WorldWideScience

Sample records for reactor fast neutrons

  1. General remarks on fast neutron reactor physics

    International Nuclear Information System (INIS)

    Barre, J.Y.

    1980-01-01

    The main aspects of fast reactor physics, presented in these lecture notes, are restricted to LMFBR's. The emphasis is placed on the core neutronic balance and the burn-up problems. After a brief description of the power reactor main components and of the fast reactor chronology, the fundamental parameters of the one-group neutronic balance are briefly reviewed. Then the neutronic burn-up problems related to the Pu production and to the doubling time are considered

  2. Calculation of the neutron parameters of fast thermal reactor

    International Nuclear Information System (INIS)

    Kukuleanu, V.; Mocioiu, D.; Drutse, E.; Konstantinesku, E.

    1975-01-01

    The system of neutron calculation for fast reactors is given. This system was used for estimation of physical parameters of fast thermal reactors investigated. The results obtained and different specific problems of the reactors of this type are described. (author)

  3. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  4. Core of a fast neutron nuclear reactor

    International Nuclear Information System (INIS)

    Giacometti, Christian; Mougniot, J.-C.; Ravier, Jean.

    1974-01-01

    The fast neutron nuclear reactor described includes an internal area in fissile material completely enclosed in an area of fertile material forming the outside blanket. The internal fissile area is provided with housings exclusively filled with fertile material forming one or more inside blankets. In this core the internal blankets are shaped like rings vertically separating superimposed rings of fissile material. The blanket of material nearest to the periphery is circumscribed externally by a contour having an indented shape on its straight section so as to increase the contact area between this blanket and the external blanket [fr

  5. Reprocessing of fast neutron reactor fuel

    International Nuclear Information System (INIS)

    Bourgeois, M.

    1981-05-01

    A PUREX process specially adapted to fast neutron reactor fuels is employed. The results obtained indicate that the aqueous process can be applied to this type of fuel: almost 10 years operation at the AT 1 plant which processes fuel from RAPSODIE; the good results obtained at the MARCOULE pilot plant on large batches of reference fuels. The CEA is continuing its work to transfer this technology onto an industrial scale. Industrial prototypes and the launching of the TOR (traitement d'oxydes rapides) project will facilitate this transfer. In 1984, it is expected that fast fuels will be able to be processed on a significant scale and that supplementary R and D facilities will be available [fr

  6. Seminar on Heat-transfer fluids for fast neutron reactors

    International Nuclear Information System (INIS)

    Brechet, Yves; Dautray, Robert; Friedel, Jacques; Brezin, Edouard; Martin, Georges; Pineau, Andre; Carre, Francois; Gauche, Francois; Rodriguez, Guillaume; Latge, Christian; Cabet, Celine; Garnier, Jean-Claude; Bamberger, Yves; Sauvage, Jean-Francois; Buisine, Denis; Agostini, Pietro; Ulyanov, Vladimir; Auger, Thierry; Heuer, Daniel; Ghetta, Veronique; Bubelis, Evaldas; Charlaix, Elisabeth; Barrat, Jean-Louis; Boquet, Lyderic; Glickman, Evgueny; Escaravage, Claude

    2014-03-01

    This book reports the content of a two-day meeting held by the Academy of Sciences on the use of heat-transfer fluids in fast neutron reactors. After a first part which proposes an overview of scientific and technical problems related to these heat-transfer fluids (heat transfer process, nuclear properties, chemistry, materials, risks), a contribution proposes a return on experience on the use of heat-transfer fluids in the different design options of reactors of fourth generation: from mercury to NaK in the first fast neutron reactor projects, specific assets and constraints of sodium used as heat-transfer fluid, concepts of fast neutron reactors cooled by something else than sodium, perspectives for projects and research in fast neutron reactors. The next contribution discusses the specifications of future fast-neutron reactors: expectations for fourth-generation reactors, expectations in terms of performance and of safety, specific challenges. The last contribution addresses actions to be undertaken in the field of research and development: actions regarding all reactor types or specific types as sodium-cooled reactors, lead cooled reactors, molten salt reactors, and gas-cooled fast reactors

  7. Code system for fast reactor neutronics analysis

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Abe, Junji; Sato, Wakaei.

    1983-04-01

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  8. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  9. Structural elements for fast-neutron reactors

    International Nuclear Information System (INIS)

    Blin, J.C.; Sainfort, Gerard; Silvent, Alain; Silvestres, Georges.

    1974-01-01

    These elements are characterized in that they are obtained from a nickel-alloy and at least a material M, selected from the group comprising iron and silicon, in proportions, by weight, such that irradiation by fast neutrons leads to the generation of Ni 3 -M with no noticeable swelling of said elements. This can be applied to fuel assembly cladding [fr

  10. Fast neutron dosimetry in research reactors

    International Nuclear Information System (INIS)

    Eckert, R.

    1960-01-01

    This work chiefly concerns the measurement of fast neutron fluxes by means of threshold detectors. It is shown first that the cross sections to use for measurements by threshold detectors depend largely on the neutron spectrum, that is the position in which the measurement is performed. The spectrum is determined by calculation for several positions in the piles EL2 and EL3; from this can be deduced the cross-sections to be used for the measurements carried out in these positions. In the last part of the report, possible methods for the experimental determination of the spectrum are indicated. (author) [fr

  11. A new neutron noise technique for fast reactors

    International Nuclear Information System (INIS)

    Zhuo Fengguan; Jin Manyi; Yao Shigui; Su Zhuting

    1987-12-01

    This paper gives a new neutron noise technique for fast reactors, which is known as thermalization measurement technique of the neutron noise. The theoretical formulas of the technique were developed, and a digital delayed coincidence time analyzer consisted of TTL integrated circuits was constructed for the study of this technique. The technique has been tested and applied practically at Df-VI fast zero power reactor. It was shown that the provided technique in this work has a number of significant advantages in comparison with the conventional neutron noise method

  12. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  13. EDF research on fast neutron reactors

    International Nuclear Information System (INIS)

    In order to make possible the calculation of the temperatures of the sodium, of the sheath and of the fuel in fast reactor assemblies, taking into account the mixing phenomena induced by the helicoidal wires, two design codes have been developed. Those codes have then been adapted for their integration in the Superalcyon system. This system shall constitute the reference tool for the development of those codes that shall manage Phenix, and other reactors of the family. Cooling accidents, thermohydraulic studies, and steam generator studies are also in progress

  14. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  15. Nuclear fuel assembly for fast neutron reactors

    International Nuclear Information System (INIS)

    Ilyunin, V.G.; Murogov, V.M.; Troyanov, M.F.; Rinejskij, A.A.; Ustinov, G.G.; Shmelev, A.N.

    1982-01-01

    The fuel assembly of a fast reactor consists of fuel elements comprising sections with fissionable and breeding material and tubes with hollows designed for entrapping gaseous fission products. Tubes joining up to the said sections are divided in a middle and a peripheral group such that at least one of the tube groups is placed in the space behind the coolant inlet ports. The configuration above allows reducing internal overpressure in the fuel assembly, thus reducing the volume of necessary structural elements in the core. (J.B.)

  16. Coupled hydro-neutronic calculations for fast burst reactor accidents

    International Nuclear Information System (INIS)

    Paternoster, R.; Kimpland, R.; Jaegers, P.; McGhee, J.

    1994-01-01

    Methods are described for determining the fully coupled neutronic/hydrodynamic response of fast burst reactors (FBR) under disruptive accident conditions. Two code systems, PAD (1 -D Lagrangian) and NIKE-PAGOSA (3-D Eulerian) were used to accomplish this. This is in contrast to the typical methodology that computes these responses by either single point kinetics or in a decoupled manner. This methodology is enabled by the use of modem supercomputers (CM-200). Two examples of this capability are presented: an unreflected metal fast burst assembly, and a reflected fast burst assembly typical of the Skua or SPR-III class of fast burst reactor

  17. Neutron spectrum determination by activation method in fast neutron fields at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (author)

  18. Neutron spectrum determination by activation method in fast neutron fields at the RB reactors

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.S.; Pesic, M.P.; Antic, D.P.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (authors). 7 refs., 3 tabs

  19. Neutronics methods for transient and safety analysis of fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Marco

    2017-07-01

    Modeling the evolution of possible or postulated accidents in nuclear reactors is fundamental in designing safe systems. For the next generation of reactors, in particular fast reactors, fuel movement during an accident can, in principle, drive an energetic event. Such is the issue of recriticality. The thermal energy produced during these events will, possibly, be converted into mechanical energy by some mechanisms. For example, the nuclear heat deposited in the fuel could cause fuel vaporization and its subsequent expansion. This movement would accelerate the surrounding sodium: part of the initial energy in the fuel is thus converted into sodium kinetic energy. This mechanical energy will finally be absorbed, in some way or another, by the reactor vessel. Providing an accurate estimate for the maximum mechanical work that any accidental sequence can do onto the reactor vessel is an essential step in designing a reactor containment that would withstand any load generated by any accident. That would assure accident containment, without consequences for the general public. Fast reactor accident modeling is a complicated task. The outcome of an accident is determined by different physical phenomena, all acting at almost the same time. Safety analysts must track all these different phenomena. Multi-physics codes have been developed for this task. They must contain accurate models for fluid-dynamics, neutronics, and structures. This work has to do with neutronics modeling of such accidents. Past and recent analyses have been limited to the approximate description of the neutronic field, for example by using a rough description of the energy and/or of the angular dependence of the neutron flux. In this work, different neutronic solvers are selected and coupled into a general multi-physics code for fast reactor accident analysis. Performances of each of them is then assessed. Some emphasis has been put also in assessing the speed of these solvers for determining the

  20. Fast neutron reactors: the safety point of view

    International Nuclear Information System (INIS)

    Laverie, M.; Avenas, M.

    1984-01-01

    All versions of nuclear reactors present favourable and unfavourable characteristics from the point of view of safety. The safety of the installations is obtained by making efforts to utilize in the best possible way those which are favourable and by taking proper steps in the face of those which are unfavourable. The present article shows how this general principle has been applied as regards the fast neutron reactors of integrated design which have been developped in France, taking into account the specific features of this version. A qualitative method to compare the safety of this version with that of pressurized water reactors which has been widely put to the test commercially all over the world is presented. These analyses make, generally speaking, several positive characteristics stand out for these fast neutron reactors from the safety aspects [fr

  1. A multi-group neutron noise simulator for fast reactors

    International Nuclear Information System (INIS)

    Tran, Hoai Nam; Zylbersztejn, Florian; Demazière, Christophe; Jammes, Christian; Filliatre, Philippe

    2013-01-01

    Highlights: • The development of a neutron noise simulator for fast reactors. • The noise equation is solved fully in a frequency-domain. • A good agreement with ERANOS on the static calculations. • Noise calculations induced by a localized perturbation of absorption cross section. - Abstract: A neutron noise simulator has been developed for fast reactors based on diffusion theory with multi-energy groups and several groups of delayed neutron precursors. The tool is expected to be applicable for core monitoring of fast reactors and also for other reactor types with hexagonal fuel assemblies. The noise sources are modeled through small stationary fluctuations of macroscopic cross sections, and the induced first order noise is solved fully in the frequency domain. Numerical algorithms are implemented for solving both the static and noise equations using finite differences for spatial discretization, where a hexagonal assembly is radially divided into finer triangular meshes. A coarse mesh finite difference (CMFD) acceleration has been used for accelerating the convergence of both the static and noise calculations. Numerical calculations have been performed for the ESFR core with 33 energy groups and 8 groups of delayed neutron precursors using the cross section data generated by the ERANOS code. The results of the static state have been compared with those obtained using ERANOS. The results show an adequate agreement between the two calculations. Noise calculations for the ESFR core have also been performed and demonstrated with an assumption of the perturbation of the absorption cross section located at the central fuel ring

  2. Neutron intensity of fast reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Misao; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Neutron intensity of spent fuel of the JOYO Mk-II core with a burnup of 62,500 MWd/t and cooling time of 5.2 years was measured at the spent fuel storage pond. The measured data were compared with the calculated values based on the JOYO core management code system `MAGI`, and the average C/E approximately 1.2 was obtained. It was found that the axial neutron intensity didn`t simply follow the burnup distribution, and the neutron intensity was locally increased at the bottom end of the fuel region due to an accumulation of {sup 244}Cm. (author)

  3. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors - 202

    International Nuclear Information System (INIS)

    Recktenwald, G.D.; Bronk, L.A.; Deinert, M.R.

    2010-01-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks. (authors)

  4. Fast-neutron nuclear reactor vessel

    International Nuclear Information System (INIS)

    Presciuttini, L.

    1984-01-01

    The reactor vessel comprises a cylindrical shell, of which axis is vertical, coupled at its lower part with a dished bottom. The reactor core rests on a support plate bearing on the bottom of the vessel. The above dished bottom comprises a spherical sector having the same radius and the same axis as the cylindrical shell and joining the lower part of the shell, and a spherical head of which radius is a little more important than the spherical sector one. A cylindrical support for the reactor core is attached to the vessel at the joint between the two dished sections. The invention applies more particularly to integrated type reactors cooled by liquid sodium [fr

  5. Polarization of fast neutrons in VVR-M reactor

    International Nuclear Information System (INIS)

    Garusov, E.A.; Lifshits, E.P.; Petrov, Yu.V.

    1987-01-01

    Neutron polarization in the reactor leads to circular polarization of γ quanta emitted both in radiational capture of neutrons and in the transition of nuclei excited as a result of inelastic scattering to the ground state. This may be used to determine the polarization of reactor neutrons. The circular polarization of γ quanta at light-water and graphite targets at the center of the active zone of the VVR-M reactor at the B.P. Konstantinov Leningrad Institute of Nuclear Physics was recently measured. A simplified experimental scheme is shown. Fast neutrons leaving the active zone of the reactor were excited in the inelastic scattering at the target nuclei. The polarization of the γ quanta emitted by nuclei in transitions to the ground state was measured by a polarimeter positioned above the active zone. The reason for the circular polarization of γ quanta may also be nonconservation of P parity on account of weak interaction in the capture of a neutron by hydrogen

  6. A methodology of neutronic-thermodynamics simulation for fast reactor

    International Nuclear Information System (INIS)

    Waintraub, M.

    1986-01-01

    Aiming at a general optimization of the project, controlled fuel depletion and management, this paper develop a neutronic thermodynamics simulator, SIRZ, which besides being sufficiently precise, is also economic. That results in a 75% reduction in CPU time, for a startup calculation, when compared with the same calculation at the CITATION code. The simulation system by perturbation calculations, applied to fast reactors, which produce errors smaller than 1% in all components of the reference state given by the CITATION code was tested. (author)

  7. Effect of Fast Neutron to MA/PU Burning/Transmutation Characteristic Using a Fast Reactor

    International Nuclear Information System (INIS)

    Marsodi; Lasman, As Natio; Kimamoto, A.; Marsongkohadi; Zaki, S.

    2003-01-01

    MA/Pu burning/transmutation has been studied and evaluated using fast neutrons. Generally, neutron density at this fast burner reactor and transmutation has spectrum energy level around 0.2 MeV with wide enough variation, i.e. from low neutron spectrum to its peak is 0.2 MeV. This neutron spectrum energy level depends on the kind of cooler material or fuel used. Neutron spectrum higher than fast power reactor neutron spectrum is found by means of changing oxide fuel by metallic fuel and changing natrium cooler material by metallic or gas cooler material. This evaluation is conducted by various variations in accordance with the kind of fuel or cooler, MA/Pu fractions and fuel comparison fraction with respect to its cooler in order to get better neutron usage and MA/Pu burning speed. Reactor calculation evaluation in this paper was conducted with 26-group nuclear data cross section energy spectrum. The main purpose of the discussion is to know the effect of fast neutrons to burning/transmutation MA/Pu using fast neutrons

  8. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    International Nuclear Information System (INIS)

    Yavar, A.R.; Sarmani, S.B.; Wood, A.K.; Fadzil, S.M.; Radir, M.H.; Khoo, K.S.

    2011-01-01

    Determination of thermal to fast neutron flux ratio (f fast ) and fast neutron flux (φ fast ) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f fast and subsequently φ fast were determined using the absolute method. The f fast ranged from 48 to 155, and the φ fast was found in the range 1.03x10 10 -4.89x10 10 n cm -2 s -1 . These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  9. Effect of neutron anisotropic scattering in fast reactor analysis

    International Nuclear Information System (INIS)

    Chiba, Gou

    2004-01-01

    Numerical tests were performed about an effect of a neutron anisotropic scattering on criticality in the Sn transport calculation. The simplest approximation, the consistent P approximation and the extended transport approximation were compared with each other in one-dimensional slab fast reactor models. JAERI fast set which has been used for fast reactor analyses is inadequate to evaluate the effect because it doesn't include the scattering matrices and the self-shielding factors to calculate the group-averaged cross sections weighted by the higher-order moment of angular flux. In the present study, the sub-group method was used to evaluate the group-averaged cross sections. Results showed that the simplest approximation is inadequate and the transport approximation is effective for evaluating the anisotropic scattering. (author)

  10. Tests for validation of fast neutron reactors safety

    International Nuclear Information System (INIS)

    Nagata, T.; Yamashita, H.

    2001-01-01

    Japanese scientific research and design enterprises in cooperation with industrial and power generating corporations implement a project on creating a fast neutron reactor of the ultimate safety. One of the basic expected results from such a development is creation of a reactor core structure that is able to eliminate recriticality occurrence in the course of reactor accident involving fuel melting. One of the possible ways to solve this problem is to include pipes (meant for specifying directed (controlled) molten fuel relocation) into fuel assembly structure. In the course of conduction and subsequent implementation of such a design the basic issue is to experimentally confirm the operating capacity of FA having such a structure and that is called FAIDUS. Within EAGLE Project on experimental basis of IAE NNC RK an activity has been started on preparation and conduction of out-of-pile and in-pile tests. During tests a sodium coolant will be used. Studies are conducted by NNC RK in cooperation with the Japanese corporations JAPC and JNC. Basic objective of out-of-pile tests was to obtain preliminary information on fuel relocation behavior under conditions simulating accident involving melting of core consisting of FAIDUS FA, which will help to clarify simulation criteria and to develop the most optimum structure of the experimental channel for reactor experiments conduction. The basic objective of in-pile tests was the experimental confirmation of operating capacity of FAIDUS FA model under reactor conditions. According to the program two tests are planned to be performed at IGR reactor: tests for validation of fast neutron reactor safety, and out-of-pile tests at EAGLE experimental facility without sodium coolant

  11. Advances in neutronics calculation of fast neutron reactors - Demonstration on Super-Phenix reactor

    International Nuclear Information System (INIS)

    Czernecki, Sebastien

    1998-01-01

    The fast reactor european neutronics calculations system, ERANOS, has integrated recent improvements both in nuclear data, with the use of the adjusted nuclear library ERALIB 1 from the JEF2.2 library, and calculation methods, with the use of the new european cell code, ECCO, and the deterministic code, TGV/VARIANT. This code performs full 3-D reactor calculation in the transport theory with variational method. The aim of this work is to create and validate a new calculational scheme for fast spectrum systems offering good compromise between accuracy and running time. The new scheme is based on these improvements plus a special procedure accounting for control rod heterogeneity, which uses a reactivity equivalence homogenization. The new scheme has been validated by means of experiment/calculation comparisons, using the extensive start-up program measurements performed in Super-Phenix reactor. The validation uses also recent measurements performed in the Phenix reactor. The results are very satisfactory and show a significant improvement for almost all core parameters, especially for critical mass, control rod worth and radial subassembly power distribution. A detailed analysis of the discrepancies between the old scheme and the new one for this parameter allows to understand the separate effects of methods and nuclear data on the radial power distribution shape. (author) [fr

  12. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors

    International Nuclear Information System (INIS)

    Imbert, Ch.

    1997-01-01

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  13. Experimental possibilities and fast neutron dose map of the fast neutron fields at the RB reactor facility

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.; Ninkovic, M.

    1993-01-01

    The RB is an unshielded, zero power nuclear facility with natural and enriched uranium fuel (2% and 80%) and D 2 O as moderator. It is possible to create different configurations of non-reflected and partially reflected critical systems and to make experiments in the fields of thermal neutrons. The fields of fast neutrons with 'softened' fission spectrum are made by modifying the system: modified experimental fuel channel EFC, coupled fast-thermal system in two configurations CFTS-1 and CFTS-2, coupled fast-thermal core HERBE. The intermediate and fast neutron absorbed doses in fast neutron fields are given. In first configuration of RB reactor it was almost impossible to perform dosimetric and other experiments. By creating these fields, with in our circumstances available fuel elements, the possibilities for different experiments are greatly improved. Now we can irradiate food samples, soil samples, electronic devices, study material properties, perform various dosimetry experiments, etc. (1 tab.)

  14. Evaluation of neutronic characteristics of in-pile test reactor for fast reactor safety research

    Energy Technology Data Exchange (ETDEWEB)

    Uto, N.; Ohno, S.; Kawata, N. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-09-01

    An extensive research program has been carried out at the Power Reactor and Nuclear Fuel Development Corporation for the safety of future liquid-metal fast breeder reactors to be commercialized. A major part of this program is investigation and planning of advanced safety experiments conducted with a new in-pile safety test facility, which is larger and more advanced than any of the currently existing test reactors. Such a transient safety test reactor generally has unique neutronic characteristics that require various studies from the reactor physics point of view. In this paper, the outcome of the neutronics study is highlighted with presenting a reference core design concept and its performance in regard to the safety test objectives. (author)

  15. Axial distribution of absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.; Ninkovic, M.

    1988-11-01

    The coupled fast thermal system CFTS at the RB reactor is created for obtaining fast neutron fields. The axial distribution of fast neutron flux density in its second configuration (CFTS-2) is measured. The axial distribution of absorbed doses is computed on the basis of mentioned experimental results. At the end these experimental and computed results are given. (Author)

  16. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Sarmani, S.B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Radir, M.H. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2011-05-15

    Determination of thermal to fast neutron flux ratio (f{sub fast}) and fast neutron flux ({phi}{sub fast}) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f{sub fast} and subsequently {phi}{sub fast} were determined using the absolute method. The f{sub fast} ranged from 48 to 155, and the {phi}{sub fast} was found in the range 1.03x10{sup 10}-4.89x10{sup 10} n cm{sup -2} s{sup -1}. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  17. Fast neutron nuclear reactor with lightened internal structure

    International Nuclear Information System (INIS)

    Artaud, R.; Aubert, M.; Renaux, C.

    1984-01-01

    The invention concerns an integrated type fast reactor. The inner vessel comprises two truncated shells, of which the large bases are connected either directly, or by a cylindrical shell of large diameter. The small base of the upper truncated shell is prolongated by a shell of small diameter and the small base of the lower truncated shell supports the reactor core. The invention allows the construction of simpler and less expansive fast reactors [fr

  18. A conceptual design of neutron tumor therapy reactor facility with a YAYOI based fast neutron source reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki; An, Shigehiro.

    1983-01-01

    Fast neutron is known as one of useful radiations for radiation therapy of tumors. Boron neutron capture therapy (BNCT) of tumors which makes use of 10 B(n, α) 7 Li reaction of 10 B compounds selectively attached to tumor cells with thermal and intermediate neutrons is another way of neutron based radiation therapy which is, above all, attractive enough to kill tumor cells selectively sparing normal tissue. In Japan, BNCT has already been applied and leaned to be effective. After more than a decade operational experiences and the specific experiments designed for therapeutical purposes, in this paper, a conceptual design of a special neutron therapy reactor facility based on YAYOI - fast neutron source reactor of Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo - modified to provide an upward beam of fast and intermediate neutrons is presented. Emphasis is placed on the in-house nature of facility and on the coordinating capability of biological and physical researches as well as maintenances of the facility. (author)

  19. Measurement of fast neutron spectra inside reactors with a Li{sup 6} semiconductor counter spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ajdacic, V S; Lalovic, B I; Petrovic, B P [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1963-12-15

    The possibility of using the Li{sup 6} semiconductor counter spectrometer for measuring fast neutron spectra inside reactors has been investigated in details and some solutions of the difficulties associated with the high interference of thermal neutrons in well-moderated reactors are suggested and checked experimentally (author)

  20. Benchmark test of evaluated nuclear data files for fast reactor neutronics application

    International Nuclear Information System (INIS)

    Chiba, Go; Hazama, Taira; Iwai, Takehiko; Numata, Kazuyuki

    2007-07-01

    A benchmark test of the latest evaluated nuclear data files, JENDL-3.3, JEFF-3.1 and ENDF/B-VII.0, has been carried out for fast reactor neutronics application. For this benchmark test, experimental data obtained at fast critical assemblies and fast power reactors are utilized. In addition to comparing of numerical solutions with the experimental data, we have extracted several cross sections, in which differences between three nuclear data files affect significantly numerical solutions, by virtue of sensitivity analyses. This benchmark test concludes that ENDF/B-VII.0 predicts well the neutronics characteristics of fast neutron systems rather than the other nuclear data files. (author)

  1. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  2. Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Salt Fast Reactor (MSFR)

    International Nuclear Information System (INIS)

    Laureau, A.; Rubiolo, P.R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.

    2013-01-01

    Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor (MSFR) are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated. (authors)

  3. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  4. The Effect Of Beryllium Interaction With Fast Neutrons On the Reactivity Of ETRR-2 Research Reactor

    International Nuclear Information System (INIS)

    Aziz, M.; El Messiry, A.M.

    2000-01-01

    The effect of beryllium interactions with fast neutrons is studied for Etrr 2 research reactors. Isotope build up inside beryllium blocks is calculated under different irradiation times. a new model for the Etrr 2 research reactor is designed using MCNP code to calculate the reactivity and flux change of the reactor due to beryllium poison

  5. A two-dimensional simulator of the neutronic behaviour of low power fast reactors

    International Nuclear Information System (INIS)

    Penha, M.A.V.R. da.

    1984-01-01

    A model to simulate the temporal neutronic behaviour of fast breeder reactors was developed. The effective cross-sections are corrected, whenever the reactor state change; by using linear correlations and interpolation schemes with data contained in a library previously compiled. This methodology was coupled with a simplified spatial neutronic calculation to investigate the temporal behaviour of neutronic parameters such as breeding gain, flux and power. (Author) [pt

  6. Development of a Neutron Flux Monitoring System for Sodium-cooled Fast Reactors

    OpenAIRE

    Verma, Vasudha

    2017-01-01

    Safety and reliability are one of the key objectives for future Generation IV nuclear energy systems. The neutron flux monitoring system forms an integral part of the safety design of a nuclear reactor and must be able to detect any irregularities during all states of reactor operation. The work in this thesis mainly concerns the detection of in-core perturbations arising from unwanted movements of control rods with in-vessel neutron detectors in a sodium-cooled fast reactor. Feasibility stud...

  7. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  8. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  9. Neutron cross-section libraries in the AMPX master interface format for thermal and fast reactors

    International Nuclear Information System (INIS)

    Bjerke, M.A.; Webster, C.C.

    1981-12-01

    Neutron cross-section libraries in the AMPX master interface format have been created for three reactor types. Included are an 84-group library for use with light-water reactors, a 27-group library for use with heavy-water CANDU reactors and a 126-group library for use with liquid metal fast breeder reactors. In general, ENDF/B data were used in the creation of these libraries, and the nuclides included in each library should be sufficient for most neutronic analyses of reactors of that type. Each library has been used successfully in fuel depletion calculations

  10. Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion

    International Nuclear Information System (INIS)

    Marques, J.G.; Sousa, M.; Santos, J.P.; Fernandes, A.C.

    2011-01-01

    The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1 MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard.

  11. Designing research of fast neutron radiation field based on the reactor

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Zhang Xiaomin

    2009-01-01

    Based on the Tsinghua University experimental nuclear reactor neutron source, this research designed moderate theory technical scheme, and the thickness of materials in the scheme were selected by means of Monte Carlo simulating method. An fast neutron radiation field was gained. (authors)

  12. Measurements of thermal and fast neutron fluxes at the TRIGA reactor

    International Nuclear Information System (INIS)

    Zerdin, F.; Grabovsek, Z.; Klinc, T.; Solinc, H.

    1966-01-01

    Gold foils were placed at different positions in the TRIGA reactor core and in the experimental devices. Absolute values of the thermal neutron flux at these positions were obtained by coincidence method. Preliminary fast neutron spectrum was measured by threshold detector and by 'Li 6 sandwich' detector. A short description of the applied method and obtained measurements results are included [sl

  13. Neutron and gamma ray streaming experiments at the fast neutron source reactor 'YAYOI'

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Yanagisawa, Ichiro; Akiyama, Masatsugu; An, Shigehiro

    1979-07-01

    Neutron and gamma ray streaming experiments were performed in the ducts and cavities that were located in the heavy concrete shields of the fast neutron source reactor YAYOI of University of Tokyo. The configurations have the feature that the streaming through the ducts are occurred following the scattering in the cavity. The axes of the ducts are perpendicular to the source radiation from the core. The spectrum of the source was modified by putting a plug in the beam hole of the core. An aluminum plug and the plug which contains paraffin were used. The decay in the ducts, however, hardly depends on the source spectrum. The decay in the ducts is nearly exponential. (author)

  14. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    International Nuclear Information System (INIS)

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-01-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  15. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Christian; Filliatre, Philippe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan [Division of Applied Nuclear Physics, Uppsala University, SE-75120 Uppsala, (Sweden)

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  16. Utilization of fast reactor excess neutrons for burning long-lived fission products

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning long lived fission product Tc-99, which dominates the long term radiotoxicity of the high level radioactive waste. The excess neutrons generated in the fast reactor core are utilized to transmute Tc-99 to stable isotopes due to neutron capture reaction. The fission product target assemblies which consist of Tc-99 are charged to the reactor core periphery. The fission product target neutrons are moderated to a great deal to pursue the possibility of enhancing the transmutation rate. Any impacts of loading the fission product target assemblies on the core nuclear performances are assessed. A long term Tc-99 accumulation scenario is considered in the mix of fission product burner fast reactor and non-burner LWRs. (author)

  17. Properties and mechanical behaviour of fuel cans of fast neutron reactors

    International Nuclear Information System (INIS)

    Cauvin, R.; Boutard, J.L.

    1983-06-01

    Mechanical properties of Stainless steel-316 irradiated up to 100 dpa in fast neutron reactors are examined. Microscopic phenomena involved are reviewed: precipitation, segregation, dislocations, vacancies. Influence on mechanical behaviour of materials are examined: tensile properties, creep, ductility. Consequences on reactor dimensioning are given in conclusion [fr

  18. Testing plutonium fuel assembly production for fast-neutron reactors

    International Nuclear Information System (INIS)

    Nougues, B.; Benhamou, A.; Bertothy, G.; Lepetit, H.

    1975-01-01

    The main characteristics of plutonium fuel elements for fast breeder reactors justify specific test procedures and special techniques. The specific tests relating to the Pu content consist of Pu enrichment and distribution tests, determination of the O/M ratio and external contamination tests. The specific tests performed on fuel configuration are: testing of sintered pellet diameter, testing of pin welding and checking of internal assmbly [fr

  19. Swelling of structural materials in fast neutron reactors

    International Nuclear Information System (INIS)

    Seran, J.L.

    1983-06-01

    The physical origin of swelling in irradiated materials and the main parameters acting on swelling of SS 316 are examined: temperature, neutron dose, dose rate, chemical composition, strain hardening. Results obtained, in Rapsodie and Phenix reactors, with fuel cans and with the hexagonal tube containing the fuel pins are analyzed and compared with results found in litterature. In conclusion hot swelling of SS 316 is too important at high doses and is will be replaced by austenitic steels stabilized by Ti and ferritic steels or high nickel steels with structural hardening [fr

  20. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    International Nuclear Information System (INIS)

    Moiseyev, A.V.

    2008-01-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k eff , control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  1. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moiseyev, A.V. [SSC RF - IPPE, 1 Bondarenko Square, Obninsk, Kaluga Region 249033 (Russian Federation)

    2008-07-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k{sub eff}, control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  2. Characterization of a fast to thermal neutron spectrum converter on PROSPERO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, X.; Authier, N.; Casoli, P.; Combacon, S. [CEA, Valduc Center, 21120 Is sur Tille (France); Calzavarra, Y. [ILL, Institut Laue Langevin, 38000 Grenoble (France)

    2009-07-01

    The PROSPERO reactor is located at CEA Valduc Center in France. The reactor is composed of an internal core made of High Enriched Uranium metal alloy surrounded by a reflector of depleted uranium. The reactor is used as a fast neutron spectrum source and is operated in delayed critical state with a continuous and steady power for several hours, which can vary from 3 mW to 3 kW, which is the nominal power. The flux at nominal power varies from 5.10{sup +10} n.cm{sup -2}/s at the reflector surface to 10{sup +7} n.cm{sup -2}/s at 5 meters from reactor axis. It has been decided to build a neutron energy converter allowing the production of a neutron thermal spectrum. As the core produces fast neutrons spectrum, we built a hollow cubic box of 50 cm x 50 cm x 50 cm with 10-cm-thick polyethylene bricks and placed one meter away from central reactor axis to moderate as much as possible neutrons to lower energies (E<0.6 eV). Analysis of the moderated flux inside the converter was performed using different activation foils such as indium or gold. We have developed a model of the experiment in the Monte Carlo neutron transport code TRIPOLI-4. A non-analogous transport calculation scheme was necessary to reproduce properly the experimental activities. The results of the calculated activations are within 4% of the experimental measurements given with 10% uncertainty (2 sigma). We show that the converter realizes thermalization of 80 % of the PROSPERO reactor fast neutrons below the cadmium threshold of 0.6 eV. Epithermal neutrons represent 15% of the spectrum and only 5% are in the fast neutron range above 1 MeV. The total flux at the center of the converter is 1.4 10{sup +9} n.cm{sup -2}/s at 3000 W

  3. Trends and Developments for Fast Neutron Reactors and Related Fuel Cycles

    International Nuclear Information System (INIS)

    Carré, Frank

    2013-01-01

    • FR13 – A unique and dedicated framework to share updates on national programs of Fast Reactor developments, projects of new builds and plans for the future: - Near term projects of sodium and lead-alloy Fast Reactors; - Gen-IV visions of sodium-cooled and alternative types of Fast Neutron Reactors (GFR, LFR…). • FR13 – A special emphasis put on Fast Reactor Safety, Sustainability of nuclear fuel cycle and Young Generation perspective. • FR13 – A catalyst for further collaborations and alliances: - To share visions of goals and advisable options for future Fast Reactors and Nuclear Fuel Cycle; - To share cost of R&D and large demonstrations (safety, security, recycling); - To progress towards harmonized international standards; - To integrate national projects into a consistent international roadmap

  4. Integral test of JENDL dosimetry file using fast neutron field in the Experimental Fast Reactor JOYO

    International Nuclear Information System (INIS)

    Aoyama, Takafumi; Sekine, Takashi

    1999-09-01

    In order to evaluate the applicability of the JENDL dosimetry file, an integral test using a fast neutron spectrum field in the Experimental Fast Reactor JOYO Mark-II core was performed. The dosimeter set consisting of eight reactions of 46 Ti(n,p) 46 Sc, 54 Fe(n,p) 54 Mn, 58 Fe(n,γ) 59 Fe, 58 Ni(n,p) 58 Co, 59 Co(n,γ) 60 Co, 63 Cu(n,α) 60 Co, 238 U fission and 237 Np fission was irradiated for approximately 30 days near the core center of the JOYO Mk-II. Neutron flux at the dosimeter position was calculated using the two dimensional discrete ordinate transport code 'DORT'. The core configuration was modeled in XY geometry, and the 100 group cross section set of JSD-J2 / JFT-J2, which was processed from JENDL-2, was utilized. The absolute value of neutron flux was normalized so that the 235 U fission rate using the calculated neutron spectrum agreed with the measured reaction rate. The 103 group cross section data were processed by 'NJOY' code for nuclides to be used in the JOYO dosimetry. As the results of integral test for JENDL/D-99 (new file) and JENDL/D-91 (previous file), calculated values by JENDL/D-99 agreed well with the experimental values, and the C/E ratios ranged from 0.95 to 1.22. By comparing the results between JENDL/D-99 and JENDL/D-91, small differences exist, except for 58 Fe(n, γ) 59 Fe reaction, which was improved significantly in JENDL/D-99. (author)

  5. Neutron flux shape effects in large fast reactor safety calculations

    International Nuclear Information System (INIS)

    Galati, A.; Loizzo, P.; Musco, A.

    1978-01-01

    Three classes of accidents in a large fast reactor were studied by the two-dimensional core dynamics code NADYP-2. A Modified version of the code, including a point kinetics module, allowed comparison between 2D and 0D power, reactivity and temperature histories. A strong shape effect was evidenced by these calculations in the boiling phase of LOF accidents as well as in the accident generated by control rod removal. Some future possibilities of by passing the consequences of this effect are indicated

  6. Determination of Iron and Nickel in Geological Samples by Activation Analysis with Reactor Fast Neutrons

    International Nuclear Information System (INIS)

    El Abd, A.

    2009-01-01

    Threshold reactions induced by reactor fast neutrons are well recognized. The concentration of Fe and Ni were determined in nine geological samples by activation analysis with reactor fast neutrons using the threshold reactions 5 4F e( n,p) 54 Mn and 58 Ni ( n, p )'5 8 Co respectively. The fast neutron flux was determined using the reactions 92 Mo(n, 2n) 92 mNb and 95 Mo(n,p) 95 Nb. The determined concentration of Fe and Ni in the samples were checked by determining them in the GSJ JB-1 reference material using the same , ( p, n) reactions. There are a good agreement between the measured and recommended values. The concentrations of Fe were also determined by the ) , ( n, γ) capture reactions in the geological samples and the JB-1 reference material using the K θ - NAA method. There are good agreements between the determined concentrations from the ) , ( p, n) and the ( γ, n) reactions.

  7. Determining of the intermediate neutron spectrum in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-01-01

    The activation method for intermediate neutron spectrum determination is given in this paper. The intermediate neutron spectrum in experimental fuel channel (EFC) at the RB reactor is determined om the basis of this method. The results of measurements are treated with PRAG code and will be treated with KRIFIT and TENET codes that are also developed. (author)

  8. Neutron shielding studies on an advanced molten salt fast reactor design

    International Nuclear Information System (INIS)

    Merk, Bruno; Konheiser, Jörg

    2014-01-01

    Highlights: • Material damage due to irradiation has already been discovered at the MSRE. • Neutronic analysis of MSFR with curved blanket wall geometry. • Neutron fluence limit at the wall of the outer vessel can be kept for 80 years. • Shielded MSFR core will be of same dimension than a SFR core. - Abstract: The molten salt reactor technology has gained some new interest. In contrast to the historic molten salt reactors, the current projects are based on designing a molten salt fast reactor. Thus the shielding becomes significantly more challenging than in historic concepts. One very interesting and innovative result of the most recent EURATOM project on molten salt reactors – EVOL – is the fluid flow optimized design of the inner reactor vessel using curved blanket walls. The developed structure leads to a very uniform flow distribution. The design avoids all internal structures. Based on this new geometry a model for neutron physics calculation is presented. The major steps are: the modeling of the curved geometry in the unstructured mesh neutron transport code HELIOS and the determination of the real neutron flux and power distribution for this new geometry. The developed model is then used for the determination of the neutron fluence distribution in the inner and outer wall of the system. Based on these results an optimized shielding strategy is developed for the molten salt fast reactor to keep the fluence in the safety related outer vessel below expected limit values. A lifetime of 80 years can be assured, but the size of the core/blanket system will be comparable to a sodium cooled fast reactor. The HELIOS results are verified against Monte-Carlo calculations with very satisfactory agreement for a deep penetration problem

  9. Spatial fluxes and energy distributions of reactor fast neutrons in two types of heat resistant concretes

    International Nuclear Information System (INIS)

    Akki, T.S.; Benayad, S.A.; Megahid, R.M.

    1992-01-01

    Measurements have been carried out to study the spatial fluxes and energy distributions of reactor fast neutrons transmitted through two types of heat resistant concretes, serpentine concrete and magnetic lemonite concrete. The physical, chemical and mechanical properties of these concretes were checked by well known techniques. In addition, the effect of heating at temperatures up to 500deg C on the crystaline water content was checked by the method of differential thermal analysis. Measurements were performed using a collimated beam of reactor neutrons emitted from a 10 MW research reactor. The neutron spectra transmitted through concrete barriers of different thickness were measured by a scintillation spectrometer with NE-213 liquid organic scintillator. Discrimination against undesired pulses due to gamma-rays was achieved by a method based on pulse shape discrimination technique. The operating principle of this technique is based on the comparison of two weighted time integrals of the detector signal. The measured pulse amplitude distribution was converted to neutron energy distribution by a computational code based on double differentiation technique. The spectrometer workability and the accuracy of the unfolding technique were checked by measuring the neutron spectra of neutrons from Pu-α-Be and 252 Cf neutron sources. The obtained neutron spectra for the two concretes were used to derive the total cross sections for neutrons of different energies. (orig.)

  10. Estimation of fast neutron fluence in steel specimens type Laguna Verde in TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Aguilar H, F.

    2015-09-01

    The main purpose of this work is to obtain the fluence of fast neutrons recorded within four specimens of carbon steel, similar to the material having the vessels of the BWR reactors of the nuclear power plant of Laguna Verde when subjected to neutron flux in a experimental facility of the TRIGA Mark III reactor, calculating an irradiation time to age the material so accelerated. For the calculation of the neutron flux in the specimens was used the Monte Carlo code MCNP5. In an initial stage, three sheets of natural molybdenum and molybdenum trioxide (MoO 3 ) were incorporated into a model developed of the TRIGA reactor operating at 1 M Wth, to calculate the resulting activity by setting a certain time of irradiation. The results obtained were compared with experimentally measured activities in these same materials to validate the calculated neutron flux in the model used. Subsequently, the fast neutron flux received by the steel specimens to incorporate them in the experimental facility E-16 of the reactor core model operating at nominal maximum power in steady-state was calculated, already from these calculations the irradiation time required was obtained for values of the neutron flux in the range of 10 18 n/cm 2 , which is estimated for the case of Laguna Verde after 32 years of effective operation at maximum power. (Author)

  11. Preliminary studies leading to a conceptual design of a 1000 MWe fast neutron reactor

    International Nuclear Information System (INIS)

    Vendryes, G.; Zaleski, C.P.

    1964-01-01

    This report presents the results of studies which seemed important to undertake in connexion with the development of fast neutron reactors. - It points out the advantage of high internal breeding ratios (∼1, 1) which are necessary in order to get a small change in time both in power distribution and reactivity (less: than 0.005 Δk/k in 18 months). - It shows how to achieve this goal, when simultaneously power distribution flattening is obtained. These results in a higher mean specific power (which is an economic gain) and therefore in a smaller doubling time (about 10 years). - It attempts to find criteria concerning the specific power that should be used in future reactor designs -It presents a conceptional design of a 1000 MWe fast neutron reactor, for the realisation of which no technological impossibility appears. - It shows that the dynamic behaviour seems satisfactory despite a positive total isothermal sodium coefficient. - It tries to predict the development of fast reactors within the future total nuclear program. It does not appear that fissile materials supply problems should in France slow down the development of fast neutron reactors, which will be essentially tied up to its economical ability to produce cheap electric power. (authors) [fr

  12. Attenuation of Reactor Gamma Radiation and Fast Neutrons Through Large Single-Crystal Materials

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A generalized formula is given which, for neutron energies in the range 10-4< E< 10 eV and gamma rays with average energy 2 MeV , permits calculation of the transmission properties of several single crystal materials important for neutron scattering instrumentation. A computer program Filter was developed which permits the calculation of attenuation of gamma radiation, nuclear capture, thermal diffuse and Bragg-scattering cross-sections as a function of materials constants, temperature and neutron energy. The applicability of the deduced formula along with the code checked from the obtained agreement between the calculated and experimental neutron transmission through various single-crystals A feasibility study for use of Si, Ge, Pb, Bi and sapphire is detailed in terms of optimum crystal thickness, mosaic spread and cutting plane for efficient transmission of thermal reactor neutrons and for rejection of the accompanying fast neutrons and gamma rays.

  13. Researches at the University of Tokyo fast neutron sources reactor, YAYOI

    International Nuclear Information System (INIS)

    Koshizuka, S.; Oka, Y.; Saito, I.

    1992-01-01

    The Fast neutron source reactor YAYOI was critical in 1971 at the Nuclear Engineering Research Laboratory, the Faculty of Engineering, the University of Tokyo (UTNL). The core is fueled with the enriched uranium surrounded by the depleted uranium. YAYOI is the first fast reactor in Japan. Many types of studies have been carried out by the researchers of the University of Tokyo in these 20 years. It also contributed to the Japan's national project of developing fast breeder reactors. The reactor is opened to the visiting researchers from universities and research institutes. YAYOI has also been utilized for education of undergraduate and graduate students of the Department of Nuclear Engineering of the University of Tokyo. The present paper briefly summerizes past and present researchers. (author)

  14. Reactor neutron dosimetry

    International Nuclear Information System (INIS)

    Najzer, M.; Pauko, M.; Glumac, B.; Acquah, I.N.; Moskon, F.

    1977-01-01

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  15. Environmental protection problems from the standpoint of regeneration of fast neutron reactor fuel

    International Nuclear Information System (INIS)

    Gedeonov, L.I.; Lazarev, L.N.; Suprunenko, A.N.

    The discussion of the problem of environmental protection is based on two principles: a strict observance of legislatively established standards for permissible concentrations of radionuclides in objects of the environment and for dose loads for the population; all possible steps to reduce the contamination to a level justified in practice. Environmental protection steps are considered from the points of view of a systematic analysis. A survey of the environmental protection system near sources of radioactive discharges is given. The basic interactions and feedbacks are indicated. Characteristics differentiating the discharges of the fuel cycle of fast neutron breeder reactors from discharges of the slow neutron cycle are discussed. It is shown that it is necessary to study the overall regional and global interactions of discharges of the atomic power industry. The characteristics of situations at nuclear fuel cycle facilities of fast neutron reactors are discussed. The necessity of additional technical steps to prevent accidents and eliminate their effects if they take place is emphasized

  16. The analysis of neutron physical characteristics of fast reactors by means of pulsed experiments

    International Nuclear Information System (INIS)

    Stumbur, Eh.A.; Milyutina, Z.N.

    1992-01-01

    Possibility is considered for determination of macroscopic cross sections of homogeneous multiplicating media with fast neutrons. It is shown that by means of the critical size, laplaccian and neutron pulse damping decrement measurement results it is possible to obtain values of almost all cross sections of a medium. The method is tested with systems of metal 235 U and BFS-32 assemblies with the composition, typical for fast power reactors. A suitable algorithm is developed for solving nonstationary asymptotic transport problems. Calculation results are compared with experimental ones. 21 refs.; 2 figs.; 3 tabs

  17. Utilization of the experimental reactor Osiris for the study and the development of fuels of the fast neutron reactor type

    International Nuclear Information System (INIS)

    Marcon, M.; Faugere, J.L.; Genthon, J.P.; Maillot, R.

    1977-01-01

    Nuclear fuel tests for the fast neutron reactor type have been carried out at the Osiris reactor: thermal study of (U,Pu)O 2 oxide by measurement with thermocouples in the core of the fuel pellet; study of the effects of power cycling on nuclear fuel; study of the mechanical interactions between oxide and cladding by measurement of the cladding deformation during irradiation [fr

  18. Analysis of the propagation of neutrons and gamma-rays from the fast neutron source reactor YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeo, E-mail: neutron@keyaki.cc.u-tokai.ac.jp [Department of Energy Science and Engineering, School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan); Murata, Isao [Division of Electrical, Electronic and Information Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Nakagawa, Tsutomu; Saito, Isao [Nuclear Professional School, School of Engineering, The University of Tokyo, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2011-10-01

    The skyshine effect is crucial for designing appropriate shielding. To investigate the skyshine effect, the propagation of neutrons was measured and analyzed at the fast neutron source reactor YAYOI. Pulse height spectra and dose distributions of neutron and secondary gamma-ray were measured outside YAYOI, and analyzed with MCNP-5 and JENDL-3.3. Comparison with the experimental results showed good agreement. Also, a semi-empirical formula was successfully derived to describe the dose distribution. The formulae can be used to predict the skyshine effect at YAYOI, and will be useful for estimating the skyshine effect and designing the shield structure for fusion facilities.

  19. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors; Visualisation ultrasonore rapide sous sodium. application aux reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Imbert, Ch

    1997-05-30

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  20. Contribution to uncertainties evaluation for fast reactors neutronic cross sections

    International Nuclear Information System (INIS)

    Privas, Edwin

    2015-01-01

    The thesis has been motivated by a wish to increase the uncertainty knowledge on nuclear data, for safety criteria. It aims the cross sections required by core calculation for sodium fast reactors (SFR), and new tools to evaluate its.The main objective of this work is to provide new tools in order to create coherent evaluated files, with reliable and mastered uncertainties. To answer those problematic, several methods have been implemented within the CONRAD code, which is developed at CEA of Cadarache. After a summary of all the elements required to understand the evaluation world, stochastic methods are presented in order to solve the Bayesian inference. They give the evaluator more information about probability density and they also can be used as validation tools. The algorithms have been successfully tested, despite long calculation time. Then, microscopic constraints have been implemented in CONRAD. They are defined as new information that should be taken into account during the evaluation process. An algorithm has been developed in order to solve, for example, continuity issues between two energy domains, with the Lagrange multiplier formalism. Another method is given by using a marginalization procedure, in order to either complete an existing evaluation with new covariance or add systematic uncertainty on an experiment described by two theories. The algorithms are well performed along examples, such the 238 U total cross section. The last parts focus on the integral data feedback, using methods of integral data assimilation to reduce the uncertainties on cross sections. This work ends with uncertainty reduction on key nuclear reactions, such the capture and fission cross sections of 238 U and 239 Pu, thanks to PROFIL and PROFIL-2 experiments in Phenix and the Jezebel benchmark. (author) [fr

  1. Albedo-adjusted fast-neutron diffusion coefficients in reactor reflectors

    International Nuclear Information System (INIS)

    Terney, W.B.

    1975-01-01

    In the newer, larger pressurized-water reactor cores, the calculated power distributions are fairly sensitive to the number of neutron groups used and to the treatment of the reflector cross sections. Comparisons between transport and diffusion calculations show that the latter substantially underpredict the reflector albedos in the fast (top) group and that the power distribution is shifted toward the core center when compared to 4-group transport theory results. When the fast-neutron diffusion coefficients are altered to make the transport- and diffusion-theory albedos agree, the power distributions are also brought into agreement. An expression for the fast-neutron diffusion coefficients in reflector regions has been derived such that the diffusion calculation reproduces the albedo obtained from a transport solution. In addition, a correction factor for mesh effects applicable to coarse mesh problems is presented. The use of the formalism gives the correct albedos and improved power distributions. (U.S.)

  2. Utilization of boron irradiation filters in reactor neutron activation via epithermal (n,γ) and fast neutron reactions

    International Nuclear Information System (INIS)

    Chisela, F.

    1986-01-01

    The technique of instrumental neutron activation analysis based on irradiation with reactor epithermal and fast neutrons has been described and evaluated. Important characteristics of boron neutron absorbers used to remove thermal neutrons from the reactor neutron spectrum have been examined and compared with those of cadmium. Three boron compound shields, have been designed and constructed at the BER II 5MW reactor for use in epithermal neutron activation analysis of biological materials. The major advantages offered by these filters in this application include the flexibility of varying the filter thickness, the low radioactivity induced in the filters during irradiation, ease of fabrication and the relatively low cost of the filter materials. The radiation heating due to the 10 B(n,α) 7 Li-reaction has been experimentally investigated for the filters used and the results obtained confirm the necessity for efficient cooling of these filters during irradiation. Three irradiation facilities have been characterized with respect to the neutron flux density and the flux spatial distribution. An experiment has been designed and carried out to compensate the flux inhomogeneity in two irradiation positions of the DBV facility caused by the reactor geometry. Several biological samples including well characterized reference materials have been analysed after epithermal activation and the results compared with those obtained with the classical thermal neutron activation method. Improved sensitivity of determination has been found for elements with high resonance integral to thermal neutron cross section ratios (RI/σ 0 ). The range of elements that can be determined instrumentally is extended and the time scale of analysis is considerably reduced. (orig.) [de

  3. Utilization of fast reactor excess neutrons for burning minor actinides and long lived FPs

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning minor actinides and long lived fission products (FPs) without imposing penalties on core nuclear and safety characteristics. The excess neutrons generated in the fast reactor core are fully utilized not only to generate the fissile material but also to transmute the minor actinides and long lived FPs. The FP target assemblies which consist of Tc-99 and I-129 are loaded into the selected blanket positions whereas the minor actinides are loaded to the rest of the blanket. A long term FP accumulation scenario is also considered in the mix of FP burner fast reactor and non-burner LWRs. (author)

  4. Measurement and calculation of fast neutron flux in a zero-energy reactor

    International Nuclear Information System (INIS)

    Day, D.H.; Fox, W.N.; Hyder, H.R.

    1963-05-01

    An activation technique for measuring relative fast neutron fluxes is described which has some advantages over the normal method using U238 fission. The technique is based on the formation of Rh 103 after inelastic scattering of neutrons above 100 keV in energy. This isomer decays with a 57.4 minute half-life giving an easily measurable γ-activity. The energy dependence of the inelastic scattering cross-section of Rh 103 is similar to that of the fission cross-section of U 238 thus making the results of direct relevance to reactor calculations. Using the Rh 103 activation technique, measurements have been made of the fast neutron flux distribution in a typical pressure tube heavy water lattice and are compared in this report with theoretical calculations using the MONTE CARLO method. (author)

  5. The development of fast neutron reactors in France

    International Nuclear Information System (INIS)

    Petit, J.

    1983-01-01

    The French strategy is based on a coherent and carefully defined development program launched in 1950, each new stage of which is decided upon after the results of the preceding stage are analyzed. Rapsodie, the forst experimental reactor began operating in 1967 after more than 10 years of full scale test of its components. The in-pile fuel and component behaviour experience gained was put to immediate use for the design and out-of-pile tests of components for Phenix. Phenix is a prototype power generating demonstration reactor which has been operating since 1974. Rapsodie was developed for rigorous and statistical test of fuel behaviour. Super Phenix, the 1200 MWe reactor of the Creys Malville plant was ordered in 1977 and benefited from the 3 years operating experience gained with Phenix and the 10 years of operating experience acquired with Rapsodie. In 1986, after only one year of experience with Super Phenix, it is expected that all the parties involved in the financial and technical aspects of Super Phenix will be in the position to suggest the next stage in the development of large commercial plants to the government. The next reactor in the series, Super Phenix 2, is currently being studied

  6. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V., E-mail: vasudha.verma@physics.uu.se [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Barbot, L.; Filliatre, P. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Hellesen, C. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Jammes, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Svärd, S. Jacobsson [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2017-07-11

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment. - Highlights: • Studied possibility of using SPNDs as in-core detectors in SFRs. • Study done to detect local power profile changes when reactor is at nominal power. • SPND with a Pt-emitter gives measurable prompt current of the order of 600 nA/m. • Dominant proportion of prompt response is maintained throughout the operation. • Detector signal gives dynamic information on the power fluctuations.

  7. Calculation of fast neutron flux in reactor pressure tubes and experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, P. C. [Canadian General Electric (Canada)

    1968-07-15

    The computer program EPITHET was used to calculate the fast neutron flux (>1 MeV) in several reactor pressure tubes and experimental facilities in order to compare the fast neutron flux in the different cases and to provide a self-consistent set of flux values which may be used to relate creep strain to fast neutron flux . The facilities considered are shown below together with the calculated fast neutron flux (>1 MeV). Fast flux 10{sup 13} n/cm{sup 2}s: NPD 1.14, Douglas Point 2.66, Pickering 2.89, Gentilly 2.35, SGHWR 3.65, NRU U-1 and U-2 3.25'' pressure tube - 19 element fuel 3.05, NRU U-1 and U-2 4.07'' pressure tube - 28 element fuel 3.18, NRU U-1 and U-2 4.07'' pressure tube - 18 element fuel 2.90, NRX X-5 0.88, PRTR Mk I fuel 2.81, PRTR HPD fuel 3.52, WR-1 2.73, Mk IV creep machine (NRX) 0.85, Mk VI creep machine (NRU) 2.04, Biaxial creep insert (NRU U-49) 2.61.

  8. BCG: a code for calculating pointwise neutron spectra and criticality in fast reactor cells

    International Nuclear Information System (INIS)

    Leite, S.B.; Caldeira, A.D.; Garcia, R.D.M.

    1988-02-01

    The BCG code for determining the space and energy neutron flux distribution and criticality of fast reactor cylindrical cells is presented. The code solves the unidimensional neutron transport equation together with interface current relations at each energy in an unionized grid prepared for the cell and at an arbitrary number of spatial zones. While the spatial resolution is user specified, the energy dependence of the flux distribution is resolved according to the degree of variation in the reconstructed total microscopic cross sections of the atomic species in the cell. Results for a defined sample problem illustrate the high resolution and accuracy that can be obtained with the code. (author) [pt

  9. Some neutron absorbing elements and devices for fast nuclear reactors regulation systems

    International Nuclear Information System (INIS)

    Kervalishvili, P.J.

    2010-01-01

    It is shown that performed technological, physical-mechanical and radiation tests clearly indicate the prospects of using Neutron Absorbing Elements (NAE) based on B-10 and some rare-earth compounds during the creation of highly effective Control and Safety System (CSS) rods for fast neutron nuclear energetic reactors. Particular attention was paid to the development of new and upgrading of existing computing and real technologies for designing and preparing the optimizing NAE items characterized by all physical and strength properties for obtaining desirable operational parameters of CSS rods on their base

  10. BCG: a computer code for calculating neutron spectra and criticality in cells of fast reactors

    International Nuclear Information System (INIS)

    Leite, S.B.; Caldeira, A.D.; Garcia, R.D.M.

    1988-01-01

    The BCG code for determining the space and energy neutron flux distribution and criticality of fast reactor cylindrical cells is discussed. The code solves the unidimensional neutron transport equation together with interface current relations at each energy point in an unionized energy grid prepared for the cell and at an arbitrary number of spatial zones. While the spatial resolution is user specified, the energy dependence of the flux distribution is resolved according to the degree of variation in the reconstruced total microscopic cross sections of the atomic species in the cell. Results for a simplified fuel cell illustrate the high resolution and accuracy that can be obtained with the code. (author) [pt

  11. Energy-averaged neutron cross sections of fast-reactor structural materials

    International Nuclear Information System (INIS)

    Smith, A.; McKnight, R.; Smith, D.

    1978-02-01

    The status of energy-averaged cross sections of fast-reactor structural materials is outlined with emphasis on U.S. data programs in the neutron-energy range 1-10 MeV. Areas of outstanding accomplishment and significant uncertainty are noted with recommendations for future efforts. Attention is primarily given to the main constituents of stainless steel (e.g., Fe, Ni, and Cr) and, secondarily, to alternate structural materials (e.g., V, Ti, Nb, Mo, Zr). Generally, the mass regions of interest are A approximately 50 to 60 and A approximately 90 to 100. Neutron total and elastic-scattering cross sections are discussed with the implication on the non-elastic-cross sections. Cross sections governing discrete-inelastic-neutron-energy transfers are examined in detail. Cross sections for the reactions (n;p), (n;n',p), (n;α), (n;n',α) and (n;2n') are reviewed in the context of fast-reactor performance and/or diagnostics. The primary orientation of the discussion is experimental with some additional attention to the applications of theory, the problems of evaluation and the data sensitivity of representative fast-reactor systems

  12. Nitrogen determination in wheat by neutron activation analysis using fast neutron flux from a thermal nuclear reactor

    International Nuclear Information System (INIS)

    Ramirez G, T.

    1976-01-01

    This is a study of the technique for the determination of nitrogen and other elements in wheat flour through activation analysis with fast neutrons from a thermal nuclear reactor. The study begins with an introduction about the basis of the analytical methods, the equipment used in activation analysis and a brief description of the neutrons source. In the study are included the experiments carried out in order to determine the flux form in the site of irradiation, the N-13 half life and the interference due to the sample composition. (author)

  13. Neutronics - thermal-hydraulics coupling: application to the helium-cooled fast reactor

    International Nuclear Information System (INIS)

    Vaiana, F.

    2009-11-01

    This thesis focuses on the study of interactions between neutron-kinetics and thermal-hydraulics. Neutron-kinetics allow to calculate the power in a nuclear reactor and the temperature evolution of materials where this power is deposited is known thanks to thermal-hydraulics. Moreover, when the temperatures evolve, the densities and cross sections change. These two disciplines are thus coupled. The first part of this work corresponds to the study and development of a method which allows to simulate transients in nuclear reactors and especially with a Monte-Carlo code for neutron-kinetics. An algorithm for the resolution of the neutron transport equation has been established and validated with a benchmark. In thermal-hydraulics, a porous media approach, based on another thesis, is considered. This gives the opportunity to solve the equations on the whole core without unconscionable computation time. Finally, a theoretical study has been performed on the statistical uncertainties which result from the use of a Monte-Carlo code and which spread from the reactivity to the power and from the power to the temperatures. The second part deals with the study of a misplaced control rod withdrawing in a GFR (helium-cooled fast reactor), a fourth generation reactor. Some models allowing to calculate neutron-kinetics and thermal-hydraulics in the core (which contains assemblies built up with fuel plates) were defined. In thermal-hydraulics, a model for the core based on the porous media approach and a fuel plate homogenization model have been set up. A similar homogenization model has been studied for neutron-kinetics. Finally, the control rod withdrawing transient where we can observe the power raising and the stabilisation by thermal feedback has been performed with the Monte-Carlo code Tripoli for neutron-kinetics and the code Trio-U for thermal-hydraulics. (author)

  14. Fast neutron fluence evaluation of the smart reactor pressure vessel by using the GEOSHIELD code

    International Nuclear Information System (INIS)

    Kim, K.Y.; Kim, K.S.; Kim, H.Y.; Lee, C.C.; Zee, S.Q.

    2007-01-01

    In Korea, the design of an advanced integral reactor system called SMART has been developed by KAERI to supply energy for seawater desalination as well as an electricity generation. A fast neutron fluence distribution at the SMART reactor pressure vessel was evaluated to confirm the integrity of the vessel by using the GEOSHIELD code. The GEOSHIELD code was developed by KAERI in order to prepare an input list including a geometry modeling of the DORT code and to process results from the DORT code output list. Results by a GEOSHIELD code processing and by a manual processing of the DORT show a good agreement. (author)

  15. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  16. Measurement of thermal, epithermal and fast neutrons fluxes by the activation foil method at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Berretta, J.R.; Fratin, L.; Botelho, S.

    1990-01-01

    The thermal, epithermal and fast neutron fluxes have been determined experimentally by the activation foil method at position GI, located near the IEA-R1 reactor core. The reactions used were 197 Au (n,gamma) 198 Au, for thermal and epithermal neutrons and 27 Na (n,alpha) 24 Na, for fast neutrons. The activities were measured by the 4π(PC)β-γ coincidence method. (author)

  17. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  18. Rapid response and wide range neutronic power measuring systems for fast pulsed reactors

    International Nuclear Information System (INIS)

    Sumita, Kenji; Iida, Toshiyuki; Wakayama, Naoaki.

    1976-01-01

    This paper summarizes our investigation on design principles of the rapid, stable and wide range neutronic power measuring system for fast pulsed reactors. The picoammeter, the logarithmic amplifier, the reactivity meter and the neutron current chamber are the items of investigation. In order to get a rapid response, the method of compensation for the stray capacitance of the feedback circuits and the capacitance of signal cables is applied to the picoammeter, the logarithmic amplifier and the reactivity meter with consideration for the stability margin of a whole detecting system. The response of an ionization current chamber and the method for compensating the ion component of the chamber output to get optimum responses high pass filters are investigated. Statistical fluctuations of the current chamber output are also considered in those works. The optimum thickness of the surrounding moderator of the neutron detector is also discussed from the viewpoint of the pulse shape deformation and the neutron sensitivity increase. The experimental results are reported, which were observed in the pulse operations of the one shot fast pulsed reactor ''YAYOI'' and the one shot TRIGA ''NSRR'' with the measuring systems using those principles. (auth.)

  19. Neutronics studies on the feasibility of developing fast breeder reactor with flexible breeding ratio

    International Nuclear Information System (INIS)

    Xiao Yunlong; Wu Hongchun; Zheng Youqi; Wang Kunpeng

    2016-01-01

    This paper investigates the feasibility of designing a flexible fast breeder reactor from the view of neutronics. It requires that the variable breeding ratio can be achieved in operating a fast reactor without significant changes of the core, including the minimum change of fuel assembly design, the minimum change of the core configuration and the same control system arrangement in the core. The sodium cooled fast reactor is investigated. Two difficulties are overcome: (1) the different excess reactivity is well controlled for different cores, especially for the one with small breeding ratio; (2) the maximum linear power density is well controlled while the breeding ratio changes. The optimizations are done to meet the requirements. The U–Pu–Zr alloy is applied to enhance the breeding. The enrichment-zoning technique with unfixed blanket assembly loading position is searched to get acceptable power distributions when the breeding ratio changes. And the control system is designed redundantly to fulfill the control needs. Then, the achieved breeding ratio can be adjusted from 1.1 to 1.4. The reactivity coefficients, temperature distributions and preliminary safety performances are evaluated to investigate the feasibility of the new concept. All the results show that it is feasible to develop the fast reactor with flexible breeding ratios, although it still highly relies on the advancement of the coolant flow control technology. (author)

  20. Fast-neutron dosimetry in the seed-irradiation facility, ASTRA reactor, Seibersdorf

    International Nuclear Information System (INIS)

    Ahnstroem, G.; Burtscher, A.; Casta, J.

    1967-01-01

    An important part of the co-ordinated programme on the neutron irradiation of seeds has been the construction of a fast-neutron irradiation facility for swimming-pool reactors. This facility was installed around 70 cm from the core in the ASTRA reactor swimming-pool at the end of December, 1966. Also, for this programme a pair of constant potential ionization chambers have been constructed at the Institute of Biochemistry, Stockholm University. These chambes are of the type described in the technical annex and are the same size as the seed-irradiation vials to be used in the seed-irradiation container (diam. =15 mm, length = 60 mm). Some preliminary dosimetry experiments were undertaken to test the irradiation facility and the ionization chambers, and to investigate the usefulness of the dosimetry instructions in the Technical Annex. The results of these experiments are discussed in this paper. 3 refs, 6 figs, 7 tabs

  1. Developments and application of neutron noise diagnostics of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Zylbersztejn, F.

    2013-01-01

    The Sodium cooled Fast Reactor (SFR) is one of the six reactor types selected by the Generation-IV international forum (GIF), and the building of an industrial prototype is planned in France. The safety standard of the future SFR has to be equivalent to the EPR's. The general improvement of the safety of the new reactor goes through the examination of all the potentially harmful scenarios and both the study and monitoring of early signs. The mechanical deformations of the core can have harmful consequences in sodium fast reactors, such as unexpected power variations due to the reactivity increase in case of core compaction, or the excessive deterioration of the mechanical structures. The monitoring of such phenomena and of their potential early signs is then needed. The monitoring of such phenomena can be done with neutron detectors placed inside and outside the tank. This PhD thesis deals with the study of the neutron noise generated by the periodic deformation of the SFR core, restricted to the so-called core compaction or core flowering phenomenon, a deformation consisting in the variation of the inter-assembly sodium width by a radial bending the assemblies (the assemblies in SFR are held by the base). The PhD thesis has been performed within collaboration between CEA (France) and Chalmers Institute of Technology (Sweden). The work realized during the thesis led to the publication of 3 articles as first author and another as second author. This work has embraced the following topics: A state of the art of the monitoring of the core deformation phenomenon by interpretation of the noise measurements in SFR has been done. The PHENIX reactor multi physics measurements database has been scrutinized to provide an interpretation of the neutron noise bringing out mechanical vibration phenomena. An important conclusion was that the lack of theoretical knowledge about the neutron noise induced by the vibration phenomenon and the ill positioning of the neutron detectors

  2. Neutronic design for a 100MWth Small modular natural circulation lead or lead-alloy cooled fast reactors core

    International Nuclear Information System (INIS)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q.

    2015-01-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW th natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  3. Field test and evaluation of the passive neutron coincidence collar for prototype fast reactor fuel subassemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Keddar, A.

    1982-08-01

    The passive neutron Coincidence Collar, which was developed for the verification of plutonium content in fast reactor fuel subassemblies, has been field tested using Prototype Fast Reactor fuel. For passive applications, the system measures the 240 Pu-effective mass from the spontaneous fission rate, and in addition, a self-interrogation technique is used to determine the fissile content in the subassembly. Both the passive and active modes were evaluated at the Windscale Works in the United Kingdom. The results of the tests gave a standard deviation 0.75% for the passive count and 3 to 7% for the active measurement for a 1000-s counting time. The unit will be used in the future for the verification of plutonium in fresh fuel assemblies

  4. Fast neutron dosimetry in research reactors; Dosimetrie en neutrons rapides dans les reacteurs de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This work chiefly concerns the measurement of fast neutron fluxes by means of threshold detectors. It is shown first that the cross sections to use for measurements by threshold detectors depend largely on the neutron spectrum, that is the position in which the measurement is performed. The spectrum is determined by calculation for several positions in the piles EL2 and EL3; from this can be deduced the cross-sections to be used for the measurements carried out in these positions. In the last part of the report, possible methods for the experimental determination of the spectrum are indicated. (author) [French] On etudie principalement la mesure des flux de neutrons rapides a l'aide de detecteurs a seuil. On montre d'abord que les sections efficaces a utiliser pour les mesures par detecteurs a seuil, dependent grandement du spectre des neutrons, c'est-a-dire de l'emplacement ou s'effectue la mesure. La determination du spectre est effectuee par le calcul pour plusieurs emplacements des piles EL2 et EL3; on en deduit les sections efficaces a utiliser pour les mesures effectuees a ces emplacements. Dans la derniere partie du rapport, on indique quelles methodes sont possibles pour la determination experimentale du spectre. (auteur)

  5. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  6. NEUTRONIC REACTOR

    Science.gov (United States)

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  7. Neutronic and thermal hydraulic assessment of fast reactor cooling by water of super critical parameters

    International Nuclear Information System (INIS)

    Baranaev, Yu. D.; Glebov, A. P.; Ukraintsev, V. F.; Kolesov, V. V.

    2007-01-01

    Necessity of essential improvement of competitiveness for reactors on light water determines development of new generation power reactors on water of super critical parameters. The main objective of these projects is reaching of high efficiency coefficients while decreasing of investment to NPP and simplification of thermal scheme and high safety level. International programme of IV generation in which super critical reactors present is already started. In the frame of this concept specific Super Critical Fast Reactor with tight lattice of pitch is developing by collaboration of the FEI and IATE. In present article neutronic and thermal hydraulic assessment of fast reactor with plutonium MOX fuel and a core with a double-path of super critical water cooling is presented (SCFR-2X). The scheme of double path of coolant via the core in which the core is divided by radius on central and periphery parts with approximately equal number of fuel assemblies is suggested. Periferia part is cooling while down coming coolant movement. At the down part of core into the mix chamber flows from the periphery assemblies joining and come to the inlet of the central part which is cooling by upcoming flow. Eight zone of different content of MOX fuel are used (4 in down coming and 4 in upcoming) sub zones. Calculation of fuel burn-up and approximate scheme of refueling is evaluated. Calculation results are presented and discussed

  8. Contributions to the neutronic analysis of a gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Reyes-Ramirez, Ricardo; Francois, Juan-Luis; Reinking-Cejudo, Arturo G.

    2011-01-01

    Highlights: → Differences on reactivity with MCNPX and TRIPOLI-4 are negligible. → Fuel lattice and core criticality calculations were done. → A higher Doppler coefficient than coolant density coefficient. → Zirconium carbide is a better reflector than silicon carbide. → Adequate active height, radial size and reflector thickness were obtained. - Abstract: In this work the Monte Carlo codes MCNPX and TRIPOLI-4 were used to perform the criticality calculations of the fuel assembly and the core configuration of a gas-cooled fast reactor (GFR) concept, currently in development. The objective is to make contributions to the neutronic analysis of a gas-cooled fast reactor. In this study the fuel assembly is based on a hexagonal lattice of fuel-pins. The materials used are uranium and plutonium carbide as fuel, silicon carbide as cladding, and helium gas as coolant. Criticality calculations were done for a fuel assembly where the axial reflector thickness was varied in order to find the optimal thickness. In order to determine the best material to be used as a reflector, in the reactor core with neutrons of high energy spectrum, criticality calculations were done for three reflector materials: zirconium carbide, silicon carbide and natural uranium. It was found that the zirconium carbide provides the best neutron reflection. Criticality calculations using different active heights were done to determine the optimal height, and the reflector thickness was adjusted. Core criticality calculations were performed with different radius sizes to determine the active radial dimension of the core. A negative temperature coefficient of reactivity was verified for the fuel. The effect on reactivity produced by changes in the coolant density was also evaluated. We present the main neutronic characteristics of a preliminary fuel and core designs for the GFR concept. ENDF-VI cross-sections libraries were used in both the MCNPX and TRIPOLI-4 codes, and we verified that the

  9. Measurement of thermal, epithermal and fast neutron flux in the IEA-R1 reactor by the foil activation method

    International Nuclear Information System (INIS)

    Koskinas, M.F.

    1979-01-01

    Experimental and theoretical details of the foil activation method applied to neutrons flux measurements at the IEA-R1 reactor are presented. The thermal - and epithermal - neutron flux were determined form activation measurements of gold, cobalt and manganese foils; and for the fast neutron flux determination, aluminum, iron and nickel foils were used. The measurements of the activity induced in the metal foils were performed using a Ge-Li gamma spectrometry system. In each energy range of the reactor neutron spectrum, the agreement among the experimental flux values obtained using the three kind of materials, indicates the consistency of the theoretical approach and of the nuclear parameters selected. (Author) [pt

  10. Improvement to surface lagging systems in a nuclear reactor, particularly of the fast neutron type

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1979-01-01

    Improvements to surface lagging systems in a nuclear reactor, particularly of the fast neutron kind. This system is composed of an assembly of panels each formed of a stack of metal fabric or trellis held against the surface to be protected, by a double fixing system comprising (a) a tubular component passing through a hole in the panel and applying it against the surface through a bearing plate, and (b) a bolt fitted in the centre of the tubular component, also secured to the surface and holding a washer capable of preventing the fall of the tubular component and the panel should the tubular component fracture [fr

  11. Forced convection boiling of sodium. Study carried out in the framework of fast neutrons reactors safety

    International Nuclear Information System (INIS)

    Charlety, Paul

    1971-01-01

    Within the framework of the safety of fast neutron reactors, this research thesis reports the study of sodium boiling in order to assess safety margins, and to predict the consequences of some accidents. The author thus addresses issues related to sodium boiling by notably focussing on boiling physics. He first defines these issues and presents the adopted approach for this research, and then describes the experimental installation. He reports the experimental study which comprised different types of tests, and presents experimental results. He reports the development of a calculation model which could report phenomena which have been experimentally noticed [fr

  12. Formulary for neutron propagation in sodium-steel media for the fast reactor shields

    International Nuclear Information System (INIS)

    Bouteau, F.; Caumette, P.; Khairallah, A.; Oceraies, Y.; Devillers, C.

    1975-01-01

    The simplified calculational tool (''formulary'') for neutron propagation in the shields of fast reactors, being developed at CEA, has two objectives: to reduce the cost of the major part of design calculations, without a significant loss of accuracy; to facilitate the adjustment of the calculational tool with the results of the program of integral propagation experiments, which is conducted in parallel with the development of the calculational method. The version 0 (i.e. before any adjustment) of the formulary and a first test of its validity as compared to the results of integral measurements are presented [fr

  13. [Present conceptions of the C.E.A. concerning] the development of fast neutron reactors in France

    International Nuclear Information System (INIS)

    Vendryes, G.; Gaussens, J.

    1964-01-01

    1 - The position of fast neutron reactors in the French nuclear energy program. In developing a program based on natural uranium, France will have an important stock of plutonium rich in higher isotopes. The existence of this plutonium and of the depleted uranium arising from the same reactors, has, as a logical consequence, the use of both in fast neutron reactors. Justified by this short term interest, the achievement of fast neutron reactors does, moreover, provide for a future necessity. 2 - Description of a fast neutron central power station of 1000 MWe. We indicate the characteristics of a future fast neutron central power station, plutonium fuelled, and sodium cooled. However uncertain these characteristics may be, they constitute a necessary guide in the orientation of our work. 3 - Studies carried out up to the present time. We give an outline of those studies, often very preliminary, which have given the characteristics cited above. The principal technical areas taken up are the following: - Neutronics (critical masses, breeding ratios, enrichments, flattening of the neutron flux, coefficients of reactivity, reactivity changes as a function of irradiation). - Dynamics, control, and safety. - Technology (design of the core and vessel, of the sodium system, and of the fuel handling mechanisms). These technical studies are complemented by economic considerations. The choice of the optimum characteristics is related to the existence of power production programs, and, in these programs, to the existence of plutonium producing thermal reactors. It is shown how, in this context, the existence of plutonium should be taken into account, and, in addition which mechanisms relate the economics of this plutonium to the choice of the most important parameters of the breeder reactors. 4 - Prototype reactor. The interest in an intermediate stage consisting of a reactor of a power level of about 80 MWe is justified. Its essential characteristics are briefly presented

  14. The fast neutrons reactors, the sodium, the fuel cycle: evaluation of the knowledge, innovation potential and forecast

    International Nuclear Information System (INIS)

    Moreau, J.

    2002-01-01

    This document presents the study, the design and the construction of fast neutrons reactors, cooled with sodium. From this evaluation, it details the innovation possibilities of this sector in the sustainable development context of the nuclear energy. Chapter one presents the physical and physico-chemical properties of the sodium. Chapter two analyzes the properties of the fast cores and the sodium advantages. Chapter three analyzes the great contribution of the EFR project. Chapter four takes stock on the innovation possibilities. And before the conclusion, chapter five shows that the fast neutrons reactors allow the electric power production in agreement with a sustainable development. (A.L.B.)

  15. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  16. The CABRI fast neutron Hodoscope: Renovation, qualification program and first results following the experimental reactor restart

    Science.gov (United States)

    Chevalier, V.; Mirotta, S.; Guillot, J.; Biard, B.

    2018-01-01

    The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA). For the purpose of the CABRI International Program (CIP), managed and funded by IRSN, in the framework of an OECD/NEA agreement, a huge renovation of the facility has been conducted since 2003. The Cabri Water Loop was then installed to ensure prototypical Pressurized Water Reactor (PWR) conditions for testing irradiated fuel rods. The hodoscope installed in the CABRI reactor is a unique online fuel motion monitoring system, operated by IRSN and dedicated to the measurement of the fast neutrons emitted by the tested rod during the power pulse. It is one of the distinctive features of the CABRI reactor facility, which is operated by CEA. The system is able to determine the fuel motion, if any, with a time resolution of 1 ms and a spatial resolution of 3 mm. The hodoscope equipment has been upgraded as well during the CABRI facility renovation. This paper presents the main outcomes achieved with the hodoscope since October 2015, date of the first criticality of the CABRI reactor in its new Cabri Water Loop configuration. Results obtained during reactor commissioning phase functioning, either in steady-state mode (at low and high power, up to 23 MW) or in transient mode (start-up, possibly beyond 20 GW), are discussed.

  17. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    Science.gov (United States)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  18. Fast neutron reactor core research at the C.E.A

    International Nuclear Information System (INIS)

    Chaudat, J.-P.

    1978-05-01

    This report covers all physical studies of fast neutron reactors carried out by the C.E.A., to povide basic data (multi-group cross sections) and computer methods which may be used to calculate nuclear power plant neutron properties with the precision required by the project. The approach adopted to establish the basic data used in all core calculations is described in greated detail: choice of a reference procedure for basic mode calculations (CARNAVAL set), choice of particular experimental programs to reduce uncertainties in connection with the formula set, adjustement of cross sections on integral parameters measured on critical experiments. The development of the formula set is closely connected with the project requirements; hence the set is modified with respect to the core characteristics of the power plant studied. Following an explanation of how the CARNAVAL III and IV formula sets -used for PHENIX and SUPER-PHENIX respectively- were derived, current studies for heterogeneous cores are described [fr

  19. Electrical properties of InP irradiated by fast neutrons of a nuclear reactor

    International Nuclear Information System (INIS)

    Kolin, N.G.; Merkurisov, D.I.; Solov'ev, S.P.

    2000-01-01

    Electrophysical properties of InP single crystalline samples with different initial concentration of charge carriers have been studied in relation to irradiation conditions with fast neutrons of a nuclear reactor and subsequent heat treatments within the temperature range of 20-900 deg C. It has been shown that changes of the properties depend on the initial doping level. The annealing in the temperature range mentioned above results in the elimination of radiation defects. This makes possible to use the nuclear doping method for InP samples. In this respect the contribution of intermediate neutron reactions to the whole effect of the InP nuclear doping is estimated to be ∼ 10% [ru

  20. Fast neutron flux in heavy water reactors; Flux de neutrons rapides dans les piles a eau lourde

    Energy Technology Data Exchange (ETDEWEB)

    Brisbois, J; Katz, S [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)

    1966-07-01

    The possibility of calculating the fast neutron flux in a natural uranium-heavy water lattice by superposition of the individual contributions of the different fuel elements was verified using a one-dimension Monte-Carlo code. The results obtained are in good agreement with experimental measurements done in the core and reflector of the reactor AQUILON. (author) [French] La possibilite de calculer le flux de neutrons rapides dans un reseau d'uranium naturel a eau lourde par superposition des apports des divers barreaux, a ete verifiee en utilisant un code Monte-Carlo monodimensionel. Les resultats obtenus concordent avec des mesures experimentales effectuees dans le coeur et reacteur de la pile Aquilon. (auteurs)

  1. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    International Nuclear Information System (INIS)

    Friess, Friederike Renate

    2017-01-01

    should make them attractive for remote areas or electrical grids that are not large enough to support a standard-sized nuclear power plant. The last application of fast reactors this thesis investigates promises a solution to the problem of the radioactive waste from nuclear energy production. The separation of the spent fuel in different material streams (partitioning) and the irradiation of minor actinides in a fast neutron spectrum (transmutation) is claimed to solve this problem. Implementation of partitioning and transmutation (P and T) would require centuries of dedicated efforts, since several irradiation cycles and repeated reprocessing of the spent fuel elements between the irradiation cycles would be necessary. For all three applications, computer models of exemplary reactor systems were set up to perform criticality, depletion, and dose rate calculations. Based on the results, a specific critique on the viability of these fast reactor applications was conducted. Possible risks associated with their deployment were investigated.

  2. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike Renate

    2017-07-12

    should make them attractive for remote areas or electrical grids that are not large enough to support a standard-sized nuclear power plant. The last application of fast reactors this thesis investigates promises a solution to the problem of the radioactive waste from nuclear energy production. The separation of the spent fuel in different material streams (partitioning) and the irradiation of minor actinides in a fast neutron spectrum (transmutation) is claimed to solve this problem. Implementation of partitioning and transmutation (P and T) would require centuries of dedicated efforts, since several irradiation cycles and repeated reprocessing of the spent fuel elements between the irradiation cycles would be necessary. For all three applications, computer models of exemplary reactor systems were set up to perform criticality, depletion, and dose rate calculations. Based on the results, a specific critique on the viability of these fast reactor applications was conducted. Possible risks associated with their deployment were investigated.

  3. Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, D.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Tsang, K.T. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Laughton, P.J

    1998-09-01

    Detailed radiation physics calculations of energy deposition have been done for the coolant of CANDU reactors and Pressurized Water Reactors (PWRs). The geometry of the CANDU fuel channel was modelled in detail. Fluxes and energy-deposition rates for neutrons, recoil ions, photons, and fast electrons have been calculated using MCNP4B, WIMS-AECL, and specifically derived energy-transfer factors. These factors generate the energy/flux spectra of recoil ions from fast-neutron energy/flux spectra. The energy spectrum was divided into 89 discrete ranges (energy bins).The production of oxidizing species and net coolant radiolysis can be suppressed by the addition of hydrogen to the coolant of nuclear reactors. It is argued that the net dissociation of coolant by gamma rays is suppressed by lower levels of excess hydrogen than when dissociation is by ion recoils. This has consequences for the modelling of coolant radiolysis by homogeneous kinetics. More added hydrogen is required to stop water radiolysis by recoil ions acting alone than if recoil ions and gamma rays acted concurrently in space and time. Homogeneous kinetic models and experimental data suggest that track overlap is very inefficient in providing radicals from gamma-ray tracks to recombine molecular products in ion-recoil tracks. An inhomogeneous chemical model is needed that incorporates ionizing-particle track structure and track overlap. Such a model does not yet exist, but a number of limiting cases using homogeneous kinetics are discussed. There are sufficient uncertainties and contradictions in the data relevant to the radiolysis of reactor coolant that the relatively high CHC's (critical hydrogen concentration) observed in NRU reactor experiments (compared to model predictions) may be explainable by errors in fundamental data and understanding of water radiolysis under reactor conditions. The radiation chemistry program at CRL has been focused to generate quantitative water-radiolysis data in a

  4. The fast neutron facility at the research reactor Munich. Determination of the beam quality and medical applications

    International Nuclear Information System (INIS)

    Wagner, F. M.; Koester, L.

    1990-01-01

    At the research reactor FRM, fast and epithermal neutron beams are generated by a thermal-to-fast neutron converter and/or near core scatterers. The dosimetry and spectroscopy of the resulting intense mixed beams of neutron and gamma radiation with a wide range of energies set spetial tasks for neutron dosimetry and spectroscopy. The twin chamber method and some others are briefly described. Neutron spectroscopy is performed by a Li-6 sandwich spectrometer covering the full neutron spectrum of a well-collimated mixed beam from about 20 keV to 8 MeV. The data registration is assisted by a microcomputer which generates sum and triton spectra on-line. Sum analysis is applied to neutron energies greater than 0.3 MeV; the intermediate neutron spectrum is evaluated by unfolding of the triton spectrum. Moreover, a brief overview of the reactor neutron therapy (RENT) at the FRM is given. After a number of animal experiments for the determination of the biological effectiveness relative to X-rays, clinical irradiations have been started in 1985. The most important indications for RENT are listed. 140 patients with bad prognoses have been treated since. The average tumour control rate of 60% is surprisingly high. Possibilities for an assisting Boron Neutron Capture Therapy (BNCT) are shown. 8 figs., 23 refs

  5. Fast neutron fields at the RB reactor; Polja brzih neutron na reacktoru RB

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P; Pesic, M; Dasic, N [Institut za nuklearne nauke Boris Kidric Vinca, Beograd (Yugoslavia)

    1984-07-01

    Paper deals with the reasons and methods of realization of the RB neutron converters. The methods and results of neutron flux intensities and spectra measurements as well as gamma dose determination are presented. (author)

  6. Calculation of the neutron noise induced by periodic deformations of a large sodium-cooled fast reactor core

    International Nuclear Information System (INIS)

    Zylbersztejn, F.; Tran, H.N.; Pazsit, I.; Filliatre, P.; Jammes, C.

    2014-01-01

    The subject of this paper is the calculation of the neutron noise induced by small-amplitude stationary radial variations of the core size (core expansion/compaction, also called core flowering) of a large sodium-cooled fast reactor. The calculations were performed on a realistic model of the European Sodium Fast Reactor (ESFR) core with a thermal output of 3600 MW(thermal), using a multigroup neutron noise simulator. The multigroup cross sections and their fluctuations that represent the core geometry changes for the neutron noise calculations were generated by the code ERANOS. The space and energy dependences of the noise source represented by the core expansion/compaction and the induced neutron noise are calculated and discussed. (authors)

  7. Fast neutron spectroscopy by gas proton-recoil methods at the light water reactor pressure vessel simulator

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1980-10-01

    Fast neutron spectrum measurements were made in a Light Water Reactor (LWR) Pressure Vessel Simulator (PVS) to provide neutron spectral definition required to appropriately perform and interpret neutron dosimetry measurements related to fast neutron damage in LWR-PV steels. Proton-recoil proportional counter methods using hydrogen and methane gas-filled detectors were applied to obtain the proton spectra from which the neutron spectra were derived. Cylindrical and spherical geometry detectors were used to cover the neutron energy range between 50 keV and 2 MeV. Results show that the neutron spectra shift in energy distribution toward lower energy between the front and back of a PVS. The relative neutron flux densities increase in this energy range with increasing thickness of the steel. Neutron spectrum fine structure shapes and changes are observed. These results should assist in the generation of more accurate effective cross sections and fluences for use in LWR-PV fast neutron dosimetry and materials damage analyses

  8. Safety requirements and options for a large size fast neutron reactor

    International Nuclear Information System (INIS)

    Cogne, F.; Megy, J.; Robert, E.; Benmergui, A.; Villeneuve, J.

    1977-01-01

    Starting from the experience gained in the safety evaluation of the PHENIX reactor, and from results already obtained in the safety studies on fast neutron reactors, the French regulatory bodies have defined since 1973 what could be the requirements and the recommendations in the matter of safety for the first large size ''prototype'' fast neutron power plant of 1200 MWe. Those requirements and recommendations, while not being compulsory due to the evolution of this type of reactors, will be used as a basis for the technical regulation that will be established in France in this field. They define particularly the care to be taken in the following areas which are essential for safety: the protection systems, the primary coolant system, the prevention of accidents at the core level, the measures to be taken with regard to the whole core accident and to the containment, the protection against sodium fires, and the design as a function of external aggressions. In applying these recommendations, the CREYS-MALVILLE plant designers have tried to achieve redundancy in the safety related systems and have justified the safety of the design with regard to the various involved phenomena. In particular, the extensive research made at the levels of the fuel and of the core instrumentation makes it possible to achieve the best defence to avoid the development of core accidents. The overall examination of the measures taken, from the standpoint of prevention and surveyance as well as from the standpoint of means of action led the French regulatory bodies to propose the construction permit of the CREYS MALVILLE plant, provided that additional examinations by the regulatory bodies be made during the construction of the plant on some technological aspects not fully clarified at the authorization time. The conservatism of the corresponding requirements should be demonstrated prior to the commissioning of the power plant. To pursue a programme on reactors of this type, or even more

  9. Report of Inquiry Commission (1) on Superphenix and the fast neutron reactor system. Vol. 2. Hearings

    International Nuclear Information System (INIS)

    Galley, Robert; Bataille, Christian

    1998-01-01

    This document is a two-volume report, made on behalf of the Inquiry Commission of French National Assembly, concerning the issue of Superphenix and the fast neutron reactor system. The first volume contains the report while the second presents the accounts of 27 hearings in the Inquiry Commission. Questions concerning the technical aspects, costs of decommissioning operations, environment and social impacts, etc, are addressed and discussed with officials implied in nuclear safety, environment protection, science and technology, trade unions, education, atomic energy agency, military applications, industry and commerce. The conclusions drawn from these hearings were synthesized in the volume one of the report submitted to the French National Assembly by the Inquiry Commission

  10. Evaluation of neutron streaming in fast breeder reactor fuel assembly by double heterogeneous modelling

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Takeda, Toshikazu

    1988-01-01

    Neutron streaming in a fast breeder reactor fuel assembly caused by the double heterogeneity structure is estimated by double heterogeneous modelling. The conventional pin cell model, a two-region subassembly model and the exact pin cluster model are used to take into account the streaming effect caused by the pin cell structure and the surrounding wrapper tube structure. The heterogeneity of wrapper tube and its surrounding sodium is explicitly considered. The streaming effect is evaluated based on Benoist's diffusion coefficient. The total streaming effect caused by the double heterogeneity structure of a fuel subassembly is found to be -0.2 % dk/kk' for k eff , which is almost twice that obtained from the conventional pin cell model of -0.1 % dk/kk'. (author)

  11. Uranium and thorium cycles for sodium fast reactors: Neutronic aspects and associated wastes

    International Nuclear Information System (INIS)

    Brizi, J.

    2010-10-01

    Sodium fast reactors (SFR-Na) with uranium 238/plutonium 239(U/Pu) cycle, its technical feasibility has already proven, allow to overcome the problem of natural uranium resources in achieving the regeneration of the fuel fissile element. In addition, a waste management can be performed to reduce the radiotoxicity of actinides produced by the reactor in transmuting the AM in the core (homogeneous transmutation). Another alternative to minimize waste is to use another couple fertile-fissile: the thorium 232 and the uranium 233 (Th/U). The comparison is performed on neutronic and safety aspects and on waste production, in using an evolutive Monte Carlo. Although one does not disclose real clear advantages concerning the radiotoxicity of wastes for a particular cycle, the Th/U cycle reduces the radiotoxicity during periods when it is the highest. The homogeneous transmutation minimizes significantly for both cycles, radiotoxicity of wastes, with different factors depending on the considered time period. However, it is done to the detriment of an important increase of AM in the core. If we consider the nuclear stop, the inventory of the reactor core becomes a waste. The gain provided by the transmutation, taking into account both the core and accumulated waste radio-toxicities, will be quantified, and shows the transmutation does not provide a significant gain if the burning of main fissile elements is not considered when the nuclear is stopped. (author)

  12. Neutronics aspects associated to irregular lattices in sodium fast reactors cores

    International Nuclear Information System (INIS)

    Gentili, Michele

    2015-01-01

    The fuel assemblies of SFR cores (sodium fast reactors) are normally arranged in hexagonal regular lattices, whose compactness is ensured in nominal operating conditions by thermal expansion of assemblies pads disposed on the six assembly wrapper faces. During the reactor operations, thermal expansion phenomena and irradiation creep phenomena occur and they cause the fuel assemblies to bow and to deform both radially and axially. The main goal of this PhD is the understanding of the neutronic aspects and phenomena occurring in case of core and lattice deformations, as much as the design and implementation of deterministic neutronic calculation schemes and methods in order to evaluate the consequences for the core design activities and the safety analysis. The first part of this work is focused on the development of an analytical model with the purpose to identify the neutronic phenomena that are the main contributors to the reactivity changes induced by lattice and core deformations. A first scheme based on the spatial mesh projection method has been conceived and implemented for the ERANOS codes (BISTRO, H3D and VARIANT) and to the SNATCH solver. The second calculation scheme propose is based on mesh deformation: the computing mesh is deformed as a function of the assembly displacement field. This methodology has been implemented for the solver SNATCH, which normally allows the Boltzmann equation to be solved for a regular mesh. Finally, an iterative method has been developed in order to fulfill an a-priori estimation of the maximal reactivity insertion as a function of the postulated mechanical energy provided to the core, as much as the deformation causing it. (author) [fr

  13. Importance of the (n,gamma) Cm-247 Evaluation on Neutron Emission in Fast Reactor Fuel Cycle Analysis

    International Nuclear Information System (INIS)

    Benoit Forget; Mehdi Asgari; Rodolfo M. Ferrer

    2007-01-01

    As part of the GNEP program, it is envisioned to build a fast reactor for the transmutation of minor actinides. The spent nuclear fuel from the current fleet of light water reactors would be recycled, the current baseline is the UREX+1a process, and would act as a feed for the fast reactor. As the fuel is irradiated in a fast reactor a certain quantity of minor actinides would thus build up in the fuel stream creating possible concerns with the neutron emission of these minor actinides for fuel transportation, handling and fabrication. Past neutronic analyses had not tracked minor actinides above Cm-246 in the transmutation chain, because of the small influence on the overall reactor performance and cycle parameters. However, when trying to quantify the neutron emission from the recycled fuel with high minor actinide content, these higher isotopes play an essential role and should be included in the analysis. In this paper, the influence of tracking these minor actinides on the calculated neutron emission is presented. Also presented is the particular influence of choosing a different evaluated cross section data set to represent the minor actinides above Cm-246. The first representation uses the cross-sections provided by MC2-2 for all isotopes, while the second representation uses infinitely diluted ENDF/BVII.0 cross-sections for Cm-247 to Cf-252 and MC2-2 for all other isotopes

  14. Processing requirements for property optimization of Eu2O3-W cermets for fast reactor neutron absorber applications

    International Nuclear Information System (INIS)

    Pasto, A.E.; Tennery, V.J.

    1977-01-01

    Europium sesquioxide is a candidate fast reactor neutron absorber material. It possesses several desirable characteristics for this application, but has a low thermal conductivity. This gives rise to pellet cracking during reactor operation. To increase the thermal conductivity without great sacrifice in nuclear worth, addition of tungsten to Eu 2 O 3 has been evaluated. Synthesis and fabrication techniques described allow preparation of high density compacts of Eu 2 O 3 -15 vol. percent tungsten, possessing favorable thermal conductivity and thermal expansion characteristics

  15. A pulsed fast reactor; Un reacteur pulse a neutrons rapides; Impul'snyj reaktor na bystrykh nejtronakh; Reactor rapido pulsado

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, G. E.; Blokhintsev, D. I.; Blyumkina, Yu. A.; Bondarenko, I. I.; Deryagin, B. N.; Zajmovskij, A. S.; Zinov' ev, V. P.; Kazachkovskij, O. D.; Krasnoyarov, N. V.; Lejpunskij, A. I.; Malykh, V. A.; Nazarov, P. M.; Nikolaev, S. K.; Stavisskij, Yu. Ya.; Ukraintsev, F. I.; Frank, I. M.; Shapiro, F. Ji.; Yazvitskij, Yu. S. [Akademiya Nauk, Moscow, SSSR (Russian Federation)

    1962-03-15

    A pulsed fast reactor (IBR) has been operating at rated capacity since December 1960 in the Joint Institute for Nuclear Research. This reactor is used as a pulsed neutron source for physical experiments carried out by the time-of-flight method. It is used for total cross-section and intermediate neutron capture cross- section measurements, for studying the interaction between slow neutrons and solids and liquids, and for measuring neutron spectra produced in various media. The paper describes the basic structural features of the reactor and the results of the experiments for which it has been used. The reactor's operating system is based on recurrent pulses. Power pulses are produced when the mobile part of the reactor core moves swiftly through the stationary part of the core. The mobile part of the core is fastened to a rotating disc and travels at a speed of 230 m/s. The frequency of power pulses can be altered by means of an auxiliary mobile zone which has a range of 2.3-88 pulses per second. The mean power of the reactor is 1 kW, and the half-width of the power pulse in 36 {mu}s. The reactor is provided with a control and safety system which ensures automatic maintenance of mean power and swift shutdown in the event of any operational irregularity. It is fitted with a system of evacuated-neutron-flight tubes used in time-of-flight experiments. The main tube is 1000 m in length. In the start-up process and during physical experiments carried out on the reactor, the influence on reactivity of displacing the controls and the mobile parts of the core was studied ; the length of the pulse was measured under various operating conditions, and power pulse amplitude fluctuations were studied. Further measurements were made to establish the lifetime of prompt neutrons, the effective fraction of delayed neutrons, and coefficients of reactivity. (author) [French] L'Institut unifie de recherches nucleaires dispose d'un reacteur puise a neutrons rapides (IBR), qui

  16. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor

    International Nuclear Information System (INIS)

    Ramirez G, T.

    1976-01-01

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  17. BN-800 as a new stage in development of fast neutron sodium cooled reactors

    International Nuclear Information System (INIS)

    Poplavskij, V.M.; Chebeskov, A.N.; Matveev, V.I.

    2004-01-01

    The role of fast reactors in the strategy of evolution of the nuclear power of Russia is discussed, BN-800 under construction, where unique technical and construction decisions are used, is viewed. Economical estimations of expenses with regard for all life cycle demonstrate that fast reactors may be no higher-priced than the most popular in the world water moderated reactors. Closing of nuclear fuel cycle of BN-800 makes possible decision of the problem of plutonium and actinide utilization, that makes the fast reactor more safety for the environment [ru

  18. Photon and fast neutron dosimetry using aluminium oxide thermoluminescence dosemeters in a pool-type research reactor

    International Nuclear Information System (INIS)

    Santos, J.P.; Marques, J.G.; Fernandes, A.C.; Osvay, M.

    2007-01-01

    Al 2 O 3 :Mg,Y thermoluminescence (TL) dosemeters were used to measure photon and fast neutron doses in the mixed radiation field of the Portuguese Research Reactor. The dosemeters were irradiated in core positions under a photon dose rate of the order of 10 4 Gy/h and a fast neutron flux in the range of 10 9 -10 11 n/cm 2 /s. In order to evaluate the ability of the TL dosemeters for mixed field dosimetry at the research reactor, the measurements were compared with results obtained via conventional methods. The agreement between the different methods is better than 13% for the determination of photon doses and within 5% for the determination of neutron fluxes in mixed fields

  19. Static feedback model for neutronic and thermodynamic simulation of fast reactors

    International Nuclear Information System (INIS)

    Waintraub, M.; Jachic, J.

    1985-01-01

    It is analysed the variation of the microscopic cross sections with neutronic spectra and temperature of materials for reactors such as SUPER-PHENIX. It was realized a parametric study of each spectral component, where the influence of each isotope was analysed separately. To include the Doppler effect and other important effects, neutronic and thermodynamic calculations in an iterative form were done allowing to determine neutron temperatures for fuel, structural material and coolant. (M.C.K.) [pt

  20. Fast reactor physics - an overview

    International Nuclear Information System (INIS)

    Lee, S.M.

    2004-01-01

    An introduction to the basic features of fast neutron reactors is made, highlighting the differences from the more conventional thermal neutron reactors. A discussion of important feedback reactivity mechanisms is given. Then an overview is presented of the methods of fast reactor physics, which play an important role in the successful design and operation of fast reactors. The methods are based on three main elements, namely (i) nuclear data bases, (ii) numerical methods and computer codes, and (iii) critical experiments. These elements are reviewed and the present status and future trends are summarized. (author)

  1. Cooling system for the connecting rings of a fast neutron reactor vessel

    International Nuclear Information System (INIS)

    Martin, J.-P.; Malaval, Claude

    1974-01-01

    A description is given of a cooling system for the vessel connecting rings of a fast neutron nuclear reactor, particularly of a main vessel containing the core of the reactor and a volume of liquid metal coolant at high temperature and a safety vessel around the main vessel, both vessels being suspended to a rigid upper slab kept at a lower temperature. It is mounted in the annular space between the two vessels and includes a neutral gas circuit set up between the wall of the main vessel to be cooled and that of the safety vessel itself cooled from outer. The neutral gas system comprises a plurality of ventilators fitted in holes made through the thickness of the upper slab and opening on to the space between the two vessels. It also includes two envelopes lining the walls of these vessels, establishing with them small section channels for the circulation of the neutral gas cooled against the safety vessel and heated against the main vessel [fr

  2. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  3. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  4. Hexagonal tube behaviour in fuel assemblies under neutron flux in a French fast neutron reactor core

    International Nuclear Information System (INIS)

    Bernard, A.; Ammann, P.

    This paper presents what is obtained in the field of the interpretation by calculation of the post irradiation examination of hexagonal tubes, and in the field of prevision by calculation of the behaviour of hexagonal tubes under fast flux [fr

  5. Fast Neutron Spectrum Potassium Worth for Space Power Reactor Design Validation

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tsiboulia, Anatoli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rozhikhin, Yevgeniy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, one was performed that consisted of uranium metal annuli surrounding a potassium-filled, stainless steel can. The outer diameter of the annuli was approximately 13 inches (33.02 cm) with an inner diameter of 7 inches (17.78 cm). The diameter of the stainless steel can was 7 inches (17.78 cm). The critical height of the configurations was approximately 5.6 inches (14.224 cm). The uranium annulus consisted of multiple stacked rings, each with radial thicknesses of 1 inch (2.54 cm) and varying heights. A companion measurement was performed using empty stainless steel cans; the primary purpose of these experiments was to test the fast neutron cross sections of potassium as it was a candidate for coolant in some early space power reactor designs.The experimental measurements were performed on July 11, 1963, by J. T. Mihalczo and M. S. Wyatt (Ref. 1) with additional information in its corresponding logbook. Unreflected and unmoderated experiments with the same set of highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in the International Handbook for Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) with the identifier HEU MET FAST 051. Thin

  6. Gas cooled fast reactor benchmarks for JNC and Cea neutronic tools assessment

    International Nuclear Information System (INIS)

    Rimpault, G.; Sugino, K.; Hayashi, H.

    2005-01-01

    In order to verify the adequacy of JNC and Cea computational tools for the definition of GCFR (gas cooled fast reactor) core characteristics, GCFR neutronic benchmarks have been performed. The benchmarks have been carried out on two different cores: 1) a conventional Gas-Cooled fast Reactor (EGCR) core with pin-type fuel, and 2) an innovative He-cooled Coated-Particle Fuel (CPF) core. Core characteristics being studied include: -) Criticality (Effective multiplication factor or K-effective), -) Instantaneous breeding gain (BG), -) Core Doppler effect, and -) Coolant depressurization reactivity. K-effective and coolant depressurization reactivity at EOEC (End Of Equilibrium Cycle) state were calculated since these values are the most critical characteristics in the core design. In order to check the influence due to the difference of depletion calculation systems, a simple depletion calculation benchmark was performed. Values such as: -) burnup reactivity loss, -) mass balance of heavy metals and fission products (FP) were calculated. Results of the core design characteristics calculated by both JNC and Cea sides agree quite satisfactorily in terms of core conceptual design study. Potential features for improving the GCFR computational tools have been discovered during the course of this benchmark such as the way to calculate accurately the breeding gain. Different ways to improve the accuracy of the calculations have also been identified. In particular, investigation on nuclear data for steel is important for EGCR and for lumped fission products in both cores. The outcome of this benchmark is already satisfactory and will help to design more precisely GCFR cores. (authors)

  7. Fast neutron flux in the RA reactor experimental channels; Fluks brzih neutrona u eksperimentalnim kanalima reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Dobrosavljevic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Fast neutron flux in the RA reactor experimental channels was determined by using threshold reaction detectors. The (n,p) type reactions S{sub 32} (n,p)P{sub 32}, and Al{sub 24} (n,p)Na{sub 24}. Prepared sulphur and phosphorous foils were placed in cadmium boxes and irradiated in experimental channels VK-5, VK-7 and VK-9. Gold foils were irradiated simultaneously for controlling the reactor power. Reactor power was 100 kW during irradiation of half an hour. Activity of P{sub 32} and S{sub 31} after reactor shutdown was measured by 4{pi} counter and three calibrated GM counters. Absolute neutron flux was determined by using thus obtained data.

  8. ERANOS 2.0, Modular code and data system for fast reactor neutronics analyses

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: The European Reactor Analysis Optimized calculation System, ERANOS, has been developed and validated with the aim of providing a suitable basis for reliable neutronic calculations of current as well as advanced fast reactor cores. It consists of data libraries, deterministic codes and calculation procedures which have been developed within the European Collaboration on Fast Reactors over the past 20 years or so, in order to answer the needs of both industrial and R and D organisations. The whole system counts roughly 250 functions and 3000 subroutines totalling 450000 lines of FORTRAN-77 and ESOPE instructions. ERANOS is written using the ALOS software which requires only standard FORTRAN compilers and includes advanced programming features. A modular structure was adopted for easier evolution and incorporation of new functionalities. Blocks of data (SETs) can be created or used by the modules themselves or by the user via the LU control language. Programming, and dynamic memory allocation, are performed by means of the ESOPE language. External temporary storage and permanent storage capabilities are provided by the GEMAT and ARCHIVE functions, respectively. ESOPE, LU, GEMAT and ARCHIVE are all part of the ALOS software. This modular structure allows different modules to be linked together in procedures corresponding to recommended calculation routes ranging from fast-running and moderately-accurate 'routine' procedures to slow-running but highly-accurate 'reference' procedures. The main contents of the ERANOS-2.0 package are: nuclear data libraries (multigroup cross-sections from the JEF-2.2 evaluated nuclear data file, and other specific data files), a cell and lattice code (ECCO), reactor flux solvers (diffusion, Sn transport, nodal variational transport), a burn-up module, various processing modules (material and neutron balance, breeding gains,...), tools related to perturbation theory and sensitivity analysis, core

  9. Safeguards Considerations for the Design of a Future Fast Neutron Sodium Cooled Reactor

    International Nuclear Information System (INIS)

    Cazalet, J.; Raymond, P.; Masson, M.; Saturnin, A.

    2015-01-01

    Incorporating safeguards at an early stage of a reactor design is a way to increase the effectiveness and efficiency of safeguards measures minimizing the possibilities of misuse of the plant or nuclear material diversion. It also reduces the impact on the construction and operation cost. At the preliminary phase, the design will integrate: confinement, containment, surveillance features and non-destructive assay equipment. Taking into account these requirements will help the operator in the approval of the plant at the design phase by national and international authorities in charge of Nuclear Material accounting and safeguards. A large amount of work has been made by the GEN IV International Forum to assess the proliferation resistance of nuclear systems. The IAEA has developed guidelines on ''Safeguards by design'' describing reference requirements for future nuclear facilities. Based on these studies, this communication details implementation of safeguards in the design of a sodium cooled fast neutron reactor (SFR) currently studied in France. Specificities are the use of MOX fuel with high concentration of plutonium and the potential capacity of breeding. A great attention should be paid to avoid diversion of nuclear material contained in fresh or irradiated fuel. Scenarios of reactor misuse are analyzed. The identification of diversion pathways and requirements for nuclear material accountancy, leads to an approach of safeguards, specific to SFR: Material Balance Areas (MBA) and some key measurement points (KMP) are characterized. Specific instrumentation assay helping in the identification and/or characterization of fuel elements and the inventory of nuclear material is described. As concerns the fuel cycle, the safeguards of the reprocessing unit will be progressively increased through the development of materials monitoring and the implementation of these measures at strategic locations of buildings, thus providing real-time information

  10. Measurement and analysis of fast neutron spectra in reactor materials by time-of-flight method

    International Nuclear Information System (INIS)

    Hayashi, Shuhei; Kimura, Itsuro; Kobayashi, Shohei; Yamamoto, Shuji; Nishihara, Hiroshi.

    1982-01-01

    The LINAC-TOF experiments have been done to measure the neutron energy spectra in the assemblies of reactor materials. The sample materials to be measured were iron, stainless steel, aluminum, nickel, zirconium, thorium, lithium, and so on. The shapes of assemblies were piles (rectangular parallelopiped, sphere, and polyhedron) and slab. A photoneutron target was set at the center of the pile assemblies. Each assembly has an electron injection hole and a re-entrant hole. In case of a slab, a photo neutron target was placed at the outside of the slab. Neutrons were generated by using an electron linear accelerator (LINAC). The length of the flight path was 20 m. The neutron detectors were a Li-6 glass scintillator and a B-10 vaseline-NaI(Tl) scintillator. The spatial distributions of neutrons in the piles were measured by the foil activation method. The neutron transport calculation was performed, and the evaluation of group constants was made. (Kato, T.)

  11. Microdosimetric studies using a Filtered Fast Neutron Irradiation System of research reactor to application in radiation biology

    International Nuclear Information System (INIS)

    Rodrigues, Pedro Pereira

    2007-01-01

    In this work, microdosimetric measurements were performed using a Wall-less Tissue Equivalent Proportional Counter - TEPC with spherical cavity with an inner diameter of 1.27 cm. The TEPC was tilled with pure propane gas, C 3 H 8 at 5.6 kPa (42 Torr) pressure, which is equivalent to 1.3 μm in diameter of unit density tissue. The microdosimetric measurement device was irradiated with fast neutron radiation from Texas A and M University Nuclear Science Center research reactor, in College Station, Texas. The fast neutron beams were emitted with three different power values, 0.5, 1.0 and 2.0 kW. during 1h for both high gain and low gain, totalizing two hours for each power with 0.0083 Gy/min of dose rate. The neutron was filtered using the heavily filtered fast neutron irradiation system (FNIS). from Nuclear Science Center, to obtain a decrease of neutron radiation contamination by gamma ray and so, to gain the neutron microdosimetric spectra as. frequency distribution of lineal energy, dose distribution of lineal energy with good precision, and another quantities as frequency-mean of lineal energy, dose- mean of lineal energy, absorbed dose, equivalent dose and average quality factor of fast neutron. The obtained results were satisfactory, with the neutron microdosimetric spectra showing a gamma ray contamination under 5 %, especially to dose distribution of lineal energy. The results obtained in this work were in agreement when compared with another results from scientific literature, which used another procedure to reduce the neutron contamination by gamma ray. (author)

  12. Safety studies dedicated to molten salt reactors with a fast neutron spectrum and operated in the Thorium fuel cycle - Innovative concept of Molten Salt Fast Reactor

    International Nuclear Information System (INIS)

    Brovchenko, Mariya

    2013-01-01

    The nuclear reactors of the 4. generation must allow an optimized use of natural resources, while performing at a high safety level. The framework of this thesis is the deployment study of one of such a system, an innovative and still little studied Molten Salt Fast Reactor. An excellent safety is an ultimate requirement of the nuclear energy deployment, so it is important to raise this question at the current early stage of the MSFR concept development. This concept was the subject of a neutronic tool benchmark within a European project EVOL. Definition, calculations and results analyses were performed during this thesis. Comparisons of static neutronic and burn-up calculations, performed by the project participants, concluded to a good agreement between the different codes and methods used and pointed out the sensibility of the nuclear database choice on the results. With the aim of safety analysis of the MSFR, the decay heat was studied in detail. The tool used for the decay heat calculation was developed and validated, to finally evaluate the decay heat in the reactor. The decay heat source presented in different zones was quantified, concluding to a high importance of the cooling of the fuel salt and the bubbling system enclosing a part of the fission products. The safety analysis methodology was also studied in this thesis. Even if the safety principles are directly transposable to the MSFR, the precise recommendations are not. This is due to the specificity of the design that relies on the liquid state of the fuel, on the reprocessing systems located in the reactor and the embryonic stage of the design. First, a preliminary transposition work of some criteria to the MSFR design was realized, resulting amongst other things in a list of accidental scenarios particular for MSFR. Finally, a preliminary physical study of some types of accidental scenarios was performed, that can be used as a basis for further analyses with more sophisticated tools. (author) [fr

  13. Fast neutron spectrum in the exposure room of the TRIGA Mark II reactor in Ljubljana

    International Nuclear Information System (INIS)

    Kristof, E.S.

    2003-01-01

    In this paper a description of the high energy neutrons at a usual position in the dry cell of our reactor is given. Neutrons emerging from the graphite reflector enter the exposure room through the horizontal shaft. At the irradiation position samples of detection materials were irradiated. After irradiation γ-ray spectra were measured and from the saturation activities the spectrum was calculated. (author)

  14. Neutronic analysis concerning the utilization of mixed U N-Pu N nitride fuel for fast reactors

    International Nuclear Information System (INIS)

    Renke, C.A.C.; Batista, J.L.; Waintraub, M.; Santos Bastos, W. dos; Brito Aghina, L.O. de.

    1991-08-01

    Neutronic behavior of mixed UN-PuN nitride fuel in substitution of the mixed oxide U O 2 - Pu O 2 for fast reactors is discussed with focus on Super Phenix I. Characteristics parameters of both cores are calculated and compared and the results presented show a great advantage for the nitride fuel, pointing out a larger performance of fuel elements in the core and an effective reduction of reactivity loss during the cycle. (author)

  15. Magneto-resistance of Si0,97Ge0,03 whiskers irradiated by reactor fast neutrons

    International Nuclear Information System (INIS)

    Pavlovska, N.T.; Litovchenko, P.G.; Karpenko, A.Ya.; Uhryn, Yu.O.; Pavlovskyj, Yu.V.; Ostrovskii, I.P.; Khoverko, Yu.M.

    2012-01-01

    The influence of reactor fast-neutrons irradiation by the fluence of 8,6·10 17 n/cm 2 and strong magnetic field (up to 14 T) on resistance of Si 1-x Ge x (x = 0.03) whiskers in the temperature range of 4,2 - 300 K is studied. The activation energy of the of impurity levels is calculated. The interpretation of changes in the magneto-resistance is proposed

  16. New experimental space for irradiating samples by RA reactor fast neutron flux at temperatures up to 100 deg C

    International Nuclear Information System (INIS)

    Pavicevic, M.; Novakovic, M.; Zecevic, V.

    1961-01-01

    The objective of this paper is to present adaptation of the RA reactor which would enable samples irradiation by fast neutrons and describe new experimental possibilities. New experimental space was achieved using hollow fuel elements which have been reconstructed to enable placement of irradiation capsules inside the tube. This paper includes thermal analysis and describes problems related to operation, safety and radiation protection issues which arise from using reconstructed fuel elements

  17. A contribution for the problematic of measurements of fast-neutron-energy spectrum in thermal reactor-systems

    International Nuclear Information System (INIS)

    Dederichs, H.

    1978-06-01

    The aims of this work are to check the experimental conditions for using of a 6 Li-semiconductor-spectrometer at thermal reactor-systems and to measure the neutron-energy-spectra at the critical experiment KAHTER comparing with the theory. Using the spectrometer at thermal-neutraon-experiments questions will be attended as resolution, statistic and selection of usable nuclear data. The nuclear data will be gauged by qualified measurements, the statistic will be estimated by simulated calculations and the resolution will be improved by using the Fredholm-equation in the calculations. The calculated spectra show a good agreement with the measured spectra. Only in the energy region of maximum distribution of fission-neutrons there are little difference. The measurements show the using of the spectrometer is recommended at systems with preponderant thermal neutron-spectra, although the resolution and statistic are optimized for the spectrometer by measurements at experiments with fast neutron-spectra. (orig.) 891 RW [de

  18. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1982-01-01

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  19. Calculating the effective delayed neutron fraction in the Molten Salt Fast Reactor: Analytical, deterministic and Monte Carlo approaches

    International Nuclear Information System (INIS)

    Aufiero, Manuele; Brovchenko, Mariya; Cammi, Antonio; Clifford, Ivor; Geoffroy, Olivier; Heuer, Daniel; Laureau, Axel; Losa, Mario; Luzzi, Lelio; Merle-Lucotte, Elsa; Ricotti, Marco E.; Rouch, Hervé

    2014-01-01

    Highlights: • Calculation of effective delayed neutron fraction in circulating-fuel reactors. • Extension of the Monte Carlo SERPENT-2 code for delayed neutron precursor tracking. • Forward and adjoint multi-group diffusion eigenvalue problems in OpenFOAM. • Analytical approach for β eff calculation in simple geometries and flow conditions. • Good agreement among the three proposed approaches in the MSFR test-case. - Abstract: This paper deals with the calculation of the effective delayed neutron fraction (β eff ) in circulating-fuel nuclear reactors. The Molten Salt Fast Reactor is adopted as test case for the comparison of the analytical, deterministic and Monte Carlo methods presented. The Monte Carlo code SERPENT-2 has been extended to allow for delayed neutron precursors drift, according to the fuel velocity field. The forward and adjoint eigenvalue multi-group diffusion problems are implemented and solved adopting the multi-physics tool-kit OpenFOAM, by taking into account the convective and turbulent diffusive terms in the precursors balance. These two approaches show good agreement in the whole range of the MSFR operating conditions. An analytical formula for the circulating-to-static conditions β eff correction factor is also derived under simple hypotheses, which explicitly takes into account the spatial dependence of the neutron importance. Its accuracy is assessed against Monte Carlo and deterministic results. The effects of in-core recirculation vortex and turbulent diffusion are finally analysed and discussed

  20. Applications of a lead pile coupled with fast reactor core of Yayoi as an intermediate energy neutron standard field

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakazawa, Masaharu; Sekiguchi, Akira; Wakabayashi, Hiroaki.

    1976-10-01

    Intermediate neutron column of YAYOI reactor is here evaluated as an intermediate energy neutron standard field which provides a base of the measurements of various reaction rates in that energy region, including detector calibration and Doppler coefficient determination. The experiments were performed using YAYOI's core as a fast neutron source by coupling with the large lead pile, which is a 160 ton's octagon of 2.5 m high and with a thickness of about 2.5 m face to face distance. Spatial variation of the neutron flux in the lead pile was estimated by gold activation foils, and the neutron spectrum by sandwich foils, a helium-3 proportional counter and a proton recoil counter. The calculated results were obtained using one and two- dimensional discrete ordinate code, ANISN and TWOTRAN II. Through comparison of experiment with calculation, it became clear that the neutron field at the central block has simple energy spectrum and stable spatial distribution of the neutron flux, the absolute of which was 5.0 x 10 4 (n/cm 2 /sec/Watt) at the representative energy of 1 KeV. The energy spectrum of the position and the spatial dependent neutron flux in the lead pile are both represented by the semiempirical formula, which must be useful both for evaluation of experimental data and for future applications. (auth.)

  1. Fuels and materials research under the high neutron fluence using a fast reactor Joyo and post-irradiation examination facilities

    International Nuclear Information System (INIS)

    Soga, Tomonori; Ito, Chikara; Aoyama, Takafumi; Suzuki, Soju

    2009-01-01

    The experimental fast reactor Joyo at Oarai Research and Development Center (ORDC) of Japan Atomic Energy Agency (JAEA) is Japan's sodium-cooled fast reactor (FR). In 2003, this reactor's upgrade to the 140MWt MK-III core was completed to increase the irradiation testing capability. The MK-III core provides the fast neutron flux of 4.0x10 15 n/cm 2 s as an irradiation test bed for improving the fuels and material of FR in Japan. Three post-irradiation examination (PIE) facilities named FMF, MMF and AGF related to Joyo are in ORDC. Irradiated subassemblies and core components are carried into the FMF (Fuel Monitoring Facility) and conducted nondestructive examinations. Each subassembly is disassembled to conduct some destructive examinations and to prepare the fuel and material samples for further detailed examinations. Fuel samples are sent to the AGF (Alpha-Gamma Facility), and material samples are sent to the MMF (Materials Monitoring Facility). These overall and elaborate data provided by PIE contribute to investigate the irradiation effect and behavior of fuels and materials. This facility complex is indispensable to promote the R and D of FR in Japan. And, the function and technology of irradiation test and PIE enable to contribute to the R and D of innovative fission or fusion reactor material which will be required to use under the high neutron exposure. (author)

  2. An application of low leakage loading pattern to reduce fast neutrons. Fluence on WWER-440 reactor pressure vessel in Kozloduy NPP

    International Nuclear Information System (INIS)

    Haralampieva, Tz.; Antonov, A.; Monev, M.

    2001-01-01

    The neutron exposure of a reactor pressure vessel (RPV) is one of the key factors that have to be quantified and assess reliably to provide plant life assurance and for an extension to operational life. This paper summarizes the principal methods that are used in core design optimisation for WWER-440 reactors in NPP-Kozloduy in order to reduce flux of fast neutrons at the RPV. Results of fast neutron fluence changes during the all last cycles of units 1-4 with WWER-440 reactors are considered (Authors)

  3. New modelling method for fast reactor neutronic behaviours analysis; Nouvelles methodes de modelisation neutronique des reacteurs rapides de quatrieme Generation

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P.

    2011-05-23

    Due to safety rules running on fourth generation reactors' core development, neutronics simulation tools have to be as accurate as never before. First part of this report enumerates every step of fast reactor's neutronics simulation implemented in current reference code: ECCO. Considering the field of fast reactors that meet criteria of fourth generation, ability of models to describe self-shielding phenomenon, to simulate neutrons leakage in a lattice of fuel assemblies and to produce representative macroscopic sections is evaluated. The second part of this thesis is dedicated to the simulation of fast reactors' core with steel reflector. These require the development of advanced methods of condensation and homogenization. Several methods are proposed and compared on a typical case: the ZONA2B core of MASURCA reactor. (author) [French] Les criteres de surete qui regissent le developpement de coeurs de reacteurs de quatrieme generation implique l'usage d'outils de calcul neutronique performants. Une premiere partie de la these reprend toutes les etapes de modelisation neutronique des reacteurs rapides actuellement d'usage dans le code de reference ECCO. La capacite des modeles a decrire le phenomene d'autoprotection, a representer les fuites neutroniques au niveau d'un reseau d'assemblages combustibles et a generer des sections macroscopiques representatives est appreciee sur le domaine des reacteurs rapides innovants respectant les criteres de quatrieme generation. La deuxieme partie de ce memoire se consacre a la modelisation des coeurs rapides avec reflecteur acier. Ces derniers necessitent le developpement de methodes avancees de condensation et d'homogenisation. Plusieurs methodes sont proposees et confrontees sur un probleme de modelisation typique: le coeur ZONA2B du reacteur maquette MASURCA

  4. Disclosure of the oscillations in kinetics of the reactor pressure vessel steel damage at fast neutron intensity decreasing

    Science.gov (United States)

    Krasikov, E.; Nikolaenko, V.

    2017-01-01

    Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self-organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (nanostructuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness self recovering smart materials.

  5. Core Power Control of the fast nuclear reactors with estimation of the delayed neutron precursor density using Sliding Mode method

    International Nuclear Information System (INIS)

    Ansarifar, G.R.; Nasrabadi, M.N.; Hassanvand, R.

    2016-01-01

    Highlights: • We present a S.M.C. system based on the S.M.O for control of a fast reactor power. • A S.M.O has been developed to estimate the density of delayed neutron precursor. • The stability analysis has been given by means Lyapunov approach. • The control system is guaranteed to be stable within a large range. • The comparison between S.M.C. and the conventional PID controller has been done. - Abstract: In this paper, a nonlinear controller using sliding mode method which is a robust nonlinear controller is designed to control a fast nuclear reactor. The reactor core is simulated based on the point kinetics equations and one delayed neutron group. Considering the limitations of the delayed neutron precursor density measurement, a sliding mode observer is designed to estimate it and finally a sliding mode control based on the sliding mode observer is presented. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. Sliding Mode Control (SMC) is one of the robust and nonlinear methods which have several advantages such as robustness against matched external disturbances and parameter uncertainties. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability.

  6. Absolute measurements of the fast neutron flux in the reactor RA

    Energy Technology Data Exchange (ETDEWEB)

    Berovic, N; Boreli, F; Dragin, R [Institute of Nuclear Sciences Boris Kidric, Department of physics, Vinca, Beograd (Serbia and Montenegro)

    1961-10-15

    The absolute neutron flux in the vertical VK-5 hole of the reactor RA was determined by using the {sup 27}Al (n, alpha) {sup 24}Na reaction, and by counting the {sup 24}Na - 2.5 MeV gamma line photopeak activity. A method for the determination of {sigma}{sub eff} as a mean value between the two large limiting cases of neutron spectra is used. The flux at the power level of 5 MW was found to be (2.5{+-}0.9){center_dot}10{sup 12}n/cm{sup 2}sec (author)

  7. Preliminary studies leading to a conceptual design of a 1000 MWe fast neutron reactor; Etudes preliminaires conduisant a un concept de reacteur a neutrons rapides de 1000 MWe

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G.; Zaleski, C.P. [Association Euratom-CEA Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report presents the results of studies which seemed important to undertake in connexion with the development of fast neutron reactors. - It points out the advantage of high internal breeding ratios ({approx}1, 1) which are necessary in order to get a small change in time both in power distribution and reactivity (less: than 0.005 {delta}k/k in 18 months). - It shows how to achieve this goal, when simultaneously power distribution flattening is obtained. These results in a higher mean specific power (which is an economic gain) and therefore in a smaller doubling time (about 10 years). - It attempts to find criteria concerning the specific power that should be used in future reactor designs -It presents a conceptional design of a 1000 MWe fast neutron reactor, for the realisation of which no technological impossibility appears. - It shows that the dynamic behaviour seems satisfactory despite a positive total isothermal sodium coefficient. - It tries to predict the development of fast reactors within the future total nuclear program. It does not appear that fissile materials supply problems should in France slow down the development of fast neutron reactors, which will be essentially tied up to its economical ability to produce cheap electric power. (authors) [French] Ce rapport presente les etudes qu'il nous a paru important d'aborder dans le cadre du developpement des reacteurs a neutrons rapides. - Il met en evidence l'interet des taux de regeneration internes eleves ({approx}1, 1) pour obtenir une bonne evolution dans le temps de la distribution de puissance et de la reactivite (moins de 0,005 {delta}k/k pour 18 mois). - Il montre la possibilite d'y parvenir tout en applatissant la distribution des fissions, ce qui se traduit par une puissance specifique moyenne plus elevee (gain economique), et donc un temps de doublement plus faible de l'ordte de 10 ans - Il tente de definir un optimum de la puissance specifique valable pour les

  8. Preliminary studies leading to a conceptual design of a 1000 MWe fast neutron reactor; Etudes preliminaires conduisant a un concept de reacteur a neutrons rapides de 1000 MWe

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G; Zaleski, C P [Association Euratom-CEA Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report presents the results of studies which seemed important to undertake in connexion with the development of fast neutron reactors. - It points out the advantage of high internal breeding ratios ({approx}1, 1) which are necessary in order to get a small change in time both in power distribution and reactivity (less: than 0.005 {delta}k/k in 18 months). - It shows how to achieve this goal, when simultaneously power distribution flattening is obtained. These results in a higher mean specific power (which is an economic gain) and therefore in a smaller doubling time (about 10 years). - It attempts to find criteria concerning the specific power that should be used in future reactor designs -It presents a conceptional design of a 1000 MWe fast neutron reactor, for the realisation of which no technological impossibility appears. - It shows that the dynamic behaviour seems satisfactory despite a positive total isothermal sodium coefficient. - It tries to predict the development of fast reactors within the future total nuclear program. It does not appear that fissile materials supply problems should in France slow down the development of fast neutron reactors, which will be essentially tied up to its economical ability to produce cheap electric power. (authors) [French] Ce rapport presente les etudes qu'il nous a paru important d'aborder dans le cadre du developpement des reacteurs a neutrons rapides. - Il met en evidence l'interet des taux de regeneration internes eleves ({approx}1, 1) pour obtenir une bonne evolution dans le temps de la distribution de puissance et de la reactivite (moins de 0,005 {delta}k/k pour 18 mois). - Il montre la possibilite d'y parvenir tout en applatissant la distribution des fissions, ce qui se traduit par une puissance specifique moyenne plus elevee (gain economique), et donc un temps de doublement plus faible de l'ordte de 10 ans - Il tente de definir un optimum de la puissance specifique valable pour les projets de reacteurs futurs

  9. Neutronic/Thermal-hydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    International Nuclear Information System (INIS)

    Ragusa, Jean; Siegel, Andrew; Ruggieri, Jean-Michel

    2010-01-01

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  10. Neutronic/Thermalhydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jean Ragusa; Andrew Siegel; Jean-Michel Ruggieri

    2010-09-28

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  11. Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code.

    Science.gov (United States)

    Khattab, K; Sulieman, I

    2009-04-01

    The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.

  12. On the possible use of the MASURCA reactor as a flexible, high-intensity, fast neutron beam facility

    Science.gov (United States)

    Dioni, Luca; Jacqmin, Robert; Sumini, Marco; Stout, Brian

    2017-09-01

    In recent work [1, 2], we have shown that the MASURCA research reactor could be used to deliver a fairly-intense continuous fast neutron beam to an experimental room located next to the reactor core. As a consequence of the MASURCA favorable characteristics and diverse material inventories, the neutron beam intensity and spectrum can be further tailored to meet the users' needs, which could be of interest for several applications. Monte Carlo simulations have been performed to characterize in detail the extracted neutron (and photon) beam entering the experimental room. These numerical simulations were done for two different bare cores: A uranium metallic core (˜30% 235U enriched) and a plutonium oxide core (˜25% Pu fraction, ˜78% 239Pu). The results show that the distinctive resonance energy structures of the two core leakage spectra are preserved at the channel exit. As the experimental room is large enough to house a dedicated set of neutron spectrometry instruments, we have investigated several candidate neutron spectrum measurement techniques, which could be implemented to guarantee well-defined, repeatable beam conditions to users. Our investigation also includes considerations regarding the gamma rays in the beams.

  13. Neutronic design for a 100MW{sub th} Small modular natural circulation lead or lead-alloy cooled fast reactors core

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q., E-mail: shchshch@ustc.edu.cn, E-mail: hlchen1@ustc.edu.cn, E-mail: kulah@mail.ustc.edu.cn, E-mail: zchen214@mail.ustc.edu.cn, E-mail: zengqin@ustc.edu.cn [Univ. of Science and Technology of China, School of Nuclear Science and Technology, Hefei, Anhui (China)

    2015-07-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW{sub th} natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  14. Sensitivity analysis of the kinetic behaviour of a Gas Cooled Fast Reactor to variations of the delayed neutron parameters

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.; Lathouwers, D.

    2007-01-01

    In advanced Generation IV (fast) reactors an integral fuel cycle is envisaged, where all Heavy Metal is recycled in the reactor. This leads to a nuclear fuel with a considerable content of Minor Actinides. For many of these isotopes the nuclear data is not very well known. In this paper the sensitivity of the kinetic behaviour of the reactor to the dynamic parameters λ k , β k and the delayed spectrum χ d,k is studied using first order perturbation theory. In the current study, feedback due to Doppler and/or thermohydraulic effects are not treated. The theoretical framework is applied to a Generation IV Gas Cooled Fast Reactor. The results indicate that the first-order approach is satisfactory for small variations of the data. Sensitivities to delayed neutron data are similar for increasing and decreasing transients. Sensitivities generally increase with reactivity for increasing transients. For decreasing transients, there are less clearly defined trends, although the sensitivity to the delayed neutron spectrum decreases with larger sub-criticality, as expected. For this research, an adjoint capable version of the time-dependent diffusion code DALTON is under development. (authors)

  15. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  16. Lead-cooled fast-neutron reactor (BREST) (Approaches to the closed NFC) - 5435

    International Nuclear Information System (INIS)

    Dragunov, Y.G.; Lemekhov, V.V.; Moiseyev, A.V.; Smirnov, V.S.; Tocheny, L.V.; Umanskiy, A.A.

    2015-01-01

    The BREST-OD-300 reactor is under development in Russia. It is an intrinsically safe pilot demonstration lead-cooled fast reactor with uranium-plutonium nitride fuel. This reactor is based on a new concept of inherent safety whose basic principles are: -) the exclusion of severe accidents at the plant (reactivity type, loss of cooling, fires, explosions) that require the resettlement of the population; -) the closing of the nuclear fuel cycle through the burning of minor actinides; -) the environmental acceptability through the maximal reduction of the amount of high-level long-lived radioactive waste nuclides - nuclear fuel cycle products, sent for the final disposal; -) the technological strengthening of non-proliferation. Closed fuel cycle with reactors of BREST type burning minor actinides gives the opportunity to achieve the radiation equivalence between radioactive wastes and natural uranium during a time period about 300 years

  17. Fast breeder reactor research

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: The meeting was attended by 15 participants from seven countries and two international organizations. The Eighth Annual Meeting of the International Working Group on Fast Reactors (IWGFR) was attended by representatives from France, Fed. Rep. Germany, Italy, Japan, United Kingdom, Union of Soviet Socialist Republics and the United States of America - countries that have made significant progress in developing the technology and physics of sodium cooled fast reactors and have extensive national programmes in this field - as well as by representatives of the Commission of the European Communities and the IAEA. The design of fast-reactor power plants is a more difficult task than developing facilities with thermal reactors. Different reactor kinetics and dynamics, a hard neutron spectrum, larger integral doses of fuel and structural material irradiation, higher core temperatures, the use of an essentially novel coolant, and, as a result of all these factors, the additional reliability and safety requirements that are imposed on the planning and operation of sodium cooled fast reactors - all these factors pose problems that can be solved comprehensively only by countries with a high level of scientific and technical development. The exchange of experience between these countries and their combined efforts in solving the fundamental problems that arise in planning, constructing and operating fast reactors are promoting technical progress and reducing the relative expenditure required for various studies on developing and introducing commercial fast reactors. For this reason, the meeting concentrated on reviewing and discussing national fast reactor programmes. The situation with regard to planning, constructing and operating fast experimental and demonstration reactors in the countries concerned, the experience accumulated in operating them, the difficulties arising during operation and ways of over-coming them, the search for optimal designs for the power

  18. Spatial neutronics modelling to evaluate the temperature reactivity feedbacks in a lead-cooled fast reactor - 15288

    International Nuclear Information System (INIS)

    Lorenzi, S.; Cammi, A.; Luzzi, L.

    2015-01-01

    The qualitative and quantitative assessment of the thermal reactivity feedbacks occurring in a nuclear reactor is a crucial issue for the time-dependent evolution of the system and, in turn, it has a great impact on the development and validation of advanced control techniques. In the present work, in order to overcome the limitations of the classic Point Kinetics adopted in the control simulators, a spatial neutronics model, representing the neutron flux as sum of a spatial basis weighted by time-dependent coefficients, has been considered. The reference reactor is ALFRED, the European demonstrator of the Lead-cooled Fast Reactor technology. Average cross-sections for each fuel assembly, calculated by means of a Monte Carlo code, have been used to solve the partial differential equations of the neutron diffusion, exploiting the capabilities of the COMSOL software. Once obtained the spatial functions, the set of equations for studying the reactivity effects has been implemented in the MATLAB environment. Among the several temperature reactivity feedbacks, specific attention has been paid to the Doppler effect in the fuel and to the lead density effect. Several spatial bases have been calculated and their capability of representing the reactivity variation have been assessed. (authors)

  19. Theoretical methods for neutronics calculations of core-blanket and core-reflector systems in fast reactors

    International Nuclear Information System (INIS)

    Corcuera, Roberto.

    1975-12-01

    The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr

  20. Experimental determination of neutron capture cross sections of fast reactor structure materials integrated in intermediate energy spectra. Vol. 2: description of experimental structure

    International Nuclear Information System (INIS)

    Tassan, S.

    1978-01-01

    A selection of technical documents is given concerning the experimental determination of the neutron capture cross-sections of fast reactor structural materials (Fe, Cr, Ni...) integrated over the intermediate energy spectra. The experimental structure project and modifications of the reactor RB2 for this experiment, together with criticality and safety calculations, are presented

  1. Estimation of fast neutron fluence in steel specimens type Laguna Verde in TRIGA Mark III reactor; Estimacion de la fluencia de neutrones rapidos en probetas de acero tipo Laguna Verde en el reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Aguilar H, F., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The main purpose of this work is to obtain the fluence of fast neutrons recorded within four specimens of carbon steel, similar to the material having the vessels of the BWR reactors of the nuclear power plant of Laguna Verde when subjected to neutron flux in a experimental facility of the TRIGA Mark III reactor, calculating an irradiation time to age the material so accelerated. For the calculation of the neutron flux in the specimens was used the Monte Carlo code MCNP5. In an initial stage, three sheets of natural molybdenum and molybdenum trioxide (MoO{sub 3}) were incorporated into a model developed of the TRIGA reactor operating at 1 M Wth, to calculate the resulting activity by setting a certain time of irradiation. The results obtained were compared with experimentally measured activities in these same materials to validate the calculated neutron flux in the model used. Subsequently, the fast neutron flux received by the steel specimens to incorporate them in the experimental facility E-16 of the reactor core model operating at nominal maximum power in steady-state was calculated, already from these calculations the irradiation time required was obtained for values of the neutron flux in the range of 10{sup 18} n/cm{sup 2}, which is estimated for the case of Laguna Verde after 32 years of effective operation at maximum power. (Author)

  2. Neutron irradiation of V-Cr-Ti alloys in the BOR-60 fast reactor: Description of the fusion-1 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F. [Oak Ridge National Laboratory, TN (United States); Tsai, H.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    The FUSION-1 irradiation capsule was inserted in Row 5 of the BOR-60 fast reactor in June 1995. The capsule contains a collaborative RF/U.S. experiment to investigate the irradiation performance of V-Cr-Ti alloys in the temperature range 310 to 350{degrees}C. This report describes the capsule layout, specimen fabrication history, and the detailed test matrix for the U.S. specimens. A description of the operating history and neutronics will be presented in the next semiannual report.

  3. Fertile assembly for a fast neutron nuclear reactor cooled by liquid sodium, with regulation of the cooling rate

    International Nuclear Information System (INIS)

    Pradal, L.; Berte, M.; Chiarelli, C.

    1985-01-01

    The assembly has a casing in which are arranged the fertile elements, the liquid sodium flowing through the casing along these elements. It includes several apertured diaphragms transverse to the rods to regulate the liquid sodium flow rate. At least one diaphragm, in its central part around its aperture, of a material soluble in liquid sodium, such as copper. The invention applies, more particularly, to fast neutron nuclear reactor having a heterogeneous core. The coolant flow can increase with time to match the increased power generated by the fertile assembly along its life [fr

  4. Neutronic reactor

    International Nuclear Information System (INIS)

    Lewis, W.R.

    1978-01-01

    Disclosed is a graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels

  5. Neutron Physics aspects of using lead as a coolant in Fast Reactors

    International Nuclear Information System (INIS)

    Kiefhaber, E.

    1991-02-01

    The use of lead as a coolant for fast reactors is being considered as an attractive alternative in the USSR, especially with respect to its inherent safety features. In order to come to an own assessment at KfK, some investigations have been performed concerning a comparison of the nuclear characteristics of fast reactors with lead and sodium cooling. The studies have shown, that the nuclear and thermal hydraulic design calculations do not face special problems and that the nuclear characteristics of both types of cores do not differ essentially, except for the coolant density or void effect, which is more favourable for smaller sized lead cooled cores. A proper safety assessment of lead cooled cores will however require more detailed safety studies. Crucial points of lead cooling are the strong corrosion of austenitic steels in lead and the unknown behavior of ferritic steels in lead and under irradiation

  6. Study of the neutronic performances of cores with mixed nitride fuel [(U,Pu)N] for fast neutron reactors

    International Nuclear Information System (INIS)

    Merzouk, Hamid

    1992-01-01

    This paper proposes a core design of fast reactor using mixed nitride fuel [(U,Pu)N], having small loss of reactivity and reaching a maximum thermal burn-up rate from 150 GWd/t, while being managed in single batch (renewal of the fuel in only one time for all the subassemblies of the core). This work was completed with aid of the studies of sensibilities of the fast reactors cores to principal parameters: general design of the core, volumetric percentages of the various mixture of materials composing the core, initial enrichments of the fuel. A detailed optimization study on the selected core was conducted complying with safety criteria taking into consideration of consequences of nitride material presence on fuel assembly design rules. (author) [fr

  7. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  8. Utilizing horizontal reactors channels for neutron therapy

    International Nuclear Information System (INIS)

    Stankovsky, E.Yu.; Kurachenko, Yu.A.

    2000-01-01

    Two experimental heterogeneous reactors have been considered. The reactors may be applied in neutron capture therapy and in a conventional manner. The channel out of the core serves as the neutron source. At each of these facilities, both fast and epithermal neutron fluxes for BNCT research, human clinical trials, and characterized common computational techniques have been evaluated. (authors)

  9. The fast reactor

    International Nuclear Information System (INIS)

    1980-02-01

    The subject is discussed as follows: brief description of fast reactors; advantage in conserving uranium resources; experience, in UK and elsewhere, in fast reactor design, construction and operation; safety; production of plutonium, security aspects; consideration of future UK fast reactor programme. (U.K.)

  10. Fast neutrons dosimetry

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1977-01-01

    A proton recoil technique has been developed for inducing thermoluminescence with incident fast neutrons. CaF 2 was used as the TL phosphor, and cane sugar and polyethylene were used as proton radiators. The phosphor and the hydrogeneous material powders were well mixed, encapsulated in glass tubes and exposed to Am-Be sources, resulting in recoils from incident fast neutrons of energy between 0,25 and 11,25 MeV. The intrinsic response of pure CaF 2 to fast neutrons without a hydrogeneous radiator was checked by using LiF (TLD-700). Glow curves were recorded from room temperature up to 350 0 C after different doses of neutrons and gamma rays of 60 Co. First collision dose due to fast neutrons in tissue like materials such as cane sugar and polyethylene was also calculated [pt

  11. An efficient methodology of two groups spatial calculation for neutronic state and sensisivity coefficients in fast reactors

    International Nuclear Information System (INIS)

    Jachic, J.

    1985-01-01

    It is presented the ONEDM neutronic simulator for RZ spatial calculation, two energy groups, aiming at researching and optimization of a low power fast reactor design. The simulator's methodology is based in RZ calculation from radial and axial calculation iteractively coupled and in macroscopic cross sections corrected by power density and asymmetry of the spectrum in the feedback process with phase library for reference neutronic state. The transversal area which are determined by energy groups and material region in the iteration are introduced in the spatial calculation. The simulator efficiency is tested and compared with the CITATION and 2DB codes. The cross sections are generated by 1DX code. (M.C.K.) [pt

  12. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor; Determinacion de nitrogeno en harina de trigo mediante analisis por activacion empleando el flujo de neutrones rapidos de un reactor nuclear termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, T

    1976-07-01

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  13. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  14. First-principles investigation of neutron-irradiation-induced point defects in B4C, a neutron absorber for sodium-cooled fast nuclear reactors

    Science.gov (United States)

    You, Yan; Yoshida, Katsumi; Yano, Toyohiko

    2018-05-01

    Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.

  15. Calculation of energetic characteristics of C-14 emitted from Beloyarsk nuclear power plant plume with fast neutron reactor

    Science.gov (United States)

    Kolotkov, Gennady A.; Penin, Sergei

    2017-11-01

    The paper examines an update of comparative analysis of radionuclides released into the atmosphere from Beloyarsk nuclear power plant with fast-neutron reactor for nine years in a row, from 2008 to 2016. It has been shown that the main radionuclides throw out into the atmosphere from Beloyarsk nuclear power plant are beta-active radionuclides. Based on data releases of the RPA "Typhoon", it has been conclude that radiation situation become worse insignificantly; beside on the new reactor BN-800 was put in operation in 2016. Using Spencer-Fano's equation, it was carried out the summary spectrum of emitted radionuclides. On example of Beloyarsk nuclear power plant, it was considered a question about ability of remote detection of raised radioactivity in the atmospheric radioactive plume. It has been shown that it possible to detect raised radioactivity in the emission plume from Beloyarsk nuclear power plant.

  16. Algorithmic developments and qualification of the ERANOS nuclear code and data system for the characterization of fast neutron reactors

    International Nuclear Information System (INIS)

    Rimpault, G.

    2003-09-01

    In this report, the author discusses the algorithmic and methodological developments in the field of nuclear reactor physics, and more particularly the developments of the ERALIB1/ERANOS nuclear code and data system for the calculation of core critical mass and power of sodium-cooled fast neutron reactors (Phenix and Super Phenix), and of the CAPRA 4/94 core. After a brief recall of nuclear data and methods used to determine critical masses and powers, the author discusses the interpretation of start-up experiments performed on Super-Phenix. The methodology used to characterize the uncertainties of these parameters is then applied to the calculation of the Super-Phenix critical mass and power distribution. He presents the approach chosen to define the validity domain of the ERANOS form

  17. Multi-resolution and multi-scale simulation of the thermal hydraulics in fast neutron reactor assemblies

    International Nuclear Information System (INIS)

    Angeli, P.-E.

    2011-01-01

    The present work is devoted to a multi-scale numerical simulation of an assembly of fast neutron reactor. In spite of the rapid growth of the computer power, the fine complete CFD of a such system remains out of reach in a context of research and development. After the determination of the thermalhydraulic behaviour of the assembly at the macroscopic scale, we propose to carry out a local reconstruction of the fine scale information. The complete approach will require a much lower CPU time than the CFD of the entire structure. The macro-scale description is obtained using either the volume averaging formalism in porous media, or an alternative modeling historically developed for the study of fast neutron reactor assemblies. It provides some information used as constraint of a down-scaling problem, through a penalization technique of the local conservation equations. This problem lean on the periodic nature of the structure by integrating periodic boundary conditions for the required microscale fields or their spatial deviation. After validating the methodologies on some model applications, we undertake to perform them on 'industrial' configurations which demonstrate the viability of this multi-scale approach. (author) [fr

  18. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  19. Effect of Reflector Material on the Neutronic Characteristics of the Small Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sung Hwan; Baek, Min Ho; Yoo, Jae Woon; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The sodium-cooled fast reactor (SFR) has been chosen as a candidate for the Gen-IV Nuclear Energy Systems Initiative due to the advantages in utilization of uranium resources and reduction of radioactive wastes. Recently, the uranium blanket concept is omitted for a purpose of the non-proliferation, hence the reflector material plays a more important role in reactor core design. Moreover, especially in the Korean prototype SFR, the initial core should startup with low-enriched uranium ({<=} 20 w/o) for 100 {approx} 150 MWe power. This restriction causes significant difficulties to achieve sufficient excess reactivity. Thus, in this paper, core characteristic studies of various reflector materials (HT9, BeO, MgO, and ZrH{sub 1.6}) are performed to enhance the initial core excess reactivity

  20. FaNGaS: a New Instrument for Fast Neutron Gamma Spectroscopy at FRM II Research Reactor at Garching

    Energy Technology Data Exchange (ETDEWEB)

    Randriamalala, T.; Rossbach, M.; Genreith, C. [Institute of Energy and Climate Research, IEK-6: Nuclear Waste and Reactor Safety Fuel Cycle, Forchungszentrum Juelich GmbH in der Helmholtz-Gemeinshaft, 52428 Juelich (Germany); Revay, Zs.; Kudejova, P.; Soellradl, S.; Wagner, F.M. [Heinz Maier-Leibnitz Zentrum - MLZ, Technische Universitaet Muenchen, Lichtenbergstrasse 1, 85748 Garching (Germany)

    2015-07-01

    For the identification and quantification of actinides in radioactive packages, the non-destructive method of Prompt-Gamma Activation Analysis (PGAA) is applied. To investigate the inelastic (n, n 'γ) scattering, a new instrumentation was installed at the FRM II research reactor. It is designed to exploit the 10{sup 8} cm{sup -2}s{sup -1} neutrons at an average neutron energy of 1.9 MeV delivered by the SR10 beam line. The outgoing prompt γ-rays are measured utilizing a 50% efficiency HPGe detector. Since the cross sections are expected to be low for such a process, two related factors had to be taken into account for the design of the instrumentation: the high beam intensity at the sample position and the high signal-to-background ratio seen by the detector. Eventual low energy neutrons due to the multiple scatterings through the beam line can be minimized using collimators in the beam tube. This has also an effect to a prior neutrons and photons background reduction of the experimental environment. A higher efficiency of the counting can be achieved by the lowering of background at the detector. In this case, a heavy shielding for both neutrons and photons, is designed around the detector while optimizing the sample-detector distance. Monte-Carlo simulation studies were conducted to effectively design the fast neutron beam collimators and the detector shield. A detailed description of the setup characterization and results from simulations and experimental measurements will be discussed through this contribution. (authors)

  1. Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes

    International Nuclear Information System (INIS)

    Stauff, N.E.; Kim, T.K.; Taiwo, T.A.; Buiron, L.; Rimpault, G.; Brun, E.; Lee, Y.K.; Pataki, I.; Kereszturi, A.; Tota, A.; Parisi, C.; Fridman, E.; Guilliard, N.; Kugo, T.; Sugino, K.; Uematsu, M.M.; Ponomarev, A.; Messaoudi, N.; Lin Tan, R.; Kozlowski, T.; Bernnat, W.; Blanchet, D.; Brun, E.; Buiron, L.; Fridman, E.; Guilliard, N.; Kereszturi, A.; Kim, T.K.; Kozlowski, T.; Kugo, T.; Lee, Y.K.; Lin Tan, R.; Messaoudi, N.; Parisi, C.; Pataki, I.; Ponomarev, A.; Rimpault, G.; Stauff, N.E.; Sugino, K.; Taiwo, T.A.; Tota, A.; Uematsu, M.M.; Monti, S.; Yamaji, A.; Nakahara, Y.; Gulliford, J.

    2016-01-01

    One of the foremost Generation IV International Forum (GIF) objectives is to design nuclear reactor cores that can passively avoid damage of the reactor when control rods fail to scram in response to postulated accident initiators (e.g. inadvertent reactivity insertion or loss of coolant flow). The analysis of such unprotected transients depends primarily on the physical properties of the fuel and the reactivity feedback coefficients of the core. Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS), the Sodium Fast Reactor core Feed-back and Transient response (SFR-FT) Task Force was proposed to evaluate core performance characteristics of several Generation IV Sodium-cooled Fast Reactor (SFR) concepts. A set of four numerical benchmark cases was initially developed with different core sizes and fuel types in order to perform neutronic characterisation, evaluation of the feedback coefficients and transient calculations. Two 'large' SFR core designs were proposed by CEA: those generate 3 600 MW(th) and employ oxide and carbide fuel technologies. Two 'medium' SFR core designs proposed by ANL complete the set. These medium SFR cores generate 1 000 MW(th) and employ oxide and metallic fuel technologies. The present report summarises the results obtained by the WPRS for the neutronic characterisation benchmark exercise proposed. The benchmark definition is detailed in Chapter 2. Eleven institutions contributed to this benchmark: Argonne National Laboratory (ANL), Commissariat a l'energie atomique et aux energies alternatives (CEA of Cadarache), Commissariat a l'energie atomique et aux energies alternatives (CEA of Saclay), Centre for Energy Research (CER-EK), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Nuclear Technology and Energy Systems (IKE), Japan Atomic Energy Agency (JAEA), Karlsruhe Institute of Technology (KIT

  2. The fast breeder reactor

    International Nuclear Information System (INIS)

    Davis, D.A.; Baker, M.A.W.; Hall, R.S.

    1990-01-01

    Following submission of written evidence, the Energy Committee members asked questions of three witnesses from the Central Electricity Generating Board and Nuclear Electric (which will be the government owned company running nuclear power stations after privatisation). Both questions and answers are reported verbatim. The points raised include where the responsibility for the future fast reactor programme should lie, with government only or with private enterprise or both and the viability of fast breeder reactors in the future. The case for the fast reactor was stated as essentially strategic not economic. This raised the issue of nuclear cost which has both a construction and a decommissioning element. There was considerable discussion as to the cost of building a European Fast reactor and the cost of the electricity it would generate compared with PWR type reactors. The likely demand for fast reactors will not arrive for 20-30 years and the need to build a fast reactor now is questioned. (UK)

  3. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  4. A Neutronic Feasibility Study on the Recycling of an Oxide Fuel in Sodium-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2006-06-15

    Neutronic feasibility was implemented for the recycling of a mixed oxide fuel in sodium-cooled fast reactors (SFR) through a thermal/mechanical dry process, which is recognized as one of the most proliferation- resistant recycling processes. In order to assess the applicability of a simple dry process which is not capable of completely removing all the fission products from a spent fuel, sensitivity calculations were performed for the reactor physics parameters with a dependency on the fission product removal rate of the recycled spent fuel. The equilibrium core calculations were performed by the REBUS-3 code for a BN-600 core without blanket fuels and a modified core with an increased fuel volume fraction. The reactor performance parameters such as the transuranic content, breeding ratio, peak linear power, burnup reactivity swing and reactivity coefficients were calculated for an equilibrium core under a fixed fuel management scheme. The results showed that a recycling of the oxide fuel in the SFR is feasible if the fission products are removed by more than 70% through the dry process as far as the material balance is concerned. However the physics analysis also showed that some of the physics design parameters are slightly deteriorated. The results of this study indicate that the recycling characteristics can be improved if the dry process can remove more fission products, and the reactor configuration is further optimized or the spent fuel composition is adjusted.

  5. A Neutronic Feasibility Study on the Recycling of an Oxide Fuel in Sodium-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2006-06-01

    Neutronic feasibility was implemented for the recycling of a mixed oxide fuel in sodium-cooled fast reactors (SFR) through a thermal/mechanical dry process, which is recognized as one of the most proliferation- resistant recycling processes. In order to assess the applicability of a simple dry process which is not capable of completely removing all the fission products from a spent fuel, sensitivity calculations were performed for the reactor physics parameters with a dependency on the fission product removal rate of the recycled spent fuel. The equilibrium core calculations were performed by the REBUS-3 code for a BN-600 core without blanket fuels and a modified core with an increased fuel volume fraction. The reactor performance parameters such as the transuranic content, breeding ratio, peak linear power, burnup reactivity swing and reactivity coefficients were calculated for an equilibrium core under a fixed fuel management scheme. The results showed that a recycling of the oxide fuel in the SFR is feasible if the fission products are removed by more than 70% through the dry process as far as the material balance is concerned. However the physics analysis also showed that some of the physics design parameters are slightly deteriorated. The results of this study indicate that the recycling characteristics can be improved if the dry process can remove more fission products, and the reactor configuration is further optimized or the spent fuel composition is adjusted

  6. Medical radiography with fast neutrons

    International Nuclear Information System (INIS)

    Duehmke, E.

    1980-01-01

    Neutron radiography is important in medicine for two reasons. On the one hand, macroradiographical findings are different from X-ray findings, i.e. new information may be gained on the morphology of humans and animals. On the other hand, there is a direct practical application in the radiotherapy of malignant tumours if one considers the assessment of the growth of malignant processes. Fast neutrons are required for neutron radiographies of biological objects with a diameter of more than 2 cm. In addition sensitive, two-dimensional detectors must be used which are selective for fast neutrons. The book describes the optimisation and sensitisation of a detector using the example of cellulose nitrate foil for fast reactor neutrons. Images of human spinal chords with tumours proved by pathological and anatomical examinations give a better picture of the dimensions of the tumour than comparative X-ray pictures. For examinations of living patients, neutron radiography should be applied only in those tumour-bearing parts of the bodies in which radiation treatment is required for therapeutical purposes anyway. (orig./MG) [de

  7. Study on an innovative fast reactor utilizing hydride neutron absorber - Final report of phase I study

    International Nuclear Information System (INIS)

    Konashi, K.; Iwasaki, T.; Itoh, K.; Hirai, M.; Sato, J.; Kurosaki, K.; Suzuki, A.; Matsumura, Y.; Abe, S.

    2010-01-01

    These days, the demand to use nuclear resources efficiently is growing for long-term energy supply and also for solving the green house problem. It is indispensable to develop technologies to reduce environmental load with the nuclear energy supply for sustainable development of human beings. In this regard, the development of the fast breeder reactor (FBR) is preferable to utilize nuclear resources effectively and also to burn minor actinides which possess very long toxicity for more than thousands years if they are not extinguished. As one of the FBR developing works in Japan this phase I study started in 2006 to introduce hafnium (Hf) hydride and Gadolinium-Zirconium (Gd-Zr) hydride as new control materials in FBR. By adopting them, the FBR core control technology is improved by two ways. One is extension of control rod life time by using long life Hf hydride which leads to reduce the fabrication and disposal cost and the other is reduction of the excess reactivity by adopting Gd-Zr hydride which leads to reduce the number of control rods and simplifies the core upper structure. This three year study was successfully completed and the following results were obtained. The core design was performed to examine the applicability of the Hf hydride absorber to Japanese Sodium Fast Reactor (JSFR) and it is clarified that the control rod life time can be prolonged to 6 years by adopting Hf hydride and the excess reactivity of the beginning of the core cycle can be reduced to half and the number of the control rods is also reduced to half by using the Gd-Zr hydride burnable poison. The safety analyses also certified that the core safety can be maintained with the same reliability of JSFR Hf hydride and Gd-Zr hydride pellets were fabricated in good manner and their basic features for design use were measured by using the latest devices such as SEM-EDX. In order to reduce the hydrogen transfer through the stainless steel cladding a new technique which shares calorizing

  8. Development of a nuclear data uncertainties propagation code on the residual power in fast neutron reactors

    International Nuclear Information System (INIS)

    Benoit, J.-C.

    2012-01-01

    This PhD study is in the field of nuclear energy, the back end of nuclear fuel cycle and uncertainty calculations. The CEA must design the prototype ASTRID, a sodium cooled fast reactor (SFR) and one of the selected concepts of the Generation IV forum, for which the calculation of the value and the uncertainty of the decay heat have a significant impact. In this study is developed a code of propagation of uncertainties of nuclear data on the decay heat in SFR. The process took place in three stages. The first step has limited the number of parameters involved in the calculation of the decay heat. For this, an experiment on decay heat on the reactor PHENIX (PUIREX 2008) was studied to validate experimentally the DARWIN package for SFR and quantify the source terms of the decay heat. The second step was aimed to develop a code of propagation of uncertainties: CyRUS (Cycle Reactor Uncertainty and Sensitivity). A deterministic propagation method was chosen because calculations are fast and reliable. Assumptions of linearity and normality have been validated theoretically. The code has also been successfully compared with a stochastic code on the example of the thermal burst fission curve of 235 U. The last part was an application of the code on several experiments: decay heat of a reactor, isotopic composition of a fuel pin and the burst fission curve of 235 U. The code has demonstrated the possibility of feedback on nuclear data impacting the uncertainty of this problem. Two main results were highlighted. Firstly, the simplifying assumptions of deterministic codes are compatible with a precise calculation of the uncertainty of the decay heat. Secondly, the developed method is intrusive and allows feedback on nuclear data from experiments on the back end of nuclear fuel cycle. In particular, this study showed how important it is to measure precisely independent fission yields along with their covariance matrices in order to improve the accuracy of the calculation of

  9. Application of COMSOL in the solution of the neutron diffusion equations for fast nuclear reactors in stationary state

    International Nuclear Information System (INIS)

    Silva A, L.; Del Valle G, E.

    2012-10-01

    This work shows an application of the program COMSOL Multi physics Ver. 4.2a in the solution of the neutron diffusion equations for several energy groups in nuclear reactors whose core is formed by assemblies of hexagonal transversal cut as is the cas of fast reactors. A reference problem of 4 energy groups is described of which takes the cross sections which are processed by means of a program that prepares the definition of the constants utilized in COMSOL for the generic partial differential equations that this uses. The considered solution domain is the sixth part of the core which is applied frontier conditions of reflection and incoming flux zero. The discretization mesh is elaborated in automatic way by COMSOL and the solution method is one of finite elements of Lagrange grade two. The reference problem is known as the Knk with and without control rod which led to propose the calculation of the effective multiplication factor in function of the control rod fraction from a value 0 (completely inserted control rod) until the value 1 (completely extracted control rod). Besides this the reactivity was determined as well as the change of this in function of control rod fraction. The neutrons scalar flux for each energy group with and without control rod is proportioned. The reported results show a behavior similar to the one reported in other works but using the discreet ordinates S 2 approximation. (Author)

  10. The implication of sensitivity analysis on the safety and delayed-neutron parameters for fast breeder reactors

    International Nuclear Information System (INIS)

    Onega, R.J.; Florian, R.J.

    1983-01-01

    The delayed-neutron energy spectra for LMFBRs are not as well known as those for LWRs. These spectra are necessary for kinetics calculations which play an important role in safety and accident analyses. A sensitivity analysis was performed to study the response of the reactor power and power density to uncertainties in the delayed-neutron spectra during a rod-ejection accident. The accidents studied were central control-rod-ejections with ejection times of 2,10 and 30s. A two-energy group and two-precursor group model was formulated for the International Nuclear Fuel Cycle Evaluation (INFCE) reference design MOX-fueled LMFBR. The sensitivity analysis is based on the use of adjoints so that it is not necessary to repeatedly solve the governing (kinetics) equations to obtain the sensitivity derivatives. This is of particular importance when large systems of equations are used. The power and power-density responses were found to be most sensitive to uncertainties in the spectrum of the second delayed-neutron precursor group, resulting from the fission of 238 U, producing neutrons in the first energy group. It was found, for example, that for a rod-ejection time of 30s, and uncertainty of 7.2% in the fast components of the spectra resulted in a 24% uncertainty in the predicted power and power density. These responses were recalculated by repeatedly solving the kinetics equations. The maximum discrepancy between the recalculated and the sensitivity analysis response was only 1.6%. The results of the sensitivity analysis indicate the need for improved delayed-neutron spectral data in order to reduce the uncertainties in accident analyses. (author)

  11. Fast reactor programme

    International Nuclear Information System (INIS)

    Hoekstra, E.K.

    1976-11-01

    Estimated reactivity effects of fission products in the SNR-300 fast breeder are given. Neutron cross sections of 127 I and 129 I are also given. Results of the in-pile canning failure experiments on fuel pins R54-F35 and F39 are discussed. Sinter experiments using mixed UC-UN powders are reported. Results of tensile tests on high-dose and low-dose irradiated specimens of 18Cr1 1Ni stainless steel (DIN 1.4948) used in the SNR-300 reactor vessel are given. It is shown that the aerosol behaviour in condensing sodium vapour can be described by the same MADCA model developed for the decay of aerosols in condensing water vapour. Results of heat transfer measurements in the electrically heated 28-rod bundle under liquid-phase and subsequently under two-phase conditions are commented on

  12. A method for detecting the rupture of a fuel element in a fast neutron breeder reactor

    International Nuclear Information System (INIS)

    Cohen, Paul.

    1974-01-01

    The method according to the invention is characterized by the steps of balancing a cooling sodium sample driven through a nozzle into a molten salt constituted by a baryum-iodide strontium-iodide mixture, so that a substantial portion of radioactive iodine contingently present in the liquid sodium accumulates in the molten salt through isotopic exchange, separating the molten salt from sodium, balancing (if required) the molten salt with nonradioactive sodium and separating the molten salt from the sodium, and controlling the molten salt in order to determine the presence of iodine, such presence being-indicative of the rupture (or burst) of a fuel element sheath. Such a method is suitable in particular for detecting the rupture of a fuel element in a sodium-cooled fast breeder-reactor [fr

  13. Fast reactors worldwide

    International Nuclear Information System (INIS)

    Hall, R.S.; Vignon, D.

    1985-01-01

    The paper concerns the evolution of fast reactors over the past 30 years, and their present status. Fast reactor development in different countries is described, and the present position, with emphasis on cost reduction and collaboration, is examined. The French development of the fast breeder type reactor is reviewed, and includes: the acquisition of technical skills, the search for competitive costs and the spx2 project, and more advanced designs. Future prospects are also discussed. (U.K.)

  14. Innovating analytical spectroscopies for the improvement of liquid sodium cooled fast neutron reactors safety

    International Nuclear Information System (INIS)

    Maury, C.

    2012-01-01

    In the context of the project of sodium fast reactor ASTRID, CEA is currently developing new analytical techniques to monitor the chemical purity of liquid sodium. Indeed, incidental situations occurring in the reactor, such as fuel clad failures, leakages in the steam generator or in the coolant pumps, and accelerated corrosion, might release several elements in the sodium. Analytical techniques based on laser ablation and emission spectroscopy are well suited for this application. They do not require any sample preparation, and can perform direct on-line analysis. Amongst them, Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation coupled to Laser-Induced Fluorescence (LA-LIF) have been selected for this study. The objective of this work was to characterize the sensitivity of those two techniques for the detection of impurities in liquid sodium. Their limits of detection were calculated for model analytes using calibration lines. Then results were theoretically extrapolated to other analytes of interest. This study shows the feasibility of the detection of steel corrosion products in liquid sodium. However, the LIBS technique is more robust and easier to implement, and would therefore be more suited to nuclear conditions. (author) [fr

  15. Resonance region neutronics of unit cells in fast and thermal reactors

    International Nuclear Information System (INIS)

    Salehi, A.A.; Driscoll, M.J.; Deutsch, O.L.

    1977-05-01

    A method has been developed for generating resonance-self-shielded cross sections based upon an improved equivalence theorem, which appears to allow extension of the self-shielding-factor (Bondarenko f-factor) method, now mainly applied to fast reactors, to thermal reactors as well. The method is based on the use of simple prescriptions for the ratio of coolant-to-fuel region-averaged fluxes, in the equations defining cell averaged cross sections. Linearization of the dependence of these functions on absorber optical thickness is found to be a necessary and sufficient condition for the existence of an equivalence theorem. Results are given for cylindrical, spherical and slab geometries. The functional form of the flux ratio relations is developed from theoretical considerations, but some of the parameters are adjusted to force-fit numerical results. Good agreement over the entire range of fuel and coolant optical thicknesses is demonstrated with numerical results calculated using the ANISN program in the S 8 P 1 option

  16. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Directory of Open Access Journals (Sweden)

    Košťál Michal

    2016-01-01

    Full Text Available A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1–10 MeV and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1. Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  17. Fast breeder reactor

    International Nuclear Information System (INIS)

    Ito, Shin-ichi; Maki, Koichi.

    1975-01-01

    Object: To conserve loaded fuel, aquire controllable surplus reaction degree, increase the breeding index, flatten output and improve sealing of neutrons by inserting a decelerating substance in a blanket section. Structure: A decelerating substance such as beryllium or beryllium oxide is inserted in a blanket section between an outer reactor core and reflector. With this arrangement, neutrons are decelerated to increase the low energy components, which are partly subjected to reflection by the outer reactor core to thereby reduce leakage of neutrons from the reactor core. (Kamimura, M.)

  18. Measurements of neutron flux in the RA reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1961-12-01

    This report includes the following separate parts: Thermal neutron flux in the experimental channels od RA reactor; Epithermal neutron flux in the experimental channels od RA reactor; Fast neutron flux in the experimental channels od RA reactor; Thermal neutron flux in the thermal column and biological experimental channel; Neutronic measurements in the RA reactor cell; Temperature reactivity coefficient of the RA reactor; design of the device for measuring the activity of wire [sr

  19. Application of sensitivity analysis to a simplified coupled neutronic thermal-hydraulics transient in a fast reactor using Adjoint techniques

    International Nuclear Information System (INIS)

    Gilli, L.; Lathouwers, D.; Kloosterman, J.L.; Van der Hagen, T.H.J.J.

    2011-01-01

    In this paper a method to perform sensitivity analysis for a simplified multi-physics problem is presented. The method is based on the Adjoint Sensitivity Analysis Procedure which is used to apply first order perturbation theory to linear and nonlinear problems using adjoint techniques. The multi-physics problem considered includes a neutronic, a thermo-kinetics, and a thermal-hydraulics part and it is used to model the time dependent behavior of a sodium cooled fast reactor. The adjoint procedure is applied to calculate the sensitivity coefficients with respect to the kinetic parameters of the problem for two reference transients using two different model responses, the results obtained are then compared with the values given by a direct sampling of the forward nonlinear problem. Our first results show that, thanks to modern numerical techniques, the procedure is relatively easy to implement and provides good estimation for most perturbations, making the method appealing for more detailed problems. (author)

  20. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1993-01-01

    Research concentrated on three major areas during the last twelve months: (1) investigations of energy fluence and absorbed dose measurements using crystalline and hot pressed TLD materials exposes to ultrasoft beams of photons, (2) fast neutron kerma factor measurements for several important elements as well as NE-213 scintillation material response function determinations at the intense ''white'' source available at the WNR facility at LAMPF, and (3) kerma factor ratio determinations for carbon and oxygen to A-150 tissue equivalent plastic at the clinical fast neutron radiation facility at Harper Hospital, Detroit, MI. Progress summary reports of these efforts are given in this report

  1. Fast neutron detection at near-core location of a research reactor with a SiC detector

    Science.gov (United States)

    Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.

    2018-04-01

    The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.

  2. Evaluation of wrapper tube temperatures of fast neutron reactors using the TRANSCOEUR-2 code

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, B.; Brun P. [CEA/DRN/DEC/SECA/LHC CEN, St Paul Lez Durance (France); Chaigne, G. [FRAMATOME/NOVATOME, Lyon (France)

    1995-09-01

    This paper deals with the thermal loading estimation of wrapper tubes using the TRANSCOEUR-2 code. This estimation requires a knowledge of two temperature fields: the first involves the peripheral sub-channel temperatures of each sub-assembly calculated by the design code CADET, and the second, outside the sub-assemblies, is the inter-wrapper flow temperature field calculated by the thermal-hydraulic code TRIO-VF with boundary conditions taken from CADET. Theoretical models of the three codes are presented as well as the first TRANSCOEUR-2 wrapper tube temperature calculation performed on the European Fast Reactor (EFR) Core Design 6/91 (CD 6/91) under nominal power conditions. The results show a temperature variation of 115{degrees}C between the bottom of the lower blanket and the top of the upper blanket fuel sub-assemblies in the center of the core and 95{degrees}C at the core periphery. The wrapper tube temperatures are higher in the center than in the external core.

  3. Fine 3D neutronic characterization of a gas-cooled fast reactor based on plate-type sub-assemblies

    International Nuclear Information System (INIS)

    Bosq, J. C.; Peneliau, Y.; Rimpault, G.; Vanier, M.

    2006-01-01

    CEA neutronic studies have allowed the definition of a first 2400 MWth reference gas-cooled fast reactor core using plate-type sub-assemblies, for which the main neutronic characteristics were calculated by the so-called ERANOS 'design calculation scheme' relying on several method approximations. The last stage has consisted in a new refine characterization, using the reference calculation scheme, in order to confirm the impact of the approximations of the design route. A first core lay-out taking into account control rods was proposed and the reactivity penalty due to the control rod introduction in this hexagonal core lay-out was quantified. A new adjusted core was defined with an increase of the plutonium content. This leads to a significant decrease of the breeding gain which needs to be recovered in future design evolutions in order to achieve the self breeding goal. Finally, the safety criteria associated to the control rods were calculated with a first estimation of the uncertainties. All these criteria are respected, even if the safety analysis of GFR concepts and the determination of these uncertainties should be further studied and improved. (authors)

  4. A neutronics study for improving the safety and performance parameters of a 3600 MWth Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Sun, Kaichao; Krepel, Jiri; Mikityuk, Konstantin; Chawla, Rakesh

    2013-01-01

    Highlights: ► The potential for neutronics design optimization is assessed for a large SFR core. ► Both beginning-of-life and equilibrium fuel cycle conditions are considered. ► The sodium void effect is decomposed via a neutron balance based methodology. ► The optimized core options adopt an appropriate sodium plenum design to reduce the void effect. ► The introduction of moderator pins is considered for enhancing the Doppler effect. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many performance advantages, but has one dominating neutronics drawback – a positive sodium void reactivity. The starting point for the present study is an SFR core design considered in the Collaborative Project on the European Sodium-cooled Fast Reactor (CP-ESFR). The aim is to analyze, for this reference core, four safety and performance parameters from the viewpoint of four different optimization options, and to propose possible optimized core designs. In doing so, the study focuses not only on the beginning-of-life state of the core, but also on the beginning of equilibrium closed fuel cycle. The four studied optimization options are: (a) introducing an upper sodium plenum and boron layer, (b) varying the core height-to-diameter (H/D) ratio, (c) introducing moderator pins into the fuel assembly, and (d) modifying the initial plutonium content. The sensitivity of the void reactivity, Doppler constant, nominal reactivity and breeding gain has been evaluated. In particular, the void reactivity, which is the most crucial safety parameter for the SFR, has been decomposed into its reaction-wise, isotope-wise and energy-group-wise components using a methodology based on the neutron balance equation. Extended voiding in the upper sodium plenum region – in conjunction with the effect of a boron layer introduced above the plenum – is found to be particularly effective in the void effect reduction while, at the same time

  5. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  6. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  7. Measurements of neutron flux in the RA reactor; Merenje karakteristika neutronskog fluksa u reaktoru RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This report includes results of the following measurements performed at the RA reactor: thermal neutron flux in the experimental channels, epithermal and fast neutron flux, neutron flux in the biological shield, neutron flux distribution in the reactor cell.

  8. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period

  9. Advanced Safeguards Approaches for New Fast Reactors

    International Nuclear Information System (INIS)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-01-01

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to 'breed' nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and 'burn' actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is 'fertile' or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing 'TRU'-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II 'EBR-II' at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line--a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors

  10. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  11. Fast neutron reactor noise analysis: beginning failure detection and physical parameter estimation

    International Nuclear Information System (INIS)

    Le Guillou, G.

    1975-01-01

    The analysis of the signals fluctuations coming from a power nuclear reactor (a breeder), by correlation methods and spectral analysis has two principal applications: on line estimation of physical parameters (reactivity coefficients); beginning failures (little boiling, abnormal mechanic vibrations). These two applications give important informations to the reactor core control and permit a good diagnosis [fr

  12. Analysis of influence of fast neutron fluence irradiated to Beryllium element of The RSG-GAS reactor

    International Nuclear Information System (INIS)

    Sri Kuntjoro

    2010-01-01

    Analysis of influence fast neutron fluence irradiated to the RSG-GAS beryllium reflector have been done. Methods of analysis was carried out by measuring fluxes neutron in beryllium element and block position that function as reflector.The calculation done for determination it is there any influence of neutron as long as beryllium in the core. Besides that, visualization done to make sure it there is any deformation at beryllium as effect of irradiation. Fluxes and fluences of beryllium element measurement result in 200 kW reactor power are 2.30E+07 n/cm 2 .sec and 4.19E+17 n/cm 2 in position E-2, 3.70E+07 n/cm 2 s and 6.74E+17 n/cm 2 in position J-8, 2.19E+12 n/cm 2 s and 3.99E+22 n/cm 2 in position. Measurement results in the position B-3 are 2.12E+12 n/cm 2 s and 3.86E+22 n/cm 2 in position G-10 respectively. Other result are fluxes and fluence in beryllium block, those are 5,02E+07 n/cm 2 s and 9,15E+17 n/cm 2 in position (5-6), and 2,32E+07 n/cm 2 s and 4,23E+17 n/cm 2 in position (C-D). Deformation (L/L) results for beryllium element are 1,12E-08 in position E-2, 1,84E-08 in position J-8, 1,60E-03 in position B-3, and 1,55E-03 in position G-10. In beryllium block deformation results are 2,52E-08 in position (5-6) and 1,13E-08 in position (C-D). Those results are shown unseen deformation in beryllium element and beryllium block and demonstrably by visual observation in reactor hot cell. (author)

  13. Analysis and development of deterministic and stochastic neutron noise computing techniques with applications to thermal and fast reactors

    International Nuclear Information System (INIS)

    Rouchon, Amelie

    2016-01-01

    Neutron noise analysis addresses the description of small time-dependent flux fluctuations induced by small global or local perturbations of the macroscopic cross-sections. These fluctuations may occur in nuclear reactors due to density fluctuations of the coolant, to vibrations of fuel elements, control rods, or any other structures in the core. In power reactors, ex-core and in-core detectors can be used to monitor neutron noise with the aim of detecting possible anomalies and taking the necessary measures for continuous safe power production. The objective of this thesis is to develop techniques for neutron noise analysis and especially to implement a neutron noise solver in the deterministic transport code APOLLO3 developed at CEA. A new Monte Carlo algorithm that solves the transport equations for the neutron noise has been also developed. In addition, a new vibration model has been developed. Moreover, a method based on the determination of a new steady state has been proposed for the linear and the nonlinear full theory so as to improve the traditional neutron noise theory. In order to test these new developments we have performed neutron noise simulations in one-dimensional systems and in a large pressurized water reactor with heavy baffle in two and three dimensions with APOLLO3 in diffusion and transport theories. (author) [fr

  14. On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    2015-11-01

    Full Text Available An efficient burning of the plutonium produced during light water reactor (LWR operation has the potential to significantly improve the sustainability indices of LWR operations. The work offers a comparison of the efficiency of Pu burning in different reactor configurations—a molten salt fast reactor, a LWR with mixed oxide (MOX fuel, and a sodium cooled fast reactor. The calculations are performed using the HELIOS 2 code. All results are evaluated against the plutonium burning efficiency determined in the Consommation Accrue de Plutonium dans les Réacteurs à Neutrons RApides (CAPRA project. The results are discussed with special view on the increased sustainability of LWR use in the case of successful avoidance of an accumulation of Pu which otherwise would have to be forwarded to a final disposal. A strategic discussion is given about the unavoidable plutonium production, the possibility to burn the plutonium to avoid a burden for the future generations which would have to be controlled.

  15. The development of fast neutron reactors in France - from February 1983 to February 1984

    International Nuclear Information System (INIS)

    Benoist, E.; Champeix, L.

    1984-01-01

    The report presents the ''end of life'' tests, the decommissioning and the start of dismantling operations at the Rapsodie reactor. For nuclear power plant Phenix data concerning electricity production, the results of the tests on fuel elements and the occurred accidents are reported. For the nuclear power plant Super Phenix 1 under construction at Creys Malville the results with regard to the reactor core, the fuel elements, the secondary coolant circuits and the auxiliary circuits are presented. The project for the 1500 MWe nuclear power plant Super Phenix 2 is discussed. The research and development activities in the LMFBR field, mainly, technological aspects, reactor core, fuel elements, materials and the test programs concerning especially the safety experiments and sodium-water reactors are summarized in the last part of the report

  16. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Lineberry, M.J.

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs

  17. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1981-06-01

    The accuracy requirements and the status of the evaluated fission-product cross sections for fast reactors are reviewed; the work on calculating the sensitivity of the sodium void effect to fission-product cross sections is described; some results of the intercomparison of adjusted data sets for capture cross sections of fission-products (RCN-2A and CARNAVAL-IV) are discussed; the applicability of the maximum-likelihood method for the analysis of resolved resonance parameters for a large class of fission-product nuclides is demonstrated; the neutron cross sections for corrosion product 64 Ni are evaluated. Some results of post-irradiation examination of a loss-of-cooling experiment are given; the progress in testing the equipment and instrumentation for transient-overpower experiments is reported. The proceedings in the thermochemical investigations on uranium compounds with some fission-products are described. The creep behaviour of a heat of DIN 1.4948 parent metal is investigated with respect to the changes in strain with different test temperatures. Sodium smoke aerosols have been produced and analysed with respect to their aerodynamic behaviour and morphology. The two-phase local boiling experiments have been analysed to find criteria for the occurrence of different boiling regimes with the objection to deduce general dryout correlations

  18. Fast reactor recharging device

    International Nuclear Information System (INIS)

    Artemiev, L.N.; Kurilkin, V.V.

    1979-01-01

    Disclosure is made of a device for recharging a fast-neutron reactor, intended for the transfer of fuel assemblies and rods of the control and safety system, having profiled heads to be gripped on the outside. The device comprises storage drums whose compartments for rods of the control and safety system are identical to compartments for fuel assemblies. In order to store and transport rods of the control and safety system from the storage drums to the recharging mechanism provision is made for sleeve-type holders. When placed in such a holder, the dimensions of a rod of the control and safety system are equal to those of a fuel assembly. To join a holder to a rod of the control and safety system, on the open end of each holder there is mounted a collet, whereas on the surface of each rod of the control and safety system, close to its head, there is provided an encircling groove to interact with the collet. The grip of the recharging mechanism is provided with a stop interacting with the collet in order to open the latter and withdraw the safety and control system rod from its holder

  19. Integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics

  20. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  1. Comparison of neutron diffusion theory codes in two and three space dimensions using a sodium cooled fast reactor benchmark

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Putney, J.; Sweet, D.W.

    1980-04-01

    This report describes work performed to compare two UK neutron diffusion theory codes, TIGAR and SNAP, with published results for eight other codes available abroad. Both mesh edge and mesh centred finite difference diffusion theory codes as well as one axial synthesis code are included in the comparison and a range of iteration procedures are used by them. Comparison is made of calculations for a model of the sodium cooled fast reactor SNR-300 in both triangular and rectangular geometry and for a range of spatial meshes, enabling extrapolations to infinite mesh to be made. Calculated values of the effective multiplication constant, keff, for all the codes, agree very well when extrapolated to infinite mesh, indicating that no significant errors arising from the finite difference approximation but independent of mesh spacing are present in the calculations. The variation of keff with mesh area is found to be linear for the small meshes considered here, with the gradients for the mesh centred and mesh edged codes being of opposite sign. The results obtained using the mesh centred codes TIGAR, SNAP and CITATION agree closely with one another for all the meshes considered; the mesh edge codes agree less closely. (author)

  2. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  3. The fast breeder reactor

    International Nuclear Information System (INIS)

    Patterson, W.

    1990-01-01

    The author criticises the United Kingdom Atomic Energy Authority's fast breeder reactor programme in his evidence to the House of Commons Select Committee on Energy in January 1990. He argues for power generation by renewable means and greater efficiency in the use rather than in the generation of electricity. He refutes the arguments for nuclear power on the basis of reduced global warming as he claims support technology produces significant amounts of carbon dioxide in any case. Serious doubts are raised about the costs of a fast breeder reactor programme compared to, say, generation by pressurised water reactors. The idea of a uranium scarcity in several decades is also refuted. The reliability of fast breeder reactor technology is called into question. He argues against reprocessing plutonium for economic, health and safety reasons. (UK)

  4. Neutron spectrum effects on TRU recycling in Pb-Bi cooled fast reactor core

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Kim, Jong Kyung; Park, Won Seok

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction

  5. Development of new ferritic / martensitic steels for fuel cladding in fast neutron reactors

    International Nuclear Information System (INIS)

    Ratti, M.

    2009-11-01

    Many studies are directed toward the development of ferritic / martensitic ODS materials for applications in Gen IV programs. In this study, the mechanisms of formation of nano-phases (Y, Ti, O) and the influence of titanium on the precipitation refinement have been analyzed by small angle neutron scattering, X-ray diffraction and neutron diffraction. The obtained results allow developing new materials reinforced by nitrides (NDS which stands for Nitride Dispersion Strengthened). A first CEA patent is now being registered on these NDS materials processed by mechanical alloying. However, microstructural and mechanical characterizations are necessary to improve these new alloys. At last, a tensile and creep database has been acquired on an ODS Fe-18Cr material between room temperature and 650 C. These tests allow a qualitative description of the ODS mechanical behaviour. (author)

  6. Survey of the thermal and fast neutron flux distribution in the core of IPR-R1 reactor

    International Nuclear Information System (INIS)

    Guimaraes, R.R.R.

    1985-01-01

    A methodology to obtain the neutron flux distribution inside the core of a reactor is presented, aiming to analyze specifications for increasing reactor power. The activation measurement technique with irradiation of steel eletrodes of 700 mm of lenght, put in acrylic rods was used. In the detection process and in the counting of activation product, a Ge (Li) detector with high resolution and a scanning mechanical system, constructed and projected in CDTN (Nuclear Technology Development Center) were used. (E.G.) [pt

  7. The dismantling of fast reactors: sodium processing

    International Nuclear Information System (INIS)

    Rodriguez, G.; Berte, M.; Serpante, J.P.

    1999-01-01

    Fast reactors require a coolant that does not slow down neutrons so water can not be used. Metallic sodium has been chosen because of its outstanding neutronic and thermal properties but sodium reacts easily with air and water and this implies that sodium-smeary components can not be considered as usual nuclear wastes. A stage of sodium neutralizing is necessary in the processing of wastes from fast reactors. Metallic sodium is turned into a chemically stable compound: soda, carbonates or sodium salts. This article presents several methods used by Framatome in an industrial way when dismantling sodium-cooled reactors. (A.C.)

  8. Semiconductor research with reactor neutrons

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1992-01-01

    Reactor neutrons play an important role for characterization of semiconductor materials as same as other advanced materials. On the other hand reactor neutrons bring about not only malignant irradiation effects called radiation damage, but also useful effects such as neutron transmutation doping and defect formation for opto-electronics. Research works on semiconductor materials with the reactor neutrons of the Kyoto University Reactor (KUR) are briefly reviewed. In this review, a stress is laid on the present author's works. (author)

  9. A device for heat-proofing the closing slab of a fast neutron nuclear reactor

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1973-01-01

    A device proofing the closing-slab comprising a metal-shoe against which is applied said device, the latter being constituted by a plurality of panels, each of which is formed by a padding of superimposed metal-cloths arranged in parallel relationship to the slab to be heat-proofed. Said device is characterized in that each panel is contained in a casing applied against the slab, constituted by two metal half-boxes of parallelepipedic shape embedded into each other. This can be applied to high-power reactors for protecting the slab against the aerosols of the coolant liquid-metal [fr

  10. The fast breeder reactor

    International Nuclear Information System (INIS)

    Keck, O.

    1984-01-01

    Nowadays the fast-breeder reactor is a negative symbol of advanced technology which is getting out of control and, due to its complexity, is incomprehensible for politicians and therefore by-passes the established order. The author lists the most important decisions over state aid to the fast-breeder-reactors up until the mid-seventies and uses documents from the appropriate advisory bodies as reference. He was also aided by interviews with those directly involved with the project. The empirical facts forces us to discard our traditional view of the relationship between state and industry with regard to advanced technology. The author explains that it is impossible to find any economic value in the fast-breeder reactor. The insight gained through this project allows him to draw conclusions which apply to all aspects of state aid to advanced technology. (orig.) [de

  11. Design and development of fast pneumatic transfer system (PTS) for instrumental neutron activation analysis at Jordan research reactor

    International Nuclear Information System (INIS)

    Chung, Yongsam; Kim, Sunha; Moon, Jonghwa; Choi, Jinbok; Lee, Jongmin; Ryu, Jungsu

    2013-01-01

    A pneumatic transfer system (PTS) is one of the important equipment used for an neutron irradiation of a target material for an instrumental neutron activation analysis (INAA) in a research reactor. In particular, a rapid pneumatic transportation of irradiation capsule is essential for an accurate measurement of a short half-life nuclide. Three types of PTS for NAA facility at the Jordan Research and Training Reactor (JRTR) were newly developed for a functional improvement involving a manual and an automatic system which is equipped with programmable logic controller, software, and 13 devices to facilitate optimal operation of the system. In this paper, the designs and construction of these PTS, the operation and control of the system are described. In addition, a functional and operational test of the system were carried out as one of the basic requirement and characteristic parameters, and the results were reported to provide a user information as well as for the management and safety of the reactor

  12. NEUTRONIC REACTOR STRUCTURE

    Science.gov (United States)

    Weinberg, A.M.; Vernon, H.C.

    1961-05-30

    A neutronic reactor is described. It has a core consisting of natural uranium and heavy water and having a K-factor greater than unity which is surrounded by a reflector consisting of natural uranium and ordinary water having a Kfactor less than unity.

  13. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  14. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: a pool-type primary system, and advanced ternary alloy metallic fuel, and an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  15. [Present conceptions of the C.E.A. concerning] the development of fast neutron reactors in France; [Les conceptions actuelles du C.E.A. concernant] la filiere des reacteurs a neutrons rapides en France

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G; Gaussens, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Pasquer, R [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    1 - The position of fast neutron reactors in the French nuclear energy program. In developing a program based on natural uranium, France will have an important stock of plutonium rich in higher isotopes. The existence of this plutonium and of the depleted uranium arising from the same reactors, has, as a logical consequence, the use of both in fast neutron reactors. Justified by this short term interest, the achievement of fast neutron reactors does, moreover, provide for a future necessity. 2 - Description of a fast neutron central power station of 1000 MWe. We indicate the characteristics of a future fast neutron central power station, plutonium fuelled, and sodium cooled. However uncertain these characteristics may be, they constitute a necessary guide in the orientation of our work. 3 - Studies carried out up to the present time. We give an outline of those studies, often very preliminary, which have given the characteristics cited above. The principal technical areas taken up are the following: - Neutronics (critical masses, breeding ratios, enrichments, flattening of the neutron flux, coefficients of reactivity, reactivity changes as a function of irradiation). - Dynamics, control, and safety. - Technology (design of the core and vessel, of the sodium system, and of the fuel handling mechanisms). These technical studies are complemented by economic considerations. The choice of the optimum characteristics is related to the existence of power production programs, and, in these programs, to the existence of plutonium producing thermal reactors. It is shown how, in this context, the existence of plutonium should be taken into account, and, in addition which mechanisms relate the economics of this plutonium to the choice of the most important parameters of the breeder reactors. 4 - Prototype reactor. The interest in an intermediate stage consisting of a reactor of a power level of about 80 MWe is justified. Its essential characteristics are briefly presented

  16. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  17. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  18. Determination of the neutron flux for a possible way of controlling a fast reactor through the reflector

    International Nuclear Information System (INIS)

    Souza, A.W.A. de.

    1979-08-01

    The determination of time dependent flux is made in a fast reactor with the core embraced by a perfect reflector. The fuel burnup is taken in account establishing a nonlinear diffusion problem. A stable numeric scheme is done and the integration of two limit cases is obtained. Finally, one possibility of reactor control through the variation between two cases is discussed. (E.G.) [pt

  19. Contribution to the replacement of cobalt-free hardfacing coating by laser cladding in fast neutron reactors

    International Nuclear Information System (INIS)

    De-Tran, Van

    2014-01-01

    This thesis contributes to the replacement of the coating of Stellite 6 which is used in friction areas for the primary circuit of the fast neutron reactor. It contains three parts: 1) A literature review for selecting the materials and the deposition process 2) A parametric study to get healthy deposits (good adhesion with the substrate, little porosity, no cracks, low dilution) 3) A study wear behavior of deposits obtained, at high temperature (200 C) under an atmosphere inert gas, to determine the wear resistance of materials selected without the influence of an eventual oxidation layer. From the literature review, it appears the following choices implemented in our study: * the method laser cladding with advantages such as: - Good adhesion (metallurgical) - High cooling speed - Low dilution rate - Wide parametric range * two nickel-based alloys: Colmonoy-52 and Tribaloy-700. These alloys have good dry wear behavior and could be deposited by the laser. In the manufacturing part of the healthy deposit, firstly, we characterized the metal powder. Then, a parametric study was performed to look for a good parametric range that makes us getting a healthy deposit of Stellite 6 (reference) of Colmonoy-52 and Tribaloy-700. In this case, relationships among three main process parameters laser cladding (laser beam power, surface scanning speed, rate of powder) with the microstructure and chemical composition of the deposit are studied. In study the wear behavior, a pin-on-disc type of tribological was used and tests were carried out in argon at room temperature and 200 C. We investigated the wear mechanism of the best deposition of Stellite 6, Colmonoy-52 and Tribaloy-700. The wear resistance of these materials were thoroughly compared. (author) [fr

  20. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  1. Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path

  2. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  3. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  4. The fast breeder reactor Rapsodie (1962)

    International Nuclear Information System (INIS)

    Vautrey, L.; Zaleski, C.P.

    1962-01-01

    In this report, the authors describe the Rapsodie project, the French fast breeder reactor, as it stands at construction actual start-up. The paper provides informations about: the principal neutronic and thermal characteristics, the reactor and its cooling circuits, the main handling devices of radioactive or contaminated assemblies, the principles and means governing reactor operation, the purposes and locations of miscellaneous buildings. Rapsodie is expected to be critical by 1964. (authors) [fr

  5. A three-dimensional thermal and fluid dynamics analysis of a gas cooled subcritical fast reactor driven by a D-T fusion neutron source

    International Nuclear Information System (INIS)

    Angelo, G.; Andrade, D.A.; Angelo, E.; Carluccio, T.; Rossi, P.C.R.; Talamo, A.

    2011-01-01

    Highlights: → A thermal fluid dynamics numerical model was created for a gas cooled subcritical fast reactor. → Standard k-ε model, Eddy Viscosity Transport Equation model underestimates the fuel temperature. → For a conservative assumption, SSG Reynolds stress model was chosen. → Creep strength is the most important parameter in fuel design. - Abstract: The entire nuclear fuel cycle involves partitioning classification and transmutation recycling. The usage of a tokamak as neutron sources to burn spent fuel in a gas cooled subcritical fast reactor (GCSFR) reduces the amount of long-lived radionuclide, thus increasing the repository capacity. This paper presents numerical thermal and fluid dynamics analysis for a gas cooled subcritical fast reactor. The analysis aim to determine the operational flow condition for this reactor, and to compare three distinct turbulence models (Eddy Viscosity Transport Equation, standard k-ε and SSG Reynolds stress) for this application. The model results are presented and discussed. The methodology used in this paper was developed to predict the coolant mass flow rate. It can be applied to any other gas cooled reactor.

  6. Direct Fast-Neutron Detection

    International Nuclear Information System (INIS)

    DC Stromswold; AJ Peurrung; RR Hansen; PL Reeder

    2000-01-01

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gamma rays. However, the difference in pulse widths between neutrons and gamma rays using the best commercially available scintillators was not sufficiently large to provide a practical means for distinguishing fast neutrons and gamma rays on a pulse-by-pulse basis. A faster scintillator is needed, and that scintillator might become available in the literature. Results of the pulse-width studies were presented in a previous report (peurrung et al. 1998), and they are only summarized here

  7. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1992-01-01

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ''clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ''data production'' phase

  8. Fast neutron breeder reactor Rapsodie - situation of physics, hydraulic, thermal and dynamics studies and studies of stability early in 1963

    International Nuclear Information System (INIS)

    1964-01-01

    Early in 1963, it was necessary to make a choice among the two fuels examined for Rapsodie: the UPuMo alloy with double cladding, Nb and stainless steel, and the UO 2 -PuO 2 mix oxide. This report presents the results of the studies effected with the two types of fuel. We reconsider at first the different models which have been studied and we give a detailed description of the alloy and oxide cores as they are envisaged early in 1963. We give then the most important physics performances of the two cores: neutron flux and spectrum, reactivity of the compensation find safety rods, neutrons balance, specific power, effective fraction of delayed neutrons, lifetime of the prompt neutrons, reactivity coefficient. We describe the hydraulic studies and experiments which have been done concerning the two cores. We discuss the criteria adopted as basis for the flow calculations. We give the results of pressure drop and sub-assembly lifting, force measurements, and vibration and pin flow distribution experiments. We discuss the constants utilized for the thermal calculations and we give the temperatures of sodium and alloy or oxide fuel, the temperature increases due to the hot points, and the limitation of the oxide fuel burn-up, originated by the pressure of the fission gases. We treat the hypotheses having been utilized for the dynamics calculations and we describe the different accidents which have been studied. We give the results of the calculations for every accident and each fuel, and we show fuel melting or sodium boiling can be avoided, even in case of the most pessimistic hypotheses, by modifying reactor characteristics (shim-rod reactivity or power of the reactor with only one cooling circuit). The reactor stability has been evaluated with the hypotheses utilized for the dynamics calculations, except of the Doppler coefficient which was intentionally increased. We show that the alloy and oxide cores are stable for every envisaged reactor power. (authors) [fr

  9. Survey of the thermal and fast neutron flux distribution in the core of IPR-R1 reactor

    International Nuclear Information System (INIS)

    Guimaraes, R.R.R.; Santoro, C.A.B.

    1984-01-01

    A methodology to obtain the neutron flux distribution inside the core is presented, aiming to analize the project of reactor increasing power. The technique of measures by activation with irradiation of steel eletrodes of 700 mm of lenght, put in acrylic rods was used. In the detection process and in the counting of activation product, a Ge(Li) detector with high resolution and a scanning mechanical system, constructed and projected in CDTN (Nuclear Technology Development Center) were used. (E.G.) [pt

  10. Study of iterative synthesis method by deflation in the resolution of neutron diffusion equation applied to fast reactors calculation

    International Nuclear Information System (INIS)

    Reis Filho, P.E.G. dos

    1982-01-01

    A new synthesis method to substitute for the classical method of finite diferences for XYZ geometry (geometry of critical experiments in fast reactors), is developed. The new method allows a fine energy group division, that is, finer than the 6 groups division used in calculations of power core specification. (E.G.) [pt

  11. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2000-01-01

    The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li(p,n) 7 Be, and T(p,n) 3 He reactions. (authors)

  12. Fast neutron radiography using photoluminescent imaging plates

    International Nuclear Information System (INIS)

    Rant, J.; Kristof, E.; Balasko, M.; Stade, J.

    1999-01-01

    Fast neutron radiography (FNR) and resonance neutron radiography (RNR) are complementary to the conventional radiography with high energy gamma-rays or brems-strahlung radiation used for the inspection of thick metal objects. In both non-destructive methods, the contrast sensitivity and the penetration power can be improved by using higher energy neutrons. At present direct techniques based either n Solid State Nuclear Track detectors (SSNTDs) or scintillating screens and transfer techniques using activation threshold detectors and radiographic films are applied for the detection of fast neutron images. Rather low detection sensitivity of film and SSNTD based fast neutron imaging methods and also rather poor inherent image contrast of SSNTD pose a problem for FNR in the fast neutron energy region 1-15 MeV interesting for NDT. For more efficient detection of fast neutron images the use of novel highly sensitive photoluminescent imaging plates (IP) in combination with threshold at the KFKI research reactor. The conventional IP produced by FUJI Photo Film Co. for the detection of beta and X-ray radiation were used. The threshold activation detectors were the reactions 115 In(n, n') 115m In, 64 Zn(n,p) 64 Cu, 56 Fe(n, p) 56 Mn, 24 Mg(n, p) 24 Na and 27 Al(n, α) 24 Na. These threshold reactions cover the fast neutron energy region between 0,7 MeV and 12 MeV. Pure, commercially available metals 0,1 mm to 0,25 mm thick made of In, Zn, Fe, Mg and Al were used as converter screens. The very high sensitivity of IP, the linearity of their response over 5 decades of exposure dose and the high dynamic digitalisation latitude enabled fast neutron radiography of image quality comparable to the quality of thermal NR. In our experimental conditions (φ n ∼ 10 8 n/cm 2 s, R Cd ∼ 2) the neutron exposure and IP exposure periods were still practical and comparable to the half life of the corresponding reaction products (half an hour to several hours). Even with the 27 Al(n.α) 24

  13. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1985-01-01

    During the past two years, scientists from Argonne have developed an advanced breeder reactor with a closed self contained fuel cycle. The Integral Fast Reactor (IFR) is a new reactor concept, adaptable to a variety of designs, that is based on a fuel cycle radically different from the CRBR line of breeder development. The essential features of the IFR are metal fuel, pool layout, and pyro- and electro-reprocessing in a facility integral with the reactor plant. The IFR shows promise to provide an inexhaustible, safe, economic, environmentally acceptable, and diversion resistant source of nuclear power. It shows potential for major improvement in all of the areas that have led to concern about nuclear power

  14. Thermal and fast neutron distribution determination in the IPR-R1 reactor core; Levantamento das distribuicoes dos fluxos de neutrons termicos e rapidos no nucleo do reator IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, R R.R.

    1985-06-01

    The work is aimed at obtaining a physical method for neutron flux distribution determination within the reactor core, in order to analyze the project of power increase in the TRIGA IPR-R1 reactor at the Nuclebras Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), located in Belo Horizonte, Minas Gerais, Brazil. The experimental process utilizes the neutron activation technique in impurities of stainless steel welding rods 700 mm long, set in acrylic supports. These rods provide simultaneous information on the thermal and fast neutron fluxes through capture and threshold reactions. The process of detection and counting of activation products utilizes a high resolution Ge (Li) detector and a mechanical scanning device, designed and manufactured at CDTN for burn-up measurements of irradiated fuel elements. Besides its simplicity, the method presents the advantage of substituting high purity imported materials by one easily obtained that also furnishes simultaneous information on the thermal and fast neutron fluxes. Furthermore, values for the absolute thermal neutron flux a long the whole core height are obtained. The procedure consists of the assessment of the thermal neutron flux in a fixed point by means of a conventional detector, and then establishing the correspondence of this measurement with the response of the stainless steel rods. (author). 30 refs, 39 figs, 9 tabs.

  15. Contraband detection with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Buffler, Andy E-mail: abuffler@science.uct.ac.za

    2004-11-01

    Recent terror events and the increase in the trade of illicit drugs have fuelled the exploration of the use of fast neutrons as probes for the detection of hidden contraband, especially explosives, in packages ranging in size from small mail items to cargo containers. The various approaches using fast neutrons for contraband detection, presently under development, are reviewed. The role that a neutron system might play in the non-intrusive interrogation of airline luggage is discussed.

  16. Fast reactor fuel design and development

    International Nuclear Information System (INIS)

    Bishop, J.F.W.; Chamberlain, A.; Holmes, J.A.G.

    1977-01-01

    Fuel design parameters for oxide and carbide fast reactor fuels are reviewed in the context of minimising the total uranium demands for a combined thermal and fast reactor system. The major physical phenomena conditioning fast reactor fuel design, with a target of high burn-up, good breeding and reliable operation, are characterised. These include neutron induced void swelling, irradiation creep, pin failure modes, sub-assembly structural behaviour, behaviour of defect fuel, behaviour of alternative fuel forms. The salient considerations in the commercial scale fabrication and reprocessing of the fuels are reviewed, leading to the delineation of possible routes for the manufacture and reprocessing of Commercial Reactor fuel. From the desiderata and restraints arising from Surveys, Performance and Manufacture, the problems posed to the Designer are considered, and a narrow range of design alternatives is proposed. The paper concludes with a consideration of the development areas and the conceptual problems for fast reactors associated with those areas

  17. Application of COMSOL in the solution of the neutron diffusion equations for fast nuclear reactors in stationary state; Aplicacion de COMSOL en la solucion de las ecuaciones de difusion de neutrones para reactores nucleares rapidos en estado estacionario

    Energy Technology Data Exchange (ETDEWEB)

    Silva A, L.; Del Valle G, E., E-mail: evalle@ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2012-10-15

    This work shows an application of the program COMSOL Multi physics Ver. 4.2a in the solution of the neutron diffusion equations for several energy groups in nuclear reactors whose core is formed by assemblies of hexagonal transversal cut as is the cas of fast reactors. A reference problem of 4 energy groups is described of which takes the cross sections which are processed by means of a program that prepares the definition of the constants utilized in COMSOL for the generic partial differential equations that this uses. The considered solution domain is the sixth part of the core which is applied frontier conditions of reflection and incoming flux zero. The discretization mesh is elaborated in automatic way by COMSOL and the solution method is one of finite elements of Lagrange grade two. The reference problem is known as the Knk with and without control rod which led to propose the calculation of the effective multiplication factor in function of the control rod fraction from a value 0 (completely inserted control rod) until the value 1 (completely extracted control rod). Besides this the reactivity was determined as well as the change of this in function of control rod fraction. The neutrons scalar flux for each energy group with and without control rod is proportioned. The reported results show a behavior similar to the one reported in other works but using the discreet ordinates S{sub 2} approximation. (Author)

  18. Study on a new design of Tehran Research Reactor for radionuclide production based on fast neutrons using MCNPX code.

    Science.gov (United States)

    Zandi, Nadia; Afarideh, Hossein; Aboudzadeh, Mohammad Reza; Rajabifar, Saeed

    2018-02-01

    The aim of this work is to increase the magnitude of the fast neutron flux inside the flux trap where radionuclides are produced. For this purpose, three new designs of the flux trap are proposed and the obtained fast and thermal neutron fluxes compared with each other. The first and second proposed designs were a sealed cube contained air and D 2 O, respectively. The results of calculated production yield all indicated the superiority of the latter by a factor of 55% in comparison to the first proposed design. The third proposed design was based on changing the surrounding of the sealed cube by locating two fuel plates near that. In this case, the production yield increased up to 70%. Copyright © 2017. Published by Elsevier Ltd.

  19. Dounreay fast reactor

    International Nuclear Information System (INIS)

    Maclennan, R.; Eggar, T.; Skeet, T.

    1992-01-01

    The short debate which followed a private notice question asking for a statement on Government policy on the future of the European fast breeder nuclear research programme is reported verbatim. In response to the question, the Minister for Energy said that the Government had decided in 1988 that the Dounreay prototype fast reactor would close in 1994. That decision had been confirmed. Funding of fast breeder research and development beyond 1993 is not a priority as commercialization is not expected until well into the next century. Dounreay will be supported financially until 1994 and then for its subsequent decommissioning and reprocessing of spent fuel. The debate raised issues such as Britain losing its lead in fast breeder research, loss of jobs and the Government's nuclear policy in general. However, the Government's position was that the research had reached a stage where it could be left and returned to in the future. (UK)

  20. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    1983-02-01

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  1. A study of television imaging system for fast neutron radiography

    International Nuclear Information System (INIS)

    Yoshii, Koji

    1992-01-01

    The neutron radiography with fast neutron beam is a very useful imaging technique for thicker objects, especially those composed of hydrogen-rich materials which are sometimes difficult to image by thermal neutron radiography. The fast neutron radiography has not been studied so much as the thermal neutron radiography. The fast neutron radiography has been studied at the fast neutron source reactor 'Yayoi' of the University of Tokyo built in Tokai-mura. The average neutron energy of the Yayoi is about 1 MeV, and the peak neutron flux at the core center is 0.8 x 10 12 at the maximum operating power of 2 kW. In the experiment on fast neutron radiography, a CR39 nuclear track detector has been used successfully. But in the Yayoi radiography procedure, about 24 hours were required for obtaining an imaging result. To get a prompt imaging result and a real-time imaging result, it is necessary to develop a fast neutron television system, and in this paper, a new fast neutron TV system is proposed. The main difference is the converter material sensitive to fast neutrons. The study on the fast neutron TV system was carried out by using the Baby Cyclotron of Japan Steel Works, and the good images were realized. (K.I.)

  2. Chemical reactions induced by fast neutron irradiation

    International Nuclear Information System (INIS)

    Katsumura, Y.

    1989-01-01

    Here, several studies on fast neutron irradiation effects carried out at the reactor 'YAYOI' are presented. Some indicate a significant difference in the effect from those by γ-ray irradiation but others do not, and the difference changes from subject to subject which we observed. In general, chemical reactions induced by fast neutron irradiation expand in space and time, and there are many aspects. In the time region just after the deposition of neutron energy in the system, intermediates are formed densely and locally reflecting high LET of fast neutrons and, with time, successive reactions proceed parallel to dissipation of localized energy and to diffusion of the intermediates. Finally the reactions are completed in longer time region. If we pick up the effects which reserve the locality of the initial processes, a significant different effect between in fast neutron radiolysis and in γ-ray radiolysis would be derived. If we observe the products generated after dissipation and diffusion in longer time region, a clear difference would not be observed. Therefore, in order to understand the fast neutron irradiation effects, it is necessary to know the fundamental processes of the reactions induced by radiations. (author)

  3. Fast reactor database

    International Nuclear Information System (INIS)

    1996-02-01

    This publication contains detailed data on liquid metal cooled fast reactors (LMFRs), specifically plant parameters and design details. Each LMFR power plant is characterized by about 400 parameters, by design data and by relevant materials. The report provides general and detailed design characteristics including structural materials, data on experimental, demonstration, prototype and commercial size LMFRs. The focus is on practical issues that are useful to engineers, scientists, managers and university students and professors. The report includes updated information contained in IAEA previous publications on LMFR plant parameters: IWGRF/51 (1985) and IWGFR/80 (1991) and reflects experience gained from two consultants meetings held in Vienna (1993,1994). This compilation of data was produced by members of the IAEA International Working Group on Fast Reactors (IWGFR)

  4. Concept on coupled spectrum B/T (burning and/or transmutation) reactor for treatment of minor actinides by thermal and fast neutrons

    International Nuclear Information System (INIS)

    Aziz, Ferhat; Kitamoto, Asashi

    1996-01-01

    A conceptual design of B/T (burning and/or transmutation) reactor based on a modified conventional 1150 MWe-PWR system, with core consisted of two concentric regions for thermal and fast neutrons, was proposed herein for B/T treatment of MA (minor actinides). The B/T fuel considered was supposed such that MA discharged from 1 GWe-LWR was blended homogeneously with the composition of LWR fuel. In the outer region 23- Np, 241 Am and 243 Am were loaded and burned by thermal neutron, while in the inner region 244 Cm was loaded and burned mainly by fast neutron. The geometry of B/T fuel and the fuel assembly in the outer region was left in the same condition to those of standard PWR while in the inner region the B/T fuel was arranged in the hexagonal geometry, allowed high fuel to coolant volume ratio (V m /V f ), to keep the harder neutron spectrum. Two cases of the Coupled Spectrum B/T Reactor (CSR) with different (V m 1 f ) ratio in the inner region were studied, and the results for the tight lattice with (V m /V f ) = 0.5 showed that those isotopes approached the equilibrium composition after about 5 recycle period, when the CSR was operated under the reactivity swing of 2.8 % dk/k. The evaluations on the void coefficient of reactivity, the Doppler effect and the reactivity swing showed that the CSR concept has the inherent safety and can burn and/or transmute all kind of MA in a single reactor. This CSR can burn about 808 kg of MA in one recycle period of 3 years, which is equivalent to the discharged fuel from about 12 units of LWR in a year. (author)

  5. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2001-01-01

    It is insufficient to know coordinates and momentum to describe a state of a neutron. It is necessary to define a spin orientation. As far as it is known from quantum mechanics, a half spin has a projection in the positive direction or in the negative direction. The probability of both projections in an unpolarized beam is equal. If a direction exists, in which the projection is more probably then beam is called polarized in this direction. It is essential to know polarization of neutrons for characteristics of a neutron source, which is emitting it. The question of polarization of fast neutrons came up in 50's. The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li (p,n) 7 Be, T(p,n) 3 He reactions. (authors)

  6. Structural and thermodynamic study of dicesium molybdate Cs2Mo2O7: Implications for fast neutron reactors

    Science.gov (United States)

    Smith, A. L.; Kauric, G.; van Eijck, L.; Goubitz, K.; Wallez, G.; Griveau, J.-C.; Colineau, E.; Clavier, N.; Konings, R. J. M.

    2017-09-01

    The structure of α-Cs2Mo2O7 (monoclinic in space group P21 / c), which can form during irradiation in fast breeder reactors in the space between nuclear fuel and cladding, has been refined in this work at room temperature from neutron diffraction data. Furthermore, the compounds' thermal expansion and polymorphism have been investigated using high temperature X-ray diffraction combined with high temperature Raman spectroscopy. A phase transition has been observed at Ttr(α → β)=(621.9±0.8) K using Differential Scanning Calorimetry, and the structure of the β-Cs2Mo2O7 phase, orthorhombic in space group Pbcm, has been solved ab initio from the high temperature X-ray diffraction data. Furthermore, the low temperature heat capacity of α-Cs2Mo2O7 has been measured in the temperature range T=(1.9-313.2) K using a Quantum Design PPMS (Physical Property Measurement System) calorimeter. The heat capacity and entropy values at T=298.15 K have been derived as Cp,mo (Cs2Mo2O7 , cr , 298.15 K) = (211.9 ± 2.1) J K-1mol-1 and Smo (Cs2Mo2O7 , cr , 298.15 K) = (317.4 ± 4.3) J K-1mol-1 . When combined with the enthalpy of formation reported in the literature, these data yield standard entropy and Gibbs energy of formation as Δf Smo (Cs2Mo2O7 , cr , 298.15 K) = - (628.2 ± 4.4) J K-1mol-1 and Δf Gmo (Cs2Mo2O7 , cr , 298.15 K) = - (2115.1 ± 2.5) kJmol-1 . Finally, the cesium partial pressure expected in the gap between fuel and cladding following the disproportionation reaction 2Cs2MoO4=Cs2Mo2O7+2Cs(g)+ 1/2 O2(g) has been calculated from the newly determined thermodynamic functions.

  7. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  8. Knowledge management in fast reactors

    International Nuclear Information System (INIS)

    Kuriakose, K.K.; Satya Murty, S.A.V.; Swaminathan, P.; Raj, Baldev

    2010-01-01

    This paper highlights the work that is being carried out in Knowledge Management of Fast Reactors at Indira Gandhi Centre for Atomic Research (IGCAR) including a few examples of how the knowledge acquired because of various incidents in the initial years has been utilized for the successful operation of Fast Breeder Test Reactor. It also briefly refers to the features of the IAEA initiative on the preservation of Knowledge in the area of Fast Reactors in the form of 'Fast Reactor Knowledge Organization System' (FR-KOS), which is based on a taxonomy for storage and mining of Fast Reactor Knowledge. (author)

  9. Nuclear fast neutron reactor cooled by a liquid metal and of which internal structures are equipped with a thermal protection device

    International Nuclear Information System (INIS)

    Lemercier, G.; Lions, N.

    1986-01-01

    The internal structures of a nuclear fast neutron reactor are covered at least partially, on the most hot side, by a thermal protection device. This device comprises modular plates arranged end to end with a certain play between themselves and taking approximately the shape of the internal structures. Each plate is fixed in its center on the internal structures by a stud. A small plate fixed at one of the corners of each plate and covering partially the adjacent plates ensures the safety fixing of these ones [fr

  10. Remarks concerning the accurate measurement of differential cross sections for threshold reactions used in fast-neutron dosimetry for fission reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1976-12-01

    Some remarks are submitted concerning the measurement of differential cross sections for threshold reactions which are used in fast-neutron dosimetry for fission reactors. The objective is to familiarize the reader with some of the problems associated with these measurements and, in the process, to explain why the existence of large discrepancies in the data sets for many of these reactions is not surprising. Limits to the accuracy which can be expected for these cross sections in the near future--using current technology and available resources--are examined in a general way and recommendations for improving the accuracy of the differential data base for dosimetry reactions are presented

  11. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  12. Development of Optical Fiber Detector for Measurement of Fast Neutron

    International Nuclear Information System (INIS)

    YAGI, Takahiro; KAWAGUCHI, Shinichi; MISAWA, Tsuyoshi; PYEON, Cheol Ho; UNESAKI, Hironobu; SHIROYA, Seiji; OKAJIMA, Shigeaki; TANI, Kazuhiro

    2008-01-01

    Measurement of fast neutron flux is important for investigation of characteristic of fast reactors. In order to insert a neutron detector in a narrow space such as a gap of between fuel plates and measure the fast neutrons in real time, a neutron detector with an optical fiber has been developed. This detector consists of an optical fiber whose tip is covered with mixture of neutron converter material and scintillator such as ZnS(Ag). The detector for fast neutrons uses ThO 2 as converter material because 232 Th makes fission reaction with fast neutrons. The place where 232 Th can be used is limited by regulations because 232 Th is nuclear fuel material. The purpose of this research is to develop a new optical fiber detector to measure fast neutrons without 232 Th and to investigate the characteristic of the detector. These detectors were used to measure a D-T neutron generator and fast neutron flux distribution at Fast Critical Assembly. The results showed that the fast neutron flux distribution of the new optical fiber detector with ZnS(Ag) was the same as it of the activation method, and the detector are effective for measurement of fast neutrons. (authors)

  13. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm2

    International Nuclear Information System (INIS)

    Pillon, Mario; Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Carta, Mario; Fiorani, Orlando; Santagata, Alfonso

    2015-01-01

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm 2 . • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10 17 n/cm 2 . Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted for the

  14. Fast neutron spectrometry and dosimetry

    International Nuclear Information System (INIS)

    Blaize, S.; Ailloud, J.; Mariani, J.; Millot, J.P.

    1958-01-01

    We have studied fast neutron spectrometry and dosimetry through the recoil protons they produce in hydrogenated samples. In spectrometric, we used nuclear emulsions, in dosimetric, we used polyethylene coated with zinc sulphide and placed before a photomultiplier. (author) [fr

  15. Fast breeder reactors

    International Nuclear Information System (INIS)

    Ollier, J.L.

    1987-01-01

    The first industrial-scale fast breeder reactor (FBR) is the Superphenix I at Crays-Melville. It was designed and built by Novatome, a French company, and Ansaldo, an Italian company. The advantages of FBRs are summarized. The status of Superphenix and the testing schedule is given. The stages in its power escalation in 1986 are given. The article is optimistic about the future for FBRs and expects FBRs to take over from PWRs at the beginning of the 21st Century. To achieve economic viability, European financial cooperation for the research and development programme is advocated. (UK)

  16. Universal Fast Breeder Reactor Subassembly Counter manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications

  17. The behaviour of materials in fast reactors

    International Nuclear Information System (INIS)

    Matthews, J.R.

    1977-01-01

    Fast neutron damage in fast reactors can limit the life of structural components through the growth voids. The main features of the current theory of point defect production and condensation are surveyed. The role of metallurgical structures and radiation produced extended defects is outlined and used to demonstrate the development of volume swelling and radiation hardening. Mechanisms of radiation creep are described in the context of the preceding treatment of point defect behaviour. Finally, future trends in the field are briefly explored. (author)

  18. Universal Fast Breeder Reactor Subassembly Counter manual

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  19. EPRTM Reactor neutron instrumentation

    International Nuclear Information System (INIS)

    Pfeiffer, Maxime; SALA, Stephanie

    2013-06-01

    The core safety during operation is linked, in particular, to the respect of criteria related to the heat generated in fuel rods and to the heat exchange between the rods and the coolant. This local power information is linked to the power distribution in the core. In order to evaluate the core power distribution, the EPR TM reactor relies on several types of neutron detectors: - ionization chambers located outside the vessel and used for protection and monitoring - a fixed in-core instrumentation based on Cobalt Self Powered Neutron Detectors used for protection and monitoring - a mobile reference in-core instrumentation based on Vanadium aero-balls This document provides a description of this instrumentation and its use in core protection, limitation, monitoring and control functions. In particular, a description of the detectors and the principles of their signal generation is supplied as well as the description of the treatments related to these detectors in the EPR TM reactor I and C systems (including periodical calibration). (authors)

  20. Irradiation of mixed UO2-PuO2 oxide samples for fast neutron reactor fuel elements

    International Nuclear Information System (INIS)

    Mikailoff, H.; Mustelier, J.; Bloch, J.; Conte, M.; Hayet, L.; Lauthier, J.C.; Leclere, J.

    1968-01-01

    Thermal flux irradiation testings of small mixed oxide pellets UPuO 2 fuel elements were performed in support of the fuel reference design for the Phenix fast reactor. The effects of different parameters (stoichiometry, pellet density, pellet clad gap). on the behaviour of the oxide (temperature distribution, microstructural changes, fission gas release) were investigated in various irradiation conditions. In particular, the effect of fuel density decrease and power rate increase on thermal performances were determined on short term irradiations of porous fuels. (authors) [fr

  1. Study on neutronics performance of flower shape advanced supercritical water cooled fast reactor with different solid moderators

    International Nuclear Information System (INIS)

    Yu Tao; Li Zhifeng; Xie Jinsen; Peng Honghua

    2015-01-01

    The supercritical water cooled fast reactors worked at such harsh condition with high temperature and high pressure, huge hydrogen balance pressure and thermal shock can result in a great loss of hydrogen. The released hydrogen would be out of control under accident situations. K_e_f_f, conversion ratio, moderator temperature effect, Doppler effect and void effect of different material such as ZrH_1_._7, Bp, BeO, C and SiC are discussed. BeO and SiC hold better integrated performance among these materials. Besides, moderators have less effect on the Doppler effect of fuel. (authors)

  2. Accuracy of helium accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    A helium (He) accumulation fluence monitor (HAFM) has been developed for fast reactor dosimetry. In order to evaluate the measurement accuracy of neutron fluence by the HAFM method, the HAFMs of enriched boron (B) and beryllium (Be) were irradiated in the Fast Neutron Source Reactor `YAYOI`. The number of He atoms produced in the HAFMs were measured and compared with the calculated values. As a result of this study, it was confirmed that the neutron fluence could be measured within 5 % by the HAFM method, and that met the required accuracy for fast reactor dosimetry. (author)

  3. New fast reactor installation concept

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The large size and complexity of fast reactor installations are emphasised and these difficulties will be increased with the advent of fast reactors of higher power. In this connection a new concept of fast reactor installation is described with a view to reducing the size of the installation and enabling most components, including even the primary vessel, to be constructed within the confines of a workshop. Full constructional details are given. (U.K.)

  4. Fast reactors and nonproliferation

    International Nuclear Information System (INIS)

    Orlov, V.V.

    1997-01-01

    1.Three aspects of nonproliferation relevant to nuclear power are: Pu buildup in NPP spent fuel cooling ponds (∼ 104 t in case of consumption of ∼ 107 t cheap uranium). Danger of illegal radiochemical extraction of Pu for weapons production; Pu extraction from NPP fuel at the plants available in nuclear countries, its burning along with weapon-grade Pu in NPP reactors or in special-purpose burners; increased hazard of nuclear weapons sprawl with breeders and closed fuel cycle technology spreading all over the world. 2.The latter is one of major obstacles to creation of large-scale nuclear power. 3.Nuclear power of the first stage using 235 U will be able to meet the demands of certain fuel-deficient countries and regions, replacing ∼ 5-10% of conventional fuels in the global consumption for a number of decades. 4.Fast reactors of the first generation and the currently employed fuel technology are far from exhausting their potential for solving economic problems and meeting the challenges of safety, radioactive waste and nonproliferation. Development of large-scale nuclear power will become an option accepted by society for solving energy problems in the following century, provided a breeder technology is elaborated and demonstrated in the next 15-20 years, which would comply with the totality of the following requirement: full internal Pu breeding deterministic elimination of severe accidents involving fuel damage and high radioactivity releases: fast runaway, loss of coolant, fires, steam and hydrogen explosions, etc.; reaching a balance between radioactive wastes disposed of and uranium mined in terms of radiation hazard; technology of closed fuel cycle preventing its use for Pu extraction and permitting physical protection from fuel thefts;economic competitiveness of nuclear power for most of countries and regions, i.e. primarily the cost of NPPs with fat reactors is to be below the cost of modern LWR plants, etc

  5. Fast Neutron Radiation Effects on Bacillus Subtili

    International Nuclear Information System (INIS)

    Chen Xiaoming; Zhang Jianguo; Chu Shijin; Ren Zhenglong; Zheng Chun; Yang Chengde; Tan Bisheng

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus subtilis var. niger. strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor II(CFBR-II). The plate-count results indicated that the D 10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obviously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  6. Computerized tomography using fast neutrons

    International Nuclear Information System (INIS)

    Maier-Schuler, P.

    1992-03-01

    The equipment is transportable and can be used at different neutron sources. CT-images are presented showing that it is possible to get good results by using CT with fast neutrons in non destructive testing. Small defects with high contrasts can be detected as well as larger defects with small differences in material density. Since the neutrons interact with the nuclei and not with the electron density the CT-images contain different information compared with X-ray or γ images. As neutron sources always emit γ-radiation too, this radiation can be detected simultaneously with the neutrons. Therefore one can get a γ CT-image along with the neutron image. For the examination of small samples or objects containing materials with great differences in the linear attenuation coefficients like Al and H 2 thermal neutrons have been used for CT-measurements too. A spatial resolution and a density resolution of 0.1 mm and about 5% respectively could be achieved in the CT-images with fast neutrons and 0.04 mm with thermal neutrons. (orig./HP) [de

  7. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  8. Detailed neutronic study of the power evolution for the European Sodium Fast Reactor during a positive insertion of reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Facchini, A.; Giusti, V.; Ciolini, R. [Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino 2, I-56126 Pisa (Italy); Tuček, K.; Thomas, D. [Joint Research Centre, Institute for Energy and Transport (JRC - IET), European Commission, P.O. Box 2, NL-1755 ZG Petten (Netherlands); D' Agata, E., E-mail: elio.dagata@ec.europa.eu [Joint Research Centre, Institute for Energy and Transport (JRC - IET), European Commission, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

    2017-03-15

    Highlights: • This paper studies the effect of an unexpected runway of a control rod in the ESFR. • The power peaked fuel pin within the core was identified. • The increase of the fission power density of the fuel pin has been evaluated. • Radial/axial fission power density of the power peaked fuel pin has been evaluated. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of new components and new materials. Inside the Collaborative Project on the European Sodium Fast Reactor, several accidental scenario have been studied. Nevertheless, none of them coped with mechanical safety assessment of the fuel cladding under accidental conditions. Among the accidental conditions considered, there is the unprotected transient of overpower (UTOP), due to the insertion, at the end of the first fuel cycle, of a positive reactivity into the reactor core as a consequence of the unexpected runaway of one control rod. The goal of the study was the search for a detailed distribution of the fission power, in the radial and axial directions, within the power peaked fuel pin under the above accidental conditions. Results show that after the control rod ejection an increase from 658 W/cm{sup 3} to 894 W/cm{sup 3}, i.e. of some 36%, is expected for the power peaked fuel pin. This information will represent the base to investigate, in a future work, the fuel cladding safety margin.

  9. Neutronics and thermal-hydraulics coupling: some contributions toward an improved methodology to simulate the initiating phase of a severe accident in a sodium fast reactor

    International Nuclear Information System (INIS)

    Guyot, Maxime

    2014-01-01

    This project is dedicated to the analysis and the quantification of bias corresponding to the computational methodology for simulating the initiating phase of severe accidents on Sodium Fast Reactors. A deterministic approach is carried out to assess the consequences of a severe accident by adopting best estimate design evaluations. An objective of this deterministic approach is to provide guidance to mitigate severe accident developments and re-criticalities through the implementation of adequate design measures. These studies are generally based on modern simulation techniques to test and verify a given design. The new approach developed in this project aims to improve the safety assessment of Sodium Fast Reactors by decreasing the bias related to the deterministic analysis of severe accident scenarios. During the initiating phase, the subassembly wrapper tubes keep their mechanical integrity. Material disruption and dispersal is primarily one-dimensional. For this reason, evaluation methodology for the initiating phase relies on a multiple-channel approach. Typically a channel represents an average pin in a subassembly or a group of similar subassemblies. In the multiple-channel approach, the core thermal-hydraulics model is composed of 1 or 2 D channels. The thermal-hydraulics model is coupled to a neutronics module to provide an estimate of the reactor power level. In this project, a new computational model has been developed to extend the initiating phase modeling. This new model is based on a multi-physics coupling. This model has been applied to obtain information unavailable up to now in regards to neutronics and thermal-hydraulics models and their coupling. (author) [fr

  10. Neutron source for a reactor

    International Nuclear Information System (INIS)

    Kobayashi, Hiromasa.

    1975-01-01

    Object: To easily increase a start-up power of a reactor without irradiation in other reactors. Structure: A neutron source comprises Cf 252 , a natural antimony rod, a layer of beryllium, and a vessel of neutron source. On upper and lower portion of Cf 252 are arranged natural antimony rods, which are surrounded by the Be layer, the entirety being charged into the vessel. The Cf 252 may emit neutron, has a half life more than a period of operating cycle of the reactor and is less deteriorated even irradiated by radioactive rays while being left within the reactor. The natural antimony rod is radioactivated by neutron from Cf 252 and neutron as reactor power increases to emit γ rays. The Be absorbs γ rays to emit the neutron. The antimony rod is irradiated within the reactor. Further, since the Cf 252 is small in neutron absorption cross section, it is hard to be deteriorated even while being inserted within the reactor. (Kamimura, M.)

  11. A review of the UK fast reactor programme, March 1979

    International Nuclear Information System (INIS)

    Smith, R.D.

    1979-01-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments

  12. A review of the UK fast reactor programme, March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R D

    1979-07-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments.

  13. Status of the DEBENE fast breeder reactor development, March 1979

    International Nuclear Information System (INIS)

    Daeunert, U.; Kessler, G.

    1979-01-01

    Status report of the Fast-breeder reactor development in Germany covers the following: description of the political situation in Federal republic of germany during 1978; international cooperation in the field of fast reactor technology development; operation description of the KNK-II fast core experimental power plant; status of construction of the SNR-300; results of the research and development programs concerned with fuel element, cladding, absorber rods and core structural materials development; sodium effects; neutron irradiation effects on SS properties; reactor physics related to experiments in fast critical assemblies; fast reactor safety issues; core disruption accidents; sodium boiling experiments, measuring methods developed; component tests

  14. Status of the DEBENE fast breeder reactor development, March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Daeunert, U; Kessler, G

    1979-07-01

    Status report of the Fast-breeder reactor development in Germany covers the following: description of the political situation in Federal republic of germany during 1978; international cooperation in the field of fast reactor technology development; operation description of the KNK-II fast core experimental power plant; status of construction of the SNR-300; results of the research and development programs concerned with fuel element, cladding, absorber rods and core structural materials development; sodium effects; neutron irradiation effects on SS properties; reactor physics related to experiments in fast critical assemblies; fast reactor safety issues; core disruption accidents; sodium boiling experiments, measuring methods developed; component tests.

  15. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    additional consideration should be required in nuclear design and fuel treating facilities due to reactivity coefficient being shifted to the plus side, larger neutron yield and increased heat source caused by MA loading. (2) Confirmation of TRU burning reactor core concepts. The core specification of sodium cooled-nitride fueled TRU burning large reactor was designed based on commercial type fast reactor (sodium cooled nitride fueled large fast reactor, 38000 MWt) which was designed in the feasibility studies on commercialized fast reactor cycle system. The composition of MAs from LWR's spent fuel was supposed. MA content in the core fuel is settled to 60 wt% based on the JAERI's design in order to maximize the MA transmutation amount. We need to exchange 25% of core fuel with zirconium hydride (ZrH 1.6 ) to attain Doppler coefficient being equivalent to that of the conventional type commercial fast reactor loaded 5 wt% MA. Furthermore, this reactor could transmute MAs produced in forty-eight sodium cooled nitride fueled large fast reactors generating the same output. In order to investigate the dependency of MA transmutation characteristics on the reactor output, 1200 MWt TRU burning middle or small reactor core concept was designed. This core was settled by reducing the number of core fuel assemblies from that of TRU burning large reactor designed above. MA transmutation rate in this core is smaller than that in the TRU burning large reactor core because the neutron flux of this core becomes smaller than that of the TRU burning large reactor core due to the higher Pu enrichment. (3) Comparison between TRU burning reactor and conventional type commercial fast reactor. MA transmutation and nuclear characteristics of the sodium cooled nitride fuel commercial type fast reactor loaded 5 wt%MA were evaluated and compared with those of TRU burning large reactor designed in (2). The commercial type fast reactor could only transmute MAs produced in seven sodium cooled nitride

  16. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1991-01-01

    During 1988--1990 the magnetic resonance dosimetry project was completed, as were the 250 MeV proton shielding measurements. The first cellular experiment using human cells in vitro at the 1 GeV electron storage ring was also accomplished. More detail may be found in DOE Report number-sign DOE/EV/60417-002 and the open literature cited in the individual progress subsections. We report Kinetic Energy Released in Matter (KERMA), factor measurements in several elements of critical importance to neutron radiation therapy and radiation protection for space habitation and exploration for neutron energies below 30 MeV. The results of this effort provide the only direct measurements of the oxygen and magnesium kerma factors above 20 MeV neutron energy, and the only measurements of the iron kerma factor above 15 MeV. They provide data of immediate relevance to neutron radiotherapy and impose strict criteria for normalizing and testing nuclear models used to calculate kerma factors at higher neutron energies

  17. Uranium and the fast reactor

    International Nuclear Information System (INIS)

    Price, T.

    1982-01-01

    The influence of uranium availability upon the future of the fast reactor is reviewed. The important issues considered are uranium reserves and resources, uranium market prices, fast reactor economics and the political availability of uranium to customers in other countries. (U.K.)

  18. The safety of fast reactors

    International Nuclear Information System (INIS)

    Justin, F.

    1976-01-01

    A response is made to the main questions that a man in the street may arise concerning fast breeder reactors, in particular: the advantages of this line, dangerous materials contained in fast breeder reactors, containment shells protecting the environment from radiations, main studies now in progress [fr

  19. Fast reactor physics at CEA: present studies and future prospects

    International Nuclear Information System (INIS)

    Hammer, P.

    1980-09-01

    This paper aims at giving a general survey of the fast reactor core physics and shielding studies wich are in progress at CEA (1979-1983) in order to solve the neutronic problems related to: - core design optimization, - reactor operation and fuel management, - safety, for the development of fast commercial breeders in France after the SUPER-PHENIX 1 construction is achieved

  20. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  1. Study of reactivity feedbacks in a sodium-cooled fast reactor: new methodology based on perturbation theory for evaluating neutronic uncertainties

    International Nuclear Information System (INIS)

    Bouret, Cyrille

    2014-01-01

    Fast reactors (FR) can give value to the plutonium produced by the existing light water reactors and allow the transmutation of a significant part of the final nuclear waste. These features offer industrial prospects for this technology and new projects are currently studied in the world such as ASTRID prototype in France. Future FRs will have also to satisfy new requirements in terms of competitiveness, safety and reliability. In this context, the new core concept envisaged for ASTRID incorporate innovative features that improve the safety of the reactor in case of accident. The proposed design achieves a sodium voiding effect close to zero: it includes a fertile plate in the middle of the core and a sodium plenum in the upper part in order to increase the neutron leakage in case of sodium voiding. This heterogeneous design represents a challenge for the calculation tools and methods used so far to evaluate the neutronic parameters in traditional homogeneous cores. These methods have been improved over the thesis to rigorously treat the neutron streaming, especially at the mediums interfaces. These enhancements have consisted in the development of a specific analysis methodology based on perturbation theory and using a modern three dimensional Sn transport solver. This work has allowed on the one hand, to reduce the bias on static neutronic parameters in comparison with Monte Carlo methods, and, on the other hand, to obtain more accurate spatial distributions of neutronic effects including the reactivity feedback coefficients used for transient analysis. The analysis of the core behavior during transients has also allowed estimating the impact of reactivity feedback coefficients assessment improvements. In conjunction with this work, innovative methods based on the evaluation of local sensitivities coefficients have been proposed to assess the uncertainties associated to local reactivity effects. These uncertainties include the correlations between the different

  2. Lead-Cooled Fast Reactor (LFR) Design: Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C

    2010-02-22

    The idea of developing fast spectrum reactors with molten lead (or lead alloy) as a coolant is not a new one. Although initially considered in the West in the 1950s, such technology was not pursued to completion because of anticipated difficulties associated with the corrosive nature of these coolant materials. However, in the Soviet Union, such technology was actively pursued during the same time frame (1950s through the 1980s) for the specialized role of submarine propulsion. More recently, there has been a renewal of interest in the West for such technology, both for critical systems as well as for Accelerator Driven Subcritical (ADS) systems. Meanwhile, interest in the former Soviet Union, primarily Russia, has remained strong and has expanded well beyond the original limited mission of submarine propulsion. This section reviews the past and current status of LFR development.

  3. Calculations on neutron irradiation damage in reactor materials

    International Nuclear Information System (INIS)

    Sone, Kazuho; Shiraishi, Kensuke

    1976-01-01

    Neutron irradiation damage calculations were made for Mo, Nb, V, Fe, Ni and Cr. Firstly, damage functions were calculated as a function of neutron energy with neutron cross sections of elastic and inelastic scatterings, and (n,2n) and (n,γ) reactions filed in ENDF/B-III. Secondly, displacement damage expressed in displacements per atom (DPA) was estimated for neutron environments such as fission spectrum, thermal neutron reactor (JMTR), fast breeder reactor (MONJU) and two fusion reactors (The Conceptual Design of Fusion Reactor in JAERI and ORNL-Benchmark). then, damage cross section in units of dpa. barn was defined as a factor to convert a given neutron fluence to the DPA value, and was calculated for the materials in the above neutron environments. Finally, production rates of helium and hydrogen atoms were calculated with (n,α) and (n,p) cross sections in ENDF/B-III for the materials irradiated in the above reactors. (auth.)

  4. Fast neutron physics

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Amorim, E.S. do.

    1979-12-01

    Finite systems of small dimensions were investigated in comparison with systems where the diffusion theory is valid with reasonable precision. Elaborated methods were introduced for the study of small systems, based on different approximations of the neutron transport equation. Experimental data, obtained from the literature, were compared with values by the ANISN-DLC/2D system. (Author) [pt

  5. KAFAX-F22 : development and benchmark of multi-group library for fast reactor using JEF-2.2. Neutron 80 group and Photon 24 group

    International Nuclear Information System (INIS)

    Kim, Jung Do; Gil, Choong Sup.

    1997-03-01

    The KAFAX-F22 was developed from JEF-2.2, which is a MATXS format, multigroup library of fast reactor. The KAFAX-F22 has 80 and 24 energy group structures for neutron and photon, respectively. It includes 89 nuclide data processed by NJOY94.38. The TRANSX/TWODANT system was used for benchmark calculations of fast reactor and one- and two-dimensional calculations of ONEDANT and TWODANT were carried out with 80 group, P 3 S 16 and with 25 group, P 3 S 8 , respectively. The average values of multiplication factors are 0.99652 for MOX cores, 1.00538 for uranium cores and 1.00032 for total cores. Various central reaction rate ratios also give good agreements with the experimental values considering experimental uncertainties except for VERA-11A, VERA-1B, ZPR-6-7 and ZPR-6-6A cores of which experimental values seem to involve some problems. (author). 13 refs., 18 tabs., 2 figs

  6. Fast mixed spectrum reactor concept

    International Nuclear Information System (INIS)

    Kouts, H.J.C.; Fischer, G.J.; Cerbone, R.J.

    1979-04-01

    The Fast Mixed Spectrum Reactor is a highly promising concept for a fast reactor with improved features of proliferation resistance, and excellent utilization of uranium resources. In technology, it can be considered to be a branch of fast breeder development, though its operation and implications are different from those of FBR'S in important respects. Successful development programs are required in several areas to bring FMSR to reality, but the payoff from a successful program can be high

  7. Excitation of 107m,109m Ag isomeric states in the fast neutron inelastic scattering at the Ibr-2 reactor of JINR

    International Nuclear Information System (INIS)

    Alpatov, V.G.; Davydov, A.V.; Isaev, Yu.N.

    1997-01-01

    The excitation cross sections of long-living isomers of 107m,109m Ag nuclei were measured for the fast neutron inelastic scattering reactions at the Ibr-2 reactor of JINR (Dubna) by means of a comparison with the yield of the 103m Rh isomer. The excitation cross sections of the latter are known for analogous reactions in the wide energy range. The measured cross sections are the following: σ( 107m Ag) 204 ± 18 mb, σ( 109m Ag) = 262 ± 26 mb. These values are essentially lower than the excitation cross section of the 103m Rh isomer. The analysis of the data on level structures and transitions between these levels for rhodium and silver nuclei together with the data on γ-spectra created in the reactions (n, n ' γ) shows that the essential difference between excitation cross sections of Rh and Ag isomers can be explained by different populations of corresponding levels

  8. Specification of fast neutron radiation quality from cell transformation data

    International Nuclear Information System (INIS)

    Coppola, M.

    1992-01-01

    Experimental data on the neoplastic transformation of C3H 10T1/2 cells measured at Casaccia after neutron and X-ray irradiation were used to determine neutron RBE values for the RSV-Tapiro fast reactor energy spectrum and for monoenergetic neutrons of 0.5, 1, and 6 MeV. In parallel, micro-dosimetric measurements provided the actual lineal energy distributions and related mean parameters for the reactor radiation. From these experiments, values of the neutron quality factor were derived for the reactor neutron energy spectrum and, in turn, for the other neutron energies tested. A mathematical expression giving a smooth dependence on neutron energy was also determined for the effective quality factor in the entire energy range examined. The results were compared with other proposals

  9. Dosimetry of fast neutrons

    International Nuclear Information System (INIS)

    Jahr, R.

    1975-03-01

    Following an explanation of the physical fundamentals of neutron dosimetry, the special needs in medicine and biology are gone into. It is shown that the dose equivalent used in radiation protection simplifies in an undue manner the complicated dependence of the biological effects. The reason for this is the fact that the RBE for heavy recoil nuclei, amongst others, depends on the energy and sort of particle, whereas it is approximately equal to one for electrons independent of the energy. It is thus necessary in the fields of biology and medicine to have additional information on energy spectra of the neutrons as well as of all charged secondary particles as a function of the position in the phantom. These are obtained partly by calculation and partly by special dosemeters. The accuracy achieved so far is 5%. (ORU/LH) [de

  10. Fast neutron activation analysis

    International Nuclear Information System (INIS)

    Pepelnik, R.

    1986-01-01

    Since 1981 numerous 14 MeV neutron activation analyses were performed at Korona. On the basis of that work the advantages of this analysis technique and therewith obtained results are compared with other analytical methods. The procedure of activation analysis, the characteristics of Korona, some analytical investigations in environmental research and material physics, as well as sources of systematic errors in trace analysis are described. (orig.) [de

  11. Combined BC/MD approach to the evaluation of damage from fast neutrons and its implementation for beryllium irradiation in a fusion reactor

    Science.gov (United States)

    Borodin, V. A.; Vladimirov, P. V.

    2017-12-01

    The determination of primary damage production efficiency in metals irradiated with fast neutrons is a complex problem. Typically, the majority of atoms are displaced from their lattice positions not by neutrons themselves, but by energetic primary recoils, that can produce both single Frenkel pairs and dense localized cascades. Though a number of codes are available for the calculation of displacement damage from fast ions, they commonly use binary collision (BC) approximation, which is unreliable for dense cascades and thus tend to overestimate the number of created displacements. In order to amend the radiation damage predictions, this work suggests a combined approach, where the BC approximation is used for counting single Frenkel pairs only, whereas the secondary recoils able to produce localized dense cascades are stored for later processing, but not followed explicitly. The displacement production in dense cascades is then determined independently from molecular dynamics (MD) simulations. Combining contributions from different calculations, one gets the total number of displacements created by particular neutron spectrum. The approach is applied here to the case of beryllium irradiation in a fusion reactor. Using a relevant calculated energy spectrum of primary knocked-on atoms (PKAs), it is demonstrated that more than a half of the primary point defects (˜150/PKA) is produced by low-energy recoils in the form of single Frenkel pairs. The contribution to the damage from the dense cascades as predicted using the mixed BC/MD scheme, i.e. ˜110/PKA, is remarkably lower than the value deduced from uncorrected SRIM calculations (˜145/PKA), so that in the studied case SRIM tends to overpredict the total primary damage level.

  12. Design characteristics of research zero power fast reactor Lasta

    International Nuclear Information System (INIS)

    Milosevic, M.; Stefanovic, D.; Pesic, M.; Nikolic, D.; Antic, D.; Zavaljevski, N.; Popovic, D.

    1990-01-01

    LASTA is a flexible zero power reactor with uranium and plutonium fuel designed for research in the neutron physics and in the fast reactor physics. Safety considerations and experimental flexibility led to the choice of a fixed vertical assembly with two safety blocks as the main safety elements, so that safety devices would be operated by gravity. The neutron and reactor physics, the control and safety philosophy adopted in our design, are described in this paper. Developed computer programs are presented. (author)

  13. Status of fast reactor control rod development in the United Kingdom

    International Nuclear Information System (INIS)

    Kelly, B.T.

    1984-01-01

    The two large fast reactors constructed in the United Kingdom, that is the Dounreay Fast Reactor (DFR) and the Prototype Fast Reactor (PFR) differed substantially in their control systems. DFR was controlled by variation of the neutron leakage from the core while PFR uses conventional control rods containing neutron absorbing materials. This paper describes the development of the PFR control systems, the progressive design of the control systems for the prototype Civil Fast Reactor (CFR) and the supporting research and development programmes. (author)

  14. Single- and two-phase flow modeling for coupled neutronics / thermal-hydraulics transient analysis of advanced sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Chenu, A.

    2011-10-01

    Nuclear power is nowadays in the front rank as regards helping to meet the growing worldwide energy demand while avoiding an excessive increase in greenhouse gas emissions. However, the operating nuclear power plants are mainly thermal-neutron reactors and, as such, can not be maintained on the basis of the currently identified uranium resources beyond one century at the present consumption rate. Sustainability of nuclear power thus involves closure of the fuel cycle through breeding. With a uranium-based fuel, breeding can only be achieved using a fast-neutron reactor. Sodium-cooled fast reactor (SFR) technology benefits from 400 reactor-years of accumulated experience and is thus a prime candidate for the implementation of so-called Generation-IV nuclear energy systems. In this context, the safety demonstration of SFRs remains a major Research and Development related issue. The current research aims at the development of a computational tool for the in-depth understanding of SFR core behaviour during accidental transients, particularly those including boiling of the coolant. An accurate modelling of the core physics during such transients requires the coupling between 3D neutron kinetics and thermal-hydraulics in the core, to account for the strong interactions between the two-phase coolant flow and power variations caused by the sodium void effect. The present study is specifically focused upon models for the representation of sodium two-phase flow. The extension of the thermal-hydraulics TRACE code, previously limited to the simulation of single-phase sodium flow, has been carried out through the implementation of equations-of-state and closure relations specific to sodium. The different correlations have then been implemented as options. From the validation study carried out, it has been possible to recommend a set of models which provide satisfactory results, while considering annular flow as the dominant regime up to dryout and a smooth breakdown of the

  15. Breeding description for fast reactors and symbiotic reactor systems

    International Nuclear Information System (INIS)

    Hanan, N.A.

    1979-01-01

    A mathematical model was developed to provide a breeding description for fast reactors and symbiotic reactor systems by means of figures of merit type quantities. The model was used to investigate the effect of several parameters and different fuel usage strategies on the figures of merit which provide the breeding description. The integrated fuel cycle model for a single-reactor is reviewed. The excess discharge is automatically used to fuel identical reactors. The resulting model describes the accumulation of fuel in a system of identical reactors. Finite burnup and out-of-pile delays and losses are treated in the model. The model is then extended from fast breeder park to symbiotic reactor systems. The asymptotic behavior of the fuel accumulation is analyzed. The asymptotic growth rate appears as the largest eigenvalue in the solution of the characteristic equations of the time dependent differential balance equations for the system. The eigenvector corresponding to the growth rate is the core equilibrium composition. The analogy of the long-term fuel cycle equations, in the framework of this model, and the neutron balance equations is explored. An eigenvalue problem adjoint to the one generated by the characteristic equations of the system is defined. The eigenvector corresponding to the largest eigenvalue, i.e. to the growth rate, represents the ''isotopic breeding worths.'' Analogously to the neutron adjoint flux it is shown that the isotopic breeding worths represent the importance of an isotope for breeding, i.e. for the growth rate of a system

  16. Determination of fast neutron fluence at WWER-1000 pressure vessel

    International Nuclear Information System (INIS)

    Valenta, V. et al.

    1989-01-01

    The influence function method is an effective tool making it possible, by means of tabulated values to rapidly perform three-dimensional calculations of fast neutron fluences for various reactor core loadings and for various nuclear power plant units. The procedure for determining the spatial dependence of the fast neutron fluences in a WWER-1000 pressure vessel is described. For this, the reactor core is divided into sufficiently fine volume elements within which the neutron source can be regarded as coordinate-independent. The influence functions point to a substantial role of sources lying at the reactor core periphery. In WWER-1000 reactors, only 1 or 2 rows of peripheral assemblies are important. The influence function method makes possible a rapid and easy determination of preconditions for the assessment of the residual lifetime of the pressure vessel based on the actual reactor core loadings. (Z.M.). 7 figs., 8 refs

  17. Monitor for reactor neutron detector

    International Nuclear Information System (INIS)

    Shirakami, Hisayuki; Shibata, Masatoshi

    1992-01-01

    The device of the present invention judges as to whether a neutron detector is normal or not while considering the change of indication value depending on the power change of a reactor core. That is, the device of the present invention comprises a standard value setting device for setting the standard value for calibrating the neutron detector and an abnormality judging device for comparing the standard value with a measured value of the neutron detector and judging the abnormality when the difference is greater than a predetermined value. The measured value upon initialization of each of the neutron detectors is determined as a quasi-standard value. An average value of the difference between the measured value and the quasi-standard value of a plurality of effective neutron detectors at a same level for the height of the reactor core is multiplied to a power rate based on the reactor core power at a position where the neutron detector is disposed upon calibration. The value obtained by adding the multiplied value and the quasi-standard value is determined as a standard value. The abnormality judging device compares the standard value with the measured value of the neutron detector and, if the difference is greater than a predetermined value, the neutron detector is determined as abnormal. As a result, judgement can be conducted more accurately than conventional cases. (I.S.)

  18. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  19. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  20. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2012-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  1. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2013-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  2. The fast neutrons reactors, the sodium, the fuel cycle: evaluation of the knowledge, innovation potential and forecast; Les reacteurs a neutrons rapides, le sodium, le cycle du combustible: bilan de l'acquis, potentiel d'innovation et perspectives d'avenir

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J

    2002-07-01

    This document presents the study, the design and the construction of fast neutrons reactors, cooled with sodium. From this evaluation, it details the innovation possibilities of this sector in the sustainable development context of the nuclear energy. Chapter one presents the physical and physico-chemical properties of the sodium. Chapter two analyzes the properties of the fast cores and the sodium advantages. Chapter three analyzes the great contribution of the EFR project. Chapter four takes stock on the innovation possibilities. And before the conclusion, chapter five shows that the fast neutrons reactors allow the electric power production in agreement with a sustainable development. (A.L.B.)

  3. Excitation of 107m,109mAg isomeric states in the inelastic scattering of fast neutrons from the IBR-2 reactor of JINR

    International Nuclear Information System (INIS)

    Alpatov, V. G.; Borzakov, S. B.; Davydov, A. V.; Isaev, Yu. N.; Kartashov, G. R.; Korotkov, M. M.; Nazarov, V. M.; Pavlov, S. S.; Peresedov, V. F.; Rad'ko, V. E.; Samoylov, V. M.; Chinaeva, V. P.

    1997-01-01

    The cross sections for the excitation of long-lived isomers of 107,109 Ag nuclei are measured in the inelastic scattering of fast neutrons from the IBR-2 reactor of JINR (Dubna). The measurements are performed by means of comparison with the yield of the 103m Rh isomer, for which the excitation cross sections are known over a wide energy range for similar reactions induced by monochromatic neutrons. The measured cross sections proved to be σ( 107m Ag)=204±18 mb and σ( 109m Ag)=262±26 mb. These values are significantly smaller than the cross section for the excitation of the 103m Rh isomer. An analysis employing information about the arrangement of energy levels in Rh and Ag and about transitions between these levels, as well as data on the spectra of γ rays emitted in (n,n'γ) reactions, reveals that the distinction between the cross sections for the excitation of Rh and Ag isomers can be explained by the difference in the population of corresponding levels of Rh and Ag nuclei

  4. Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF / B-VII.1

    Science.gov (United States)

    Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.

    2018-04-01

    The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.

  5. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  6. Fast reactor database. 2006 update

    International Nuclear Information System (INIS)

    2006-12-01

    Liquid metal cooled fast reactors (LMFRs) have been under development for about 50 years. Ten experimental fast reactors and six prototype and commercial size fast reactor plants have been constructed and operated. In many cases, the overall experience with LMFRs has been rather good, with the reactors themselves and also the various components showing remarkable performances, well in accordance with the design expectations. The fast reactor system has also been shown to have very attractive safety characteristics, resulting to a large extent from the fact that the fast reactor is a low pressure system with large thermal inertia and negative power and temperature coefficients. In addition to the LMFRs that have been constructed and operated, more than ten advanced LMFR projects have been developed, and the latest designs are now close to achieving economic competitivity with other reactor types. In the current world economic climate, the introduction of a new nuclear energy system based on the LMFR may not be considered by utilities as a near future option when compared to other potential power plants. However, there is a strong agreement between experts in the nuclear energy field that, for sustainability reasons, long term development of nuclear power as a part of the world's future energy mix will require the fast reactor technology, and that, given the decline in fast reactor development projects, data retrieval and knowledge preservation efforts in this area are of particular importance. This publication contains detailed design data and main operational data on experimental, prototype, demonstration, and commercial size LMFRs. Each LMFR plant is characterized by about 500 parameters: physics, thermohydraulics, thermomechanics, by design and technical data, and by relevant sketches. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors with complete technical information of a total of 37 LMFR

  7. Fast reactor collaboration in Europe

    International Nuclear Information System (INIS)

    Smith, G.E.I.

    1987-01-01

    Fast reactors have been developed in several European countries, the United Kingdom, France, Germany and Italy. A suggestion to collaborate on fast reactor research and development resulted in an Intergovernmental Memorandum of Understanding signed in 1984 by the UK, France, Germany, Italy and Belgium. Holland was expected to join later. This provided for co-operation between electric utilities, reactor design, research and development companies and fuel cycle companies. Three steering committees have so far been set up, the European fast reactor utilities Group, the European research and development and the European fuel cycle steering committees. Progress on these is detailed. The main areas of technology exchange are listed in the Appendix. The possibility exists for a series of three large demonstration plants to be built in Europe and a fuel reprocessing plant to confirm the reactor system. (U.K.)

  8. Fuel management codes for fast reactors

    International Nuclear Information System (INIS)

    Sicard, B.; Coulon, P.; Mougniot, J.C.; Gouriou, A.; Pontier, M.; Skok, J.; Carnoy, M.; Martin, J.

    The CAPHE code is used for managing and following up fuel subassemblies in the Phenix fast neutron reactor; the principal experimental results obtained since this reactor was commissioned are analyzed with this code. They are mainly concerned with following up fuel subassembly powers and core reactivity variations observed up to the beginning of the fifth Phenix working cycle (3/75). Characteristics of Phenix irradiated fuel subassemblies calculated by the CAPHE code are detailed as at April 1, 1975 (burn-up steel damage)

  9. Nuclear data for advanced fast reactors

    International Nuclear Information System (INIS)

    Rabotnov, N.S.

    2001-01-01

    Interest revives to fast reactors as the only proven technology obviously able of satisfying human energy needs for the next millennium by using full energy content of both natural uranium resources and of vast stocks of depleted uranium. This interest stimulates revision and improvement of fast reactor ND. Progress in reactor calculations accuracy due to better codes and much faster computers also increases relative importance of the input data uncertainties, especially in case of small reactivity margin and fuels of equilibrium compositions. The main objects of corresponding R and D efforts should be minor actinides and heavy liquid metal coolant. Data error bands and covariance information also gain importance as necessary components of neutron physics calculations. (author)

  10. Slovakia: Proposal of movable reflector for fast reactor design

    International Nuclear Information System (INIS)

    Vrban, B.

    2015-01-01

    In fast reactors a larger migration area leading to a significant leak of neutrons can be observed because especially the transport cross-sections are in general smaller as compared to light water reactors. The utilization of a moveable reflector system in conjunction with dedicated safety control rods can increase the ability of accident managing due to enhanced escaping neutrons which otherwise would be reflected back into the fuel zone. The paper demonstrates the possibility of better controlling the transient reactor by additionally moving selected reflector subassemblies equipped with the neutron trap. The main purpose of the analysis of the Gas-cooled Fast Reactor (GFR) presented in the full paper is investigation of the kinetic parameters and of the control and reflector rod worth, as well as optimization of the parts used for partial reflector withdrawal. The results found in this study may serve for future design improvements of other designs such as the liquid metal cooled fast reactors

  11. The integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Marchaterre, J.F.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) an integral fuel cycle, based on pyrometallurgical processing and injection-cast fuel fabrication, with the fuel cycle facility collocated with the reactor, if so desired. This paper gives a review of the IFR concept

  12. Review of fast reactor activities

    International Nuclear Information System (INIS)

    1982-01-01

    A description of some highlights of the activities performed by the Commission of the European Communities in the field of fast reactors is given. They fall into two categories: coordinating and harmonizing activities and research activities. The former are essentially performed in the frame of the Fast Reactor Coordinating Committee (FRCC), the latter in the Commission's Joint Research Center and to some extent under contract in research centers of the Member States

  13. An improved fast neutron radiography quantitative measurement method

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Hibiki, Takashi; Mishima, Kaichiro; Yoshii, Koji; Okamoto, Koji

    2004-01-01

    The validity of a fast neutron radiography quantification method, the Σ-scaling method, which was originally proposed for thermal neutron radiography was examined with Monte Carlo calculations and experiments conducted at the YAYOI fast neutron source reactor. Water and copper were selected as comparative samples for a thermal neutron radiography case and a dense object, respectively. Although different characteristics on effective macroscopic cross-sections were implied by the simulation, the Σ-scaled experimental results with the fission neutron spectrum cross-sections were well fitted to the measurements for both the water and copper samples. This indicates that the Σ-scaling method could be successfully adopted for quantitative measurements in fast neutron radiography

  14. Television imaging system for fast neutron radiography using baby cyclotron

    International Nuclear Information System (INIS)

    Yoshii, Koji; Miya, Kenzo; Katoh, Norihiko.

    1993-01-01

    A television imaging system for fast neutron radiography (FNR-TV) developed using the fast neutron source reactor YAYOI was applied to the baby-cyclotron based fast neutron source to get images of thick objects quickly. In the system the same technique as a current television imaging system of thermal neutron radiography was applied, while the luminescent converter was used to detect fast neutrons. Using the CR39 track etch method it took about 7 h to get an image, while the FNR-TV only 20 s enough for taking the same object. However the FNR-TV imaging result of the simulation model of a large explosive device for the space launch vehicle of H-2 type was not so good as the image taken with the CR39 track etch method. The reason was that the luminescence intensity of the FNR-TV converter was a quarter of that in the YAYOI. (author)

  15. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  16. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    International Nuclear Information System (INIS)

    Neil Todreas; Pavel Hejzlar

    2008-01-01

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores treated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcome the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better thermal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor

  17. Application of reactors for testing neutron-induced upsets in commercial SRAMs

    International Nuclear Information System (INIS)

    Griffin, P.J.; Luera, T.F.; Sexton, F.W.; Cooper, P.J.; Karr, S.G.; Hash, G.L.; Fuller, E.

    1997-01-01

    Reactor neutron environments can be used to test/screen the sensitivity of unhardened commercial SRAMs to low-LET neutron-induced upset. Tests indicate both thermal/epithermal (< 1 keV) and fast neutrons can cause upsets in unhardened parts. Measured upset rates in reactor environments can be used to model the upset rate for arbitrary neutron spectra

  18. Review of fast reactor activities

    International Nuclear Information System (INIS)

    Haeussermann, W.; Royen, J.

    1978-01-01

    Since 1971, when the Co-ordinating Group on Gas-Cooled Fast reactors Development was set up, the participating countries have maintained an interest in keeping this option as a back-up solution to the sodium cooled fast reactors. Two different concepts were investigated, one based on coated particle type fuel elements and the other on pin type fuel elements. The coated particles studies have been brought to an end, and resources were concentrated on the further development of the pin type concept. The work done in previous years covered design and safety investigations, heat transfer studies and irradiation experiments in thermal reactors

  19. Review of fast reactor activities in India

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1982-01-01

    A review of fast reactor activities in India is introduced. One stage of construction of the Fast Breeder Test Reactor (FBTR) and design studies for 500MWe Prototype Fast Breeder Reactor (PFBR) are briefly summarized. The emphasis is on fast reactor physics, materials studies, radiochemistry, and the safety and fuel reprocessing programme

  20. A fast spectrum dual path flow cermet reactor

    International Nuclear Information System (INIS)

    Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.

    1993-01-01

    A cermet fueled, dual path fast reactor for space nuclear propulsion applications is conceptually designed. The reactor utilizes an outer annulus core and an inner cylindrical core with radial and axial reflector. The dual path flow minimizes the impact of power peaking near the radial reflector. Basic neutronics and core design aspects of the reactor are discussed. The dual path reactor is integrated into a 25000 lbf thrust nuclear rocket

  1. Conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at SINQ

    International Nuclear Information System (INIS)

    Zanini, L.; Baluc, N.; Simone, A. De; Eichler, R.; Joray, S.; Manfrin, E.; Pouchon, M.; Rabaioli, S.; Schumann, D.; Welte, J.; Zhernosekov, K.

    2011-12-01

    This comprehensive, illustrated report by the Paul Scherrer Institute PSI in Switzerland documents the proposals concerning the conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at the PSI's Swiss Spallation Neutron Source SINQ facility. The need for fast neutron irradiation is discussed and the possibility of using SINQ as a fast neutron irradiation facility is considered. The production of isotopes, tracers and medical isotopes is discussed, as are fission and fusion reactor technologies. The characteristics of the neutron spectrum in SINQ are discussed. The neutronic and radioprotection calculations for an irradiation station at SINQ are looked at in detail and extensive examples of work done and results obtained are presented and discussed. Radioprotection issues are also looked at. Further contributions in the report cover the hot/cold irradiation station in the SINQ target. An appendix provides detailed drawings of the facility's pneumatic delivery system

  2. Intrinsically secure fast reactors with dense cores

    International Nuclear Information System (INIS)

    Slessarev, Igor

    2007-01-01

    Secure safety, resistance to weapons material proliferation and problems of long-lived wastes remain the most important 'painful points' of nuclear power. Many innovative reactor concepts have been developed aimed at a radical enhancement of safety. The promising potential of innovative nuclear reactors allows for shifting accents in current reactor safety 'strategy' to reveal this worth. Such strategy is elaborated focusing on the priority for intrinsically secure safety features as well as on sure protection being provided by the first barrier of defence. Concerning the potential of fast reactors (i.e. sodium cooled, lead-cooled, etc.), there are no doubts that they are able to possess many favourable intrinsically secure safety features and to lay the proper foundation for a new reactor generation. However, some of their neutronic characteristics have to be radically improved. Among intrinsically secure safety properties, the following core parameters are significantly important: reactivity margin values, reactivity feed-back and coolant void effects. Ways of designing intrinsically secure safety features in fast reactors (titled hereafter as Intrinsically Secure Fast Reactors - ISFR) can be found in the frame of current reactor technologies by radical enhancement of core neutron economy and by optimization of core compositions. Simultaneously, respecting resistance to proliferation, by using non-enriched fuel feed as well as a core breeding gain close to zero, are considered as the important features (long-lived waste problems will be considered in a separate paper). This implies using the following reactor design options as well as closed fuel cycles with natural U as the reactor feed: ·Ultra-plate 'dense cores' of the ordinary (monolithic) type with negative total coolant void effects. ·Modular type cores. Multiple dense modules can be embedded in the common reflector for achieving the desired NPP total power. The modules can be used also independently (as

  3. Astrid (fast breeder nuclear reactor)

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a French project of sodium-cooled fast breeder reactor, fourth generation reactor which should be fuelled by uranium 238 rather than uranium 235, and should therefore need less extracted natural uranium to produce electricity. The operation principle of fast breeder reactors is described. They notably directly consume plutonium, allow an easier radioactive waste management as they transform long life radioactive elements into shorter life elements by transmutation. The regeneration process is briefly described, and the various operation modes are evoked (iso-generator, sub-generator, and breeder). Some peculiarities of sodium-cooled reactors are outlined. The Astrid operation principle is described, its main design innovations outlined. Various challenges are discussed regarding safety of supply and waste processing, and the safety of future reactors. Major actors are indicated: CEA, Areva, EDF, SEIV Alcen, Toshiba, Rolls Royce, and Comex. Some key data are indicated: expected lifetime, expected availability rate, cost. The projected site is Marcoule and fast breeder reactors operated or under construction in the world are indicated. The document also proposes an overview of the background and evolution of reactors of 4. generation

  4. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  5. Development of fast neutron radiography system based on portable neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Chia Jia, E-mail: gei-i-kani@hotmail.com; Nilsuwankosit, Sunchai, E-mail: sunchai.n@chula.ac.th [Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok, THAILAND 10330 (Thailand)

    2016-01-22

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  6. On the problem of monitoring the neutron parameters of the Fast Energy Amplifier

    International Nuclear Information System (INIS)

    Behringer, K.; Wydler, P.

    1998-10-01

    The conceptual Fast Energy Amplifier, proposed by Rubbia et al. (1995), consists of a combination of a U-233/Th-232 fuelled fast-neutron subcritical facility with a proton accelerator. An intense beam of 1 GeV protons is injected into liquid lead at the core centre and drives the reactor by producing spallation neutrons. The burst of spallation neutrons produced by a single proton alters the basic neutron statistics which are well known for thermal neutrons in conventional nuclear reactors. A short assessment of standard neutron noise analysis methods is made with respect to monitoring neutron parameter data. (author)

  7. Fast neutron fluxes distribution in Egyptian ilmenite concrete

    International Nuclear Information System (INIS)

    Megahed, R.M.; Abou El-Nasr, T.Z.; Bashter, I.I.

    1978-01-01

    This work is concerned with the study of the distribution of fast neutron fluxes in a new type of heavy concrete made from Egyptian ilmenite ores. The neutron source used was a collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor. Measurements were carried-out using phosphorous activation detectors. Iso-flux curves were represented which give directly the shape and thickness required to attenuate the emitted fast neutron flux to a certain value. The relaxation lengths were also evaluated from the measured data for both disc monodirectional source and infinite plane monodirectional source. The obtained values were compared with that calculated using the derived values of relative number densities and microscopic removal cross-sections of the different constituents. The obtained data show that ilmenite concrete attenuates fast neutron flux more strongly than ordinary concrete. A semiemperical formula was derived to calculate the fast neutron flux at different thicknesses along the beam axis. Another semiemperical formula was also derived to calculate the fast neutron flux in ordinary concrete along the beam axis using the corresponding value in ilmenite concrete

  8. Fast reactors: the industrial perspective

    International Nuclear Information System (INIS)

    Vaughan, R.D.

    1986-01-01

    Industrial participation in the development of the fast reactor is reviewed, from the construction of PFR at Dounreay to the initial steps towards collaboration in Europe. The optimum design of the fast reactor has changed considerably from the days when it was needed urgently to forestall a shortage of uranium to today when uranium is abundant and cheap. The evolution of the reactor design over this period is described. Collaboration in Europe is shown to be the only answer to high development costs and the search for a reactor which will compete with thermal reactors in today's environment. The partner countries in this collaboration are all motivated differently, and this is leading to some delays in concluding the necessary agreements. The objective on the industrial front is now to participate in the two or three demonstration fast reactors that will be built in Europe during the remainder of the century leading, it is hoped, to a competitive reactor design by the year 2000. (author)

  9. Transmutation of Americium in Fast Neutron Facilities

    International Nuclear Information System (INIS)

    Zhang, Youpeng

    2011-01-01

    In this thesis, the feasibility to use a medium sized sodium cooled fast reactor fully loaded with MOX fuel for efficient transmutation of americium is investigated by simulating the safety performance of a BN600-type fast reactor loaded with different fractions of americium in the fuel, using the safety parameters obtained with the SERPENT Monte Carlo code. The focus is on americium mainly due to its long-term contribution to the radiotoxicity of spent nuclear fuel and its deterioration on core's safety parameters. Applying the SAS4A/SASSYS transient analysis code, it is demonstrated that the power rating needs to be reduced by 6% for each percent additional americium introduction into the reference MOX fuel, maintaining 100 K margin to fuel melting, which is the most limiting failure mechanism. Safety analysis of a new Accelerator Driven System design with a smaller pin pitch-to-diameter ratio comparing to the reference EFIT-400 design, aiming at improving neutron source efficiency, was also performed by simulating performance for unprotected loss of flow, unprotected transient overpower, and protected loss-of-heat-sink transients, using neutronic parameters obtained from MCNP calculations. Thanks to the introduction of the austenitic 15/15Ti stainless steel with enhanced creep rupture resistance and acceptable irradiation swelling rate, the suggested ADS design loaded with nitride fuel and cooled by lead-bismuth eutectic could survive the full set of transients, preserving a margin of 130 K to cladding rupture during the most limiting transient. The thesis concludes that efficient transmutation of americium in a medium sized sodium cooled fast reactor loaded with MOX fuel is possible but leads to a severe power penalty. Instead, preserving transmutation rates of minor actinides up to 42 kg/TWh th , the suggested ADS design with enhanced proton source efficiency appears like a better option for americium transmutation

  10. Fast reactor versions: elements of choice

    International Nuclear Information System (INIS)

    Tassart, J.; Zerbib, J.C.

    1984-01-01

    This paper has the objective of explaining in detail the economical, political, social and technical elements on which the CFDT (French Trade Union) bases its opposition to the commercial development of the version of fast reactors. An examination of the different choices which were investigated does not point to any legitimate grounds for this choice. What has to be done is to present the facts which enable the greatest possible number of workers or civilians to take up a position on the choices concerning them. A technical comparison of the fast neutron reactor with those operating at present is put forward (France and United Kingdom). It covers the different radioactive waste products and the results of the individual and collective monitoring of the workmen [fr

  11. Linear and nonlinear stability analysis, associated to experimental fast reactors

    International Nuclear Information System (INIS)

    Amorim, E.S. do; Moura Neto, C. de; Rosa, M.A.P.

    1980-07-01

    Phenomena associated to the physics of fast neutrons were analysed by linear and nonlinear Kinetics with arbitrary feedback. The theoretical foundations of linear kinetics and transfer functions aiming at the analysis of fast reactors stability, are established. These stability conditions were analitically proposed and investigated by digital and analogic programs. (E.G.) [pt

  12. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1979-10-01

    Various experiments being performed at the SNR reactor are described including: capture cross sections of various nuclei; fuel can failure; creep testing of welded joints; gas leakage through concrete/steel interfaces; testing of the test section of the four rod bundle for Laser Doppler Anemometry

  13. Damages to gladiolu corm caused by fast neutron irradiation

    International Nuclear Information System (INIS)

    Zhang Zhiwei; Wang Dan; Zhang Dongxue; Zheng Chun

    2007-01-01

    Gladiolus corms were irradiated to 100-500kGy by fast neutrons in the CFBR-II pulsed reactor, Scanning electron microscope images of the irradiated samples revealed significant radiation damages to the gladiolus corms, and the mutagenic effects were studied by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Within the dose range, radiation damage to the corm increased with the dose, with corm epidermis of the samples irradiated in vertical incidence being more serious than those irradiated in side-incidence to the same dose. Biological characters were investigated via field experiments, and the bands of protein subunit were analyzed by SDS-PAGE. The results showed that the fast neutrons irradiation inhibited growth of M1 generation seedling significantly. Protein expression was obviously inhibited by the irradiation. The study indicates that fast neutron induction is an effective way for gladiolus breeding. And the results may lay a foundation for studies on fast neutron mutation breeding. (authors)

  14. Neutron noise in nuclear reactors

    International Nuclear Information System (INIS)

    Blaquiere, A.; Pachowska, R.

    1961-06-01

    The power of a nuclear reactor, in the operating conditions, presents fluctuations due to various causes. This random behaviour can be included in the study of 'noises'. Among other sources of noise, we analyse hereafter the fluctuations due: a) to the discontinuous emissions of neutrons from an independent source; b) to the multiplication of neutrons inside the reactor. The method which we present makes use of the analogies between the rules governing a nuclear reactor in operation and a number of radio-electrical systems, in particular the feed-back loops. The reactor can be characterized by its 'passing band' and is described as a system submitted to a sequence of random pulses. In non linear operating condition, the effect of neutron noise is defined by means of a non-linear functional, this theory is thus related to previous works the references of which are given at the end of the present report. This leads us in particular in the case of nuclear reactors to some results given by A. Blaquiere in the case of radio-electrical loops. (author) [fr

  15. Comparison of fast neutron spectra in graphite and FLINA salt inserted in well-defined core assembled in LR-0 reactor

    International Nuclear Information System (INIS)

    Košťál, Michal; Veškrna, Martin; Cvachovec, František; Jánský, Bohumil; Novák, Evžen; Rypar, Vojtěch; Milčák, Ján; Losa, Evžen; Mravec, Filip; Matěj, Zdeněk; Rejchrt, Jiří; Forget, Benoit; Harper, Sterling

    2015-01-01

    Highlights: • Neutron spectra measured in graphite and LiF + NaF. • Comparison of calculated and measured neutron spectra. • Effect of 19F on variation between various library calculated spectra. - Abstract: The present paper aims to compare the calculated and measured spectra after insertion of candidate materials for the Molten salt reactor/Fluoride cooled high temperature reactor system concept into the LR-0 reactor. The calculation is realized with MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, JENDL-4, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Additionally, comparisons between the slowing down power of each media were performed. The slowing down properties are important parameters affecting the thickness of moderator media in a reactor

  16. The instrumentation of fast reactor

    International Nuclear Information System (INIS)

    Endo, Akira

    2003-03-01

    The author has been engaged in the development of fast reactors over the last 30 years with both an involvement with the early technology development on the experimental breeder reactor Joyo, and latterly continuing this work on the prototype breeder reactor, Monju. In order to pass on this experience to younger engineers this paper is produced to outline this experience in the sincere hope that the information given will be utilised in future educational training material. The paper discusses the wide diversity on the associated instrument technology which the fast breeder reactor requires. The first chapter outlines the fast reactor system, followed by discussions on reactor instrumentation, measurement principles, temperature dependencies, and verification response characteristics from various viewpoints, are discussed in chapters two and three. The important issues of failed fuel location detection, and sodium leak detection from steam generators are discussed in chapters 4 and 5 respectively. Appended to this report is an explanation on the methods of measuring response characteristics on instrumentation systems using error analysis, random signal theory and measuring method of response characteristic by AR (autoregressive) model on which it appears is becoming an indispensable problem for persons involved with this technology in the future. (author)

  17. Fast Reactors and Nuclear Nonproliferation

    International Nuclear Information System (INIS)

    Avrorina, E.N.; Chebeskovb, A.N.

    2013-01-01

    Conclusion remarks: 1. Fast reactor start-up with U-Pu fuel: – dependent on thermal reactors, – no needs in U enrichment, – needs in SNF reprocessing, – Pu is a little suitable for NED, – practically impossible gun-type NED, – difficulties for implosion-type NED: necessary tests, advanced technologies, etc. – Pu in blankets is similar to WPu by isotopic composition, – Use of blanket for production isotopes (e.g. 233 U), – Combined reprocessing of SNF: altogether blanket and core, – Blanket elimination: decrease in Pu production – No pure Pu separation. 2. Fast reactor start-up with U fuel: - Needs in both U enrichment and SNF reprocessing, - Independent of thermal reactors, - Good Pu bred in the core let alone blankets, - NED of simple gun-type design, - Increase of needs in SWU, - Increased demands in U supply. 3. Fast reactors for export: - Uranium shortage, - To replace thermal reactors in future, - No blankets (depends on the country, though), - Fuel supply and SNF take back, - International centers for rendering services of NFC. Time has come to remove from FRs and their NFC the label unfairly identifying them as the most dangerous installations of nuclear power from the standpoint of being a proliferation problem

  18. Fast neutron activation analysis at Texas A and M University

    International Nuclear Information System (INIS)

    James, W.D.

    1997-01-01

    Fast neutron generators are used at Texas A and M University to provide a supply of high energy neutrons for nuclear analytical measurements. A series of neutron activation analysis procedures have been developed for determining various major, minor and trace constituents in a variety of materials. These procedures are primarily developed to compliment our reactor based NAA program, thereby expanding the list of determinable elements to include those difficult or impossible to measure using thermal neutrons. A few typical methods are discussed. The unique implementation of the methodologies at Texas A and M are explained. (author)

  19. New experimental space for irradiating samples by RA reactor fast neutron flux at temperatures up to 100 deg C; Novi eksperimentalni prostori namenjeni ozracivanju uzoraka u fluksu brzih neutrona na temperaturama do 100{sup 0} C na reaktoru RA

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M; Novakovic, M; Zecevic, V [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1961-07-01

    The objective of this paper is to present adaptation of the RA reactor which would enable samples irradiation by fast neutrons and describe new experimental possibilities. New experimental space was achieved using hollow fuel elements which have been reconstructed to enable placement of irradiation capsules inside the tube. This paper includes thermal analysis and describes problems related to operation, safety and radiation protection issues which arise from using reconstructed fuel elements.

  20. On implementation of the self-protection principle to the reactors with fast-resonance neutron spectrum

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Morozov, A.G.; Slesarev, I.S.; Alekseev, P.N.; Zverkov, Yu.A.; Subbotin, S.A.

    1990-01-01

    The calculational substantiation of SWPR posessing inherent physical properties of self-protection against possible accidents is given. A variety of approaches to the layout of these reactors have been found, the possible level of their fuel utilization characteristics is analyzed. 12 refs.; 14 figs.; 6 tabs

  1. Condensation and homogenization of cross sections for the deterministic transport codes with Monte Carlo method: Application to the GEN IV fast neutron reactors

    International Nuclear Information System (INIS)

    Cai, Li

    2014-01-01

    In the framework of the Generation IV reactors neutronic research, new core calculation tools are implemented in the code system APOLLO3 for the deterministic part. These calculation methods are based on the discretization concept of nuclear energy data (named multi-group and are generally produced by deterministic codes) and should be validated and qualified with respect to some Monte-Carlo reference calculations. This thesis aims to develop an alternative technique of producing multi-group nuclear properties by a Monte-Carlo code (TRIPOLI-4). At first, after having tested the existing homogenization and condensation functionalities with better precision obtained nowadays, some inconsistencies are revealed. Several new multi-group parameters estimators are developed and validated for TRIPOLI-4 code with the aid of itself, since it has the possibility to use the multi-group constants in a core calculation. Secondly, the scattering anisotropy effect which is necessary for handling neutron leakage case is studied. A correction technique concerning the diagonal line of the first order moment of the scattering matrix is proposed. This is named the IGSC technique and is based on the usage of an approximate current which is introduced by Todorova. An improvement of this IGSC technique is then presented for the geometries which hold an important heterogeneity property. This improvement uses a more accurate current quantity which is the projection on the abscissa X. The later current can represent the real situation better but is limited to 1D geometries. Finally, a B1 leakage model is implemented in the TRIPOLI-4 code for generating multi-group cross sections with a fundamental mode based critical spectrum. This leakage model is analyzed and validated rigorously by the comparison with other codes: Serpent and ECCO, as well as an analytical case.The whole development work introduced in TRIPOLI-4 code allows producing multi-group constants which can then be used in the core

  2. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  3. Ionization signals from diamond detectors in fast-neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); CIVIDEC Instrumentation, Wien (Austria); Frais-Koelbl, H. [University of Applied Sciences, Wiener Neustadt (Austria); Griesmayer, E.; Kavrigin, P. [CIVIDEC Instrumentation, Wien (Austria); Vienna University of Technology, Wien (Austria)

    2016-09-15

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes {sup 12}C and {sup 13}C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the {sup 13}C(n, α){sup 10}Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the {sup 12}C(n, α){sup 9}Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy. (orig.)

  4. Measuring neutron flux density in near-vessel space of a commercial WWER-1000 reactor

    International Nuclear Information System (INIS)

    Borodkin, G.I.; Eremin, A.N.; Lomakin, S.S.; Morozov, A.G.

    1987-01-01

    Distribution of neutron flux density in two experimental channels on the reactor vessel external surface and in ionization chamber channel of a commercial WWER-1000 reactor, is measured by the activation detector technique. Azimuthal distributions of fast and thermal neutron fluxes and height distributions of fast neutron flux density within energy range >1.2 and 2.3 MeV are obtained. Conclusion is made, that reactor core state and its structural peculiarities in the measurement range essentially affect space and energy distribution of neutron field near the vessel. It should be taken into account when determining permissible neutron fluence for the reactor vessel

  5. The Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes the key features and potential advantages of the IFR concept, its technology development status, fuel cycle economics potential, and its future development path

  6. Fast reactor research in Switzerland

    International Nuclear Information System (INIS)

    Brogli, R.; Hudina, M.; Pelloni, S.; Sigg, B.; Stanculescu, A.

    1998-01-01

    The small Swiss research program on fast reactors serves to further understanding of the role of LMFR for energy production and to convert radioactive waste to more environmentally benign forms. These activities are on the one hand the contribution to the comparison of advanced nuclear systems and bring on the other to our physical and engineers understanding. (author)

  7. Use the results of measurements on KBR facility for testing of neutron data of main structural materials for fast reactors

    Science.gov (United States)

    Koscheev, Vladimir; Manturov, Gennady; Pronyaev, Vladimir; Rozhikhin, Evgeny; Semenov, Mikhail; Tsibulya, Anatoly

    2017-09-01

    Several k∞ experiments were performed on the KBR critical facility at the Institute of Physics and Power Engineering (IPPE), Obninsk, Russia during the 1970s and 80s for study of neutron absorption properties of Cr, Mn, Fe, Ni, Zr, and Mo. Calculations of these benchmarks with almost any modern evaluated nuclear data libraries demonstrate bad agreement with the experiment. Neutron capture cross sections of the odd isotopes of Cr, Mn, Fe, and Ni in the ROSFOND-2010 library have been reevaluated and another evaluation of the Zr nuclear data has been adopted. Use of the modified nuclear data for Cr, Mn, Fe, Ni, and Zr leads to significant improvement of the C/E ratio for the KBR assemblies. Also a significant improvement in agreement between calculated and evaluated values for benchmarks with Fe reflectors was observed. C/E results obtained with the modified ROSFOND library for complex benchmark models that are highly sensitive to the cross sections of structural materials are no worse than results obtained with other major evaluated data libraries. Possible improvement in results by decreasing the capture cross section for Zr and Mo at the energies above 1 keV is indicated.

  8. Review of fast reactor activities

    Energy Technology Data Exchange (ETDEWEB)

    Balz, W [Commission of the European Communities, Brussels (Belgium)

    1978-07-01

    The Commission of the European Communities continued its activities on the following lines: activities aimed at preparing for commercialization of fast breeder reactors which are essentially performed in the frame of Fast Reactor Coordinating Committee (FRCC); the execution of its own research program in the Joint Research Center. The report covers activities of the FRCC, of the Safety Working Group (SWG), the Whole Core Accident Code (WAC) subgroup, Containment (CONT) subgroup, Codes and Standards Working Group (CSWG). Research and development activities are concerned with LMFBR safety, subassembly thermal hydraulics, fuel-coolant interactions, post-accident heat removal, dynamic load response, safety related material properties, utilization limits of fast breeder fuels, plutonium and actinide aspects of nuclear fuel cycle.

  9. Review of fast reactor activities

    International Nuclear Information System (INIS)

    Balz, W.

    1978-01-01

    The Commission of the European Communities continued its activities on the following lines: activities aimed at preparing for commercialization of fast breeder reactors which are essentially performed in the frame of Fast Reactor Coordinating Committee (FRCC); the execution of its own research program in the Joint Research Center. The report covers activities of the FRCC, of the Safety Working Group (SWG), the Whole Core Accident Code (WAC) subgroup, Containment (CONT) subgroup, Codes and Standards Working Group (CSWG). Research and development activities are concerned with LMFBR safety, subassembly thermal hydraulics, fuel-coolant interactions, post-accident heat removal, dynamic load response, safety related material properties, utilization limits of fast breeder fuels, plutonium and actinide aspects of nuclear fuel cycle

  10. Fast reactor programme

    International Nuclear Information System (INIS)

    Hoekstra, E.K.

    1978-09-01

    Recently evaluated neutron capture cross section data of 142 143 144 145 146 150 Nd, natural Nd and Mo as well as adjustment of the capture cross sections of 152 154 Sm to fit integral data measured in STEK and CFRMF are discussed. The progress made with preparations for the HFR-TOP transient overpower experiments on fuel pins under irradiation in the pool-side facility of the HFR is reported on. Results are given of tensile tests on irradiated as well as on heat-treated stainless steel DIN 1.4948 specimens subjected to varying numbers of fatigue cycles. In the field of aerosol research, measured gas flow rates and pressure drops in stainless steel capillaries of various dimensions are compared with theory; the gas flow and aerosol penetration in cracks, artificially introduced in concrete test specimens, have been determined. Criteria in selecting the right light-scattering particles for use in Laser Doppler Anemometer measurements are given; the results of single and two-phase experiments with the second 28-rod bundle and the hydrodynamics during single-bubble boiling in the first bundle are discussed. (Auth.)

  11. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1980-10-01

    Results of the estimate of the contribution of (n,p) and (n,α) reactions to the capture cross sections of individual and lumped fission-products are discussed; the progress in evaluating neutron cross sections of corrosion products is reported and some recent results of the study on pre-equilibrium models are given. The last canning failure experiment has been performed, and some results of the post-irradiation examination of two loss-of-cooling experiments are elucidated; the progress in constructing and testing the equipment for the transient overpower experiments is reported. The proceedings in the thermochemical investigations on different uranium compounds are described. Creep strength data of three heats and two types of welded joints of DIN 1.4948 parent metal in irradiated and reference condition are intercompared, and the effect of the strain rate on the low-cycle fatigue behaviour is shown; a MONA-rig has been developed for the investigation of fluence effects on stainless steel at high temperatures; a preliminary experiment has revealed the minimum specimen dimensions for fracture toughness testing to obtain valid test results according to ASTM directives. Attempts have been made to produce sodium smoke aerosols and to characterize them by determining their shape factors; a system has been built to measure accurately the leak flows through capillary leaks. Methods have been developed to determine accurately the wall positions in channels of complicated geometries for the application of LDA; a brief review is given of all the boiling experiments performed in bundle I (68,5% blockage) and bundle II (34,5% blockage); the objectives of a profound analysis of the experimental data of all these boiling experiments are given

  12. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  13. Status of national programmes on fast reactors

    International Nuclear Information System (INIS)

    1994-04-01

    Based on the International Working Group on Fast reactors (IWGFR) members' request, the IAEA organized a special meeting on Fast Reactor Development and the Role of the IAEA in May 1993. The purpose of the meeting was to review and discuss the status and recent development, to present major changes in fast reactor programmes and to recommend future activities on fast reactors. The IWGFR took note that in some Member States large prototypes have been built or are under construction. However, some countries, due to their current budget constraints, have reduced the level of funding for research and development programmes on fast reactors. The IWGFR noted that in this situation the international exchange of information and cooperation on the development of fast reactors is highly desirable and stressed the importance of the IAEA's programme on fast reactors. These proceedings contain important and useful information on national programmes and new developments in sodium cooled fast reactors in Member States. Refs, figs and tabs

  14. Fast reactor operation in the United States

    International Nuclear Information System (INIS)

    Smith, R.R.; Cissel, D.W.

    1978-01-01

    Of the many American facilities dedicated to fast reactor technology, six qualify as liquid-metal-cooled fast reactors. All of these satisfy the following criteria: an unmoderated neutron spectrum, highly enriched fuel material, substantial heat production, and the use of a liquid metal coolant. These include the following: EBR-I Clementine, LAMPRE, EBR-II, EFFBR, and SEFOR. Collectively, these facilities encompassed all of the more important features of liquid-metal-cooled fast reactor technology. Coolant types ranged from mercury in Clementine, to NaK in EBR-I, and sodium in the others. Fuels included enriched-uranium metallic alloys in EBR-I, EBR-II, and EFFBR; metallic plutonium in Clementine; molten plutonium alloy in LAMPRE; and a mixed UO 2 -PuO 2 ceramic in SEFOR. Heat removal techniques ranged from air-blast cooling in LAMPRE and SEFOR; steam-electrical generation in EBR-I, EBR-II, and EFFBR; to a mercury-to-water heat dump in Clementine. Operational experience with such diverse systems has contributed heavily to the U.S. Each of the six systems is described from the viewpoints of purpose, history, design, and operation. Attempts are made to limit descriptive material to the most important features and to refer the reader to a few select references if additional information is needed

  15. Neutronic reactor thermal shield

    International Nuclear Information System (INIS)

    Lowe, P.E.

    1976-01-01

    A shield for a nuclear reactor includes at least two layers of alternating wide and narrow rectangular blocks so arranged that the spaces between blocks in adjacent layers are out of registry, each block having an opening therein equally spaced from the sides of the blocks and nearer the top of the block than the bottom, the distance from the top of the block to the opening in one layer being different from this distance in adjacent layers, openings in blocks in adjacent layers being in registry. 1 claim, 7 drawing figures

  16. Comparison of fast neutrons and X-rays in respect to genetic effects accompanying induced chromosome aberrations, in relation to the evaluation of the BARN-reactor

    International Nuclear Information System (INIS)

    Ramulu, K.S.

    1980-01-01

    The M 2 and M 3 plants derived from both fast neutron and X-ray treatments have been studied to detect and analyse reciprocal translocations in Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta (2n=10), Hordeum vulgare L. cv. Aramir (2n=14) and Secale cereale L., summer inbred line ZF9 (2n=14). (Auth.)

  17. Analysis of a small Fast Sodium Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Gilberti, Mauricio, E-mail: mgilber@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil); Velasquez, Carlos E.; Vargas, Matheus L.; Martins, Felipe; Costa, Antonella L.; Veloso, Maria Auxiliadora F.; Pereira, Claubia, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    This paper presents the analyses and initial results of a Small Fast Sodium Reactor (SFSR) simulated using MCNPX. The goal is to build a nuclear model and determine the main core neutronic parameters over the cycle. Neutronics parameters such as burnup neutronic behavior, depletion fuel composition, absorbing elements, core reactivity control and reactivity coefficients that affect the reactor cooled by sodium along its operation cycle have been analyzed. The parameters are evaluated in terms of the reactivity coefficients at different cycle stages. The results present a comparison and discussion of the differences found between the model developed and some information available in the literature for a similar project. (author)

  18. Parallel Monte Carlo reactor neutronics

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Brown, F.B.

    1994-01-01

    The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved

  19. The development of fast reactors in France from March 1980 to March 1981; Le developpement des reacteurs a neutrons rapides en France de mars 1980 a mars 1981

    Energy Technology Data Exchange (ETDEWEB)

    Vautrey, L. [Commissariat a l' Energie Atomique, CEN de Saclay, Gif-sur-Yvette (France)

    1981-05-15

    This paper describes general features concerning development in the field of fast reactors in France from March 1980 to March 1981. It concentrates mainly on: Rapsodie, Phenix NPP, prototype reactor Super Phenix 1, future fast reactor NPPs and current research and development programs in the field. The present situation is as follows. Rapsodie has restarted operation but at reduced power in July 1980 because of the problems in the primary circuit which have not yet been solved. Phenic operates in a very satisfactory manner. Construction of Super Phenix is continuing normally. Research activities are performed sometimes for the needs of Super Phenix and sometimes for the needs of future fast rector projects like Super Phenix 2. International cooperation is being continued.

  20. Fast neutron activation analysis in metallurgy

    International Nuclear Information System (INIS)

    Sterlinski, S.

    1981-01-01

    Article discusses the usage of a 14 MeV neutron generator for producing fast neutrons of different energies and intensities. A complete instrumental set-up for the neutron activation analysis (NAA) is given. In metallurgy the device is mainly used in the determination of oxygen and silicon in steel and non-ferrous metal, including different alloys

  1. A silicon diode for fast neutron dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The effect of fast neutrons on both animate and inanimate objects, including human beings, can be extremely serious and cumulative. There is thus a need for a small, simple and cheap component which will provide a permanent or semi-permanent record of the accumulated fast neutron dose

  2. Fast reactor core monitoring device

    International Nuclear Information System (INIS)

    Sanda, Toshio; Inoue, Kotaro; Azekura, Kazuo.

    1982-01-01

    Purpose: To enable the rapid and accurate on-line identification of the state of a fast reactor core by effectively utilizing the measured data on the temperature and flow rate of the coolant. Constitution: The spacial power distribution and average assembly power are quickly calculated using an approximate calculating method, the measured values and the calculated values of the inlet and outlet temperature difference, flow rate and coolant physical values of an assembly are combined and are individually obtained, the most definite respective values and their errors are obtained by a least square method utilizing a formula of the relation between these values, and the power distribution and the temperature distribution of a reactor core are estimated in this manner. Accordingly, even when the measuring accuracy and the calculating accuracy are equal as in a fast reactor, the power distribution and the temperature distribution can be accurately estimated on-line at a high speed in a nuclear reactor, information required for the operator is provided, and the reactor can thus be safely and efficiently operated. (Yoshihara, H.)

  3. 04 - Sodium cooled fast breeder fourth-generation reactors - The experimental reactor ALLEGRO, the other ways for fast breeder fourth-generation reactors

    International Nuclear Information System (INIS)

    2012-12-01

    The authors first present the technology of gas-cooled fast breeder reactors (basic principles, specific innovations, feasibility studies, fuel element, safety) and notably the ALLEGRO project (design options and expected performances, preliminary safety demonstration). Then, they present the lead-cooled fast-breeder reactor technology: interests and obstacles, return on experience, the issue of lead density, neutron assessment, transmutation potential, dosimetry, safety chemical properties and compatibility with the fuel, water, air and steels. The next part addresses the technology of molten-salt fast-breeder reactors: choice of the liquid fuel and geometry, reactor concept (difficulties, lack of past R and D), demonstration and demonstrators, international context

  4. An introduction to the engineering of fast nuclear reactors

    CERN Document Server

    Judd, Anthony M

    2014-01-01

    An invaluable resource for both graduate-level engineering students and practising nuclear engineers who want to expand their knowledge of fast nuclear reactors, the reactors of the future! This book is a concise yet comprehensive introduction to all aspects of fast reactor engineering. It covers topics including neutron physics; neutron flux spectra; flux distribution; Doppler and coolant temperature coefficients; the performance of ceramic and metal fuels under irradiation, structural changes, and fission-product migration; the effects of irradiation and corrosion on structural materials, irradiation swelling; heat transfer in the reactor core and its effect on core design; coolants including sodium and lead-bismuth alloy; coolant circuits; pumps; heat exchangers and steam generators; and plant control. The book includes new discussions on lead-alloy and gas coolants, metal fuel, the use of reactors to consume radioactive waste, and accelerator-driven subcritical systems.

  5. Introduction of the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Matsuba, Ken-ichi; Kawahara, Hirotaka; Aoyama, Takafumi

    2006-01-01

    The experimental fast reactor JOYO at O-arai Engineering Center of Japan Nuclear Cycle Development Institute is the first liquid metal cooled fast reactor in Japan. This paper describes the plant outline, experiences on the fast reactor technology and test results accumulated through twenty eight years successful operation of JOYO. (author)

  6. A new impetus for the E&T on fast neutrons reactors in Europe: Incentives, status, perspectives

    International Nuclear Information System (INIS)

    Renault, C.; Safieh, J.; Figuet, J.

    2013-01-01

    Summary and conclusions: • The attractive and challenging scientific topics associated to innovative FNRs create a new incentive context for students and young scientists with high potential to embark on a nuclear career. • The perspective of the construction of demonstration reactors or prototypes of SFR, LFR and GFR appears as a strong driver. • For SFR, an exemplary and precursory approach in France has permitted to preserve the knowledge and know-how gained during five decades of R&D and to be passed down to future generation. • The continuous operation of the sodium school and of the Phenix plant simulator has created a favourable context to restart E&T courses and tools on SFR. • International E&T surveys have strongly underlined the complementary role of skills and competences, in addition to knowledge, for the qualification of nuclear workers. • For this, E&T infrastructures (simulators, experimental facilities,…) are called to play a major role to complement courses. The development of new infrastructures is considered in Europe

  7. Superalloy applications in the fast breeder reactor

    International Nuclear Information System (INIS)

    Powell, R.W.

    1976-01-01

    The economics of the LMFBR are dependent on the breeding of new fuel in the reactor core and this can be improved by the use of advanced alloys as core structural components. The environment of the core makes superalloys a natural choice for these components, but phenomena related directly to neutron irradiation necessitate extensive testing. Consequently, commercially-available superalloys, together with a number of developmental alloys are being tested in existing LMFBR's and by simulation techniques to determine the best alloy for use in the LMFBR core. It presently appears that such materials will indeed be capable of the performance required, and will greatly facilitate the commercial realization of the fast breeder reactor

  8. Actinide behavior in the integral fast reactor

    International Nuclear Information System (INIS)

    Courtney, J.C.

    1993-05-01

    Goal of this project is to determine the consumption of Np-237, Pu-240, Am-241, and Am-243 in the Integral Fast Reactor (IFR) fuel cycle. These four actinides set the long term waste management criteria for spent nuclear fuel; if it can be demonstrated that they can be efficiently consumed in the IFR, then requirements for nuclear waste repositories can be much less demanding. Irradiations in the Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory's site near Idaho Falls, Idaho, will be conducted to determine fission and transmutation rates for the four nuclides. The experimental effort involves target package design, fabrication, quality assurance, and irradiation. Post irradiation analyses are required to determine the fission rates and neutron spectra in the EBR-II core

  9. Unusual occurrences in fast breeder test reactor

    International Nuclear Information System (INIS)

    Kapoor, R.P.; Srinivasan, G.; Ellappan, T.R.; Ramalingam, P.V.; Vasudevan, A.T.; Iyer, M.A.K.; Lee, S.M.; Bhoje, S.B.

    2000-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe sodium cooled mixed carbide fuelled reactor. Its main aim is to generate experience in the design, construction and operation of fast reactors including sodium systems and to serve as an irradiation facility for the development of fuel and structural materials for future fast reactors. It achieved first criticality in Oct 85 with Mark I core (70% PuC - 30% UC). Steam generator was put in service in Jan 93 and power was raised to 10.5 MWt in Dec 93. Turbine generator was synchronised to the grid in Jul 97. The indigenously developed mixed carbide fuel has achieved a burnup of 44,000 MW-d/t max at a linear heat rating of 320 W/cm max without any fuel clad failure. The commissioning and operation of sodium systems and components have been smooth and performance of major components, viz., sodium pumps, intermediate heat exchangers and once through sodium heated steam generators (SG) have been excellent. There have been three minor incidents of Na/NaK leaks during the past 14 years, which are described in the paper. There have been no incident of a tube leak in SG. However, three incidents of water leaks from water / steam headers have been detailed. The plant has encountered some unusual occurrences, which were critically analysed and remedial measures, in terms of system and procedural modifications, incorporated to prevent recurrence. This paper describes unusual occurrences of fuel handling incident of May 1987, main boiler feed pump seizure in Apr 1992, reactivity transients in Nov 1994 and Apr 1995, and malfunctioning of the core cover plate mechanism in Jul 1995. These incidents have resulted in long plant shutdowns. During the course of investigation, various theoretical and experimental studies were carried out for better understanding of the phenomena and several inspection techniques and tools were developed resulting in enriching the technology of sodium cooled reactors. FBTR has 36 neutronic and process

  10. Improvement the value of sodium void reactivity effect of the fast neutron reactor by the instrumentality of the Monte Carlo code

    OpenAIRE

    P.A. Maslov; V.I. Matveev; I.V. Malysheva

    2015-01-01

    To fulfill safety of fast sodium reactors in a beyond design-basis accident (BDBA) like unprotected loss of flow accident (ULOF), the sodium void reactivity effect (SVRE) should be close to zero. Its value depends on the fuel burnup – the higher burnup the higher value of SVRE. We analyze limitation of the fuel burnup in the core of a large sodium reactor imposed by SVRE. The model of a large sodium-cooled reactor core is chosen for analysis. Two fuel types are considered – MOX and nitride...

  11. Implications of Fast Reactor Transuranic Conversion Ratio

    International Nuclear Information System (INIS)

    Piet, Steven J.; Hoffman, Edward A.; Bays, Samuel E.

    2010-01-01

    Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 ('burners') do not have blankets; the cases above CR=1 ('breeders') have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is 'attractive' for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR 1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

  12. Personal neutron dosimetry at a research reactor facility

    International Nuclear Information System (INIS)

    Kamenopoulou, V.; Carinou, E.; Stamatelatos, I.E.

    2001-01-01

    Individual neutron monitoring presents several difficulties due to the differences in energy response of the dosemeters. In the present study, an individual dosemeter (TLD) calibration approach is attempted for the personnel of a research reactor facility. The neutron energy response function of the dosemeter was derived using the MCNP code. The results were verified by measurements to three different neutron spectra and were found to be in good agreement. Three different calibration curves were defined for thermal, intermediate and fast neutrons. At the different working positions around the reactor, neutron spectra were defined using the Monte Carlo technique and ambient dose rate measurements were performed. An estimation of the neutrons energy is provided by the ratio of the different TLD pellets of each dosemeter in combination with the information concerning the worker's position; then the dose equivalent is deduced according to the appropriate calibration curve. (author)

  13. Neutron cross section measurements for the Fast Breeder Program

    International Nuclear Information System (INIS)

    Block, R.C.

    1979-06-01

    This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included

  14. The 'SURA' fast reactor program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The Commissariat a l'Energie Atomique's SURA program on fast reactor safety consists of two specific testing programs on fastbreeder reactor safety: the Cabri and Scarabee programs. Both Cabri and Scarabee are examples of multinational research collaboration. The CEA and the Karlsruhe Nuclear Research Center are each covering half of the construction costs. Britain, the US and Japan are also due to participate in these experiments. The aim of the programs is to examine the behaviour of fuel in sodium cooled fast reactors. The Cabri program consists of setting off a reactivity accident in a power reactor core which is cooled with liquid sodium, such an accident occurring after a sharp increase in reactivity or as a result of the pump suddenly breaking down without there at the same time being any fall in the control rods. In 1967 the Commissariat a l'Energie Atomique started its Scarabee research program which is trying to analyse the sort of things that can go wrong with fuel cooling systems and what the consequences can be [fr

  15. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  16. Fast neutron dosimeter with wide base silicon diode

    International Nuclear Information System (INIS)

    Ma Lu

    1986-01-01

    This paper briefly introduces a wide base silicon diode fast neutron dosimeter with wide measuring range and good energy response to fast neutron. It is suitable to be used to detect fast neutrons in the mixed field of γ-ray, thermal neutrons and fast neutrons

  17. Calculation of fluences of fast neutrons hitting the pressure vessel of the Dukovany NPP WWER-440 reactor. Part I. Theory, calculations, comparison with the experiment

    International Nuclear Information System (INIS)

    Rataj, J.

    1993-10-01

    The method of calculating neutron spectra and integral flux densities of neutrons hitting the pressure vessel of the Dukovany NPP WWER-440 reactor is outlined. The one-dimensional and two-dimensional calculations were performed by means of the DORT code in R, R-Z, and R-Θ geometries using the cross sections from the ELXSIR library. In the R-Θ geometry, the coupled neutron flux densities were determined. The calculated values of the maximum activation of detectors differ less than 15% from the values measured in surveillance specimens, which is within the limit of uncertainty associated with the position of the detector in the casing. The differences between the calculated and observed data behind the pressure vessel were below 4%. 10 tabs., 3 figs., 41 refs

  18. Neutronic calculation of reactor cells

    International Nuclear Information System (INIS)

    Jaliff, J.O.

    1981-01-01

    Multigroup calculations of cylindrical pin cells were programmed, in Fortran IV, upon the basis of collision probabilities in each energy group. A rational approximation to the fuel-to-fuel collision probability in resonance groups was used. Together with the intermediate resonance theory, cross sections corrected for heterogeneity and absorber interactions were found. For the optimization of the program, the cell of a BWR reactor was taken as reference. Data for such a cell and the reactor's operating conditions are presented. PINCEL is a fast and flexible program, with checked results, around a 69-group library. (M.E.L.) [es

  19. Subcritical molten salt reactor with fast/intermediate spectrum for minor actinides transmutation

    International Nuclear Information System (INIS)

    Degtyarev, Alexey M.; Feinberg, Olga S.; Kolyaskin, Oleg E.; Myasnikov, Andrey A.; Karmanov, Fedor I.; Kuznetsov, Andrey Yu.; Ponomarev, Leonid I.; Seregin, Mikhail B.; Sidorkin, Stanislav F.

    2011-01-01

    The subcritical molten-salt reactor for transmutation of Am and Cm with the fast-intermediate neutron spectrum is suggested. It is shown that ∼10 such reactor-burners is enough to support the future nuclear power based on the fast reactors as well as for the transmutation of Am and Cm accumulated in the spent fuel storages. (author)

  20. Activities of the OECD-NEA in the field of fast reactors

    International Nuclear Information System (INIS)

    Royen, J.

    1977-01-01

    The OECD-NEA is performing the following activities in the field of fast reactors: Held ad hoc meetings of senior experts on safety, development and economics of LMFBR type reactors; publishing a Nuclear Safety Research Index (the index is now expanded to cover fast reactors) and distribution; collect test computer programmes, as well as neutron data

  1. Neutron study of fast neutron reactor systems by exponential experiments on Harmonie - Graphite program HUG-PHUG - Oxide program PHRIXOS - Uranium program UK

    International Nuclear Information System (INIS)

    Desprets, Alain.

    1977-12-01

    Exponential experiments allow to obtain the fundamental characteristics of a lattice (material buckling, reaction rate ratios) more economically than critical experiments. This report describes the experimental techniques and the methods of analysis used for this type of experiments. The results obtained with three programs performed with the source reactor HARMONIE are given: graphite-lattices program (3 U-fueled and 3 Pu-fueled lattices); oxide-fuel program (4 PuO 2 -UO 2 lattices); pure uranium program (one lattice). Some of these lattices were also studied in critical experiments. The coherence of the results obtained by the two types of experiments is established [fr

  2. A critical summary of microscopic fast-neutron interactions with reactor structural, fissile and fertile materials; Apercu critique des interactions microscopiques des neutrons rapides avec les materiaux de construction et les matieres fissiles et fertiles utilisees dans les reacteurs; Kriticheskij obzor mikroskopicheskog o vzaimodejstviya bystrykh nejtronov s konstruktsionnymi, rasshcheplyayushchimis ya i vosproizvodyashchim i reaktornymi materialami; Resumen critico de las interacciones microscopicas de los neutrones rapidos con los materiales estructurales fisionables y fertiles utilizados en los reactores

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A B [Argonne National Laboratory, Argonne, IL (United States)

    1962-03-15

    Prevailing knowledge of fast-neutron-induced reactions utilized in the nuclear design of reactor systems is reviewed. Principal emphasis is placed upon microscopic experimental methods, results and precisions. Fast-neutron scattering is considered in detail, including the results of experimental determinations of scattering from oxygen, iron, zirconium, niobium, tungsten, thorium and uranium. Representative results of experimental studies of fast-neutron capture and fast-neutron-induced fission are given. The measurements discussed not only provide results of considerable applied usefulness but axe also examples of the application of advanced experimental nuclear techniques. Areas of limited, conflicting or non-existent experimental information are outlined. A prognosis of future knowledge of fast-neutron reactions is made, with emphasis on the fulfillment of reactor requirements for basic nuclear data. (author) [French] L'auteur fait le point des connaissances sur les reactions provoquees par les neutrons rapides sur lesquelles on tend a fonder les projets de reacteurs. Il met en relief les methodes, les resultats et la precision de mesures experimentales a l'echelle microscopique. Il etudie en detail la diffusion des neutrons rapides, et donne les resultats de mesures experimentales de diffusion dans l'oxygene, le fer, le zirconium, le niobium, le tungstene, le thorium et l'uranium. Il donne les resultats les plus significatifs d'etudes experimentales sur la capture des neutrons rapides et sur la fission provoquee par des neutrons rapides. Les mesures etudiees, non seulement fournissent des renseignements d'une utilite pratique considerable, mais aussi constituent des exemples de l'application de techniques experimentales nucleaires a la pointe du progres. L'auteur indique les domaines ou les donnees experimentales sont limitees, contradictoires ou inexistantes. Il se livre a des pronostics sur le developpement des connaissances experimentales en matiere de

  3. Operating Experience with the VERA Zero-Energy Fast Reactor; Fonctionnement du Reacteur VERA a Neutrons Rapides, de Puissance Zero; Opyt ehkspluatatsii reaktora VERA na bystrykh nejtronakh nulevoj moshchnosti; Experiencia Adquirida con el Reactor Rapido VERA de Potencia Nula

    Energy Technology Data Exchange (ETDEWEB)

    Weale, J. W.; McTaggart, M. H.; Goodfellow, H.; Paterson, W. J. [Atomic Weapons Research Establishment, Aldermaston (United Kingdom)

    1964-02-15

    The design of a two-halves zero-energy fast reactor is briefly described, particular emphasis being placed on those features which determine the practicability and precision of reactor physics measurements. The advantages and disadvantages of the design are discussed with reference to the two years' operating experience of the reactor. The following topics are dealt with: the experimental convenience of the lay-out and of the two halves design; the size and precision of the fuel pieces and the accuracy of location of the fuel elements; the effects of edge irregularities and heterogeneity of structure on the accuracy with which the critical mass of an 'ideal' equivalent assembly is determined; reproducibility of the critical condition after dismantling the assembly, or separating the two halves; variation of reactivity with separation of the halves, including effects of asymmetric loading; sensitivity of various counters, neutron source strength, use of an accelerator neutron source; speed of response of safety circuits and consequent restrictions on rate of assembly of the two halves; additional precautions necessary in using plutonium fuel; and notes on the accuracy of measurement of reactivity and on the practical limitations affecting various other reactor physics measurements. (author) [French] Les auteurs decrivent brievement ce modele de reacteur a neutrons rapides et de puissance zero construit en deux moities, en insistant particulierment sur les caracteristiques qui determinent la possibilites de faire des mesures relatives a la physique des reacteurs et la precision de ces mesures. Ils exposent les avantages et les inconvenients de ce modele compte tenu de l'experience acquise au cours des deux annees de fonctionnement du reacteur. Ils traitent les sujets suivants: interet pratique, au point de vue experimental, du plan de ce reacteur et de sa constitution en deux moities; dimension et precision des pieces de combustible et exactitude de l'emplacement des

  4. Nuclear instrumentation systems in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Vijayakumaran, P.M.; Nagaraj, C.P.; Paramasivan-Pillai, C.; Ramakrishnan, R.; Sivaramakrishna, M.

    2004-01-01

    The nuclear instrumentation systems of the Prototype Fast Breeder Reactor (PFBR) primarily comprise of global Neutron Flux Monitoring, Failed Fuel Detection and Location, Radiation Monitoring and Post-Accident Monitoring. High temperature fission chambers are provided at in-vessel locations for monitoring neutron flux. Failed fuel detection and location is by monitoring the cover gas for fission gases and primary sodium for delayed neutrons. Signals of the core monitoring detectors are used to initiate SCRAM (safety action) to protect the reactor from various postulated initiating events. Radiation levels in all potentially radioactive areas are monitored to act as an early warning system to keep the release of radioactivity to the environment and exposure to personnel well below the permissible limits. Fission Chambers and Gamma Ionisation Chambers are located in the reactor vault concrete for monitoring the neutron flux and gamma radiation levels during and after an accident. (authors)

  5. The GUINEVERE-project: the first zero-power fast lead reactor coupled to a 14 MeV neutron generator (GENEPI)

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    The GUINEVERE project is an European project in the framework of FP6 IP-EUROTRANS. The IP-EUROTRANS project aims at addressing the main issues for ADS development in the framework of partitioning and transmutation for nuclear waste volume and radio toxicity reduction. The GUINEVERE-project is carried out in the context of domain 2 of IP-EUROTRANS, ECATS, devoted to specific experiments for the coupling of an accelerator, a target and a subcritical core. These experiments should provide an answer to the questions of on-line reactivity monitoring, sub-criticality determination and operational procedures (loading, start-up, shut-down) in an ADS by 2009-2010. During the definition of the experimental programme ECATS, it was judged that there was a strong need for a European managed experiment in the line of the FP5 MUSE-project. Reanalyzing the outcome of MUSE, two points were left open for significant improvement. To validate the methodology for reactivity monitoring, a continuous beam is needed, which was not present in the MUSE-project. In the definition of the MUSE-project, from the beginning a strong request was made for a lead core in order to have representative conditions of a lead-cooled ADS which was only partially answered by the MUSE-programme. Therefore, there is a need for a lead fast critical facility connected to a continuous beam accelerator. Since such a programme/installation is not present at the European nor at the international level, SCK-CEN has proposed to use a modified VENUS critical facility located at its Mol-site and to couple it to a modified GENEPI deuteron accelerator (used in MUSE) working in current mode delivering 14 MeV neutrons by bombardment of deuterons on a tritium-target: the GUINEVERE-project (Generator of Uninterrupted Intense NEutrons at the lead VEnus REactor). This proposal was formally accepted by the Governing Council of IP-Eurotrans in December 2006. This project represents a close collaboration between SCK-CEN, CEA and

  6. The dissolver paradox as a coupled fast-thermal reactor

    International Nuclear Information System (INIS)

    Lutz, H.F.; Webb, P.S.

    1993-05-01

    The dissolver paradox is treated as coupled fast-thermal reactors. Each reactor is sub-critical but the coupling is sufficient to form a critical system. The practical importance of the system occurs when the fast system by itself is mass limited and the thermal system by itself is volume limited. Numerous 1D calculations have been made to calculate the neutron multiplication parameters of the separate fast and thermal systems that occur in the dissolver paradox. A model has been developed to describe the coupling between the systems. Monte Carlo calculations using the MCNP code have tested the model

  7. Quantitative fuel motion determination with the CABRI fast neutron hodoscope

    International Nuclear Information System (INIS)

    Baumung, K.; Augier, G.

    1991-01-01

    The fast neutron hodoscope installed at the CABRI reactor in Cadarache, France, is employed to provide quantitative fuel motion data during experiments in which single liquid-metal fast breeder reactor test pins are subjected to simulated accident conditions. Instrument design and performance are reviewed, the methods for the quantitative evaluation are presented, and error sources are discussed. The most important findings are the axial expansion as a function of time, phenomena related to pin failure (such as time, location, pin failure mode, and fuel mass ejected after failure), and linear fuel mass distributions with a 2-cm axial resolution. In this paper the hodoscope results of the CABRI-1 program are summarized

  8. Measurement of fast neutron spectra. 1-2

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1976-01-01

    The present status of the techniques for the measurement of fast neutron spectra is reviewed with particular attention to the recent activities in Japan. The first section of this report defines the energy range of fast neutrons, and various techniques are classified into four groups. In the following sections, recent development in each group is reviewed. The first part is the integral method represented mainly by the activation method. The variation of this method is shortly reviewed, and some results of the spectrum measurement for JRR-4 (a thermal research reactor) and YAYOI (a fast neutron source reactor) are presented together with the results of computed spectra. The second part is the method of proton recoil. The improvement of a proportional counter by Ichimori is shortly reviewed. The use of liquid scintillator is also discussed together with the experimental and computational results of YAYOI benchmark spectra of fast neutrons transmitted through the layers of iron. The utilization of n-α or n-p reaction as a sandwitch counter is discussed in the third part. Measured and calculated spectra in the FCA (a fast critical assembly) core are presented as examples. The method of time-of-flight is discussed in the fourth part. Recent developments in Japan such as the method with a double-scintillation counter are shortly presented together with its block diagram. (Aoki, K.)

  9. Kinetic studies on a repetitively pulsed fast reactor

    International Nuclear Information System (INIS)

    Das, S.

    1982-01-01

    Neutronic analysis of an earlier proposed periodically pulsed fast reactor at Kalpakkam (KPFR) has been carried out numerically under equilibrium and transient conditions using the one-point model of reactor kinetics and the experimentally measured total worth of reactivity modulator, the parabolic coefficient of reactivity of the movable reflector and the mean prompt neutron lifetime. Results of steady-state calculations - treated on the basis of delayed neutron precursor and energy balances during a period of operation - have been compared with the analytical formulae of Larrimore for a parabolic reactivity input. Empirical relations for half-width of the fast neutron pulse, the peak pulse power and the power at first crossing of prompt criticality have been obtained and shown to be accurate enough for predicting steady-state power pulse characteristics of a periodically pulsed fast reactor. The concept of a subprompt-critical reactor has been used to calculate the fictitious delayed neutron fraction, β of the KPFR through a numerical experiment. Relative pulse height stability and pulse shape sensitivity to changes of maximum reactivity is discussed. With the aid of new safety concepts, the Power Amplification Factor (PAF) and the Pulse Growth Factor (Rsub(p)), the dynamics KPFR under accidental conditions has been studied for step and ramp reactivity perturbations. All the analysis has been done without taking account of reactivity feedback. (orig.)

  10. Alanine and TLD coupled detectors for fast neutron dose measurements in neutron capture therapy (NCT)

    Energy Technology Data Exchange (ETDEWEB)

    Cecilia, A.; Baccaro, S.; Cemmi, A. [ENEA-FIS-ION, Casaccia RC, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Colli, V.; Gambarini, G. [Dept. of Physics of the Univ., INFN, Via Celoria 16, 20133 Milan (Italy); Rosi, G. [ENEA-FIS-ION, Casaccia RC, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Scolari, L. [Dept. of Physics of the Univ., INFN, Via Celoria 16, 20133 Milan (Italy)

    2004-07-01

    A method was investigated to measure gamma and fast neutron doses in phantoms exposed to an epithermal neutron beam designed for neutron capture therapy (NCT). The gamma dose component was measured by TLD-300 [CaF{sub 2}:Tm] and the fast neutron dose, mainly due to elastic scattering with hydrogen nuclei, was measured by alanine dosemeters [CH{sub 3}CH(NH{sub 2})COOH]. The gamma and fast neutron doses deposited in alanine dosemeters are very near to those released in tissue, because of the alanine tissue equivalence. Couples of TLD-300 and alanine dosemeters were irradiated in phantoms positioned in the epithermal column of the Tapiro reactor (ENEA-Casaccia RC). The dosemeter response depends on the linear energy transfer (LET) of radiation, hence the precision and reliability of the fast neutron dose values obtained with the proposed method have been investigated. Results showed that the combination of alanine and TLD detectors is a promising method to separate gamma dose and fast neutron dose in NCT. (authors)

  11. Experimental neutronic science and instrumentation: from hybrid reactors to fourth generation reactors

    International Nuclear Information System (INIS)

    Jammes, Ch.

    2010-07-01

    After an overview of his academic career and scientific and research activities, the author proposes a rather detailed synthesis and overview of his scientific activities in the fields of cross sections and Doppler effect (development and validation of a code), on the MUSE-4 hybrid reactor (experiments, static and dynamic measurements), on the TRADE hybrid reactor (experimental means, sub-critical reactivity measurement), on the RACE hybrid reactor (experimental results, modelling and interpretation), and on neutron detection (design and modelling of fission chamber, on-line measurement of the fast flow). The next part gives an overview of some research programs (neutron monitoring in sodium-cool fast reactors, research and development on fission chambers, improvement of effective delayed neutron measurements)

  12. Fast neutron response of coumarin in water and heavy water

    International Nuclear Information System (INIS)

    Krishnan, D.; Kher, R.K.; Gopakumar, K.; Bhandari, N.S.

    1979-01-01

    Response of coumarin in aqueous solution has been studied earlier for gamma rays and fast neutrons by fluorescence measurement. For further fast neutron studies, two systems viz coumarin in H 2 0 and coumarin in D 2 0, were irradiated with fast neutrons in SNIF facility in the swimming pool type APSARA reactor at Trombay. Neutron fluence was estimated by measuring induced activity in sulphur pellet and associated gamma radiation was estimated using CaS0 4 :Dy TLD powder. The KERMA values were calculated for H 2 0 and D 2 0, assuming modified fission spectrum for fast neutron in SNIF position, and they were in the ratio of 2:1. Response of a chemical dosimetric system is expected to be proportional to the absorbed dose in the respective system for the same neutron fluence. This was experimentally found to be the case for coumarin in H 2 0 or D 2 0. These results are likely to be true in general for any aqueous chemical system. The limitations of using such a dual system for dosimetry in a mixed field is discussed. (author)

  13. Advances by the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  14. Application of Candle burnup to small fast reactor

    International Nuclear Information System (INIS)

    Sekimoto, H.; Satoshi, T.

    2004-01-01

    A new reactor burnup strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move to an axial direction. An equilibrium state was obtained for a large fast reactor (core radius is 2 m and reflector thickness is 0.5 m) successfully by using a newly developed direct analysis code. However, it is difficult to apply this burnup strategy to small reactors, since its neutron leakage becomes large and neutron economy becomes worse. Fuel enrichment should be increased in order to sustain the criticality. However, higher enrichment of fresh fuel makes the CANDLE burnup difficult. We try to find some small reactor designs, which can realize the CANDLE burnup. We have successfully find a design, which is not the CANDLE burnup in the strict meaning, but satisfies qualitatively its characteristics mentioned at the top of this abstract. In the final paper, the general description of CANDLE burnup and some results on the obtained small fast reactor design are presented.(author)

  15. Stationary Liquid Fuel Fast Reactor

    International Nuclear Information System (INIS)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-01-01

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  16. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  17. Some neutronics of innovative subcritical assembly with fast neutron spectrum

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Fokov, Yu.; Rutkovskaya, Ch.; Sadovich, S.; Kasuk, D.; Gohar, Y.; Bolshinsky, I.

    2013-01-01

    Conclusion: • New assembly can be used to: • develop the experimental techniques and adapt the existing ones for monitoring the sub-criticality level, neutron spectra measurements, etc; • study the spatial kinetics of sub-critical and critical systems with fast neutron spectra; • measure the transmutation reaction rates of minor-actinides etc

  18. Electrochemistry in fast reactor technology

    International Nuclear Information System (INIS)

    Mathews, C.K.

    1987-01-01

    Electrochemistry plays a significant role in the production, characterisation or behaviour of the fuel, the coolant and structural materials used in fast reactor systems. The role of electrochemistry in sodium production, in the fuel cycle, in the development of electrochemical meters used for the on-line monitoring of the various impurities at sub ppm levels and in the recovery of plutonium and uranium are discussed. The advantage of voltammmetric techniques in the analysis of impurities and the application of electrochemical meters have been investigated. (author). 5 figs., 15 refs

  19. Clinical application of fast neutrons

    International Nuclear Information System (INIS)

    Battermann, J.J.

    1981-01-01

    The results of treatments and clinical experiments with neutrons (from a medical d+T neutron generator with an output of 10 12 neutrons per second) are reported and discussed. Data on RBE values are presented after single doses and multiple fractions of neutrons and 60 Co-gamma rays on pulmonary metastases. The results of pilot studies on head and neck tumours, brain tumours and pelvic tumours are discussed. The accuracy of the calculated dose is tested with some in-vivo experiments during neutron irradiation of the pelvis. Estimations of RBE values for tumour control, skin damage and intestinal damage after fractionated neutron therapy are dealt with and the results obtained in treatment of sarcomas are discussed. The preliminary results are given of some clinical trials in Amsterdam. Also some data from other centres are reviewed. From these data some remarks about the future of neutron therapy are made. (Auth.)

  20. Transient neutrons flux behaviour in a spherical reactor core

    International Nuclear Information System (INIS)

    Souza, A.W.A. de.

    1978-11-01

    This work studies the transient neutron flux in a fast reactor of spherical geometry. The burning of U 235 nuclei is equated and two kinds of reflector were studied. The numeric solutions are then compared with the results for those reflectors. (author) [pt

  1. Actinide recycle potential in the integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. In the IFR pyroprocessing, minor actinides accompany plutonium product stream, and therefore, actinide recycle occurs naturally. The fast neutron spectrum of the IFR makes it an ideal actinide burner, as well. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and potential implications on long-term waste management

  2. Count-to-count time interval distribution analysis in a fast reactor; Estudio de la distribucion de intervalos de tiempo entre detecciones consecutivas de neutrones en un reactor rapido

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Navarro Gomez, A

    1973-07-01

    The most important kinetic parameters have been measured at the zero power fast reactor CORAL-I by means of the reactor noise analysis in the time domain, using measurements of the count-to-count time intervals. (Author) 69 refs.

  3. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    Science.gov (United States)

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  4. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    Science.gov (United States)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  5. D-3He fuel cycles for neutron lean reactors

    International Nuclear Information System (INIS)

    Kernbichler, W.; Miley, G.H.; Heindler, M.

    1989-01-01

    The intrinsic potential of D-3He as a reactor fuel is investigated for a large range of 3He to D density ratios. A steady-state zero-dimensional reactor model is developed in which much care is attributed to a proper treatment of fast fusion products. Useful ranges of reactor parameters as well as temperature-density windows for driven and ignited operation are identified. Various figures of merit are calculated, such as power densities, net power production, neutron production, tritium load and radiative power. These results suggest several optimistic conclusions about the performance of D-3He as a reactor fuel

  6. Fast neutron analysis code SAD1

    International Nuclear Information System (INIS)

    Jung, M.; Ott, C.

    1985-01-01

    A listing and an example of outputs of the M.C. code SAD1 are given here. This code has been used many times to predict responses of fast neutrons in hydrogenic materials (in our case emulsions or plastics) towards the elastic n, p scattering. It can be easily extended to other kinds of such materials and to any kind of incident fast neutron spectrum

  7. Immediate relation of ING to fast breeder reactor programs

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1969-07-01

    The future large-scale use of nuclear energy is linked in the United States and other major countries to their fast breeder reactor development. Very serious basic problems have been discovered within the last two years, limiting the life in the high fast neutron flux at appropriate temperatures of materials, in particular of metals suitable for fuel cladding in sodium coolant. There is therefore a most urgent need for materials testing facilities under controlled conditions of temperature and neutron flux at sufficiently high ratings to match or surpass those required in commercially competitive fast breeder reactors. None of the test facilities yet planned for 1976 or sooner in the western world appears to match these conditions. The problem is mainly the difficulty of providing the high neutron flux effectively continuously. The spallation reaction in heavy elements was chosen as the basis of ING - the intense neutron generator, because it is the only known reaction that promises a fast neutron source density that is higher than can be controlled from the fission process. It is suggested that several countries will wish to consider urgently whether they should also explore the spallation reaction for the purpose of a fast neutron irradiation test facility. In view of the discontinuance of the ING project in Canada a favourable opportunity will exist over the next few months 10 obtain from Canada by direct personal contact details of the significant study that has been carried on for ING over the last five years. In the event that satisfactory materials are established within the lifetime of the spallation facilities they may continue to be used for the production of selected isotopes more profitably produced in high neutron fluxes. The facilities may be also used for the desirable preirradiation of thorium reactor fuel. The other research purposes planned for ING could also be served. (author)

  8. Immediate relation of ING to fast breeder reactor programs

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1969-01-01

    The future large-scale use of nuclear energy is linked in the United States and other major countries to their fast breeder reactor development. Very serious basic problems have been discovered within the last two years, limiting the life in the high fast neutron flux at appropriate temperatures of materials, in particular of metals suitable for fuel cladding in sodium coolant. There is therefore a most urgent need for materials testing facilities under controlled conditions of temperature and neutron flux at sufficiently high ratings to match or surpass those required in commercially competitive fast breeder reactors. None of the test facilities yet planned for 1976 or sooner in the western world appears to match these conditions. The problem is mainly the difficulty of providing the high neutron flux effectively continuously. The spallation reaction in heavy elements was chosen as the basis of ING - the intense neutron generator, because it is the only known reaction that promises a fast neutron source density that is higher than can be controlled from the fission process. It is suggested that several countries will wish to consider urgently whether they should also explore the spallation reaction for the purpose of a fast neutron irradiation test facility. In view of the discontinuance of the ING project in Canada a favourable opportunity will exist over the next few months 10 obtain from Canada by direct personal contact details of the significant study that has been carried on for ING over the last five years. In the event that satisfactory materials are established within the lifetime of the spallation facilities they may continue to be used for the production of selected isotopes more profitably produced in high neutron fluxes. The facilities may be also used for the desirable preirradiation of thorium reactor fuel. The other research purposes planned for ING could also be served. (author)

  9. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  10. Fast Thorium Molten Salt Reactors Started with Plutonium

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.; Mathieu, L.

    2006-01-01

    One of the pending questions concerning Molten Salt Reactors based on the 232 Th/ 233 U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233 U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233 U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233 U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/ 233 U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into 233 U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with 233 U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with 233 U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  11. A review of the UK fast reactor programme. March 1977

    International Nuclear Information System (INIS)

    Smith, R.D.

    1977-01-01

    This paper reports on the Fast Reactor Programme of United Kingdom. These are the main lines: Dounreay Fast Reactor; Prototype Fast Reactor; Commercial Fast Reactor; engineering development; materials development; chemical engineering/sodium technology; fast reactor fuel; fuel cycle; safety; reactor performance study

  12. International Experience with Fast Reactor Operation & Testing

    International Nuclear Information System (INIS)

    Sackett, John I.; Grandy, C.

    2013-01-01

    Conclusion: • Worldwide experience with fast reactors has demonstrated the robustness of the technology and it stands ready for worldwide deployment. • The lessons learned are many and there is danger that what has been learned will be forgotten given that there is little activity in fast reactor development at the present time. • For this reason it is essential that knowledge of fast reactor technology be preserved, an activity supported in the U.S. as well as other countries

  13. Novel applications of fast neutron interrogation methods

    International Nuclear Information System (INIS)

    Gozani, Tsahi

    1994-01-01

    The development of non-intrusive inspection methods for contraband consisting primarily of carbon, nitrogen, oxygen, and hydrogen requires the use of fast neutrons. While most elements can be sufficiently well detected by the thermal neutron capture process, some important ones, e.g., carbon and in particular oxygen, cannot be detected by this process. Fortunately, fast neutrons, with energies above the threshold for inelastic scattering, stimulate relatively strong and specific gamma ray lines from these elements. The main lines are: 6.13 for O, 4.43 for C, and 5.11, 2.31 and 1.64 MeV for N. Accelerator-generated neutrons in the energy range of 7 to 15 MeV are being considered as interrogating radiations in a variety of non-intrusive inspection systems for contraband, from explosives to drugs and from coal to smuggled, dutiable goods. In some applications, mostly for inspection of small items such as luggage, the decision process involves a rudimentary imaging, akin to emission tomography, to obtain the localized concentration of various elements. This technique is called FNA - Fast Neutron Analysis. While this approach offers improvements over the TNA (Thermal Neutron Analysis), it is not applicable to large objects such as shipping containers and trucks. For these challenging applications, a collimated beam of neutrons is rastered along the height of the moving object. In addition, the neutrons are generated in very narrow nanosecond pulses. The point of their interaction inside the object is determined by the time of flight (TOF) method, that is measuring the time elapsed from the neutron generation to the time of detection of the stimulated gamma rays. This technique, called PFNA (Pulsed Fast Neutron Analysis), thus directly provides the elemental, and by inference, the chemical composition of the material at every volume element (voxel) of the object. The various neutron-based techniques are briefly described below. ((orig.))

  14. Opportunities for TRIGA reactors in neutron radiography

    International Nuclear Information System (INIS)

    Barton, John P.

    1978-01-01

    In this country the two most recent installations of TRIGA reactors have both been for neutron radiography, one at HEDL and the other at ANL. Meanwhile, a major portion of the commercial neutron radiography is performed on a TRIGA fueled reactor at Aerotest. Each of these installations has different primary objectives and some comparative observations can be drawn. Another interesting comparison is between the TRIGA reactors for neutron radiography and other small reactors that are being installed for this purpose such as the MIRENE slow pulse reactors in France, a U-233 fueled reactor for neutron radiography in India and the L88 solution reactor in Denmark. At Monsanto Laboratory, in Ohio, a subcritical reactor based on MTR-type fuel has recently been purchased for neutron radiography. Such systems, when driven by a Van de Graaff neutron source, will be compared with the standard TRIGA reactor. Future demands on TRIGA or competitive systems for neutron radiography are likely to include the pulsing capability of the reactor, and also the extraction of cold neutron beams and resonance energy beams. Experiments recently performed on the Oregon State TRIGA Reactor provide information in each of these categories. A point of particular current concern is a comparison made between the resonance energy beam intensity extracted from the edge of the TRIGA core and from a slot which penetrated to the center of the TREAT reactor. These results indicate that by using such slots on a TRIGA, resonance energy intensities could be extracted that are much higher than previously predicted. (author)

  15. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pillon, Mario, E-mail: mario.pillon@enea.it [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Carta, Mario; Fiorani, Orlando; Santagata, Alfonso [ENEA C.R. CASACCIA, via Anguillarese, 301, 00123 S. Maria di Galeria, Rome (Italy)

    2015-10-15

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm{sup 2}. • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10{sup 17} n/cm{sup 2}. Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted

  16. Estimation of the sub-criticality of the sodium-cooled fast reactor Monju using the modified neutron source multiplication method

    International Nuclear Information System (INIS)

    Truchet, G.; Van Rooijen, W. F. G.; Shimazu, Y.; Yamaguchi, K.

    2012-01-01

    The Modified Neutron Source Method (MNSM) is applied to the Monju reactor. This static method to estimate sub-criticality has already given good results on commercial Pressurized Water Reactors. The MNSM consists both in the extraction of the fundamental mode seen by a detector to avoid the effect of higher modes near sources, and the correction of flux distortion effects due to control rod movement. Among Monju's particularities that have a big influence on MNSM factors are: the presence of two californium sources and the position of the detector which is located far from the core outside of the reactor vessel. The importance of spontaneous fission and (α, n) reactions which have increased during the shutdown period of 15 years will also be discussed. The relative position of detectors and sources deeply affect the correction factors in some regions. In order to evaluate the detector count rate, an analytical propagation has been conducted from the reactor vessel. For two subcritical states, an estimation of the reactivity has been made and compared to experimental data obtained in the restart experiments at Monju (2010). (authors)

  17. Neutron and gamma characterization within the FFTF reactor cavity

    International Nuclear Information System (INIS)

    Bunch, W.L.; Carter, L.L.; Moore, F.S.; Werner, E.J.; Wilcox, A.D.; Wood, M.R.

    1980-08-01

    Neutron and gamma ray measurements were made within the reactor cavity of the Fast Flux Test Facility (FFTF) to establish the operating characteristics of the Ex-Vessel Flux Monitoring (EVFM) system as a function of reactor power level. A significant effort was made to obtain absolute flux values in order that the measurements could be compared directly with shield design calculations. Good agreement was achieved for neutrons and for both the prompt and delayed components of the gamma ray field. 8 figures, 3 tables

  18. A new electret dosimeter for fast neutrons

    International Nuclear Information System (INIS)

    Campos, L.L.; Suarez, A.A.; Mascarenhas, S.

    1982-01-01

    A new electret for fast-neutron personnel dosimetry is described and calibration curves obtained. Its performance may be improved by changes in the wall composition and geometric parameters. The advantages of electrets over TL and film are the non-erasure of information, low cost, fast reading and portability. (U.K.)

  19. Theoretical and Experimental Analysis of Fast Neutron Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, H.; Kleijn, H. R. [Reactor Instituut, Delft (Netherlands)

    1968-04-15

    The reactor physics division of the Inter-Academic Reactor Institute at Delft is concentrating its efforts in the field of fast reactor physics on problems of a more fundamental nature. The object of the programme is to determine experimentally a number of microscopic reactor physics parameters such as conversion potentials, fission ratios and Doppler coefficients for simple geometries and material compositions. Because of the extreme importance of knowledge of the neutron spectrum for the interpretation of the results, attention has initially been concentrated on both the measurement and the calculation of fast neutron spectra. The transport of neutrons in absorbing and non-absorbing heavy atom materials is studied by solving the Boltzmann equation. Both isotropic and anisotropic scattering are considered. Anisotropic scattering is treated by the P{sub n}-approximation, while flux-anisotropy is handled with the S{sub N}-method. In the code FAST-DELFT, scattering is treated up to the P{sub 4} component, a further extension of which is useless because of the lack of available cross-section data. By using this method, the effect of scattering anisotropy on the spectrum formation has been studied. In addition the influence of group cross-section inaccuracies was determined. The experimental work has been concentrated on methods to determine in-core spectra. Using home-made proportional counters with gamma-ray discrimination provisions fast neutron spectra have been measured in simple geometries. These experiments were complemented by foil measurements in the lower energy region. The results of this work are presented in this paper. (author)

  20. Note: Fast neutron efficiency in CR-39 nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, S. [Dipartimento di Fisica ed Astronomia,Università di Catania, Via S. Sofia 44, 95123 Catania, Italy and INFN-LNS, Via S. Sofia 42, 95123 Catania (Italy)

    2015-03-15

    CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed.

  1. Devices for irradiation of materials in the fast neutron flux at the RA heavy water reactor in Vinca; Uredjaji za ozracivanje materijala u fluksu brzih neutrona na teskovodnom reaktoru RA u Vinci

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M [Institut za nuklearne nauke Boris Kidric, Vinca, Beograd (Yugoslavia)

    1964-07-01

    Full text: This paper covers the concept, technical description and problems of constructing special experimental facilities at the RA reactor in Vinca. During 1962, construction materials (graphite, Mg, Al-oxides, steel and Zircaloy) were irradiated in these facilities at temperatures below 100 deg C by the integral fast neutron flux of 2 10{sup 20} n/cm{sup 2}. Temperature of the samples cooled by heavy water circulating through hollow uranium elements was measured by thermocouples. Construction of the facility, sample preparation, related measurements of the flux and irradiation of the samples were done in cooperation with the Nuclear center in Saclay, France. A short review of the experiences in using the new experimental space at the RA reactor is given, together with some problems related to transport of radioactive capsules containing samples from Vinca to Saclay.

  2. Status report of the program on neutron beam utilization at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1996-08-01

    The thermal reactor is an intense source not only of thermal neutron, but also intermediate as well as fast neutrons. Using the filtered neutron beam technique at steady state atomic reactor allows receiving the neutrons in the intermediate energy region with the most available intense flux at present. In the near time at the Dalat reactor the filtered neutron beam technique has been applied. Utilization of the filtered neutron beams in basic and applied researches has been a important activity of the Dalat Nuclear Research Institute (DNRI). This report presents some relevant characteristics of the filtered neutron beams and their utilization in nuclear data measurements, neutron capture gamma ray spectroscopy, neutron radiography, neutron dose calibration and other applications. (author). 3 refs, 2 figs

  3. Measurement of Relative Biological Effectiveness (RBE) for the Radiation Beam from Neutron Source Reactor YAYOI -Comparisons with Cyclotron Neutron and 60Co Gamma Ray-

    OpenAIRE

    HIROAKI, WAKABAYASHI; SHOZO, SUZUKI; AKIRA, ITO; Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo; Institute of Medical Science, the University of Tokyo; Institute of Medical Science, the University of Tokyo

    1983-01-01

    Radiation biology and/or therapy research and development for a research reactor beam need specific RBEs of neutrons as well as of specific reactions. RBEs for reactor beams measured in situ condition are interesting because actual radiation effects on each biological system are different depending on detailed conditions of irradiation. A small powered research reactor (Fast Neutron Source Reactor: YAYOI) was examined here as a neutron beam source for obtaining survival curves in a manner usu...

  4. Holography for fast reactor inspection

    International Nuclear Information System (INIS)

    Tozer, B.A.

    1980-01-01

    Holography, an optical process whereby an image of the original subject can be reconstructed in three dimensions, is being developed for use as an optical inspection tool. With a potential information storage density of 10 16 bits/m 2 , the ability to reconstruct in 3 dimensions, a depth of field of up to 8 metres, extremely wide angle of view, and potentially diffraction limited resolution, holography should be invaluable for the optical recording of fast reactors during construction, and the inspection of optically accessible regions during operation, or maintenance down-times. The photographic emulsions used for high resolution holography are fine-grained and fog only very slowly when subjected to γ-radiation, so that inspection of highly radio-active regions and components can be effected satisfactorily. Some of the practical limitations affecting holography are described and ways of overcoming them discussed. Some preliminary results are presented. (author)

  5. Interfacial effects in fast reactors

    International Nuclear Information System (INIS)

    Saidi, M.S.; Driscoll, M.J.

    1979-05-01

    The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed to measure U-238 capture rates near th blanket--reflector interface in the MIT Blanket Test Facility. Prior MIT experiments on a thorium--uranium interface in a blanket assembly were also reanalyzed. Extremely localized fertile capture rate increases of on the order of 50% were measured immediately at the interfaces relative to extrapolation of asymptotic interior traverses, and relative to state-of-the-art (LIB-IV, SPHINX, ANISN/2DB) calculations which employ infinite-medium self-shielding throughout a given zone. A method was developed to compute a spatially varying background scattering cross section per absorber nucleus which takes into account both homogeneous and heterogeneous effects on the interface flux transient

  6. A system for fast neutron radiography

    International Nuclear Information System (INIS)

    Klann, R.T.

    1996-01-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this sytem, objects as small as a coin or as large as a waste drum can be radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3x10 10 neutrons/second with an average energy of 14.5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available cassettes. The cassettes have been modified to include a thin sheet of plastic to convert neutrons to protons through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9x10 7 to 3.8x10 8 n/cm 2 depending on the type of screen and film

  7. Transmutation of Americium in Fast Neutron Facilities

    OpenAIRE

    Zhang, Youpeng

    2011-01-01

    In this thesis, the feasibility to use a medium sized sodium cooled fast reactor fully loaded with MOX fuel for efficient transmutation of americium is investigated by simulating the safety performance of a BN600-type fast reactor loaded with different fractions of americium in the fuel, using the safety parameters obtained with the SERPENT Monte Carlo code. The focus is on americium mainly due to its long-term contribution to the radiotoxicity of spent nuclear fuel and its deterioration on c...

  8. Comparison calculation of a large sodium-cooled fast breeder reactor using the cell code MICROX-2 in connection with ENDF/B-VI and JEF-1.1 neutron data

    International Nuclear Information System (INIS)

    Pelloni, S.

    1992-02-01

    We have obtained results for a large sodium-cooled fast breeder reactor benchmark using data from the ENDF/B-VI and from Revision 1 of the JEF-1 (JEF-1.1) evaluation. The required cross sections were processed with the NJOY code system (Version 89.62) and homogenized with the spectrum cell code MICROX-2. Multigroup transport-theory calculations in 33 neutron groups (forward and adjoint) were performed using the two-dimensional code TWODANT and kinetic parameters were determined using the first-order perturbation-theory code PERT-V. We calculated eigenvalues, neutron balance data, global and regional breeding and conversion ratios, central rate ratios and reactivity worths with and without sodium, effective delayed neutron fraction and inhour reactivity, regional sodium void reactivity, and isothermal core fuel Doppler-reactivities. In particular, it is shown that good agreement (generally within one standard deviation) is achieved between these results and the average values over sixteen benchmark solutions obtained in the past. The eigenvalues predicted with ENDF/B-VI are up to 0.7% larger than those calculated with JEF-1.1 cross sections. This discrepancy is mainly due to different inelastic scattering cross sections for 23 Na and 238 U, and to different fast fission and nubar data for 239 Pu. (author) 5 figs., 30 tabs., 24 refs

  9. The effective lifetime and temperature coefficient in a coupled fast-thermal reactor; Temps de vie effectif et coefficient de temperature dans un reacteur a couplage neutrons rapides-neutrons thermiques; Ehffektivnyj srok zhizni i temperaturnyj koehffitsient nejtronov v dvoyakom reaktore na bystrykh i teplovykh nejtronakh; Vida efectiva y coeficiente de temperatura en un reactor con acoplamiento rapido-termico

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W. [Kernforschungszentrum, Karlsruhe (Germany)

    1962-03-15

    The theory of coupled systems was extensively developed by Avery and co-workers at the Argonne National Laboratory. One of the main points of interest in a coupled system is the larger effective lifetime of neutrons. The effect of the thermal component acts as a sort of neutron-delayer. As in the theory of delayed neutrons the delaying effect disappears if the reactivity worth is high enough to make the fast component critical by itself. In the study a coupled reactor is considered where the fast component suffers a sudden reactivity step {alpha}{sub 0}. Because of the increasing power-level the temperature rises and two temperature coefficients start to work: the temperature coefficient of the fast component and the temperature coefficient of the thermal component. The problem is considered with one group of delayed neutrons (in the ordinary meaning). A formalism is given to express the effective lifetime and temperature coefficient during the different stages of the excursion. Excursions for different {alpha}{sub 0} are given so that the limit of fast-reactor kinetics is reached. (author) [French] La theorie des systemes a couplage a ete mise au point par Avery et ses collaborateurs au Laboratoire national d'Argonne. L'une des caracteristique les plus interessantes d'un systeme a couplage est que le temps de vie effectif des neutrons est plus long. L'effet de la partie thermique contribue en quelque sorte a retarder les neutrons. Comme dans la theorie des neutrons retardes, l'effet de retardement disparait lorsque la reactivite a une valeur suffisamment elevee pour rendre la partie rapide critique par elle-meme. L'auteur du memoire considere un reacteur a couplage dont la partie rapide subit un saut instantane de reactivite, {alpha}{sub 0}. La temperature s'eleve a cause de l'augmentation de puissance et deux coefficients de temperature commencent a s'appliquer: le coefficient de temperature de la partie rapide et le coefficient de temperature de la partie

  10. Proceedings of 'workshop on Pb-alloy cooled fast reactor'

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Kim, Yong Hee; Hong, Ser Gi

    2003-06-01

    The objective of 'Workshop on Pb-Alloy Cooled Fast Reactor', held in Taejeon, Korea on May 6, 2003, is to enhance the basic knowledge in this area by facilitating the exchange of information and discussions about problematic area of design aspects. There were five presentations from three different countries and about 25 participants gathered during the workshop. The topics covered in the workshop include benefits and drawbacks of Pb-alloy and Sodium coolant, two Pb-alloy cooled 900 MWt reactor designs using both B4C rods and NSTs, BREST-300 breakeven reactor and transmutation effectiveness of LLFPs in the typical thermal/fast neutron systems. The generic conclusion for the Pb-alloy cooled fast reactor from this workshop is as follows: 1) It has a potential to satisfy the goals established for the Generation-IV reactor concepts, so it has a bright future. 2) As a fast neutron system with a moderate breeding or a conversion, it is flexible in its roles and has superior safety characteristics over sodium coolant because of Pb-alloy's chemical inertness with water/air and high boiling temperature

  11. Thermal neutron filter design for the neutron radiography facility at the LVR-15 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soltes, Jaroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague, (Czech Republic); Viererbl, Ladislav; Lahodova, Zdena; Koleska, Michal; Vins, Miroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic)

    2015-07-01

    In 2011 a decision was made to build a neutron radiography facility at one of the unused horizontal channels of the LVR-15 research reactor in Rez, Czech Republic. One of the key conditions for operating an effective radiography facility is the delivery of a high intensity, homogeneous and collimated thermal neutron beam at the sample location. Additionally the intensity of fast neutrons has to be kept as low as possible as the fast neutrons may damage the detectors used for neutron imaging. As the spectrum in the empty horizontal channel roughly copies the spectrum in the reactor core, which has a high ratio of fast neutrons, neutron filter components have to be installed inside the channel in order to achieve desired beam parameters. As the channel design does not allow the instalment of complex filters and collimators, an optimal solution represent neutron filters made of large single-crystal ingots of proper material composition. Single-crystal silicon was chosen as a favorable filter material for its wide availability in sufficient dimensions. Besides its ability to reasonably lower the ratio of fast neutrons while still keeping high intensities of thermal neutrons, due to its large dimensions, it suits as a shielding against gamma radiation from the reactor core. For designing the necessary filter dimensions the Monte-Carlo MCNP transport code was used. As the code does not provide neutron cross-section libraries for thermal neutron transport through single-crystalline silicon, these had to be created by approximating the theory of thermal neutron scattering and modifying the original cross-section data which are provided with the code. Carrying out a series of calculations the filter thickness of 1 m proved good for gaining a beam with desired parameters and a low gamma background. After mounting the filter inside the channel several measurements of the neutron field were realized at the beam exit. The results have justified the expected calculated values

  12. The development of accurate data for the desing of fast reactors

    International Nuclear Information System (INIS)

    Rossouw, P.A.

    1976-04-01

    The proposed use of nuclear power in the generation of electricity in South Africa and the use of fast reactors in the country's nuclear porgram, requires a method for fast reactor evluation. The availability of accurate neutron data and neutronics computation techniques for fast reactors are required for such an evaluation. The reacotr physics and reactor parameters of importance in the evaluation of fast reacotrs are discussed, and computer programs for the computation of reactor spectra and reacotr parameters from differential nuclear data are presented in this treatise. In endeavouring to increase the accuracy in fast reactor design, two methods for the improvement of differential nuclear data were developed and are discussed in detail. The computer programs which were developed for this purpose are also given. The neutron data of the most important fissionable and breeding nuclei (U 235 x U 238 x Pu 239 and Pu 240 ) are adjusted using both methods and the improved neutron data are tested by computation with an advanced neutronics computer program. The improved and orginal neutron data are compared and the use of the improved data in fast reactor design is discussed

  13. The UK commercial demonstration fast reactor design

    International Nuclear Information System (INIS)

    Holmes, J.A.G.

    1987-01-01

    The paper on the UK Commercial Demonstration Fast Reactor design was presented to the seminar on 'European Commercial Fast Reactor Programme, London 1987. The design is discussed under the topic headings:- primary circuit, intermediate heat exchangers and pumps, fuel and core, refuelling, steam generators, and nuclear island layout. (U.K.)

  14. Aspects of the fast reactors fuel cycle

    International Nuclear Information System (INIS)

    Zouain, D.M.

    1982-06-01

    The fuel cycle for fast reactors, is analysed, regarding the technical aspects of the developing of the reprocessing stages and the fuel fabrication. The environmental impact of LMFBRs and the waste management of this cycle are studied. The economic aspects of the fuel cycle, are studied too. Some coments about the Brazilian fast reactors programs are done. (E.G.) [pt

  15. Microstructural evolution of martensitic steels during fast neutron iradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1989-01-01

    Irradiation of martensitic/ferritic steels with fast neutrons (E > 0.1 MeV) to displacement damage levels of 30--50 dpa at temperatures of 300--500 degree C produces significant changes in the as-tempered microstructure. Dislocation loops and networks can be produced, irradiation-induced precipitates can form, the lath/subgrain boundary structure and the thermal precipitates produced during tempering can become unstable, and if helium is present, bubbles and voids can form. These microstructural changes caused by irradiation can have important effects on the properties of this class of steels for both fast breeder reactor (FBR) and magnetic fusion reactor (MFR) applications. The purpose of this paper is to compare reactor-irradiated and long-term thermally aged 9Cr--1MoVNb specimens, in order to distinguish effects due to displacement damage from those caused by elevated-temperature exposure alone. 7 refs., 1 fig

  16. Experimental Methods Related to Coupled Fast-Thermal Systems at the RB Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    In addition to the review of RB reactor characteristics this presentation is focused on the coupled fast-thermal systems achieved at the reactor. The following experimental methods are presented: neutron spectra measurements; steady state experiments and kinetic measurements ( β eff ) related to the coupled fast-thermal cores

  17. Euratom contributions in Fast Reactor research programmes

    International Nuclear Information System (INIS)

    Fanghänel, Th.; Somers, J.

    2013-01-01

    The Sustainable Nuclear Initiative: • demonstrate long-term sustainability of nuclear energy; • demonstration reactors of Gen IV: •more efficient use of resources; • closed fuel cycle; • reduced proliferation risks; • enhanced safety features. • Systems pursued in Europe: • Sodium-cooled fast reactor SFR; • Lead-cooled fast reactor LFR; • Gas-cooled fast reactor GFR. Sustainable Nuclear Energy Technology Platform SNE-TP promotes research, development and demonstration of the nuclear fission technologies necessary to achieve the SET-Plan goals

  18. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki

    1982-07-01

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  19. Tools and applications for core design and shielding in fast reactors

    International Nuclear Information System (INIS)

    Rachamin, Reuven

    2013-01-01

    Outline: • Modeling of SFR cores using the Serpent-DYN3D code sequence; • Core shielding assessment for the design of FASTEF-MYRRHA; • Neutron shielding studies on an advanced Molten Salt Fast Reactor (MSFR) design

  20. Economic Issues of Fast Reactor in China

    International Nuclear Information System (INIS)

    Yang Hongyi

    2013-01-01

    Conclusions: 1. More and more fast reactors could be appearing in the world currently and near future. 2. China gets little experience and practice about the economics issues of sodium cooled fast reactors. 3. The economic issues become more and more important for the deplot of fast reactors. Suggestions: 1. An authoritative economic evaluation solution for fast reactor and related fuel cycles facilities is necessary. The solution may be developed by the interested country in order to share the few data, experience and methodology. 2. A new initiative to help to share the economic information for fast reactor and related fuel cycle facilities is necessary. A meeting like TM-44899 organized by the IAEA is very beneficial for this topic and hopefully will continue

  1. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs

  2. A neutron amplifier: prospects for reactor-based waste transmutation

    International Nuclear Information System (INIS)

    Blanovsky, A.

    2004-01-01

    A design concept and characteristics for an epithermal breeder controlled by variable feedback and external neutron source intensity are presented. By replacing the control rods with neutron sources, we could maintain good power distribution and perform radioactive waste burning in high flux subcritical reactors (HFSR) that have primary system size, power density and cost comparable to a pressurized water reactor (PWR). Another approach for actinide transmutation is a molten salt subcritical reactor proposed by Russian scientists. To increase neutron source intensity the HFSR is divided into two zones: a booster and a blanket with solid and liquid fuels. A neutron gate (absorber and moderator) imposed between two zones permits fast neutrons from the booster to flow to the blanket. Neutrons moving in the reverse direction are moderated and absorbed in the absorber zone. In the HFSR, neptunium-plutonium fuel is circulated in the booster and blanket, and americium-curium in the absorber zone and outer reflector. Use of a liquid actinide fuel permits transport of the delayed-neutron emitters from the blanket to the booster, where they can provide additional neutrons (source-dominated mode) or all the necessary excitation without an external neutron source (self-amplifying mode). With a blanket neutron multiplication gain of 20 and a booster gain of 50, an external neutron source rate of at least 10 15 n/s (0.7 MW D-T or 2.5 MW electron beam power) is needed to control the HFSR that produces 300 MWt. Most of the power could be generated in the blanket that burns about 100 kg of actinides a year. The analysis takes into consideration a wide range of HFSR design aspects including the wave model of observed relativistic phenomena, plant seismic diagnostics, fission electric cells (FEC) with a multistage collector (anode) and layered cathode. (author)

  3. Status of fast reactor activities in Russia

    International Nuclear Information System (INIS)

    Poplavski, V.M.; Ashurko, Yu.M.; Zverev, K.V.

    1998-01-01

    This paper outlines state-of-the-art of the Russian nuclear power as of 1997 and its prospects for the nearest future. Results of the BR-10, BOR-60 and BN-600 reactors operation are described, as well as activity of the Russian institutions on scientific and technological support of the BN-350 reactor. Analysis of current status of the BN-800 reactor South-Urals NPP and Beloyarskaya NPP designs is given in brief, as well as prospects of their construction and possible ways of fast reactor technology improvement. Studies on fast reactors now under way in Russia are described. (author)

  4. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  5. Pool type liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Guthrie, B.M.

    1978-08-01

    Various technical aspects of the liquid metal fast breeder reactor (LMFBR), specifically pool type LMFBR's, are summarized. The information presented, for the most part, draws upon existing data. Special sections are devoted to design, technical feasibility (normal operating conditions), and safety (accident conditions). A survey of world fast reactors is presented in tabular form, as are two sets of reference reactor parameters based on available data from present and conceptual LMFBR's. (auth)

  6. Fast Neutron Emission Tomography of Used Nuclear Fuel Assemblies

    Science.gov (United States)

    Hausladen, Paul; Iyengar, Anagha; Fabris, Lorenzo; Yang, Jinan; Hu, Jianwei; Blackston, Matthew

    2017-09-01

    Oak Ridge National Laboratory is developing a new capability to perform passive fast neutron emission tomography of spent nuclear fuel assemblies for the purpose of verifying their integrity for international safeguards applications. Most of the world's plutonium is contained in spent nuclear fuel, so it is desirable to detect the diversion of irradiated fuel rods from an assembly prior to its transfer to ``difficult to access'' storage, such as a dry cask or permanent repository, where re-verification is practically impossible. Nuclear fuel assemblies typically consist of an array of fuel rods that, depending on exposure in the reactor and consequent ingrowth of 244Cm, are spontaneous sources of as many as 109 neutrons s-1. Neutron emission tomography uses collimation to isolate neutron activity along ``lines of response'' through the assembly and, by combining many collimated views through the object, mathematically extracts the neutron emission from each fuel rod. This technique, by combining the use of fast neutrons -which can penetrate the entire fuel assembly -and computed tomography, is capable of detecting vacancies or substitutions of individual fuel rods. This paper will report on the physics design and component testing of the imaging system. This material is based upon work supported by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development within the National Nuclear Security Administration, under Contract Number DE-AC05-00OR22725.

  7. A Direction Sensitive Fast Neutron Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Antolkovic, B; Holmqvist, B; Wiedling, T

    1964-06-15

    A direction sensitive fast neutron monitor is described and its properties are discussed in some detail. The counter is a modification of the standard long counter of the Hanson and McKibben type. Directional sensitivity is obtained by increasing the shielding of the counter and providing it with a 70 cm long collimator channel. The behaviour of this long counter monitor is compared with that of a standard long counter when both are used in neutron experiments.

  8. Fast neutron damage in germanium detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.

    1979-10-01

    The effects of fast neutron radiation damage on the performance of both Ge(Li) and Ge(HP) detectors have been studied during the past decade and will be summarized. A review of the interaction processes leading to the defect structures causing trapping will be made. The neutron energy dependence of observable damage effects will be considered in terms of interaction and defect production cross sections

  9. Neutron flux measuring system for nuclear reactor

    International Nuclear Information System (INIS)

    Aoki, Kazuo.

    1977-01-01

    Purpose: To avoid the generation of an undesired scram signal due to abrupt changes in the neutron level given to the detectors disposed near the boundary between the moderator and the atmosphere. Constitution: In a nuclear reactor adapted to conduct power control by the change of the level in the moderator such as heavy water, the outputs from the neutron detectors disposed vertically are averaged and the nuclear reactor is scramed corresponding to the averaged value. In this system, moderator level detectors are additionally provided to the nuclear reactor and their outputs, moderator level signal, are sent to a power averaging device where the output signals of the neutron detectors are judged if they are delivered from neutrons in the moderator or not depending on the magnitude of the level signal and the outputs of the detectors out of the moderator are substantially excluded. The reactor interlock signal from the device is utilized as a scram signal. (Seki, T.)

  10. Commissioning of the Opal reactor cold neutron source

    International Nuclear Information System (INIS)

    Thiering, R.; Lu, W.; Ullah, R.

    2006-01-01

    Full text: At OPAL, Australia's first cold neutron facility will form an essential part of the reactor's research programs. Fast neutrons, born in the core of a reactor, interact with a cryogenic material, in this case liquid deuterium, to give them very low energies ( 1 0 m eV). A cold neutron flux of 1.4 1 0 E 1 4 n /cm 2/ s is expected, with a peak in the energy spectrum at 4.2m eV. The cold neutron source reached cryogenic conditions for the first time in late 2005. The cold neutron source operates with a sub-cooled liquid Deuterium moderator at 24 K. The moderator chamber, which contains the deuterium, has been constructed from AlMg 5. The thermosiphon and moderator chamber are cooled by helium gas, in a natural convection thermosiphon loop. The helium refrigeration system utilises the Brayton cycle, and is fully insulated within a high vacuum environment. Despite the proximity of the cold neutron source to the reactor core, it has been considered as effectively separate to the reactor system, due to the design of its special vacuum containment vessel. As OPAL is a multipurpose research reactor, used for beam research as well as radiopharmaceutical production and industrial irradiations, the cold neutron source has been designed with a stand-by mode, to maximise production. The stand-by mode is a warm operating mode using only gaseous deuterium at ambient temperatures (∼ 3 00 K ), allowing for continued reactor operations whilst parts of the cold source are unavailable or in maintenance. This is the first time such a stand-by feature has been incorporated into a cold source facility

  11. Fast neutron therapy in advanced malignant tumour treatment

    International Nuclear Information System (INIS)

    Avinc, A.

    1998-01-01

    In this report the fast neutron therapy applications were examined by thoroughly consideration of the fast neutron sources and the interactions of the fast neutron by the medium. The efficacy of fast neutron radiotherapy with that of patients with locally advanced tumours were compared. Radiological data indicate that fast neutrons could bring benefit in the treatment of some tumour types especially salivary glands, paranasal sinuses, soft tissue sarcomas, prostatic adenocarcinomas, palliative treatment of melanoma and rectum. There is a significant improvement in local/regional control for the neutron group, but no improvement in the survival. The neutron therapy is suggested through which this benefit could be achieved

  12. Measurement of fast neutron background in SAGE

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S

    2002-01-01

    The spectrometer intended for direct measurements of ultra low fluxes of fast neutrons is described. It is sensitive to neutron fluxes of 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11 +- 0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5 +- 2.1) x 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4700 meters of water equivalent was measured to be (7.3 +- 2.4) x 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be < 2.3 x 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in 1.0-11.0 MeV energy range.

  13. Measurement of fast neutron background in SAGE

    International Nuclear Information System (INIS)

    Abdurashitov, J.N.; Gavrin, V.N.; Kalikhov, A.V.; Matushko, V.L.; Shikhin, A.A.; Yants, V.E.; Zaborskaia, O.S.

    2002-01-01

    The spectrometer intended for direct measurements of ultra low fluxes of fast neutrons is described. It is sensitive to neutron fluxes of 10 -7 cm -2 s -1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11 ± 0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5 ± 2.1) x 10 -7 cm -2 s -1 in the range 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4700 meters of water equivalent was measured to be (7.3 ± 2.4) x 10 -7 cm -2 s -1 in the range 1.0-11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be -7 cm -2 s -1 in 1.0-11.0 MeV energy range

  14. Multicomponent activation detector measurements of reactor neutron spectra

    International Nuclear Information System (INIS)

    Sandberg, J.; Aarnio, P. A.; Routti, J. T.

    1984-01-01

    Information on the neutron flux is required in many applications of research reactors, such as activation analysis or radiation damage measurements. Flux spectrum measurements are commonly carried out with activation foils. The reaction types used are threshold reactions in the fast energy region, resonance reactions in the intermediate region and neutron capture reactions with l/v-cross section in the thermal region. It has been shown that it is possible to combine several detector elements into homogeneous multicomponent detectors. The activities of all detector reaction products can be determined with a single gamma spectrum measurement. The multicomponent principle sets some restrictions on the choice of detector reactions, for example, each product nuclide may be produced in one reaction only. Separate multicomponent threshold and resonance detectors were designed for the fast and intermediate regions, respectively. The detectors were fabricated in polyethylene irradiation capsules or quartz glass ampoules, and they were irradiated in a cadmium cover. The detectors were succesfully used in the irradiation ring and in the core of a Triga reactor. The intermediate and fast neutron spectrum was unfolded with the least-squares unfolding program LOUHI. According to the preliminary results multicomponent activation detectors might constitute a convenient means for carrying out routine neutron spectrum measurements in research reactors. (orig.)

  15. Absolute measurement of neutron fluxes inside the reactor core

    International Nuclear Information System (INIS)

    Ajdacic, S. V.

    1964-10-01

    The subject of this work is the development and study of two methods of neutron measurements in nuclear reactors, the new method of high neutron flux measurements and the Li 6 -semiconductor neutron spectrometer. This work is presented in four sections: Section I. The introduction explains the need for neutron measurements in reactors. A critical survey is given of the existing methods of high neutron flux measurement and methods of fast neutron spectrum determination. Section II. Theoretical basis of the work of semiconductor counters and their most important characteristics are given. Section III. The main point of this section is in presenting the basis of the new method which the author developed, i.e., the long-tube method, and the results obtained by it, with particular emphasis on absolute measurement of high neutron fluxes. Advantages and limitations of this method are discussed in details at the end of this section. Section IV. A comparison of the existing semiconductor neutron spectrometers is made and their advantages and shortcomings underlined. A critical analysis of the obtained results with the Li 6 -semiconductor spectrometer with plane geometry is given. A new type of Li 6 -semiconductor spectrometer is described, its characteristics experimentally determined, and a comparison of it with a classical Li 6 -spectrometer made (author)

  16. Absolute measurement of neutron fluxes inside the reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Ajdacic, S V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1964-10-15

    The subject of this work is the development and study of two methods of neutron measurements in nuclear reactors, the new method of high neutron flux measurements and the Li{sup 6}-semiconductor neutron spectrometer. This work is presented in four sections: Section I. The introduction explains the need for neutron measurements in reactors. A critical survey is given of the existing methods of high neutron flux measurement and methods of fast neutron spectrum determination. Section II. Theoretical basis of the work of semiconductor counters and their most important characteristics are given. Section III. The main point of this section is in presenting the basis of the new method which the author developed, i.e., the long-tube method, and the results obtained by it, with particular emphasis on absolute measurement of high neutron fluxes. Advantages and limitations of this method are discussed in details at the end of this section. Section IV. A comparison of the existing semiconductor neutron spectrometers is made and their advantages and shortcomings underlined. A critical analysis of the obtained results with the Li{sup 6}-semiconductor spectrometer with plane geometry is given. A new type of Li{sup 6}-semiconductor spectrometer is described, its characteristics experimentally determined, and a comparison of it with a classical Li{sup 6}-spectrometer made (author)

  17. Investigation of the reflection of fast neutrons

    International Nuclear Information System (INIS)

    Devillers, Christian; Hasselin, Gilbert

    1964-10-01

    The authors report the study of the reflection of fast neutrons on a plane plate having a finite and varying thickness and an infinite width. Calculations are performed by using a Monte-Carlo method which allows the number, the energy, the direction, the emergence point of neutrons reflected on a plate, to be computed with respect to the energy and direction of incident neutrons. The author present how paths, elastic and inelastic shocks, direction after shock are calculated. Different information are calculated: the numbers of elastic shocks, inelastic shocks and transmitted neutrons, the number, energy and dose albedo, the spectrum and angular distribution, the distribution of neutron in terms of energy and direction

  18. Fast reactor cooled by supercritical light water

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwatari, Yuki; Mukouhara, Tami; Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Lab., Tokai, Ibaraki (Japan)

    2001-09-01

    This report introduces the result of a feasibility study of a fast reactor cooled by supercritical light water (SCFR) with once-through cooling system. It is characterized by (1) no need of steam separator, recirculation system, or steam generator, (2) 1/7 of core flow rate compared with BWR or PWR, (3) high temperature and high pressure permits small turbine and high efficiency exceeding 44%, (4) structure and operation of major components are already experienced by LWRs or thermal power plants. Modification such as reducing blanket fuels and increasing seed fuels are made to achieve highly economic utilization of Pu and high power (2 GWe). The following restrictions were satisfied. (1) Maximum linear heat rate 39 kW/m, (2) Maximum surface temperature of Inconel cladding 620degC, (3) Negative void reactivity coefficient, (4) Fast neutron irradiation rate at the inner surface of pressure vessel less than 2.0x10{sup 19} n/cm{sup 2}. Thus the high power density of 167 MW/m{sup 3} including blanket is thought to contributes economy. The high conversion is attained to be 0.99 Pu fission residual rate by the outer radius of fuel rod of 0.88 mm. The breeding of 1.034 by Pu fission residual rate can be achieved by using briquette (tube-in-shell) type fuel structure. (K. Tsuchihashi)

  19. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H. (Argonne National Lab., IL (United States)); Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France)); Bagley, K.Q. (AEA Reactor Services, Risley (United Kingdom)); Crittenden, G.C. (AEA Reactor Services, Dounreay (United Kingdom)); Dievoet, J. van (Belgonucleaire, Brussels (Belgium))

    1993-09-01

    The first fast breeder eactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s. (orig.)

  20. Radiation therapy with fast neutrons: A review

    International Nuclear Information System (INIS)

    Jones, D.T.L.; Wambersie, A.

    2007-01-01

    Because of their biological effects fast neutrons are most effective in treating large, slow-growing tumours which are resistant to conventional X-radiation. Patients are treated typically 3-4 times per week for 4-5 weeks (sometimes in combination with X-radiation) for a variety of conditions such as carcinomas of the head and neck, salivary gland, paranasal sinus and breast; soft tissue, bone and uterine sarcomas and malignant melanomas. It is estimated that about 27,000 patients have undergone fast neutron therapy to date