour, the reactivity swing and power peaking factors, and the safety performance were determined for different cores with inert matrix fuels like MgO and Mo. For the EFIT, the CERMET with the Mo matrix is recommended as the reference fuel and CERCER with the MgO matrix as a back-up solution. The thermal diffusivity and specific heat of the CERMET fuels (loaded with Pu and Am) were measured, and the thermal conductivity was deduced. The thermal conductivity of the CERMET fuels was also predicted using a model proposed in [1], with a microstructure corresponding to a random distribution of spheres, with overlapping. This model microstructure takes into account the negative effects arising from the possible formation of small agglomerates of inclusions in the CERMET fuels. The agreement between the theoretical and calculated values is relatively good (the error is between 0 and 15% of the value of the thermal conductivity

  18. Crispv programme

    International Nuclear Information System (INIS)

    Marinkovicj, N.

    CRISPV (Criticality and Spectrum code) is a multigroup neutron spectrum code for homogeneous reactor cores and is actually a somewhat modified version of the original CRISP programme. It is a combination of DATAPREP-II and BIGG-II programmes. It is assumed that the reactor cell is a cylindrical fuel rod in the light or heavy water moderator. DATEPREP-II CODE forms the multigroup data for homogeneous reactor and prepares the input parameters for the BIGG-II code. It has its own nuclear data library on a separate tape in binary mode. BIGG-II code is a multigroup neutron spectrum and criticality code for a homogenized medium. It has as well its own separate data library. In the CRISPV programme the overlay structure enables automatic handling of data calculated in the DATAPREP-II programme and needed in the BIGG-II core. Both programmes are written in FORTRAN for CDC 3600. Using the programme is very efficient and simple

  19. A Review of Fast Reactor Programme in India, April 1930

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1980-01-01

    Nuclear energy has to play a significant role in the energy resources of India in the next century. To-day's apparently vast reserves of fossil fuels would be under severe strain due to rapidly increasing demand for energy. Long-term perspective planning requires Nuclear Energy to play a significant role from early part of the next century and share a major load. But, India is not endowed with vast reserves of uranium and must therefore aim to utilise more abundant thorium reserves which are estimated to be about 350,000 tonnes. Department of Atomic Energy which is responsible for the development of nuclear energy in India has therefore planned a step-wise approach consisting of: (i) First phase of the programme of natural uranium based thermal reactors to produce power and plutonium which is the basis of the next phase. (ii) Second phase of the programme to produce power and breed more and more plutonium through fast breeder deployment so as to build sufficient inventories of fissile material which can then become the basis of the third stage. (iii) To utilise thorium with the help of fissile material produced by 2nd phase of Breeder Reactors

  20. A Review of Fast Reactor Programme in India, April 1930

    Energy Technology Data Exchange (ETDEWEB)

    Paranjpe, S. R. [Reactor Research Centre Kalpakkam, Tamil Nadu (India)

    1980-10-15

    Nuclear energy has to play a significant role in the energy resources of India in the next century. To-day's apparently vast reserves of fossil fuels would be under severe strain due to rapidly increasing demand for energy. Long-term perspective planning requires Nuclear Energy to play a significant role from early part of the next century and share a major load. But, India is not endowed with vast reserves of uranium and must therefore aim to utilise more abundant thorium reserves which are estimated to be about 350,000 tonnes. Department of Atomic Energy which is responsible for the development of nuclear energy in India has therefore planned a step-wise approach consisting of: (i) First phase of the programme of natural uranium based thermal reactors to produce power and plutonium which is the basis of the next phase. (ii) Second phase of the programme to produce power and breed more and more plutonium through fast breeder deployment so as to build sufficient inventories of fissile material which can then become the basis of the third stage. (iii) To utilise thorium with the help of fissile material produced by 2nd phase of Breeder Reactors.

  1. Safety of the liquid-metal cooled fast breeder reactor and aspects of its fuel cycle

    International Nuclear Information System (INIS)

    Kessler, G.; Papp, R.; Huebel, D.

    1977-01-01

    Design and construction of the sodium-cooled fast reactors KNK-II (20MW(e)) and SNR-300 (300MW(e)) determine the status of safety engineering and safety R and D of LMFBRs in the Federal Republic of Germany. Both prototype fast power reactors have to go through a civil licensing process similar to that applied to present LWRs. A multilevel safety - or defence in depth - approach is applied to the design and construction of fast power reactors. All design data of the fast reactor plant are confirmed by extensive experimental programmes. Design limits of the plant are thoroughly discussed during the licensing process. Important safety R and D programmes have been and are still being performed. A very conservative safety analysis for hypothetical core and other plant accidents is used for present prototype fast reactors. The paper reviews the future trend of development of theoretical methods for accident analysis and the application of experimental results, especially in view of large commercial-type LMFBRs. The safety approach applied to the LMFBR plant is safe operation under normal operating conditions and safe shutdown under off-normal conditions. The consequences of releases of radioactivity to the environment meet the given standards. No chemical reprocessing plant for fast breeder fuel is in operation in the FRG at present; however, R and D work on investigation of all aspects and problem areas of the fast breeder fuel cycle are under way. Systems studies on safety aspects of the fast breeder fuel cycle (transport, reprocessing, fuel fabrication) and its impact on the environment have been performed and the main consequences of these studies are presented in the paper. (author)

  2. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1979-10-01

    Various experiments being performed at the SNR reactor are described including: capture cross sections of various nuclei; fuel can failure; creep testing of welded joints; gas leakage through concrete/steel interfaces; testing of the test section of the four rod bundle for Laser Doppler Anemometry

  3. Berkeley Nuclear Laboratories Reactor Physics Mk. III Experimental Programme. Description of facility and programme for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, R M; Waterson, R H; Young, J D

    1971-01-15

    Reactor physics experiments have been carried out at Berkeley Nuclear Laboratories during the past few years in support of the Civil Advanced Gas-Cooled Reactors (Mk. II) the Generating Board is building. These experiments are part of an overall programme whose objective is to assess the accuracy of the calculational methods used in the design and operation of these reactors. This report provides a description of the facility for the Mk. III experimental programme and the planned programme for 1971.

  4. Quantities of actinides in nuclear reactor fuel cycles

    International Nuclear Information System (INIS)

    Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000 MW reactors of the following types: water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breeder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium, and recycled uranium. The radioactivity levels of plutonium, americium, and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the United States nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium processed in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing and fuel fabrication to eliminate the off-site transport of separated plutonium. (U.S.)

  5. Fuel exchange device for FBR type reactor

    International Nuclear Information System (INIS)

    Onuki, Koji.

    1993-01-01

    The device of the present invention can provide fresh fuels with a rotational angle aligned with the direction in the reactor core, so that the fresh fuels can be inserted being aligned with apertures of the reactor core even if a self orientation mechanism should fail to operate. That is, a rotational angle detection means (1) detects the rotational angle of fresh fuels before insertion to the reactor core. A fuel rotational angle control means (2) controls the rotational angle of the fresh fuels by comparing the detection result of the means (1) and the data for the insertion position of the reactor core. A fuel rotation means (3) compensates the rotational angel of the fresh fuels based on the control signal from the means (2). In this way, when the fresh fuels are inserted to the reactor core, the fresh fuels set at the same angle as that for the aperture of the reactor core. Accordingly, even if the self orientation mechanism should not operate, the fresh fuels can be inserted smoothly. As a result, it is possible to save loss time upon fuel exchange and mitigate operator's burden during operation. (I.S.)

  6. Fusion reactor fuel processing

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1972-06-01

    For thermonuclear power reactors based on the continuous fusion of deuterium and tritium the principal fuel processing problems occur in maintaining desired compositions in the primary fuel cycled through the reactor, in the recovery of tritium bred in the blanket surrounding the reactor, and in the prevention of tritium loss to the environment. Since all fuel recycled through the reactor must be cooled to cryogenic conditions for reinjection into the reactor, cryogenic fractional distillation is a likely process for controlling the primary fuel stream composition. Another practical possibility is the permeation of the hydrogen isotopes through thin metal membranes. The removal of tritium from the ash discharged from the power system would be accomplished by chemical procedures to assure physiologically safe concentration levels. The recovery process for tritium from the breeder blanket depends on the nature of the blanket fluids. For molten lithium the only practicable possibility appears to be permeation from the liquid phase. For molten salts the process would involve stripping with inert gas followed by chemical recovery. In either case extremely low concentrations of tritium in the melts would be desirable to maintain low tritium inventories, and to minimize escape of tritium through unwanted permeation, and to avoid embrittlement of metal walls. 21 refs

  7. A review of the UK fast reactor programme, March 1981

    International Nuclear Information System (INIS)

    Smith, R.D.

    1981-01-01

    steam cycle, a re-evaluation of various boiler design styles have been undertaken. The types being studied cover straight tube, U and J tube, hockey stick and helical coil designs. A final choice of steam generator for CDFR has not yet been made. Key features in design selection are overall integrity to ensure high availability, ease of maintenance and repair following minor tube leaks, resistance to escalation of minor leaks to more major sodium/water reaction incidents. inspectability, relevance of previous experience and capital cost. Operation of the PFR was interrupted by a series of small leaks in the tube-to-tube plate welds in the three evaporator units. The key areas have now been shot-peened to remove tensile stresses in the surface material. the units have been repaired and operation at high power should be restarted during March 1981. The performance of the core and primary circuits has continued to be excellent. A major step forward was taken when the first 16 sub-assemblies were reprocessed in the PFR reprocessing plant. During the year a system economic study has been completed to assist in providing a sound technical basis for a fast reactor inquiry. This study was based on a set of programme assumptions and economic ground rules developed and agreed in 1978 within the UK nuclear industry and updated in 1979. Broadly, it was concluded that the introduction of the fast reactor as soon and as rapidly as feasible also leads, even on conservative uranium price assumptions. to economic benefits, the benefits being greatest when electrical demand and raw fuel prices are at their highest. The benefits are little affected by 25% increases in costs, except for an increase in fast reactor capital cost when uranium stays cheap; in this case the benefit virtually disappears if it is assumed that all other capital costs stay constant. Use of the fast reactor also produces a dramatic fall (almost three-fold) in the need uranium imports and, if market forces are

  8. A review of the UK fast reactor programme, March 1981

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R D [Risley Nuclear Power Development Establishment, Risley, Warrington (United Kingdom)

    1981-05-01

    steam cycle, a re-evaluation of various boiler design styles have been undertaken. The types being studied cover straight tube, U and J tube, hockey stick and helical coil designs. A final choice of steam generator for CDFR has not yet been made. Key features in design selection are overall integrity to ensure high availability, ease of maintenance and repair following minor tube leaks, resistance to escalation of minor leaks to more major sodium/water reaction incidents. inspectability, relevance of previous experience and capital cost. Operation of the PFR was interrupted by a series of small leaks in the tube-to-tube plate welds in the three evaporator units. The key areas have now been shot-peened to remove tensile stresses in the surface material. the units have been repaired and operation at high power should be restarted during March 1981. The performance of the core and primary circuits has continued to be excellent. A major step forward was taken when the first 16 sub-assemblies were reprocessed in the PFR reprocessing plant. During the year a system economic study has been completed to assist in providing a sound technical basis for a fast reactor inquiry. This study was based on a set of programme assumptions and economic ground rules developed and agreed in 1978 within the UK nuclear industry and updated in 1979. Broadly, it was concluded that the introduction of the fast reactor as soon and as rapidly as feasible also leads, even on conservative uranium price assumptions. to economic benefits, the benefits being greatest when electrical demand and raw fuel prices are at their highest. The benefits are little affected by 25% increases in costs, except for an increase in fast reactor capital cost when uranium stays cheap; in this case the benefit virtually disappears if it is assumed that all other capital costs stay constant. Use of the fast reactor also produces a dramatic fall (almost three-fold) in the need uranium imports and, if market forces are

  9. Status of the German AF-programme. Considerations with respect to INFCE recommendations and criteria[AF = Anreicherungsreduzierung in Forschungsreaktoren (Enrichment reduction in research reactors)

    Energy Technology Data Exchange (ETDEWEB)

    Thamm, Gerd H [Kernforschungsanlage Juelich GmbH, Research Reactor Division, Juelich (Germany)

    1983-09-01

    As is generally known, the INFCE studies carried out on a worldwide scale from 1977 to 1979 for research reactors using primarily highly enriched uranium (HEU 80% to 93% U-235) have led to the important recommendation that an effective reduction in the proliferation of weapons-usable nuclear material can be achieved by converting the fuel cycles from HEU to low-enriched uranium (LEU, U-235 enrichment 20%). Further recommendations made by INFCE to the effect of restricting or markedly reducing the stockpiles of HEU materials and diminishing the production of fissile materials due to irradiation in research reactors, however, have been given secondary attention in the course of development as compared to the first recommendation mentioned above. As a result of the INFCE studies, national programmes were initiated in various countries aiming at enrichment reduction in research reactors. Essential work in this connection was commenced above all in the USA (RERTR programme), in France, Japan and in the Federal Republic of Germany (AF programme). Added to this was an IAEA support programme intended primarily for developing and threshold countries. Essential conditions in the form of criteria were elaborated by the INFCE Working Group 8C in connection with the recommendation for enrichment reduction in research reactors. These criteria are: 1. The safety margins and fuel reliability should not be reduced by a conversion from HEU to LEU cycles. 2. Losses in reactor performance (e.g. the ratio of neutron flux available for experiments) to reactor power should not be more than marginal. 3. The cost of conversion for research reactors should be kept as low as possible. 4. Any increase in operating costs after conversion should not be more than marginal. The first three criteria mentioned have been given particular attention and have a good chance of being complied with in the current worldwide development activities for a conversion of research reactors to LEU fuel cycle

  10. A review of the UK fast reactor programme, March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R D

    1979-07-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments.

  11. A review of the UK fast reactor programme, March 1979

    International Nuclear Information System (INIS)

    Smith, R.D.

    1979-01-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments

  12. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2011-01-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  13. Power ramping, cycling and load following behaviour of water reactor fuel

    International Nuclear Information System (INIS)

    1988-05-01

    The present meeting was scheduled by the International Atomic Energy Agency upon proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology. Sixty-three participants representing 15 countries and one international organization attended the meeting. Twenty papers were presented during three technical sessions, followed by panel discussions which allowed to formulate the conclusions of the meeting and recommendations to the Agency. The objective of this Technical Committee Meeting is to review the ''State-of-the-Art'', make critical comments and recommendations with the aim of improving fuel reliability and assure integrity of the cladding and core materials when subjected to ramping and cycling sequences. The Meeting was organized in three sessions: Session 1. ''Mechanical Behaviour and Fission Gas Release'' (7 papers); Session 2. ''Power Ramping and Power Cycling Demonstration Programmes in Research Reactors'' (5 papers); Session 3. ''Fuel Behaviour in Power Reactors'' (9 papers). Between the sessions, the session chairmen, together with the speakers, prepared and presented reports with summary, conclusions and recommendations of the individual sessions. These reports are added to this summary report. A separate abstract was prepared for each of these 21 presentations. Refs, figs and tabs

  14. Economic evaluation of fast reactor fuel cycling

    International Nuclear Information System (INIS)

    Hu Ping; Zhao Fuyu; Yan Zhou; Li Chong

    2012-01-01

    Economic calculation and analysis of two kinds of nuclear fuel cycle are conducted by check off method, based on the nuclear fuel cycling process and model for fast reactor power plant, and comparison is carried out for the economy of fast reactor fuel cycle and PWR once-through fuel cycle. Calculated based on the current price level, the economy of PWR one-through fuel cycle is better than that of the fast reactor fuel cycle. However, in the long term considering the rising of the natural uranium's price and the development of the post treatment technology for nuclear fuels, the cost of the fast reactor fuel cycle is expected to match or lower than that of the PWR once-through fuel cycle. (authors)

  15. The integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  16. Fuel assembly for FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki.

    1995-01-01

    Ordinary sodium bond-type fuel pins using nitride fuels, carbide fuels or metal fuels and pins incorporated with hydride moderators are loaded in a wrapper tube at a ratio of from 2 to 10% based on the total number of fuel pins. The hydride moderators are sealed in the hydride moderator incorporated pins at the position only for a range from the upper end to a reactor core upper position of substantially 1/4 of the height of the reactor core from the upper end of the reactor core as a center. Then, even upon occurrence of ULOF (loss of flow rate scram failure phenomenon), it gives characteristic of reducing the power only by a doppler coefficient and not causing boiling of coolant sodium but providing stable cooling to the reactor core. Therefore, a way of thinking on the assurance of passive safety is simplified to make a verification including on the reactor structure unnecessary. In an LMFBR type reactor using the fuel assembly, a critical experiment for confirming accuracy of nuclear design is sufficient for the item required for study and development, which provides a great economical effect. (N.H.)

  17. R and D on fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Subba Rao, R.V.; Vijaya Kumar, V.; Natarajan, R.

    2012-01-01

    Development of Fast Reactor Fuel Reprocessing technology, with low out of pile inventory, is carried out at the Indira Gandhi Centre for Atomic Research (IGCAR). Based on the successful R and D programme which addressed specific issues of fast reactor fuels, a pilot plant called CORAL was set up. This plant is operational since 2003 and several reprocessing campaigns with spent FBTR fuels of varying burnups have been carried out. Based on the valuable operating experience of CORAL, the design of demonstration fast reactor fuel reprocessing plant (DFRP) and the commercial reprocessing plant, FRP have been taken up. Concurrently R and D efforts are continuing for improving the process and equipment performance apart from reducing the waste volumes and the radiation exposures to the operating personnel. Some important R and D efforts are highlighted in the paper. Reducing the dissolution time is one of the vital area of investigation especially for the high plutonium bearing MOX fuels which are known to dissolve slowly. To address this as well as criticality issues, continuous dissolvers are being developed. Solvent extraction based process is employed for getting highly pure nuclear grade uranium and plutonium. In view of the lower cooling time the fission product activity in the spent fuel is higher, formulation of process flowsheet with reduced number of solvent extraction cycles to improve the decontamination of ruthenium and zirconium without the formation of second organic phase due to plutonium loading, is under investigation. Retention of plutonium in lean organic is another issue to be addressed as otherwise it would lead to further deterioration of the solvent on storage. Several reagents to effectively wash the lean solvent have been investigated and flowsheets have been formulated to recover the retained plutonium with minimum secondary wastes. Partitioning of uranium and plutonium is an important step and methods reported in the literature have inherent

  18. Russian research reactor fuel return program starts shipping fuel to Russia

    International Nuclear Information System (INIS)

    Dedik, T.; Bolshinsky, I.; Krass, A.

    2003-01-01

    For almost four years the United States (U.S), the Russian Federation (R.F.), and the International Atomic Energy Agency (IAEA) have been discussing an initiative to return Soviet/Russian-origin research reactor fuel to the Russian Federation. In a series of bilateral and trilateral meetings in Vienna and Moscow, considerable progress has been made toward defining the Russian Research Reactor Fuel Return Program as well as obtaining the necessary technical data to facilitate the return. More than 20 research reactors in 17 countries that have Soviet- or Russian-supplied fuel have identified. Most of these reactors have stocks of both fresh and irradiated HEU fuel that must be carefully stored and managed for many years to come. On September 21, 2003 the Russian Research Reactor Fuel Return program shipped 14 kg of fresh Russian-origin HEU fuel from Romania to the nuclear fuel fabrication facility in Russia, which represented the beginning of the practical implementation of the program. (author)

  19. A review of the Italian fast reactor programme

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzi, L; Pierantoni, F [CNEN Fast Reactor Programme, Bologna (Italy)

    1981-05-01

    In the frame of Italian nuclear program, this report deals with the current activities related to PEC reactor delay in construction and start-up, activities within the joint venture between Novatome, France and NIRA, Italy related to components for Super Phenix reactor, participation of NIRA in the Super Phenix studies covering technology of reactor components, reactor core, fuel, safety, fuel cycle technical and economical aspects, codes and standards.

  20. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Yuchi, Yoko; Aoyama, Motoo; Haikawa, Katsumasa; Yamanaka, Akihiro; Koyama, Jun-ichi.

    1996-01-01

    In a fuel assembly of a BWR type reactor, a region substantially containing burnable poison is divided into an upper region and a lower region having different average concentrations of burnable poison along a transverse cross section perpendicular to the axial direction. The ratio of burnable poison contents of both regions is determined to not more than 80%, and the average concentration of the burnable poison in the lower region is determined to not less than 9% by weight. An infinite multiplication factor at an initial stage of the burning of the fuel assembly is controlled effectively by the burnable poisons. Namely, the ratio of the axial power can be controlled by the distribution of the enrichment degree of uranium fuels and the distribution of the burnable poison concentration in the axial direction. Since the average enrichment degree of the reactor core has to be increased in order to provide an initially loaded reactor core at high burnup degree. Distortion of the power distribution in the axial direction of the reactor core to which fuel assemblies at high enrichment degree are loaded is flattened to improve thermal margin, to extend continuous operation period and increase a burnup degree upon take-out thereby improving fuel economy without worsening the reactor core characteristics of the initially loaded reactor core. (N.H.)

  1. MOX fuel for Indian nuclear power programme

    International Nuclear Information System (INIS)

    Kamath, H.S.; Anantharaman, K.; Purushotham, D.S.C.

    2000-01-01

    A sound energy policy and a sound environmental policy calls for utilisation of plutonium (Pu) in nuclear power reactors. The paper discusses the use of Pu in the form of mixed oxide (MOX) fuel in two Indian boiling water reactors (BWRs) at Tarapur. An industrial scale MOX fuel fabrication plant is presently operational at Tarapur which is capable of manufacturing MOX fuels for BWRs and in future for PHWRs. The plant can also manufacture mixed oxide fuel for prototype fast breeder reactor (PFBR) and development work in this regard has already started. The paper describes the MOX fuel manufacturing technology and quality control techniques presently in use at the plant. The irradiation experience of the lead MOX assemblies in BWRs is also briefly discussed. The key areas of interest for future developments in MOX fuel fabrication technology and Pu utilisation are identified. (author)

  2. Facilities of fuel transfer for nuclear reactors

    International Nuclear Information System (INIS)

    Wade, E.E.

    1977-01-01

    This invention relates to sodium cooled fast breeder reactors. It particularly concerns facilities for the transfer of fuel assemblies between the reactor core and a fuel transfer area. The installation is simple in construction and enables a relatively small vessel to be used. In greater detail, the invention includes a vessel with a head, fuel assemblies housed in this vessel, and an inlet and outlet for the coolant covering these fuel assemblies. The reactor has a fuel transfer area in communication with this vessel and gear inside the vessel for the transfer of these fuel assemblies. These facilities are borne by the vessel head and serve to transfer the fuel assemblies from the vessel to the transfer area; whilst leaving the fuel assemblies completely immersed in a continuous mass of coolant. A passageway is provided between the vessel and this transfer area for the fuel assemblies. Facilities are provided for closing off this passageway so that the inside of the reactor vessel may be isolated as desired from this fuel transfer area whilst the reactor is operating [fr

  3. BR2 Reactor: Irradiation of fuels

    International Nuclear Information System (INIS)

    Verwimp, A.

    2005-01-01

    Safe, reliable and economical operation of reactor fuels, both UO 2 and MOX types, requires in-pile testing and qualification up to high target burn-up levels. In-pile testing of advanced fuels for improved performance is also mandatory. The objectives of research performed at SCK-CEN are to perform Neutron irradiation of LWR (Light Water Reactor) fuels in the BR2 reactor under relevant operating and monitoring conditions, as specified by the experimenter's requirements and to improve the on-line measurements on the fuel rods themselves

  4. Build-up and decay of fuel actinides in the fuel cycle of nuclear reactors

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Kikuchi, Yasuyuki; Shindo, Ryuichi; Yoshida, Hiroyuki; Yasukawa, Shigeru

    1976-05-01

    For boiling water reactors, pressurized light-water reactors, pressure-tube-type heavy water reactors, high-temperature gas-cooled reactors, and sodium-cooled fast breeder reactors, uranium fueled and mixed-oxide fueled, each of 1000 MWe, the following have been studied: (1) quantities of plutonium and other fuel actinides built up in the reactor, (2) cooling behaviors of activities of plutonium and other fuel actinides in the spent fuels, and (3) activities of plutonium and other fuel actinides in the high-level reprocessing wastes as a function of storage time. The neutron cross section and decay data of respective actinide nuclides are presented, with their evaluations. For effective utilization of the uranium resources and easy reprocessing and high-level waste management, a thermal reactor must be fueled with uranium; the plutonium produced in a thermal reactor should be used in a fast reactor; and the plutonium produced in the blanket of a fast reactor is more appropriate for a fast reactor than that from a thermal reactor. (auth.)

  5. Fluoride partitioning R and D programme for molten salt transmutation reactor systems in the Czech Republic

    International Nuclear Information System (INIS)

    Uhlir, J.; Priman, V.; Vanicek, J.

    2001-01-01

    The transmutation of spent nuclear fuel is considered a prospective alternative conception to the current conception based on the non-reprocessed spent fuel disposal into underground repository. The Czech research and development programme in the field of partitioning and transmutation is founded on the Molten Salt Transmutation Reactor system concept with fluoride salts based liquid fuel, the fuel cycle of which is grounded on pyrochemical / pyrometallurgical fluoride partitioning of spent fuel. The main research activities in the field of fluoride partitioning are oriented mainly towards technological research of Fluoride Volatility Method and laboratory research on electro-separation methods from fluoride melts media. The Czech national conception in the area of P and T research issues from the national power industry programme and from the Czech Power Company intentions of the extensive utilization of nuclear power in our country. The experimental R and D work is concentrated mainly in the Nuclear Research Institute Rez plc that plays a role of main nuclear research workplace for the Czech Power Company. (author)

  6. FLATT - a computer programme for calculating flow and temperature transients in nuclear fuels

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Koranne, S.M.

    1976-01-01

    FLATT is a computer code written in Fortran language for BESM-6 computer. The code calculates the flow transients in the coolant circuit of a nuclear reactor, caused by pump failure, and the consequent temperature transients in the fuel, clad, and the coolant. In addition any desired flow transient can be fed into the programme and the resulting temperature transients can be calculated. A case study is also presented. (author)

  7. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  8. CANDU reactor experience: fuel performance

    International Nuclear Information System (INIS)

    Truant, P.T.; Hastings, I.J.

    1985-07-01

    Ontario Hydro has more than 126 reactor-years experience in operating CANDU reactors. Fuel performance has been excellent with 47 000 channel fuelling operations successfully completed and 99.9 percent of the more than 380 000 bundles irradiated operating as designed. Fuel performance limits and fuel defects have had a negligible effect on station safety, reliability, the environment and cost. The actual incapability charged to fuel is less than 0.1 percent over the stations' lifetimes, and more recently has been zero

  9. Fuel handling system of nuclear reactor plants

    International Nuclear Information System (INIS)

    Faulstich, D.L.

    1991-01-01

    This patent describes a fuel handing system for nuclear reactor plants comprising a reactor vessel having an openable top and removable cover for refueling and containing therein, submerged in coolant water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units. It comprises a fuel bundle handing platform moveable over the open top of the reactor vessel; a fuel bundle handing mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grappling hook means for attaching to and transporting fuel bundles into and out from the fuel core; and a camera with a prismatic viewing head surrounded by a radioactive resisting quartz cylinder and enclosed within the grapple head which is provided with at least three windows with at least two windows provided with an angled surface for aiming the camera prismatic viewing head in different directions and thereby viewing the fuel bundles of the fuel core from different perspectives, and having a cable connecting the camera with a viewing monitor located above the reactor vessel for observing the fuel bundles of the fuel core and for enabling aiming of the camera prismatic viewing head through the windows by an operator

  10. The uranium-plutonium breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    Salmon, A.; Allardice, R.H.

    1979-01-01

    All power-producing systems have an associated fuel cycle covering the history of the fuel from its source to its eventual sink. Most, if not all, of the processes of extraction, preparation, generation, reprocessing, waste treatment and transportation are involved. With thermal nuclear reactors more than one fuel cycle is possible, however it is probable that the uranium-plutonium fuel cycle will become predominant; in this cycle the fuel is mined, usually enriched, fabricated, used and then reprocessed. The useful components of the fuel, the uranium and the plutonium, are then available for further use, the waste products are treated and disposed of safely. This particular thermal reactor fuel cycle is essential if the fast breeder reactor (FBR) using plutonium as its major fuel is to be used in a power-producing system, because it provides the necessary initial plutonium to get the system started. In this paper the authors only consider the FBR using plutonium as its major fuel, at present it is the type envisaged in all, current national plans for FBR power systems. The corresponding fuel cycle, the uranium-plutonium breeder reactor fuel cycle, is basically the same as the thermal reactor fuel cycle - the fuel is used and then reprocessed to separate the useful components from the waste products, the useful uranium and plutonium are used again and the waste disposed of safely. However the details of the cycle are significantly different from those of the thermal reactor cycle. (Auth.)

  11. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  12. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  13. The Canadian research reactor spent fuel situation

    International Nuclear Information System (INIS)

    Ernst, P.C.

    1996-01-01

    This paper summarizes the present research reactor spent fuel situation in Canada. The research reactors currently operating are listed along with the types of fuel that they utilize. Other shut down research reactors contributing to the storage volume are included for completeness. The spent fuel storage facilities associated with these reactors and the methods used to determine criticality safety are described. Finally the current inventory of spent fuel and where it is stored is presented along with concerns for future storage. (author). 3 figs

  14. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  15. Design, Manufacturing and Irradiation Behaviour of Fast Reactor Fuel. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-04-01

    Fast reactors are vital for ensuring the sustainability of nuclear energy in the long term. They offer vastly more efficient use of uranium resources and the ability to burn actinides, which are otherwise the long-lived component of high level nuclear waste. These reactors require development, qualification, testing and deployment of improved and innovative nuclear fuel and structural materials having very high radiation resistance, corrosion/erosion and other key operational properties. Several IAEA Member States have made efforts to advance the design and manufacture of technologies of fast reactor fuels, as well as to investigate their irradiation behaviour. Due to the acute shortage of fast neutron testing and post-irradiation examination facilities and the insufficient understanding of high dose radiation effects, there is a need for international exchange of knowledge and experience, generation of currently missing basic data, identification of relevant mechanisms of materials degradation and development of appropriate models. Considering the important role of nuclear fuels in fast reactor operation, the IAEA Technical Working Group on Fuel Performance and Technology (TWGFPT) proposed a Technical Meeting (TM) on 'Design, Manufacturing and Irradiation Behaviour of Fast Reactors Fuels', which was hosted by the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russian Federation, from 30 May to 3 June 2011. The TM included a technical visit to the fuel production plant MSZ in Elektrostal. The purpose of the meeting was to provide a forum to share knowledge, practical experience and information on the improvement and innovation of fuels for fast reactors through scientific presentations and brainstorming discussions. The meeting brought together 34 specialists from national nuclear agencies, R and D and design institutes, fuel vendors and utilities from 10 countries. The presentations were structured into four sections: R and D Programmes on FR Fuel

  16. Preliminary experience and near future utilization programmes of the MPR-30 fueled by LEU [low enriched uranium

    International Nuclear Information System (INIS)

    Arbie, B.; Soentono, S.

    1987-01-01

    The MTR type reactor MPR-30 G.A. Siwabessy, located at PUSPIPTEK Serpong has recently reached its first criticality. This multipurpose reactor is supposed to be the first MTR type reactor in the world that is designed and constructed to be fueled by low enriched uranium. Preliminary experience covering the approach to the first criticality and the excess reactivity loading as well as some thermal hydraulics and power ascension tests are briefly presented and discussed. The near future utilization programmes during and after commissioning are also presented. (Author)

  17. Accident Tolerant Fuel Concepts for Light Water Reactors. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2016-06-01

    Nuclear fuel is a highly complex material that has been subject to continuous development over the past 40 years and has reached a stage where it can be safely and reliably irradiated up to 65 GWd/tU in commercial nuclear reactors. During this time, there have been many improvements to the original designs and materials used. However, the basic design of uranium oxide fuel pellets clad with zirconium alloy tubing has remained the fuel choice for the vast majority of commercial nuclear power plants. Severe accidents, such as those at the Three Mile Island and Fukushima Daiichi have shown that under such extreme conditions, nuclear fuel will fail and the high temperature reactions between zirconoi alloys and water will lead to the generation of hydrogen, with the potential for explosions to occur, daming the plant further. Recognizing that the current fuel designs are vulnerable to severe accident conditions, tehre is renewed interesst in alternative fuel designs that would be more resistant to fuel failure and hydrogen production. Such new fuel designs will need to be compatible with existing fuel and reactor systems if they are to be utilized in the current reactor fleet and in current new build designs, but there is also the possibility of new designs for new reactor systems. This publication provides a record of the Technical Meeting on Accident Tolerant Fuel Concepts for Light Water Reactors, held at Oak Ridge National Laboratories (ORNL), United States of America, 13-16 October 2014, to consider the early stages of research and development into accident tolerant fuel. There were 45 participants from 10 countries taking part in the meeting, with 32 papers organized into 7 sessions, of which 27 are included in this publication. This meeting is part of a wider investigation into such designs, and it is anticipated that further Technical Meetings and research programmes will be undertaken in this field

  18. Fast reactor development programme in France

    Energy Technology Data Exchange (ETDEWEB)

    Le Rigoleur, C [Direction des Reacteurs Nucleaires, CEA Centre d` Etudes de Cadarache, Saint-Paul-lez-Durance (France)

    1998-04-01

    First the general situation regarding production of electricity in France is briefly described. Then in the field of Fast Reactors, the main events of 1996 are presented. At the end of February 1996, the PHENIX reactor was ready for operation. After review meetings, the Safety Authority has requested safety improvements and technical demonstrations, before it examines the possibility of authorizing a new start-up of PHENIX. The year 1996 was devoted to this work. In 1996, SUPERPHENIX was characterized by excellent operation throughout the year. The reactor was restarted at the end of 1995 after a number of minor incidents. The reactor power was increased by successive steps: 30% Pn up to February 6, followed by 50% Pn up to May then 60% up to October and 90% Pn during the last months. A programmed shutdown period occurred during May, June and mid-July 1996. The reactor has been shutdown at the end of 1996 for the decenial control of the steam generators. The status of the CAPRA project, aimed at demonstrating the feasibility of a fast reactor to burn plutonium at as high a rate as possible and the status of the European Fast Reactor are presented as well as their evolution. Finally the R and D in support of the operation of PHENIX and SUPERPHENIX, in support of the ````knowledge-acquisition```` programme, and CAPRA and EFR programmes is presented, as well as the present status of the stage 2 dismantling of the RAPSODIE experimental fast reactor. (author). 4 refs, figs, 2 tabs.

  19. Proposed fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Walters, L.C.

    1985-01-01

    One of the key features of ANL's Integral Fast Reactor (IFR) concept is a close-coupled fuel cycle. The proposed fuel cycle is similar to that demonstrated over the first five to six years of operation of EBR-II, when a fuel cycle facility adjacent to EBR-II was operated to reprocess and refabricate rapidly fuel discharged from the EBR-II. Locating the IFR and its fuel cycle facility on the same site makes the IFR a self-contained system. Because the reactor fuel and the uranium blanket are metals, pyrometallurgical processes (shortned to ''pyroprocesses'') have been chosen. The objectives of the IFR processes for the reactor fuel and blanket materials are to (1) recover fissionable materials in high yield; (2) remove fission products adequately from the reactor fuel, e.g., a decontamination factor of 10 to 100; and (3) upgrade the concentration of plutonium in uranium sufficiently to replenish the fissile-material content of the reactor fuel. After the fuel has been reconstituted, new fuel elements will be fabricated for recycle to the reactor

  20. Fuel-management simulations for once-through thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Boczar, P.G.; Ellis, R.J.; Ardeshiri, F.

    1999-01-01

    High neutron economy, on-power refuelling and a simple fuel bundle design result in unsurpassed fuel cycle flexibility for CANDU reactors. These features facilitate the introduction and exploitation of thorium fuel cycles in existing CANDU reactors in an evolutionary fashion. Detailed full-core fuel-management simulations concluded that a once-through thorium fuel cycle can be successfully implemented in an existing CANDU reactor without requiring major modifications. (author)

  1. Preliminary report on the experiment performed in MARIUS reactor loaded with teledial fuel

    Energy Technology Data Exchange (ETDEWEB)

    Estiot, J C; Morier, F

    1972-06-15

    The experimental work described in this paper is part of a collaborative programme agreed between CEA and the Dragon Project. The aim of the programme is the measurement of the relative conversion ratio in a reactor loaded with Teledial fuel elements. The results will allow us to check our calculational methods and assumptions upon which the calculations are based, in the case of a teledial core, which represents a very complicated geometry, specially, due to the presence of the U238 with its resonance. The programme of experiments described in the paper have been completed. Some preliminary results are presented in the second part of this report (Part 2).

  2. Electrorefining open-quotes Nclose quotes reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.

    1995-01-01

    Principles of purifying of uranium metal by electrorefining are reviewed. Metal reactor fuel after irradiation is a form of impure uranium. Dissolution and deposition electrorefining processes were developed for spent metal fuel under the Integral Fast Reactor Program. Application of these processes to the conditioning of spent N-reactor fuel slugs is examined

  3. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  4. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  5. Status of research reactor spent fuel world-wide

    International Nuclear Information System (INIS)

    Ritchie, I.G.

    2004-01-01

    Results compiled in the research reactor spent fuel database are used to assess the status of research reactor spent fuel world-wide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialised and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. (author)

  6. Advanced control system for the Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Lau, L.D.; Randall, P.F.; Benedict, R.W.; Levinskas, D.

    1993-01-01

    A computerized control system has been developed for the remotely-operated fuel pin processor used in the Integral Fast Reactor Program, Fuel Cycle Facility (FCF). The pin processor remotely shears cast EBR- reactor fuel pins to length, inspects them for diameter, straightness, length, and weight, and then inserts acceptable pins into new sodium-loaded stainless-steel fuel element jackets. Two main components comprise the control system: (1) a programmable logic controller (PLC), together with various input/output modules and associated relay ladder-logic associated computer software. The PLC system controls the remote operation of the machine as directed by the OCS, and also monitors the machine operation to make operational data available to the OCS. The OCS allows operator control of the machine, provides nearly real-time viewing of the operational data, allows on-line changes of machine operational parameters, and records the collected data for each acceptable pin on a central data archiving computer. The two main components of the control system provide the operator with various levels of control ranging from manual operation to completely automatic operation by means of a graphic touch screen interface

  7. Fast reactor fuel pin behaviour modelling in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J R [UKAEA, Harwell, Didcot, Oxon (United Kingdom); Hughes, H [Springfields Nuclear Power Development Laboratories, Springfields, Salwick, Preston (United Kingdom)

    1979-12-01

    Two fuel behaviour codes have been applied extensively to fast reactor problems; SLEUTH developed at Sprlngfields Nuclear Laboratory and FRUMP at A.E.R.E. Harwell. The SLEUTH fuel pin endurance code was originally developed to define a programme of power cycling and power ramp experiments In Advanced Gas Cooled Reactors (AGRs) where, because of the very soft cladding, pellet clad interaction is severe. The code was required to define accelerated test conditions to generalise from the observed endurance to that under other power histories and to select for investigation the most significant design, material and operational variables. The weak clad and low coolant pressure combine to make fission gas swelling a major contributor to clad deformation while the high clad ductility renders the distribution of strain readily observable. This has led to a detailed study of strain concentrations using the SEER code. SLEUTH and SEER have subsequently been used to specify power cycling and power ramp 112 experiments in water cooled, fast and materials testing reactors with the aim of developing a unified quantitative model of pellet-clad interaction whatever the reactor system. The FRUMP fuel behaviour code was developed specifically for the interpretation of fast reactor fuel pin behaviour. Experience with earlier models was valuable In its development. Originally the model was developed to describe behaviour during normal operation, but subsequently the code has been used extensively in the field of accident studies. Much of the effort in FRUMP development has been devoted to the production of physical models of the various effects of irradiation and the temperature gradients on the structure of the fuel and clad. Each process is modelled as well as is permitted by current knowledge and the limitations of computing costs. Each sub-model has a form which reflects the underlying mechanisms, where quantities are unknown values are assigned semi-empirically, i.e. coefficients

  8. Fast reactor fuel pin behaviour modelling in the UK

    International Nuclear Information System (INIS)

    Matthews, J.R.; Hughes, H.

    1979-01-01

    Two fuel behaviour codes have been applied extensively to fast reactor problems; SLEUTH developed at Sprlngfields Nuclear Laboratory and FRUMP at A.E.R.E. Harwell. The SLEUTH fuel pin endurance code was originally developed to define a programme of power cycling and power ramp experiments In Advanced Gas Cooled Reactors (AGRs) where, because of the very soft cladding, pellet clad interaction is severe. The code was required to define accelerated test conditions to generalise from the observed endurance to that under other power histories and to select for investigation the most significant design, material and operational variables. The weak clad and low coolant pressure combine to make fission gas swelling a major contributor to clad deformation while the high clad ductility renders the distribution of strain readily observable. This has led to a detailed study of strain concentrations using the SEER code. SLEUTH and SEER have subsequently been used to specify power cycling and power ramp 112 experiments in water cooled, fast and materials testing reactors with the aim of developing a unified quantitative model of pellet-clad interaction whatever the reactor system. The FRUMP fuel behaviour code was developed specifically for the interpretation of fast reactor fuel pin behaviour. Experience with earlier models was valuable In its development. Originally the model was developed to describe behaviour during normal operation, but subsequently the code has been used extensively in the field of accident studies. Much of the effort in FRUMP development has been devoted to the production of physical models of the various effects of irradiation and the temperature gradients on the structure of the fuel and clad. Each process is modelled as well as is permitted by current knowledge and the limitations of computing costs. Each sub-model has a form which reflects the underlying mechanisms, where quantities are unknown values are assigned semi-empirically, i.e. coefficients

  9. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2008-01-01

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room. Reactor

  10. Recent BWR fuel management reactor physics advances

    International Nuclear Information System (INIS)

    Crowther, R.L.; Congdon, S.P.; Crawford, B.W.; Kang, C.M.; Martin, C.L.; Reese, A.P.; Savoia, P.J.; Specker, S.R.; Welchly, R.

    1982-01-01

    Improvements in BWR fuel management have been under development to reduce uranium and separative work (SWU) requirements and reduce fuel cycle costs, while also maintaining maximal capacity factors and high fuel reliability. Improved reactor physics methods are playing an increasingly important role in making such advances feasible. The improved design, process computer and analysis methods both increase knowledge of the thermal margins which are available to implement fuel management advance, and improve the capability to reliably and efficiently analyze and design for fuel management advances. Gamma scan measurements of the power distributions of advanced fuel assembly and advanced reactor core designs, and improved in-core instruments also are important contributors to improving 3-d predictive methods and to increasing thermal margins. This paper is an overview of the recent advances in BWR reactor physics fuel management methods, coupled with fuel management and core design advances. The reactor physics measurements which are required to confirm the predictions of performance fo fuel management advances also are summarized

  11. Reactor-specific spent fuel discharge projections, 1987-2020

    International Nuclear Information System (INIS)

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs

  12. International conference on management of spent fuel from nuclear power reactors. Book of extended synopses

    International Nuclear Information System (INIS)

    2006-01-01

    This document contains 48 extended synopses of the International Conference on Management of Spent Fuel from Nuclear Power Reactors. The major topics covered related to national programmes in spent fuel management as well as regional trends, technology and safety/security aspects of wet and dry storage, licensing and regulation, quality assurance, design control, operating experience, R and D, and special aspects of spent fuel storage including in-service inspection, robotics, heat removal, and other engineering considerations. Each of the extended synopses was indexed separately

  13. Water Reactor Fuel Performance Meeting 2008

    International Nuclear Information System (INIS)

    2008-10-01

    This meeting contains articles of the Water Reactor Fuel Performance Meeting 2008 of Korean Nuclear Society, Atomic Energy Society of Japan, Chinese Nuclear Society, European Nuclear Society and American Nuclear Society. It was held on Oct. 19-23, 2008 in Seoul, Korea and subject of Meeting is 'New Clear' Fuel - A green energy solution. This proceedings is comprised of 5 tracks. The main topic titles of track are as follows: Advances in water reactor fuel technology, Fuel performance and operational experience, Transient fuel behavior and safety-related issues, Fuel cycle, spent fuel storage and transportations and Fuel modeling and analysis. (Yi, J. H.)

  14. Reproduction of the RA reactor fuel element fabrication

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    This document includes the following nine reports: Final report on task 08/12 - testing the Ra reactor fuel element; design concept for fabrication of RA reactor fuel element; investigation of the microstructure of the Ra reactor fuel element; Final report on task 08/13 producing binary alloys with Al, Mo, Zr, Nb and B additions; fabrication of U-Al alloy; final report on tasks 08/14 and 08/16; final report on task 08/32 diffusion bond between the fuel and the cladding of the Ra reactor fuel element; Final report on task 08/33, fabrication of the RA reactor fuel element cladding; and final report on task 08/36, diffusion of solid state metals [sr

  15. The role of a fuel element and its cladding in water cooled reactor dynamics

    International Nuclear Information System (INIS)

    Randles, J.

    1963-10-01

    To clarify the role of fuel element cladding in water reactor dynamics, the heat diffusion and transfer equations are solved in slab geometry for (a) an oscillatory fission power, (b) an oscillatory coolant temperature. From the resulting transfer functions a clear description of the effect of the cladding on the heat flow is obtained. A Mercury autocode programme for evaluating the transfer functions is described. In addition to the slab element, the heat diffusion equations are also solved for a cylindrical system exposed to an oscillatory fission power. The solutions are expressed as transfer functions and are obtainable numerically from another autocode programme. Both of these programmes are used to obtain the power out/ power in transfer function for a typical cylindrical and slab UO 2 fuel pellet clad in zircaloy. The results give a further indication of the effect of the cladding heat capacity over a wide frequency range. It is shown also that the effect of the geometrical difference between a slab and cylindrical fuel element is unimportant provided the surface to volume ratio of the fuel is the same in each case. (author)

  16. The role of a fuel element and its cladding in water cooled reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Randles, J [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-10-15

    To clarify the role of fuel element cladding in water reactor dynamics, the heat diffusion and transfer equations are solved in slab geometry for (a) an oscillatory fission power, (b) an oscillatory coolant temperature. From the resulting transfer functions a clear description of the effect of the cladding on the heat flow is obtained. A Mercury autocode programme for evaluating the transfer functions is described. In addition to the slab element, the heat diffusion equations are also solved for a cylindrical system exposed to an oscillatory fission power. The solutions are expressed as transfer functions and are obtainable numerically from another autocode programme. Both of these programmes are used to obtain the power out/ power in transfer function for a typical cylindrical and slab UO{sub 2} fuel pellet clad in zircaloy. The results give a further indication of the effect of the cladding heat capacity over a wide frequency range. It is shown also that the effect of the geometrical difference between a slab and cylindrical fuel element is unimportant provided the surface to volume ratio of the fuel is the same in each case. (author)

  17. Space reactor fuels performance and development issues

    International Nuclear Information System (INIS)

    Wewerka, E.M.

    1984-01-01

    Three compact reactor concepts are now under consideration by the US Space Nuclear Power Program (the SP-100 Program) as candidates for the first 100-kWe-class space reactor. Each of these reactor designs puts unique constraints and requirements on the fuels system, and raises issues of fuel systems feasibility and performance. This paper presents a brief overview of the fuel requirements for the proposed space reactor designs, a delineation of the technical feasibility issues that each raises, and a description of the fuel systems development and testing program that has been established to address key technical issues

  18. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    Hatcher, S.R.; McDonnell, F.N.; Griffiths, J.; Boczar, P.G.

    1987-01-01

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  19. Research reactor programmes at the IAEA

    International Nuclear Information System (INIS)

    Reijonen, H.

    1978-01-01

    The activities performed according to the Agency programs for research reactors in the fields of information collection and dissemination, meetings organization, publications of the proceedings and execution of technical assistance are discussed in the paper emphasizing the services that are provided for developing countries. It is intended that the programme on research reactors should be flexible and respond to the actual needs of the countries receiving assistance

  20. Method of fueling for a nuclear reactor

    International Nuclear Information System (INIS)

    Igarashi, Takao.

    1983-01-01

    Purpose: To enable the monitoring of reactor power with sufficient accuracy, upon starting even without existence of neutron source in case of a low average burnup degree in the reactor core. Constitution: Each of fuel assemblies is charged such that neutron source region monitors for the start-up system in a reactor core neutron instrumentation system having nuclear fuel assemblies and a neutron instrumentation system are surrounded with 4 or 16 fuel assemblies of a low burnup degree. Then, the average burnup degree of the fuel assemblies surrounding the neutron source region monitors are increased than the reactor core burnup degree, whereby neutrons released from the peripheral fuels are increased, sufficient number of neutron counts can be obtained even with no neutron sources upon start-up and the reactor power can be monitored at a sufficient accuracy. (Sekiya, K.)

  1. Gaseous fuel reactors for power systems

    International Nuclear Information System (INIS)

    Helmick, H.H.; Schwenk, F.C.

    1978-01-01

    The Los Alamos Scientific Laboratory is participating in a NASA-sponsored program to demonstrate the feasibility of a gaseous uranium fueled reactor. The work is aimed at acquiring experimental and theoretical information for the design of a prototype plasma core reactor which will test heat removal by optical radiation. The basic goal of this work is for space applications, however, other NASA-sponsored work suggests several attractive applications to help meet earth-bound energy needs. Such potential benefits are small critical mass, on-site fuel processing, high fuel burnup, low fission fragment inventory in reactor core, high temperature for process heat, optical radiation for photochemistry and space power transmission, and high temperature for advanced propulsion systems. Low power reactor experiments using uranium hexafluoride gas as fuel demonstrated performance in accordance with reactor physics predictions. The final phase of experimental activity now in progress is the fabrication and testing of a buffer gas vortex confinement system

  2. Fuel assemblies for nuclear reactor

    International Nuclear Information System (INIS)

    Nishi, Akihito.

    1987-01-01

    Purpose: To control power-up rate at the initial burning stage of new fuel assemblies due to fuel exchange in a pressure tube type power reactor. Constitution: Burnable poisons are disposed to a most portion of fuel pellets in a fuel assembly to such a low concentration as the burn-up rate changes with time at the initial stage of the burning. The most portion means substantially more than one-half part of the pellets and gadolinia is used as burn-up poisons to be dispersed and the concentration is set to less than about 0.2 %. Upon elapse of about 15 days after the charging, the burnable poisons are eliminated and the infinite multiplication factors are about at 1.2 to attain a predetermined power state. Since the power-up rate of the nuclear reactor fuel assembly is about 0.1 % power/hour and the power-up rate of the fuel assembly around the exchanged channel is lower than that, it can be lowered sufficiently than the limit for the power-up rate practiced upon reactor start-up thereby enabling to replace fuels during power operation. (Horiuchi, T.)

  3. Fuel technology and performance of non-water cooled reactors. Proceedings of an advisory group meeting held in Vienna, 5-8 December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The IAEA Division of Nuclear Fuel Cycle and Waste Management has been closely involved for many years in the collection, analysis and exchange of information relating to the global development of advanced reactor fuel technology and performance. Meetings of experts in this field have been held in 1984 and 1989 and more recently in December 1994 as part of the IAEA`s programme. This publication reviews progress in advanced reactor fuel technology and performance over the past five years, principally related to non-water cooled reactors, namely high temperature gas reactors (HTGRs) and fast reactors (FRs), as well as developments pertaining to thorium fuels and the fuel fabrication technologies. It includes papers from the participants and provides recommendations in key areas where further global co-operation in this field might be usefully initiated or strengthened. The previous two Advisory Group Meetings on Advanced Fuel Technology and Performance, on which separate reports have been published (IAEA-TECDOC-352 (1985) and IAEA-TECDOC-577 (1990)), focused on all types of commercial nuclear reactors. Refs, figs and tabs.

  4. Inter renewal travelling wave reactor with rotary fuel columns

    International Nuclear Information System (INIS)

    Terai, Yuzo

    2016-01-01

    To realize the COP21 decision, this paper proposes Inter Renewal Travelling Wave Reactor that bear high burn-up rate 50% and product TRU fuel efficiently. The reactor is based on 4S Fast Reactor and has Reactor Fuel Columns as fuel assemblies that equalize temperature in the fuel assembly so that fewer structure is need to restrain thermal transformation. To equalize burn-up rate of all fuel assemblies in the reactor, each rotary fuel column has each motor-lifter. The rotary fuel column has two types (Cylinder type and Heat Pipe type using natrium at 15 kPa which supply high temperature energy for Ultra Super Critical power plant). At 4 years cycle all rotary fuel columns of the reactor are renewed by the metallurgy method (vacuum re-smelting) and TRU fuel is gotten from the water fuel. (author)

  5. Cost aspects of the research reactor fuel cycle

    International Nuclear Information System (INIS)

    2010-01-01

    Research reactors have made valuable contributions to the development of nuclear power, basic science, materials development, radioisotope production for medicine and industry, and education and training. In doing so, they have provided an invaluable service to humanity. Research reactors are expected to make important contributions in the coming decades to further development of the peaceful uses of nuclear technology, in particular for advanced nuclear fission reactors and fuel cycles, fusion, high energy physics, basic research, materials science, nuclear medicine, and biological sciences. However, in the context of decreased public sector support, research reactors are increasingly faced with financial constraints. It is therefore of great importance that their operations are based on a sound understanding of the costs of the complete research reactor fuel cycle, and that they are managed according to sound financial and economic principles. This publication is targeted at individuals and organizations involved with research reactor operations, with the aim of providing both information and an analytical framework for assessing and determining the cost structure of fuel cycle related activities. Efficient management of fuel cycle expenditures is an important component in developing strategies for sustainable future operation of a research reactor. The elements of the fuel cycle are presented with a description of how they can affect the cost efficient operation of a research reactor. A systematic review of fuel cycle choices is particularly important when a new reactor is being planned or when an existing reactor is facing major changes in its fuel cycle structure, for example because of conversion of the core from high enriched uranium (HEU) to low enriched uranium (LEU) fuel, or the changes in spent fuel management provision. Review and optimization of fuel cycle issues is also recommended for existing research reactors, even in cases where research reactor

  6. Removal of spent fuel from the TVR reactor for reprocessing and proposals for the RA reactor spent fuel handling

    International Nuclear Information System (INIS)

    Volkov, E.B.; Konev, V.N.; Shvedov, O.V.; Bulkin, S.Yu; Sokolov, A.V.

    2002-01-01

    The 2,5 MW heavy-water moderated and cooled research reactor TVR was located at the Moscow Institute for Theoretical and Experimental Physics site. In 1990 the final batch of spent nuclear fuel (SNF) from the TVR reactor was transported for reprocessing to Production Association (PA) 'Mayak'. This transportation of the SNF was a part of TVR reactor decommissioning. The special technology and equipment was developed in order to fulfill the preparation of TVR SNF for transportation. The design of the TVR reactor and the fuel elements used are similar to the design and fuel elements of the RA reactor. Two different ways of RA spent fuel elements for transportation to reprocessing plant are considered: in aluminum barrels, and in additional cans. The experience and equipment used for the preparing TVR fuel elements for transportation can help the staff of RA reactor to find the optimal way for these technical operations. (author)

  7. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  8. Advanced fuel in the Budapest research reactor

    International Nuclear Information System (INIS)

    Hargitai, T.; Vidovsky, I.

    1997-01-01

    The Budapest Research Reactor, the first nuclear facility of Hungary, started to operate in 1959. The main goal of the reactor is to serve neutron research, but applications as neutron radiography, radioisotope production, pressure vessel surveillance test, etc. are important as well. The Budapest Research Reactor is a tank type reactor, moderated and cooled by light water. After a reconstruction and upgrading in 1967 the VVR-SM type fuel elements were used in it. These fuel elements provided a thermal power of 5 MW in the period 1967-1986 and 10 MW after the reconstruction from 1992. In the late eighties the Russian vendor changed the fuel elements slightly, i.e. the main parameters of the fuel remained unchanged, however a higher uranium content was reached. This new fuel is called VVR-M2. The geometry of VVR-SM and VVR-M2 are identical, allowing the use to load old and new fuel assemblies together to the active core. The first new type fuel assemblies were loaded to the Budapest Research Reactor in 1996. The present paper describes the operational experience with the new type of fuel elements in Hungary. (author)

  9. The long term storage of advanced gas-cooled reactor (AGR) fuel

    International Nuclear Information System (INIS)

    Standring, P.N.

    1999-01-01

    The approach being taken by BNFL in managing the AGR lifetime spent fuel arisings from British Energy reactors is given. Interim storage for up to 80 years is envisaged for fuel delivered beyond the life of the Thorp reprocessing plant. Adopting a policy of using existing facilities, to comply with the principles of waste minimisation, has defined the development requirements to demonstrate that this approach can be undertaken safely and business issues can be addressed. The major safety issues are the long term integrity of both the fuel being stored and structure it is being stored in. Business related issues reflect long term interactions with the rest of the Sellafield site and storage optimisation. Examples of the development programme in each of these areas is given. (author)

  10. Evaluation of the Community's nuclear reactor safety research programme

    International Nuclear Information System (INIS)

    Brandstetter, A.; Goedkoop, J.A.; Jaumotte, A.; Malhouitre, G.; Tomkins, B.; Zorzoli, G.B.

    1986-01-01

    This report describes an evaluation of the 1980-85 CEC reactor safety programme prepared, at the invitation of the Commission, by a panel of six independent experts by means of examining the relevant document and by holding hearings with the responsible CEC staff. It contains the recommendations made by the panel on the following topics: the need for the JRC to continue to make its competence in the reactor safety field available to the Community; the importance of continuity in the JRC and shared-cost action programmes; the difficulty of developing reactor safety research programmes which satisfy the needs of users with diverse needs; the monitoring of the utilization of the research results; the maintenance of the JRC computer codes used by the Member States; the spin-off from research results being made available to other industrial sectors; the continued contact between the JRC researchers and the national experts; the coordination of LWR safety research with that of the Member States; and, the JRC work on fast breeders to be planned with regard to the R and D programmes of the Fast Reactor European Consortium

  11. Storage and management of fuel from fast breeder test reactor and KAlpakkam MINI

    International Nuclear Information System (INIS)

    Sodhi, B.S.; Rao, M.S.; Natarajan, R.

    1999-01-01

    Two Research Reactors, FBTR (Fast Breeder Test Reactor) and KAMINI (KAlpakkam MINI) are in operation at Kalpakkam, India. FBTR is a 40 MWt reactor. It is the first reactor to use mixed carbide (70% PuC-30% UC) as driver fuel. Special precautions are needed to fabricate pellets in glove boxes under inert atmosphere to take into account the possibility of criticality, radiation, pyrophoricity and toxicity of PuC. FBTR has been operating with small core up to 12 MWt power. The initial limit was 250 W/cm, linear heat rating and 25,000 MWd/t peak burnup. This limit was increased to 320 W/cm and 50,000 MWd/t respectively after rigorous analysis. At present the core has reached 40,000 MWd/t without any pin failure. After 25,000 MWd/t burnup one fuel subassembly (SA) was removed and PEE was carried out. The results were as expected by the analysis. In FBTR, fuel is stored in a container filled with argon and the container is cooled by forced circulation of air (during storage). Closing the fuel cycle is important for the breeder programme. Therefore, efforts have been made to set up a reprocessing plant. It uses the well proven purex process. The irradiated fuel is sheared in a single pin chopper and dissolved in an electrochemical dissolver. The resulting solution after adjusting the valency of Pu to IVth state is processed in the solvent extraction plant using 30% Tri-n-Butyl phosphate/n-dodecane as solvent. KAMINI is 30 kWt neutron source reactor which uses light water as moderator and coolant and has as a fuel U-233 aluminium alloy. Uranium-233 has been indigenously recovered from thorium irradiated in CIRUS reactor at Trombay. KAMINI was made critical on October 1996. It is housed in a vault below one of the hot cells in the Radiometallurgy laboratories of IGCAR. This reactor is planned to be used for neutron radiography of fuel elements and neutron activation analysis. It is available for use by research institutions and universities also. This paper describes the

  12. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Picker, C.; Ainsworth, K.F.

    1996-01-01

    The general position with regard to nuclear power and fast reactors in UK during 1995 is described. The status of fast reactor studies made in UK is outlined and a description and statement regarding the conclusions of the programme of studies associated with the closure of the Prototype Fast Reactor is included. (author)

  13. A review of the UK fast reactor programme

    Energy Technology Data Exchange (ETDEWEB)

    Picker, C [AEA Technolgy plc, Risley, Warrington, Cheshire (United Kingdom); Ainsworth, K F [British Nuclear Fuels plc, Sellafield, Cumbria (United Kingdom)

    1996-07-01

    The general position with regard to nuclear power and fast reactors in UK during 1995 is described. The status of fast reactor studies made in UK is outlined and a description and statement regarding the conclusions of the programme of studies associated with the closure of the Prototype Fast Reactor is included. (author)

  14. Five years German AF-Programme: Review and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Thamm, G [Kernforschungsanlage Juelich GmbH, Zentralabteilung Forschungsreaktoren, 5170 Juelich (Germany)

    1985-07-01

    The AF-Programme (reduced enrichment in research reactors) was officially launched by the Federal Ministry for Research and Technology in the second half of 1979. Work under this programme carried out since then by industry and research laboratories covers the development of high-density LEU fuels up to the production stage, their qualification by irradiations and post-irradiation examinations as well as specific studies for converting the German research reactors from HEU to LEU fuel cycles. The programme was revised and updated approximately two years ago. The following decisions were made: - an extension by two years of the original period planned to expire at the end of 1984; - increased research into the development of LEU fuel fabrication technologies for application on an industrial scale; and - preference of the so-called one-step conversion of research reactors from HEU to LEU. The activities of the AF-Programme will be officially continued until the end of 1986. It will then be primarily necessary to conduct post- irradiation examinations as well as reactor conversion studies accompanying the licensing procedure. Work carried out to date has involved an extensive exchange of experience at various international meetings and on a bilateral basis. Particularly close cooperation was practised with the American RERTR programme, which made it possible to reduce the irradiations planned in Germany, especially due to the early tests of LEU plates of reduced size and fuel elements in the ORR, Oak Ridge, with subsequent post-examinations. (author)

  15. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  16. Evaluation of Metal-Fueled Surface Reactor Concepts

    International Nuclear Information System (INIS)

    Poston, David I.; Marcille, Thomas F.; Kapernick, Richard J.; Hiatt, Matthew T.; Amiri, Benjamin W.

    2007-01-01

    Surface fission power systems for use on the Moon and Mars may provide the first use of near-term reactor technology in space. Most near-term surface reactor concepts specify reactor temperatures <1000 K to allow the use of established material and power conversion technology and minimize the impact of the in-situ environment. Metal alloy fuels (e.g. U-10Zr and U-10Mo) have not traditionally been considered for space reactors because of high-temperature requirements, but they might be an attractive option for these lower temperature surface power missions. In addition to temperature limitations, metal fuels are also known to swell significantly at rather low fuel burnups (∼1 a/o), but near-term surface missions can mitigate this concern as well, because power and lifetime requirements generally keep fuel burnups <1 a/o. If temperature and swelling issues are not a concern, then a surface reactor concept may be able to benefit from the high uranium density and relative ease of manufacture of metal fuels. This paper investigates two reactor concepts that utilize metal fuels. It is found that these concepts compare very well to concepts that utilize other fuels (UN, UO2, UZrH) on a mass basis, while also providing the potential to simplify material safeguards issues

  17. International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13). Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The conference, which was held from 4 to 7 of March 2013 in Paris, provided a forum to exchange information on national and international programmes, and more generally new developments and experience, in the field of fast reactors and related fuel cycle technologies. A first goal was to identify and discuss strategic and technical options that have been proposed by individual countries or companies. Another goal was to promote the development of fast reactors and related fuel cycle technologies in a safe, proliferation resistant and economic way. A third goal was to identify gaps and key issues that need to be addressed in relation to the industrial deployment of fast reactors with a closed fuel cycle. A fourth goal was to engage young scientists and engineers in this field, in particular with sustainability, innovation, simulation, safety, economics and public acceptance

  18. From high to low. The IAEA is helping to reduce the use of high-risk nuclear fuel at the world's research reactors

    International Nuclear Information System (INIS)

    Adelfang, P.; Goldman, I.

    2006-01-01

    Research reactors play a key role in the development of peaceful uses of atomic energy. They are used for the production of isotopes for medicine and industry, for research in physics, biology and materials science, and for scientific education and training. They also continue to play an important role in support of nuclear power programmes. The IAEA's data shows there are 249 operational research reactors worldwide. Of these, more than 100 reactors are still fuelled with highly enriched uranium (HEU). It is considered high-risk nuclear material since it can be easily used for a nuclear explosive device. As part of a developing international norm to minimize and eventually eliminate HEU in civilian nuclear applications, research reactor operators increasingly are working with national and international agencies. They are being encouraged and supported to improve their physical security arrangements, convert their reactors to low-enriched uranium (LEU) fuel, and ship irradiated fuel back to the country of origin.For more than twenty years the IAEA has been supporting international efforts associated with reducing the amount of HEU in international commerce. Projects and activities have directly supported a programme the United States initiated in 1978, called Reduced Enrichment for Research and Test Reactors (RERTR). The IAEA's work additionally supports efforts to return research reactor fuel to the country where it was originally enriched so-called take back activities. IAEA initiatives have included the development and maintenance of several databases with information related to research reactors and research reactor spent fuel inventories. These databases have been essential in planning and managing both RERTR and take-back programmes. Other Agency activities through technical cooperation and other channels have supported the conversion of research reactors to using lower enriched fuels. In other ways, the IAEA supports the exchange of information among experts

  19. Irradiation behavior of metallic fast reactor fuels

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985

  20. Fuel cladding interaction with water coolant in power reactors

    International Nuclear Information System (INIS)

    1985-11-01

    Water coolant chemistry and corrosion processes are important factors in reliable operation of NPP's, as at elevated temperatures water is aggressive towards structural materials. Water regimes for commercial Pressurized Water Reactors and Boiling Water Reactors were developed and proved to be satisfactory. Nevertheless, studies of operation experience continue and an amount of new Research and Development work is being conducted for further improvements of technology and better understanding of the physicochemical nature of those processes. In this report information is presented on the IAEA programme on fuel element cladding interaction with water coolant. Some results of this survey and recommendations made by the group of consultants who participated in this work are given as well as recommendations for continuation of this study. Separate abstracts were prepared for 6 papers of this report

  1. Overview of fuel testing capabilities at the OECD Halden reactor project

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenack, W [Institutt for Atomenergi, Halden (Norway). OECD Halden Reaktor Projekt

    1994-12-31

    Fuel performance and reliability investigations at the OECD Haiden Reactor Project are described. They are supported by a variety of irradiation rigs, suitable irradiation techniques and a range of instrumentation. Testing capabilities and applications are mainly aimed at exploring mechanisms of fuel behaviour and high burnup. Examples of fuel performance taken from data provided by the Halden Project for the IAEA Co-ordinated Research Programme FUMEX are presented. A number of heavily instrumented rigs to suit different test objects have been developed: base irradiation rig, gas meter rig, diameter measurement rig, ramp rig, gas flow rig, instrumented fuel assembly. In core-measurements and variety of sensors as : fuel thermocouples, bellows pressure transducers, fuel stack elongation detectors, cladding diameter gauge and cladding elongation detectors have been used. Techniques which make it possible to obtain reliable data for all relevant burnups from beginning-of-life to ultra high exposure reaching 100 Mwd/kg UO{sub 2} are described. 7 figs., 3 refs.

  2. Indian programme on molten salt cooled nuclear reactors

    International Nuclear Information System (INIS)

    DuIera, I.V.; Vijayan, P.K.; Sinha, R.K.

    2013-01-01

    Bhabha Atomic Research Centre (BARC) is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of molten fluoride salts and is capable of supplying process heat at 1000 ℃ to facilitate hydrogen production by splitting water. BARC has also initiated studies for a reactor concept in which salts of molten fluoride fuel and coolant in fluid form, flows through the reactor core of graphite moderator, resulting in nuclear fission within the molten salt. For thorium fuel cycle, this concept is very attractive, since the fuel can be re-processed on-line, enabling it to be an efficient neutron breeder. (author)

  3. Overview of fast reactor structural materials programme in India

    International Nuclear Information System (INIS)

    Rodriguez, P.; Paranjpe, S.R.; Chetal, S.C.; Mannan, S.L.; Ray, S.K.; Seetharaman, V.; Srinivasan, G.

    The fast reactor structural materials activities in India comprise of the programme on the materials for the Fast Breeder Test Reactor (FBTR), the construction of which is nearing completion, and the programme on the candidate materials for the Prototype Fast Breeder Reactor (PFBR) which is now in the design stage. For the materials in use in FBTR, the main thrust has been towards detailed evaluation and documentation of long term (creep) properties of type 316 stainless steel base material in air. For the PFBR the philosophy has been to identify the candidate materials and to evolve a wider scope for the testing and evaluation programmes. The major structural component is identified as variants of type 304 stainless steel and the programmes undertaken include study of low cycle fatigue properties and environmental effects on creep and stress rupture properties. Evaluations of aging embrittlement of type 316 stainless steel base material and weldments are also in progress. The paper lists the testing programmes identified for adoption in the near future. These include creep-fatigue damage studies and fracture mechanics studies on weldments for type 304 stainless steel and testing programme on 2.25 Cr-1 Mo and 9 Cr-1 Mo steels, the identified candidate materials for steam generators. The development efforts also include a comprehensive programme on inelastic analysis procedure. (author)

  4. Fissile fuel doubling time characteristics for reactor lifetime fuel logistics

    International Nuclear Information System (INIS)

    Heindler, M.; Harms, A.A.

    1978-01-01

    The establishment of nuclear fuel requirements and their efficient utilization requires a detailed knowledge of some aspects of fuel dynamics and processing during the reactor lifetime. It is shown here that the use of the fuel stockpile inventory concept can serve effectively for this fuel management purpose. The temporal variation of the fissile fuel doubling time as well as nonequilibrium core conditions are among the characteristics which thus become more evident. These characteristics - rather than a single figure-of-merit - clearly provide an improved description of the expansion capacity and/or fuel requirements of a nuclear reactor energy system

  5. Fuel Development For Gas-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  6. Issues of high-burnup fuel for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Belac, J.; Milisdoerfer, L.

    2004-12-01

    A brief description is given of nuclear fuels for Generation III+ and IV reactors, and the major steps needed for a successful implementation of new fuels in prospective types of newly designed power reactors are outlined. The following reactor types are discussed: gas cooled fast reactors, heavy metal (lead) cooled fast reactors, molten salt cooled reactors, sodium cooled fast reactors, supercritical water cooled reactors, and very high temperature reactors. The following are regarded as priority areas for future investigations: (i) spent fuel radiotoxicity; (ii) proliferation volatility; (iii) neutron physics characteristics and inherent safety element assessment; technical and economic analysis of the manufacture of advanced fuels; technical and economic analysis of the fuel cycle back end, possibilities of spent nuclear fuel reprocessing, storage and disposal. In parallel, work should be done on the validation and verification of analytical tools using existing and/or newly acquired experimental data. (P.A.)

  7. In pile programme of first valutation of UO2 + PuO2 fuel produced by a new process (GSP)

    International Nuclear Information System (INIS)

    Caracchin, R.; Lanchi, M.; Marinucci, G.; Nobili, A.; Dupont, G.; Galtier, J.

    1982-01-01

    The main scope of the ENEA-AGN-CEA programme collaboration is a first valutation of fuel elements produced by GSP method. This valuation will be done by in reactor experiment which enable to compare the performance of GSP and 'standard' FBR fuels. The composition is done by means of theree experimental device: P3, Lugel and Digel. The P3 device gives a direct measurement during irradiation of fuel central temperature, power and integral conductivity. The Lugel device measures fuel stack axial variations and Digel device gives the diameter variations of the pin and PCMI

  8. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  9. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Pal, S.; Mishra, G.P.

    2012-01-01

    CERMET fuel with either PuO 2 or enriched UO 2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR’s). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO 2 dispersed in uranium metal matrix pellets for three different compositions i.e. U–20 wt%UO 2 , U–25 wt%UO 2 and U–30 wt%UO 2 . It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U–UO 2 compositions.

  10. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    Science.gov (United States)

    Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.

    2012-08-01

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.

  11. Future fuel cycle and reactor strategies

    International Nuclear Information System (INIS)

    Meneley, D.A.

    1999-01-01

    Within the framework of the 1997 IAEA Symposium 'Future Fuel Cycle and Reactor Strategies Adjusting to New Realities', Working Group No.3 produced a Key Issues paper addressing the title of the symposium. The scope of the Key Issues paper included those factors that are expected to remain or become important in the time period from 2015 to 2050, considering all facets of nuclear energy utilization from ore extraction to final disposal of waste products. The paper addressed the factors influencing the choice of reactor and fuel cycle. It then addressed the quantitatively largest category of reactor types expected to be important during the period; that is, thermal reactors burning uranium and plutonium fuel. The fast reactor then was discussed both as a stand-alone technology and as might be used in combination with thermal reactors. Thorium fuel use was discussed briefly. The present paper includes of a digest of the Key Issues Paper. Some comparisons arc made between the directions suggested in that paper and those indicated by the Abstracts of this Technical Committee Meeting- Recommendations are made for work which might be undertaken in the short and medium time frames, to ensure that fuel cycle technologies and processes established by the year 2050 will support the continuation of nuclear energy applications in the long term. (author)

  12. Fuel transfer system for a nuclear reactor

    International Nuclear Information System (INIS)

    Katz, L.R.; Marshall, J.R.; Desmarchais, W.E.

    1977-01-01

    Disclosed is a fuel transfer system for moving nuclear reactor fuel assemblies from a new fuel storage pit to a containment area containing the nuclear reactor, and for transferring spent fuel assemblies under water from the reactor to a spent fuel storage area. The system includes an underwater track which extends through a wall dividing the fuel building from the reactor containment and a car on the track serves as the vehicle for moving fuel assemblies between these two areas. The car is driven by a motor and linkage extending from an operating deck to a chain belt drive on the car. A housing pivotally mounted at its center on the car is hydraulically actuated to vertically receive a fuel assembly which then is rotated to a horizontal position to permit movement through the wall between the containment and fuel building areas. Return to the vertical position provides for fuel assembly removal and the reverse process is repeated when transferring an assembly in the opposite direction. Limit switches used in controlling operation of the system are designed to be replaced from the operating deck when necessary by tools designed for this purpose. 5 claims, 8 figures

  13. Aspects regarding the fuel management for PHWR nuclear reactors

    International Nuclear Information System (INIS)

    Dragusin, O.; Bobolea, A.; Voicu, A.

    2001-01-01

    Fuel management for PHWR nuclear reactors is completely different from the PWR reactors fuel management. PHWR reactor fuel loading procedures are repeated after an interval of time, as defined and specified in the project documentation, using a fuel machine that can be attached to the terminal fittings of horizontal pressure tubes while the reactor is a full power. Another aspect of fuel management policy is related to the possibility of bi-directional loading of the reactor, with the primary advantage of uniform and symmetrical characteristics. (authors)

  14. Method of monitoring fuel-rod vibrations in a nuclear fuel reactor

    International Nuclear Information System (INIS)

    Kawamura, Makoto; Takai, Katsuaki.

    1985-01-01

    Purpose: To monitor the vibration modes of fuel rods continuously and on real time during operation of a PWR type nuclear reactor. Method: Vibrations of fuel rods during reactor operation are mainly caused by the lateral flow of coolants flowing through the gaps at the joints of reactor core buffle plates into a reactor core and fretting damages may possibly be caused to the fuel rod support portions due to the vibrations. In view of the above, self-powered detectors are disposed at a plurality of axial positions for the respective peripheral fuel assemblies in adjacent with the buffle plates and the detection signals from neutron detectors, that is, the fluctuations in neutrons are subjected to a frequency analysis during the operation period. The neutron detectors are disposed at the periphery of the reactor core, because the fuel assemblies disposed at the peripheral portion directly undergo the lateral flow from the joints of the buffle plates and vibrates most violently. Thus, the vibration situations can be monitored continuously, in a three demensional manner and on real time. (Moriyama, K.)

  15. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    In recent years, engineering oriented work, rather than basic research and development (R&D), has led to significant progress in improving the economics of innovative fast reactors and associated fuel cycle facilities, while maintaining and even enhancing the safety features of these systems. Optimization of plant size and layout, more compact designs, reduction of the amount of plant materials and the building volumes, higher operating temperatures to attain higher generating efficiencies, improvement of load factor, extended core lifetimes, high fuel burnup, etc. are good examples of achievements to date that have improved the economics of fast neutron systems. The IAEA, through its Technical Working Group on Fast Reactors (TWG-FR) and Technical Working Group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), devotes many of its initiatives to encouraging technical cooperation and promoting common research and technology development projects among Member States with fast reactor and advanced fuel cycle development programmes, with the general aim of catalysing and accelerating technology advances in these fields. In particular the theme of fast reactor deployment, scenarios and economics has been largely debated during the recent IAEA International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios, held in Paris in March 2013. Several papers presented at this conference discussed the economics of fast reactors from different national and regional perspectives, including business cases, investment scenarios, funding mechanisms and design options that offer significant capital and energy production cost reductions. This Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics addresses Member States’ expressed need for information exchange in the field, with the aim of identifying the main open issues and launching possible initiatives to help and

  16. Progress of the DUPIC fuel compatibility analysis (I) - reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Jeong, Chang Joon; Roh, Gyu Hong; Rhee, Bo Wook; Park, Jee Won

    2003-12-01

    Since 1992, the direct use of spent pressurized water reactor fuel in CANada Deuterium Uranium (CANDU) reactors (DUPIC) has been studied as an alternative to the once-through fuel cycle. The DUPIC fuel cycle study is focused on the technical feasibility analysis, the fabrication of DUPIC fuels for irradiation tests and the demonstration of the DUPIC fuel performance. The feasibility analysis was conducted for the compatibility of the DUPIC fuel with existing CANDU-6 reactors from the viewpoints of reactor physics, reactor safety, fuel cycle economics, etc. This study has summarized the intermediate results of the DUPIC fuel compatibility analysis, which includes the CANDU reactor physics design requirements, DUPIC fuel core physics design method, performance of the DUPIC fuel core, regional overpower trip setpoint, and the CANDU primary shielding. The physics analysis showed that the CANDU-6 reactor can accommodate the DUPIC fuel without deteriorating the physics design requirements by adjusting the fuel management scheme if the fissile content of the DUPIC fuel is tightly controlled.

  17. Reactor fueling system

    International Nuclear Information System (INIS)

    Hattori, Noriaki; Hirano, Haruyoshi.

    1983-01-01

    Purpose: To optimally position a fuel catcher by mounting a television camera to a fuel catching portion and judging video images by the use of a computer or the like. Constitution: A television camera is mounted to the lower end of a fuel catching mechanism for handling nuclear fuels and a fuel assembly disposed within a reactor core or a fuel storage pool is observed directly from above to judge the position for the fuel assembly by means of video signals. Then, the relative deviation between the actual position of the fuel catcher and that set in a memory device is determined and the positional correction is carried out automatically so as to reduce the determined deviation to zero. This enables to catch the fuel assembly without failure and improves the efficiency for the fuel exchange operation. (Moriyama, K.)

  18. IAEA activities in support of RERTR programme

    International Nuclear Information System (INIS)

    Akhtar, K.M.

    2004-01-01

    The International Atomic Energy Agency has supported the programme for Reduced Enrichment for Research and Test Reactors from the very initial stage. As part of its research reactor programme, the Agency has convened several technical meetings and seminars, issued many publications on the subject, and provided technical and financial assistance to many reactor operators in the developing countries. The worldwide current status of fuel enrichment for research reactors and a resume of Agency activities are presented in this paper. (author)

  19. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  20. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1993-01-01

    This paper includes some statements and remarks concerning the uranium silicide fuels for which there is significant fabrication in AECL, irradiation and defect performance experience; description of two Canadian high flux research reactors which use high enrichment uranium (HEU) and the fuels currently used in these reactors; limited fabrication work done on Al-U alloys to uranium contents as high as 40 wt%. The latter concerns work aimed at AECL fast neutron program. This experience in general terms is applied to the NRX and NRU designs of fuel

  1. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Tower, S.N.; Huckestein, E.A.

    1982-01-01

    A fuel assembly for a nuclear reactor comprises a 5x5 array of guide tubes in a generally 20x20 array of fuel elements, the guide tubes being arranged to accommodate either control rods or water displacer rods. The fuel assembly has top and bottom Inconel (Registered Trade Mark) grids and intermediate Zircaloy grids in engagement with the guide tubes and supporting the fuel elements and guide tubes while allowing flow of reactor coolant through the assembly. (author)

  2. Reactor physics in support of the naval nuclear propulsion programme

    International Nuclear Information System (INIS)

    Lisley, P.G.; Beeley, P.A.

    1994-01-01

    Reactor physics is a core component of all courses but in particular two postgraduate courses taught at the department in support of the naval nuclear propulsion programme. All of the courses include the following elements: lectures and problem solving exercises, laboratory work, experiments on the Jason zero power Argonaut reactor, demonstration of PWR behavior on a digital computer simulator and project work. This paper will highlight the emphasis on reactor physics in all elements of the education and training programme. (authors). 9 refs

  3. Sixth meeting of the International Working Group on Water Reactor Fuel Performance and Technology, Vienna, 14-15 May 1984

    International Nuclear Information System (INIS)

    1984-10-01

    The summary report of the 6th meeting of the IWGFPT had been approved. The review of IWGFPT activities since the last meeting are given in Appendix 3, which is a list of meetings and proceedings publications for that period. Co-ordinated research programmes were discussed in the fields of fuel element cladding interaction with water coolant in power reactors and examination and documentation methodology for water reactor fuel. The main activities for the next three years were settled. The next Working Group meeting will be held at the VIC, November 1985

  4. Research reactor spent fuel in Ukraine

    International Nuclear Information System (INIS)

    Trofimenko, A.P.

    1996-01-01

    This paper describes the research reactors in Ukraine, their spent fuel facilities and spent fuel management problems. Nuclear sciences, technology and industry are highly developed in Ukraine. There are 5 NPPs in the country with 14 operating reactors which have total power capacity of 12,800 MW

  5. Status of National Programmes on Fast Breeder Reactors. International Working Group on Fast Reactors Twenty-First Annual Meeting, Seattle, USA, 9-12 May 1988

    International Nuclear Information System (INIS)

    1988-11-01

    The following papers on the status of national programmes on fast breeder reactors are presented in this report: Fast breeder reactor development in France during 1987; Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands; A review of the Indian fast reactor programme; A review of the Italian fast reactor programme; A review of the fast reactor programme in Japan; Status of fast reactor activities in the USSR; A review of the United Kingdom fast reactor programme; Status of liquid metal reactor development in the United States of America; Review of activities of the Commission of European Communities relating to fast reactors in 1987; European co-operation in the field of fast reactor research and development — 1987 progress report; A review of fast reactor activities in Switzerland

  6. Reactor-specific spent fuel discharge projections: 1985 to 2020

    International Nuclear Information System (INIS)

    Heeb, C.M.; Libby, R.A.; Walling, R.C.; Purcell, W.L.

    1986-09-01

    The creation of four spent-fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No New Orders with Extended Burnup, (2) No New Orders with Constant Burnup, (3) Middle Case with Extended Burnup, and (4) Middle Case with Constant Burnup. Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel

  7. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, T.

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design

  8. Fuel handling grapple for nuclear reactor plants

    International Nuclear Information System (INIS)

    Rousar, D.L.

    1992-01-01

    This patent describes a fuel handling system for nuclear reactor plants. It comprises: a reactor vessel having an openable top and removable cover and containing therein, submerged in water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units, the fuel handling system consisting essentially of the combination of: a fuel bundle handling platform movable over the open top of the reactor vessel; a fuel bundle handling mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grapple means comprising complementary hooks which pivot inward toward each other to securely grasp a bail handle of a nuclear reactor fuel bundle and pivot backward away from each other to release a bail handle; the grapple means having a hollow cylindrical support shaft fixed within the grapple head with hollow cylindrical sleeves rotatably mounted and fixed in longitudinal axial position on the support shaft and each sleeve having complementary hooks secured thereto whereby each hook pivots with the rotation of the sleeve secured thereto; and the hollow cylindrical support shaft being provided with complementary orifices on opposite sides of its hollow cylindrical and intermediate to the sleeves mounted thereon whereby the orifices on both sides of the hollow cylindrical support shaft are vertically aligned providing a direct in-line optical viewing path downward there-through and a remote operator positioned above the grapple means can observe from overhead the area immediately below the grapple hooks

  9. Reactor-specific spent fuel discharge projections: 1986 to 2020

    International Nuclear Information System (INIS)

    Heeb, C.M.; Walling, R.C.; Purcell, W.L.

    1987-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No new orders with extended burnup, (2) No new orders with constant burnup, (3) Upper reference (which assumes extended burnup), (4) Upper reference with constant burnup, and (5) Lower reference (which assumes extended burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel. 6 refs., 8 figs., 8 tabs

  10. Research reactors for power reactor fuel and materials testing - Studsvik's experience

    International Nuclear Information System (INIS)

    Grounes, M.

    1998-01-01

    Presently Studsvik's R2 test reactor is used for BWR and PWR fuel irradiations at constant power and under transient power conditions. Furthermore tests are performed with defective LWR fuel rods. Tests are also performed on different types of LWR cladding materials and structural materials including post-irradiation testing of materials irradiated at different temperatures and, in some cases, in different water chemistries and on fusion reactor materials. In the past, tests have also been performed on HTGR fuel and FBR fuel and materials under appropriate coolant, temperature and pressure conditions. Fuel tests under development include extremely fast power ramps simulating some reactivity initiated accidents and stored energy (enthalpy) measurements. Materials tests under development include different types of in-pile tests including tests in the INCA (In-Core Autoclave) facility .The present and future demands on the test reactor fuel in all these cases are discussed. (author)

  11. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  12. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  13. Development of computer models for fuel element behaviour in water reactors

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1987-03-01

    Description of fuel behaviour during normal operation transients and accident conditions has always represented a most challenging and important problem. Reliable predictions constitute a basic demand for safety based calculations, for design purposes and for fuel performance. Therefore, computer codes based on deterministic and probabilistic models were developed. Possibility of comprehensive descriptions of the phenomena is precluded in view of the great number of individual processes, involving physical, chemical, thermohydraulical and mechanical parameters, to be considered in a wide range of situations. In case of fast thermal transients predictive capability is limited by the kinetics of evolution of the system and its eventual dynamic behaviour. Evidently, probabilistic approaches are also limited by the sparcity and limited breadth of the impirical data base. Code predictions have to be evaluated against power reactor data, results from simulation experiments and, if possible, include cross validation of different codes and validation of sub-models. Progress on this subject is reviewed in this report, which completes the co-ordinated research programme on 'Development of Computer Models for Fuel Element Behaviour in Water Reactors' (D-COM), initiated under the auspices of the IAEA in 1981

  14. Fast reactor development programme in France during 1995

    International Nuclear Information System (INIS)

    Le Rigoleur, C.

    1996-01-01

    In 1995, the total amount of electricity produced in France was 471 TWh, out of which 358.2 TWh (76 %) were produced by nuclear power plants, 36.9 TWh (7.8 %) by conventional thermal plants, and 75.5 TWh (16 %) by hydraulic plants. The net electrical power consumption was 368.7 TWh. At the end of 1995, 'Electricite de France' had 54 PWR units in operation. The availability factor for these units was maintained at 81%. 1995 was marked by a decrease of unexpected shutdowns (1.8% in 1995 instead of 2.2% in 1994), a new reduction in programmed shutdown periods, and a good safety level was maintained. In the field of Fast Reactors, the main events of 1995 were the following. At the end of December 1994, the PHENIX reactor was authorized to perform its 49th cycle at 350 MW th (143 MWe). This 49th cycle was completed without any significant problems on April 7, 1995. During the remainder of the year, the reactor had been shut down in order to carry out several tasks within the scope of the ten-year extension of the PHENIX reactor's lifetime. Concerning the CREYS-MALVILLE plant (SUPER-PHENIX) the first part of the year was devoted to repairing argon leak of one of the IHX. Authorization to restart the reactor was given on August 22. The end of the year was beset by a number of minor incidents. The reactor was restarted at the end of 1995 and reactor power was increased by successive steps (30% Pn (Nominal Power) up to February 6 1996; followed by 50 %...). The 'Decret d'Autorisation de Creation' stipulates that because of its prototype character, SUPER PHENIX will have to be operated under conditions explicitly giving priority to safety and knowledge acquisition, with an objective of research and demonstration. In this context, the so-called 'knowledge acquisition' programme designed to prove the capacity of a large FBR to produce electricity on an industrial scale, to test the consumption of plutonium and minor actinides in a large fast reactor, as well as to provide

  15. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  16. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U 3 O 8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  17. Water reactor fuel activities in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, N [State Scientific Centre of Russian Federation, A.A Bochvar All-Russian Research Inst. of Inorganic Materials, Moscow (Russian Federation)

    1997-12-01

    The presentation reviews the following issues: some specific features of Russian WWER type fuel assemblies and fuel rods; WWER fuel performance; fuel status after irradiation; main directions of programme towards high burnup; development of absorber element. 8 refs, 13 figs, 3 tabs.

  18. Water reactor fuel activities in Russia

    International Nuclear Information System (INIS)

    Sokolov, N.

    1997-01-01

    The presentation reviews the following issues: some specific features of Russian WWER type fuel assemblies and fuel rods; WWER fuel performance; fuel status after irradiation; main directions of programme towards high burnup; development of absorber element. 8 refs, 13 figs, 3 tabs

  19. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  20. Ageing Management Programme for the IEA-R1 Reactor in São Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, L. V. [Institute of Energy and Nuclear Research (IPEN), National Nuclear Energy Commission (CNEN), São Paulo (Brazil)

    2014-08-15

    IEA-R1 is a swimming pool type reactor. It is moderated and cooled by light water and uses graphite and beryllium as reflector elements. First criticality was achieved on 16 September 1957, and the reactor is currently operating at 4.0 MW on a 64 h per week cycle. In 1996, a reactor ageing study was established to determine general deterioration of systems and components such as cooling towers, secondary cooling system, piping, pumps, specimen irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation, and safety system. The basic structure of the reactor from the original design has been maintained, but several improvements and modifications have been made over the years to various components, systems and structures. During the period 1996–2005 the reactor power was increased from 2 MW to 5 MW and the operational cycle from 8 h per day for 5 days a week to 120 h continuous per week, mainly to increase production of {sup 99}Mo. Prior to increasing reactor power, several modifications were made to the reactor system and its components. Simultaneously, a vigorous ageing management, inspection and modernization programme was put in place.

  1. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.

    1982-01-01

    A fuel assembly in a nuclear reactor comprises a locking mechanism that is capable of locking the fuel assembly to the core plate of a nuclear reactor to prevent inadvertent movement of the fuel assembly. The locking mechanism comprises a ratchet mechanism 108 that allows the fuel assembly to be easily locked to the core plate but prevents unlocking except when the ratchet is disengaged. The ratchet mechanism is coupled to the locking mechanism by a rotatable guide tube for a control rod or water displacer rod. (author)

  2. Treatment of spent fuels from research reactors and reactor development programs in Germany

    International Nuclear Information System (INIS)

    Closs, K.D.

    1999-01-01

    Quite a great number of different types of spent fuel from research reactors and development programs exists in Germany. The general policy is to send back to the USA as long as possible fuel from MTRs and TRIGAs of USA origin. An option is reprocessing in Great Britain or France. This option is pursued as long as reprocessing and reuse of the recovered material is economically justifiable. For those fuels which cannot be returned to the USA or which will not be reprocessed, a domestic back-up solution of spent fuel management has been developed in Germany, compatible with the management of spent fuel from power reactors. It consists in dry storage in special casks and, later on, direct disposal. Preliminary results from experimental R and D investigations with research reactor fuel and experience from LWR fuel lead to the conclusion that the direct disposal option even for research reactor fuel or exotic fuel does not impose major technical difficulties for the German waste management and disposal concept. (author)

  3. Peaceful nuclear programme and front end nuclear fuel cycle activities in Pakistan

    International Nuclear Information System (INIS)

    S. Mukhtar Ahmed

    1999-01-01

    Pakistan has a modest but broad based nuclear programme related to peaceful uses of atomic energy in nuclear power, agriculture, medicine and industry. While development projects in these areas form the major segment of Pakistan Atomic Energy Commission's work, complimentary activities in basic research and human resource development are also supported. PAEC through its activities has been moving towards the goal of achieving self-reliance for its existing programme in an international atmosphere of embargoes and restrictions and in pursuit of creating an infrastructure to help sustain an indigenous nuclear power programme. To solve the local needs and requirements, radioisotopes and nuclear techniques have been applied in agriculture, medicine, hydrology and industry. PAEC has one large research and development establishment in physical sciences, three R and D centers in agriculture, one in biotechnology, and ten nuclear medical centers for diagnostics and oncology treatment. Two research reactors form nucleus of research and development activities in nuclear sciences. In the power sector a 137 Mew CANDU power reactor is in operation in Karachi since 1971. Another 300 Mew PWR is under construction and is nearing completion. Front-end fuel cycle and engineering infrastructure facilities have been established to support continued operation of Karachi Nuclear Power Plant (KANUPP). To support the engineering activities it has established facilities for precision workshops, non-destructive testing center and a welding institute. (author)

  4. Reactor TRIGA PUSPATI (RTP) spent fuel pool conceptual design

    International Nuclear Information System (INIS)

    Mohd Fazli Zakaria; Tonny Lanyau; Ahmad Nabil Ab Rahim

    2010-01-01

    Reactor TRIGA PUSPATI (RTP) is the one and only research reactor in Malaysia that has been safely operated and maintained since 1982. In order to enhance technical capabilities and competencies especially in nuclear reactor engineering a feasibility study on RTP power upgrading was proposed to serve future needs for advance nuclear science and technology in the country with the capability of designing and develop reactor system. The need of a Spent Fuel Pool begins with the discharge of spent fuel elements from RTP for temporary storage that includes all activities related to the storage of fuel until it is either sent for reprocessed or sent for final disposal. To support RTP power upgrading there will be major RTP systems replacement such as reactor components and a new temporary storage pool for fuel elements. The spent fuel pool is needed for temporarily store the irradiated fuel elements to accommodate a new reactor core structure. Spent fuel management has always been one of the most important stages in the nuclear fuel cycle and considered among the most common problems to all countries with nuclear reactors. The output of this paper will provide sufficient information to show the Spent Fuel Pool can be design and build with the adequate and reasonable safety assurance to support newly upgraded TRIGA PUSPATI TRIGA Research Reactor. (author)

  5. Gel-sphere-pac reactor fuel fabrication and its application to a variety of fuels

    International Nuclear Information System (INIS)

    Olsen, A.R.; Judkins, R.R.

    1979-12-01

    The gel-sphere-pac fuel fabrication option was evaluated for its possible application to commercial scale fuel fabrication for 19 fuel element designs that use oxide fuel in metal clad rods. The dry gel spheres are prepared at the reprocessing plant and are then calcined, sintered, inspected, and loaded into fuel rods and packed by low-energy vibration. A fuel smear density of 83 to 88% theoretical can be obtained. All fuel fabrication process steps were defined and evaluated from fuel receiving to finished fuel element shipping. The evaluation also covers the feasibility of the process, the current status of technology, estimates of the required time and cost to develop the technology to commercial status, and the safety and licensability of commercial scale plants. The primary evaluation was for a Light-Water Reactor fuel element containing (U,Pu)O 2 fuel. The other 18 fuel element types - 3 for Light-Water Reactors, 1 for a Heavy-Water Reactor, 1 for a Gas-Cooled Fast Reactor, 7 for Liquid-Metal-Cooled Fast Breeder Reactors, and 3 pairs for Light-Water Prebreeder and Breeder Reactors - were compared with the Light-Water Reactor. The gel-sphere-pac option was found applicable to 17 of the 19 element types; the characteristics of a commercial scale plant were defined for these for making cost estimates for such plants. The evaluation clearly shows the gel-sphere-pac process to be a viable fuel fabrication option. Estimates indicate a significant potential fabrication cost advantage for the gel-sphere-pac process if a remotely operated and remotely maintained fuel fabrication plant is required

  6. Plasma-gun fueling for tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1980-11-01

    In light of the uncertain extrapolation of gas puffing for reactor fueling and certain limitations to pellet injection, the snowplow plasma gun has been studied as a fueling device. Based on current understanding of gun and plasma behavior a design is proposed, and its performance is predicted in a tokamak reactor environment

  7. Thorium fuels for heavy water reactors. Romanian experience

    International Nuclear Information System (INIS)

    Glodeanu, F.; Mirion, I.; Mehedinteanu, S.; Balan, V.

    1984-01-01

    The renewed interest in thorium fuel cycle due to the increased demand for fissile materials has resulted in speeding up the related research and development activities. For heavy water reactors the thorium cycles, especially SSET, are very promising and many efforts are made to demonstrate their feasibility. In our country, at INPR, the research and development activity has been initiated in the following areas: the conceptual design of thorium bearing fuel elements; fuel modelling; nuclear grade thorium dioxide powder technology; mixed oxide fuel technology. In the design area, the key factors in performance limitation, especially at extended burnup have been accounted and different remedies proposed. An irradiation programme has been settled and will start this year. The modelling activities are focused on mixed oxide behaviour and material data measurements are in progress. In the nuclear grade thorium powder technology area, a good piece of work has been done to develop an integrated technology for monasite processing (thorium being a by-product in lanthanides extraction). As regards the mixed oxide fuel technology, efforts have been made to obtain (ThU)O 2 pellets with good homogeneity and high density at different compositions. Besides the mixing powders route, other non-conventional technologies for refabrication like: microspheres, pellet impregnation and clay extrusion are studied. Experimental fuel rods for irradiation testing have been manufactured. (author)

  8. Ageing problems and renovation programme of ET-RR-1 reactor

    International Nuclear Information System (INIS)

    Khattab, M.S.; Sultan, M.A.

    1995-01-01

    Based on Practical Experience gained from interfacing ageing systems in addition to operating new systems, current problems could be deduced whenever in-service inspection are carried out. This paper summarizes the in-service inspection made, and the proposed programme of rehabilitation of mechanical system in the ET-RR-1 research reactor at Inshass. Exchangeable experience in solving common problems in similar reactors play an important role in the effectiveness of such rehabilitation programme. The paper summarizes also the modernization of control, measuring and radiation monitoring system already carried out at the reactor. (orig.)

  9. Fuel elements of research reactors in China

    International Nuclear Information System (INIS)

    Zhou Yongmao; Chen Dianshan; Tan Jiaqiu

    1987-01-01

    This paper describes the current status of design, fabrication of fuel elements for research reactors in China, emphasis is placed on the technology of fuel elements for the High Flux Engineering Test Reactor (HFETR). (author)

  10. Micro-structural study and Rietveld analysis of fast reactor fuels: U-Mo fuels

    Science.gov (United States)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K. B.; Kumar, Arun

    2015-12-01

    U-Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U-Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U-Mo alloys as fast reactor fuel.

  11. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a nuclear reactor fuel assembly comprising a cluster of fuel elements supported by transversal grids so that their axes are parallel to and at a distance from each other, in order to establish interstices for the axial flow of a coolant. At least one of the interstices is occupied by an axial duct reserved for an auxiliary cooling fluid and is fitted with side holes through which the auxiliary cooling fluid is sprayed into the cluster. Deflectors extend as from a transversal grid in a position opposite the holes to deflect the cooling fluid jet towards those parts of the fuel elements that are not accessible to the auxiliary coolant. This assembly is intended for reactors cooled by light or heavy water [fr

  12. Fast breeder reactor fuel reprocessing in France

    International Nuclear Information System (INIS)

    Bourgeois, M.; Le Bouhellec, J.; Eymery, R.; Viala, M.

    1984-08-01

    Simultaneous with the effort on fast breeder reactors launched several years ago in France, equivalent investigations have been conducted on the fuel cycle, and in particular on reprocessing, which is an indispensable operation for this reactor. The Rapsodie experimental reactor was associated with the La Hague reprocessing plant AT1 (1 kg/day), which has reprocessed about one ton of fuel. The fuel from the Phenix demonstration reactor is reprocessed partly at the La Hague UP2 plant and partly at the Marcoule pilot facility, undergoing transformation to reprocess all the fuel (TOR project, 5 t/y). The fuel from the Creys Malville prototype power plant will be reprocessed in a specific plant, which is in the design stage. The preliminary project, named MAR 600 (50 t/y), will mobilize a growing share of the CEA's R and D resources, as the engineering needs of the UP3 ''light water'' plant begins to decline. Nearly 20 tonnes of heavy metals irradiated in fast breeder reactors have been processed in France, 17 of which came from Phenix. The plutonium recovered during this reprocessing allowed the power plant cycle to be closed. This power plant now contains approximately 140 fuel asemblies made up with recycled plutonium, that is, more than 75% of the fuel assemblies in the Phenix core

  13. Innovative features and fuel design approach in the iris reactor

    International Nuclear Information System (INIS)

    Petrovic, B.; Carelli, M.; Greenspan, E.; Matsumoto, H.; Padovani, E.; Ganda, F.

    2002-01-01

    The International Reactor Innovative and Secure (IRIS) is being developed by an international consortium of industry, laboratory, university and utility establishments, led by Westinghouse. The IRIS design addresses key requirements associated with advanced reactors, including improved safety, enhanced proliferation resistance, competitive electricity production cost, and improved waste management. IRIS is a modular, small/medium size (335 MWe) PWR with an integral vessel configuration. The objective has been to base its design on proven LWR technology, so that no new technology development is needed and near-term deployment is possible, yet at the same time to introduce innovative features making it attractive when compared to present PWRs. These opposing requirements resulted in an evolutionary approach to fuel and core design, balancing new features against the need to avoid extensive testing and demonstration programmes. (author)

  14. Nuclear reactor, fuel assembly and neutron measuring system

    International Nuclear Information System (INIS)

    Chaki, Masao; Murase, Michio; Zukeran, Atsushi; Moriya, Kimiaki

    1998-01-01

    The present invention provides a BWR type reactor improved with the efficiency of used fuels and fuel economy by increasing a rated power and reducing exchange fuels. Namely, in a BWR type reactor at present, a thermal limit value is determined by conducting nuclear calculation of the reactor core based on data of reactor flow rate measurement and data of neutron flux measurement. However, since the neutron calculation of the reactor core is based on fuel assemblies while the points for the neutron measurement are present at the outside of the fuel assemblies, errors are caused. A margin including the errors has been used as a thermal limit value during operation. In the present invention, neutron fluxes in the fuel assembly as a base of the nuclear calculation can be measured by the same number of neutron detector tubes, but the number of the measuring points is increased to four times. With such procedures, errors caused by the difference of the neutron calculation and values at neutron measuring points can be reduced. As a result, a margin of the thermal limit value is reduced to increase the degree of freedom of reactor operation. Then, the economical property of the reactor operation can be improved. (N.H.)

  15. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  16. Breeder reactor fuel fabrication system development

    International Nuclear Information System (INIS)

    Bennett, D.W.; Fritz, R.L.; McLemore, D.R.; Yatabe, J.M.

    1981-01-01

    Significant progress has been made in the design and development of remotely operated breeder reactor fuel fabrication and support systems (e.g., analytical chemistry). These activities are focused by the Secure Automated Fabrication (SAF) Program sponsored by the Department of Energy to provide: a reliable supply of fuel pins to support US liquid metal cooled breeder reactors and at the same time demonstrate the fabrication of mixed uranium/plutonium fuel by remotely operated and automated methods

  17. The AECL reactor development programme

    International Nuclear Information System (INIS)

    Menelely, D.A.

    1997-01-01

    The modem CANDU-PHWR power reactor is the result of more than 50 years of evolutionary design development in Canada. It is one of only three commercially successful designs in the world to this date. The basis for future development is the CANDU 6 and CANDU 9 models. Four of the first type are operating and four more will go an line before the end of this decade. The CANDU 9 is a modernized single-unit version of the twelve large multi-unit plants operated by Ontario Hydro. All of these plants use proven technology which resulted from research, development, design construction, and operating experience over the past 25 years. Looking forward another 25 years, AECL plans to retain all of the essential features that distinguish today's CANDU reactors (heavy water moderation, on-power fuelling simple bundle design, horizontal fuel channels, etc.). The end product of the planned 25-year development program is more than a specific design - it is a concept which embodies advanced features expected from ongoing R and D programs. To carry out the evolutionary work we have selected seven main areas for development: Safety Technology, Fuel and Fuel Cycles, Fuel Channels, Systems and Components, Heavy Water and Tritium Information Technology, and Construction. There are three strategic measures of success for each of these work areas: improved economics, advanced fuel cycle utilization, and enhanced safety/plant robustness. The paper describes these work programs and the overall goals of each of them. (author)

  18. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, Reacteur Jules Horowitz, 13 - Saint-Paul-lez-Durance (France); Vacelet, H. [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques, CERCA, Etablissement de Romans, 26 (France); Dornbusch, D. [Technicatome, Service d' Architecture Generale, 13 - Aix-en-Provence (France)

    2003-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs: from activation analysis to power reactor fuel qualification. In this paper will be presented the main characteristics of the Jules Horowitz Reactor: its total power, neutron flux, fuel element... Safety criteria will be explained. Finally merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel will be discussed. (authors)

  19. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Schluderberg, D.C.

    1981-01-01

    A fuel assembly for use in pressurized water cooled nuclear fast breeder reactors is described in which moderator to fuel ratios, conducive to a high Pu-U-D 2 O reactor breeding ratio, are obtained whilst at the same time ensuring accurate spacing of fuel pins without the parasitic losses associated with the use of spacer grids. (U.K.)

  20. Management and storage of spent nuclear fuel at research and test reactors. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1996-08-01

    Irradiated fuel from research and test reactors has been stored at various facilities for several decades. As these facilities age and approach or exceed their original design lifetimes, there is mounting concern about closure of the fuel cycle and about the integrity of ageing fuels from the materials point of view as well as some concern about the loss of self-protection of the fuels as their activity decays. It is clear that an international effort is necessary to give these problems sufficient exposure and to ensure that work continues on appropriate solutions. The future of nuclear research, with its many benefits to mankind, is in jeopardy in some countries, especially countries without nuclear power programmes, because effective solutions for extended interim storage and final disposition of spent research reactor fuels are not yet available. An advisory Group meeting was convened in Vienna to consider a Database on the Management and Storage of Spent Nuclear Fuel from Research and Test Reactors. Sixteen experts from sixteen different countries participated in the Advisory Group meeting and presented country reports, which together represent an overview of the technologies used in spent fuel management and storage at research and test reactors world-wide. The sixteen country reports together with the database summary are presented in this publication. Refs, figs, tabs

  1. Gas cooled fast reactor background, facilities, industries and programmes

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1980-05-01

    This report was prepared at the request of the OECD-NEA Coordinating Group on Gas Cooled Fast Reactor Development and it represents a contribution (Vol.II) to the jointly sponsored Vol.I (GCFR Status Report). After a chapter on background with a brief description of the early studies and the activities in the various countries involved in the collaborative programme (Austria, Belgium, France, Germany, Japan, Sweden, Switzerland, United Kingdom and United States), the report describes the facilities available in those countries and at the Gas Breeder Reactor Association and the industrial capabilities relevant to the GCFR. Finally the programmes are described briefly with programme charts, conclusions and recommendations are given. (orig.) [de

  2. Catalyzed deuterium fueled reversed-field pinch reactor assessment

    International Nuclear Information System (INIS)

    Dobrott, D.

    1985-01-01

    This study is part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corporation. The purpose of this portion of the study is to perform an assessment of a conceptual compact reversed-field pinch reactor (CRFPR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to physics, technology, safety, and cost. The Cat-d CRFPR is compared to a d-t fueled fusion reactor with respect to several issues in this study. The comparison includes cost, reactor performance, and technology requirements for a Cat-d fueled CRFPR and a comparable cost-optimized d-t fueled conceptual design developed by LANL

  3. Tests of the RBMK-1500 reactor fuel assemblies in the Leningrad reactor

    International Nuclear Information System (INIS)

    Aden, V.C.; Varovin, I.A.; Vorontsov, B.A.

    1981-01-01

    Test of fuel assemblies of the RBMK-1500 reactor is conducted in the reactor of the Leningrad NPP unit 2 for proving the calculational values of critical power of the RBMK-1500 reactor fuel assemblies adopted in design. The experiment presupposes the maximal approximation of the fuel assembly operation parameters to the calculational critical parameters without bringing into the mode of heat transfer crisis. The experiments are carried out at 500, 850 and 900 MW(el) of the reactor. The maximal channel power made up 472 kW at 20.5 t/h coolant flow rate and 49% mass steam content at the outlet of the channel. It was concluded that there was supply up to the heat transfer crisis in all the investigated modes. Data of temperature measurings of the fuel element cans, readings of the devices of the failure control system of the fuel element cans and external inspection of the assemblies after the tests testify to it [ru

  4. IAEA programme on nuclear fuel cycle and materials technologies

    International Nuclear Information System (INIS)

    Killeen, J.

    2008-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The coordinated research project on Improvement of Models Used For Fuel Behaviour Simulation (FUMEX II) as well as the changes, trends and main outputs of Sub-programme B.2 for 2006/2007 are discussed. The aim, composition and activities within the International Fuel Performance Experiments (IFPE) Database project are also presented

  5. Quality assurance programme for the LVR-15 nuclear research reactor

    International Nuclear Information System (INIS)

    1995-03-01

    The document specifies all aspects of the quality assurance programme for the LVR-15 nuclear research reactor. The programme addresses the organization and responsibilities, basic quality assurance activities, and identification of management, planning, and working documents necessary to implement the programme. (P.A.)

  6. Fuel assemblies for BWR type reactors

    International Nuclear Information System (INIS)

    Ishizuka, Takao.

    1981-01-01

    Purpose: To enable effective failed fuel detection by the provision of water rod formed with a connecting section connected to a warmed water feed pipe of a sipping device at the lower portion and with a warmed water jetting port in the lower portion in a fuel assembly of a BWR type reactor to thereby carry out rapid sipping. Constitution: Fuel rods and water rods are contained in the channel box of a fuel assembly, and the water rod is provided at its upper portion with a connecting section connected to the warmed water feed pipe of the sipping device and formed at its lower portion with a warmed water jetting port for jetting warmed water fed from the warmed water feed pipe. Upon detection of failed fuels, the reactor operation is shut down and the reactor core is immersed in water. The cover for the reactor container is removed and the cap of the sipping device is inserted to connect the warmed water feed pipe to the connecting section of the water rod. Then, warmed water is fed to the water rod and jetted out from the warmed water jetting port to cause convection and unify the water of the channel box in a short time. Thereafter, specimen is sampled and analyzed for the detection of failed fuels. (Moriyama, K.)

  7. Gas-cooled Fast Reactor (GFR) fuel and In-Core Fuel Management

    International Nuclear Information System (INIS)

    Weaver, K.D.; Sterbentz, J.; Meyer, M.; Lowden, R.; Hoffman, E.; Wei, T.Y.C.

    2004-01-01

    The Gas-Cooled Fast Reactor (GCFR) has been chosen as one of six candidates for development as a Generation IV nuclear reactor based on: its ability to fully utilize fuel resources; minimize or reduce its own (and other systems) actinide inventory; produce high efficiency electricity; and the possibility to utilize high temperature process heat. Current design approaches include a high temperature (2 850 C) helium cooled reactor using a direct Brayton cycle, and a moderate temperature (550 C - 650 C) helium or supercritical carbon dioxide (S-CO 2 ) cooled reactor using direct or indirect Brayton cycles. These design choices have thermal efficiencies that approach 45% to 50%, and have turbomachinery sizes that are much more compact compared to steam plants. However, there are challenges associated with the GCFR, which are the focus of current research. This includes safety system design for decay heat removal, development of high temperature/high fluence fuels and materials, and development of fuel cycle strategies. The work presented here focuses on the fuel and preliminary in-core fuel management, where advanced ceramic-ceramic (cercer) dispersion fuels are the main focus, and average burnups to 266 M Wd/kg appear achievable for the reference Si C/(U,TRU)C block/plate fuel. Solid solution (pellet) fuel in composite ceramic clad (Si C/Si C) is also being considered, but remains as a backup due to cladding fabrication challenges, and high centerline temperatures in the fuel. (Author)

  8. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  9. Nuclear fuels for material test reactors

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Durazzo, M.; Freitas, C.T. de

    1982-01-01

    Experimental results related do the development of nuclear fuels for reactors cooled and moderated by water have been presented cylindrical and plate type fuels have been described in which the core consists of U compouns dispersed in an Al matrix and is clad with aluminium. Fabrication details involving rollmilling, swaging or hot pressing have been described. Corrosion and irradiation test results are also discussed. The performance of the different types of fuels indicates that it is possible to locally fabricate fuel plates with U 3 O 8 +Al cores (20% enriched U) for use in operating Brazilian research reactors. (Author) [pt

  10. Impacts of reactor. Induced cladding defects on spent fuel storage

    International Nuclear Information System (INIS)

    Johnson, A.B.

    1978-01-01

    Defects arise in the fuel cladding on a small fraction of fuel rods during irradiation in water-cooled power reactors. Defects from mechanical damage in fuel handling and shipping have been almost negligible. No commercial water reactor fuel has yet been observed to develop defects while stored in spent fuel pools. In some pools, defective fuel is placed in closed canisters as it is removed from the reactor. However, hundreds of defective fuel bundles are stored in numerous pools on the same basis as intact fuel. Radioactive species carried into the pool from the reactor coolant must be dealt with by the pool purification system. However, additional radiation releases from the defective fuel during storage appear tu be minimal, with the possible exception of fuel discharged while the reactor is operating (CANDU fuel). Over approximately two decades, defective commercial fuel has been handled, stored, shipped and reprocessed. (author)

  11. Fuel management codes for fast reactors

    International Nuclear Information System (INIS)

    Sicard, B.; Coulon, P.; Mougniot, J.C.; Gouriou, A.; Pontier, M.; Skok, J.; Carnoy, M.; Martin, J.

    The CAPHE code is used for managing and following up fuel subassemblies in the Phenix fast neutron reactor; the principal experimental results obtained since this reactor was commissioned are analyzed with this code. They are mainly concerned with following up fuel subassembly powers and core reactivity variations observed up to the beginning of the fifth Phenix working cycle (3/75). Characteristics of Phenix irradiated fuel subassemblies calculated by the CAPHE code are detailed as at April 1, 1975 (burn-up steel damage)

  12. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems

    International Nuclear Information System (INIS)

    Brossard, Ph.; Garzenne, C.; Mouney, H.

    2002-01-01

    precipitation processes); cold salt: potentiality and preliminary results; TOPIC: redox control of MSR fuel (MSR: nominal operating conditions for the reprocessing process and redox control); technical aspects of R and D of some advanced non-aqueous reprocessing technologies for MSR systems (promising innovative separation and partitioning processes for the MSR fuel cycle); nominal operating conditions for MSR reprocessing process - data base needed and experiments for reprocessing validation; corrosion and materials for MSR and for pyro-chemistry processes; MSR reactor physics - dynamic behaviour; what safety principles for MSR? (MSR and integrated cycle (IFR) safety approach); experimental programmes in the frame of the SPHINX project of MS transmuter (programme of irradiated probes BLANKA, experimental facilities (MSR)); ISTC 1606 status - experimental study of molten salt technology for safe, low-waste and proliferation resistant treatment of radioactive waste and plutonium in accelerator-driven and critical systems. (J.S.)

  13. Establishing a Radiation Protection Programme for a Research Reactor

    International Nuclear Information System (INIS)

    Abdallah, M. M.

    2014-04-01

    The nature and intensity of radiation from the operation of a research reactor depend on the type of reactor, its design features and its operational history. The protection of workers from the harmful effect of radiation must therefore be of paramount importance to any operating organization of a research reactor. This project report attempts to establish an operational radiation protection programme for a research reactor using the Ghana Research Reactor-1 as a case study. (au)

  14. Aspects of the fast reactors fuel cycle

    International Nuclear Information System (INIS)

    Zouain, D.M.

    1982-06-01

    The fuel cycle for fast reactors, is analysed, regarding the technical aspects of the developing of the reprocessing stages and the fuel fabrication. The environmental impact of LMFBRs and the waste management of this cycle are studied. The economic aspects of the fuel cycle, are studied too. Some coments about the Brazilian fast reactors programs are done. (E.G.) [pt

  15. Quality assurance and control in the manufacture of metalclad UO2 reactor fuels

    International Nuclear Information System (INIS)

    1976-01-01

    The International Atomic Energy Agency has carried out a programme since its earliest days that includes the collection and dissemination of information on nuclear fuels. Since the 1960 symposium on Fuel Element Fabrication with Special Emphasis on Cladding Materials there has been an average of one meeting a year reviewing some aspect of fuel fabrication technology. A recent meeting dealing with the fabrication of UO 2 fuels was the Study Group on the Facilities and Technology needed for Nuclear Fuel Manufacture, held in Grenoble in 1972 (Rep. IAEA-158). After that meeting it became apparent that the quality of fuel production was an important aspect that had received inadequate coverage so far, and the Panel on Quality Assurance and Control in Nuclear Fuel Manufacture was convened by the Agency in Vienna in November 1974. In the working papers and discussions at the Panel meeting the viewpoints of different countries and of various interested parties, such as manufacturers, reactor operators and government authorities, were presented

  16. Spanish collaboration in the OECD Halden Reactor Project research on Gadolinia Fuel

    International Nuclear Information System (INIS)

    Horvath, M. I.; Jenssen, H. K.; Munoz-Reja, C.; Tverberg, T.

    2011-01-01

    Safe and reliable operation of nuclear power plants benefit from research and development advances and related technical solutions. One research platform is the OECD Halden Reactor Project (HRP), HRP is a joint undertaking of national organisations in 18 countries sponsoring a jointly financed programme under the auspices of the OECD-Nuclear Energy Agency (NEA). As a member state, Spain is participating HRP research programs with ENUSA as partner in the fuel research programs. Various experiments are developed and performed also by providing materials, ENUSA collaborates with HRP on various experiments investigating the fuel behaviour, especially on Gd-bearing fuel. 20 years of successful collaboration between HRP and ENUSA is continuing with promising and results to ensure and enhance the safe operation of the Spanish and all other NPPs in the world. (Author) 12 refs.

  17. The Argentine-Brazilian fast reactor programme

    International Nuclear Information System (INIS)

    Gho, C.J.; Mauricio, A.

    1989-01-01

    This paper summarizes the Argentine-Brazilian Fast Reactor Programme and gives reasons for the decision of a binational venture. The work carried out by both countries is described, showing how they complement each other, with the corresponding saving of resources. The main objectives of the Programme and tentative schedules in three progressing integrating stages are given and the present nuclear know-how in each country is identified as a good starting point. The paper also gives some details regarding the economical and human resources involved. (author). 1 graph

  18. International topical meeting. Research Reactor Fuel Management (RRFM) and meeting of the International Group on Reactor Research (IGORR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear research and test reactors have been in operation for over 60 years, over 270 research reactors are currently operating in more than 50 countries. This meeting is dedicated to different aspects of research reactor fuels: new fuels for new reactors, the conversion to low enriched uranium fuels, spent fuel management and computational tools for core simulation. About 80 contributions are reported in this document, they are organized into 7 sessions: 1) international topics and overview on new projects and fuel, 2) new projects and upgrades, 3) fuel development, 4) optimisation and research reactor utilisation, 5) innovative methods in research reactors physics, 6) safety, operation and research reactor conversion, 7) fuel back-end management, and a poster session. Experience from Australian, Romanian, Libyan, Syrian, Vietnamese, South-African and Ghana research reactors are reported among other things. The Russian program for research reactor spent fuel management is described and the status of the American-driven program for the conversion to low enriched uranium fuels is presented. (A.C.)

  19. Euratom contributions in Fast Reactor research programmes

    International Nuclear Information System (INIS)

    Fanghänel, Th.; Somers, J.

    2013-01-01

    The Sustainable Nuclear Initiative: • demonstrate long-term sustainability of nuclear energy; • demonstration reactors of Gen IV: •more efficient use of resources; • closed fuel cycle; • reduced proliferation risks; • enhanced safety features. • Systems pursued in Europe: • Sodium-cooled fast reactor SFR; • Lead-cooled fast reactor LFR; • Gas-cooled fast reactor GFR. Sustainable Nuclear Energy Technology Platform SNE-TP promotes research, development and demonstration of the nuclear fission technologies necessary to achieve the SET-Plan goals

  20. The chemistry of water reactor fuel

    International Nuclear Information System (INIS)

    Potter, P.E.

    1990-01-01

    In this paper, the authors discuss features of the changes in chemical constitution which occur in fuel and fuel rods for water reactors during operation and in fault conditions. The fuel for water reactors consists of pellets of urania (UO 2 ) clad in Zircaloy. An essential step in the prediction of the fate of all the radionuclides in a fault or accident is to possess a detailed knowledge of their chemical behavior at all stages of the development of such incidents. In this paper, the authors consider: the chemical constitution of fuel during operation at temperatures corresponding to rather low ratings, together with a quite detailed discussion of the chemistry within the fuel-clad gap; the behavior of fuel subjected to higher temperatures and ratings than those of contemporary fuel; and the changes in constitution on failure of fuel rods in fault or accident conditions

  1. Fuel designs for VVER reactors

    International Nuclear Information System (INIS)

    Simonov, K.V.; Carbon, P.; Silberstein, A.

    1995-01-01

    That progresses in efficiency and safety through progresses in technology and better prediction with fully benchmarked upgraded computer codes is a common goal for on the one hand the original designer of the VVER reactors and their respective fuels and on the other hand for EVF a western company resulting from a combined force with highly diversified and complementary talents in reactor and fuel design and manufacturing. It can be expected that this new challenge and dialogue between the two Russian and European industrial ventures will be mutually beneficial and yield innovative and high quality products and as a consequence strong return will be produced for the best interest of utilities operating VVER reactors. (orig./HP)

  2. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    International Nuclear Information System (INIS)

    Guigon, B.; Vacelet, H.; Dornbusch, D.

    2000-01-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs from activation analysis to power reactor fuel qualification. In this paper the main characteristics of the Jules Horowitz Reactor are presented. Safety criteria are explained. Finally, merits and disadvantages of UMo compared to the standard U 3 Si 2 fuel are discussed. (author)

  3. Reactor calculations for improving utilization of TRIGA reactor

    International Nuclear Information System (INIS)

    Ravnik, M.

    1986-01-01

    A brief review of our work on reactor calculations of 250 kW TRIGA with mixed core (standard + FLIP fuel) will be presented. The following aspects will be treated: - development of computer programs; - optimization of in-core fuel management with respect to fuel costs and irradiation channels utilization. TRIGAP programme package will be presented as an example of computer programs. It is based on 2-group 1-D diffusion approximation and besides calculations offers possibilities for operational data logging and fuel inventory book-keeping as well. It is developed primarily for the research reactor operators as a tool for analysing reactor operation and fuel management. For this reason it is arranged for a small (PC) computer. Second part will be devoted to reactor physics properties of the mixed cores. Results of depletion calculations will be presented together with measured data to confirm some general guidelines for optimal mixed core fuel management. As the results are obtained using TRIGAP program package results can be also considered as an illustration and qualification for its application. (author)

  4. Overview of remote technologies applied to research reactor fuel

    International Nuclear Information System (INIS)

    Oerdoegh, M.; Takats, F.

    1999-01-01

    This paper gives a brief overview of the remote technologies applied to research reactor fuels. Due to many reasons, the remote technology utilization to research reactor fuel is not so widespread as it is for power reactor fuels, however, the advantages of the application of such techniques are obvious. (author)

  5. Fuel cycle facility control system for the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Benedict, R.W.; Tate, D.A.

    1993-01-01

    As part of the Integral Fast Reactor (IFR) Fuel Demonstration, a new distributed control system designed, implemented and installed. The Fuel processes are a combination of chemical and machining processes operated remotely. To meet this special requirement, the new control system provides complete sequential logic control motion and positioning control and continuous PID loop control. Also, a centralized computer system provides near-real time nuclear material tracking, product quality control data archiving and a centralized reporting function. The control system was configured to use programmable logic controllers, small logic controllers, personal computers with touch screens, engineering work stations and interconnecting networks. By following a structured software development method the operator interface was standardized. The system has been installed and is presently being tested for operations

  6. Nuclear power programme: development and prospects

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1997-01-01

    The relevance of nuclear power in meeting the short and long term energy needs of India was recognised right at the beginning of the atomic energy programme. From the very beginning, as a long term strategy, the nuclear power programme, formulated by Dr Homi Jehangir Bhabha, embarked on a three stage process linking the fuel cycles of Pressurised Heavy Water Reactor (PHWR) and Fast Breeder Reactor (FBR), and was planned for judicious utilisation of the country's limited uranium ore (78,000 tonne) but vast thorium resources (>360,000 tonne). The emphasis of the programme was on self-reliance and thorium utilisation as a long term objective. India selected Pressurised Heavy Water Reactor (PHWR) because of several inherent advantages. (author)

  7. Nuclear reactor using fuel sphere for combustion and fuel spheres for breeding

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu.

    1995-01-01

    The present invention concerns a pebble bed-type reactor which can efficiently convert parent nuclides to fission nuclides. Fuel spheres for combustion having fission nuclides as main fuels, and fuel spheres for breeding having parent nuclides as main fuels are used separately, in the pebble bed-type reactor. According to the present invention, fuel spheres for breeding can be stayed in a reactor core for a long period of time, so that parent nuclides can be sufficiently converted into fission nuclides. In addition, since fuel spheres for breeding are loaded repeatedly, the amount thereof to be used is reduced. Therefore, the amount of the fuel spheres for breeding is small even when they are re-processed. On the other hand, since the content of the fission nuclides in the fuel spheres for breeding is not great, they can be put to final storage. This is attributable that although the fuel spheres for breeding contain fission nuclides generated by conversion, the fission nuclides are annihilated by nuclear fission reactions at the same time with the generation thereof. (I.S.)

  8. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  9. Fissile fuel dynamics of breeder/converter reactors

    International Nuclear Information System (INIS)

    Harms, A.A.

    1978-01-01

    The long-term fissile fuel dynamics for a hierarchy of fission reactors covering the range from pure-burners to super-breeders is examined. It is found that the breeding gains of the core and blanket can be used to identify several distinct fissile fuel histories and elucidate the importance of fuel cycle characteristics such as the time dependence of the fissile fuel doubling time. On this basis, a self-sufficient fission reactor is introduced and its determining characteristics are identified. (author)

  10. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  11. Cermet-fueled reactors for advanced space applications

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.; Vaidyanathan, S.; Bhattacharyya, S.K.; Barner, J.O.

    1987-12-01

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel were carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper

  12. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  13. Reactor fuel depletion benchmark of TINDER

    International Nuclear Information System (INIS)

    Martin, W.J.; Oliveira, C.R.E. de; Hecht, A.A.

    2014-01-01

    Highlights: • A reactor burnup benchmark of TINDER, coupling MCNP6 to CINDER2008, was performed. • TINDER is a poor candidate for fuel depletion calculations using its current libraries. • Data library modification is necessary if fuel depletion is desired from TINDER. - Abstract: Accurate burnup calculations are key to proper nuclear reactor design, fuel cycle modeling, and disposal estimations. The TINDER code, originally designed for activation analyses, has been modified to handle full burnup calculations, including the widely used predictor–corrector feature. In order to properly characterize the performance of TINDER for this application, a benchmark calculation was performed. Although the results followed the trends of past benchmarked codes for a UO 2 PWR fuel sample from the Takahama-3 reactor, there were obvious deficiencies in the final result, likely in the nuclear data library that was used. Isotopic comparisons versus experiment and past code benchmarks are given, as well as hypothesized areas of deficiency and future work

  14. MTR fuel plate qualification in OSIRIS reactor

    International Nuclear Information System (INIS)

    Sacristan, P.; Boulcourt, P.; Naury, S.; Marchard, L.; Carcreff, H.; Noirot, J.

    2005-01-01

    Qualification of new MTR fuel needs the irradiation in research reactors under representative neutronic, heat flux and thermohydraulic conditions. The experiments are performed in France in the OSIRIS reactor by irradiating MTR full size fuel plates in the IRIS device located in the reactor core. The fuel plates are easily removed from the device during the shutdown of the reactor for performing thickness measurements along the plates by means of a swelling measurement device. Beside the calculation capabilities, the experimental platform includes: the ISIS neutron mock-up for the measurement of neutron flux distribution along the plates; the γ spectrometry for the purpose of measuring the activities of the radionuclides representative of the power and the burnup and to compare with the neutronic calculation. Owing to the experience feedback, a good agreement is observed between calculation and measurement; destructive post irradiation examinations in the LECA facility (Cadarache). New irradiations with the IRIS device and at higher heat flux are under preparation for qualification of MTR fuels. (author)

  15. Radionuclide release from research reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, H., E-mail: h.curtius@fz-juelich.de [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany); Kaiser, G.; Mueller, E.; Bosbach, D. [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany)

    2011-09-01

    Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO{sub 2} fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in {sup 235}U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO{sub 2}-fuel (LWR fuel, enrichment in {sup 235}U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Juelich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl{sub 2}-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAl{sub x}-Al and U{sub 3}Si{sub 2}-Al) was studied in 400 mL MgCl{sub 2}-rich salt brine in the presence of Fe{sup 2+} under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH){sub 3}(s) and Eu(OH){sub 3}(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu

  16. Fuel assembly and nuclear reactor core

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Aoyama, Motoo; Yamashita, Jun-ichi.

    1995-01-01

    The present invention concerns a fuel assembly and a nuclear reactor core capable of improving a transmutation rate of transuranium elements while improving a residual rate of fission products. In a reactor core of a BWR type reactor to which fuel rods with transuranium elements (TRU) enriched are loaded, the enrichment degree of transuranium elements occupying in fuel materials is determined not less than 2wt%, as well as a ratio of number of atoms between hydrogen and fuel heavy metals in an average reactor core under usual operation state (H/HM) is determined not more than 3 times. In addition, a ratio of the volumes between coolant regions and fuel material regions is determined not more than 2 times. A T ratio (TRU/Pu) is lowered as the TRU enrichment degree is higher and the H/HM ratio is lower. In order to reduce the T ratio not more than 1, the TRU enrichment degree is determined as not less than 2wt%, and the H/HM ratio is determined to not more than 3 times. Accordingly, since the H/HM ratio is reduced to not more than 1, and TRU is transmuted while recycling it with plutonium, the transmutation ratio of transuranium elements can be improved while improving the residual rate of fission products. (N.H.)

  17. Situation of test and research reactors' spent fuels

    International Nuclear Information System (INIS)

    Shimizu, Kenichi; Uchiyama, Junzo; Sato, Hiroshi

    1996-01-01

    The U.S. DOE decided a renewal Off-Site Fuel Policy for stopping to spread a highly enriched uranium which was originally enriched at the U.S., the policy declared that to receive all HEU spent fuels from Test and Research reactors in all the world. In Japan, under bilateral agreement of cooperation between the government of the United States and the government of Japan concerning peaceful uses of nuclear energy, the highly enriched uranium of Test and Research Reactors' fuels was purchased from the U.S. and the fuels had been manufactured in Japan, America, Germany and France. On the other hand, a former president of the U.S. J. Carter proposed that to convert the fuels from HEU to LEU concerning a nonproliferation of nuclear materials in 1978, and Japan absolutely supported this policy. Under this condition, the U.S. stopped to receive the spent fuels from the other countries concerning legal action to the Off-Site Fuels Policy. As a result, the spent fuels are increasing, and to cross to each reactor's storage capacity, and if this policy start, a faced crisis of Test and Research Reactors will be avoided. (author)

  18. Fuel irradiation experience at Halden

    International Nuclear Information System (INIS)

    Vitanza, Carlo

    1996-01-01

    The OECD Halden Reactor Project is an international organisation devoted to improved safety and reliability of nuclear power station through an user-oriented experimental programme. A significant part of this programme consists of studies addressing fuel performance issues in a range of conditions realised in specialised irradiation. The key element of the irradiation carried out in the Halden reactor is the ability to monitor fuel performance parameters by means of in-pile instrumentation. The paper reviews some of the irradiation rigs and the related instrumentation and provides examples of experimental results on selected fuel performance items. In particular, current irradiation conducted on high/very high burn-up fuels are reviewed in some detail

  19. Status of research reactor spent fuel world-wide: Database summary

    International Nuclear Information System (INIS)

    Ritchie, I.G.

    1996-01-01

    Results complied in the research reactor spent fuel database are used to assess the status of research reactor spent fuel world-wide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialized and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. (author). 4 refs, 17 figs, 4 tabs

  20. Testing of research reactor fuel in the high flux reactor (Petten)

    International Nuclear Information System (INIS)

    Guidez, J.; Markgraf, J.W.; Sordon, G.; Wijtsma, F.J.; Thijssen, P.J.M.; Hendriks, J.A.

    1999-01-01

    The two types of fuel most frequently used by the main research reactors are metallic: highly enriched uranium (>90%) and silicide low enriched uranium ( 3 . However, a need exists for research on new reactor fuel. This would permit some plants to convert without losses in flux or in cycle length and would allow new reactor projects to achieve higher possibilities especially in fluxes. In these cases research is made either on silicide with higher density, or on other types of fuel (UMo, etc.). In all cases when new fuel is proposed, there is a need, for safety reasons, to test it, especially regarding the mechanical evolution due to burn-up (swelling, etc.). Initially, such tests are often made with separate plates, but lately, using entire elements. Destructive examinations are often necessary. For this type of test, the High Flux Reactor, located in Petten (The Netherlands) has many specific advantages: a large core, providing a variety of interesting positions with high fluence rate; a downward coolant flow simplifies the engineering of the device; there exists easy access with all handling possibilities to the hot-cells; the high number of operating days (>280 days/year), together with the high flux, gives a possibility to reach quickly the high burn-up needs; an experienced engineering department capable of translating specific requirements to tailor-made experimental devices; a well equipped hot-cell laboratory on site to perform all necessary measurements (swelling, γ-scanning, profilometry) and all destructive examinations. In conclusion, the HFR reactor readily permits experimental research on specific fuels used for research reactors with all the necessary facilities on the Petten site. (author)

  1. Assessment of the thorium fuel cycle in power reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled

  2. Present status of research reactor decommissioning programme in Indonesia

    International Nuclear Information System (INIS)

    Suripto, A.; Mulyanto, N.

    2002-01-01

    At present Indonesia has 3 research reactors, namely the 30 MW MTR-type multipurpose reactor at Serpong Site, two TRIGA-type research reactors, the first one being 1 MW located at Bandung Site and the second one a small reactor of 100 kW at Yogyakarta Site. The TRIGA Reactor at the Bandung Site reached its first criticality at 250 kW in 1964, and then was operated at 1000 kW since 1971. In October 2000 the reactor power was successfully upgraded to 2 MW. This reactor has already been operated for 38 years. There is not yet any decision for the decommissioning of this reactor. However it will surely be an object for the near future decommissioning programme and hence anticipation for the above situation becomes necessary. The regulation on decommissioning of research reactor is already issued by the independent regulatory body (BAPETEN) according to which the decommissioning permit has to be applied by the BATAN. For Indonesia, an early decommissioning strategy for research reactor dictates a restricted re-use of the site for other nuclear installation. This is based on high land price, limited availability of radwaste repository site, and other cost analysis. Spent graphite reflector from the Bandung TRIGA reactor is recommended for a direct disposal after conditioning, without any volume reduction treatment. Development of human resources, technological capability as well as information flow from and exchange with advanced countries are important factors for the future development of research reactor decommissioning programme in Indonesia. (author)

  3. Proceedings of the Water Reactor Fuel Performance Meeting - WRFPM / Top Fuel 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    SFEN, ENS, SNR, ANS, AESJ, CNS KNS, IAEA and NEA are jointly organizing the 2009 International Water Reactor Fuel Performance / TopFuel 2009 Meeting following the 2008 KNS Water Reactor Performance Meeting held during October 19-23, 2008 in Seoul, Korea. This meeting is held annually on a tri-annual rotational basis in Europe, USA and Asia. In 2009, this meeting will be held in Paris, September 6-10, 2009 in coordination with the Global 2009 Conference at the same date and place. That would lead to a common opening session, some common technical presentations, a common exhibition and common social events. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. Emphasis will be placed on fuel reliability in the general context of nuclear 'Renaissance' and recycling perspective. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. In this frame, the conference track devoted to 'Concepts for transportation and interim storage of spent fuels and conditioned waste' will be shared with 'GLOBAL' conference. Technical Tracks: - 1. Fuel Performance, Reliability and Operational Experience: Fuel operating experience and performance; experience with high burn-up fuels; water side corrosion; stress corrosion cracking; MOX fuel performance; post irradiation data on lead fuel assemblies; radiation effects; water chemistry and corrosion counter-measures. - 2. Transient Fuel Behaviour and Safety Related Issues: Transient fuel behavior and criteria (RIA, LOCA, ATWS, Ramp tests..). Fuel safety-related issues such as PCI (pellet cladding interaction), transient fission gas releases and cladding bursting/ballooning during transient events - Advances in fuel performance modeling and core reload methodology, small and large-scale fuel testing

  4. Proceedings of the Water Reactor Fuel Performance Meeting - WRFPM / Top Fuel 2009

    International Nuclear Information System (INIS)

    2009-06-01

    SFEN, ENS, SNR, ANS, AESJ, CNS KNS, IAEA and NEA are jointly organizing the 2009 International Water Reactor Fuel Performance / TopFuel 2009 Meeting following the 2008 KNS Water Reactor Performance Meeting held during October 19-23, 2008 in Seoul, Korea. This meeting is held annually on a tri-annual rotational basis in Europe, USA and Asia. In 2009, this meeting will be held in Paris, September 6-10, 2009 in coordination with the Global 2009 Conference at the same date and place. That would lead to a common opening session, some common technical presentations, a common exhibition and common social events. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. Emphasis will be placed on fuel reliability in the general context of nuclear 'Renaissance' and recycling perspective. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. In this frame, the conference track devoted to 'Concepts for transportation and interim storage of spent fuels and conditioned waste' will be shared with 'GLOBAL' conference. Technical Tracks: - 1. Fuel Performance, Reliability and Operational Experience: Fuel operating experience and performance; experience with high burn-up fuels; water side corrosion; stress corrosion cracking; MOX fuel performance; post irradiation data on lead fuel assemblies; radiation effects; water chemistry and corrosion counter-measures. - 2. Transient Fuel Behaviour and Safety Related Issues: Transient fuel behavior and criteria (RIA, LOCA, ATWS, Ramp tests..). Fuel safety-related issues such as PCI (pellet cladding interaction), transient fission gas releases and cladding bursting/ballooning during transient events - Advances in fuel performance modeling and core reload methodology, small and large-scale fuel testing facilities. - 3. Advances in Water

  5. Spanish collaboration in the OECD Halden Reactor Project research on Gadolinia Fuel

    International Nuclear Information System (INIS)

    Horvath, M.; Munoz-Reja, C.; Tverberg, T.; Jenssen, H. K.

    2010-01-01

    Safe and reliable operation of nuclear power plants benefit from research and development advances and related technical solutions. One research platform is the OECD Halden Reactor Project (HRP). HRP is a joint undertaking of national organisations in 18 countries sponsoring a jointly financed programme under the auspices of the OECD - Nuclear Energy Agency (NEA). As a member state, Spain is participating HRP research programs with ENUSA as a partner in the fuel research programs. Improving the NPP operations, fuel cycles were designed to increase fuel burnup. Higher fuel burnup reduces the number of spent fuel assemblies and thus the costs of new fuel as well as the costs of back-end management. Higher burnup is reached either by prolonging the reactor cycles or by increasing the number of reactor cycles for the fuel in the core. Both ways entail additional requirements concerning fuel enrichment and burnable absorbers as additives and adjustments on the cladding material properties, such as mechanical treatment and chemical composition of the alloys. For these demands and needs ENUSA promotes the research on high burnup effects, gadolinium doped fuels and cladding material behaviour under irradiation. Various experiments, called IFA, are developed and performed also by providing materials. ENUSA collaborates with HRP on various experiments investigating the fuel densification and swelling, fission gas release, pressure limits on UO 2 and (U,Gd)O 2 fuels (IFA-504, -515, -636, -681); the cladding creep, lift-off, corrosion and hydrides on different tubing materials (IFA-567, -610, -638); instrumentation of the experiments, especially on pre-irradiated materials (IFA-533). These experiments are combined with model calculations to improve predictions for higher burnups and to maintain safety margins (IFA-515, -636, -681). Besides these unique in-pile experiments PIEs are performed as well on fuel and structural materials to complete the scope of these studies (IFA

  6. Burnup performance of OTTO cycle pebble bed reactors with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    Highlights: • A 300 MW t Small Pebble Bed Reactor with Rock-like oxide fuel is proposed. • Using ROX fuel can achieve high discharged burnup of spent fuel. • High geological stability can be expected in direct disposal of the spent ROX fuel. • The Pebble Bed Reactor with ROX fuel can be critical at steady state operation. • All the reactor designs have a negative temperature coefficient. - Abstract: A pebble bed high-temperature gas-cooled reactor (PBR) with rock-like oxide (ROX) fuel was designed to achieve high discharged burnup and improve the integrity of the spent fuel in geological disposal. The MCPBR code with a JENDL-4.0 library, which developed the analysis of the Once-Through-Then-Out (OTTO) cycle in PBR, was used to perform the criticality and burnup analysis. Burnup calculations for eight cases were carried out for both ROX fuel and a UO 2 fuel reactor with different heavy-metal loading conditions. The effective multiplication factor of all cases approximately equalled unity in the equilibrium condition. The ROX fuel reactor showed lower FIFA than the UO 2 fuel reactor at the same heavy-metal loading, about 5–15%. However, the power peaking factor and maximum power per fuel ball in the ROX fuel core were lower than that of UO 2 fuel core. This effect makes it possible to compensate for the lower-FIFA disadvantage in a ROX fuel core. All reactor designs had a negative temperature coefficient that is needed for the passive safety features of a pebble bed reactor

  7. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  8. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  9. Preparations for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.

    1989-01-01

    Modifications to the Hot Fuel Examination Facility-South (HFEF/S) have been in progress since mid-1988 to ready the facility for demonstration of the unique Integral Fast Reactor (IFR) pyroprocess fuel cycle. This paper updates the last report on this subject to the American Nuclear Society and describes the progress made in the modifications to the facility and in fabrication of the new process equipment. The IFR is a breeder reactor, which is central to the capability of any reactor concept to contribute to mitigation of environmental impacts of fossil fuel combustion. As a fast breeder, fuel of course must be recycled in order to have any chance of an economical fuel cycle. The pyroprocess fuel cycle, relying on a metal alloy reactor fuel rather than oxide, has the potential to be economical even at small-scale deployment. Establishing this quantitatively is one important goal of the IFR fuel cycle demonstration

  10. Manufacture of fuel and fuel channels and their performance in Indian PHWRs'

    International Nuclear Information System (INIS)

    Kalidas, R.

    2005-01-01

    Nuclear Fuel Complex (NFC) at Hyderabad is conglomeration of chemical, metallurgical and mechanical plants, processing uranium and zirconium in two separate streams and culminating in the fuel assembly plant. Apart from manufacturing fuel for Pressurised Heavy Water Reactors (PHWRs) and Boiling Water Reactors (BWRs), NFC is also engaged in the manufacture of reactor core structurals for these reactors. NFC has carried our several technological developments over the years and implemented them for the manufacture of fuel, calandria tubes and pressure tubes for PHWRs. Keeping in pace with the Nuclear Power Programme envisaged by the Department of Atomic Energy, NFC had augmented its production capacities in all these areas. The paper highlights several actions initiated in the areas of fuel design, fuel manufacturing, manufacturing of zirconium alloy core structurals, fuel clad tubes and components and their performance in Indian PHWRs. (author)

  11. Fuel-to-cladding heat transfer coefficient into reactor fuel element

    International Nuclear Information System (INIS)

    Lassmann, K.

    1979-01-01

    Models describing the fuel-to-cladding heat transfer coefficient in a reactor fuel element are reviewed critically. A new model is developed with contributions from solid, fluid and radiation heat transfer components. It provides a consistent description of the transition from an open gap to the contact case. Model parameters are easily available and highly independent of different combinations of material surfaces. There are no restrictions for fast transients. The model parameters are fitted to 388 data points under reactor conditions. For model verification another 274 data points of steel-steel and aluminium-aluminium interfaces, respectively, were used. The fluid component takes into account peak-to-peak surface roughnesses and, approximatively, also the wavelengths of surface roughnesses. For minor surface roughnesses normally prevailing in reactor fuel elements the model asymptotically yields Ross' and Stoute's model for the open gap, which is thus confirmed. Experimental contact data can be interpreted in very different ways. The new model differs greatly from Ross' and Stoute's contact term and results in better correlation coefficients. The numerical algorithm provides an adequate representation for calculating the fuel-to-cladding heat transfer coefficient in large fuel element structural analysis computer systems. (orig.) [de

  12. Fact reactor fuel alloys: Retrospective and prospective views

    International Nuclear Information System (INIS)

    Nevitt, M.V.

    1989-01-01

    The relationship between the physical metallurgy of the EBR-II metallic fuel, U-5% Fs, and its performance in the reactor are described. An understanding of these relationships, along with the optimal matching of fuel properties to fuel-element design, have been essential in the 23 year successful utilization of the fuel. The knowledge and experience gained are being employed in the current development of a new U-Pu-Zr metallic fuel for a proposed advanced reactor (orig./MM)

  13. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  14. Reliability assurance programme guidebook for advanced light water reactors

    International Nuclear Information System (INIS)

    2001-12-01

    To facilitate the implementation of reliability assurance programmes (RAP) within future advanced reactor programmes and to ensure that the next generation of commercial nuclear reactors achieves the very high levels of safety, reliability and economy which are expected of them, in 1996, the International Atomic Energy Agency (IAEA) established a task to develop a guidebook for reliability assurance programmes. The draft RAP guidebook was prepared by an expert consultant and was reviewed/modified at an Advisory Group meeting (7-10 April 1997) and at a consults meeting (7-10 October 1997). The programme for the RAP guidebook was reported to and guided by the Technical Working Group on Advanced Technologies for Light Water Reactors (TWG-LWR). This guidebook will demonstrate how the designers and operators of future commercial nuclear plants can exploit the risk, reliability and availability engineering methods and techniques developed over the past two decades to augment existing design and operational nuclear plant decision-making capabilities. This guidebook is intended to provide the necessary understanding, insights and examples of RAP management systems and processes from which a future user can derive his own plant specific reliability assurance programmes. The RAP guidebook is intended to augment, not replace, specific reliability assurance requirements defined by the utility requirements documents and by individual nuclear steam supply system (NSSS) designers. This guidebook draws from utility experience gained during implementation of reliability and availability improvement and risk based management programmes to provide both written and diagrammatic 'how to' guidance which can be followed to assure conformance with the specific requirements outlined by utility requirements documents and in the development of a practical and effective plant specific RAP in any IAEA Member State

  15. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  16. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  17. Fuel utilization potential in light water reactors with once-through fuel irradiation (AWBA Development Program)

    International Nuclear Information System (INIS)

    Rampolla, D.S.; Conley, G.H.; Candelore, N.R.; Cowell, G.K.; Estes, G.P.; Flanery, B.K.; Duncombe, E.; Dunyak, J.; Satterwhite, D.G.

    1979-07-01

    Current commercial light water reactor cores operate without recylce of fuel, on a once-through fuel cycle. To help conserve the limited nuclear fuel resources, there is interest in increasing the energy yield and, hence, fuel utilization from once-through fuel irradiation. This report evaluates the potential increase in fuel utilization of light water reactor cores operating on a once-through cycle assuming 0.2% enrichment plant tails assay. This evaluation is based on a large number of survey calculations using techniques which were verified by more detailed calculations of several core concepts. It is concluded that the maximum fuel utilization which could be achieved by practical once-through pressurized light water reactor cores with either uranium or thorium is about 17 MWYth/ST U 3 O 8 (Megawatt Years Thermal per Short Ton of U 3 O 8 ). This is about 50% higher than that of current commercial light water reactor cores. Achievement of this increased fuel utilization would require average fuel burnup beyond 50,000 MWD/MT and incorporation of the following design features to reduce parasitic losses of neutrons: reflector blankets to utilize neutrons that would otherwise leak out of the core; fuel management practices in which a smaller fraction of the core is replaced at each refueling; and neutron economic reactivity control, such as movable fuel control rather than soluble boron control. For a hypothetical situation in which all neutron leakage and parasitic losses are eliminated and fuel depletion is not limited by design considerations, a maximum fuel utilization of about 20 MWYth/ST U 3 O 8 is calculated for either uranium or thorium. It is concluded that fuel utilization for comparable reactor designs is better with uranium fuel than with thorium fuel for average fuel depletions of 30,000 to 35,000 MWD/MT which are characteristic of present light water reactor cores

  18. Coherence of reactor design and fuel element design

    International Nuclear Information System (INIS)

    Vom Scheidt, S.

    1995-01-01

    Its background of more than 25 years of experience makes Framatome the world's leading company in the design and sales of fuel elements for pressurized water reactors (PWR). In 1994, the fuel fabrication units were incorporated as subsidiaries, which further strengthens the company's position. The activities in the fuel sector comprise fuel element design, selection and sourcing of materials, fuel element fabrication, and the services associated with nuclear fuel. Design responsibility lies with the Design and sales Management, which closely cooperates with the engineers of the reactor plant for which the fuel elements are being designed, for fuel elements are inseparable parts of the respective reactors. The Design and Sales Management also has developed a complete line of services associated with fuel element inspection and repair. As far as fuel element sales are concerned, Framatome delivers the first core in order to be able to assume full responsibility vis-a-vis the customer for the performance of the nuclear steam supply system. Reloads are sold through the Fragema Association established by Framatome and Cogema. (orig.) [de

  19. Gas reactor international cooperative program interim report. Pebble bed reactor fuel cycle evaluation

    International Nuclear Information System (INIS)

    1978-09-01

    Nuclear fuel cycles were evaluated for the Pebble Bed Gas Cooled Reactor under development in the Federal Republic of Germany. The basic fuel cycle specified for the HTR-K and PNP is well qualified and will meet the requirements of these reactors. Twenty alternate fuel cycles are described, including high-conversion cycles, net-breeding cycles, and proliferation-resistant cycles. High-conversion cycles, which have a high probability of being successfully developed, promise a significant improvement in resource utilization. Proliferation-resistant cycles, also with a high probability of successful development, compare very favorably with those for other types of reactors. Most of the advanced cycles could be adapted to first-generation pebble bed reactors with no significant modifications

  20. Utilization of particle fuels in different reactor concepts

    International Nuclear Information System (INIS)

    1983-04-01

    To date, particle fuel is only used in high temperature reactors (HTR). In this reactor type the particles exist of oxide fuel with a diameter of about 0.5 mm and are surrounded by various coatings in order to safely enclose fission products and decrease the radioactive release into the primary circuit. However, it is felt that fuel based upon spherical particles could have some advantages compared with pellets both on fabrication and in-core behaviour in several reactor concepts. This fuel is now of general interest and there is a high level of research and development activity in some countries. In order to collect, organize additional information and summarize experience on utilization of particle fuels in different reactor concepts, a questionnaire was prepared by IAEA in 1980 and sent to Member States, which might be involved in relevant developments. This survey has been prepared by a group of consultants and is mainly based on the responses to the IAEA questionnaire

  1. Nuclear reactor fuel cycle technology with pyroelectrochemical processes

    International Nuclear Information System (INIS)

    Skiba, O.V.; Maershin, A.A.; Bychkov, A.V.; Zhdanov, A.N.; Kislyj, V.A.; Vavilov, S.K.; Babikov, L.G.

    1999-01-01

    A group of dry technologies and processes of vibro-packing granulated fuel in combination with unique properties of vibro-packed FEs make it possible to implement a new comprehensive approach to the fuel cycle with plutonium fuel. Testing of a big number of FEs with vibro-packed U-Pu oxide fuel in the BOR-60 reactor, successful testing of experimental FSAs in the BN-600 rector, reliable operation of the experimental and research complex facilities allow to make the conclusion about a real possibility to develop a safe, economically beneficial U-Pu fuel cycle based on the technologies enumerated above and to use both reactor-grade and weapon-grade plutonium in nuclear reactors with a reliable control and accounting system [ru

  2. Development of materials and manufacturing technologies for Indian fast reactor programme

    International Nuclear Information System (INIS)

    Raj, Baldev; Jayakumar, T.; Bhaduri, A.K.; Mandal, Sumantra

    2010-01-01

    Fast Breeder Reactors (FBRs) are vital towards meeting security and sustainability of energy for the growing economy of India. The development of FBRs necessitates extensive research and development in domains of materials and manufacturing technologies in association with a wide spectrum of disciplines and their inter-twining to meet the challenging technology. The paper highlight the work and the approaches adopted for the successful deployment of materials, manufacturing and inspection technologies for the in-core and structural components of current and future Indian Fast Breeder Reactor Programme. Indigenous development of in-core materials viz. Titanium modified austenitic stainless steel (Alloy D9) and its variants, ferritic/martensitic oxide-dispersion strengthened (ODS) steels as well as structural materials viz. 316L(N) stainless steel and modified 9Cr-1Mo have been achieved through synergistic interactions between Indira Gandhi Centre for Atomic Research (IGCAR), education and research institutes and industries. Robust manufacturing technology has been established for forming and joining of various components of 500 MWe Prototype Fast Breeder Reactor (PFBR) through 'science-based technology' approach. To achieve the strict quality standards of formed parts in terms of geometrical tolerances, residual stresses and microstructural defects, FEM-based modelling and experimental validation was carried out for estimation of spring-back during forming of multiple curvature thick plantes. Optimization of grain boundary character distribution in Alloy D9 was carried out by adopting the grain boundary engineering approach to reduce radiation induced segregation. Extensive welding is involved in the fabrication of reactor vessels, piping, steam generators, fuel sub-assemblies etc. Activated Tungsten Inert Gas Welding process along with activated flux developed at IGCAR has been successfully used in fabrication of dummy fuel subassemblies (DFSA) required for testing

  3. Development of materials and manufacturing technologies for Indian fast reactor programme

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Baldev; Jayakumar, T.; Bhaduri, A.K.; Mandal, Sumantra [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    Fast Breeder Reactors (FBRs) are vital towards meeting security and sustainability of energy for the growing economy of India. The development of FBRs necessitates extensive research and development in domains of materials and manufacturing technologies in association with a wide spectrum of disciplines and their inter-twining to meet the challenging technology. The paper highlight the work and the approaches adopted for the successful deployment of materials, manufacturing and inspection technologies for the in-core and structural components of current and future Indian Fast Breeder Reactor Programme. Indigenous development of in-core materials viz. Titanium modified austenitic stainless steel (Alloy D9) and its variants, ferritic/martensitic oxide-dispersion strengthened (ODS) steels as well as structural materials viz. 316L(N) stainless steel and modified 9Cr-1Mo have been achieved through synergistic interactions between Indira Gandhi Centre for Atomic Research (IGCAR), education and research institutes and industries. Robust manufacturing technology has been established for forming and joining of various components of 500 MWe Prototype Fast Breeder Reactor (PFBR) through 'science-based technology' approach. To achieve the strict quality standards of formed parts in terms of geometrical tolerances, residual stresses and microstructural defects, FEM-based modelling and experimental validation was carried out for estimation of spring-back during forming of multiple curvature thick plantes. Optimization of grain boundary character distribution in Alloy D9 was carried out by adopting the grain boundary engineering approach to reduce radiation induced segregation. Extensive welding is involved in the fabrication of reactor vessels, piping, steam generators, fuel sub-assemblies etc. Activated Tungsten Inert Gas Welding process along with activated flux developed at IGCAR has been successfully used in fabrication of dummy fuel subassemblies (DFSA) required

  4. Fuel motion in overpower tests of metallic integral fast reactor fuel

    International Nuclear Information System (INIS)

    Rhodes, E.A.; Bauer, T.H.; Stanford, G.S.; Regis, J.P.; Dickerman, C.E.

    1992-01-01

    In this paper results from hodoscope data analyses are presented for transient overpower (TOP) tests M5, M6, and M7 at the Transient Reactor Test Facility, with emphasis on transient feedback mechanisms, including prefailure expansion at the tops of the fuel pins, subsequent dispersive axial fuel motion, and losses in relative worth of the fuel pins during the tests. Tests M5 and M6 were the first TOP tests of margin to cladding breach and prefailure elongation of D9-clad ternary (U-Pu-Zr) integral fast reactor-type fuel. Test M7 extended these results to high-burnup fuel and also initiated transient testing of HT-9-clad binary (U-Zr) Fast Flux Test Facility driver fuel. Results show significant prefailure negative reactivity feedback and strongly negative feedback from fuel driven to failure

  5. Fuel for ADS: State-of-the-art, requirements, current and future programmes

    International Nuclear Information System (INIS)

    Gabrielli, F.

    2015-01-01

    Fuels are the cornerstone of research/development programs of accelerator-driven systems for transmuting minor actinides (MA). Compared with the fuels for critical reactors, fuels for ADS are generally U-free to improve the transmutation performance and contain high volumetric concentrations (about 50%) of MA and Pu compounds. Their specific fabrication, reprocessing, design and safety issues are being currently investigated. This paper provides an overview of the current state-of-the-art of the assessment of these innovative fuels. Emphasis has been placed on the main outcomes of the work performed within the Sixth FP EU EUROTRANS Programme, which provided a decisive step forward in improving knowledge on fabrication, properties, and behaviour under irradiation of these challenging fuels. In EUROTRANS, for the ADS application, the focus was on Ceramic-Ceramic (Pu,MA)O 2 + MgO and Ceramic-Metallic (Pu,MA)O 2 + 92 Mo composite fuels, which were recommended for the European Facility for Industrial Transmutation (EFIT). The fuels consist of particles of (Pu,MA)O 2 phases dispersed in a magnesia or molybdenum matrix. Solid nitride (Pu,MA,Zr)O 2 fuels have also been considered as a back-up solution. This paper presents the main experimental results from out-of-pile and in-pile experiments of the Ceramic-Ceramic and Ceramic-Metallic composite fuels as well as related safety assessments. Further, the on-going research and development activities on fuels loaded with large amount of MA will be presented. (author)

  6. Statistical estimation of fast-reactor fuel-element lifetime

    International Nuclear Information System (INIS)

    Proshkin, A.A.; Likhachev, Yu.I.; Tuzov, A.N.; Zabud'ko, L.M.

    1980-01-01

    On the basis of a statistical analysis, the main parameters having a significant influence on the theoretical determination of fuel-element lifetimes in the operation of power fast reactors in steady power conditions are isolated. These include the creep and swelling of the fuel and shell materials, prolonged-plasticity lag, shell-material corrosion, gap contact conductivity, and the strain diagrams of the shell and fuel materials obtained for irradiated materials at the corresponding strain rates. By means of deeper investigation of these properties of the materials, it is possible to increase significantly the reliability of fuel-element lifetime predictions in designing fast reactors and to optimize the structure of fuel elements more correctly. The results of such calculations must obviously be taken into account in the cost-benefit analysis of projected new reactors and in choosing the optimal fuel burnup. 9 refs

  7. Space reactor fuel element testing in upgraded TREAT

    International Nuclear Information System (INIS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ∼60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ∼100 MW/L may be achievable

  8. Space reactor fuel element testing in upgraded TREAT

    Science.gov (United States)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  9. Fuel Management at the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pham, V.L.; Nguyen, N.D.; Luong, B.V.; Le, V.V.; Huynh, T.N.; Nguyen, K.C. [Nuclear Research Institute, 01 Nguyen Tu Luc Street, Dalat City (Viet Nam)

    2011-07-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the old 250 kW TRIGA-MARK II reactor. The spent fuel storage was newly designed and installed in the place of the old thermalizing column for biological irradiation. The core was loaded by Russian WWR-M2 fuel assemblies (FAs) with 36% enrichment. The reconstructed reactor reached its initial criticality in November 1983 and attained it nominal power of 500 kW in February 1984. The first fuel reloading was executed in April 1994 after more than 10 years of operation with 89 highly enriched uranium (HEU) FAs. The third fuel reloading by shuffling of HEU FAs was executed in June 2004. After the shuffling the working configuration of reactor core kept unchanged of 104 HEU FAs. The fourth fuel reloading was executed in November 2006. The 2 new HEU FAs were loaded in the core periphery, at previous locations of wet irradiation channel and dry irradiation channel. After reloading the working configuration of reactor core consisted of 106 HEU FAs. Contracts for reactor core conversion between USA, Russia, Vietnam and the International Atomic Energy Agency for Nuclear fuel manufacture and supply for DNRR and Return of Russian-origin non-irradiated highly enriched uranium fuel to the Russian Federation have been realized in 2007. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory and Vietnam Atomic Energy Institute the mixed core configurations of irradiated HEU and new low enriched uranium (LEU) FAs has been created on 12 September, 2007 and on 20 July, 2009. After reloading in 2009, the 14 HEU FAs with highest burnup were removed from the core and put in the interim storage in reactor pool. The works on full core conversion for the DNRR are being realized in cooperation with the organizations, DOE and IAEA. Contract for Nuclear fuel manufacture and supply of 66 LEU FAs for DNRR

  10. Halden Reactor Project activities, achievements and international collaboration

    International Nuclear Information System (INIS)

    Wiesenack, W.

    2003-01-01

    This paper concentrates on the Halden Project research programme related to fuel testing. An overview of ongoing tests on WWER fuel performance is also included. The ongoing and planned experiments containing WWER-related fuels and materials - Irradiation of Standard and Modified WWER Fuel (IFA-503) and Corrosion Testing of Different Cladding Alloys (IFA-638) - are presented. The future experiments involving WWER fuel and cladding types foreseen in of the Halden Reactor Project programme are given

  11. Alternative fuels, fuel cycles, and reactors: are they useful. are they necessary

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This chapter discusses reactors, fuel cycles, and fuel production concepts other than those considered conventional in the nuclear community. An attempt is made to look for improvements with the aim of providing cheaper and more durable energy systems, and to contribute toward a solution of the threat of weapons material diversion and weapons proliferation problems. Topics considered include breeding, alternate breeder cycles, alternative reprocessing schemes, symbiotic reactor systems, an interim strategy, and other sources of nuclear fuel. It is determined that the reprocessing of spent fuel is an important safeguard measure in itself

  12. Conditioning of nuclear reactor fuel

    International Nuclear Information System (INIS)

    1975-01-01

    A method of conditioning the fuel of a nuclear reactor core to minimize failure of the fuel cladding comprising increasing the fuel rod power to a desired maximum power level at a rate below a critical rate which would cause cladding damage is given. Such conditioning allows subsequent freedom of power changes below and up to said maximum power level with minimized danger of cladding damage. (Auth.)

  13. Waste management in IFR [Integral Fast Reactor] fuel cycle

    International Nuclear Information System (INIS)

    Johnson, T.R.; Battles, J.E.

    1991-01-01

    The fuel cycle of the Integral Fast Reactor (IFR) has important potential advantage for the management of high-level wastes. This sodium-cooled, fast reactor will use metal fuels that are reprocessed by pyrochemical methods to recover uranium, plutonium, and the minor actinides from spent core and blanket fuel. More than 99% of all transuranic (TRU) elements will be recovered and returned to the reactor, where they are efficiently burned. The pyrochemical processes being developed to treat the high-level process wastes are capable of producing waste forms with low TRU contents, which should be easier to dispose of. However, the IFR waste forms present new licensing issues because they will contain chloride salts and metal alloys rather than glass or ceramic. These fuel processing and waste treatment methods can also handle TRU-rich materials recovered from light-water reactors and offer the possibility of efficiently and productively consuming these fuel materials in future power reactors

  14. IEA-R1 reactor - Spent fuel management

    International Nuclear Information System (INIS)

    Mattos, J.R.L. De

    1996-01-01

    Brazil currently has one Swimming Pool Research Reactor (IEA-R1) at the Instituto de Pesquisas Energeticas e Nucleares - Sao Paulo. The spent fuel produced is stored both at the Reactor Pool Storage Compartment and at the Dry Well System. The present situation and future plans for spent fuel storage are described. (author). 3 refs, 2 figs, 2 tabs

  15. Fuel development for reactors of new generation in Ukraine

    International Nuclear Information System (INIS)

    Odeychuk, N.P.

    2006-01-01

    Full text: On the background of critical situation in traditional power engineering due to deficiency of organic fuel, physical and moral ageing of the of thermal power stations equipment and their harmful influence on the ecology of environment, the nuclear engineering works stably enough and, by keeping all safety measures, is the most non-polluting energy source. In Ukraine the atomic engineering became one of main sources of energy production and is the important factor of guarantee the power engineering independence of the state. The main center on development of the components of nuclear reactors active zones is the National scientific center K harkov institute of Physics and Technology . The significant place in institutes' investigations was occupied with works on creation the constructional materials and nuclear fuel for heavy water reactors E-circumflexS-150, OR-1000, OR-2000, light water reactors WWER-1000 and RBMK-1500, high-temperature gas cooled reactors ABTU and HTGR, gas reactors on fast neutrons BGR and BRGD, and also the reactor - converter ROMASHKA and other special reactors of special assignment. Radiation tests and post-irradiation research confirm intended material-study, technological and design decisions and fuel elements capacity work on the whole. Nevertheless, by the present conditions, it is necessary to pay special attention to development of the new, safe guaranteed nuclear energy sources. In Ukraine proceed works on research and development of new safe nuclear reactors: basing the underground nuclear thermal power stations; development the reactors with managed chain reaction of nucleus division in an active zone with the help of an external source of neutrons; power thermonuclear installations; high-temperature helium reactors which are especially actual now from the point of view of the hydrogen production; the advanced pressure water reactors, heavy water reactors. In the paper also discussed the state of works in Ukraine on fuel

  16. Nuclear reactor fuel sub-assemblies

    International Nuclear Information System (INIS)

    Dodd, J.A.

    1981-01-01

    An improved fuel sub-assembly for a liquid metal cooled fast breeder reactor, is described, in which fatigue damage due to buffeting by cross-current flows is reduced and protection is provided against damage by contact with other reactor structures during loading and unloading of the sub-assembly. (U.K.)

  17. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boltax, A [Westinghouse Electric Corporation, Advanced Reactor Division, Madison, PA (United States); Biancheria, A

    1977-04-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  18. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Boltax, A.; Biancheria, A.

    1977-01-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  19. Review of the IAEA Nuclear Fuel Cycle Materials Section activities related to WWER fuel

    International Nuclear Information System (INIS)

    Killeen, J.

    2003-01-01

    The IAEA Nuclear Fuel Cycle Programme, designated as Programme B, has the main objective of supporting Member States in policy making, strategic planning, developing technology and addressing issues with respect to safe, reliable, economically efficient, proliferation resistant and environmentally sound nuclear fuel cycle. This paper is concentrated on describing the work within Sub-programme B.2 'Fuel Performance and Technology'. Two Technical Working Groups assist in the preparation of the IAEA programme in the nuclear fuel cycle area - Technical Working Group on Water Reactor Fuel Performance and Technology and Technical Working Group on Nuclear Fuel Cycle Options. The activities of the Unit within the Nuclear Fuel Cycle and Materials Section working on Fuel Performance and Technology are given, based on the sub-programme structure of the Agency programme and budget for 2002-2003. Within the framework of Co-ordinated Research Projects a study of the delayed hydride cracking (DHC) of the zirconium alloys used in pressurised heavy water reactors (PHWR) involving 10 countries has been completed. It achieved very effective transfer of know-how at the laboratory level in three technologically important areas: 1) Controlled hydriding of samples to predetermined levels; 2) Accurate measurement of hydrogen concentrations at the relatively low levels found in pressure tubes and RBMK channel tubes; and 3) In the determination of DHC rates under various conditions of temperature and stress. A new project has been started on the 'Improvement of Models used for Fuel Behaviour Simulation' (FUMEX II) to assist Member States in improving the predictive capabilities of computer codes used in modelling fuel behaviour for extended burnup. The IAEA also collaborates with organisations in the Member States to support activities and meetings on nuclear fuel cycle related topics

  20. Fuel damage during off-normal transients in metal-fueled fast reactors

    International Nuclear Information System (INIS)

    Kramer, J.M.; Bauer, T.H.

    1990-01-01

    Fuel damage during off-normal transients is a key issue in the safety of fast reactors because the fuel pin cladding provides the primary barrier to the release of radioactive materials. Part of the Safety Task of the Integral Fast Reactor Program is to provide assessments of the damage and margins to failure for metallic fuels over the wide range of transients that must be considered in safety analyses. This paper reviews the current status of the analytical and experimental programs that are providing the bases for these assessments. 13 refs., 2 figs

  1. Fueling method in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Inoue, Kotaro.

    1985-01-01

    Purpose: To extend the burning cycle and decrease the number of fuel exchange batches without increasing the excess reactivity at the initial stage of burning cycles upon fuel loading to an LMFBR type reactor. Method: Each of the burning cycles is divided into a plurality of burning sections. Fuels are charged at the first burning section in each of the cycles such that driver fuel assemblies and blanket assemblies or those assemblies containing neutron absorbers such as boron are distributed in mixture in the reactor core region. At the final stage of the first burning section, the blanket assemblies or neutron absorber-containing assemblies present in mixture are partially or entirely replaced with driver fuel assemblies depending on the number of burning sections such that all of them are replaced with the driver fuel assemblies till the start of the final burning section of the abovementioned cycle. The object of this invention can thus be attained. (Horiuchi, T.)

  2. Research and development into power reactor fuel performance

    International Nuclear Information System (INIS)

    Notley, M.J.F.

    1983-07-01

    The nuclear fuel in a power reactor must perform reliably during normal operation, and the consequences of abnormal events must be researched and assessed. The present highly reliable operation of the natural UO 2 in the CANDU power reactors has reduced the need for further work in this area; however a core of expertise must be retained for purposes such as training of new staff, retaining the capability of reacting to unforeseen circumstances, and participating in the commercial development of new ideas. The assessment of fuel performance during accidents requires research into many aspects of materials, fuel and fission product behaviour, and the consolidation of that knowledge into computer codes used to evaluate the consequences of any particular accident. This work is growing in scope, much is known from out-reactor work at temperatures up to about 1500 degreesC, but the need for in-reactor verification and investigation of higher-temperature accidents has necessitated the construction of a major new in-reactor test loop and the initiation of the associated out-reactor support programs. Since many of the programs on normal and accident-related performance are generic in nature, they will be applicable to advanced fuel cycles. Work will therefore be gradually transferred from the present, committed power reactor system to support the next generation of thorium-based reactor cycles

  3. Development and testing of the EDF-2 reactor fuel element

    International Nuclear Information System (INIS)

    Delpeyroux, P.

    1964-01-01

    This technical report reviews the work which has been necessary for defining the EDF-2 fuel element. After giving briefly the EDF-2 reactor characteristics and the preliminary choice of parameters which made it possible to draw up a draft plan for the fuel element, the authors consider the research proper: - Uranium studies: tests on the passage into the β phase of an internal crown of a tube, bending of the tube under the effect of a localized force, welding of the end-pellets and testing for leaks. The resistance of the tube to crushing and of the pellets to yielding under the external pressure have been studied in detail in another CEA report. - Can studies: conditions of production and leak proof testing of the can, resistance of the fins to creep due to the effect of the gas flow. - Studies of the extremities of the element: creep under compression and welding of the plugs to the can. - Cartridge studies: determination of the characteristics of the can fuel fixing grooves and of the canning conditions, verification of the resistance of the fuel element to thermal cycling, determination of the temperature drop at the can-fuel interface dealt with in more detail in another CEA report. - Studies of the whole assembly: this work which concerns the graphite jacket, the support and the cartridge vibrations has been carried out by the Mechanical and Thermal Study Service (Mechanics Section). In this field the Fuel Element Study Section has investigated the behaviour of the centering devices in a gas current. The outcome of this research is the defining of the plan of the element the production process and the production specifications. The validity of ail these out-of-pile tests will be confirmed by the in-pile tests already under way and by irradiation of the elements in the EDF-2 reactor itself. In conclusion the programme is given for improving the fuel element and for defining the fuel element for the second charge. (authors) [fr

  4. Safety assessments relating to the use of new fuels in research reactors: application to the case of FRM 2 reactor fuel

    International Nuclear Information System (INIS)

    Abou Yehia, H.; Bars, G.; Tran Dai

    2001-01-01

    After giving a brief reminder of the procedure applied in France for the licensing of the use of a new fuel type or design in a research reactor, we outline the main safety aspects associated with such a modification. Finally, by way of an example, we focus on the safety assessment relating to the IRIS irradiation device used in SILOE reactor, in particular for the qualification of the fuel dedicated to FRM II reactor of the Technical University of Munich. This qualification was carried out on a U 3 Si 2 fuel plate enriched to about 90 % in weight of 235 U and containing 1.5 g of uranium per cm 3 . The evaluation performed by the IPSN for GRS did not call into question the choice of U 3 Si 2 fuel plates for the FRM-II reactor. (authors)

  5. Spent nuclear fuel discharges from US reactors 1993

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics

  6. Preliminary study or RSG-GAS reactor fuel element integrity

    International Nuclear Information System (INIS)

    Soejoedi, A.; Tarigan, A.; Sujalmo; Prayoga, S.; Suhadi

    1996-01-01

    After 8 years of operation, RSG-GAS was able to reach 15 cycles of reactor operation with 116 irradiated fuels, whereas 49 fuels were produced by NUKEM; and the other 67 were produced by PEBN-BATAN. At the 15 T h cycles, it have been used 40 standard fuels and 8 control fuels (Forty standard fuels and eight control fuels have been used in the 15 t h core cycles). Several activities have been performed in the reactor, to investigate the fuel integrity, among of them are: .fuel visual test with under water camera, which the results were recorder in the video cassette, primary water quality test during, reactor operation, fuel failure detector system examination and compared the PIE results in the Radiometallurgy Installation (RMI). The results showed that the fuel integrity, before and after irradiation, have still good performance and the fission products have not been released yet

  7. The UK gas-cooled reactor programme - Progress report 1988

    International Nuclear Information System (INIS)

    Askew, J.R.

    1989-01-01

    This paper summarises key developments during 1988 on the 26 Magnox reactors and 14 AGRs now operating in the UK. Details are given of long-term safety reviews of the Berkeley and Bradwell Magnox stations which resulted in a decision by CEGB to cease generation at Berkeley but to continue operation at Bradwell. The summary of operating experience with the AGRs concentrates on the completion of construction and successful commissioning of the second generation AGRs at Heysham 2 and Torness. An appended article by John Wilson, Deputy Director of the UKAEA's gas-cooled reactor R and D programme, gives details of the aims and achievements of the programme during 1988. (author)

  8. Caramel fuel for research reactors

    International Nuclear Information System (INIS)

    Bussy, P.

    1979-11-01

    This fuel for research reactors is made of UO 2 pellets in a zircaloy cladding to replace 93% enriched uranium. It is a cold fuel, non contaminating and non proliferating, enrichment is only 7 to 8%. Irradiation tests were performed until burn-up of 50000 MWD/t [fr

  9. Research reactors fuel cycle problems and dilemma

    International Nuclear Information System (INIS)

    Romano, R.

    2004-01-01

    During last 10 years, some problems appeared in different steps of research reactors fuel cycle. Actually the majority of these reactors have been built in the 60s and these reactors were operated during all this long period in a cycle with steps which were dedicated to this activity. Progressively and for reasons often economical, certain steps of the cycle became more and more difficult to manage due to closing of some specialised workshops in the activities of scraps recycling, irradiated fuel reprocessing, even fuel fabrication. Other steps of the cycle meet or will meet difficulties, in particular supplying of fissile raw material LEU or HEU because this material was mostly produced in enrichment units existing mainly for military reason. Rarefaction of fissile material lead to use more and more enriched uraniums said 'of technical quality', that is to say which come from mixing of varied qualities of enriched material, containing products resulting from reprocessing. Actually, problems of end of fuel cycle are increased, either consisting of intermediary storage on the site of reactor or on specialised sites, or consisting of reprocessing. This brief summary shows most difficulties which are met today by a major part of industrials of the fuel cycle in the exercise of their activities

  10. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1976-01-01

    The proposal refers to the optimization of the power distribution in a reactor core which is provided with several successive rod-shaped fuel cells. A uniform power output - especially in radial direction - is aimed at. This is achieved by variation of the dwelling periods of the fuel cells, which have, for this purpose, a fuel mixture changing from layer to layer. The fuel cells with the shortest dwelling period are arranged near the coolant inlet side of the reactor core. The dwelling periods of the fuel cells are adapted to the given power distribution. As neighboring cells have equal dwelling periods, the exchange can be performed much easier then with the composition currently known. (UWI) [de

  11. Fuel enrichment reduction for heavy water moderated research reactors

    International Nuclear Information System (INIS)

    McCulloch, D.B.

    1984-01-01

    Twelve heavy-water-moderated research reactors of significant power level (5 MW to 125 MW) currently operate in a number of countries, and use highly enriched uranium (HEU) fuel. Most of these reactors could in principle be converted to use uranium of lower enrichment, subject in some cases to the successful development and demonstration of new fuel materials and/or fuel element designs. It is, however, generally accepted as desirable that existing fuel element geometry be retained unaltered to minimise the capital costs and licensing difficulties associated with enrichment conversion. The high flux Australian reactor, HIFAR, at Lucas Heights, Sydney is one of 5 Dido-class reactors in the above group. It operates at 10 MW using 80% 235 U HEU fuel. Theoretical studies of neutronic, thermohydraulic and operational aspects of converting HIFAR to use fuels of reduced enrichment have been made over a period. It is concluded that with no change of fuel element geometry and no penalty in the present HEU fuel cycle burn-up performance, conversion to MEU (nominally 45% 235 U) would be feasible within the limits of current fully qualified U-Al fuel materials technology. There would be no significant, adverse effects on safety-related parameters (e.g. reactivity coefficients) and only small penalties in reactor flux. Conversion to LEU (nominally 20% 235 U) a similar basis would require that fuel materials of about 2.3 g U cm -3 be fully qualified, and would depress the in-core thermal neutron flux by about 15 per cent relative to HEU fuelling. In qualitative terms, similar conclusions would be expected to hold for a majority of the above heavy water moderated reactors. (author)

  12. Storage experience in Hungary with fuel from research reactors

    International Nuclear Information System (INIS)

    Gado, J.; Hargitai, T.

    1996-01-01

    In Hungary several critical assemblies, a training reactor and a research reactor have been in operation. The fuel used in the research and training reactors are of Soviet origin. Though spent fuel storage experience is fairly good, medium and long term storage solutions are needed. (author)

  13. Progress and status of the international project on innovative nuclear reactors and fuel cycles (INPRO) - 5182

    International Nuclear Information System (INIS)

    Ponomarev, A.; Fesenko, G.; Grigoriev, F.G.; Korinny, A.; Phillips, J.R.; Rho, K.

    2015-01-01

    The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000 through IAEA General Conference resolution. INPRO cooperates with Member States to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21. century. INPRO membership has grown to 41 members and 16 observers. The paper presents the current prospectus of the INPRO programme and details the most recent achievements in the following 7 projects: 1) the GAINS project (Global Architecture of Innovative Nuclear Energy Systems with thermal and fast reactors and a closed nuclear fuel cycle); 2) the SYNERGIES project applies and amends the analytical framework developed in GAINS project to examine more specifically the various forms of regional collaboration among nuclear energy suppliers and users; 3) the KIND project (Key Indicators for Innovative Nuclear Energy Systems) has the objective of developing guidance on the evaluation on innovative nuclear technologies; 4) the ROADMAPS project addresses several possible stages toward nuclear energy sustainability; 5) the RISC project aims at demonstrating that the evolution of safety requirements and technical innovations provide continual progress towards the avoidance of evacuation measures outside NPP sites in case of severe accidents; 6) the FANES project has the objective of carrying out feasibility analyses of advanced and innovative fuels for different reactor systems; and 7) the WIRAF project aims at identifying problematic waste from innovative reactor designs and corresponding nuclear fuel cycles

  14. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak, E-mail: btavron@bgu.ac.il [Planning, Development and Technology Division, Israel Electric Corporation Ltd., P.O. Box 10, Haifa 31000 (Israel); Shwageraus, Eugene, E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-10-15

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  15. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    International Nuclear Information System (INIS)

    Tavron, Barak; Shwageraus, Eugene

    2016-01-01

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  16. Pebble Bed Reactor: core physics and fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Worley, B.A.

    1979-10-01

    The Pebble Bed Reactor is a gas-cooled, graphite-moderated high-temperature reactor that is continuously fueled with small spherical fuel elements. The projected performance was studied over a broad range of reactor applicability. Calculations were done for a burner on a throwaway cycle, a converter with recycle, a prebreeder and breeder. The thorium fuel cycle was considered using low, medium (denatured), and highly enriched uranium. The base calculations were carried out for electrical energy generation in a 1200 MW/sub e/ plant. A steady-state, continuous-fueling model was developed and one- and two-dimensional calculations were used to characterize performance. Treating a single point in time effects considerable savings in computer time as opposed to following a long reactor history, permitting evaluation of reactor performance over a broad range of design parameters and operating modes.

  17. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  18. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  19. Fuel transporting device in nuclear reactor

    International Nuclear Information System (INIS)

    Inoue, Tatsumi.

    1975-01-01

    Object: To obtain a support structure of an excellent quakeproof property for a fuel transporting device provided for the transportation of fuel between a reactor building and an auxiliary building in a pressure tube reactor or the like. Structure: The structure comprises an oblique transfer chute loosely penetrating the reactor building, reactor container and auxiliary building, a transfer chute support outer cylinder surrounding the transfer chute and having one end coupled to the transfer chute and other end coupled to the container, flexible seal members respectively provided on the reactor building side and on the auxiliary building side and surrounding the transfer chute and a slidable support supported on the side of the auxiliary building such that it can be in frictional contact with the outer periphery of the transfer chute. With this construction, the relative displacements of various parts caused by an earthquake or the like can be absorbed by the support outer cylinder, flexible seals and slidable support. (Ikeda, J.)

  20. Initiation of depleted uranium oxide and spent fuel testing for the spent fuel sabotage aerosol ratio programme

    International Nuclear Information System (INIS)

    Molecke, M.A.; Gregson, M.W.; Sorenson, K.B.

    2004-01-01

    We provide a detailed overview of an on-going, multinational test programme that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolised materials plus volatilised fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high-energy/density device. The programme participants in the United States plus Germany, France and the United Kingdom, part of the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) have strongly supported and coordinated this research programme. Sandia National Laboratories has the lead role for conducting this research programme; test programme support is provided by both the US Department of Energy and the US Nuclear Regulatory Commission. We provide a summary of the overall, multiphase test design and a description of all explosive containment and aerosol collection test components used. We focus on the recently initiated tests on 'surrogate' spent fuel, unirradiated depleted uranium oxide and forthcoming actual spent fuel tests. We briefly summarise similar results from completed surrogate tests that used non-radioactive, sintered cerium oxide ceramic pellets in test rods. (author)

  1. The second eddy current testing of zircaloy tube samples from the OECD Halden reactor project at Reactor Fuel Examination Facility, Tokai, JAERI

    International Nuclear Information System (INIS)

    Ohwada, Isao; Nishino, Yasuharu

    1986-07-01

    The Reactor Fuel Examination Facility in Tokai/JAERI (Japan Atomic Energy Research Institute) joined to the second round robin programme on eddy current test of the Halden/IFE. In the programme, two zircaloy tube samples with some artificial defects were provided for measurements. To clarify the locations in axial and azimuthal directions, types and dimensions of the provided artificial defects, measured signals from eddy current test were analysed in comparison with the known defects on the calibration tube. As a result, fourteen defects were determined from the measurements. Then, the location, the type and the relative dimension of them were also revealed. The results of those eddy current test are described in this paper. (author)

  2. Back-end of the research reactor fuel cycle

    International Nuclear Information System (INIS)

    Gruber, Gehard J.

    1996-01-01

    This paper outlines the status of topics and issues related to: (1) Research Reactor Spent Nuclear Fuel Return to the U.S., including policy, shipments and ports of entry, management sites, fees, storage technologies, contracts, actual shipment, and legal process, (2) UKAEA: MTR Spent Nuclear Fuel Reprocessing, (3) COGEMA: MTR Spent Nuclear Fuel Reprocessing, and (4) Intermediate Storage + Direct Disposal for Research Reactors. (author)

  3. Determination of equilibrium fuel composition for fast reactor in closed fuel cycle

    Directory of Open Access Journals (Sweden)

    Ternovykha Mikhail

    2017-01-01

    Full Text Available Technique of evaluation of multiplying and reactivity characteristics of fast reactor operating in the mode of multiple refueling is presented. We describe the calculation model of the vertical section of the reactor. Calculation validations of the possibility of correct application of methods and models are given. Results on the isotopic composition, mass feed, and changes in the reactivity of the reactor in closed fuel cycle are obtained. Recommendations for choosing perspective fuel compositions for further research are proposed.

  4. Manufacture of fuel and fuel channels and their performance in Indian PHWRS - an overview

    International Nuclear Information System (INIS)

    Kalidas, R.

    2005-01-01

    Nuclear Fuel Complex (NFC) at Hyderabad is a conglomeration of chemical, metallurgical and mechanical plants, processing uranium and zirconium in two separate streams and culminating in the fuel assembly plant. Apart from manufacturing fuel for Pressurised Heavy Water Reactors (PHWRs) and Boiling Water Reactors (BWRs), NFC is also engaged in the manufacture of reactor core structurals for these reactors. NFC has carried out several technological developments over the years and implemented them for the manufacture of fuel, calandria tubes and pressure tubes for PHWRs. Keeping in pace with the Nuclear Power Programme envisaged by the Department of Atomic Energy, NFC had augmented its production capacities in all these areas. The paper highlights several actions initiated in the areas of fuel design, fuel manufacturing, manufacturing of zirconium alloy core structurals, fuel clad tubes and components and their performance in Indian PHWRs. (author)

  5. Nuclear reactor fuel element with a cluster of parallel fuel pins

    International Nuclear Information System (INIS)

    Macfall, D.; Butterfield, C.E.; Butterfield, R.S.

    1977-01-01

    An improvement of the design of nuclear reactor fuel elements is described and illustrated by the example of a gas-cooled, graphite-moderated nuclear reactor. The fuel element has a cluster of parallel fuel pins with an outer can of structure material and an inner sleeve, as well as tie bars and spacing devices for all of these parts. The fuel element designed according to the invention allows lasy assembling and disassembling before and after use. During use, no relative axial motions are possible; nevertheless, the graphite sleeve is at no time subject to tensile stress: the individual parts are held in position from below by a single holding device. (UWI) [de

  6. CANDU fuel - fifteen years of power reactor experience

    International Nuclear Information System (INIS)

    Fanjoy, G.R.; Bain, A.S.

    1977-01-01

    CANDU (Canada Deuterium Uranium) fuel has operated in power reactors since 1962. Analyses of performance statistics, supplemented by examinations of fuel from power reactors and experimental loops have yielded: (a) A thorough understanding of the fundamental behaviour of CANDU fuel. (b) Data showing that the predicted high utilization of uranium has been achieved. Actual fuelling costs in 1976 at the Pickering Generating Station are 1.2 m$/kWh (1976 Canadian dollars) with the simple oncethrough natural-UO 2 fuel cycle. (c) Criteria for operation, which have led to the current very low defect rate of 0.03% of all assemblies and to ''CANLUB'' fuel, which has a graphite interlayer between the fuel and sheath to reduce defects on power increases. (d) Proof that the short length (500 mm), collapsible cladding features of the CANDU bundle are successful and that the fuel can operate at high-power output (current peak outer-element linear power is 58 +- 15% kW/m). Involvement by the utility in all stages of fuel development has resulted in efficient application of this fundamental knowledge to ensure proper fuel specifications, procurement, scheduling into the reactor and feedback to developers, designers and manufacturers. As of mid-1976 over 3 x 10 6 individual elements have been built in a well-estabilished commercially competitive fuel fabrication industry and over 2 x 10 6 elements have been irradiated. Only six defects have been attributed to faulty materials or fabrication, and the use of high-density UO 2 with low-moisture content precluded defects from hydrogen contamination and densification. Development work on UO 2 and other fuel cycles (plutonium and thorium) is continuing, and, because CANDU reactors use on-power fuelling, bundles can be inserted into power reactors for testing. Thus new fuel designs can be quickly adopted to ensure that the CANDU system continues to provide low-cost energy with high reliability

  7. Advanced methods of process/quality control in nuclear reactor fuel manufacture. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Nuclear fuel plays an essential role in ensuring the competitiveness of nuclear energy and its acceptance by the public. The economic and market situation is not favorable at present for nuclear fuel designers and suppliers. The reduction in fuel prices (mainly to compete with fossil fuels) and in the number of fuel assemblies to be delivered to customers (mainly due to burnup increase) has been offset by the rising number of safety and other requirements, e.g. the choice of fuel and structural materials and the qualification of equipment. In this respect, higher burnup and thermal rates, longer fuel cycles and the use of MOX fuels are the real means to improve the economics of the nuclear fuel cycle as a whole. Therefore, utilities and fuel vendors have recently initiated new research and development programmes aimed at improving fuel quality, design and materials to produce robust and reliable fuel for safe and reliable reactor operation more demanding conditions. In this connection, improvement of fuel quality occupies an important place and this requires continuous effort on the part of fuel researchers, designers and producers. In the early years of commercial fuel fabrication, emphasis was given to advancements in quality control/quality assurance related mainly to the product itself. Now, the emphasis is transferred to improvements in process control and to implementation of overall total quality management (TQM) programmes. In the area of fuel quality control, statistical methods are now widely implemented, replacing 100% inspection. The IAEA, recognizing the importance of obtaining and maintaining high standards in fuel fabrication, has paid particular attention to this subject. In response to the rapid progress in development and implementation of advanced methods of process/quality control in nuclear fuel manufacture and on the recommendation of the International Working Group on Water Reactor Fuel Performance and Technology, the IAEA conducted a

  8. Advanced methods of process/quality control in nuclear reactor fuel manufacture. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-07-01

    Nuclear fuel plays an essential role in ensuring the competitiveness of nuclear energy and its acceptance by the public. The economic and market situation is not favorable at present for nuclear fuel designers and suppliers. The reduction in fuel prices (mainly to compete with fossil fuels) and in the number of fuel assemblies to be delivered to customers (mainly due to burnup increase) has been offset by the rising number of safety and other requirements, e.g. the choice of fuel and structural materials and the qualification of equipment. In this respect, higher burnup and thermal rates, longer fuel cycles and the use of MOX fuels are the real means to improve the economics of the nuclear fuel cycle as a whole. Therefore, utilities and fuel vendors have recently initiated new research and development programmes aimed at improving fuel quality, design and materials to produce robust and reliable fuel for safe and reliable reactor operation more demanding conditions. In this connection, improvement of fuel quality occupies an important place and this requires continuous effort on the part of fuel researchers, designers and producers. In the early years of commercial fuel fabrication, emphasis was given to advancements in quality control/quality assurance related mainly to the product itself. Now, the emphasis is transferred to improvements in process control and to implementation of overall total quality management (TQM) programmes. In the area of fuel quality control, statistical methods are now widely implemented, replacing 100% inspection. The IAEA, recognizing the importance of obtaining and maintaining high standards in fuel fabrication, has paid particular attention to this subject. In response to the rapid progress in development and implementation of advanced methods of process/quality control in nuclear fuel manufacture and on the recommendation of the International Working Group on Water Reactor Fuel Performance and Technology, the IAEA conducted a

  9. Cermet-fueled reactors for multimegawatt space power applications

    International Nuclear Information System (INIS)

    Cowan, C.L.; Armijo, J.S.; Kruger, G.B.; Palmer, R.S.; Van Hoomisson, J.E.

    1988-01-01

    The cermet-fueled reactor has evolved as a potential power source for a broad range of multimegawatt space applications. In particular, the fast spectrum reactor concept can be used to deliver 10s of megawatts of electric power for continuous, long term, unattended operation, and 100s of megawatts of electric power for times exceeding several hundred seconds. The system can also be utilized with either a gas coolant in a Brayton power conversion cycle, or a liquid metal coolant in a Rankine power conversion cycle. Extensive testing of the cermet fuel element has demonstrated that the fuel is capable of operating at very high temperatures under repeated thermal cycling conditions, including transient conditions which approach the multimegawatt burst power requirements. The cermet fuel test performance is reviewed and an advanced cermet-fueled multimegawatt nuclear reactor is described in this paper

  10. Fuel rod bundles proposed for advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    Prodea, Iosif; Catana, Alexandru

    2010-01-01

    The paper aims to be a general presentation for fuel bundles to be used in Advanced Pressure Tube Nuclear Reactors (APTNR). The characteristics of such a nuclear reactor resemble those of known advanced pressure tube nuclear reactors like: Advanced CANDU Reactor (ACR TM -1000, pertaining to AECL) and Indian Advanced Heavy Water Reactor (AHWR). We have also developed a fuel bundle proposal which will be referred as ASEU-43 (Advanced Slightly Enriched Uranium with 43 rods). The ASEU-43 main design along with a few neutronic and thermalhydraulic characteristics are presented in the paper versus similar ones from INR Pitesti SEU-43 and CANDU-37 standard fuel bundles. General remarks regarding the advantages of each fuel bundle and their suitability to be burned in an APTNR reactor are also revealed. (authors)

  11. Integrated fuel-cycle models for fast breeder reactors

    International Nuclear Information System (INIS)

    Ott, K.O.; Maudlin, P.J.

    1981-01-01

    Breeder-reactor fuel-cycle analysis can be divided into four different areas or categories. The first category concerns questions about the spatial variation of the fuel composition for single loading intervals. Questions of the variations in the fuel composition over several cycles represent a second category. Third, there is a need for a determination of the breeding capability of the reactor. The fourth category concerns the investigation of breeding and long-term fuel logistics. Two fuel-cycle models used to answer questions in the third and fourth area are presented. The space- and time-dependent actinide balance, coupled with criticality and fuel-management constraints, is the basis for both the Discontinuous Integrated Fuel-Cycle Model and the Continuous Integrated Fuel-Cycle Model. The results of the continuous model are compared with results obtained from detailed two-dimensional space and multigroup depletion calculations. The continuous model yields nearly the same results as the detailed calculation, and this is with a comparatively insignificant fraction of the computational effort needed for the detailed calculation. Thus, the integrated model presented is an accurate tool for answering questions concerning reactor breeding capability and long-term fuel logistics. (author)

  12. Fast reactor parameter optimization taking into account changes in fuel charge type during reactor operation time

    International Nuclear Information System (INIS)

    Afrin, B.A.; Rechnov, A.V.; Usynin, G.B.

    1987-01-01

    The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated

  13. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  14. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  15. Effect of reduced enrichment on the fuel cycle for research reactors

    International Nuclear Information System (INIS)

    Travelli, A.

    1982-01-01

    The new fuels developed by the RERTR Program and by other international programs for application in research reactors with reduced uranium enrichment (<20% EU) are discussed. It is shown that these fuels, combined with proper fuel-element design and fuel-management strategies, can provide at least the same core residence time as high-enrichment fuels in current use, and can frequently significantly extend it. The effect of enrichment reduction on other components of the research reactor fuel cycle, such as uranium and enrichment requirements, fuel fabrication, fuel shipment, and reprocessing are also briefly discussed with their economic implications. From a systematic comparison of HEU and LEU cores for the same reference research reactor, it is concluded that the new fuels have a potential for reducing the research reactor fuel cycle costs while reducing, at the same time, the uranium enrichment of the fuel

  16. Revision of the second basic plans of power reactor development in Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1978-01-01

    Revision of the second basic plans concerning power reactor development in PNC (Power Reactor and Nuclear Fuel Development Corporation) is presented. (1) Fast breeder reactors: As for the experimental fast breeder reactor, after reaching the criticality, the power is raised to 50 MW thermal output within fiscal 1978. The prototype fast breeder reactor is intended for the electric output of 200 MW -- 300 MW, using mixed plutonium/uranium oxide fuel. Along the above lines, research and development will be carried out on reactor physics, sodium technology, machinery and parts, nuclear fuel, etc. (2) Advanced thermal reactor: The prototype advanced thermal reactor, with initial fuel primarily of slightly enriched uranium and heavy water moderation and boiling water cooling, of 165 MW electric output, is brought to its normal operation by the end of fiscal 1978. Along the above lines, research and development will be carried out on reactor physics, machinery and parts, nuclear fuel, etc. (Mori, K

  17. A review of the Indian fast reactor programme

    International Nuclear Information System (INIS)

    Bhoje, S.B.

    1990-01-01

    Development of Fast Breeder activities is being done mainly at the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam and the total Scientific and Technical staff working at the Centre for development of FBRs is about 1200. The development work relating to the fuel fabrication and design and development for some of the fuel handling equipment is being done at the Bhabha Atomic Research Centre, Trombay, Bombay. Complete recovery from the fuel handling incident of FBTR was achieved during the beginning of 1989. Damaged guide tube and bent subassemblies were replaced, the incident was analysed in detail and appropriate remedial measures, viz., modifications in the fuel handling machine control logic and plug rotation logic were implemented to prevent its recurrence. Safety clearances for the restart of the reactor were obtained from the Atomic Energy Regulatory Board in May 1989. As steam generators were not valved in the secondary sodium system, the reactor power during this phase of operation was limited to 500 KWt. The main objectives during this phase were to complete the balance low power physics experiments and to operate the reactor for a sufficiently long time to assess the performance of various systems, in particular the neutronic instrumentation, control rod drive and safety logic system which were not in active service for the two years. From May to July, 1989, the reactor was successfully operated up to a power level of 500 KWt with 50% operating time. Design of PFBR is progressing intensively. (author). 1 tab

  18. Plant-scale anodic dissolution of unirradiated N-Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-01-01

    Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the fuel segment length, diameter, and shape required for high throughput electrorefiner treatment for ultimate disposal in a geologic repository. Based on these tests, a conceptual design was produced of an electrorefiner for a full-scale plant to process N-Reactor spent fuel. In this design, the diameter of an electrode assembly is about 0.6 m (25 in.). Eight of these assemblies in an electrorefiner would accommodate a 1.333-metric-ton batch of N-Reactor fuel. Electrorefining would proceed at a rate of 40 kg uranium per hour

  19. Integrated planning for a fuel industry with emphasis on minimum size to fabricate own fuel

    International Nuclear Information System (INIS)

    Kondal Rao, N.; Katiyar, H.C.; Rajendran, R.; Sinha, K.K.; Swaminathan, N.; Subramanyam, R.B.; Pande, B.P.; Krishnan, T.S.; Agarwala, G.C.; Chandramouli, V.A.

    1977-01-01

    The Indian nuclear energy programme is based on the utilization of indigenous resources for the economic generation of power, developing its own know-how. In order to gain time, the first nuclear power station at Tarapur is a turn-key job based on enriched uranium fuel. Taking into consideration the established resources of uranium and thorium in the country, a strategy for nuclear power programme has been drawn up. The first phase is based on natural uranium fuel, the second phase on the recycle of plutonium and conversion of thorium and the third phase is the breeder system based on utilization of U 233 and conversion of thorium. This programme is specially significant for India in view of its vast resources of thorium. After the experience and confidence gained with the manufacture of metallic uranium fuel for the research reactors and about 40 tonnes of fuel for the initial loading of the Rajasthan Reactor, the fuel manufacturing programme within the country has been implemented to meet the entire initial and reload fuel requirements. The plant capacities are small compared to similar activities in developed countries. Further, by planning for an integrated fuel and component manufacturing complex, any draw-back in smaller scale of some of the operations is off-set. At the Nuclear Fuel Complex, set up on the above principles, production plants are in operation for the manufacture of reload fuel for the 400 MW Tarapur station, natural uranium oxide fuel, various zircaloy components such as fuel sheaths, pressure tubes, calandria tubes, channels and various other zircaloy components. Provisions have been made to expand the production facilities as the demand for reload fuel grows. With the facilities provided, the production programme can be diversified to take up the production of fast breeder reactor components of stainless steel and also the blanket thorium elements. The unitary control of all aspects of the manufacture and quality control of different types

  20. Fuel deposits, chemistry and CANDU® reactor operation

    International Nuclear Information System (INIS)

    Roberts, J.G.

    2014-01-01

    'Hot conditioning' is a process which occurs as part of commissioning and initial start-up of each CANDU® reactor, the first being the Nuclear Power Demonstration - 2 reactor (NPD). Later, understanding of the cause of the failure of the Pickering Unit 1 G16 fuel channelled to a revised approach to 'hot conditioning', initially demonstrated on Bruce Unit 5. The difference being that during 'hot conditioning' of CANDU® heat transport systems fuel was not in-core until Bruce Unit 5. The 'hot conditioning' processes will be briefly described along with the consequences to fuel. (author)

  1. Fuel Cycle of Reactor SVBR-100

    Energy Technology Data Exchange (ETDEWEB)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G. [FSUE State Scientific Center Institute for Physics and Power Engineering, 1, Bondarenko sq., Obninsk, Kaluga rg., 249033 (Russian Federation)

    2009-06-15

    Modular fast reactor with lead-bismuth heavy liquid-metal coolant in 100 MWe class (SVBR 100) is referred to the IV Generation reactors and shall operate in a closed nuclear fuel cycle (NFC) without consumption of natural uranium. Usually it is considered that launch of fast reactors (FR) is realized using mixed uranium-plutonium fuel. However, such launch of FRs is not economically effective because of the current costs of natural uranium and uranium enrichment servicing. This is conditioned by the fact that the quantity of reprocessing the spent nuclear fuel (SNF) of thermal reactors (TR) calculated for a ton of plutonium that determines the expenditures for construction and operation of the corresponding enterprise is very large due to low content of plutonium in the TR SNF. The economical effectiveness of FRs will be reduced as the enterprises on reprocessing the TR SNF have to be built prior to FRs have been implemented in the nuclear power (NP). Moreover, the pace of putting the FRs in the NP will be constrained by the quantity of the TR SNF. The report grounds an alternative strategy of FRs implementation into the NP, which is considered to be more economically effective. That is conditioned by the fact that in the nearest future use of the mastered uranium oxide fuel for FRs and operation in the open fuel cycle with postponed reprocessing will be most economically expedient. Changeover to the mixed uranium-plutonium fuel and closed NFC will be economically effective when the cost of natural uranium is increased and the expenditures for construction of enterprises on SNF reprocessing, re-fabrication of new fuel with plutonium and their operating becomes lower than the corresponding costs of natural uranium, uranium enrichment servicing, expenditures for fabrication of fresh uranium fuel and long temporary storage of the SNF. As when operating in the open NFC, FRs use much more natural uranium as compared with TRs, and at a planned high pace of NP development

  2. Analysis on small long life reactor using thorium fuel for water cooled and metal cooled reactor types

    International Nuclear Information System (INIS)

    Permana, Sidik

    2009-01-01

    Long-life reactor operation can be adopted for some special purposes which have been proposed by IAEA as the small and medium reactor (SMR) program. Thermal reactor and fast reactor types can be used for SMR and in addition to that program the utilization of thorium fuel as one of the candidate as a 'partner' fuel with uranium fuel which can be considered for optimizing the nuclear fuel utilization as well as recycling spent fuel. Fissile U-233 as the main fissile material for thorium fuel shows higher eta-value for wider energy range compared with other fissile materials of U-235 and Pu-239. However, it less than Pu-239 for fast energy region, but it still shows high eta-value. This eta-value gives the reactor has higher capability for obtaining breeding condition or high conversion capability. In the present study, the comparative analysis on small long life reactor fueled by thorium for different reactor types (water cooled and metal cooled reactor types). Light water and heavy water have been used as representative of water-cooled reactor types, and for liquid metal-cooled reactor types, sodium-cooled and lead-bismuth-cooled have been adopted. Core blanket arrangement as general design configuration, has been adopted which consist of inner blanket region fueled by thorium oxide, and two core regions (inner and out regions) fueled by fissile U-233 and thorium oxide with different percentages of fissile content. SRAC-CITATION and JENDL-33 have been used as core optimization analysis and nuclear data library for this analysis. Reactor operation time can reaches more than 10 years operation without refueling and shuffling for different reactor types and several power outputs. As can be expected, liquid metal cooled reactor types can be used more effective for obtaining long life reactor with higher burnup, higher power density, higher breeding capability and lower excess reactivity compared with water-cooled reactors. Water cooled obtains long life core operation

  3. The Calculation Of Total Radioactivity Of Kartini Reactor Fuel Element

    International Nuclear Information System (INIS)

    Budisantoso, Edi Trijono; Sardjono, Y.

    1996-01-01

    The total radioactivity of Kartini reactor fuel element has been calculated by using ORIGEN2. In this case, the total radioactivity is the sum of alpha, beta, and gamma radioactivity from activation products nuclides, actinide nuclides and fission products nuclides in the fuel element. The calculation was based on irradiation history of fuel in the reactor core. The fuel element no 3203 has location history at D, E, and F core zone. The result is expressed in graphics form of total radioactivity and photon radiations as function of irradiation time and decay time. It can be concluded that the Kartini reactor fuel element in zone D, E, and F has total radioactivity range from 10 Curie to 3000 Curie. This range is for radioactivity after decaying for 84 days and that after reactor shut down. This radioactivity is happened in the fuel element for every reactor operation and decayed until the fuel burn up reach 39.31 MWh. The total radioactivity emitted photon at the power of 0.02 Watt until 10 Watt

  4. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  5. Fuel assembly in a reactor

    International Nuclear Information System (INIS)

    Saito, Shozo; Kawahara, Akira.

    1975-01-01

    Object: To provide a fuel assembly in a reactor which can effectively prevent damage of the clad tube caused by mutual interference between pellets and the clad tube. Structure: A clad tube for a fuel element, which is located in the outer peripheral portion, among the fuel elements constituting fuel assemblies arranged in assembled and lattice fashion within a channel box, is increased in thickness by reducing the inside diameter thereof to be smaller than that of fuel elements internally located, thereby preventing damage of the clad tube resulting from rapid rise in output produced when control rods are removed. (Kamimura, M.)

  6. Fuel cycle cost analysis on molten-salt reactors

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro

    1976-01-01

    An evaluation is made of the fuel cycle costs for molten-salt reactors (MSR's), developed at Oak Ridge National Laboratory. Eight combinations of conditions affecting fuel cycle costs are compared, covering 233 U-Th, 235 U-Th and 239 Pu-Th fuels, with and without on-site continuous fuel reprocessing. The resulting fuel cycle costs range from 0.61 to 1.18 mill/kWh. A discussion is also given on the practicability of these fuel cycles. The calculations indicate that somewhat lower fuel cycle costs can be expected from reactor operation in converter mode on 235 U make-up with fuel reprocessed in batches every 10 years to avoid fission product precipitation, than from operation as 233 U-Th breeder with continuous reprocessing. (auth.)

  7. Safeguards operations in the integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-01-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product

  8. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    1989-07-01

    The twenty-second Annual Meeting of the International Working Group on Fast Reactors took place in Vienna, 18-21 April 1989. Nineteen representatives from twelve Member States and International Organizations attended the Meeting. This publication is a collection of presentations in which the participants reported the status of their national programmes on fast breeder reactors. A separate abstract was prepared for each of the twelve papers from this collections. Refs, figs, tabs and 1 graph

  9. Research reactor spent fuel management in Argentina

    International Nuclear Information System (INIS)

    Audero, M.A.; Bevilacqua, A.M.; Mehlich, A.M.; Novara, O.

    2002-01-01

    The research reactor spent fuel (RRSF) management strategy will be presented as well as the interim storage experience. Currently, low-enriched uranium RRSF is in wet interim storage either at reactor site or away from reactor site in a centralized storage facility. High-enriched uranium RRSF from the centralized storage facility has been sent to the USA in the framework of the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The strategy for the management of the RRSF could implement the encapsulation for interim dry storage. As an alternative to encapsulation for dry storage some conditioning processes are being studied which include decladding, isotopic dilution, oxidation and immobilization. The immobilized material will be suitable for final disposal. (author)

  10. History of research reactor fuel fabrication at Babcock and Wilcox

    International Nuclear Information System (INIS)

    Freim, James B.

    1983-01-01

    B and W Research Reactor Fuel Element facility at Lynchburg, Virginia now produces national laboratory and university fuel assemblies. The Company's 201000 square foot facility is devoted entirely to supplying research fuel and related products. B and W re-entered the research reactor fuel market in 1981

  11. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-02-01

    This report summarizes main research achievements in the 48th fiscal year which were made by Reactor Engineering Division consisted of eight laboratories and Computing Center. The major research and development projects, with which the research programmes in the Division are associated, are development of High Temperature Gas Cooled Reactor for multi-purpose use, development of Liquid Metal Fast Breeder Reactor conducted by Power Reactor and Nuclear Fuel Development Corporation, and Engineering Research Programme for Thermonuclear Fusion Reactor. Many achievements are reported in various research items such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of Computing Center. (auth.)

  12. A preliminary assessment of thorium as a fuel for thermal reactors

    International Nuclear Information System (INIS)

    Duret, M.F.; Halsall, M.J.

    1965-08-01

    This report presents a preliminary survey of the contributing factors to total fuel cost, for a variety of potentially economic fuel cycles. U 238 and Th 232 are considered as fertile materials with enrichments of U 235 , U 233 and plutonium. The total fuel cost comprises: (a) a fuel supply cost which is derived from a manufacturing cost and the fuel burnup, (b) as spent fuel credit, and (c) inventory charges. The interrelation of these three factors and their dependence on reactor flux, fuel burnup, the heat rating of the fuel and the interest rate are considered for each combination of fertile and fissile material. Results show inventory charges, spent fuel credit (hence processing costs) and fabrication costs have an important effect on the fuelling cost. In addition, using highly rated thorium-based fuels will affect reactor capital costs. Further, more detailed studies of reactor design, fuel design and fuel management schemes are now required to verify the attraction of using thorium as a reactor fuel. (author)

  13. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    Science.gov (United States)

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  14. Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle Studies

    International Nuclear Information System (INIS)

    Harrison, Thomas

    2013-01-01

    Presentation Outline: • Why Do I Need a Cost Basis?; • History of the Advanced Fuel Cycle Cost Basis; • Description of the Cost Basis; • Current Work; • Fast Reactor Fuel Cycle Applications; • Sample Fuel Cycle Cost Estimate Analysis; • Future Work

  15. Application of fuel management calculation codes for CANDU reactor

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun

    2003-01-01

    Qinshan Phase III Nuclear Power Plant adopts CANDU-6 reactors. It is the first time for China to introduce this heavy water pressure tube reactor. In order to meet the demands of the fuel management calculation, DRAGON/DONJON code is developed in this paper. Some initial fuel management calculations about CANDU-6 reactor of Qinshan Phase III are carried out using DRAGON/DONJON code. The results indicate that DRAGON/DONJON can be used for the fuel management calculation for Qinshan Phase III

  16. Spent nuclear fuel discharges from U.S. reactors 1994

    International Nuclear Information System (INIS)

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year's report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs

  17. French experience in research reactor fuel transportation

    International Nuclear Information System (INIS)

    Raisonnier, Daniele

    1996-01-01

    Since 1963 Transnucleaire has safely performed a large number of national and international transports of radioactive material. Transnucleaire has also designed and supplied suitable packaging for all types of nuclear fuel cycle radioactive material from front-end and back-end products and for power or for research reactors. Transportation of spent fuel from power reactors are made on a regular and industrial basis, but this is not yet the case for the transport of spent fuel coming from research reactors. Each shipment is a permanent challenge and requires a reactive organization dealing with all the transportation issues. This presentation will explain the choices made by Transnucleaire and its associates to provide and optimize the corresponding services while remaining in full compliance with the applicable regulations and customer requirements. (author)

  18. Integrating the fuel cycle at IFR [Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1992-01-01

    During the past few years Argonne National Laboratory has been developing the Integral Fast Reactor (IFR), an advanced liquid metal reactor. Much of the IFR technology stems from Argonne National Laboratory's experience with the Experimental Breeder Reactors, EBR 1 and 2. The unique aspect of EBR 2 is its success with high-burnup metallic fuel. Irradiation tests of the new U-Pu-Zr fuel for the IFR have now reached a burnup level of 20%. The results to date have demonstrated excellent performance characteristics of the metallic fuel in both steady-state and off-normal operating conditions. EBR 2 is now fully loaded with the IFR fuel alloys and fuel performance data are being generated. In turn, metallic fuel becomes the key factor in achieving a high degree of passive safety in the IFR. These characteristics were demonstrated dramatically by two landmark tests conducted at EBR 2 in 1986: loss of flow without scram; and loss of heat sink without scram. They demonstrated that the combination of high heat conductivity of metallic fuel and thermal inertia of the large sodium pool can shut the reactor down during potentially severe accidents without depending on human intervention or the operation of active engineered components. The IFR metallic fuel is also the key factor in compact pyroprocessing. Pyroprocessing uses high temperatures, molten salt and metal solvents to process metal fuels. The result is suitable for fabrication into new fuel elements. Feasibility studies are to be conducted into the recycling of actinides from light water reactor spent fuel in the IFR using the pyroprocessing approach to extract the actinides (author)

  19. Cost targets for at-reactor spent fuel rod consolidation

    International Nuclear Information System (INIS)

    Macnabb, W.V.

    1985-01-01

    The high-level nuclear waste management system in the US currently envisions the disposal of spent fuel rods that have been removed from their assemblies and reconfigured into closely packed arrays. The process of fuel rod removal and packaging, referred to as rod consolidation, can occur either at reactors or at an integrated packaging facility, monitored retrievable storage (MRS). Rod consolidation at reactors results in cost savings down stream of reactors by reducing needs for additional storage, reducing the number of shipments, and reducing (eliminating, in the extreme) the amount of fuel handling and consolidation at the MRS. These savings accrue to the nuclear waste fund. Although private industry is expected to pay for at-reactor activities, including rod consolidation, it is of interest to estimate cost savings to the waste system if all fuel were consolidated at reactors. If there are savings, the US Department of Energy (DOE) may find it advantageous to pay for at-reactor rod consolidation from the nuclear waste fund. This paper assesses and compares the costs of rod consolidation at reactors and at the MRS in order to determine at what levels the former could be cost competitive with the latter

  20. International Working Group on Water Reactor Fuel Performance and Technology. Summary report of the 14. plenary meeting. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The fourteenth Plenary Meeting of the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) was held at IAEA Headquarters, Vienna, from 21 to 23 May 1997. Twenty-seven participants, from twenty two Member States and two international organizations, attended the meeting. These presentations generally gave: The general situation of the nuclear industry in the country; Fuel fabrication; Fuel performance, high burnup fuel (including MOX) operational experience; Status and trends in fuel research programmes directed to achievement sufficient safety margins at high burnups with regard to normal and transient operational conditions. Majority of countries reported on the stable situation of the nuclear fuel industry, i.e. without significant additions/cuts in nuclear power plant and fuel fabrication plant (NPP) capacities. Refs, figs, tabs.

  1. International Working Group on Water Reactor Fuel Performance and Technology. Summary report of the 14. plenary meeting. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    The fourteenth Plenary Meeting of the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) was held at IAEA Headquarters, Vienna, from 21 to 23 May 1997. Twenty-seven participants, from twenty two Member States and two international organizations, attended the meeting. These presentations generally gave: The general situation of the nuclear industry in the country; Fuel fabrication; Fuel performance, high burnup fuel (including MOX) operational experience; Status and trends in fuel research programmes directed to achievement sufficient safety margins at high burnups with regard to normal and transient operational conditions. Majority of countries reported on the stable situation of the nuclear fuel industry, i.e. without significant additions/cuts in nuclear power plant and fuel fabrication plant (NPP) capacities. Refs, figs, tabs

  2. Thorium-Based Fuels Preliminary Lattice Cell Studies for Candu Reactors

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Rizoiu, A.C.

    2009-01-01

    The choice of nuclear power as a major contributor to the future global energy needs must take into account acceptable risks of nuclear weapon proliferation, in addition to economic competitiveness, acceptable safety standards, and acceptable waste disposal options. Candu reactors offer a proven technology, safe and reliable reactor technology, with an interesting evolutionary potential for proliferation resistance, their versatility for various fuel cycles creating premises for a better utilization of global fuel resources. Candu reactors impressive degree of fuel cycle flexibility is a consequence of its channel design, excellent neutron economy, on-power refueling, and simple fuel bundle. These features facilitate the introduction and exploitation of various fuel cycles in Candu reactors in an evolutionary fashion. The main reasons for our interest in Thorium-based fuel cycles have been, globally, to extend the energy obtainable from natural Uranium and, locally, to provide a greater degree of energy self-reliance. Applying the once through Thorium (OTT) cycle in existing and advanced Candu reactors might be seen as an evaluative concept for the sustainable development both from the economic and waste management points of view. Two Candu fuel bundles project will be used for the proposed analysis, namely the Candu standard fuel bundle with 37 fuel elements and the CANFLEX fuel bundle with 43 fuel elements. Using the Canadian proposed scheme - loading mixed ThO 2 -SEU CANFLEX bundles in Candu 6 reactors - simulated at lattice cell level led to promising conclusions on operation at higher fuel burnups, reduction of the fissile content to the end of the cycle, minor actinide content reduction in the spent fuel, reduction of the spent fuel radiotoxicity, presence of radionuclides emitting strong gamma radiation for proliferation resistance benefit. The calculations were performed using the lattice codes WIMS and Dragon (together with the corresponding nuclear data

  3. Validation of MOX fuel through recent BELGONUCLEAIRE international programmes

    International Nuclear Information System (INIS)

    Basselier, J.; Maldague, T.; Lippens, M.

    1997-01-01

    The paper reviews the present experience of BELGONUCLEAIRE in promoting and managing international programmes dedicated to improvement and updating of MOX fuel data bases on what concerns core physics and rod behaviour with a view of assist all MOX fuel designers and users in their validation and modelization work. All these programmes were completed or will be completed with the support of numerous international organizations deeply concerned by MOX recycling strategies. (author). 9 figs, 2 tabs

  4. Development of alternative fuel for pressurized water reactors

    International Nuclear Information System (INIS)

    Cardoso, P.E.; Ferreira, R.A.N.; Ferraz, W.B.; Lameiras, F.S.; Santos, A.; Assis, G. de; Doerr, W.O.; Wehner, E.L.

    1984-01-01

    The utilization of alternative fuel cycles in Pressurized Water Reactors (PWR) such as Th/U and Th/Pu cycles can permit a better utilization of uranium reserves without the necessity of developing new power reactor concepts. The development of the technology of alternative fuels for PWR is one of the objectives of the 'Program on Thorium Utilization in Pressurized Water Reactors' carried out jointly by Empresas Nucleares Brasileiras S.A. (NUCLEBRAS), through its Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) and by German institutions, the Julich Nuclear Research Center (KFA), the Kraftwerk Union A.G. (KWU) and NUKEM GmbH. This paper summarizes the results so far obtained in the fuel technology. The development of a fabrication process for PWR fuel pellets from gel-microspheres is reported as well as the design, the specification, and the fabrication of prototype fuel rods for irradiation tests. (Author) [pt

  5. Reactor fuel rod

    International Nuclear Information System (INIS)

    Inui, Mitsuhiro; Mori, Kazuma.

    1990-01-01

    In a high burnup degree reactor core, a problem of fuel can corrosion caused by coolants occurs due to long stay in a reactor. Then, the use of fuel cladding tubes with improved corrosion resistance is now undertaken and use of corrosion resistant alloys is attempted. However, since the conventional TIG welding melts the entire portion, the welded portion does not remain only in the corrosive resistant alloy but it forms new alloys of the corrosion resistant alloy and zircaloy as the matrix material or inter-metallic compounds, which degrades the corrosion resistance. In the present invention, a cladding tube comprising a dual layer structure using a corrosion resistant alloy only for a required thickness and an end plug made of the same material as the corrosion resistant alloy are welded at the junction portion by using resistance welding. Then, they are joined under welding by the heat generated to the junction surfaces between both of them, to provide corrosion resistant alloys substantially at the outside of the welded portion as well. Accordingly, the corrosion resistance is not degradated. (T.M.)

  6. Technology development of fast reactor fuel reprocessing technology in India

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  7. Halden reactor project

    International Nuclear Information System (INIS)

    1980-01-01

    The research programme at the Halden Project is focused on the following three areas: 1. In-core behavior of reactor fuel, particularly reliability and safety aspects, which is studied through irradiation of test fuel elements. 2. Prediction, surveillance and control of fuel and core performance for which models of fuel and core behavior are developed. 3. Applications of process computers to power plant control, for which prototype software systems and hardware arrangements are developed

  8. Nuclear fuel performance in boiling water reactors

    International Nuclear Information System (INIS)

    Elkins, R.B.; Baily, W.E.; Proebstle, R.A.; Armijo, J.S.; Klepfer, H.H.

    1981-01-01

    A major development program is described to improve the performance of Boiling Water Reactor fuel. This sustained program is described in four parts: 1) performance monitoring, 2) fuel design changes, 3) plant operating recommendations, and 4) advanced fuel programs

  9. International conference on fast reactors and related fuel cycles (FR09): Challenges and opportunities. CN-176 presentations

    International Nuclear Information System (INIS)

    2009-01-01

    and development, as well as in design, has not been reported in a coordinated manner, which has made planning and implementation of expensive research and technology development programmes rather difficult. There is a perceived need for an appropriate forum to achieve the twin objectives of exchanging experience and innovative ideas among experts, and of sharing knowledge and mentoring, whereby experienced scientists and technologists, as well as fast reactor programme managers, would share their perspectives with the future generation of young scientists and technologists, helping them to choose research problems of eminence and pursue their careers to meet the challenges of the development of fast reactors with recycle. After almost 20 years, this is also the appropriate time, as fast reactor programmes are currently on an accelerated growth path in many countries of the world. It is in light of this that the IAEA convened on 7-11 December 2009 in Kyoto, Japan, the International Conference on 'Fast Reactors and Related Fuel Cycles - Challenges and Opportunities (FR09)', hosted by the Japan Atomic Energy Agency. This conference aimed at promoting the exchange of information on national and multinational programmes and new developments and experience, with the goal of identifying and critically reviewing problems of importance, and stimulating and facilitating cooperation, development and successful deployment of fast reactors in an expeditious manner

  10. Development of fuel cycle technology for molten-salt reactor systems

    International Nuclear Information System (INIS)

    Uhlir, J.

    2006-01-01

    Full text: Full text: The Molten-Salt Reactor (MSR) represents one of promising advanced reactor type assigned to the GEN IV reactor systems. It can be operated either as thorium breeder within the Th -133U fuel cycle or as actinide transmuter incinerating transuranium fuel. Essentially the main advantage of MSR comes out from the prerequisite, that this reactor type should be directly connected with the 'on-line' reprocessing of circulating liquid (molten-salt) fuel. This principle should allow very effective extraction of freshly constituted fissile material (233U). Besides, the on-line fuel salt clean up is necessary within a long run to keep the reactor in operation. As a matter of principle, it permits to clear away typical reactor poisons like xenon, krypton, lanthanides etc. and possibly also other products of burned plutonium and transmuted minor actinides. The fuel salt clean up technology should be linked with the fresh MSR fuel processing to continuously refill the new fuel (thorium or transuranics) into the reactor system. On the other hand, the technologies of fresh transuranium molten-salt fuel processing from the current LWR spent fuel and of the on-line reprocessing of MSR fuel represent two killing points of the whole MSR technology, which have to be successfully solved before MSR deployment in the future. There are three main pyrochemical partitioning techniques proposed for processing and/or reprocessing of MSR fuel: Fluoride volatilization processes, Molten salt / liquid metal extraction processes and Electrochemical separation processes. Two of them - Fluoride Volatility Method and Electrochemical separation process from fluoride media are under development in the Nuclear Research Institute Rez pic. R and D in the field of Fluoride Volatility Method is concentrated to the development and verification of experimental semi-pilot technology for LWR spent fuel reprocessing, which may result in a product the form and composition of which might be

  11. Nuclear fuel, with emphasis on its utilization in pressurized water reactor

    International Nuclear Information System (INIS)

    Khazaneh, R.; Roshanzamir, M.

    1997-01-01

    Production processes of nuclear fuel on one hand and using nuclear fuels in reactors, particularly PWR Type reactors on the other hand is investigated. The first chapter reviews the relationship between fuel and reactors; The principals of reactor physics in relation with fuel are described shortly. The second chapter reviews uranium exploration and extraction as well as production of uranium concentrate and uranium dioxides. The third chapter is specified to the different procedures of uranium enrichment. In the fourth chapter, processing of uranium dioxide powder and fuel pellet is described. In the fifth chapter fabrication of fuel rod and fuel assemblies is explained thoroughly. The sixth chapter devoted to the different phenomena which occur ed in fuel structure and can during operational time of reactor; damage to fuel rods and developing theoretical models to describe these phenomena and analysis of fuel structure. The seventh chapter discusses how fuel rods are to be experimented during fabrication, operation and development of technology. The eighth chapter explains different fuels such as uranium compounds and mixed oxide fuel of uranium Gadolinium and uranium plutonium and the process of fabrication of zircaloy. In the tenth chapter, fuel reprocessing is investigated and the difficulties of developing this technology is referred

  12. VVANTAGE 6 - an advanced fuel assembly design for VVER reactors

    International Nuclear Information System (INIS)

    Doshi, P.K.; DeMario, E.E.; Knott, R.P.

    1993-01-01

    Over the last 25 years, Westinghouse fuel assemblies for pressurized water reactors (PWR's) have undergone significant changes to the current VANTAGE 5. VANTAGE 5 PWR fuel includes features such as removable top nozzles, debris filter bottom nozzles, low-pressure-drop zircaloy grids, zircaloy intermediate flow mixing grids, optimized fuel rods, in-fuel burnable absorbers, and increased burnup capability to region average values of 48000 MWD/MTU. These features have now been adopted to the VVER reactors. Westinghouse has completed conceptual designs for an advanced fuel assembly and other core components for VVER-1000 reactors known as VANTAGE 6. This report describes the VVANTAGE 6 fuel assembly design

  13. The integration of fast reactor to the fuel cycle in Slovakia

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Necas, V.

    2009-01-01

    A very topical problem of nuclear power is the fuel cycle back-end. One of the options is a LWR spent fuel reprocessing and a fissile nuclides re-use in the fast reactor. A large amount of spent fuel has been stored in the power plant intermediate storage during the operation of WWER-440 reactors in Slovakia. This paper is based on an analysis of Pu and minor actinides content in actual WWER-440 spent fuel stored in Slovakia. The next part presents the possibilities of reprocessing and Pu re-use in fast reactor under Slovak conditions. The fuel cycle consisting of the WWER-440 reactor, PUREX reprocessing plant and a sodium fast reactor was designed. The last section compares two parts of this fuel cycle: one is UOX cycle in WWER-440 reactor and the other is cycle in the fast reactor - SUPER PHENIX loaded with MOX fuel (Pu + Minor Actinides). The starting point is a single recycling of Pu from WWER-440 in the fission products. The next step is multi recycling of Pu in the fission products to obtain equilibrium cycle. This article is dealing with the solution of power production and fuel cycle indicators. All kinds of calculations were performed by computer code HELIOS 1.10. (Authors)

  14. The integration of fast reactor to the fuel cycle in Slovakia

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Necas, V.

    2009-01-01

    A very topical problem of nuclear power is the fuel cycle back-end. One of the options is a LWR spent fuel reprocessing and a fissile nuclides re-use in the fast reactor. A large amount of spent fuel has been stored in the power plant intermediate storage during the operation of VVER-440 reactors in Slovakia. This paper is based on an analysis of Pu and minor actinides content in actual VVER-440 spent fuel stored in Slovakia. The next part presents the possibilities of reprocessing and Pu re-use in fast reactor under Slovak conditions. The fuel cycle consisting of the VVER-440 reactor, PUREX reprocessing plant and a sodium fast reactor was designed. The last section compares two parts of this fuel cycle: one is UOX cycle in VVER-440 reactor and the other is cycle in the fast reactor - SUPER PHENIX loaded with MOX fuel (Pu + Minor Actinides). The starting point is a single recycling of Pu from VVER-440 in the FR. The next step is multirecycling of Pu in the FR to obtain equilibrium cycle. This article is dealing with the solution of power production and fuel cycle indicators. All kinds of calculations were performed by computer code HELIOS 1.10. (authors)

  15. Fuel cycle problems in fusion reactors

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1976-01-01

    Fuel cycle problems of fusion reactors evolve around the breeding, recovery, containment, and recycling of tritium. These processes are described, and their implications and alternatives are discussed. Technically, fuel cycle problems are solvable; economically, their feasibility is not yet known

  16. Bioenergy Research Programme. Yearbook 1994. Production of wood fuels

    International Nuclear Information System (INIS)

    Alakangas, E.

    1995-01-01

    BIOENERGIA Research Programme is one of energy technology programmes of the Finnish Ministry of Trade and Industry (in 1995 TEKES, Technology Development Center). The aim of Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels and new equipment and methods for production, handling and using of biofuels. The funding for 1994 was nearly 50 million FIM and projects numbered 60. The main goal of the production of wood fuels research area is to develop new production methods in order to decrease the production costs to the level of imported fuels. The total potential of the wood fuel use should be at least 1.0 million toe/a (5.5 million m 3 ). There were 27 projects in 1994 for research on wood fuel production. This part of the yearbook 1994 presents the main results of these projects. The wood reserves do not limit the obtainability of the target. Research and development work has, however, directed to development of equipment and research on wood fuels production chains. Many devices, designed for both separate and integrated production of wood fuels became ready or were becoming ready for prototyping, to be used for production tests. Results of the biomass harvesting and properties research were obtained for utilization in 1994. According to the results it is possible to obtain the desired targets both in integrated and separated production of wood fuels. (author)

  17. Refueling the RPI reactor facility with low-enrichment fuel

    International Nuclear Information System (INIS)

    Harris, D.R.; Rodriguez-Vera, F.; Wicks, F.E.

    1985-01-01

    The RPI Critical Facility has operated since 1963 with a core of thin, highly enriched fuel plates in twenty-five fuel assembly boxes. A program is underway to refuel the reactor with 4.81 w/o enriched SPERT (F-1) fuel rods. Use of these fuel rods will upgrade the capabilities of the reactor and will eliminate a security risk. Adequate quantities of SPERT (F-1) fuel rods are available, and their use will result in a great cost saving relative to manufacturing new low-enrichment fuel plates. The SPERT fuel rods are 19 inches longer than are the present fuel plates, so a modified core support structure is required. It is planned to support and position the SPERT fuel pins by upper and lower lattice plates, thus avoiding the considerable cost of new fuel assembly boxes. The lattice plates will be secured to the existing top and bottom plates. The design permits the fabrication and use of other lattice plates for critical experiment research programs in support of long-lived full development for power reactors. (author)

  18. Complete Flow Blockage of a Fuel Channel for Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byeonghee; Park, Suki

    2015-01-01

    The CHF correlation suitable for narrow rectangular channels are implemented in RELAP5/MOD3.3 code for the analyses, and the behavior of fuel temperatures and MCHFR(minimum critical heat flux ratio) are compared between the original and modified codes. The complete flow blockage of fuel channel for research reactor is analyzed using original and modified RELAP5/MOD3.3 and the results are compared each other. The Sudo-Kaminaga CHF correlation is implemented into RELAP5/MOD3.3 for analyzing the behavior of fuel adjacent to the blocked channel. A flow blockage of fuel channels can be postulated by a foreign object blocking cooling channels of fuels. Since a research reactor with plate type fuel has isolated fuel channels, a complete flow blockage of one fuel channel can cause a failure of adjacent fuel plates by the loss of cooling capability. Although research reactor systems are designed to prevent foreign materials from entering into the core, partial flow blockage accidents and following fuel failures are reported in some old research reactors. In this report, an analysis of complete flow blockage accident is presented for a 15MW pool-type research reactor with plate type fuels. The fuel surface experience different heat transfer regime in the results from original and modified RELAP5/MOD3.3. By the discrepancy in heat transfer mode of two cases, a fuel melting is expected by the modified RELAP5/MOD3.3, whereas the fuel integrity is ensured by the original code

  19. Plutonium bearing oxide fuels for recycling in thermal reactors and fast breeder reactors

    International Nuclear Information System (INIS)

    Cunningham, G.W.

    1977-01-01

    Programs carried out in the past two decades have established the technical feasibility of using plutonium as a fuel material in both water-cooled power reactors and sodium-cooled fast breeder reactors. The problem facing the technical community is basically one of demonstrating plutonium fuel recycle under strict conditions of public safety, accountability, personnel exposure, waste management, transportation and diversion or theft which are still evolving. In this paper only technical and economic aspects of high volume production and the demonstration program required are discussed. This paper discusses the role of mixed oxide fuels in light water reactors and the objectives of the LMFBR required for continual growth of nuclear power during the next century. The results of studies showing the impact of using plutonium on uranium requirements, power costs, and the market share of nuclear power are presented. The influence of doubling time and the introduction date of LMFBRs on the benefits to be derived by its commercial use are discussed. Advanced fuel development programs scoped to meet future commerical LMFBR fuel requirements are described. Programs designed to provide the basic technology required for using plutonium fuels in a manner which will satisfy all requirements for public acceptance are described. Included are the high exposure plutonium fabrication development program centered around the High Performance Fuels Laboratory being built at the Hanford Engineering Development Laboratory and the program to confirm the technology required for the production of mixed oxide fuels for light water reactors which is being coordinated by Savannah River Laboratories

  20. Logistics of the research reactor fuel cycle: AREVA solutions

    International Nuclear Information System (INIS)

    Ohayon, David; Halle, Laurent; Naigeon, Philippe; Falgoux, Jean-Louis; Franck Obadia, Franck; Auziere, Philippe

    2005-01-01

    The AREVA Group Companies offer comprehensive solutions for the entire fuel cycle of Research Reactors comply with IAEA standards. CERCA and Cogema Logistics have developed a full partnership in the front end cycle. In the field of uranium CERCA and Cogema Logistics have the long term experience of the shipment from Russia, USA to the CERCA plant.. Since 1960, CERCA has manufactured over 300,000 fuel plates and 15,000 fuel elements of more than 70 designs. These fuel elements have been delivered to 40 research reactors in 20 countries. For the Back-End stage, Cogema and Cogema Logistics propose customised solutions and services for international shipments. Cogema Logistics has developed a new generation of packaging to meet the various needs and requirements of the Laboratories and Research Reactors all over the world, and complex regulatory framework. Comprehensive assistance dedicated, services, technical studies, packaging and transport systems are provided by AREVA for every step of research reactor fuel cycle. (author)

  1. Micro-structural study and Rietveld analysis of fast reactor fuels: U–Mo fuels

    International Nuclear Information System (INIS)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K.B.; Kumar, Arun

    2015-01-01

    U–Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U–Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U–Mo alloys as fast reactor fuel. - Highlights: • U–Mo alloys in as-cast as well as in annealed conditions have been studied using Optical Microscope, SEM, XRD. • The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. • The dendritic microstructure of γ-(U,Mo) and B.C.C. ‘Mo’ phase of 33 at.% U–Mo alloy have been analysed. • Rietveld analysis has been done to optimize lattice parameters and calculate phase fractions in annealed alloys. • The Vickers microhardness of U_2Mo phase shows lower hardness than two phase microstructures in annealed alloys.

  2. Micro-structural study and Rietveld analysis of fast reactor fuels: U–Mo fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S., E-mail: sibasis@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Choudhuri, G. [Atomic Fuels Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Banerjee, J. [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Agarwal, Renu [Product Development Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Khan, K.B.; Kumar, Arun [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2015-12-15

    U–Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U–Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U–Mo alloys as fast reactor fuel. - Highlights: • U–Mo alloys in as-cast as well as in annealed conditions have been studied using Optical Microscope, SEM, XRD. • The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. • The dendritic microstructure of γ-(U,Mo) and B.C.C. ‘Mo’ phase of 33 at.% U–Mo alloy have been analysed. • Rietveld analysis has been done to optimize lattice parameters and calculate phase fractions in annealed alloys. • The Vickers microhardness of U{sub 2}Mo phase shows lower hardness than two phase microstructures in annealed alloys.

  3. Plant-scale anodic dissolution of unirradiated N-Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-01-01

    Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the fuel segment length, diameter, and shape required for high throughput electro-refiner treatment for ultimate disposal in a geologic repository. Based on these tests, a conceptual design was produced of an electro-refiner for a full-scale plant to process N-Reactor spent fuel. In this design, the diameter of an electrode assembly is about 0.6 m (25 in.). Eight of these assemblies in an electro-refiner would accommodate a 1.333-metric-ton batch of N-Reactor fuel. Electrorefining would proceed at a rate of 40 kg uranium per hour. (author)

  4. Review of fast reactor activities in India

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1982-01-01

    A review of fast reactor activities in India is introduced. One stage of construction of the Fast Breeder Test Reactor (FBTR) and design studies for 500MWe Prototype Fast Breeder Reactor (PFBR) are briefly summarized. The emphasis is on fast reactor physics, materials studies, radiochemistry, and the safety and fuel reprocessing programme

  5. Characterization of graphite-matrix pulsed reactor fuels

    International Nuclear Information System (INIS)

    Karnes, C.H.; Marion, R.H.

    1976-01-01

    The performance of the Annular Core Pulsed Reactor (ACPR) is being upgraded in order to accommodate higher fluence experiments for fast reactor fuel element transient and safety studies. The increased fluence requires a two-zone core with the inner zone containing fuel having a high enthalpy and the capability of withstanding very high temperatures during both pulsed and steady state operation. Because the fuel is subjected to a temperature risetime of 2 to 5 ms and to a large temperature difference across the diameter, fracture due to thermal stresses is the primary failure mode. One of the fuels considered for the high enthalpy inner region is a graphite-matrix fuel containing a dispersion of uranium--zirconium carbide solid solution particles. A program was initiated to optimize the development of this class of fuel. This summary presents results on formulations of fuel which have been fabricated by the Materials Technology Group of the Los Alamos Scientific Laboratory

  6. Surface area considerations for corroding N reactor fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Pitner, A.L.

    1996-06-01

    The N Reactor fuel is corroding at sites where the Zircaloy cladding was damaged when the fuel was discharged from the reactor. Corroding areas are clearly visible on the fuel stored in open cans in the K East Basin. There is a need to estimate the area of the corroding uranium to analyze aspects of fuel behavior as it is transitioned. from current wet storage to dry storage. In this report, the factors that contribute to open-quotes trueclose quotes surface area are analyzed in terms of what is currently known about the N Reactor fuel. Using observations from a visual examinations of the fuel in the K East wet storage facility, a value for the corroding geometric area is estimated. Based on observations of corroding uranium and surface roughness values for other metals, a surface roughness factor is also estimated and applied to the corroding K East fuel to provide an estimated open-quotes trueclose quotes surface area. While the estimated area may be modified as additional data become available from fuel characterization studies, the estimate provides a basis to assess effects of exposed uranium metal surfaces on fuel behavior in operations involved in transitioning from wet to dry storage, during shipment and staging, conditioning, and dry interim storage

  7. Fuel performance of rod-type research reactor fuel using a centrifugally atomized U-Mo powder

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Lee, Yoon Sang; Kim, Chang Kyu

    2009-01-01

    A low enriched uranium nuclear fuel for research reactors has been developed in order to replace a highly enriched uranium fuel according to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program. In KAERI, a rod-type U 3 Si dispersion fuel has been developed for a localization of the HANARO fuel and a U 3 Si/Al dispersion fuel of 3.15 gU/cc has been used at HANARO as a driver fuel since 2005. Although uranium silicide dispersion fuels such as U 3 Si 2 /Al and U 3 Si/Al are being used widely, high uranium density dispersion fuels (8-9 g/cm 3 ) are required for some high performance research reactors. U-Mo alloys have been considered as one of the most promising uranium alloys for a dispersion fuel due to their good irradiation performance. An international qualification program on U-Mo fuel to replace a uranium silicide dispersion fuel with a U-Mo dispersion fuel has been carried out

  8. Mechatronics of fuel handling mechanism for fast experimental reactor 'Joyo'

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Akikazu (Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center)

    1984-01-01

    The outline of the fast experimental reactor ''Joyo'' is introduced, and the fuel handling mechanism peculiar to fast reactors is described. The objectives of the construction of Joyo are to obtain the techniques for the design, construction, manufacture, installation, operation and maintenance of sodium-cooled fast reactors independently, and to use it as an irradiation facility for the development of fuel and materials for fast breeder reactors. At present, the reactor is operated at 100 MW maximum thermal output for the second objective. Since liquid sodium is used as the coolant, the atmosphere of the fuel handling course changes such as liquid sodium at 250 deg C, argon gas at 200 deg C and water, in addition, the spent fuel taken out has the decay heat of 2.1 kW at maximum. The fuel handling works in the reactor and fuel transfer works, and the fuel handling mechanism of a fuel exchanger and that of a cask car for fuel handling are described. Relay sequence control system is used for the fuel handling mechanism of Joyo.

  9. Fuel reprocessing experience in India: Technological and economic considerations

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1983-01-01

    The approach to the reprocessing of irradiated fuel from power reactors in India is conditioned by the non-availability of highly enriched uranium with the consequent need for plutonium for the fast-reactor programme. With this in view, the fuel reprocessing programme in India is developing in stages matching the nuclear power programme. The first plant was set up in Trombay to reprocess the metallic uranium fuel from the research reactor CIRUS. The experience gained in the construction and operation of this plant, and in its subsequent decommissioning and reconstruction, has not only provided the know-how for the design of subsequent plants but has indicated the fruitful areas of research and development for efficient utilization of limited resources. The Trombay plant also handled successfully, on a pilot scale, the reprocessing of irradiated thorium fuel to separate uranium-233. The second plant at Tarapur has been built for reprocessing spent fuels from the power reactors at Tarapur (BWR) and Rajasthan (PHWR). The third plant, at present under design, will reprocess the spent fuels from the power reactors (PHWR) and the Fast Breeder Test Reactor (FBTR) located at Kalpakkam. Through the above approach experience has been acquired which will be useful in the design and construction of even larger plants which will become necessary in the future as the nuclear power programme grows. The strategies considered for the sizing and siting of reprocessing plants extend from the idea of small plants, located at nuclear power station sites, to a large-size central plant, located at an independent site, serving many stations. The paper discusses briefly the experience in reprocessing uranium and thorium fuels and also in decommissioning. An attempt is made to outline the technological and economic aspects which are relevant under different circumstances and which influence the size and siting of the fuel reprocessing plants and the expected lead times for construction

  10. Status of national gas cooled reactor programmes

    International Nuclear Information System (INIS)

    1991-08-01

    This report has been compiled as a central source of summary-level information on the present status of High Temperature Gas-Cooled Reactor (HTGR) programmes in the world and on future plans for the continued development and deployment of HTGRs. Most of the information concerns the programmes in the United States, Germany, Japan and the Soviet Union, countries that have had large programmes related to HTGR technology for several years. Summary-level information is also provided in the report on HTGR-related activities in several other countries who either have an increasing interest in the technology and/or who are performing some development efforts related to HTGR technology. The report contains a summary-level update on the MAGNOX and AGR programmes. This is the twelfth issue of the document, the first of which was issued in March, 1979. The report has been prepared in the IAEA Nuclear Power Technology Development Section. Figs and tabs

  11. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements.

  12. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  13. Pressurized water reactor fuel rod design methodology

    International Nuclear Information System (INIS)

    Silva, A.T.; Esteves, A.M.

    1988-08-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  14. Nuclear reactor fuel assembly spacer grids

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    Designs of nuclear reactor fuel assembly spacer grids for supporting and spacing fuel elements are described which do not utilize resilient grid plate protrusions in the peripheral band but retain the advantages inherent in the combination resilient and rigid protrusion cells. (U.K.)

  15. Design, construction and operating experience of demonstration LMFBRs. The application of core and fuel performance experience in British reactors to commercial fast reactor design

    International Nuclear Information System (INIS)

    Bagley, K.Q.

    1978-01-01

    The Prototype Fast Reactor (PFR) sub-assembly design is described with particular emphasis on the choice of factors that are important in determining satisfactory performance. Reasons for the adoption of specific clad and fuel design details are given in their historical context, and irradiation experience - mostly from the Dounreay Fast Reactor (DFR) - in support of the choices is described. The implications of factors that are now better understood than when the PFR fuel was designed, notably neutron-induced void swelling and irradiation creep, are then considered. It is shown that the 'free-standing' core design used in PFR, in which the sub-assembly is unsupported above the level of the lower axial breeder, relies on the availability of low-swelling, preferably irradiation-creep-resistant alloys as sub-assembly structural materials in order to achieve the prescribed burn-up target. The advantages of a 'restrained core', which makes use of irradiation creep to redress the effects of material swelling, are noted briefly, and the application of this concept to the Commercial Demonstration Fast Reactor (CDFR) core design is described. Probable future trends in pin and sub-assembly design are reviewed and the scope of associated irradiation testing programmes defined. Arrangements for monitoring and evaluating fuel performance, both in reactor and post-irradiation, are outlined and the provisions for endorsement of CDFR pin, sub-assembly and core design details in PFR are indicated. (author)

  16. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Vikhorev, Yu.V.; Biryukov, G.I.; Kirilyuk, N.A.; Lobanov, V.N.

    1977-01-01

    A fuel assembly is proposed for nuclear reactors allowing remote replacement of control rod bundles or their shifting from one assembly to another, i.e., their multipurpose use. This leads to a significant increase in fuel assembly usability. In the fuel assembly the control rod bundle is placed in guide tube channels to which baffles are attached for fuel element spacing. The remote handling of control rods is provided by a hollow cylinder with openings in its lower bottom through which the control rods pass. All control rods in a bundle are mounted to a cross beam which in turn is mounted in the cylinder and is designed for grasping the whole rod bundle by a remotely controlled telescopic mechanism in bundle replacement or shifting. (Z.M.)

  17. Guidebook on destructive examination of water reactor fuel

    International Nuclear Information System (INIS)

    1997-01-01

    As a result of common efforts of fuel vendors, utilities and research institutes the average burnup pf design batch fuels was increased for both PWRs and BWRs and the fuel failure rate has been reduced. The previously published Guidebook on Non-Destructive Examination of Water Reactor Fuel recommended that more detailed destructive techniques are required for complete understanding of fuel performance. On the basis of contributions of the 14 participants in the ED-WARF-II CRP and proceedings of IAEA Technical Committee on Recent Developments in Post-irradiation Examination Techniques for Water Reactor Fuel this guidebook was compiled. It gives a complete survey of destructive techniques available to date worldwide. The following examination techniques are described in detailed including major principles of equipment design: microstructural studies; elemental analysis; isotopic analysis; measurement of physical properties; measurement of mechanical properties. Besides the examination techniques, methods for refabrication of experimental rods from high burnup power reactor rods as well as methods for verification of non-destructive techniques by using destructive techniques is included

  18. The use of medium enriched uranium fuel for research reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The evaluation described in the present paper concerns the use of medium enriched uranium fuel for our research reactors. The underlying assumptions set up for the evaluation are as follows: (1) At first, the use of alternative fuel should not affect, even to a small extent, research and development programs in nuclear energy utilization, which were described in the previous paper. Hence the use of lower enrichment fuel should not cause any reduction in reactor performances. (2) The fuel cycle cost for operating research reactors with alternative fuel, excepting R and D cost for such fuel, should not increase beyond an acceptable limit. (3) The use of alternative fuel should be satisfactory with respect to non-proliferation purposes, to the almost same degree as the use of 20% enriched uranium fuel

  19. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  20. Thorium Fuel Performance in a Tight-Pitch Light Water Reactor Lattice

    International Nuclear Information System (INIS)

    Kim, Taek Kyum; Downar, Thomas J.

    2002-01-01

    Research on the utilization of thorium-based fuels in the intermediate neutron spectrum of a tight-pitch light water reactor (LWR) lattice is reported. The analysis was performed using the Studsvik/Scandpower lattice physics code HELIOS. The results show that thorium-based fuels in the intermediate spectrum of tight-pitch LWRs have considerable advantages in terms of conversion ratio, reactivity control, nonproliferation characteristics, and a reduced production of long-lived radiotoxic wastes. Because of the high conversion ratio of thorium-based fuels in intermediate spectrum reactors, the total fissile inventory required to achieve a given fuel burnup is only 11 to 17% higher than that of 238 U fertile fuels. However, unlike 238 U fertile fuels, the void reactivity coefficient with thorium-based fuels is negative in an intermediate spectrum reactor. This provides motivation for replacing 238 U with 232 Th in advanced high-conversion intermediate spectrum LWRs, such as the reduced-moderator reactor or the supercritical reactor

  1. Static fuel molten salt reactors - simpler, cheaper and safer

    International Nuclear Information System (INIS)

    Scott, Ian

    2015-01-01

    The many conceptual designs for Molten Salt Reactors (MSR's) today are all evolutions from the prototype MSR that went critical at Oak Ridge 50 years ago. Critically, they are based on pumping the molten fuel salt from a reaction chamber where the fuel achieves critical mass through a heat exchanger where the resulting heat is transferred to another working fluid. This basic concept was not the first idea that the Oak Ridge scientists considered. Their initial preference was to put the molten salt fuel into tubes, just like solid fuel pellets in their cladding, and circulate a coolant past the tubes. They concluded however that the low thermal conductivity of the salt meant that the tubes could be no wider than 2mm which would be entirely impractical. In this analysis they ignored the contribution of convection to heat transfer in fluids, probably because they were designing an aircraft engine where varying g forces would make convection unreliable. Moltex Energy has re-examined this decision using the modern tools of computational fluid dynamics to simulate convective flow in the molten salt and discovered that in fact tubes of similar diameter to those used for solid fuels are entirely practical. Power densities of 250kW/litre of fuel salt are readily attainable providing a higher overall power density than a PWR reactor. This discovery permits MSR's to be built without any of the complex pumping, passively safe drain systems, on line degassing, filtration and chemical processing needed in pumped MSR's. Their design is very simple and they have many intrinsic safety factors including low pressure operation, chemically unreactive fluids and strongly negative fuel thermal and coolant voiding reactivity coefficients. Most importantly, the highly radioactive fission products are retained in non-volatile form within the fuel tubes in the reactor core. Radioactive fuel salt never leaves the reactor vessel except in an immobile frozen form during

  2. Fuel for new Russian reactor VVER-1200

    Energy Technology Data Exchange (ETDEWEB)

    Vasilchenko, Ivan Nikitovich [GRPress, 21, Ordzhonikidze Street, 142103 Podolsk, Moscow region (Russian Federation)

    2009-06-15

    A great program is accepted in Russia on increasing the nuclear power capacities. The basis of the program is commissioning of VVER-1200 Units of AES-2006 design. This is largely an evolutionary project of VVER-1000 reactor plant. It is referred also to reactor core. The plant electric power is increased due to increase in the reactor thermal power and forcing the main parameters and the efficiency increase. With this, reactor pressure increases from 15,7 to 16,2 MPa. The reactor inlet temperature increases from 290 deg. C to 298 deg. C, and outlet temperature from 319 deg. C to 329 deg. C. In a set of the design for four Units (2 Units at Novovoronezh NPP and 2 Units at Leningrad NPP) two base fuel cycles are developed: 5 year and 3 year. To provide such fuel cycles the fuel loading is increased by 8 tons, as compared to VVER-1000 base design, due to fuel column increase by 200 mm and change of fuel pellet sizes. In the mentioned fuel cycles the average burnup in the unloaded batch will be {approx}57 MW.day/kg U and 52 MW.day/kg U (maximum burnup over FAs is 64,5 MW.day/kg U and 60,3 MW.day/kg U), respectively. Specific consumption of natural uranium will be reduced by 5% as compared to that reached at VVER-1000 reactor. In spite of increase in Unit power the limiting permissible fuel rod linear heat rate is decreased from 448 W/cm to 420 W/cm. Refueling pattern is used with small neutron escape. The safety criteria are used that were established for VVER-1000, except for those that did not comply with EUR. For instance, the number of leaky fuel rods under accident is limited. The more stringent requirements are stated on efficiency margin of CPS rods for reactor shutdown that is ensured by the increased number of CPS rods. The well-proved design of fuel assembly TVS-2 and its close modification TVS-2M, operated at Balakovo NPP and Rostov NPP, is laid down in the basis of the core design. The load-carrying component of this structure is a rigid skeleton formed by

  3. Analysis of fuel sodium interaction in a fast breeder reactor

    International Nuclear Information System (INIS)

    Tezuka, M.; Suzuki, K.; Sasanuma, K.; Nagasima, K.; Kawaguchi, O.

    A code ''SUGAR'' has been developed to evaluate molten Fuel Sodium Interaction (FSI) in a fast breeder reactor. This code computes thermohydrodynamic behavior by heat transfer from fuel to sodium and dynamic deformation of reactor structures simultaneously. It was applied to evaluate FSI in local fuel melting accident in a fuel assembly and in core disassembly accident for the 300MWe fast breeder reactor under development in Japan. The analytical methods of the SUGAR code are mainly shown in the following: 1) the thermal and dynamic model of FSI is mainly based on Cho-Wright's model; 2) the axial and radial expansions of surroundings of FSI region are calculated with one-dimensional and compressive hydrodynamics equation; 3) the structure response is calculated with one-dimensional and dynamic stress equation. Our studies show that mass of fuel interacted with sodium, ratio of fuel mass to sodium mass, fuel particle size, heat transfer coefficient from fuel to sodium, and structure's force have great effect on pressure amplitude and deformation of reactor structures

  4. Nuclear reactor internals construction and failed fuel rod detection system

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A system is provided for determining during operation of a nuclear reactor having fluid pressure operated control rod mechanisms the exact location of a fuel assembly with a defective fuel rod. The construction of the reactor internals is simplified in a manner to facilitate the testing for defective fuel rods and the reduce the cost of producing the upper internals of the reactor. 13 claims, 10 drawing figures

  5. St