WorldWideScience

Sample records for reactor energy source

  1. Encapsulated nuclear heat source reactors for energy security

    International Nuclear Information System (INIS)

    Greenspan, E.; Susplugas, A.; Hong, S.G.; Monti, L.; Sumini, M.; Okawa, T.

    2006-01-01

    A spectrum of Encapsulated Nuclear Heat Source (ENHS) reactors have been conceptually designed over the last few years; they span a power range from 10 MWe to -200 MWe and consider a number of coolants and fuel types. Common features of all these designs include very long life cores - exceeding 20 effective full power years; nearly zero burnup reactivity swing; natural circulation; superb safety; autonomous load following capability; simplicity of operation and maintenance. ENHS reactors could be of particular interest for providing electricity, thermal energy and, possibly, desalinated water to communities that are not connected to a central electricity grid such as to many pacific islands and to remote communities in the mainland of different countries. ENHS reactors provide energy security by virtue of a couple of features: (1) Once an ENHS reactor is commissioned, the community has assured clean energy supply for at least 20 years without needing fuel supply. (2) The energy value of the fuel loaded (in the factory) in the ENHS module is preserved; what is needed for generating energy for additional 20+ years is to remove the fission products, add depleted uranium for makeup fuel, refabricate fuel rods and load into a new module. This fuel recycling is envisioned done by either the supplier country or by a regional or international fuel cycle centre. As the ENHS module is replaced at its entirety at the end of the core life - that is brought about by radiation damage, the ENHS plant life is likely to last for over 100 years. The above features also offer exceptional stability in the price of energy generated by the ENHS reactor. The reference ENHS design will be described followed by a brief description of the design options developed and a summary of their performance characteristics

  2. Advanced energy system with nuclear reactors as an energy source

    International Nuclear Information System (INIS)

    Kato, Y.; Ishizuka, T.; Nikitin, K.

    2007-01-01

    About two-thirds of the energy generated in a light water reactors (LWRs) core is currently dissipated to the ocean as lukewarm water through steam condensers; more than half the energy in helium (He) gas turbine high temperature gas cooled reactors (HTGRs) is dissipated through pre-coolers and inter coolers. The new waste heat recovery system efficiently recovers the waste heat from reactors using boiling heat transfer of 20 degree C liquid carbon dioxide (CO 2 ) instead of conventional sea water as a cooling medium. The CO 2 gasified in the cooling process is used directly as a working fluid of mechanical heat pumps for hot water supply. In LWRs, the net energy utilization fraction to total heat generation in the core exceeds 85% through the waste heat recovery. This cogeneration system is about 2.5 times more effective than current systems in reducing global warming gas emissions and long half- life radioactive material accumulation. It also increases uranium resource utilization relative to current LWRs. In the HTGR cogeneration system, the waste heat is also useful for cold water supply by introducing an adsorption refrigeration system since the gas temperature is still as high as about 190 degree Celsius. When the heat recovery system is incorporated into the HTGR, the electricity to heat-supply ratio of the HTGR cogeneration system accommodates the demand ratio in cities well; it would be suited to dispersed energy sources. The heat supply cost is expected to be lower than those of conventional fossil-fired boilers beyond operation of about four years. The waste heat recovered is able to be utilized not only for local heat supply but also for methane and methanol production from waste products of cities and farms through high-temperature fermentation, e.g., garbage, waste wood and used paper that are produced in cities, along with excreta produced through farming. The methane and methanol can be used to generate hydrogen for fuel cells. The new waste heat

  3. Solar energy as an alternate energy source to mixed oxide fuels in light-water cooled reactors

    International Nuclear Information System (INIS)

    Bertini, H.W.

    1977-01-01

    Supplemental information pertaining to the generic environmental impact statement on the Pu recycling process for mixed oxide light-water cooled reactors (GESMO) was requested from several sources. In particular, the role of alternate sources of energy was to be explored and the implications of these alternate sources to the question of Pu recycle in LWRs were to be investigated. In this vein, solar energy as an alternate source is the main subject of this report, along with other information related to solar energy. The general conclusion is that solar energy should have little effect on the decisions concerning GESMO

  4. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    The feasibility of fusion devices operating in the semi-catalyzed deuterium (SCD) mode and of high energy proton accelerators to provide the neutron sources for driving subcritical breeding light water power reactors is assessed. The assessment is done by studying the energy balance of the resulting source driven light water reactors (SDLWR) and comparing it with the energy balance of the reference light water hybrid reactors (LWHR) driven by a D-T neutron source (DT-LWHR). The conditions the non-DT neutron sources should satisfy in order to make the SDLWR viable power reactors are identified. It is found that in order for a SCD-LWHR to have the same overall efficiency as a DT-LWHR, the fusion energy gain of the SCD device should be at least one half that the DT device. The efficienct of ADLWRs using uranium targets is comparable with that of DT-LWHRs having a fusion energy gain of unity. Advantages and disadvantages of the DT-LWHR, SCD-LWHR and ADLWR are discussed. (aurthor)

  5. Conventional and unconventional energy sources for mankind

    International Nuclear Information System (INIS)

    Sethna, H.N.

    1981-01-01

    Plenty of industrial nations of the world is founded on the fact that only 1% of their energy requirement is met by muscle power, both of human and animal origin, while 99% comes mostly from fossil fuels. However, fossil fuels are not an eternal source and hence to conserve it, other sources must also be used. Availability of energy sources such as coal, biogas, solar energy, wind, tidal energy is examined and their draw-backs are pointed out. Another energy source i.e. nuclear energy can however substantially contribute to the energy scene. Fission reactors can contribute nearly 25% of the world energy requirements within two decades. Breeder reactors, if successfully developed, can meet the energy requirements of the world for few thousands of years. Fusion reactors, if successful for commercial exploitation, will form almost an inexhaustible source of energy. An added advantage is that they produce much less radioactive waste than that produced by fission reactors. (author)

  6. Compact reactor/ORC power source

    International Nuclear Information System (INIS)

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine Cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for component development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500 0 C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370 0 C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analysis have aided in the power source design. The analyses have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high. 10 refs

  7. Reactor units for power supply to the Russian Arctic regions: Priority assessment of nuclear energy sources

    Directory of Open Access Journals (Sweden)

    Mel'nikov N. N.

    2017-03-01

    Full Text Available Under conditions of competitiveness of small nuclear power plants (SNPP and feasibility of their use to supply power to remote and inaccessible regions the competition occurs between nuclear energy sources, which is caused by a wide range of proposals for solving the problem of power supply to different consumers in the decentralized area of the Russian Arctic power complex. The paper suggests a methodological approach for expert assessment of the priority of small power reactor units based on the application of the point system. The priority types of the reactor units have been determined based on evaluation of the unit's conformity to the following criteria: the level of referentiality and readiness degree of reactor units to implementation; duration of the fuel cycle, which largely determines an autonomy level of the nuclear energy source; the possibility of creating a modular block structure of SNPP; the maximum weight of a transported single equipment for the reactor unit; service life of the main equipment. Within the proposed methodological approach the authors have performed a preliminary ranking of the reactor units according to various criteria, which allows quantitatively determining relative difference and priority of the small nuclear power plants projects aimed at energy supply to the Russian Arctic. To assess the sensitivity of the ranking results to the parameters of the point system the authors have observed the five-point and ten-point scales under variations of importance (weights of different criteria. The paper presents the results of preliminary ranking, which have allowed distinguishing the following types of the reactor units in order of their priority: ABV-6E (ABV-6M, "Uniterm" and SVBR-10 in the energy range up to 20 MW; RITM-200 (RITM-200M, KLT-40S and SVBR-100 in the energy range above 20 MW.

  8. A compact reactor/ORC power source

    International Nuclear Information System (INIS)

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for componenet development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500 0 C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370 0 C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analyses combined with a finite element thermal analysis have aided in the power source design. The analysis have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high

  9. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misulovin, A.; Gilai, D.; Levin, P.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    Improvements in the performance of fission power reactors made possible by designing them subcritical driven by D-T neutron sources are investigated. Light-water thermal systems are found to be most promising, neutronically and energetically, for the source driven mode of operation. The range of performance characteristics expected from breeding Light Water Hybrid Reactors (LWHR) is defined. Several promising types of LWHR blankets are identified. Options opened for the nuclear energy strategy by four types of the LWHRs are examined, and the potential contribution of these LWHRs to the nuclear energy economy are discussed. The power systems based on these LWHRs are found to enable a high utilization of the energy content of the uranium resources in all forms available - including depleted uranium and spent fuel from LWRs, while being free from the need for uranium enrichment and plutonium separation capabilities. (author)

  10. Integral Fast Reactor: A future source of nuclear energy

    International Nuclear Information System (INIS)

    Southon, R.

    1993-01-01

    Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality

  11. Commissioning of the Opal reactor cold neutron source

    International Nuclear Information System (INIS)

    Thiering, R.; Lu, W.; Ullah, R.

    2006-01-01

    Full text: At OPAL, Australia's first cold neutron facility will form an essential part of the reactor's research programs. Fast neutrons, born in the core of a reactor, interact with a cryogenic material, in this case liquid deuterium, to give them very low energies ( 1 0 m eV). A cold neutron flux of 1.4 1 0 E 1 4 n /cm 2/ s is expected, with a peak in the energy spectrum at 4.2m eV. The cold neutron source reached cryogenic conditions for the first time in late 2005. The cold neutron source operates with a sub-cooled liquid Deuterium moderator at 24 K. The moderator chamber, which contains the deuterium, has been constructed from AlMg 5. The thermosiphon and moderator chamber are cooled by helium gas, in a natural convection thermosiphon loop. The helium refrigeration system utilises the Brayton cycle, and is fully insulated within a high vacuum environment. Despite the proximity of the cold neutron source to the reactor core, it has been considered as effectively separate to the reactor system, due to the design of its special vacuum containment vessel. As OPAL is a multipurpose research reactor, used for beam research as well as radiopharmaceutical production and industrial irradiations, the cold neutron source has been designed with a stand-by mode, to maximise production. The stand-by mode is a warm operating mode using only gaseous deuterium at ambient temperatures (∼ 3 00 K ), allowing for continued reactor operations whilst parts of the cold source are unavailable or in maintenance. This is the first time such a stand-by feature has been incorporated into a cold source facility

  12. Neutron energy spectrum flux profile of Ghana's miniature neutron source reactor core

    International Nuclear Information System (INIS)

    Sogbadji, R.B.M.; Abrefah, R.G.; Ampomah-Amoako, E.; Agbemava, S.E.; Nyarko, B.J.B.

    2011-01-01

    Highlights: → The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was studied. → Using 20,484 energy grids, the thermal, slowing down and fast neutron energy regions were studied. - Abstract: The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was understudied using the Monte Carlo method. To create small energy groups, 20,484 energy grids were used for the three neutron energy regions: thermal, slowing down and fast. The moderator, the inner irradiation channels, the annulus beryllium reflector and the outer irradiation channels were the region monitored. The thermal neutrons recorded their highest flux in the inner irradiation channel with a peak flux of (1.2068 ± 0.0008) x 10 12 n/cm 2 s, followed by the outer irradiation channel with a peak flux of (7.9166 ± 0.0055) x 10 11 n/cm 2 s. The beryllium reflector recorded the lowest flux in the thermal region with a peak flux of (2.3288 ± 0.0004) x 10 11 n/cm 2 s. The peak values of the thermal energy range occurred in the energy range (1.8939-3.7880) x 10 -08 MeV. The inner channel again recorded the highest flux of (1.8745 ± 0.0306) x 10 09 n/cm 2 s at the lower energy end of the slowing down region between 8.2491 x 10 -01 MeV and 8.2680 x 10 -01 MeV, but was over taken by the moderator as the neutron energies increased to 2.0465 MeV. The outer irradiation channel recorded the lowest flux in this region. In the fast region, the core, where the moderator is found, the highest flux was recorded as expected, at a peak flux of (2.9110 ± 0.0198) x 10 08 n/cm 2 s at 6.961 MeV. The inner channel recorded the second highest while the outer channel and annulus beryllium recorded very low flux in this region. The flux values in this region reduce asymptotically to 20 MeV.

  13. Reactor cold neutron source facility, the first in Japan

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Maeda, Yutaka; Kawai, Takeshi; Tashiro, Tameyoshi; Sakakibara, Shoji; Katada, Minoru.

    1986-01-01

    In the Research Reactor Institute, Kyoto University, the first cold neutron source facility for the reactor in Japan was installed, and various tests are carried out outside the reactor. Nippon Sanso K.K. had manufactured it. After the prescribed tests outside the reactor, this facility will be installed soon in the reactor, and its outline is described on this occasion. Cold neutrons are those having very small energy by being cooled to about-250 deg C. Since the wavelength of the material waves of cold neutrons is long, and their energy is small, they are very advantageous as an experimental means for clarifying the structure of living body molecules and polymers, the atom configuration in alloys, and atomic and molecular movements by neutron scattering and neutron diffraction. The basic principle of the cold neutron source facility is to irradiate thermal neutrons on a cold moderator kept around 20 K, and to moderate and cool the neutrons by nuclear scattering to convert to cold neutrons. The preparatory research on cold neutrons and hydrogen liquefaction, the basic design to put the cold neutron source facility in the graphite moderator facility, the safety countermeasures, the manufacture and quality control, the operation outside the reactor and the performance are reported. The cold neutron source facility comprises a cold moderator tank and other main parts, a deuterium gas tank, a helium refrigerator and instrumentation. (Kako, I.)

  14. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  15. Source driven breeding fission power reactors and the nuclear energy strategy

    International Nuclear Information System (INIS)

    Greenspan, E.

    The nuclear energy economy is facing severe difficulties associated with low utilization of uranium resources, safety, non-proliferation and environmental issues. Energy policy makers face the dilemma: commercialize LMFBRs immediately with the risk of negative economical, proliferation or other consequences, or continue with R and D programs that will provide the information needed for sounder decisions, but now taking the risk of running out of economically exploitable uranium ore resources. The development of hybrid reactors can provide an assurance against the latter risk and offers many interesting new options for the nuclear energy strategy. Being based on the technology of LWRs and HWRs, Light Water Hybrid Reactors (LWHR) provide a most natural link between the fission reactor technology of the present and the fusion power technology of the future. The investment in their development in excess of that required for the development of fusion power reactors is expected to be relatively small, thus making the development of LWHRs potentially a high benefit-to-cost ratio program. It is recommended that the fission and fusion communities will cooperate in hybrids R and D programs aimed at assessing the technological and economical viability of hybrid reactors as reliably and soon as possible. (author)

  16. Sources of gamma radiation in a reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Matts

    1959-05-15

    In a thermal reactor the gamma ray sources of importance for shielding calculations and related aspects are 1) fission, 2) decay of fission products, 3) capture processes in fuel, poison and other materials, 4) inelastic scattering in the fuel and 5) decay of capture products. The energy release and the gamma ray spectra of these sources have been compiled or estimated from the latest information available, and the results are presented in a general way to permit application to any thermal reactor, fueled with a mixture of {sup 235}U and {sup 238}U. As an example the total spectrum and the spectrum of radiation escaping from a fuel rod in the Swedish R3-reactor are presented.

  17. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  18. Potential of small nuclear reactors for future clean and safe energy sources

    International Nuclear Information System (INIS)

    Sekimoto, H.

    1992-01-01

    To cope with the various kinds of energy demands expected in the 21st century, it is necessary to explore the potential of small nuclear reactors and to find a way of promoting their introduction to society. The main goal of current research activities is 'the constitution of the self-consistent nuclear energy system'. These activities can be understood by realizing that the nuclear community is facing a turning point for its survival in the 21st century. Self-consistency can be manifested by investigating and developing the potential advantages of the nuclear fission reaction and lessening the potential disadvantages. The contributions in this volume discuss concepts of small reactors, applications of small reactors, and consistency with conventional energy supply systems

  19. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  20. Applications of plasma core reactors to terrestrial energy systems

    International Nuclear Information System (INIS)

    Lantham, T.S.; Biancardi, F.R.; Rodgers, R.J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrail applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times

  1. Four energy group neutron flux distribution in the Syrian miniature neutron source reactor using the WIMSD4 and CITATION code

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2009-01-01

    A 3-D (R, θ , Z) neutronic model for the Miniature Neutron Source Reactor (MNSR) was developed earlier to conduct the reactor neutronic analysis. The group constants for all the reactor components were generated using the WIMSD4 code. The reactor excess reactivity and the four group neutron flux distributions were calculated using the CITATION code. This model is used in this paper to calculate the point wise four energy group neutron flux distributions in the MNSR versus the radius, angle and reactor axial directions. Good agreement is noticed between the measured and the calculated thermal neutron flux in the inner and the outer irradiation site with relative difference less than 7% and 5% respectively. (author)

  2. The encapsulated nuclear heat source reactor for proliferation-resistant nuclear energy

    International Nuclear Information System (INIS)

    Brown, N.W.; Hossain, Q.; Carelli, M.D.; Conway, L.; Dzodzo, M.; Greenspan, E.; Saphier, D.

    2001-01-01

    The encapsulated nuclear heat source (ENHS) is a modular reactor that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor concept. It is a fast neutron spectrum reactor cooled by Pb-Bi using natural circulation. It is designed for passive load following, for high level of passive safety, and for 15 years without refueling. One of the unique features of the ENHS is that the fission-generated heat is transferred from the primary coolant to the secondary coolant across the reactor vessel wall by conduction-providing for an essentially sealed module that is easy to install and replace. Because the fuel is encapsulated within a heavy steel container throughout its life it provides a unique improvement to the proliferation resistance of the nuclear fuel cycle. This paper presents the innovative technology of the ENHS. (author)

  3. The fast reactor and energy supply

    International Nuclear Information System (INIS)

    1979-01-01

    The progress made with fast reactor development in many countries is summarised showing that the aim is to provide to the nation concerned an ability to instal fast reactor power stations at the end of this century or early in the next one. Accepting the importance of fast reactors as a potential independent source of energy, problems concerning economics, industrial capability, technical factors, public acceptibility and in particular plutonium management, are discussed. It is concluded that although fast reactors have reached a comparatively advanced stage of development, a number of factors make it likely that their introduction for electricity generation will be a gradual process. Nevertheless it is necessary to complete demonstration and development phases in good time. (U.K.)

  4. Advanced CANDU reactor: an optimized energy source of oil sands application

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Bock, D.; Miller, A.; Kuran, S.; Keil, H.; Fiorino, L.; Duffey, R.; Dunbar, R.B.

    2003-01-01

    Atomic Energy of Canada Limited (AECL) is developing the ACR-700 TM (Advanced CANDU Reactor-700 TM ) to meet customer needs for reduced capital cost, shorter construction schedule, high capacity factor while retaining the benefits of the CANDU experience base. The ACR-700 is based on the concept of CANDU horizontal fuel channels surrounded by heavy water moderator. The major innovation of this design is the use of slightly enriched uranium fuel in a CANFLEX bundle that is cooled by light water. This ensures: higher main steam pressures and temperatures providing higher thermal efficiency; a compact and simpler reactor design with reduced capital costs and shorter construction schedules; and reduced heavy water inventory compared to existing CANDU reactors. ACR-700 is not only a technically advanced and cost effective solution for electricity generating utilities, but also a low-cost, long-life and sustainable steam source for increasing Alberta's Oil Sand production rates. Currently practiced commercial surface mining and extraction of Oil Sand resources has been well established over the last three decades. But a majority of the available resources are somewhat deeper underground require in-situ extraction. Economic removal of such underground resources is now possible through the Steam Assisted Gravity Drainage (SAGD) process developed and proto-type tested in-site. SAGD requires the injection of large quantities of high-pressure steam into horizontal wells to form reduced viscosity bitumen and condensate mixture that is then collected at the surface. This paper describes joint AECL studies with CERI (Canadian Energy Research Institute) for the ACR, supplying both electricity and medium-pressure steam to an oil sands facility. The extensive oil sands deposits in northern Alberta are a very large energy resource. Currently, 30% of Canda's oil production is from the oil sands and this is expected to expand greatly over the coming decade. The bitumen deposits in the

  5. Fusion reactors as a future energy source

    International Nuclear Information System (INIS)

    Seifritz, W.

    A detailed update of fusion research concepts is given. Discussions are given for the following areas: (1) the magnetic confinement principle, (2) UWMAK I: conceptual design for a fusion reactor, (3) the inertial confinement principle, (4) the laser fusion power plant, (5) electron-induced fusion, (6) the long-term development potential of fusion reactors, (7) the symbiosis between fusion and fission reactors, (8) fuel supply for fusion reactors, (9) safety and environmental impact, and (10) accidents, and (11) waste removal and storage

  6. Advanced Reactor Systems and Future Energy Market Needs

    International Nuclear Information System (INIS)

    Magwood, W.; Keppler, J.H.; Paillere, Henri; ); Gogan, K.; Ben Naceur, K.; Baritaud, M.; ); Shropshire, D.; ); Wilmshurst, N.; Janssens, A.; Janes, J.; Urdal, H.; Finan, A.; Cubbage, A.; Stoltz, M.; Toni, J. de; Wasylyk, A.; Ivens, R.; Paramonov, D.; Franceschini, F.; Mundy, Th.; Kuran, S.; Edwards, L.; Kamide, H.; Hwang, I.; Hittner, D.; ); Levesque, C.; LeBlanc, D.; Redmond, E.; Rayment, F.; Faudon, V.; Finan, A.; Gauche, F.

    2017-04-01

    It is clear that future nuclear systems will operate in an environment that will be very different from the electricity systems that accompanied the fast deployment of nuclear power plants in the 1970's and 1980's. As countries fulfil their commitment to de-carbonise their energy systems, low-carbon sources of electricity and in particular variable renewables, will take large shares of the overall generation capacities. This is challenging since in most cases, the timescale for nuclear technology development is far greater than the speed at which markets and policy/regulation frameworks can change. Nuclear energy, which in OECD countries is still the largest source of low-carbon electricity, has a major role to play as a low-carbon dispatchable technology. In its 2 degree scenarios, the International Energy Agency (IEA) projects that nuclear capacity globally could reach over 900 GW by 2050, with a share of electricity generation rising from less than 11% today to about 16%. Nuclear energy could also play a role in the decarbonization of the heat sector, by targeting non-electric applications. The workshop discussed how energy systems are evolving towards low-carbon systems, what the future of energy market needs are, the changing regulatory framework from both the point of view of safety requirements and environmental constraints, and how reactor developers are taking these into account in their designs. In terms of technology, the scope covered all advanced reactor systems under development today, including evolutionary light water reactors (LWRs), small modular reactors (SMRs) - whether LWR technology-based or not, and Generation IV (Gen IV) systems. This document brings together the available presentations (slides) of the workshop

  7. Neutron source for a reactor

    International Nuclear Information System (INIS)

    Kobayashi, Hiromasa.

    1975-01-01

    Object: To easily increase a start-up power of a reactor without irradiation in other reactors. Structure: A neutron source comprises Cf 252 , a natural antimony rod, a layer of beryllium, and a vessel of neutron source. On upper and lower portion of Cf 252 are arranged natural antimony rods, which are surrounded by the Be layer, the entirety being charged into the vessel. The Cf 252 may emit neutron, has a half life more than a period of operating cycle of the reactor and is less deteriorated even irradiated by radioactive rays while being left within the reactor. The natural antimony rod is radioactivated by neutron from Cf 252 and neutron as reactor power increases to emit γ rays. The Be absorbs γ rays to emit the neutron. The antimony rod is irradiated within the reactor. Further, since the Cf 252 is small in neutron absorption cross section, it is hard to be deteriorated even while being inserted within the reactor. (Kamimura, M.)

  8. Productivity of a nuclear chemical reactor with gamma radioisotopic sources

    International Nuclear Information System (INIS)

    Anguis T, C.

    1975-01-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  9. Optimization study of ultracold neutron sources at TRIGA reactors using MCNP

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.; Rogov, A.D.

    1997-01-01

    Monte Carlo simulation for the optimization of ultracold and very cold neutron sources for TRIGA reactors is performed. The calculations of thermal and cold neutron fluxes from the TRIGA reactor for different positions and configurations of a very cold solid methane moderator were performed with using the MCNP program. The production of neutrons in the ultracold and very cold energy range was calculated for the most promising final moderators (converters): very cold solid deuterium and heavy methane. The radiation energy deposition was calculated for the optimized solid methane-heavy methane cold neutron moderator

  10. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  11. From reactors to long pulse sources

    International Nuclear Information System (INIS)

    Mezei, F.

    1995-01-01

    We will show, that by using an adapted instrumentation concept, the performance of a continuous source can be emulated by one switch on in long pulses for only about 10% of the total time. This 10 fold gain in neutron economy opens up the way for building reactor like sources with an order of magnitude higher flux than the present technological limits. Linac accelerator driven spallation lends itself favorably for the realization of this kind of long pulse sources, which will be complementary to short pulse spallation sources, the same way continuous reactor sources are

  12. Modular High Temperature Gas-Cooled Reactor heat source for coal conversion

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Lewis, A.C.

    1992-09-01

    In the industrial nations, transportable fuels in the form of natural gas and petroleum derivatives constitute a primary energy source nearly equivalent to that consumed for generating electric power. Nations with large coal deposits have the option of coal conversion to meet their transportable fuel demands. But these processes themselves consume huge amounts of energy and produce undesirable combustion by-products. Therefore, this represents a major opportunity to apply nuclear energy for both the environmental and energy conservation reasons. Because the most desirable coal conversion processes take place at 800 degree C or higher, only the High Temperature Gas-Cooled Reactors (HTGRs) have the potential to be adapted to coal conversion processes. This report provides a discussion of this utilization of HTGR reactors

  13. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  14. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  15. Efficiency factor of a chemical nuclear reactor with gamma sources

    International Nuclear Information System (INIS)

    Anguis T, C.

    1975-01-01

    A chemonuclear reactor is simulated in order to calculate the efficiency factor of molecular species in chemical reactions induced by gamma radiation, with the purpose to obtain information for its design and consider the electromagnetic energy as a possible solution to the present problem of energy. The research is based on a mathematical model of succesive Compton processes applied to spherical and cylindrical geometry and corroborated through the absorbed dose and the experimental date of the increase factor, for the radioisotopic sources Co-60 and Cs-137 relating the quantity of energy deposited into various cylinders with the G value, the relation radius/height of the reactor is optimized according to the molecular production. This is illustrated with the radiolysis of a solution of CH 3 OH/H 2 O which forms H 2 and with the obtainment of C 2 H 5 Br that represents and industrial process induced radioactively. The results show a greater energy deposition with Cs-137 but a larger production of H 2 /hr with Co-60, and besides we can find high production values of C 2 H 5 Br. The cylinder with more advantages is that whose relation R/H is of 0.5. It can be concluded that the final selection of the reactor should be made after a more intense study of the used isotope and the source activity. The efficiency factor of H 2 can be increased selecting the appropriate type and concentration of solute of the irradiated aqueous solutions

  16. Preliminary design concepts for the advanced neutron source reactor systems

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1988-01-01

    This paper describes the initial design work to develop the reactor systems hardware concepts for the advanced neutron source (ANS) reactor. This project has not yet entered the conceptual design phase; thus, design efforts are quite preliminary. This paper presents the collective work of members of the Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Engineering Division, and other participating organizations. The primary purpose of this effort is to show that the ANS reactor concept is realistic from a hardware standpoint and to show that project objectives can be met. It also serves to generate physical models for use in neutronic and thermal-hydraulic core design efforts and defines the constraints and objectives for the design. Finally, this effort will develop the criteria for use in the conceptual design of the reactor

  17. A small-scale modular reactor for electric source for remote places

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Use of a small-scale modular reactor (SMR) as an electric source for remote places is one of scenarios for actual use of SMR parallel to alternative source of present nuclear power stations and co-generation source at urban suburbs, there is not only an actual experience to construct and operate for power source for military use in U.S.A. on 1950s to 1960s, but also four nuclear reactors (LWGR, 12 MW) in Vilyvino Nuclear Power Station in far northern district in Russia are under operation. Recently, Department of Energy in U.S.A. prepared the 'Report to Congress on Small Modular Nuclear Reactors' evaluating on feasibility of SMR as a power source for remote places according to requirement of the Congress. This report evaluated a feasibility study on nine SMRs in the world with 10 to 50 MW of output as electric source for remote places on economical efficiency and so on, together with analysis of their design concepts, to conclude that 'they could perform beginning of operations on 2000s because of no large technical problems and keeping a level capable of competing with power generation cost at remote place on its present economical efficiency'. Here was introduced on outlines of this report. (G.K.)

  18. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  19. The prospects for using nuclear reactors to provide energy to petrochemical factories

    Energy Technology Data Exchange (ETDEWEB)

    Feygin, Ye.A.; Barashkov, R.Ya.; Chernovisov, G.N.; Deyneko, P.S.; Lemayev, N.V.; Raud, E.A.; Romanova, Ye.G.; Vernov, P.A.; Zlotnikov, L.Ye.

    1984-01-01

    The engineering level of the development of atomic rocket engineering has made it possible to consider various types of nuclear reactors as possible electricity sources to support petrochemical processes at petrochemical plants (using vapor, heat, electricity and radiation energies). The use of energy from nuclear reactors in combination with the elimination of liquid and gas fuels used in the furnaces will make it possible to improve the ecological situation in the vicinity of the plant, to accelerate petroleum processing and oil processing processes and to improve the cost effectiveness of nuclear engineering complexes to a degree related to the total capacity of the industrial complexes and the degree of comprehensive utilization of energy from the nuclear reactors.

  20. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    International Nuclear Information System (INIS)

    Alameri, Saeed A.; King, Jeffrey C.

    2013-01-01

    Nuclear power plants operate most economically at a constant power level, providing base load electric power. In an energy grid containing a high fraction of renewable power sources, nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling a nuclear reactor to a large thermal energy storage block will allow the reactor to better respond to variable power demands. In the system described in this paper, a Prismatic core Advanced High Temperature Reactor supplies constant power to a lithium chloride molten salt thermal energy storage block that provides thermal power as needed to a closed Brayton cycle energy conversion system. During normal operation, the thermal energy storage block stores thermal energy during the night for use in the times of peak demand during the day. In this case, the nuclear reactor stays at a constant thermal power level. After a loss of forced circulation, the reactor reaches a shut down state in less than half an hour and the average fuel, graphite and coolant temperatures remain well within the design limits over the duration of the transient, demonstrating the inherent safety of the coupled system. (author)

  1. Productivity of a nuclear chemical reactor with gamma radioisotopic sources; Rendimiento de un reactor quimico-nuclear con fuentes radioisotopicas gamma

    Energy Technology Data Exchange (ETDEWEB)

    Anguis T, C

    1975-07-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  2. Productivity of a nuclear chemical reactor with gamma radioisotopic sources; Rendimiento de un reactor quimico-nuclear con fuentes radioisotopicas gamma

    Energy Technology Data Exchange (ETDEWEB)

    Anguis T, C

    1975-07-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  3. Zero energy reactor 'RB'

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D; Takac, S; Markovic, H; Raisic, N; Zdravkovic, Z; Radanovic, Lj [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)

    1959-03-15

    In 1958 the zero energy reactor RB was built with the purpose of enabling critical experiments with various reactor systems to be carried out. The first core assembly built in this reactor consists of heavy water as moderator and natural uranium metal as fuel. In order to be able to obtain very accurate results when measuring the main characteristics of the assembly the reactor was built as a completely bare system. (author)

  4. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2009-01-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink(reg s ign), an extension of MATLAB(reg s ign), is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  5. Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, D.; Brunett, A.; Passerini, S.; Grelle, A.; Bucknor, M.

    2017-06-26

    Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. The mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.

  6. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  7. An ultracold neutron source at the NC State University PULSTAR reactor

    Science.gov (United States)

    Korobkina, E.; Wehring, B. W.; Hawari, A. I.; Young, A. R.; Huffman, P. R.; Golub, R.; Xu, Y.; Palmquist, G.

    2007-08-01

    Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D 2 converter will be implemented coupled to two moderators, D 2O at room temperature, to thermalize reactor neutrons, and solid CH 4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D 2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D 2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D 2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH 4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.

  8. Energy production and reactor efficiency

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Doubts have been raised in relation to the economic and energetic efficiency of nuclear reactors. Some economists are questioning whether, when all the capital and material inputs to fission technology are considered, nuclear reactors yield sufficiently large amounts of energy to show a nett gain of energy. (author)

  9. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The law aims to perform regulations on enterprises of refining, processing and reprocessing of nuclear source and fuel materials and on establishment and operation of reactors to realize the peaceful and deliberate utilization of atomic energy according to the principle of the atomic energy basic law. Regulations of use of internationally regulated substances are also envisaged to observe international agreements. Basic concepts and terms are defined, such as: atomic energy; nuclear fuel material; nuclear source material; reactor; refining; processing; reprocessing and internationally regulated substance. Any person besides the Power Reactor and Nuclear Fuel Material Developing Corporation who undertakes refining shall be designated by the Prime Minister and the Minister of International Trade and Industry. An application shall be filed to the ministers concerned, listing name and address of the person, name and location of the refining works, equipment and method of refining, etc. The permission of the Prime Minister is necessary for any person who engages in processing. An application shall be filed to the Prime Minister, listing name and address of the person, name and location of the processing works and equipment and method of processing, etc. Permission of the Prime Minister, the Minister of International Trade and Industry or the Minister of Transport is necessary for any person who sets up reactors. An application shall be filed to the minister concerned, listing name and address of the person, purpose of operation, style, thermal output of reactor and number of units, etc. (Okada, K.)

  10. Preparation and benchmarking of ANSL-V cross sections for advanced neutron source reactor studies

    International Nuclear Information System (INIS)

    Arwood, J.W.; Ford, W.E. III; Greene, N.M.; Petrie, L.M.; Primm, R.T. III; Waddell, M.W.; Webster, C.C.; Westfall, R.M.; Wright, R.Q.

    1987-01-01

    Research and development for the advanced neutron source (ANS) reactor is being funded by the US Dept. of Energy. This reactor is to provide the world's most intense steady-state source of low-energy neutrons for a national experimental user facility. Pseudo-problem-independent, multigroup cross-section libraries were generated to support ANS design work. The libraries, designated ANSL-V, are data bases in AMPX master format for subsequent generation of problem-dependent cross sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, and MORSE. Included in ANSL-V are 123-material P 3 neutron, 46-material P 0 or P 6 secondary gamma-ray production (SGRP), and 34-material P 6 gamma-ray interaction (GRI) libraries

  11. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  12. Localization of Vibrating Noise Sources in Nuclear Reactor Cores

    International Nuclear Information System (INIS)

    Hultqvist, Pontus

    2004-09-01

    In this thesis the possibility of locating vibrating noise sources in a nuclear reactor core from the neutron noise has been investigated using different localization methods. The influence of the vibrating noise source has been considered to be a small perturbation of the neutron flux inside the reactor. Linear perturbation theory has been used to construct the theoretical framework upon which the localization methods are based. Two different cases have been considered: one where a one-dimensional one-group model has been used and another where a two-dimensional two-energy group noise simulator has been used. In the first case only one localization method is able to determine the position with good accuracy. This localization method is based on finding roots of an equation and is sensitive to other perturbations of the neutron flux. It will therefore work better with the assistance of approximative methods that reconstruct the noise source to determine if the results are reliable or not. In the two-dimensional case the results are more promising. There are several different localization techniques that reproduce both the vibrating noise source position and the direction of vibration with enough precision. The approximate methods that reconstruct the noise source are substantially better and are able to support the root finding method in a more constructive way. By combining the methods, the results will be more reliable

  13. Aerosol behavior and light water reactor source terms

    International Nuclear Information System (INIS)

    Abbey, F.; Schikarski, W.O.

    1988-01-01

    The major developments in nuclear aerosol modeling following the accident to pressurized water reactor Unit 2 at Three Mile Island are briefly reviewed and the state of the art summarized. The importance and implications of these developments for severe accident source terms for light water reactors are then discussed in general terms. The treatment is not aimed at identifying specific source term values but is intended rather to illustrate trends, to assess the adequacy of the understanding of major aspects of aerosol behavior for source term prediction, and demonstrate in qualitative terms the effect of various aspects of reactor design. Areas where improved understanding of aerosol behavior might lead to further reductions in current source terms predictions are also considered

  14. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  15. Replacement energy, capacity, and reliability costs for permanent nuclear reactor shutdowns

    International Nuclear Information System (INIS)

    VanKuiken, J.C., Buehring, W.A.; Hamilton, S.; Kavicky, J.A.; Cavallo, J.D.; Veselka, T.D.; Willing, D.L.

    1993-10-01

    Average replacement power costs are estimated for potential permanent shutdowns of nuclear electricity-generating units. Replacement power costs are considered to include replacement energy, capacity, and reliability cost components. These estimates were developed to assist the US Nuclear Regulatory Commission in evaluating regulatory issues that potentially affect changes in serious reactor accident frequencies. Cost estimates were derived from long-term production-cost and capacity expansion simulations of pooled utility-system operations. Factors that affect replacement power cost, such as load growth, replacement sources of generation, and capital costs for replacement capacity, were treated in the analysis. Costs are presented for a representative reactor and for selected subcategories of reactors, based on estimates for 112 individual reactors

  16. Polyolephine waste recycling as source of power energy

    Directory of Open Access Journals (Sweden)

    Tisovski Štefan

    2008-01-01

    Full Text Available Polyolephine waste (polyetilene, polypropilene is the main source of environmental pollution. Depolymerization of waste in reactor under atmospheric pressure yields hydrocarbon mixture C1-C34. In turn, combustion of C1-C7 fraction provides reactor temperature regime. The plant is automated and energetically highly efficient. Small electric power is required for operating the plant. The waste originating from depolymerazation does not pollute the environment. Fraction C7-C34 not only serves for commercial purposes but also as a power energy provider within the waste deploymerization plant.

  17. A completely automatic operation type super-safe fast reactor, RAPID. Its application to dispersion source on lunar and earth surfaces

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Kawasaki, Akira; Iwamura, Takamichi

    2002-01-01

    At a viewpoint of flexible measures to future electric power demands, expectation onto a small-scale reactor for dispersion source is increasing gradually. This is thought to increase its importance not only for a source at proximity of its market in advanced nations but also for the one in developing nations. A study on development of the completely automatic operation type super-safe fast reactor, RAPID (refueling by all pins integrated design) has been carried out as a part of the nuclear energy basic research promoting system under three years project since 1999 by a trust of the Japan Atomic Energy Research Institute to a group of the Central Research Institute of Electric Power Industry (CRIEPI) and so on. As the reactor is a lithium cooled fast reactor with 200 Kw of electric output supposing to use at lunar surface, it can be applied to a super-small scale nuclear reactor on the earth, and has feasibility to become a new option of future nuclear power generation. On the other hand, CRIEPI has investigated on various types of fast reactors (RAPID series) for fast reactor for dispersion source on the earth. Here was introduced on such super-safe fast reactors at a center of RAPID-L. (G.K.)

  18. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  19. The generation IV nuclear reactor systems - Energy of future

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Jianu, Adrian

    2006-01-01

    Ten nations joined within the Generation IV International Forum (GIF), agreeing on a framework for international cooperation in research. Their goal is to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in an economically competitive way while addressing the issues of safety, proliferation, and other public perception concerns. The objective is for the Gen IV systems to be available for deployment by 2030. Using more than 100 nuclear experts from its 10 member nations, the GIF has developed a Gen IV Technology Roadmap to guide the research and development of the world's most advanced, efficient and safe nuclear power systems. The Gen IV Technology Roadmap calls for extensive research and development of six different potential future reactor systems. These include water-cooled, gas-cooled, liquid metal-cooled and nonclassical systems. One or more of these reactor systems will provide the best combination of safety, reliability, efficiency and proliferation resistance at a competitive cost. The main goals for the Gen IV Nuclear Energy Systems are: - Provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel use for worldwide energy production; - Minimize and manage their nuclear waste and noticeably reduce the long-term stewardship burden in the future, improving the protection of public health and the environment; - Increase the assurance that these reactors are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased protection against acts of terrorism; - Have a clear life-cycle cost advantage over other energy sources; - Have a level of financial risk comparable to other energy projects; - Excel in safety and reliability; - Have a low likelihood and degree of reactor core damage. (authors)

  20. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.

    1994-01-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  1. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  2. Innovative energy production in fusion reactors

    Science.gov (United States)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are: (1) traveling wave direct energy conversion of 14.7 MeV protons; (2) cusp type direct energy conversion of charged particles; (3) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas; and (4) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising.

  3. Innovative energy production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author).

  4. Energy Multiplier Module (EM{sup 2}) - advanced small modular reactor for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, T.; Schleicher, R.; Choi, H.; Rawls, J., E-mail: timothy.bertch@ga.com [General Atomics, San Diego, California (United States)

    2013-07-01

    In order to provide cost effective nuclear energy in other than large reactor, large grid applications, fission technology needs to make further advances. 'Convert and burn' fast reactors offer long life cores, improved fuel utilization, reduced waste and other benefits while achieving cost effective energy production in a smaller reactor. General Atomics' Energy Multiplier Module (EM{sup 2}), a helium-cooled compact fast reactor that augments its fissile fuel load with either depleted uranium (DU) or used nuclear fuel (UNF). The convert and burn in-situ provides 250 MWe with a 30 year core life. High temperature provides a simple, high efficiency direct cycle gas turbine which along with modular construction, fewer systems, road shipment and minimum on site construction support cost effectiveness. Additional advantages in fuel cycle, non-proliferation and siting flexibility and its ability to meet all safety requirements make for an attractive power source, especially in remote and small grid regions. (author)

  5. Production of energy in a high temperature reactor

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The cooling gas having left the reactor core is fed to a generator for direct production of current from the kinetic energy. Afterwards the gas is fed to a heat exchanger for cooling, then compressed and refed to the reactor core. The method further comprises that one part of the energy of the fission material is directly converted to electric energy in the reactor core, whereas the other part of the energy of the fission material is impressed upon the cooling gas. According to the invention the cooling gas when entering the reactor is first fed to that part of the reactor core which serves as a thermoionic or thermoelectric transducer. Afterwards the cooling gas is fed to the remaining part of the reactor gas. (P.K.)

  6. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  7. Investigating The Neutron Flux Distribution Of The Miniature Neutron Source Reactor MNSR Type

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Do Quang Binh

    2011-01-01

    Neutron flux distribution is the important characteristic of nuclear reactor. In this article, four energy group neutron flux distributions of the miniature neutron source reactor MNSR type versus radial and axial directions are investigated in case the control rod is fully withdrawn. In addition, the effect of control rod positions on the thermal neutron flux distribution is also studied. The group constants for all reactor components are generated by the WIMSD code, and the neutron flux distributions are calculated by the CITATION code. The results show that the control rod positions only affect in the planning area for distribution in the region around the control rod. (author)

  8. Very high flux steady state reactor and accelerator based sources

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Simos, N.; Shapiro, S.; Hastings, J.

    2004-01-01

    With the number of steady state neutron sources in the US declining (including the demise of the Bnl HFBR) the remaining intense sources are now in Europe (i.e. reactors - ILL and FMR, accelerator - PSI). The intensity of the undisturbed thermal flux for sources currently in operation ranges from 10 14 n/cm 2 *s to 10 15 n/cm 2 *s. The proposed Advanced Neutron Source (ANS) was to be a high power reactor (about 350 MW) with a projected undisturbed thermal flux of 7*10 15 n/cm 2 *s but never materialized. The objective of the current study is to explore the requirements and implications of two source concepts with an undisturbed flux of 10 16 n/cm 2 *s. The first is a reactor based concept operating at high power density (10 MW/l - 15 MW/l) and a total power of 100 MW - 250 MW, depending on fissile enrichment. The second is an accelerator based concept relying on a 1 GeV - 1.5 GeV proton Linac with a total beam power of 40 MW and a liquid lead-bismuth eutectic target. In the reactor source study, the effects of fissile material enrichment, coolant temperature and pressure drop, and estimates of pressure vessel stress levels will be investigated. The fuel form for the reactor will be different from all other operating source reactors in that it is proposed to use an infiltrated graphitic structure, which has been developed for nuclear thermal propulsion reactor applications. In the accelerator based source the generation of spallation products and their activation levels, and the material damage sustained by the beam window will be investigated. (authors)

  9. Recuperation of the energy released in the G-1, an air-cooled graphite reactor core

    International Nuclear Information System (INIS)

    Chambadal, P.; Pascal, M.

    1955-01-01

    The CEA (in his five-year setting plan) has objective among others, the realization of the two first french reactors moderated with graphite. The construction of the G-1 reactor in Marcoule, first french plutonic core, is achieved so that it will diverge in the beginning of 1956 and reach its full power in the beginning of the second semester of the same year. In this report we will detail the specificities of the reactor and in particular its cooling and energy recuperation system. The G-1 reactor being essentially intended to allow the french technicians to study the behavior of an energy installation supply taking its heat in a nuclear source as early as possible. (M.B.) [fr

  10. Novel reactors and energy synergetics status 1982

    International Nuclear Information System (INIS)

    Ekholm, R.

    1982-01-01

    The recession, increasing energy costs, recent studies like NASAP and INFCE, recent innovations and new developments have resulted in a new situation in the energy field. Even near term nuclear power R and D planning requires thus concurrent studies of spallation (accelerator) and fusion/fission hybrid breeding. A first overview of these and other novel reactors is presented. It is now realized more than before that the energy production must be based on optimal synergetics based on symbiotic systems that include a larger variety of energy sources, even if we restrict us, as in this report, to nuclear power. A central factor is the considerations associated with the constraints of fuel supplies, of enriched fissile fuels, of U and Th and of fusile fuels (T). This report emphasizes the inherent characteristics of various energy producing machines and symbiotic systems in this respect including the status, national programmes, environmental impacts and their expected break-even U-prices as reported in the literature. (Author)

  11. The Chernobyl reactor accident source term: Development of a consensus view

    International Nuclear Information System (INIS)

    Guntay, S.; Powers, D.A.; Devell, L.

    1997-01-01

    In August 1986, scientists from the former Soviet Union provided the nuclear safety community with an impressively detailed account of what was then known about the Chernobyl accident. This included assessments of the magnitudes, rates, and compositions of radionuclide releases during the ten days following initiation of the accident. A summary report based on the Soviet report, the oral presentations, and the discussions with scientists from various countries was issued by the International Atomic Energy Agency shortly thereafter. Ten years have elapsed since the reactor accident at Chernobyl. A great deal more data is now available concerning the events, phenomena, and processes that took place. The purpose of this document is to examine what is known about the radioactive materials released during the accident. The accident was peculiar in the sense that radioactive materials were released, at least initially, in an exceptionally energetic plume and were transported far from the reactor site. Release of radioactivity from the plant continued for about ten days. A number of more recent publications and results from scientists in Russia and elsewhere have significantly improved our understanding of the Chernobyl source term. Because of the special features of the reactor design and the pecularities of the Chernobyl accident, the source term for the Chernobyl accident is of limited applicability of the safety analysis of other types of reactors

  12. Method of judging leak sources in a reactor container

    International Nuclear Information System (INIS)

    Maeda, Katsuji.

    1984-01-01

    Purpose: To enable exact judgement for leak sources upon leak accident in a reactor container of BWR type power plants as to whether the sources are present in the steam system or coolant system. Method: If leak is resulted from the main steam system, the hydrogen density in the reactor container is about 170 times as high as the same amount of leak from the reactor water. Accordingly, it can be judged whether the leak source is present in the steam system or reactor water system based on the change in the indication of hydrogen densitometer within the reactor container, and the indication from the drain amount from the sump in the container or the indication of a drain flow meter in the container dehumidifier. Further, I-131, Na-24 and the like as the radioactive nucleides in sump water of the container are measured to determine the density ratio R = (I-131)/(Na-24), and it is judged that the leak is resulted in nuclear water if the density ratio R is equal to that of reactor water and that the leak is resulted from the main steam or like other steam system if the density ratio R is higher than by about 100 times than that of reactor water. (Horiuchi, T.)

  13. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  14. Multi-purpose nuclear heat source for advanced gas-cooled reactor plants

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1993-01-01

    Nuclear power has the potential to be the ultimate green technology in that it could eliminate the need for burning fossil fuels with their polluting combustion products and greenhouse gases. This view is shared by many technologists, but it may be a generation before the public becomes convinced, and that will involve overcoming many safety, institutional, financial, and technical impediments. This paper addresses only the latter topic; a major theme being that for nuclear power to truly be a green technology and significantly benefit society, it must meet the needs of the full energy spectrum. Specifically, it must satisfy energy needs beyond just the electricity generating sector by today's nuclear plants. By virtue of its high temperature capability, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is the only type of reactor that has the potential to meet the wide range of energy needs that will emerge in the future. This paper discusses the nuclear heat source that gives the MHTGR multi-purpose capability, which is recognized today, but will not be implemented until early in the next century

  15. Role of Halden Reactor Project for world-wide nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M.A.; Volkov, B.

    2011-07-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  16. Role of Halden Reactor Project for world-wide nuclear energy development

    International Nuclear Information System (INIS)

    McGrath, M.A.; Volkov, B.

    2011-01-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  17. Terrestrial Energy bets on molten salt reactors

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    Terrestrial Energy is a Canadian enterprise, founded in 2013, for marketing the integral molten salt reactor (IMSR). A first prototype (called MSRE and with an energy output of 8 MW) was designed and operated between 1965 and 1969 by the Oak Ridge National Laboratory. IMSR is a small, modular reactor with a thermal energy output of 400 MW. According to Terrestrial Energy the technology of conventional power reactors is too complicated and too expensive. On the contrary IMSR's technology appears to be simple, easy to operate and affordable. With a staff of 30 people Terrestrial Energy appears to be a start-up in the nuclear sector. A process of pre-licensing will be launched in 2016 with the Canadian nuclear safety authority. (A.C.)

  18. Revised reactor accident source terms in the U.S. and implementation for light water reactors

    International Nuclear Information System (INIS)

    Soffer, L.; Lee, J.Y.

    1992-01-01

    Current NRC reactor accident source terms used for licensing are contained in Regulatory Guides 1.3 and 1.4 and specify that 100 % of the core inventory of noble gases and 25 % of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental (I 2 ) iodine. These assumptions have strongly affected present nuclear plant designs. Severe accident research results have confirmed that although the current source term is very substantial and has resulted in a very high level of plant capability, the present source term is no longer compatible with a realistic understanding of severe accidents. The NRC has issued a proposed revision of the reactor accident source terms as part of several regulatory activities to incorporate severe accident insights for future plants. A revision to 10 CFR 100 is also being proposed to specify site criteria directly and to eliminate source terms and doses for site evaluation. Reactor source terms will continue to be important in evaluating plant designs. Although intended primarily for future plants, existing and evolutionary power plants may voluntarily apply revised accident source term insights as well in licensing. The proposed revised accident source terms are presented in terms of fission product composition, magnitude, timing and iodine chemical form. Some implications for light water reactors are discussed. (author)

  19. Reactor physics experiments in PURNIMA sub critical facility coupled with 14 MeV neutron source

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Degweker, S.B.; Patel, Tarun; Bishnoi, Saroj; Adhikari, P.S.

    2011-01-01

    Accelerator Driven Sub-critical Systems (ADSS) are attracting increasing worldwide attention due to their superior safety characteristics and their potential for burning actinide and fission product waste and energy production. A number of countries around the world have drawn up roadmaps/programs for development of ADSS. Indian interest in ADSS has an additional dimension, which is related to the planned utilization of our large thorium reserves for future nuclear energy generation. A programme for development of ADSS is taken up at the Bhabha Atomic Research Centre (BARC) in India. This includes R and D activities for high current proton accelerator development, target development and Reactor Physics studies. As part of the ADSS Reactor Physics research programme, a sub-critical facility is coming up in BARC which will be coupled with an existing D-D/D-T neutron generator. Two types of cores are planned. In one of these, the sub-critical reactor assembly consists of natural uranium moderated by high density polyethylene (HDP) and reflected by BeO. The other consists of natural uranium moderated by light water. The maximum neutron yield of the neutron source with tritium target is around 10 10 neutron per sec. Various reactor physics experiments like measurement of the source strength, neutron flux distribution, buckling estimation and sub-critical source multiplication are planned. Apart from this, measurement of the total fission power and neutron spectrum will also be carried out. Mainly activation detectors will be used in all in-core neutron flux measurement. Measurement of the degree of sub-criticality by various deterministic and noise methods is planned. Helium detectors with advanced data acquisition card will be used for the neutron noise experiments. Noise characteristics of ADSS are expected to be different from that of traditional reactors due to the non-Poisson statistical features of the source. A new theory incorporating these features has been

  20. The modular pebble bed nuclear reactor - the preferred new sustainable energy source for electricity, hydrogen and potable water production?

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2003-01-01

    This paper describes a joint project of Massachusetts Institute of technology, Nu-Tec Inc. and Proto Power. The elegant simplicity of graphite moderated pebble bed reactor is the basis for the 'generation four' nuclear power plants. High Temperature Gas Cooled (HTGC) nuclear power plant have the potential to become the preferred base load sustainable energy source for the new millennium. The great attraction of these helium cooled 'Generation Four' nuclear plant can be summarised as follows: Factory assembly line production; Modularity and ease of delivery to site; High temperature Brayton Cycle ideally suited for cogeneration of electricity, potable water and hydrogen; Capital and operating costs competitive with hydrocarbon plant; Design is inherently meltdown proof and proliferation resistant

  1. A safe private nuclear tool-the miniature neutron source reactor

    International Nuclear Information System (INIS)

    Zhou Yongmao

    1987-01-01

    The prototype miniature neutron source reactor (MNSR) designed by China Institute of Atomic Energy has been operated successfully for more than 3 years and the practical experience enriches the original design idea. The commercial MNSR is under study design and develop in following aspects: 1. Prolonging the control rod cycle duration and core burn-up life; 2. Increasing the neutron flux per unit power. Obviously, the MNSR will show more advantages in extending application area and in providing the core using low envichment fuel. (Liu)

  2. Nuclear energy center site survey reactor plant considerations

    International Nuclear Information System (INIS)

    1976-05-01

    The Energy Reorganization Act of 1974 required the Nuclear Regulatory Commission (NRC) to make a nuclear energy center site survey (NECSS). Background information for the NECSS report was developed in a series of tasks which include: socioeconomic inpacts; environmental impact (reactor facilities); emergency response capability (reactor facilities); aging of nuclear energy centers; and dry cooled nuclear energy centers

  3. Bridging the energy gap through small and medium sized nuclear reactors in India

    International Nuclear Information System (INIS)

    Srivastava, R.

    1987-01-01

    India is the only country in the world which is employing small sized nuclear reactors for its nuclear power programme. It has now embarked on a programme of augmenting the contribution of the nuclear power by way of employing both medium and small sized nuclear reactors in the next 15 years. This paper discusses the Indian experience and its efforts for industrial mobilisation for rapidly constructing 235/500 MWe nuclear reactor units in a period of about 8 to 9 years. The current energy situation in India and this context the near term role of nuclear power for supplementing the existing sources of commercial energy have been evaluated. Nuclear power has reached such a stage of maturity whereby it has now become a commercially viable source of electricity and it could be utilised on large scale to bridge the energy gap. At present six reactor units of 210/235 MWe capacity are in operation and eight more are in different stages of construction. While we are continuing with the construction of 235 MWe units, a programme of being pursued to construct 550 MWe capacity reactor units from midnineties onwards. This has become possible with the strengthening of regional electricity grids and simultaneous efforts undertaken for augmentation of fuel supply, heavy water production and industrial infrastructure. For a developing country like India, implementation of a sizable nuclear power programme has posed certain special challenges as major inputs are required to be made available with indigeneous efforts. This paper discusses such challenges and presents the ways and means adopted to surmount them. Other developing countries with conditions comparable to those in India could benefit from Indian experience in this regard. This paper also proposes India's willingness to cooperate with other countries for exchange of information and assistance in terms of technical knowhow. (author)

  4. STAR: The Secure Transportable Autonomous Reactor System - Encapsulated Fission Heat Source

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2003-01-01

    OAK-B135 The Encapsulated Nuclear Heat Source (ENHS) is a novel 125 MWth fast spectrum reactor concept that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor. It uses Pb-Bi or other liquid-metal coolant and is intended to be factory manufactured in large numbers to be economically competitive. It is anticipated to be most useful to developing countries. The US team studying the feasibility of the ENHS reactor concept consisted of the University of California, Berkeley, Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL) and Westinghouse. Collaborating with the US team were three Korean organizations: Korean Atomic Energy Research Institute (KAERI), Korean Advanced Institute for Science and Technology (KAIST) and the University of Seoul, as well as the Central Research Institute of the Electrical Power Industry (CRIEPI) of Japan. Unique features of the ENHS include at least 20 years of operation without refueling; no fuel handling in the host country; no pumps and valves; excess reactivity does not exceed 1$; fully passive removal of the decay heat; very small probability of core damaging accidents; autonomous operation and capability of load-following over a wide range; very long plant life. In addition it offers a close match between demand and supply, large tolerance to human errors, is likely to get public acceptance via demonstration of superb safety, lack of need for offsite response, and very good proliferation resistance. The ENHS reactor is designed to meet the requirements of Generation IV reactors including sustainable energy supply, low waste, high level of proliferation resistance, high level of safety and reliability, acceptable risk to capital and, hopefully, also competitive busbar cost of electricity

  5. INR TRIGA Research Reactors: A Neutron Source for Radioisotopes and Materials Investigation

    International Nuclear Information System (INIS)

    Barbos, D.; Ciocanescu, M.; Paunoiu, C.; Bucsa, A.F.

    2013-01-01

    At the INR there are 2 high intensity neutron sources. These sources are in fact the two nuclear TRIGA reactors: TRIGA SSR 14 MW and TRIGA ACPR. TRIGA stationary reactor is provided with several in-core irradiation channels. Other several out-of-core irradiation channels are located in the vertical channels in the beryllium reflector blocks. The maximum value of the thermal neutron flux (E 14 cm -2 s -1 and of fast neutron flux (E>1 MeV) is 6.89×10 13 cm -2 s -1 . For neutron activation analysis both reactors are used and k0-NAA method has been implemented. At INR Pitesti a prompt gamma ray neutron activation analysis devices has been designed, manufactured ant put into operation. For nuclear materials properties investigation neutron radiography methods was developed in INR. For these purposes two neutron radiography devices were manufacture, one of them underwater and other one dry. The neutron beams are used for investigation of materials properties and components produced or under development for applications in the energy sector (fission and fusion). At TRIGA 14 MW reactor a neutron difractormeter and a SANS devices are available for material residual stress and texture measurements. TRIGA 14 MW reactor is used for medical and industrial radioisotopes production ( 131 I, 125 I, 192 Ir, etc) and a method for 99 Mo- 99 Tc production from fission is under developing. At INR Pitesti several special programmes for new types of nuclear fuel behavior characterization are under development. (author)

  6. Gen-III/III+ reactors. Solving the future energy supply shortfall. The SWR-1000 option

    International Nuclear Information System (INIS)

    Stosic, Z.V.

    2006-01-01

    Deficiency of non-renewable energy sources, growing demand for electricity and primary energy, increase in population, raised concentration of greenhouse gases in the atmosphere and global warming are the facts which make nuclear energy currently the most realistic option to replace fossil fuels and satisfy global demand. The nuclear power industry has been developing and improving reactor technology for almost five decades and is now ready for the next generation of reactors which should solve the future energy supply shortfall. The advanced Gen-III/III+ (Generation III and/or III+) reactor designs incorporate passive or inherent safety features which require no active controls or operational intervention to manage accidents in the event of system malfunction. The passive safety equipment functions according to basic laws of physics such as gravity and natural convection and is automatically initiated. By combining these passive systems with proven active safety systems, the advanced reactors can be considered to be amongst the safest equipment ever made. Since the beginning of the 90's AREVA NP has been intensively engaged in the design of two advanced Gen-III+ reactors: (i) PWR (Pressurized Water Reactor) EPR (Evolutionary Power Reactor) and (ii) BWR (Boiling Water Reactor) SWR-1000. The SWR-1000 reactor design marks a new era in the successful tradition of BWR technology. It meets the highest safety standards, including control of a core melt accident. This is achieved by supplementing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation. A short construction period, flexible fuel cycle lengths and a high fuel discharge burn-up contribute towards meeting economic goals. The SWR-1000 completely fulfils international nuclear regulatory requirements. (author)

  7. Next-generation reactors in the national energy strategy

    International Nuclear Information System (INIS)

    McGoff, D.J.

    1991-01-01

    In February 1991, the Bush Administration released the National Energy Strategy designed to provide an adequate and balanced energy supply. The strategy provides for major increases in energy efficiency and conservation. Even with these savings, however, there will be a need for substantial increases in base-load electrical generating capacity to sustain economic growth. The strategy identifies the actions required to allow nuclear power to cleanly and safely meet a substantial portion of this needed additional base-load capacity after the turn of the century. On June 27, 1991, the US Department of Energy (DOE) transmitted to Congress the Strategic Plan for Civilian Reactor Development, which reflects the initiative identified in the National Energy Strategy. The strategic plan identifies the advanced light water reactor (ALWR) as the basis for expanded use of nuclear power. The second advanced reactor concept that is being pursued is the modular high-temperature gas-cooled reactor (MHTGR)

  8. Energy Efficiency for Biodiesel Production by Combining Two Orifices in Hydrodynamic Cavitation Reactor

    OpenAIRE

    Mahlinda, Mahlinda; Djafar, Fitriana

    2014-01-01

    Research of energy efficiency for biodiesel production process by combining two orifices on  hydrodynamic cavitation reactor had been carried out. The aim of this reseach was to studied effect of the number of orifices toward increasing temperature without using external energy source to produce biodiesel that generated by cavitation effects on orifices. The results of preliminary research showed by combining two orifices arranged in series can produce the highest thermal energy reached 48oC....

  9. Economics of seawater desalination with innovative nuclear reactors and other energy sources: the EURODESAL project

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2004-01-01

    This paper summarises our recent investigations undertaken as part of the EURODESAL project on nuclear desalination, which were carried out by a consortium of four EU and one Canadian, Industrials and two leading EU R and D organisations. Major results of the project, in particular of its economic evaluation work package as discussed in this paper, are: 1. A coherent demonstration of the technical feasibility of nuclear desalination through the development of technical principles for the optimum cogeneration of electricity and water and by exploring the unique capabilities of the innovative nuclear reactors and desalination technologies; verification that the integrated system design does not adversely affect nuclear reactor safety. 2. The development of codes and methods for an objective assessment of the competitiveness and sustainability of proposed solutions through comparison, in European conditions, with fossil and renewable energy based solutions. The results obtained so far seem to be quite encouraging as regards the economical viability of nuclear desalination options. Thus, for example, specific desalination costs ($/m 3 of desalted water) for nuclear systems such as the AP600 and the French PWR900 (reference base case), coupled to Multiple Effect Distillation (MED) or the Reverse Osmosis (RO) processes, are 30% to 60% lower than fossil energy based systems using pulverised coal and natural gas with combined cycle, at low discount rates and recommended fuel prices. Even in the most unfavourable scenarios for nuclear energy (discount rates = 10%, low fossil fuel prices) desalination costs with the nuclear options with the nuclear reactors are 7% to 15% lower, depending upon the desalination capacities. Furthermore, with the high performance coupling schemes developed by the EURODESAL partners, the specific desalination costs of nuclear systems are reduced by another 2% to 14%, even without system and design optimisation. (author)

  10. Simulation of pulsed accidental energy release in a reactor core

    International Nuclear Information System (INIS)

    Ryshanskii, V.A.; Ivanov, A.G.; Uskov, A.A.

    1995-01-01

    At the present time the strength of the load-bearing members of VVER and fast reactors during a hypothetical accident is ordinarily investigated in model experiments [1]. A power burst during an accident is simulated by a nonnuclear exothermal reaction in water, which simulates the coolant and fills the model. The problem is to make the correct choice of the simulator of the accidental energy burst as an effective (i.e., sufficiently high working capacity) source of dangerous loads, corresponding to the conditions of an accident. What factors and parameters determine the energy release? The answers to these questions are contradictory

  11. Energy deposition in STARFIRE reactor components

    International Nuclear Information System (INIS)

    Gohar, Y.; Brooks, J.N.

    1985-04-01

    The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry

  12. TOF powder diffractometer on a reactor source

    International Nuclear Information System (INIS)

    Bleif, H.J.; Wechsler, D.; Mezei, F.

    1999-01-01

    Complete text of publication follows. The performance of time-of-flight (TOF) methods on Long Pulse Spallation Sources can be studied at a reactor source. For this purpose a prototype TOF monochromator instrument will be installed at the KFKI reactor in Budapest. The initial setup will be a powder diffractometer with a resolution of δd/d down to 2 x 10 -3 at a wavelength of 1 A. The instrument uses choppers to produce neutron pulses of down to 10 μs FWHM. The optimal neutron source for a chopper instrument is a Long Pulse Spallation Source, but even on a continuous source simulations have shown that this instrument outperforms a conventional crystal monochromator powder diffractometer at high resolution. The main components of the TOF instrument are one double chopper defining the time resolution and two single choppers to select the wavelength range and to prevent frame overlap. For inelastic experiments a further chopper can be added in front of the sample. The neutron guide has a super-mirror coating and a curvature of 3500m. The total flight path is 20m and there are 24 single detectors in backscattering geometry. (author)

  13. Energy storage for tokamak reactor cycles

    International Nuclear Information System (INIS)

    Buchanan, C.H.

    1979-01-01

    The inherent characteristic of a tokamak reactor requiring periodic plasma quench and reignition introduces the problem of energy storage to permit continuous electrical output to the power grid. The cycle under consideration in this paper is a 1000 second burn followed by a 100 second reignition phase. The physical size of a typical toroidal plasma reaction chamber for a tokamak reactor has been described earlier. The thermal energy storage requirements described in this reference will serve as a basis for much of the ensuing discussion

  14. Thorium as an energy source. Opportunities for Norway

    International Nuclear Information System (INIS)

    2008-01-01

    Final Recommendations of the Thorium Report Committee: 1) No technology should be idolized or demonized. All carbon-dioxide (Co2) emission-free energy production technologies should be considered. The potential contribution of nuclear energy to a sustainable energy future should be recognized. 2) An investigation into the resources in the Fen Complex and other sites in Norway should be performed. It is essential to assess whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations. Furthermore, the application of new technologies for the extraction of thorium from the available mineral sources should be studied. 3) Testing of thorium fuel in the Halden Reactor should be encouraged, taking benefit of the well recognized nuclear fuel competence in Halden. 4) Norway should strengthen its participation in international collaborations by joining the EURATOM fission program and the GIF program on Generation IV reactors suitable for the use of thorium. 5) The development of an Accelerator Driven System (ADS) using thorium is not within the capability of Norway working alone. Joining the European effort in this field should be considered. Norwegian research groups should be encouraged to participate in relevant international projects, although these are currently focused on waste management. 6) Norway should bring its competence in waste management up to an international standard and collaboration with Sweden and Finland could be beneficial. 7) Norway should bring its competence with respect to dose assessment related to the thorium cycle up to an international standard. 8) Since the proliferation resistance of uranium-233 depends on the reactor and reprocessing technologies, this aspect will be of key concern should any thorium reactor be built in Norway. 9) Any new nuclear activities in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium, a strong long

  15. Thorium as an energy source. Opportunities for Norway

    Energy Technology Data Exchange (ETDEWEB)

    2008-01-15

    Final Recommendations of the Thorium Report Committee: 1) No technology should be idolized or demonized. All carbon-dioxide (Co2) emission-free energy production technologies should be considered. The potential contribution of nuclear energy to a sustainable energy future should be recognized. 2) An investigation into the resources in the Fen Complex and other sites in Norway should be performed. It is essential to assess whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations. Furthermore, the application of new technologies for the extraction of thorium from the available mineral sources should be studied. 3) Testing of thorium fuel in the Halden Reactor should be encouraged, taking benefit of the well recognized nuclear fuel competence in Halden. 4) Norway should strengthen its participation in international collaborations by joining the EURATOM fission program and the GIF program on Generation IV reactors suitable for the use of thorium. 5) The development of an Accelerator Driven System (ADS) using thorium is not within the capability of Norway working alone. Joining the European effort in this field should be considered. Norwegian research groups should be encouraged to participate in relevant international projects, although these are currently focused on waste management. 6) Norway should bring its competence in waste management up to an international standard and collaboration with Sweden and Finland could be beneficial. 7) Norway should bring its competence with respect to dose assessment related to the thorium cycle up to an international standard. 8) Since the proliferation resistance of uranium-233 depends on the reactor and reprocessing technologies, this aspect will be of key concern should any thorium reactor be built in Norway. 9) Any new nuclear activities in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium, a strong long

  16. Reactor-moderated intermediate-energy neutron beams for neutron-capture therapy

    International Nuclear Information System (INIS)

    Less, T.J.

    1987-01-01

    One approach to producing an intermediate energy beam is moderating fission neutrons escaping from a reactor core. The objective of this research is to evaluate materials that might produce an intermediate beam for NCT via moderation of fission neutrons. A second objective is to use the more promising moderator material in a preliminary design of an NCT facility at a research reactor. The evaluations showed that several materials or combinations of materials could produce a moderator source for an intermediate beam for NCT. The best neutron spectrum for use in NCT is produced by Al 2 O 3 , but mixtures of Al metal and D 2 O are also attractive. Using the best moderator materials, results were applied to the design of an NCT moderator at the Georgia Institute of Technology Research Reactor's bio-medical facility. The amount of photon shielding and thermal neutron absorber were optimized with respect to the desired photon dose rate and intermediate neutron flux at the patient position

  17. IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, G.; Ramirez, R.; Gomez, C.; Viais, J.

    2004-10-03

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity. The IRIS reactor offers a very suitable source of energy given its modular size of 300 MWe and it can be coupled with a desalination plant to provide the potable water for human consumption, agriculture and industry. The present paper assess the water and energy requirements for the Northwest region of Mexico and how the deployment of the IRIS reactor can satisfy those necessities. The possible sites for deployment of Nuclear Reactors are considered given the seismic constraints and the closeness of the sea for external cooling. And in the other hand, the size of the desalination plant and the type of desalination process are assessed accordingly with the water deficit of the region.

  18. IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region

    International Nuclear Information System (INIS)

    Alonso, G.; Ramirez, R.; Gomez, C.; Viais, J.

    2004-01-01

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity. The IRIS reactor offers a very suitable source of energy given its modular size of 300 MWe and it can be coupled with a desalination plant to provide the potable water for human consumption, agriculture and industry. The present paper assess the water and energy requirements for the Northwest region of Mexico and how the deployment of the IRIS reactor can satisfy those necessities. The possible sites for deployment of Nuclear Reactors are considered given the seismic constraints and the closeness of the sea for external cooling. And in the other hand, the size of the desalination plant and the type of desalination process are assessed accordingly with the water deficit of the region

  19. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  20. Preparation of 114mIn low energy conversion electron sources

    International Nuclear Information System (INIS)

    Wrede, C.; Filippone, B.W.; Garcia, A.; Harper, G.C.; Lassell, S.; Liu, J.; Mendenhall, M.P.; Palmer, A.S.C.; Pattie, R.W.; Will, D.I.; Young, A.R.

    2011-01-01

    Highlights: → Controlled ion implantation of In-113 into thin Al substrate. → Production of In-114m (half life = 50 days) by neutron irradiation. → Use of In-114m as a source of electron lines and continuum for calibrations. → Source reactivation by short neutron irradiation. -- Abstract: The preparation of 114m In sources of conversion electrons in the energy range 162-190 keV and β continuum with a 1989 keV endpoint via ion implantation of 113 In into Al substrates and subsequent irradiation by thermal and epi-thermal neutrons in a nuclear reactor is described.

  1. Renewable energy source from pyrolysis of solid wastes

    International Nuclear Information System (INIS)

    Md Kawser Jamil; Farid Nasir Ani

    2000-01-01

    Malaysia is blessed with a significant renewable energy resource base such as solar energy and biomass. To continue with its industrial development, Malaysia must manages energy supply its c prudently in order to avoid becoming an energy importer supply. Most significantly renewable energy from biomass such as rice husks, wood wastes, oil palm wastes, rubber wastes and other agricultural wastes. Beside rice and timber. Malaysia produces a huge amount of palm oil and natural rubber. These generate a significant amount of solid wastes in the forms of oil palm shell and rubber. These wastes are producing pollution and emission problems in Malaysia which is causing an environmental issue. Besides energy is not recovered efficiently from these waste resources. From the elemental composition and thermogravimetric studies of the wastes, it appeared that the wastes could be used as an alternative value-added source of energy. For this purpose a fast pyrolysis of 300 mi-n lone, and 50 mm diameter stainless-steel reactor was designed and fabricated. The grounded, sieved and dried solid feed particles underwent pyrolysis reactor at moderate temperature and were converted into pyrolytic oil, solid char and cas. Oil and char were collected while the cas was flared. The oil was characterised by GC-MS technique. Detailed analysis of the oil showed that there was no concentration of biologically active polycyclic aromatic species in the oil. The fuel properties of the derived oils were also analysed and compared to diesel fuel. (Author)

  2. Pulsed TRIGA reactor as substitute for long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1999-01-01

    TRIGA reactor cores have been used to demonstrate various pulsing applications. The TRIGA reactor fuel (U-ZrH x ) is very robust especially in pulsing applications. The features required to produce 50 pulses per second have been successfully demonstrated individually, including pulse tests with small diameter fuel rods. A partially optimized core has been evaluated for pulses at 50 Hz with peak pulsed power up to 100 MW and an average power up to 10 MW. Depending on the design, the full width at half power of the individual pulses can range between 2000 μsec to 3000 μsec. Until recently, the relatively long pulses (2000 μsec to 3000 μsec) from a pulsed thermal reactor or a long pulse spallation source (LPSS) have been considered unsuitable for time-of-flight measurements of neutron scattering. More recently considerable attention has been devoted to evaluating the performance of long pulse (1000 to 4000 μs) spallation sources for the same type of neutron measurements originally performed only with short pulses from spallation sources (SPSS). Adequate information is available to permit meaningful comparisons between CW, SPSS, and LPSS neutron sources. Except where extremely high resolution is required (fraction of a percent), which does require short pulses, it is demonstrated that the LPSS source with a 1000 msec or longer pulse length and a repetition rate of 50 to 60 Hz gives results comparable to those from the 60 MW ILL (CW) source. For many of these applications the shorter pulse is not necessarily a disadvantage, but it is not an advantage over the long pulse system. In one study, the conclusion is that a 5 MW 2000 μsec LPSS source improves the capability for structural biology studies of macromolecules by at least a factor of 5 over that achievable with a high flux reactor. Recent studies have identified the advantages and usefulness of long pulse neutron sources. It is evident that the multiple pulse TRIGA reactor can produce pulses comparable to

  3. Assessment of fusion reactor development. Proceedings

    International Nuclear Information System (INIS)

    Inoue, N.; Tazima, T.

    1994-04-01

    Symposium on assessment of fusion reactor development was held to make clear critical issues, which should be resolved for the commercial fusion reactor as a major energy source in the next century. Discussing items were as follows. (1) The motive force of fusion power development from viewpoints of future energy demand, energy resources and earth environment for 'Sustainable Development'. (2) Comparison of characteristics with other alternative energy sources, i.e. fission power and solar cell power. (3) Future planning of fusion research and advanced fuel fusion (D 3 He). (4) Critical issues of fusion reactor development such as Li extraction from the sea water, structural material and safety. (author)

  4. Revised accident source terms for light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Soffer, L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  5. Economic viability of alternative sources of energy for a typical community of the region north and northeast of Brazil

    International Nuclear Information System (INIS)

    Vanni, Silvia Regina; Sabundjian, Gaiane

    2008-01-01

    A study of viability of alternative energy sources for typical communities of the North or Northeast of Brazil, which do not have access to the electric energy is performed. Brazil presents a great economic and social disparity among its several regions. There are several poor communities, mainly in regions far from big cities, without electrical energy. The Brazilian government has a program known as 'Luz para Todos' (Light for All). The big challenge of this program is to bring electrical energy for everyone using new alternatives energy sources. In this work initially a literature review was made concerning the following alternative energy source: wind, solar and biomass. These energy sources can be used to supply the demand to bring electrical energy for poor communities. For this work it is intended to choose a community that has population between 1,000 and 10,000 and does not have access to electrical energy. For this community an economic viability study will be made to evaluate alternative energy sources. The best energy source resulted from the point of view of the economic viability study will be implemented in that community. A new study will be performed to evaluate cost and environmental impact. In this new study the future social development of the community caused by the installation of electrical energy will be considered. Also, this best energy source will be compared with the new generation of nuclear reactors, for instance , the IRIS reactor. (author)

  6. Economic viability of alternative sources of energy for a typical community of the Region North and Northeast of Brazil

    International Nuclear Information System (INIS)

    Vanni, Silvia Regina; Sabundjian, Gaiane

    2007-01-01

    The objective of this work is to perform a study of viability of alternative energy sources for typical communities of the North or Northeast of Brazil, which do not have access to the electric energy. Brazil presents a great economic and social disparity among its several regions. There are several poor communities, mainly in regions far from big cities, without electrical energy. The Brazilian government has a program known as 'Luz para Todos' (Light for All). The big challenge for this program is to bring electrical energy for everyone using new alternatives energy sources. In this work initially a literature review was made concerning the following alternative energy sources: wind, solar and biomass. These energy sources can be used to supply the demand to bring electrical energy for poor communities. For this work it is intended to choose a community that has population between 1,000 the 10,000 and does not have access to electrical energy. For this community an economic viability study will be made to evaluate alternative energy sources. The best energy source resulted from the point of view of the economic viability study will be implemented in that community. A new study will be performed to evaluate cost and environmental impact. In this new study the future social development of the community caused by the installation of electrical energy will be considered. Also, this best energy source will be compared with the new generation of nuclear reactors, for instance, the IRIS reactor. (author)

  7. Fusion reactor wastes

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-01-01

    The fusion reactor currently is being developed as a clean source of electricity with an essentially infinite source of fuel. These reactors are visualized as using a fusion reaction to generate large quantities of high temperature energy which can be used as process heat or for the generation of electricity. The energy would be created primarily as the kinetic energy of neutrons or other reaction products. Neutron energy could be converted to high-temperature heat by moderation and capture of the neutrons. The energy of other reaction products could be converted to high-temperature heat by capture, or directly to electricity by direct conversion electrostatic equipment. An analysis to determine the wastes released as a result of operation of fusion power plants is presented

  8. Advanced reactors and future energy market needs

    International Nuclear Information System (INIS)

    Paillere, Henri; )

    2017-01-01

    Based on the results of a very well-attended international workshop on 'Advanced Reactor Systems and Future Energy Market Needs' that took place in April 2017, the NEA has embarked on a two-year study with the objective of analysing evolving energy market needs and requirements, as well as examining how well reactor technologies under development today will fit into tomorrow's low-carbon world. The NEA Expert Group on Advanced Reactor Systems and Future Energy Market Needs (ARFEM) held its first meeting on 5-6 July 2017 with experts from Canada, France, Italy, Japan, Korea, Poland, Romania, Russia and the United Kingdom. The outcome of the study will provide much needed insight into how well nuclear can fulfil its role as a key low-carbon technology, and help identify challenges related to new operational, regulatory or market requirements

  9. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  10. The international thermonuclear experimental reactor and the future of nuclear fusion energy

    International Nuclear Information System (INIS)

    Pan Chuanhong

    2010-01-01

    Energy shortage and environmental problems are now the two largest challenges for human beings. Magnetic confinement nuclear fusion, which has achieved great progress since the 1990's, is anticipated to be a way to realize an ideal source of energy in the future because of its abundance, environmental compatibility, and zero carbon release. Exemplified by the construction of the International Thermonuclear Experimental Reactor (ITER), the development of nuclear fusion energy is now in its engineering phase, and should be realized by the middle of this century if all objectives of the ITER project are met. (author)

  11. High-energy tritium beams as current drivers in tokamak reactors

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams

  12. The use of neutron sources in nuclear reactors start-up after long shutdown periods

    International Nuclear Information System (INIS)

    Ponzoni Filho, P.; Borges, J.B.

    1990-01-01

    The reasons for the use of neutron sources in nuclear reactors, the different kinds of sources used and the alternatives to obtain the required minimum neutron counts in the external source range detectors after long maintenance and refueling periods are presented and discussed. The paper presents a formulation based in physics principles and experimental data, to calculate the power and time of reactor operation required to increase the effective fluence of secondary neutron sources. The option of using actinides produced during operation of the reactor as an additional source of neutrons is also discussed in depth to allow similar calculations in other kinds of reactors. The re-utilization of primary sources is considered as a last option. (author)

  13. Sources of radioiodine at pressurized water reactors. Final report

    International Nuclear Information System (INIS)

    Pelletier, C.A.; Cline, J.E.; Barefoot, E.D.; Hemphill, R.T.; Voilleque, P.G.; Emel, W.A.

    1978-11-01

    The report determines specific components and operations at operating pressurized water reactors that have a potential for being significant emission sources of radioactive iodine. The relative magnitudes of these specific sources in terms of the chemical forms of the radioiodine and the resultant annual averages from major components are established. The data are generalized for broad industry use for predictive purposes. The conclusions of this study indicate that the majority of radioiodine emanating from the primary side of pressurized water reactors comes from a few major areas; in some cases these sources are locally treatable; the interaction of radioiodine with plant interior surfaces is an important phenomenon mediating the source and affecting its release to the atmosphere; the chemical form varies depending on the circumstances of the release

  14. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  15. Reactor, radioactive isotopes and nuclear energy: their avatars in Venezuela

    International Nuclear Information System (INIS)

    Roche, M.

    1981-01-01

    A brief history of nuclear affairs in Venezuela, since the decision to bring a research reactor (3MW) to Venezuela (1954) to current situation, is presented. Since the establishment of the National Council for Nuclear Affairs (CONAN) and then of the National Council for the Development of Nuclear Industry (CONADIN), steps are being taken to train nuclear engineers, since most studies thus far indicate the last few years of the Century as the time when nuclear energy will have to supplement other sources

  16. Techno-economic study of hydrogen production by high temperature electrolysis and coupling with different thermal energy sources

    International Nuclear Information System (INIS)

    Rivera-Tinoco, R.

    2009-03-01

    This work focuses on the techno-economic study of massive hydrogen production by the High Temperature Electrolysis (HTE) process and also deals with the possibility of producing the steam needed in the process by using different thermal energy sources. Among several sources, those retained in this study are the biomass and domestic waste incineration units, as well as two nuclear reactors (European Pressurised water Reactor - EPR and Sodium Fast Reactor - SFR). Firstly, the technical evaluation of the steam production by each of these sources was carried out. Then, the design and modelling of the equipments composing the process, specially the electrolysers (Solid Oxides Electrolysis Cells), are presented. Finally, the hydrogen production cost for each energy sources coupled with the HTE process is calculated. Moreover, several sensibility studies were performed in order to determine the process key parameter and to evaluate the influence of the unit size effect, the electric energy cost, maintenance, the cells current density, their investment cost and their lifespan on the hydrogen production cost. Our results show that the thermal energy cost is much more influent on the hydrogen production cost than the steam temperature at the outlet stream of the thermal source. It seems also that the key parameters for this process are the electric energy cost and the c ells lifespan. The first one contributes for more than 70% of the hydrogen production cost. From several cell lifespan values, it seems that a 3 year value, rather than 1 year, could lead to a hydrogen production cost reduced on 34%. However, longer lifespan values going from 5 to 10 years would only lead to a 8% reduction on the hydrogen production cost. (author)

  17. Energy sources

    International Nuclear Information System (INIS)

    Vajda, Gy.

    1998-01-01

    A comprehensive review is presented of the available sources of energy in the world is presented. About 80 percent of primary energy utilization is based on fossile fuels, and their dominant role is not expected to change in the foreseeable future. Data are given on petroleum, natural gas and coal based power production. The role and economic aspects of nuclear power are analyzed. A brief summary of renewable energy sources is presented. The future prospects of the world's energy resources are discussed, and the special position of Hungary regarding fossil, nuclear and renewable energy and the country's energy potential is evaluated. (R.P.)

  18. Impacts of non-nuclear energy sources on the environment

    International Nuclear Information System (INIS)

    Tavkaya, E.

    2006-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal) , which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. If humankind is going to have a future on this planet, at least a high-technology future, with a significant population of several billions of humans continuing to inhabit the Earth, it is absolutely inevitable that we will have to find another energy source. Table 1: The environmental effects for some energy systems; SOURCES: Fossil fuels (petroleum, natural gas and coal) ENVIRONMENTAL EFFECTS : - Ozone layer depletion - Changes of atmospheric conditions - Decrease of air quality (Coal , petroleum) - Acid rains and destroy of forests (coal, petroleum ) - Pollution from toxic wastes (coal ash, slag and smoke hole gases) - Pollution of surface water - Seaside and sea pollutions (petroleum) - Terrain devolution - Large amount of fuel and transportation requirements - Sources depletion SOURCES: Hydroelectric ENVIRONMENTAL EFFECTS - Large area requirements - Population situation changes - Erosion and usage changes - Ecosystem changes and health effects - Disappearing of biological variety - Downfall of dams - Leave out of production SOURCES: Renewable (sun, wind, geothermal, biomass) ENVIRONMENTAL EFFECTS : - Decrease of air quality (geothermal, biomass) - Large area usage - Ecologic system changes - Fabrication effects (CO 2 effect due to production of photovoltaic cells that work with sun) - Noise (wind) SOURCES: Nuclear (All energy chain) ENVIRONMENTAL EFFECTS : - Radioactive oscillation because of serious reactor accident - Radiation of waste storage. In this study, the environmental effects for some energy systems are investigated with all details

  19. An energy amplifier fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, F.; Seifritz, W.

    2001-01-01

    The concept of a fluidized bed nuclear reactor driven by an energy amplifier system is described. The reactor has promising characteristics of inherent safety and passive cooling. The reactor can easily operate with any desired spectrum in order to be a plutonium burner or have it operate with thorium fuel cycle. (orig.) [de

  20. Alternative Energy Sources

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2012-01-01

    Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near and intermediate future (20-50 years).   The two first chapters on energy demand and supply and environmental effects, set the tone as to why the widespread use of alternative energy is essential for the future of human society. The third chapter exposes the reader to the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The sections on exergy give a succinct, quantitative background on the capability/potential of each energy source to produce power on a global scale. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy. The following five chapters (seventh to eleventh) include detailed descriptions of the most common renewable energy sources – wind, solar, geothermal, biomass, hydroelectric – and some of the less common sources...

  1. Preparation of {sup 114m}In low energy conversion electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, C., E-mail: wrede@uw.ed [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Filippone, B.W. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Garcia, A.; Harper, G.C. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Lassell, S. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Liu, J. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Mendenhall, M.P. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Palmer, A.S.C. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Pattie, R.W. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Will, D.I. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Young, A.R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2011-05-15

    Highlights: {yields} Controlled ion implantation of In-113 into thin Al substrate. {yields} Production of In-114m (half life = 50 days) by neutron irradiation. {yields} Use of In-114m as a source of electron lines and continuum for calibrations. {yields} Source reactivation by short neutron irradiation. -- Abstract: The preparation of {sup 114m}In sources of conversion electrons in the energy range 162-190 keV and {beta} continuum with a 1989 keV endpoint via ion implantation of {sup 113}In into Al substrates and subsequent irradiation by thermal and epi-thermal neutrons in a nuclear reactor is described.

  2. Dynamic modeling of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Ibn-Khayat, M.

    1990-01-01

    The purpose of this paper is to provide a summary description and some applications of a computer model that has been developed to simulate the dynamic behavior of the advanced neutron source (ANS) reactor. The ANS dynamic model is coded in the advanced continuous simulation language (ACSL), and it represents the reactor core, vessel, primary cooling system, and secondary cooling systems. The use of a simple dynamic model in the early stages of the reactor design has proven very valuable not only in the development of the control and plant protection system but also of components such as pumps and heat exchangers that are usually sized based on steady-state calculations

  3. Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    CERN Document Server

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Ansell, Stuart; Iverson, Erik B.; Ehlers, Georg; Gallmeier, Franz X.; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M.

    2015-01-01

    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

  4. An investigation of the closure problem applied to reactor accident source terms

    International Nuclear Information System (INIS)

    Brearley, I.R.; Nixon, W.; Hayns, M.R.

    1987-01-01

    The closure problem, as considered here, focuses attention on the question of when in current research programmes enough has been learned about the source terms for reactor accident releases. Noting that current research is tending to reduce the estimated magnitude of the aerosol component of atmospheric, accidental releases, several possible criteria for closure are suggested. Moreover, using the reactor accident consequence model CRACUK, the effect of gradually reducing the aerosol release fractions of a pressurized water reactor (PWR2) source term (as defined in the WASH-1400 study) is investigated and the implications of applying the suggested criteria to current source term research discussed. (author)

  5. Prospects for inertial fusion as an energy source

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1989-01-01

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs

  6. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  7. Nuclear power: tomorrow's energy source; Le nucleaire: une energie pour l'avenir

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  8. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    Energy Technology Data Exchange (ETDEWEB)

    Fhager, V

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  9. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    International Nuclear Information System (INIS)

    Fhager, V.

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  10. The geo-reactor. A link between nuclear fission and geothermal energy?

    International Nuclear Information System (INIS)

    Degueldre, Claude; Fiorina, Carlo

    2013-01-01

    Recent high-precision isotope analysis data suggests the potential occurrence of a geo-reactor. Specific gas isotopes that could have been generated by binary and ternary fissions were identified in volcano emanations or as soluble/associated species in crystalline rocks and semi-quantitatively evaluated as isotopic ratio or estimated amounts. Presently if it is evident that according to the actinide inventory on the Earth, local potential criticality of the geo-system may have been reached, several questions remain such as why, where and when did a geo-reactor be operational? Even if the hypothesis of a geo-reactor operation in the proto-Earth period should be acceptable, it could be difficult to anticipate that a geo-reactor is still operating today. This could be tested in the future by assessing and reconstructing the system by antineutrino detection and tomography through the Earth. The present paper focuses on the geo-reactor conditions including history, spatial extension and regimes. The discussion based on recent calculations involves investigations on the limits in term of fissile inventory, size and power, based on stratification through the gravitational field and the various features through the inner mantel, the boundary with the core, the external part and the inner-core. the reconstruction allows to formulating that from the history point of view there are possibilities that the geo-reactor reached criticality in a proto-Earth period as a thorium/uranium reactor triggered by an under-layer with heavier actinides. The geo-reactor should be a key component of geothermal energy sources. (author)

  11. New renewable energy sources

    International Nuclear Information System (INIS)

    2001-06-01

    This publication presents a review of the technological, economical and market status in the field of new renewable energy sources. It also deals briefly with the present use of energy, external conditions for new renewable energy sources and prospects for these energy sources in a future energy system. The renewable energy sources treated here are ''new'' in the sense that hydroelectric energy technology is excluded, being fully developed commercially. This publication updates a previous version, which was published in 1996. The main sections are: (1) Introduction, (2) Solar energy, (3) Bio energy, (4) Wind power, (5) Energy from the sea, (6) Hydrogen, (7) Other new renewable energy technologies and (8) New renewable s in the energy system of the future

  12. 9th international conference on high-temperature reactors - coal and nuclear energy for electricity and gas generation

    International Nuclear Information System (INIS)

    Kelber, G.

    1987-01-01

    The site of the high-temperatur reactor in the Ruhr region neighbouring on a coal-fired power plant is not accidental. The potential of the high-temperature reactor as a central plant element for the supply of heat for heating purposes and process heat covers also the possibility of coal gasification and liquefaction. Therefore the high-temperature reactor is, in the long term, a ray of hope for the coal region, able to compensate for the production-related competitive disadvantages of local coal. It can contribute to guaranteeing in the long term the task of German hard coal as an essential pillar of our energy supply. The VGB as a technical association of thermal power plant operators is particularly committed to the integration of coal and nuclear energy. Within the bounds of its possibilities, it will contribute to promoting the safe and environmentally beneficial generation of electricity from the two primary energy sources. (orig./DG) [de

  13. Source term determination from subcritical multiplication measurements at Koral-1 reactor

    International Nuclear Information System (INIS)

    Blazquez, J.B.; Barrado, J.M.

    1978-01-01

    By using an AmBe neutron source two independent procedures have been settled for the zero-power experimental fast-reactor Coral-1 in order to measure the source term which appears in the point kinetical equations. In the first one, the source term is measured when the reactor is just critical with source by taking advantage of the wide range of the linear approach to critical for Coral-1. In the second one, the measurement is made in subcritical state by making use of the previous calibrated control rods. Several applications are also included such as the measurement of the detector dead time, the determinations of the reactivity of small samples and the shape of the neutron importance of the source. (author)

  14. Distribution of energy of impulses of the modernized IBR-2 REACTOR

    International Nuclear Information System (INIS)

    Tayibov, L.A; Mehtiyeva, R.N.; )

    2011-01-01

    Full text: For the modernized IBR-2 reactor there are two main reasons causing fluctuations of energy of impulses [1,3] on low power of stochastic fluctuations, on the nominal - giving rise to fluctuations of external reactance. The fluctuations of pulse energy is quite significant (20%). They affect the dynamics of the reactor, the process of regulation, starting, as well as the work of the experimental apparatus, etc. It is clear that research of fluctuation of energy of impulses has special value for the IBR-2 type reactor. Sufficient information about the statistical properties of the reactor noise gives the density distribution of the energy pulse power. We used the usual procedure of statistical analysis of time series. Calculated pulse energy of density and the parameters of this distribution.

  15. An Open Source-based Approach to the Development of Research Reactor Simulator

    International Nuclear Information System (INIS)

    Joo, Sung Moon; Suh, Yong Suk; Park, Cheol Park

    2016-01-01

    In reactor design, operator training, safety analysis, or research using a reactor, it is essential to simulate time dependent reactor behaviors such as neutron population, fluid flow, and heat transfer. Furthermore, in order to use the simulator to train and educate operators, a mockup of the reactor user interface is required. There are commercial software tools available for reactor simulator development. However, it is costly to use those commercial software tools. Especially for research reactors, it is difficult to justify the high cost as regulations on research reactor simulators are not as strict as those for commercial Nuclear Power Plants(NPPs). An open source-based simulator for a research reactor is configured as a distributed control system based on EPICS framework. To demonstrate the use of the simulation framework proposed in this work, we consider a toy example. This example approximates a 1-second impulse reactivity insertion in a reactor, which represents the instantaneous removal and reinsertion of a control rod. The change in reactivity results in a slightly delayed change in power and corresponding increases in temperatures throughout the system. We proposed an approach for developing research reactor simulator using open source software tools, and showed preliminary results. The results demonstrate that the approach presented in this work can provide economical and viable way of developing research reactor simulators

  16. Characterization of noise sources in nuclear power reactors

    International Nuclear Information System (INIS)

    Andhill, Gustav

    2004-03-01

    Algorithms for unfolding noise sources in nuclear power reactors are investigated. No preliminary knowledge of the functional form of the space dependence is assumed in contrast to the usual methods. The advantage of this is that the algorithms can be applied to various noise sources and the results can be interpreted without expert knowledge. The results can therefore be directly displayed to the plant operators. The precision will however be lower than that of the traditional methods because of the arbitrariness in the type of the noise source. Two different reactor models are studied. First a simple one-dimensional and homogeneous core is considered. Three methods for finding the noise source from the measured flux noise are investigated here. The first one is based on the inversion of an appropriate pre-calculated noise source-to-measured induced neutron noise transfer function. The second one relies on the use of the measured neutron noise as the solution of the equations giving the neutron noise induced by a given noise source. The advantage of this second method is that the noise source can be determined directly, i.e., without any Inversion of a transfer function. The second method is thus called the direct method. The last method is based on a reconstruction of the noise source by spatial Fourier expansion. The two latter techniques are found usable for different locations of the actual noise source in the 1D core. They are therefore tried on more sophisticated two-dimensional models of cores. The direct method is able both to determine the nature of the noise source and its location in 2D

  17. Characterization of noise sources in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Andhill, Gustav

    2004-03-01

    Algorithms for unfolding noise sources in nuclear power reactors are investigated. No preliminary knowledge of the functional form of the space dependence is assumed in contrast to the usual methods. The advantage of this is that the algorithms can be applied to various noise sources and the results can be interpreted without expert knowledge. The results can therefore be directly displayed to the plant operators. The precision will however be lower than that of the traditional methods because of the arbitrariness in the type of the noise source. Two different reactor models are studied. First a simple one-dimensional and homogeneous core is considered. Three methods for finding the noise source from the measured flux noise are investigated here. The first one is based on the inversion of an appropriate pre-calculated noise source-to-measured induced neutron noise transfer function. The second one relies on the use of the measured neutron noise as the solution of the equations giving the neutron noise induced by a given noise source. The advantage of this second method is that the noise source can be determined directly, i.e., without any Inversion of a transfer function. The second method is thus called the direct method. The last method is based on a reconstruction of the noise source by spatial Fourier expansion. The two latter techniques are found usable for different locations of the actual noise source in the 1D core. They are therefore tried on more sophisticated two-dimensional models of cores. The direct method is able both to determine the nature of the noise source and its location in 2D.

  18. Recuperation of the energy released in the G-1, an air-cooled graphite reactor core; Recuperation de l'energie degagee dans G 1 pile a graphite refroidie a l'air

    Energy Technology Data Exchange (ETDEWEB)

    Chambadal, P [Electricite de France (EDF), 75 - Paris (France); Pascal, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The CEA (in his five-year setting plan) has objective among others, the realization of the two first french reactors moderated with graphite. The construction of the G-1 reactor in Marcoule, first french plutonic core, is achieved so that it will diverge in the beginning of 1956 and reach its full power in the beginning of the second semester of the same year. In this report we will detail the specificities of the reactor and in particular its cooling and energy recuperation system. The G-1 reactor being essentially intended to allow the french technicians to study the behavior of an energy installation supply taking its heat in a nuclear source as early as possible. (M.B.) [French] Le Commissariat a l'Energie Atomique (dans le cadre du plan quinquennal) a entre autres objectifs, la realisation des deux premiers reacteurs francais moderes au graphite. La construction du reacteur G-1 a Marcoule, premiere pile plutonigene francaise, est realise afin qu'il puisse diverger au debut de 1956 et atteindre sa pleine puissance au debut du second semestre de la meme annee. Dans ce rapport nous detaillerons les specificites du reacteur et en particulier son systeme de refroidissement et de recuperation d'energie. Le reacteur G-1 etant essentielement destine a permettre aux techniciens francais d'etudier le plus tot possible le comportement d'une installation productrice d'energie empruntant sa chaleur a une source nucleaire. (M.B.)

  19. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  20. Small-angle neutron scattering at pulsed sources compared to reactor sources

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.; Seeger, P.A.; Thiyagarajan, P.

    1990-01-01

    Detailed comparisons of measurements made on small-angle neutron scattering instruments at pulsed spallation and reactor sources show that the results from the two types of instruments are comparable. It is further demonstrated that spallation instruments are preferable for measurements in the mid-momentum transfer domain or when a large domain is needed. 8 refs., 2 figs

  1. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    International Nuclear Information System (INIS)

    Lychagin, E.V.; Mityukhlyaev, V.A.; Muzychka, A.Yu.; Nekhaev, G.V.; Nesvizhevsky, V.V.; Onegin, M.S.; Sharapov, E.I.; Strelkov, A.V.

    2016-01-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium ("4He). The PIK reactor is chosen as a perspective example of application of this idea, which consists of installing "4He UCN source in the beam of thermal or cold neutrons and surrounding the source with moderator-reflector, which plays the role of cold neutron (CN) source feeding the UCN source. CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator–reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of "4He source with solid methane (CH_4) or/and liquid deuterium (D_2) moderator–reflector. We show that such a source with CH_4 moderator–reflector at the PIK reactor would provide the UCN density of ~1·10"5 cm"−"3, and the UCN production rate of ~2·10"7 s"−"1. These values are respectively 1000 and 20 times larger than those for the most intense UCN user source. The UCN density in a source with D_2 moderator-reflector would reach the value of ~2·10"5 cm"−"3, and the UCN production rate would be equal ~8·10"7 s"−"1. Installation of such a source in a beam of CNs would slightly increase the density and production rate.

  2. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  3. Specific energy released in power reactors

    International Nuclear Information System (INIS)

    Zaritskaya, T.S.; Kiselev, G.V.; Rudik, A.P.; Tsenter, Eh.M.

    1986-01-01

    Technique of determination are described and analysis of specific energy for different methods of critically maintance of RBMK and WWER-440 reactors are conducted. Characteristics of the optimal mode of critically maintanance are determined

  4. Moltex Energy's stable salt reactors

    International Nuclear Information System (INIS)

    O'Sullivan, R.; Laurie, J.

    2016-01-01

    A stable salt reactor is a molten salt reactor in which the molten fuel salt is contained in fuel rods. This concept was invented in 1951 and re-discovered and improved recently by Moltex Energy Company. The main advantage of using molten salt fuel is that the 2 problematic fission products cesium and iodine do not exist in gaseous form but rather in a form of a salt that present no danger in case of accident. Another advantage is the strongly negative temperature coefficient for reactivity which means the reactor self-regulates. The feasibility studies have been performed on a molten salt fuel composed of sodium chloride and plutonium/uranium/lanthanide/actinide trichloride. The coolant fluid is a mix of sodium and zirconium fluoride salts that will need low flow rates. The addition of 1 mol% of metal zirconium to the coolant fluid reduces the risk of corrosion with standard steels and the addition of 2% of hafnium reduces the neutron dose. The temperature of the coolant is expected to reach 650 Celsius degrees at the exit of the core. This reactor is designed to be modular and it will be able to burn actinides. (A.C.)

  5. Fusion: an energy source for synthetic fuels

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J; Steinberg, M.

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  6. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  7. Development of source term evaluation method for Korean Next Generation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keon Jae; Cheong, Jae Hak; Park, Jin Baek; Kim, Guk Gee [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-10-15

    This project had investigate several design features of radioactive waste processing system and method to predict nuclide concentration at primary coolant basic concept of next generation reactor and safety goals at the former phase. In this project several prediction methods of source term are evaluated conglomerately and detailed contents of this project are : model evaluation of nuclide concentration at Reactor Coolant System, evaluation of primary and secondary coolant concentration of reference Nuclear Power Plant(NPP), investigation of prediction parameter of source term evaluation, basic parameter of PWR, operational parameter, respectively, radionuclide removal system and adjustment values of reference NPP, suggestion of source term prediction method of next generation NPP.

  8. DESIGN OF ALTERNATIVE ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    Popa Stefania

    2013-11-01

    Full Text Available By energy sources we understand technologies and materials used to obtain various forms of energy necessary for the development of society. These sources must be in adequate quantities and be conveniently exploited in terms of technical, economic and sustainable perspective. Alternative energy uses the inherent power of natural sources like wind, tides, the sun. Alternative energy is a term used for some energy sources and energy storage technologies. Generally it indicates energies that are nontraditional and have low impact to the environment. The alternative energy term is used in contrast with the term fossil fuel according to some sources, while other sources use it with the meaning of renewable energy purposes.

  9. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    DUONG, HENRY; POLANSKY, GARY F.; SANDERS, THOMAS L.; SIEGEL, MALCOLM D.

    1999-01-01

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  10. The effect of heavy water reactors and liquid fuel reactors on the long-term development of nuclear energy

    International Nuclear Information System (INIS)

    Brand, P.; Wiechers, W.K.

    1974-01-01

    The effects of the rates at which various combinations of power reactor types are installed on the long-range (to the year 2040) uranium and plutonium inventory requirements are examined. Consideration is given to light water reactors, fast breeder reactors, high temperature gas-cooled reactors, heavy water reactors, and thermal breeder reactors, in various combinations, and assuming alternatively a 3% and a 5% growth in energy demand

  11. The High Flux Isotope Reactor (HFIR) cold source project at ORNL

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Chang, S.J.; Freels, J.D. . E-mail-yb2@ornl.gov

    1998-01-01

    Following the decision to cancel the Advanced Neutron Source (ANS) Project at Oak Ridge National Laboratory (ORNL), it was determined that a hydrogen cold source should be retrofitted into an existing beam tube of the High Flux Isotope Reactor (HFIR) at ORNL. The preliminary design of this system has been completed and an 'approval in principle' of the design has been obtained from the internal ORNL safety review committees and the U.S. Department of Energy (DOE) safety review committee. The cold source concept is basically a closed loop forced flow supercritical hydrogen system. The supercritical approach was chosen because of its enhanced stability in the proposed high heat flux regions. Neutron and gamma physics of the moderator have been analyzed using the 3D Monte Carlo code MCNP 1 A D structural analysis model of the moderator vessel, vacuum tube, and beam tube was completed to evaluate stress loadings and to examine the impact of hydrogen detonations in the beam tube. A detailed ATHENA 2 system model of the hydrogen system has been developed to simulate loop performance under normal and off-normal transient conditions. Semi-prototypic hydrogen loop tests of the system have been performed at the Arnold Engineering Design Center (AEDC) located in Tullahoma, Tennessee to verify the design and benchmark the analytical system model. A 3.5 kW refrigerator system has been ordered and is expected to be delivered to ORNL by the end of this calendar year. Our present schedule shows the assembling of the cold source loop on site during the fall of 1999 for final testing before insertion of the moderator plug assembly into the reactor beam tube during the end of the year 2000. (author)

  12. Energy for the future

    International Nuclear Information System (INIS)

    Sethna, H.N.

    1981-01-01

    The very existence of modern civilization is dependent on the supply of energy which comes from sun, geothermal energy sources, hydroelectricity, tides, ocean winds and nuclear sources. Potential of these sources for long-term solution of man's energy problems is examined. Nuclear source of energy is discussed in detail and other sources are dealt in brief. Fission reactor system which is now generating power on commercial basis is described. The work being done on thermonuclear fusion reactor system to make it a practical system is surveyed. Research programs on laser and particle beam fusion are described. (M.G.B.)

  13. Non conventional energy sources and energy conservation

    International Nuclear Information System (INIS)

    Bueno M, F.

    1995-01-01

    Geographically speaking, Mexico is in an enviable position. Sun, water, biomass and geothermal fields main non conventional energy sources with commercial applications, are presents and in some cases plentiful in national territory. Moreover the coastal tidal power which is in research stage in several countries. Non conventional energy sources are an alternative which allow us to reduce the consumption of hydrocarbons or any other type of primary energetic, are not by oneself choices for the energy conservation, but energy replacements. At the beginning of this year, CONAE created the Direction of Non conventional Energy Sources, which main objective is to promote and impulse programs inclined towards the application of systems based in renewable energy sources. The research centers represent a technological and consultative support for the CONAE. They have an infrastructure developed along several years of continuous work. The non conventional energy sources will be a reality at the same time that their cost be equal or lower than the cost for the traditional generating systems. CONAE (National Commission for Energy Conservation). (Author)

  14. Cold neutron source conceptual designing for Tehran Research Reactor

    International Nuclear Information System (INIS)

    Khajvand, N.; Mirvakili, S.M.; Faghihi, F.

    2016-01-01

    Highlights: • Cold neutron source conceptual designing for Tehran research reactor is carried out. • Type and geometry of moderator and dimensions of cold neutron source are analyzed. • Liquid hydrogen with more ortho-concentration can be better option as moderator. - Abstract: A cold neutron source (CNS) conceptual designing for the Tehran Research Reactor (TRR) were carried out using MCNPX code. In this study, a horizontal beam tube of the core which has appropriate the highest thermal flux is selected and parametric analysis to choose the type and geometry of the moderator, and the required CNS dimensions for maximizing the cold neutron production was performed. In this design the moderator cell has a spherical annulus structure, and the cold neutron flux and its brightness are calculated together with the nuclear heat load of the CNS for a variety of materials including liquid hydrogen, liquid deuterium, and solid methane. Based on our study, liquid hydrogen with more ortho-concentration than para and solid methane are the best options.

  15. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  16. Fusion reactor start-up without an external tritium source

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S., E-mail: Shanliang.Zheng@ccfe.ac.uk; King, D.B.; Garzotti, L.; Surrey, E.; Todd, T.N.

    2016-02-15

    Highlights: • Investigated the feasibility (including plasma physics, neutronics and economics) of starting a fusion reactor from running pure D–D fusion reactor to gradually move towards the D–T operation. • Proposed building up tritium from making use of neutrons generated by D–D fusion reactions. • Studied plasma physics feasibility for pure D–D operation and provided consistent fusion power and neutron yield in the plasma with different mixture of deuterium and tritium. • Discussed the economics aspect for operating a pure D–D fusion reactor towards a full-power D–T fusion reactor. - Abstract: It has long been recognised that the shortage of external tritium sources for fusion reactors using D–T, the most promising fusion fuel, requires all such fusion power plants (FPP) to breed their own tritium. It is also recognised that the initial start-up of a fusion reactor will require several kilograms of tritium within a scenario in which radioactive decay, ITER and subsequent demonstrator reactors are expected to have consumed most of the known tritium stockpile. To circumvent this tritium fuel shortage and ultimately achieve steady-state operation for a FPP, it is essential to first accumulate sufficient tritium to compensate for loss due to decay and significant retention in the materials in order to start a new FPP. In this work, we propose to accumulate tritium starting from D–D fusion reactions, since D exists naturally in water, and to gradually build up the D–T plasma targeted in fusion reactor designs. There are two likely D–D fusion reaction channels, (1) D + D → T + p, and (2) D + D → He3 + n. The tritium can be generated via the reaction channel ‘(1)’ and the 2.45 MeV neutrons from ‘(2)’ react with lithium-6 in the breeding blanket to produce more tritium to be fed back into plasma fuel. Quantitative evaluations are conducted for two blanket concepts to assess the feasibility and suitability of this approach to FPP

  17. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    International Nuclear Information System (INIS)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C.

    2013-01-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD 2 ) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD 2 source will be presented. To achieve these gains, a large volume (35 litres) of LD 2 is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD 2 . The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD 2 at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that installation of the LD 2 cold

  18. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C. [NIST Center for Neutron Research, Gaithersburg (United States)

    2013-07-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD{sub 2}) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD{sub 2} source will be presented. To achieve these gains, a large volume (35 litres) of LD{sub 2} is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD{sub 2}. The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD{sub 2} at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that

  19. Study of the External Neutron Source Effect on TRU Burning in a Sub-critical Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Zafar Iqbal; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    One of the drawback points of nuclear power is the production of highly radioactive and long lasting waste isotopes during power production. Therefore, most important design requirement of future nuclear option should have a potential to burn selectively long-lived fission products (LLFP) and long-lived minor actinides (LLMA). However, there is no way to burn them selectively in the reactor core. Practical method of waste transmutation should rely on selective separation of them from spent nuclear fuel of power plants. Under the proliferation concern, direct separation of trans-uranic isotopes (TRU) from pyro-reprocessing plant became a feasible option in our country. Even though social political agreement is not matured as well as technical feasibility, current study is done based on basic assumptions; TRU and LLFP is separated from spent fuel of nuclear power plants. The remaining neutrons (among the external 3%) very few in number (less than 1% in any case) being very energetic (above three MeV or so) do cause much more fissions per neutron than their counterparts but, because of their overall low population they do not have any significant and decisive influence in the overall reactor performance. Currently, entire study is limited to the source neutron energy of 20 MeV only. In future, it is expected to get reasonably plausible fixed source dependent difference in the TRU burning by using tabulated data for the neutrons of higher energy (up to 250 MeV at least). Secondly, a clearer picture is expected if the TRU loading was increased from the current value of 133 kg to few metric tons, as is the case in most of the existing reactors.

  20. Radiation protection programme for LEU miniature source reactor

    International Nuclear Information System (INIS)

    Beinpuo, Ernest Sanyare Warmann

    2015-02-01

    A radiation protection program has been developed to promote radiation dose reduction. It emphasize radiological protection fundamentals geared at reducing radiation from the application of the research reactor at the reactor center of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission. The objectives of the radiation safety program are both to ensure that nuclear scientists and technicians are exposed to a minimum of ionizing radiation and to protect employees and facility users and surrounding community from any potentially harmful effects of nuclear research reactor at GAEC. The primary purpose of the radiation control program is to assure radiological safety of all personnel and the public to guarantee that ionizing radiation arising out of the operations of the Research Reactor at the Reactor Center does not adversely affect personnel, the general public or the environment. This program sets forth polices, regulations, and procedures approved by the Centers Radiation Control Committee. The regulations and procedures outlined in this program are intended to protect all individuals with a minimum of interference in their activities and are consistent with regulations of the Radiation Protection Board (RPB) applicable to ionizing radioactive producing devices. (au)

  1. High Temperature Reactors for a new IAEA Coordinated Research Project on energy neutral mineral development processes

    Energy Technology Data Exchange (ETDEWEB)

    Haneklaus, Nils, E-mail: n.haneklaus@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, 4118 Etcheverry Hall, MC 1730, Berkeley, CA 94720-1730 (United States); Reitsma, Frederik [IAEA, Division of Nuclear Power, Section of Nuclear Power Technology Development, VIC, PO Box 100, Vienna 1400 (Austria); Tulsidas, Harikrishnan [IAEA, Division of Nuclear Fuel Cycle and Waste Technology, Section of Nuclear Fuel Cycle and Materials, VIC, PO Box 100, Vienna 1400 (Austria)

    2016-09-15

    The International Atomic Energy Agency (IAEA) is promoting a new Coordinated Research Project (CRP) to elaborate on the applicability and potential of using High Temperature Reactors (HTRs) to provide process heat and/or electricity to power energy intensive mineral development processes. The CRP aims to provide a platform for cooperation between HTR-developers and mineral development processing experts. Energy intensive mineral development processes with (e.g. phosphate-, gold-, copper-, rare earth ores) or without (e.g. titanium-, aluminum ore) the possibility to recover accompanying uranium and/or thorium that could be developed and used as raw material for nuclear reactor fuel enabling “energy neutral” processing of the primary ore if the recovered uranium and/or thorium is sufficient to operate the greenhouse gas lean energy source used shall be discussed according to the participants needs. This paper specifically focuses on the aspects to be addressed by HTR-designers and developers. First requirements that should be fulfilled by the HTR-designs are highlighted together with the desired outcomes of the research project.

  2. Ultracold neutron source at the PULSTAR reactor: Engineering design and cryogenic testing

    Energy Technology Data Exchange (ETDEWEB)

    Korobkina, E., E-mail: ekorobk@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, 2500 Stinson Drive, Box 7909, Raleigh, NC 27695 (United States); Medlin, G. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Wehring, B.; Hawari, A.I. [Department of Nuclear Engineering, North Carolina State University, 2500 Stinson Drive, Box 7909, Raleigh, NC 27695 (United States); Huffman, P.R.; Young, A.R. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Beaumont, B. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Palmquist, G. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States)

    2014-12-11

    Construction is completed and commissioning is in progress for an ultracold neutron (UCN) source at the PULSTAR reactor on the campus of North Carolina State University. The source utilizes two stages of neutron moderation, one in heavy water at room temperature and the other in solid methane at ∼40K, followed by a converter stage, solid deuterium at 5 K, that allows a single down scattering of cold neutrons to provide UCN. The UCN source rolls into the thermal column enclosure of the PULSTAR reactor, where neutrons will be delivered from a bare face of the reactor core by streaming through a graphite-lined assembly. The source infrastructure, i.e., graphite-lined assembly, heavy-water system, gas handling system, and helium liquefier cooling system, has been tested and all systems operate as predicted. The research program being considered for the PULSTAR UCN source includes the physics of UCN production, fundamental particle physics, and material surface studies of nanolayers containing hydrogen. In the present paper we report details of the engineering and cryogenic design of the facility as well as results of critical commissioning tests without neutrons.

  3. Determination of noise sources and space-dependent reactor transfer functions from measured output signals only

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; van Dam, H.; Kleiss, E.B.J.; van Uitert, G.C.; Veldhuis, D.

    1982-01-01

    The measured cross power spectral densities of the signals from three neutron detectors and the displacement of the control rod of the 2 MW research reactor HOR at Delft have been used to determine the space-dependent reactor transfer function, the transfer function of the automatic reactor control system and the noise sources influencing the measured signals. From a block diagram of the reactor with control system and noise sources expressions were derived for the measured cross power spectral densities, which were adjusted to satisfy the requirements following from the adopted model. Then for each frequency point the required transfer functions and noise sources could be derived. The results are in agreement with those of autoregressive modelling of the reactor control feed-back loop. A method has been developed to determine the non-linear characteristics of the automatic reactor control system by analysing the non-gaussian probability density function of the power fluctuations.

  4. Determination of noise sources and space-dependent reactor transfer functions from measured output signals only

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1982-01-01

    The measured cross power spectral densities of the signals from three neutron detectors and the displacement of the control rod of the 2 MW research reactor HOR at Delft have been used to determine the space-dependent reactor transfer function, the transfer function of the automatic reactor control system and the noise sources influencing the measured signals. From a block diagram of the reactor with control system and noise sources expressions were derived for the measured cross power spectral densities, which were adjusted to satisfy the requirements following from the adopted model. Then for each frequency point the required transfer functions and noise sources could be derived. The results are in agreement with those of autoregressive modelling of the reactor control feed-back loop. A method has been developed to determine the non-linear characteristics of the automatic reactor control system by analysing the non-gaussian probability density function of the power fluctuations. (author)

  5. Production of the sealed gamma-radiation sources of with iridium-192 radionuclide at the WWR-K research reactor

    International Nuclear Information System (INIS)

    Petukhov, V.K.; Chernayev, V.P.; Chabeyev, N.T.; Ermakov, E.L.; Chakrov, P.V.

    2005-01-01

    Full text: Conversion orientation of the WWR-K research reactor activity was established after renewal of its operation in 1997. A priority in reactor works was determined in the decision of tasks of practical use of nuclear technologies in a national economy in the next directions: in an industry, public health services and agriculture. The items of prime tasks: development and introduction of radiation technologies and manufacturing of radioisotopes for industry. This task included both scientific and technical program in the list of works of the Republican goals. At the WWR-K reactor within the framework of the this task solution the works on pilot production of the sealed sources of radioactive radiations (SSRR) with Ir-192 radionuclide for an industry of Republic of Kazakhstan were made. Organizational questions related to the Kazakhstan authority body and the regulating documentation were solved the first of all. The second stage was the development of the techniques of creating of devices providing an samples irradiation in reactor, control of sources sealing, measurements of the equivalent radiation doze from sources and high-quality support of SSRR manufacture over all technological way. At the third stage was made a little quantity SSRR with Ir-192 radionuclide, such as GIID-A1 (G6), for 'TEKOPS-660' Gammaray Projectors. This work served as experimental check of the decisions correctness, and has allowed to remove those lacks, to find out which it was possible only during direct manufacturing of radioactive sources. During performance of all these works the following was carried out: development and release of the documents and specifications regulating work on SSRR manufacture at the Institute of Nuclear Physics; personnel preparation and certification; preparation and equipment providing of reactor hot chambers by additional devices for work with irradiated iridium samples; development and manufacturing of the devices for iridium samples irradiation in

  6. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    Science.gov (United States)

    Podwin, Agnieszka; Dziuban, Jan A.

    2017-10-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO2—a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells.

  7. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    International Nuclear Information System (INIS)

    Podwin, Agnieszka; Dziuban, Jan A

    2017-01-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO 2 —a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells. (paper)

  8. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    International Nuclear Information System (INIS)

    Vergara-Fernandez, Alberto; Vargas, Gisela; Alarcon, Nelson; Velasco, Antonio

    2008-01-01

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4(±1.5) mL g -1 dry algae d -1 , with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system

  9. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Vergara-Fernandez, Alberto; Vargas, Gisela [Escuela de Ingenieria Ambiental, Facultad de Ingenieria, Universidad Catolica de Temuco, Manuel Montt 56, Casilla 15-D, Temuco (Chile); Alarcon, Nelson [Departamento de Ingenieria Quimica, Facultad de Ingenieria y Ciencias Geologicas, Universidad Catolica del Norte (Chile); Velasco, Antonio [Centro Nacional de Investigacion y Capacitacion Ambiental del Instituto Nacional de Ecologia (CENICA-INE), Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, 09340, Mexico, DF (Mexico)

    2008-04-15

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4({+-}1.5) mL g{sup -1} dry algae d{sup -1}, with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system. (author)

  10. Nuclear energy renaissance and reactor physics. Enlightenment of PHYSOR'08

    International Nuclear Information System (INIS)

    Peng Feng

    2010-01-01

    In relation to world's growing energy demands and concerns on global warming, nuclear energy as a sustainable resource is in its new period of renaissance. This is reflected in the record number of 447 papers on the International Conference on the Physics of Reactors--PHYSOR'08 held in Switzerland in 2008. The contents of these papers include the developments and frontiers in various directions of reactor physics. Featured by vast area of subjects, these emphasize the fact that the scope of the reactor physicist's R and D interests has expands considerably in recent years. The main keynote addresses and technical plenary lectures are briefly introduced. Some items concerned by the conference, such as: the status and perspective of nuclear energy's R and D, deployment and policy in main nuclear nations, the potential role of nuclear energy in mitigation global warming and slow down the GHG release, the sustainability of resource for nuclear energy utilization. Status and outlook about the needs of research and test facilities required in nuclear energy development, etc. are discussed. (authors)

  11. Design of a homogeneous subcritical nuclear reactor based on thorium with a source of californium 252; Diseno de un reactor nuclear subcritico homogeneo a base de Torio con una fuente de Californio 252

    Energy Technology Data Exchange (ETDEWEB)

    Delgado H, C. E.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Sajo B, L., E-mail: ce_delgado89@hotmail.com [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of)

    2015-10-15

    Full text: One of the energy alternatives to fossil fuels which do not produce greenhouse gases is the nuclear energy. One of the drawbacks of this alternative is the generation of radioactive wastes of long half-life and its relation to the generation of nuclear materials to produce weapons of mass destruction. An option to these drawbacks of nuclear energy is to use Thorium as part of the nuclear fuel which it becomes in U{sup 233} when capturing neutrons, that is a fissile material. In this paper Monte Carlo methods were used to design a homogeneous subcritical reactor based on thorium. As neutron reflector graphite was used. The reactor core is homogeneous and is formed of 70% light water as moderator, 12% of enriched uranium UO{sub 2}(NO{sub 3}){sub 4} and 18% of thorium Th(NO{sub 3}){sub 4} as fuel. To start the nuclear fission chain reaction an isotopic source of californium 252 was used with an intensity of 4.6 x 10{sup 7} s{sup -1}. In the design the value of the effective multiplication factor, whose value turned out k{sub eff} <1 was calculated. Also, the neutron spectra at different distances from the source and the total fluence were calculated, as well as the values of the ambient dose equivalent in the periphery of the reactor. (Author)

  12. Refurbish research and test reactors corresponding to global age of nuclear energy

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Oyama, Yukio; Okamoto, Koji; Yamana, Hajime; Yamaguchi, Akira

    2011-01-01

    This special article featured arguments for refurbishment of research and test reactors corresponding to global age of nuclear energy, based on the report: 'Investigation of research facilities necessary for future joint usage' issued by the special committee of Atomic Energy Society of Japan (AESJ) in September 2010. It consisted of six papers titled as 'Introduction-establishment of AESJ special committee for investigation', 'State of research and test reactors in Japan', 'State of overseas research and test reactors', 'Needs analysis for research and test reactors', 'Proposal of AESJ special committee' and 'Summary and future issues'. In order to develop human resources and promote research and development needed in global age of nuclear energy, research and test reactors would be refurbished as an Asian regional center of excellence. (T. Tanaka)

  13. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author)

  14. Direct energy conversion of radiation energy in fusion reactor

    Science.gov (United States)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned.

  15. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author).

  16. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S. [National Inst. for Fusion Science, Nagoya (Japan); Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-12-31

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author).

  17. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-01-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author)

  18. Moderators for the design of a cold neutron source for the RA 3 reactor

    International Nuclear Information System (INIS)

    Cantargi, F; Sbaffoni, M; Granada, R

    2004-01-01

    The cold neutron production of hydrogenous materials was studied, taking into account their radiation resistance, for the conceptual design of a cold neutron source for the RA-3 reactor.Low spontaneous release of chemical energy was found in mesitylene.Libraries for hidrogen in mesitylene were generated using the NJOY nuclear processing system and the resulting cross sections were compared with experimental data.Good agreement between measurements and calculations was found in those cases where data are available.New calculations using the RA-3 geometry and these validated libraries will be performed [es

  19. Development of source range measurement instrument in Xi'an pulsed reactor

    CERN Document Server

    Wang Li

    2002-01-01

    Source range measurement instrument in Xi'an pulsed reactor is key equipment of low-side measuring in source range. At the same time, it is also weighty component of out-of-pile neutron-flux level observation system. The authors have done some researching and renovating based on the similar type devices used in nuclear reactor to improve the meter sensitivity, measuring range, noise proof features, reliability in running and maintainability which belong to the main performance index of the instrument. The design ideas, configurations, working principle, performance indexes, technique features and effect in utilizing are introduced briefly

  20. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  1. A Small Modular Reactor Design for Multiple Energy Applications: HTR50S

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X.; Tachibana, Y.; Ohashi, H.; Sato, H.; Tazawa, Y.; Kunitomi, K. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2013-06-15

    HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's 950 .deg. C, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to 750 .deg. C for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to 900 .deg. C for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

  2. Regulatory Technology Development Plan - Sodium Fast Reactor: Mechanistic Source Term - Trial Calculation

    International Nuclear Information System (INIS)

    Grabaskas, David

    2016-01-01

    The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is not without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.

  3. Power Burst Reactor Facility as an epithermal neutron source for brain cancer therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.

    1986-01-01

    The Power Burst Facility (PBF) reactor is considered for modification to provide an intense, clean source of intermediate-energy (epithermal) neutrons desirable for clinical studies of neutron capture therapy (NCT) for malignant tumors. The modifications include partial replacement of the reflector, installation of a neutron-moderating, shifting region, additional shielding, and penetration of the present concrete shield with a collimating (and optionally) filtering region. The studies have indicated that the reactor, after these modifications, will be safely operable at full power (28 MW) within the acceptable limits of the plant protection systems. The neutron beam exiting from the collimator port is predicted to be of sufficient intensity (approx.10 10 neutrons/cm 2 -s) to provide therapeutic doses in very short irradiation times. The beam would be relatively free of undesirable fast neutrons, thermal neutrons and gamma rays. The calculated neutron energy spectrum and associated gamma rays in the beam were provided as input in simulation studies that used a computer model of a patient with a brain tumor to determine predicted dose rates to the tumor and healthy tissue. The results of this conceptual study indicate an intense, clean beam of epithermal neutrons for NCT clinical trials is attainable in the PBF facility with properly engineered design modifications. 9 refs., 11 figs., 3 tabs

  4. A Derivation of Source-based Kinetics Equation with Time Dependent Fission Kernel for Reactor Transient Analyses

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Woo, Myeong Hyun; Shin, Chang Ho; Pyeon, Cheol Ho

    2015-01-01

    In this study, a new balance equation to overcome the problems generated by the previous methods is proposed using source-based balance equation. And then, a simple problem is analyzed with the proposed method. In this study, a source-based balance equation with the time dependent fission kernel was derived to simplify the kinetics equation. To analyze the partial variations of reactor characteristics, two representative methods were introduced in previous studies; (1) quasi-statics method and (2) multipoint technique. The main idea of quasistatics method is to use a low-order approximation for large integration times. To realize the quasi-statics method, first, time dependent flux is separated into the shape and amplitude functions, and shape function is calculated. It is noted that the method has a good accuracy; however, it can be expensive as a calculation cost aspect because the shape function should be fully recalculated to obtain accurate results. To improve the calculation efficiency, multipoint method was proposed. The multipoint method is based on the classic kinetics equation with using Green's function to analyze the flight probability from region r' to r. Those previous methods have been used to analyze the reactor kinetics analysis; however, the previous methods can have some limitations. First, three group variables (r g , E g , t g ) should be considered to solve the time dependent balance equation. This leads a big limitation to apply large system problem with good accuracy. Second, the energy group neutrons should be used to analyze reactor kinetics problems. In time dependent problem, neutron energy distribution can be changed at different time. It can affect the change of the group cross section; therefore, it can lead the accuracy problem. Third, the neutrons in a space-time region continually affect the other space-time regions; however, it is not properly considered in the previous method. Using birth history of the neutron sources

  5. An accelerator-driven reactor for meeting future energy demand

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Yang, Y.; Yu, A.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel

  6. Energy balance and efficiency of power stations with a pulsed Tokamak reactor

    International Nuclear Information System (INIS)

    Davenport, P.A.; Mitchell, J.T.D.; Darvas, J.; Foerster, S.; Sack, B.

    1976-06-01

    The energy balance of a fusion power station based on the TOKAMAK concept is examined with the aid of a model comprising three distinct elements: the reactor, the energy converter and the reactor operation equipment. The efficiency of each element is expressed in terms of the various energy flows and the product of these efficiencies gives the net station efficiency. The analysis takes account of pulsed operation and has general applicability. Numerical values for the net station efficiency are derived from detailed estimates of the energy flows for a TOKAMAK reactor and its auxiliary equipment operating with advanced energy converters. The derivation of these estimates is given in eleven appendices. The calculated station efficiencies span ranges similar to those quoted for the current generation of fission reactors, though lower than those predicted for HTGR and LMFBR stations. Credible parameter domains for pulsed TOKAMAK operation are firmly delineated and factors inimical to improved performance are indicated. It is concluded that the net thermal efficiency of a TOKAMAK reactor power station based on present designs and using advanced thermal converters will be approximately 0.3 and is unlikely to exceed 0.33. (orig.) [de

  7. Toward a sustainable energy supply with reduced environmental burden. Development of metal fuel fast reactor cycle

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Kobayashi, Hiroaki; Kinoshita, Kensuke

    2009-01-01

    CRIEPI has been studying the metal fuel fast reactor cycle as an outstanding alternative for the future energy sources. In this paper, development of the metal fuel cycle is reviewed in the view point of technological feasibility and material balance. Preliminary estimation of reduction of the waste burden due to introduction of the metal fuel cycle technology is also reported. (author)

  8. The story of fission reactors: from Chicago Pile to advanced energy systems

    International Nuclear Information System (INIS)

    Kannan, Umasankari

    2017-01-01

    Nuclear reactors have been designed which cater to different applications from small research reactors of a few watts to power reactors of several Giga Watts. Based on the neutron energy, there are thermal, intermediate and fast reactors operating are being designed. On the fuel utilization front, there are designs ranging from reactors using natural uranium fuel to enriched uranium to more efficient thorium based reactors. Reactors have also been designed which are neutron eaters, minor actinide burners and breeders. There have been variety of coolant and moderating materials used for different applications from water, gas cooled, liquid sodium cooled to molten salt cooled reactors. Several new reactor designs have been developed using innovative concepts in high temperature reactors, nuclear power packs and compact reactors for special purposes. The design challenges are many from modest designs to complicated hybrid reactors. The GEN-IV forum of IAEA has selected a few of these reactor designs for commercial power production in the coming years based on several quantified indicators. The evolutionary and revolutionary design approaches have been made over the years catering to different need of energy generation. A glimpse of some of the reactors being currently developed and the design modifications done in existing reactors have been given in this paper

  9. On material and energy sources of formation of fuel-containing materials during Chernobyl NPP UNIT 4 accident

    Directory of Open Access Journals (Sweden)

    O. V. Mikhailov

    2016-12-01

    Full Text Available Results of detailed analysis of material substance of lava-like fuel-containing materials sources (FCM and clusters with high uranium concentration were presented. Material and energy balance are aggregated in a process model for optimal composition of sacrificial materials and FCM. Quantitative estimate is given for spent nuclear fuel’ afterheat in a number of other heat energy sources in reactor vault. Conclusion was made that upon condition of 50 % heat loss, remained amount of “useful” heat would be sufficient for proceeding of blast furnace version of fuel-containing materials.

  10. Renewable sources of energy

    International Nuclear Information System (INIS)

    Wojas, K.

    1996-01-01

    The author takes a look at causes of the present interest in the renewable, natural sources of energy. These are: the fuel deposits becoming exhausted, hazard to environment (especially carbon dioxide) and accessibility of these sources for under-developed countries. An interrelation is shown between these sources and the energy circulations connected with atmosphere and ocean systems. The chief ones from among them that are being used now are discussed, i.e. solar radiation, wind, water waves energy, tides, geothermal heat, and the like. Problems of conversion of the forms of these kinds of energy are also given a mention. (author)

  11. Investigation of structural materials of reactors using high-energy heavy-ion irradiations

    International Nuclear Information System (INIS)

    Wang Zhiguang

    2007-01-01

    Radiation damage in structural materials of fission/fusion reactors is mainly attributed to the evolution of intensive atom displacement damage induced by energetic particles (n, α and/or fission fragments) and high-rate helium doping by direct α particle bombardments and/or (n, α) reactions. It can cause severe degradation of reactor structural materials such as surface blistering, bulk void swelling, deformation, fatigue, embrittlement, stress erosion corrosion and so on that will significantly affect the operation safety of reactors. However, up to now, behavior of structural materials at the end of their service can hardly be fully tested in a real reactor. In the present work, damage process in reactor structural materials is briefly introduced, then the advantages of energetic ion implantation/irradiation especially high-energy heavy ion irradiation are discussed, and several typical examples on simulation of radiation effects in reactor candidate structural materials using high-energy heavy ion irradiations are pronounced. Experimental results and theoretical analysis suggested that irradiation with energetic particles especially high-energy heavy ions is very useful technique for simulating the evolution of microstructures and macro-properties of reactor structural materials. Furthermore, an on-going plan of material irradiation experiments using high energy H- and He-ions based on the Heavy Ion Research Facilities in Lanzhou (HIRFL) is also briefly interpreted. (authors)

  12. Mirror machine reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1976-01-01

    Recent mirror reactor conceptual design studies are described. Considered in detail is the design of ''standard'' Yin-Yang fusion power reactors with classical and enhanced confinement. It is shown that to be economically competitive with estimates for other future energy sources, mirror reactors require a considerable increase in Q, or major design simplifications, or preferably both. These improvements may require a departure from the ''standard'' configuration. Two attractive possibilities, both of which would use much of the same physics and technology as the ''standard'' mirror, are the field reversed mirror and the end-stoppered mirror

  13. Perspective of nuclear energy and advanced reactors

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Cobian, J.

    2007-01-01

    Future nuclear energy growth will be the result of the contributions of every single plant being constructed or projected at present as it is connected to the grid. As per IAEA, there exists presently 34 nuclear power plants under construction 81 with the necessary permits and funding and 223 proposed, which are plants seriously pursuing permits and financing. This means that in a few decades the number of nuclear power plants in operation will have doubled. This growth rate is characterised by the incorporation of new countries to the nuclear club and the gradually increasing importance of Asian countries. During this expansive phase, generation III and III+designs are or will be used. These designs incorporate the experience from operating plants, and introduce innovations on rationalization design efficiency and safety, with emphasis on passive safety features. In a posterior phase, generation IV designs, presently under development, will be employed. Generation IV consists of several types of reactors (fast reactors, very high temperature reactors, etc), which will improve further sustain ability, economy, safety and reliability concepts. The described situation seems to lead to a renaissance of the nuclear energy to levels hardly thinkable several years ago. (Author)

  14. Experiment calculated ascertainment of factors affecting the energy release in IGR reactor core

    International Nuclear Information System (INIS)

    Kurpesheva, A.M.; Zhotabayev, Zh.R.

    2006-01-01

    Full text: At present energy supply resources problem is important. Nuclear reactors can, of course, solve this problem, but at the same time there is another issue, concerning safety exploitation of nuclear reactors. That is why, for the last seven years, such experiments as 'Investigation of the processes, conducting severe accidents with core melting' are being carried out at our IGR (impulse graphite reactor) reactor. Leaving out other difficulties of such experiments, it is necessary to notice, that such experiments require more accurate IGR core energy release calculations. The final aim of the present research is verification and correction of the existing method or creation of new method of IGR core energy release calculation. IGR reactor is unique and there is no the same reactor in the world. Therefore, application of the other research reactor methods here is quite useful. This work is based on evaluation of factors affecting core energy release (physical weight of experimental device, different configuration of reactor core, i.e. location of absorbers, initial temperature of core, etc), as well as interference of absorbers group. As it is known, energy release is a value of integral reactor power. During experiments with rays, Reactor power depends on currents of ion production chambers (IPC), located round the core. It is worth to notice that each ion production chamber (IPC) in the same start-up has its own ratio coefficient between IPC current and reactor present power. This task is complicated due to 'IPC current - reactor power' ratio coefficients, that change continuously, probably, because of new loading of experimental facility and different position of control rods. That is why, in order to try about reactor power, before every start-up, we have to re-determine the 'IPC current - reactor power' ratio coefficients for each ion production chamber (IPC). Therefore, the present work will investigate the behavior of ratio coefficient within the

  15. MAPLE research reactor beam-tube performance

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Gillespie, G.E.

    1989-05-01

    Atomic Energy of Canada Limited (AECL) has been developing the MAPLE (Multipurpose Applied Physics Lattice Experimental) reactor concept as a medium-flux neutron source to meet contemporary research reactor applications. This paper gives a brief description of the MAPLE reactor and presents some results of computer simulations used to analyze the neutronic performance. The computer simulations were performed to identify how the MAPLE reactor may be adapted to beam-tube applications such as neutron radiography

  16. Optimizing a three-element core design for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    West, C.D.

    1995-01-01

    Source of neutrons in the proposed Advanced Neutron Source facility is a multipurpose research reactor providing 5-10 times the flux, for neutron beams, of the best existing facilities. Baseline design for the reactor core, based on the ''no new inventions'' rule, was an assembly of two annular fuel elements similar to those used in the Oak Ridge and Grenoble high flux reactors, containing highly enriched U silicide particles. DOE commissioned a study of the use of medium- or low-enriched U; a three-element core design was studied as a means to provide extra volume to accommodate the additional U compound required when the fissionable 235 U has to be diluted with 238 U to reduce the enrichment. This paper describes the design and optimization of that three-element core

  17. Energy sources for the future

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, J.L.; Cloutier, R.J. (eds.)

    1977-04-01

    The symposium program was designed for college faculty members who are teaching or plan to teach energy courses at their educational institutions. Lectures were presented on socio-economic aspects of energy development, fusion reactors, solar energy, coal-fired power plants, nuclear power, radioactive waste disposal, and radiation hazards. A separate abstract was prepared for each of 16 of the 18 papers presented; two papers were processed earlier: Residential Energy Use Alternatives to the Year 2000, by Eric Hurst (EAPA 2:257; ERA 1:25978) and The Long-Term Prospects for Solar Energy, by W. G. Pollard (EAPA 3:1008). Fourteen of the papers are included in Energy Abstracts for Policy Analysis. (EAPA).

  18. Diversification of energy sources

    Science.gov (United States)

    1975-01-01

    The concept of energy source diversification was introduced as a substitution conservation action. The current status and philosophy behind a diversification program is presented in the context of a national energy policy. Advantages, disadvantages (constraints), and methods of implementation for diversification are discussed. The energy source systems for diversification are listed and an example impact assessment is outlined which deals with the water requirements of the specific energy systems.

  19. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1980-01-01

    The law intends under the principles of the atomic energy act to regulate the refining, processing and reprocessing businesses of nuclear raw and fuel metarials and the installation and operation of reactors for the peaceful and systematic utilization of such materials and reactors and for securing public safety by preventing disasters, as well as to control internationally regulated things for effecting the international agreements on the research, development and utilization of atomic energy. Basic terms are defined, such as atomic energy; nuclear fuel material; nuclear raw material; nuclear reactor; refining; processing; reprocessing; internationally regulated thing. Any person who is going to engage in refining businesses other than the Power Reactor and Nuclear Fuel Development Corporation shall get the special designation by the Prime Minister and the Minister of International Trade Industry. Any person who is going to engage in processing businesses shall get the particular admission of the Prime Minister. Any person who is going to establish reactors shall get the particular admission of the Prime Minister, The Minister of International Trade and Industry or the Minister of Transportation according to the kinds of specified reactors, respectively. Any person who is going to engage in reprocessing businesses other than the Power Reactor and Nuclear Fuel Development Corporation and the Japan Atomic Energy Research Institute shall get the special designation by the Prime Minister. The employment of nuclear fuel materials and internationally regulated things is defined in detail. (Okada, K.)

  20. The development of breeder reactors in Japan

    International Nuclear Information System (INIS)

    Segawa, M.

    1984-01-01

    In the framework of a global analysis of the various available sources of energy, Japan has reserved a prominent place to the nuclear energy and, in the long-term view, to the breeder reactor which will be due for commercial deployment in 20)10. To achieve these objectives, three stages are envisaged, one of the experimental reactor Joyo (in service), one of the demonstration reactor Monju (its construction has been decided), and one of the pre-commercial reactor (due to be taken in hand at the beginning of the Nineties). Efforts will be made in parallel concerning the fuel cycle [fr

  1. The energy gap and the fast reactor

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    The background to the development of fast reactors is summarized. In Britain, the results of the many experiments performed, the operation of the Dounreay Fast Reactor for the past 18 years and the first year's operation of the larger Prototype Fast Reactor have all been very encouraging, in that they demonstrated that the performance corresponded well with predictions, breeding is possible, and the system is exceptionally stable in operation. The next step in fast reactor engineering is to build a full-scale fast reactor power station. There would seem to be little reason to expect more trouble than could reasonably be expected in constructing any large project of this general nature. However, from an engineering point of view continuity of experience is required. If a decision to build a commercial fast reactor were taken today there would be a 14-year gap between strating this and the start of the Prototype Fast Reactor. This is already much too long. From an environmental standpoint we have to demonstrate that we can manufacture and reprocess fast reacctor fuel for a substantial programme in a way that does not lead to pollution of the environment, and that plutonium-containing fuel can be transported in the quantities required in safety and in a way that does not attract terrorists or require a private army to ensure its security. Finally, we have to find a way to allow many countries to obtain the energy they need from fast reactors, without leading to the proliferation of nuclear weapons or weapons capability. (author)

  2. Source-to-incident flux relation for a tokamak fusion test reactor blanket module

    International Nuclear Information System (INIS)

    Imel, G.R.

    1982-01-01

    The source-to-incident 14-MeV flux relation for a blanket module on the Tokamak Fusion Test Reactor is derived. It is shown that assumptions can be made that allow an analytical expression to be derived, using point kernel methods. In addition, the effect of a nonuniform source distribution is derived, again by relatively simple point kernel methods. It is thought that the methodology developed is valid for a variety of blanket modules on tokamak reactors

  3. Alternative energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Ruiter, J P [N. V. Kema te Arnhem, NL

    1975-01-01

    A review of alternative energy sources is presented. Solar energy may be used by collecting the heat for direct use or by converting it to electricity. Flat-plate and concentrating collectors are described. Wind energy is an indirect form of solar energy, and has been used for many years in the Netherlands. Calculations of the efficiency of windmills, and of the useful available wind energy along the Netherlands' coastline, are provided. The conversion of organic waste to useable energy is described, including techniques of pyrolysis, combustion, and biological conversion. Tidal energy and ocean-thermal-gradient power plants are briefly described. Geothermal energy is a particularly attractive resource. The average temperature gradient is about 30/sup 0/C/km, ranging from 10/sup 0/C/km in South Africa to 150/sup 0/C/km in Italy. In the Netherlands it ranges from 20-50/sup 0/C/km. The various types of geothermal systems (steam, water, geopressured) are reviewed, and presently operating geothermal power plants are described. A comparison is made of the costs of various energy sources, and 27 references are provided.

  4. The keys to success in marketing small heating reactors

    International Nuclear Information System (INIS)

    McDougall, D.S.; Lynch, G.F.

    1988-01-01

    The success of the SLOWPOKE Energy System requires acceptance of the SLOWPOKE reactor within the community where the reactor's energy is to be used. Public acceptance will be obtained once the public is convinced that this nuclear heat source is needed, safe and of economic benefit to the community. The need for a new application of nuclear energy is described and the ability of small reactors used for district heating to play that role is shown. The safety of the reactor is being demonstrated with the establishment of the SLOWPOKE Demonstration Reactor by Atomic Energy of Canada Limited and with open, candid discussion with the involved community. Economic arguments are reviewed and include discussion of quantitative and qualitative issues. (orig.)

  5. Design study of superconducting inductive energy storages for tokamak fusion reactor

    International Nuclear Information System (INIS)

    1977-08-01

    Design of the superconducting inductive energy storages (SC-IES) has been studied. One SC-IES is for the power supply system in a experimental tokamak fusion reactor, and the other in a future practical reactor. Study started with definition of the requirements of SC-IES, followed by optimization of the coil shape and determination of major parameters. Then, the coil and the vessel were designed, including the following: for SC-IES of the experimental reactor, stored energy 10 GJ, B max 8 T, conductor NbTi and size 18 m diameter x 10 m height; for SC-IES of the practical reactor, stored energy 56 GJ, B max 10.5 T, conductor Nb 3 Sn and size 26 m diameter x 15 m height. Design of the coil protection system and an outline of the auxiliary systems (for refrigeration and evacuation) are also given, and further, problems and usefullness of SC-IES. (auth.)

  6. Researches at the University of Tokyo fast neutron sources reactor, YAYOI

    International Nuclear Information System (INIS)

    Koshizuka, S.; Oka, Y.; Saito, I.

    1992-01-01

    The Fast neutron source reactor YAYOI was critical in 1971 at the Nuclear Engineering Research Laboratory, the Faculty of Engineering, the University of Tokyo (UTNL). The core is fueled with the enriched uranium surrounded by the depleted uranium. YAYOI is the first fast reactor in Japan. Many types of studies have been carried out by the researchers of the University of Tokyo in these 20 years. It also contributed to the Japan's national project of developing fast breeder reactors. The reactor is opened to the visiting researchers from universities and research institutes. YAYOI has also been utilized for education of undergraduate and graduate students of the Department of Nuclear Engineering of the University of Tokyo. The present paper briefly summerizes past and present researchers. (author)

  7. Contribution of recently measured nuclear data to reactor antineutrino energy spectra predictions

    Directory of Open Access Journals (Sweden)

    Fallot M.

    2013-12-01

    Full Text Available This paper attempts to summarize the actual problematic of reactor antineutrino energy spectra in the frame of fundamental and applied neutrino physics. Nuclear physics is an important ingredient of reactor antineutrino experiments. These experiments are motivated by neutrino oscillations, i.e. the measure of the θ13 mixing angle. In 2011, after a new computation of the reactor antineutrino energy spectra, based on the conversion of integral data of the beta spectra from 235U, and 239;241Pu, a deficit of reactor antineutrinos measured by short baseline experiments was pointed out. This is called the “reactor anomaly”, a new puzzle in the neutrino physics area. Since then, numerous new experimental neutrino projects have emerged. In parallel, computations of the antineutrino spectra independant from the ILL data would be desirable. One possibility is the use of the summation method, summing all the contributions of the fission product beta decay branches that can be found in nuclear databases. Studies have shown that in order to obtain reliable summation antineutrino energy spectra, new nuclear physics measurements of selected fission product beta decay properties are required. In these proceedings, we will present the computation methods of reactor antineutrino energy spectra and the impact of recent beta decay measurements on summation method spectra. The link of these nuclear physics studies with short baseline line oscillation search will be drawn and new neutrino physics projects at research reactors will be briefly presented.

  8. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power

  9. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5x10 19 m -2 ·sec -1 . Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities

  10. Nontraditional renewable energy sources

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1997-01-01

    The paper considers the application possibilities of nontraditional renewable energy sources to generate electricity, estimates the potential of nontraditional sources using energy of Sun, wind, biomass, as well as, geothermal energy and presents the results of economical analysis of cost of electricity generated by solar electrical power plants, geothermal and electrical plants and facilities for power reprocessing of biomass. 1 tab

  11. The change in power engineering brought about by utilizing new energy sources

    International Nuclear Information System (INIS)

    Frewer, H.

    1977-01-01

    An explanation of the energy situation prevailing in the FRG after the oil crisis as well as of the tasks set for future power engineering, is followed by a survey on major technologies concerning energy conversion. The following subjects are dealt with: Standardization of light-water reactors, district heating by means of nuclear power plants with light-water reactors, fossil coal gasification for generating methane, hydrogen and synthetic fuels, nuclear district energy, the potential of alternative options for generating energy (sun, wind, fusion, etc.), energy conservation, energy storage and energy transportation, and the importance of the fast breeder reactor for energy supply. (UA) [de

  12. Nuclear reactor plant for production process heat

    International Nuclear Information System (INIS)

    Weber, M.

    1979-01-01

    The high temperature reactor is suitable as a heat source for carrying out endothermal chemical processes. A heat exchanger is required for separating the reactor coolant gases and the process medium. The heat of the reactor is transferred at a temperature lower than the process temperature to a secondary gas and is compressed to give the required temperature. The compression energy is obtained from the same reactor. (RW) [de

  13. The LOFA analysis of fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Z.-C.; Xie, H.

    2014-01-01

    The fusion-fission hybrid energy reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc, with the fusion neutron source striking the subcritical blanket. The passive safety system, consisting of passive residual heat removal system, passive safety injection system and automatic depressurization system, was adopted into the fusion-fission hybrid energy reactor in this paper. Modeling and nodalization of primary loop, passive core cooling system and partial secondary loop of the fusion-fission hybrid energy reactor using RELAP5 were conducted and LOFA (Loss of Flow Accident) was analyzed. The results of key transient parameters indicated that the PRHRs could mitigate the accidental consequence of LOFA effectively. It is also concluded that it is feasible to apply the passive safety system concept to fusion-fission hybrid energy reactor. (author)

  14. Summary of international energy research and development activities, 1974--1976

    International Nuclear Information System (INIS)

    1977-11-01

    This directory includes information covering 3017 ongoing and recently completed energy research projects conducted in Canada, Italy, the Federal Republic of Germany, France, The Netherlands, the United Kingdom, Denmark, Sweden, Israel, and 18 other countries. This information was registered with the Smithsonian Science Information Exchange (SSIE) by supporting organizations in the nine countries listed and by international organizations such as the International Atomic Energy Agency. All narrative information presented in the directory and, in some cases, organization names were translated into English. In addition to the title and text of project summaries, the directory contains the following indexes: Subject Index, Investigator Index, Performing Organization Index, and Supporting Organization Index. To reflect particular facets of energy research, the Subject Index is cross-referenced. The Subject Index is based upon the SSIE classification system, which organizes index terms in hierarchies to relate groups of narrow subject areas within broad areas. The following types of energy information are included: organic sources of energy (gas and oil; coal; peat, hydrocarbons, and nonfossil organic sources); thermonuclear energy and plasma physics; fission sources and energy production (reactor fuels assemblies and fuel management; reactor materials; reactor components; reactor thermodynamics, thermohydraulics, and mechanics; reactor safety and control; reactor testing, operations, and analysis; reactor and nuclear physics; uranium exploration and mining; reactors--general); geophysical energy sources (geothermal, hydro, solar, wave, and wind); conversion technology; environmental aspects of energy conversion and use; transport and transmission of energy; energy utilization and conservation; and energy systems and other energy research

  15. Traveling-wave reactors: A truly sustainable and full-scale resource for global energy needs

    International Nuclear Information System (INIS)

    Ellis, T.; Petroski, R.; Hejzlar, P.; Zimmerman, G.; McAlees, D.; Whitmer, C.; Touran, N.; Hejzlar, J.; Weave, K.; Walter, J. C.; McWhirter, J.; Ahlfeld, C.; Burke, T.; Odedra, A.; Hyde, R.; Gilleland, J.; Ishikawa, Y.; Wood, L.; Myhrvold, N.; Gates Iii, W. H.

    2010-01-01

    Rising environmental and economic concerns have signaled a desire to reduce dependence on hydrocarbon fuels. These concerns have brought the world to an inflection point and decisions made today will dictate what the global energy landscape will look like for the next half century or more. An optimal energy technology for the future must meet stricter standards than in the past; in addition to being economically attractive, it now must also be environmentally benign, sustainable and scalable to global use. For stationary energy, only one existing resource comes close to fitting all of the societal requirements for an optimal energy source: nuclear energy. Its demonstrated economic performance, power density, and emissions-free benefits significantly elevate nuclear electricity generation above other energy sources. However, the current nuclear fuel cycle has some attributes that make it challenging to expand on a global scale. Traveling-wave reactor (TWR) technology, being developed by TerraPower, LLC, represents a potential solution to these limitations by offering a nuclear energy resource which is truly sustainable at full global scale for the indefinite future and is deployable in the near-term. TWRs are capable of offering a ∼40-fold gain in fuel utilization efficiency compared to conventional light-water reactors burning enriched fuel. Such high fuel efficiency, combined with an ability to use uranium recovered from river water or sea-water (which has been recently demonstrated to be technically and economically feasible) suggests that enough fuel is readily available for TWRs to generate electricity for 10 billion people at United States per capita levels for million-year time-scales. Interestingly, the Earth's rivers carry into the ocean a flux of uranium several times greater than that required to replace the implied rate-of-consumption, so that the Earth's slowly-eroding crust will provide a readily-accessible flow of uranium sufficient for all of

  16. Reactor system

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Naoshi.

    1990-01-01

    The represent invention concerns a reactor system with improved water injection means to a pressure vessel of a BWR type reactor. A steam pump is connected to a heat removing system pipeline, a high pressure water injection system pipeline and a low pressure water injection system pipeline for injecting water into the pressure vessel. A pump actuation pipeline is disposed being branched from a main steam pump or a steam relieaf pipeline system, through which steams are supplied to actuate the steam pump and supply cooling water into the pressure vessel thereby cooling the reactor core. The steam pump converts the heat energy into the kinetic energy and elevates the pressure of water to a level higher than the pressure of the steams supplied by way of a pressure-elevating diffuser. Cooling water can be supplied to the pressure vessel by the pressure elevation. This can surely inject cooling water into the pressure vessel upon loss of coolant accident or in a case if reactor scram is necessary, without using an additional power source. (I.N.)

  17. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  18. Conceptual design of nuclear fusion power reactor DREAM. Reactor structures and remote maintenance

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Seki, Yasushi; Ueda, Shuzo; Kurihara, Ryoichi; Adachi, Junichi; Yamazaki, Seiichiro; Hashimoto, Toshiyuki.

    1997-01-01

    Nuclear fusion reactors are required to be able to compete another energy sources in economy, reliability, safety and environmental integrity for commercial use. In the DREAM (DRastically EAsy Maintenance) reactor, a very low activated material of SiC/SiC composite has been introduced for the structural material, a reactor configuration for very easy maintenance and the helium gas of a high temperature for the cooling system, and hence DREAM has been proven to be very attractively as the commercial power reactor due to the high availability and efficiency of the plant and minimization of radioactive wastes. (author)

  19. Electrical energy supply with permanent energy sources

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    It can be shown that there are no chances for solar and wind power plants in Northern Europe when estimating the investment costs and the floor space required. However, the decentralized utilization of the plants which is likely to become very interesting in a few years shows other results. As a complete annual balance by traditional stores would cause a considerably uneconomic increase of the investment costs supplementary energy sources are inevitable. The author points out how the various primary energy sources in question can be utilized and combined with each other. He describes the converters for the permanent (regenerative) energy sources, the available electrochemical stores and their application as well as the fundamental structures of the energy supply systems. Finally some advice is given regarding the recycling of energy and the operation by the consumers.

  20. The Chernobyl reactor accident source term: development of a consensus view

    International Nuclear Information System (INIS)

    Devell, L.; Guntay, S.; Powers, D.A.

    1995-11-01

    Ten years after the reactor accident at Chernobyl, a great deal more data is available concerning the events, phenomena, and processes that took place. The purpose of this document is to examine what is known about the radioactive materials released during the accident, a task that is substantially more difficult than it might first appear to be. The Chernobyl station, like other nuclear power plants, was not instrumented to characterize a disastrous accident. The accident was peculiar in the sense that radioactive materials were released, at least initially, in an exceptionally energetic plume and were transported far from the reactor site. Release of radioactivity from the plant continued for several days. Characterization of the contamination caused by the releases of radioactivity has had a much lower priority than remediation of the contamination. Consequently, an assessment of the Chernobyl accident source term must rely to a significant extent on inferential evidence. The assessment presented here begins with an examination of the core inventories of radioactive materials. In subsequent sections of the report, the magnitude and timing of the releases of radioactivity are described. Then, the composition, chemical forms, and physical forms of the releases are discussed. A number of more recent publications and results from scientists in Russia and elsewhere have significantly improved the understanding of the Chernobyl source term. Because of the special features of the reactor design and the peculiarities of the Chernobyl accident, the source term for the Chernobyl accident is of limited applicability to the safety analysis of other types of reactors

  1. Renewable energy sources. Erneuerbare Energien

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    To judge future trends in work on the exploitation of renewable energy sources for overall energy supply, it is necessary to know the following: the rules that nature abides by, the principles of technical exploitation of these energies, and the basic data for the current state of development. The above information is compiled in this publication for those renewable energy sources on which topical discussion centres: solar radiation and wind. For the remaining renowable energy sources (e.g. biomass, tidal power, geothermal energy), some examples of use are mentioned and advanced literature is indicated. (orig./HSCH).

  2. Gaseous fuel reactors for power systems

    Science.gov (United States)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  3. Role of small lead-cooled fast reactors for international deployment in worldwide sustainable nuclear energy supply

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Wade, D.C.; Moisseytsev, A.

    2008-01-01

    , there is a need for small and medium size fast reactors in non-fuel cycle states operating in a converter mode as well as large sodium-cooled fast breeders in fuel cycle states. Desired attributes for exportable small fast reactors include: proliferation resistance features such as restricted access to fuel; long core life further restricting access by reducing or eliminating the need for refueling; restricted potential to be misused in a breeding mode; fuel form that is unattractive in the safeguards sense; and a conversion ratio of unity to self-generate as much fissile material as is consumed. Desired attributes for exportable small reactor deployments in developing nations and remote sites also include: a small power level to match the smaller demand of towns or sites that are off-grid or on immature local grids; low enough cost to be economically competitive with alternative energy sources available to developing nation customers (e.g. diesel generators in remote locations); readily transported and assembled from transportable modules; simple to operate and highly reliable reducing plant operating staff requirements; as well as high reliability and passive safety reducing the number of accident initiators and need for safety systems as well as reducing the size of the exclusion and emergency planning zones. The Lead-Cooled Fast Reactor (LFR) has the desired attributes. An example of a small exportable LFR concept is the 20 MWe (45 MWt) Small Secure Transportable Autonomous Reactor (SSTAR) incorporating proliferation resistance, fissile selfsufficiency, autonomous load following, a high degree of passive safety, and supercritical carbon dioxide Brayton cycle energy conversion for high plant efficiency and improved economic competitiveness.

  4. Regulatory Technology Development Plan - Sodium Fast Reactor: Mechanistic Source Term – Trial Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brunett, Acacia J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Denman, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Engineering Division; Clark, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Engineering Division; Denning, Richard S. [Consultant, Columbus, OH (United States)

    2016-10-01

    The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is not without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.

  5. Investigating The Integral Control Rod Worth Of The Miniature Neutron Source Reactor MNSR

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Do Quang Binh

    2011-01-01

    Determining control rod characteristics is an essential problem of nuclear reactor analysis. In this research, the integral control rod worth of the miniature neutron source reactor MNSR is investigated. Some other parameters of the nuclear reactor, such as core excess reactivity, shut down margin, are also calculated. Group constants for all reactor components are generated by the WIMSD code and then are used in the CITATION code to solve the neutron diffusion equations. The maximum relative error of the calculated results compared with the measurement data is about 3.5%. (author)

  6. Thermal Energetic Reactor with High Reproduction of Fission Materials

    International Nuclear Information System (INIS)

    Kotov, V.M.

    2012-01-01

    Existing thermal reactors are energy production scale limited because of low portion of raw uranium usage. Fast reactors are limited by reprocessing need of huge mass of raw uranium at the initial stage of development. The possibility of development of thermal reactors with high fission materials reproduction, which solves the problem, is discussed here. Neutron losses are decreased, uranium-thorium fuel with artificial fission materials equilibrium regime is used, additional in-core and out-core neutron sources are used for supplying of high fission materials reproduction. Liquid salt reactors can use dynamic loading regime for this purpose. Preferable construction is channel type reactor with heavy water moderator. Good materials for fuel element shells and channel walls are zirconium alloys enriched by 90Zr. Water cooled reactors with usage 12% of raw uranium and liquid metal cooled reactors with usage 25% of raw uranium are discussed. Reactors with additional neutron sources obtain full usage of raw uranium with small additional energy expenses. On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  7. Fluidized bed nuclear reactor as a IV generation reactor

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    2002-01-01

    The object of this paper is to analyze the characteristics of the Fluidized Bed Nuclear Reactor (FBNR) concept under the light of the requirements set for the IV generation nuclear reactors. It is seen that FBNR generally meets the goals of providing sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production; minimize and manage their nuclear waste and notably reduce the long term stewardship burden in the future, thereby improving protection for the public health and the environment; increase the assurance that it is a very unattractive and least desirable route for diversion or theft of weapons-usable materials; excel in safety and reliability; have a very low likelihood and degree of reactor core damage; eliminate the need for offsite emergency response; have a clear life-cycle cost advantage over other energy sources; have a level of financial risk comparable to other energy projects. The other advantages of the proposed design are being modular, low environmental impact, exclusion of severe accidents, short construction period, flexible adaptation to demand, excellent load following characteristics, and competitive economics. (author)

  8. The advanced neutron source - A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    The advanced neutron source (ANS) is a new facility being designed at the Oak Ridge National Laboratory that is based on a heavy-water-moderated reactor and extensive experiment and user-support facilities. The primary purpose of the ANS is to provide world-class facilities for neutron scattering research, isotope production, and materials irradiation in the United States. The neutrons provided by the reactor will be thermalized to produce sources of hot, thermal, cold, very cold, and ultracold neutrons usable at the experiment stations. Beams of cold neutrons will be directed into a large guide hall using neutron guide technology, greatly enhancing the number of research stations possible in the project. Fundamental and nuclear physics, materials analysis, and other research pro- grams will share the neutron beam facilities. Sufficient laboratory and office space will be provided to create an effective user-oriented environment

  9. Modelling and simulation the radioactive source-term of fission products in PWR type reactors

    International Nuclear Information System (INIS)

    Porfirio, Rogilson Nazare da Silva

    1996-01-01

    The source-term was defined with the purpose the quantify all radioactive nuclides released the nuclear reactor in the case of accidents. Nowadays the source-term is limited to the coolant of the primary circuit of reactors and may be measured or modelled with computer coders such as the TFP developed in this work. The calculational process is based on the linear chain techniques used in the CINDER-2 code. The TFP code considers forms of fission products release from the fuel pellet: Recoil, Knockout and Migration. The release from the gap to the coolant fluid is determined from the ratio between activity measured in the coolant and calculated activity in the gap. Considered the operational data of SURRY-1 reactor, the TFP code was run to obtain the source=term of this reactor. From the measured activities it was verified the reliability level of the model and the employed computational logic. The accuracy of the calculated quantities were compared to the measured data was considered satisfactory. (author)

  10. Advanced burnup calculation code system in a subcritical state with continuous-energy Monte Carlo code for fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Matsunaka, Masayuki; Ohta, Masayuki; Miyamaru, Hiroyuki; Murata, Isao

    2009-01-01

    The fusion-fission (FF) hybrid reactor is a promising energy source that is thought to act as a bridge between the existing fission reactor and the genuine fusion reactor in the future. The burnup calculation system that aims at precise burnup calculations of a subcritical system was developed for the detailed design of the FF hybrid reactor, and the system consists of MCNP, ORIGEN, and postprocess codes. In the present study, the calculation system was substantially modified to improve the calculation accuracy and at the same time the calculation speed as well. The reaction rate estimation can be carried out accurately with the present system that uses track-length (TL) data in the continuous-energy treatment. As for the speed-up of the reaction rate calculation, a new TL data bunching scheme was developed so that only necessary TL data are used as long as the accuracy of the point-wise nuclear data is conserved. With the present system, an example analysis result for our proposed FF hybrid reactor is described, showing that the computation time could really be saved with the same accuracy as before. (author)

  11. Environmental and economic assessments of magnetic and inertial fusion energy reactors

    Science.gov (United States)

    Yamazaki, K.; Oishi, T.; Mori, K.

    2011-10-01

    Global warming due to rapid greenhouse gas (GHG) emissions is one of the present-day crucial problems, and fusion reactors are expected to be abundant electric power generation systems to reduce human GHG emission amounts. To search for an environmental-friendly and economical fusion reactor system, comparative system studies have been done for several magnetic fusion energy reactors, and have been extended to include inertial fusion energy reactors. We clarify new scaling formulae for the cost of electricity and GHG emission rate with respect to key design parameters, which might be helpful in making a strategy for fusion research development. Comparisons with other conventional electric power generation systems are carried out taking into account the introduction of GHG taxes and the application of the carbon dioxide capture and storage system to fossil power generators.

  12. Towards EPR (European pressurized reactor)

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    According to the French industry minister, it is nonsense continuing delaying the construction of an EPR prototype because France needs it in order to renew timely its park of nuclear reactors. The renewing is expected to begin in 2020 and will be assured with third generation reactors like EPR. A quick launching of the EPR prototype is necessary to have it being in service by 2012, the feedback operating experience that will be accumulated over the 8 years that will follow will be necessary to optimize the industrial version and to have it ready by 2020. The EPR reactor has indisputable assets: modern, safer, more competitive and it will produce less wastes than present nuclear reactors. The construction cost of an EPR prototype is estimated to 3 milliard Euros and the nuclear industry operators propose to finance it completely. The EPR prototype does not jeopardize the ambitious French program about renewable energy sources, France is committed to produce 21% of its electricity from renewable energies by 2010 and 10 milliard Euros will be invested over this period on wind energy. Nuclear energy and alternative energies must be considered as 2 aspects of a diversified energy policy. (A.C.)

  13. Innovative Nuclear Reactors Implementation in the Armenian Energy Sector

    International Nuclear Information System (INIS)

    Gevorgyan, A.

    2006-01-01

    The purpose of the present paper is to demonstrate the importance of nuclear energy development in Armenia with the use of innovative nuclear reactors when considering the long-term energy planning, taking into account the specific conditions and tendencies, which are formed and developed in economy of Armenia and, in particular, in fuel-energy complex of the country. When developing the long-term program, the main factors among others considered were assumed to be the energy independence and energy security of a country, and not only the least 'cost factor', as it was usually done before. When that program was under development, such social aspects as application of the infrastructure existing within the relevant sphere, and financing of decommissioning of existing units of the Armenian NNP were also took into consideration. The studies performed have shown that implementation of innovative medium size reactors would enable the energy sector of Armenia to meet all those requirements. The issues of environmental protection were also taken into consideration when developing that program. (authors)

  14. Cascade energy amplifier

    International Nuclear Information System (INIS)

    Barzilov, A.P.; Gulevich, A.V.; Kukharchuk, O.F.

    2000-01-01

    The technical problem of long-life fission product and minor actinide incineration and production of plutonium fuel in the prospective nuclear systems will arise at significant scales of nuclear power industry development. Subcritical nuclear reactors driven by extemal neutron sources (energy amplifiers) are considered as incinerators of toxicity of complete nuclear industry. In the frames of this concept, the subcritical reactor part consisting of two coupled blanket regions (inner fast neutron spectrum core and outer thermal core) driven by extemal neutron source is discussed. Two types of source are studied: spallation target and 14-MeV fusion bum of micropellets. Liquid metal Pb-Bi is considered as target material and coolant of inner fast core. Thermal core is a heavy-water subcritical reactor of the Candu-type. The fast core is protected from thermal neutrons influence with the boron shield. All reactor technologies used in this concept are tested during years of operation and commercially available. Thus, the cascade energy amplifiers have a set of advantages in comparison with traditional concepts: in energy production, in transmutation efficiency, and in economics. (authors)

  15. Experimental determination of the neutron source for the Argonauta reactor subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Renke, Carlos A.C.; Furieri, Rosanne C.A.A.; Pereira, Joao C.S.; Voi, Dante L.; Barbosa, Andre L.N., E-mail: renke@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplier medium requires a well defined neutron source to carry out the experiments necessary for the acquisition of the desired data. The Argonauta research reactor installed at the Instituto de Engenharia Nuclear has a subcritical assembly, under development, to be coupled at the upper part of the reactor core that will provide the needed neutrons emerging from its internal thermal column made of graphite. In order to perform neutronic calculations to compare with the experimental results, it is necessary a precise knowledge of the emergent neutron flux that will be used as neutron source in the subcritical assembly. In this work, we present the thermal neutron flux profile determined experimentally via the technique of neutron activation analysis, using dysprosium wires uniformly distributed at the top of the internal thermal neutron column of the Argonauta reactor and later submitted to a detection system using Geiger-Mueller detector. These experimental data were then compared with those obtained through neutronic calculation using HAMMER and CITATION codes in order to validate this calculation system and to define a correct neutron source distribution to be used in the subcritical assembly. This procedure avoids a coupled neutronic calculation of the subcritical assembly and the reactor core. It has also been determined the dimension of the graphite pedestal to be used in the bottom of the subcritical assembly tank in order to smooth the emergent neutron flux at the reactor top. Finally, it is estimated the thermal neutron flux inside the assembly tank when filled with water. (author)

  16. Nuclear fuel: sustainable source of energy or burden on society?

    International Nuclear Information System (INIS)

    Williams, T.; Klaiber, G.

    2007-01-01

    In the past, the question concerning the sustainability of a resource primarily addressed its finite nature. Accordingly, electricity production using renewable energies was clearly sustainable. Contrasting this are systems based on oil, gas, coal or uranium. However, from the perspective of 'neo-sustainability' being analyzed today, this assessment appears less clear-cut, especially in light of the definition of sustainability as provided by the Brundtland report. Nowadays, the depletion time of fuel resources is thus not the only significant aspect, but factors such as efficiency, ecofriendliness and social responsibility also figure in. The nuclear fuel supply is analyzed from a sustainability perspective. After a short description of the supply chain, each of the most important aspects of sustainability are related to the individual stages of the supply chain and evaluated. This method aims at answering the question concerning to what extent nuclear fuel is a sustainable source of energy. Although the recycling of fissile materials from reprocessing and the deployment of advanced reactors are key factors as regards the issue of sustainability, these topics are deliberately only touched on. The main focus lies on the sustainability of the nuclear fuel cycle as it is currently utilized in light water reactors, without discussing the subject of reprocessing. (orig.)

  17. Strategy for Sustainable Utilization of IRT-Sofia Research Reactor

    International Nuclear Information System (INIS)

    Mitev, M.; Apostolov, T.; Ilieva, K.; Belousov, S.; Nonova, T.

    2013-01-01

    The Research Reactor IRT-2000 in Sofia is in process of reconstruction into a low-power reactor of 200 kW under the decision of the Council of Ministers of Republic of Bulgaria from 2001. The reactor will be utilized for development and preservation of nuclear science, skills, and knowledge; implementation of applied methods and research; education of students and training of graduated physicists and engineers in the field of nuclear science and nuclear energy; development of radiation therapy facility. Nuclear energy has a strategic place within the structure of the country’s energy system. In that aspect, the research reactor as a material base, and its scientific and technical personnel, represent a solid basis for the development of nuclear energy in our country. The acquired scientific experience and qualification in reactor operation are a precondition for the equal in rights participation of the country in the international cooperation and the approaching to the European structures, and assurance of the national interests. Therefore, the operation and use of the research reactor brings significant economic benefits for the country. For education of students in nuclear energy, reactor physics experiments for measurements of static and kinetic reactor parameters will be carried out on the research reactor. The research reactor as a national base will support training and applied research, keep up the good practice and the preparation of specialists who are able to monitor radioactivity sources, to develop new methods for detection of low quantities of radioactive isotopes which are hard to find, for deactivation and personal protection. The reactor will be used for production of isotopes needed for medical therapy and diagnostics; it will be the neutron source in element activation analysis having a number of applications in industrial production, medicine, chemistry, criminology, etc. The reactor operation will increase the public understanding, confidence

  18. Risks of energy sources

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.; Pop-Jordanova, N.

    1989-09-01

    The paper is devoted to comparative health and environmental risks of different energy sources and their influence to public perception, social acceptability and decision-making. The technical heights of the risks, expressed in the number of fatalities of labor and public per unit energy output, from fossil, nuclear and renewable sources are analysed and compared. The complete energy cycle from mining to waste disposal, as well as the future trends, are taken into account. A comparison of the risks of different energy systems with the anticipated global and national energy shares by source is also presented. Furthermore, detailed studies of the non-technical dimensions of the energy risks are performed. Using a modified attitude-behaviour model, the cognitive structure underlying the positions towards different energy options is investigated. Estimating the diverse acting of the risk components, the consequent changes in the rank ordering of the energy sources are deduced. Finally, adding the psychological components nuclear reaches the highest place. In this respect, a unified multidimensional space for the representation of various technological risks is introduced. It affords a comparison of the risks not only by their technical height, but also by other characteristics (involuntary, fearfulness etc.). Finally, it was pointed out that in considering the risk characteristics and constraints, as well as the external fields, a system approach has to be used, taking into account the risks simultaneously with the benefits. 12 refs, 4 figs, 2 tabs

  19. Pressure tube reactors and a sustainable energy future: the ultra development path

    International Nuclear Information System (INIS)

    Duffey, R.

    2008-01-01

    Nuclear energy must be made available, freely and readily, to help meet world energy needs, concerns over energy price and security of supply, and alleviating the uncertainties over potential climate change. The perspective offered here is a model for others to consider, adopting and adapting using whatever elements fit their own strategies and needs. The underlying philosophy is to retain flexibility in the reactor development, deployment and fuel cycle, while ensuring the principle that customer, energy market, safety, non-proliferation and sustainability needs are all addressed. Canada is the world's largest exporter of uranium, providing about one-third of the world supply for nuclear power reactors. Pressure tube reactors (PTRs), of which CANDU is a prime example, have a major role to play in a sustainable energy future. The inherent fuel cycle flexibility of the PTR offers many technical, resource and sustainability, and economic advantages over other reactor technologies and is the subject of this paper. The design evolution and development intent is to be consistent with improved or enhanced safety, licensing and operating limits, global proliferation concerns, and waste stream reduction, thus enabling sustainable energy futures. The limits are simply those placed by safety, economics and resource availability. (author)

  20. Pressure tube reactors and a sustainable energy future: the ultra development path

    International Nuclear Information System (INIS)

    Duffey, R.

    2008-01-01

    Nuclear energy must be made available, freely and readily, to help meet world energy needs, concerns over energy price and security of supply, and alleviating the uncertainties over potential climate change. The perspective offered here is a model for others to consider, adopting and adapting using whatever elements fit their own strategies and needs. The underlying philosophy is to retain flexibility in the reactor development, deployment and fuel cycle, while ensuring the principle that customer, energy market, safety, non-proliferation and sustainability needs are all addressed. Canada is the world's largest exporter of uranium, providing about one-third of the world supply for nuclear power reactors. Pressure tube reactors (PTRs), of which CANDU, is a prime example, have a major role to play in a sustainable energy future. The inherent fuel cycle flexibility of the PTR offers many technical, resource and sustainability and economic advantages over other reactor technologies and is the subject of this paper. The design evolution and development intent is to be consistent with improved or enhanced safety, licensing and operating limits, global proliferation concerns, and waste stream reduction, thus enabling sustainable energy futures. The limits are simply those placed by safety, economics and resource availability. (author)

  1. Mitigating energy loss on distribution lines through the allocation of reactors

    Science.gov (United States)

    Miranda, T. M.; Romero, F.; Meffe, A.; Castilho Neto, J.; Abe, L. F. T.; Corradi, F. E.

    2018-03-01

    This paper presents a methodology for automatic reactors allocation on medium voltage distribution lines to reduce energy loss. In Brazil, some feeders are distinguished by their long lengths and very low load, which results in a high influence of the capacitance of the line on the circuit’s performance, requiring compensation through the installation of reactors. The automatic allocation is accomplished using an optimization meta-heuristic called Global Neighbourhood Algorithm. Given a set of reactor models and a circuit, it outputs an optimal solution in terms of reduction of energy loss. The algorithm is also able to verify if the voltage limits determined by the user are not being violated, besides checking for energy quality. The methodology was implemented in a software tool, which can also show the allocation graphically. A simulation with four real feeders is presented in the paper. The obtained results were able to reduce the energy loss significantly, from 50.56%, in the worst case, to 93.10%, in the best case.

  2. Spatial fluxes and energy distributions of reactor fast neutrons in two types of heat resistant concretes

    International Nuclear Information System (INIS)

    Akki, T.S.; Benayad, S.A.; Megahid, R.M.

    1992-01-01

    Measurements have been carried out to study the spatial fluxes and energy distributions of reactor fast neutrons transmitted through two types of heat resistant concretes, serpentine concrete and magnetic lemonite concrete. The physical, chemical and mechanical properties of these concretes were checked by well known techniques. In addition, the effect of heating at temperatures up to 500deg C on the crystaline water content was checked by the method of differential thermal analysis. Measurements were performed using a collimated beam of reactor neutrons emitted from a 10 MW research reactor. The neutron spectra transmitted through concrete barriers of different thickness were measured by a scintillation spectrometer with NE-213 liquid organic scintillator. Discrimination against undesired pulses due to gamma-rays was achieved by a method based on pulse shape discrimination technique. The operating principle of this technique is based on the comparison of two weighted time integrals of the detector signal. The measured pulse amplitude distribution was converted to neutron energy distribution by a computational code based on double differentiation technique. The spectrometer workability and the accuracy of the unfolding technique were checked by measuring the neutron spectra of neutrons from Pu-α-Be and 252 Cf neutron sources. The obtained neutron spectra for the two concretes were used to derive the total cross sections for neutrons of different energies. (orig.)

  3. The design of the cold neutron source of the OPAL reactor

    International Nuclear Information System (INIS)

    Rechiman, L.M.; Bonetto, Fabian J.; Buscaglia, Gustavo C.

    2007-01-01

    The present work describes the conceptual design process of the first cold neutron source developed by INVAP for the nuclear research reactor OPAL. The analysis begins from the requirements given by the client and continues with the chosen solutions. Furthermore, we studied how impact in the design the fully illuminated constraint with the finite remote source model. (author) [es

  4. The Integral Fast Reactor concept: Today's hope for tomorrow's electrical energy needs

    International Nuclear Information System (INIS)

    Dwight, C.C.; Phipps, R.D.

    1989-01-01

    Acid rain and the greenhouse effect are getting more attention as their impacts on the environment become evident around the world. Substantial evidence indicates that fossil fuel combustion for electrical energy production activities is a key cause of those problems. A change in electrical energy production policy is essential to a stable, healthy environment. That change is inevitable, it's just a matter of when and at what cost. Vision now, instead of reaction later, both in technological development and public perception, will help to limit the costs of change. The Integral Fast Reactor (IFR) is a visionary concept developed by Argonne National Laboratory that involves electrical energy production through fissioning of heavy metals by fast neutrons in a reactor cooled by liquid sodium. Physical characteristics of the coolant and fuel give the reactor impressive characteristics of inherent and passive safety. Spent fuel is pyrochemically reprocessed and returned to the reactor in the IFR's closed fuel cycle. Advantages in waste management are realized, and the reactor has the potential for breeding, i.e., producing as much or more fuel than it uses. This paper describes the IFR concept and shows how it is today's hope for tomorrow's electrical energy needs. 14 refs., 1 fig., 1 tab

  5. A Derivation of Source-based Kinetics Equation with Time Dependent Fission Kernel for Reactor Transient Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Woo, Myeong Hyun; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Pyeon, Cheol Ho [Kyoto University, Osaka (Japan)

    2015-10-15

    In this study, a new balance equation to overcome the problems generated by the previous methods is proposed using source-based balance equation. And then, a simple problem is analyzed with the proposed method. In this study, a source-based balance equation with the time dependent fission kernel was derived to simplify the kinetics equation. To analyze the partial variations of reactor characteristics, two representative methods were introduced in previous studies; (1) quasi-statics method and (2) multipoint technique. The main idea of quasistatics method is to use a low-order approximation for large integration times. To realize the quasi-statics method, first, time dependent flux is separated into the shape and amplitude functions, and shape function is calculated. It is noted that the method has a good accuracy; however, it can be expensive as a calculation cost aspect because the shape function should be fully recalculated to obtain accurate results. To improve the calculation efficiency, multipoint method was proposed. The multipoint method is based on the classic kinetics equation with using Green's function to analyze the flight probability from region r' to r. Those previous methods have been used to analyze the reactor kinetics analysis; however, the previous methods can have some limitations. First, three group variables (r{sub g}, E{sub g}, t{sub g}) should be considered to solve the time dependent balance equation. This leads a big limitation to apply large system problem with good accuracy. Second, the energy group neutrons should be used to analyze reactor kinetics problems. In time dependent problem, neutron energy distribution can be changed at different time. It can affect the change of the group cross section; therefore, it can lead the accuracy problem. Third, the neutrons in a space-time region continually affect the other space-time regions; however, it is not properly considered in the previous method. Using birth history of the

  6. Zero energy reactor RB technical characteristics and experimental possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S; Takac, S; Raisic, N; Lolic, B; Markovic, H [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1963-04-15

    The zero energy reactor RB was constructed in 1958 in accordance with the nuclear reactor development programme of the Boris Kidric Institute of Nuclear Sciences. The reactor was in operation until the middle of 1959 when the heavy water, serving as the moderator, was transported to the high flux reactor RA, built at the same time at the Boris Kidric Institute. Owing to the fact that the purchase of new quantities of heavy water was planned for 1961 it was decided to reconstruct the RB reactor in order to improve the safety of the system and to obtain better flexibility in performing the experiments. New control, safety and radiation monitoring systems were constructed. Some changes were also made on the reactor tank, water circulation system and the water level monitoring equipment. The reconstruction was completed in 1961. and the heavy water was delivered early in 1962. The reconstructed reactor was critical for the first time in summer 1962, and from that time was in continuous operation. This report presents an outline of the design and construction characteristics of the reactor. The main intention is to inform potential users of the reactor about experimental possibilities, advantages and disadvantages of such a critical facility.

  7. Zero energy reactor RB technical characteristics and experimental possibilities

    International Nuclear Information System (INIS)

    Jovanovic, S.; Takac, S.; Raisic, N.; Lolic, B.; Markovic, H.

    1963-04-01

    The zero energy reactor RB was constructed in 1958 in accordance with the nuclear reactor development programme of the Boris Kidric Institute of Nuclear Sciences. The reactor was in operation until the middle of 1959 when the heavy water, serving as the moderator, was transported to the high flux reactor RA, built at the same time at the Boris Kidric Institute. Owing to the fact that the purchase of new quantities of heavy water was planned for 1961 it was decided to reconstruct the RB reactor in order to improve the safety of the system and to obtain better flexibility in performing the experiments. New control, safety and radiation monitoring systems were constructed. Some changes were also made on the reactor tank, water circulation system and the water level monitoring equipment. The reconstruction was completed in 1961. and the heavy water was delivered early in 1962. The reconstructed reactor was critical for the first time in summer 1962, and from that time was in continuous operation. This report presents an outline of the design and construction characteristics of the reactor. The main intention is to inform potential users of the reactor about experimental possibilities, advantages and disadvantages of such a critical facility

  8. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1978-01-01

    This law has following two purposes. At first, it exercises necessary controls concerning nuclear source material, nuclear fuel material and reactors in order to: (a) limit their uses to those for the peaceful purpose; (b) ensure planned uses of them; and (c) ensure the public safety by preventing accidents from their uses. Necessary controls are to be made concerning the refining, fabricating and reprocessing businesses, as well as the construction and operation of reactors. The second purpose of the law is to exercise necessary controls concerning internationally controlled material in order to execute the treaties and other international agreements on the research, development and use of atomic energy (the first chapter). In the second and following chapters the law prescribes controls for the persons who wish to carry on the refining and fabricating businesses, to construct and operate reactors, and to conduct the reprocessing business, as well as for those who use the internationally controlled material, respectively in separate chapters by the category of those businesses. For example, the controls to the person who wishes to construct and operate reactors are: (a) the permission of the business after the examination; (b) the examination and approval of the design and methods of construction prior to the construction; (c) the inspection of the facilities prior to their use; (d) periodic inspections of the facilities; (e) the establishment of requirements for safety measures and punishments to their violations. (Matsushima, A.)

  9. Reactor Core Design and Analysis for a Micronuclear Power Source

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2018-03-01

    Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.

  10. A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources

    Science.gov (United States)

    Simonen, Pauli; Saukko, Erkka; Karjalainen, Panu; Timonen, Hilkka; Bloss, Matthew; Aakko-Saksa, Päivi; Rönkkö, Topi; Keskinen, Jorma; Dal Maso, Miikka

    2017-04-01

    Oxidation flow reactors (OFRs) or environmental chambers can be used to estimate secondary aerosol formation potential of different emission sources. Emissions from anthropogenic sources, such as vehicles, often vary on short timescales. For example, to identify the vehicle driving conditions that lead to high potential secondary aerosol emissions, rapid oxidation of exhaust is needed. However, the residence times in environmental chambers and in most oxidation flow reactors are too long to study these transient effects ( ˜ 100 s in flow reactors and several hours in environmental chambers). Here, we present a new oxidation flow reactor, TSAR (TUT Secondary Aerosol Reactor), which has a short residence time ( ˜ 40 s) and near-laminar flow conditions. These improvements are achieved by reducing the reactor radius and volume. This allows studying, for example, the effect of vehicle driving conditions on the secondary aerosol formation potential of the exhaust. We show that the flow pattern in TSAR is nearly laminar and particle losses are negligible. The secondary organic aerosol (SOA) produced in TSAR has a similar mass spectrum to the SOA produced in the state-of-the-art reactor, PAM (potential aerosol mass). Both reactors produce the same amount of mass, but TSAR has a higher time resolution. We also show that TSAR is capable of measuring the secondary aerosol formation potential of a vehicle during a transient driving cycle and that the fast response of TSAR reveals how different driving conditions affect the amount of formed secondary aerosol. Thus, TSAR can be used to study rapidly changing emission sources, especially the vehicular emissions during transient driving.

  11. Prospects of renewable energy sources in India: Prioritization of alternative sources in terms of Energy Index

    International Nuclear Information System (INIS)

    Jha, Shibani K.; Puppala, Harish

    2017-01-01

    The growing energy demand in progressing civilization governs the exploitation of various renewable sources over the conventional sources. Wind, Solar, Hydro, Biomass, and waste & Bagasse are the various available renewable sources in India. A reliable nonconventional geothermal source is also available in India but it is restricted to direct heat applications. This study archives the status of renewable alternatives in India. The techno economic factors and environmental aspects associated with each of these alternatives are discussed. This study focusses on prioritizing the renewable sources based on a parameter introduced as Energy Index. This index is evaluated using cumulative scores obtained for each of the alternatives. The cumulative score is obtained by evaluating each alternative over a range of eleven environmental and techno economic criteria following Fuzzy Analytical Hierarchy Process. The eleven criteria's considered in the study are Carbon dioxide emissions (CO 2 ), Sulphur dioxide emissions (SO 2 ), Nitrogen oxide emissions (NO x ), Land requirement, Current energy cost, Potential future energy cost, Turnkey investment, Capacity factor, Energy efficiency, Design period and Water consumption. It is concluded from the study that the geothermal source is the most preferable alternative with highest Energy Index. Hydro, Wind, Biomass and Solar sources are subsequently preferred alternatives. - Highlights: • FAH process is used to obtain cumulative score for each renewable alternative. • Cumulative score is normalized by highest score of ideal source. • Energy Index shows how best a renewable alternative is. • Priority order is obtained for alternatives based on Energy Index. • Geothermal is most preferable source followed by Hydro, Wind, Biomass and Solar.

  12. Fabrication development for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Pace, B.W.; Copeland, G.L.

    1995-08-01

    This report presents the fuel fabrication development for the Advanced Neutron Source (ANS) reactor. The fuel element is similar to that successfully fabricated and used in the High Flux Isotope Reactor (HFIR) for many years, but there are two significant differences that require some development. The fuel compound is U 3 Si 2 rather than U 3 O 8 , and the fuel is graded in the axial as well as the radial direction. Both of these changes can be accomplished with a straightforward extension of the HFIR technology. The ANS also requires some improvements in inspection technology and somewhat more stringent acceptance criteria. Early indications were that the fuel fabrication and inspection technology would produce a reactor core meeting the requirements of the ANS for the low volume fraction loadings needed for the highly enriched uranium design (up to 1.7 Mg U/m 3 ). Near the end of the development work, higher volume fractions were fabricated that would be required for a lower- enrichment uranium core. Again, results look encouraging for loadings up to ∼3.5 Mg U/m 3 ; however, much less evaluation was done for the higher loadings

  13. Fast reactors as a solution for future small-scale nuclear energy

    International Nuclear Information System (INIS)

    Kudryavtseva, A.; Danilenko, K.; Dorofeev, K.

    2013-01-01

    Small nuclear power plants can provide a future platform for decentralized energy supply providing better levels of accessibility, safety and environmental friendliness. The optimal solution for SMR deployment is fast reactors with inherent safety. To compete alternative solutions SMRs must exhibit some evident advantages in: safety, technology, and economic. Small modular reactors with lead-bismuth coolant (SVBR-100) under development in Russia can be a prospective solution for future small and decentralized energy

  14. Further analysis of the zero-energy experiment on the Dragon reactor

    International Nuclear Information System (INIS)

    Woloch, F.; Neuberger, W.

    1978-01-01

    The analysis of the Zero-Energy Experiments performed on the Dragon reactor, a high-temperature reactor of the Organization for Economic Cooperation and Development, has been continued. The first analysis established the main route of calculations within the WIMS-E scheme and was reported elsewhere. This Note presents further calculations showing the merits of a refinement in the number of neutron energy groups, of the use of different condensation spectra, and of transport calculations

  15. Environmental impacts of renewable energy sources

    International Nuclear Information System (INIS)

    Abbasi, S.A.; Abbasi, N.

    1997-01-01

    The global attention has always been focused on the adverse environmental impacts of conventional energy sources. In contrast nonconventional energy sources, particularly the renewable ones, have enjoyed a clean image vis a vis environmental impacts. The only major exception to this general trend has been large hydropower projects; experience has taught that they can be disastrous for the environment. The belief now is that mini hydro and microhydro projects are harmless alternatives. But are renewable energy sources really as benign as is widely believed? The present essay addresses this question in the background of Lovin's classical paradigm which had postulated the hard (malignant) and soft (benign) energy concepts in the first place. It then critically evaluates the environmental impacts of major renewable energy sources. It then comes up with the broad conclusion that renewable energy sources are not the panacea they are popularly perceived to be; indeed in some cases their adverse environmental impacts can be as strongly negative as the impacts of conventional energy sources. The paper also dwells on the steps needed to utilize renewable energy sources without facing environmental backlashes of the type experienced from hydropower projects

  16. Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are reviewed. The likely parameter ranges for tokamak neutron sources that could produce an interesting transmutation rate of 100s to 1000s of kg/FPY (where FPY stands for full power year) are identified (P fus ∼ 10-100 MW, β N ∼ 2-3, Q p ∼ 2-5, R ∼ 3-5 m, I ∼ 6-10 MA). The electrical and thermal power characteristics of transmutation reactors driven by fusion and accelerator spallation neutron sources are compared. The status of fusion development vis-a-vis a neutron source is reviewed. (author)

  17. Sources of tritium

    International Nuclear Information System (INIS)

    Phillips, J.E.; Easterly, C.E.

    1980-12-01

    A review of tritium sources is presented. The tritium production and release rates are discussed for light water reactors (LWRs), heavy water reactors (HWRs), high temperature gas cooled reactors (HTGRs), liquid metal fast breeder reactors (LMFBRs), and molten salt breeder reactors (MSBRs). In addition, release rates are discussed for tritium production facilities, fuel reprocessing plants, weapons detonations, and fusion reactors. A discussion of the chemical form of the release is included. The energy producing facilities are ranked in order of increasing tritium production and release. The ranking is: HTGRs, LWRs, LMFBRs, MSBRs, and HWRs. The majority of tritium has been released in the form of tritiated water

  18. Next generation of energy production systems

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Carre, F.

    2003-01-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources

  19. Subcriticality calculation in nuclear reactors with external neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: asilva@con.ufrj.br; aquilino@lmp.ufrj.br; fernando@con.ufrj.br

    2007-07-01

    The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)

  20. Subcriticality calculation in nuclear reactors with external neutron sources

    International Nuclear Information System (INIS)

    Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2007-01-01

    The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)

  1. Developments and Tendencies in Fission Reactor Concepts

    Science.gov (United States)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC

  2. The source term and waste optimization of molten salt reactors with processing

    International Nuclear Information System (INIS)

    Gat, U.; Dodds, H.L.

    1993-01-01

    The source term of a molten salt reactor (MSR) with fuel processing is reduced by the ratio of processing time to refueling time as compared to solid fuel reactors. The reduction, which can be one to two orders of magnitude, is due to removal of the long-lived fission products. The waste from MSRs can be optimized with respect to its chemical composition, concentration, mixture, shape, and size. The actinides and long-lived isotopes can be separated out and returned to the reactor for transmutation. These features make MSRs more acceptable and simpler in operation and handling

  3. Alternate energy sources

    International Nuclear Information System (INIS)

    Stevens-Guille, P.D.

    1975-01-01

    The author highlights the interesting points made by the speeches during the conference on Energy and its Future in Southern Africa. He also draws attention to potential alternate energy sources such as power from tides, ocean waves, ocean temperature differences and geothermal power

  4. Reactor, radioactive isotopes and nuclear energy: their avatars in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Roche, M

    1981-03-01

    The decision to bring a fair sized (3MW) research reactor to Venezuela, made in 1954 by a single, ambitious and prestige seeking individual working with a dictatorial government, is a clear case of cargo cult, an implicit desire to import industralized countries' science and technology by purchasing key in hand their expensive machine. The reactor has never ceased to experience difficulties since then, not so much of a physical or mechanical, but rather of a human nature and due to the almost grotesque distance between the machine's potentialities and the quantity and quality of personnel available. Demand and motivation have been scarce, because fossil and hydro energy have been so far plentiful. Military motivation was in theory absent. Perspectives have apparently improved, not that a scientific community has been trained and an infrastructure exists. Radioactive isotopes have been widely used in Venezuela, beginning in 1953, for medical practice and biological research. At present about 2.5 million bolivars worth of radioisotopes are imported annually, mostly from the US and to a lesser extent, from UK. Steps are being taken to train nuclear engineers, since most studies thus far indicate the last few years of the century as the time when nuclear energy will begin to enter the picture, and since a period of at least ten years is needed between the decision to build an atomic power plant and the time it goes into operation. Choice of technique has not been made, but an active, although still small, uranium prospecting program has been initiated. It seems as if, by the end of the century, either nuclear energy will have to supplement other sources, or standard of living of Venezuelans - at least that relative minority who can afford to live well - will drop. 2 figures, 2 tables.

  5. Energy-averaged neutron cross sections of fast-reactor structural materials

    International Nuclear Information System (INIS)

    Smith, A.; McKnight, R.; Smith, D.

    1978-02-01

    The status of energy-averaged cross sections of fast-reactor structural materials is outlined with emphasis on U.S. data programs in the neutron-energy range 1-10 MeV. Areas of outstanding accomplishment and significant uncertainty are noted with recommendations for future efforts. Attention is primarily given to the main constituents of stainless steel (e.g., Fe, Ni, and Cr) and, secondarily, to alternate structural materials (e.g., V, Ti, Nb, Mo, Zr). Generally, the mass regions of interest are A approximately 50 to 60 and A approximately 90 to 100. Neutron total and elastic-scattering cross sections are discussed with the implication on the non-elastic-cross sections. Cross sections governing discrete-inelastic-neutron-energy transfers are examined in detail. Cross sections for the reactions (n;p), (n;n',p), (n;α), (n;n',α) and (n;2n') are reviewed in the context of fast-reactor performance and/or diagnostics. The primary orientation of the discussion is experimental with some additional attention to the applications of theory, the problems of evaluation and the data sensitivity of representative fast-reactor systems

  6. Access to primary energy sources - the basis of national energy security

    Science.gov (United States)

    Szlązak, Jan; Szlązak, Rafał A.

    2017-11-01

    National energy security is of fundamental importance for economic development of a country. To ensure such safety energy raw material, also called primary energy sources, are necessary. Currently in Poland primary energy sources include mainly fossil fuels, such as hard coal, brown coal, natural gas and crude oil. Other sources, e.g. renewable energy sources account for c. 15% in the energy mix. Primary energy sources are used to produce mainly electricity, which is considered as the cleanest form of energy. Poland does not have, unfortunately, sufficient energy sources and is forced to import some of them, mainly natural gas and crude oil. The article presents an insightful analysis of energy raw material reserves possessed by Poland and their structure taking account of the requirements applicable in the European Union, in particular, those related to environmental protection. The article also describes demand for electricity now and in the perspective of 2030. Primary energy sources necessary for its production have also been given. The article also includes the possibilities for the use of renewable energy sources in Poland, however, climatic conditions there are not are not particularly favourable to it. All the issues addressed in the article are summed up and ended with conclusions.

  7. Nuclear fission sustainability with subcritical reactors driven by external neutron sources

    International Nuclear Information System (INIS)

    Lafuente, A.; Piera, M.

    2011-01-01

    Although nuclear breeder reactors are a promising way to enhance the potential energy currently retrievable from the Uranium reserves, they still have disadvantages because of their safety features (i.e. poor stabilizing mechanisms) and the security of their fuel cycle (diversion of Pu for non-civilian purposes). Loading natural nuclear fuels to a reactor and completely burning them without reprocessing would be ideal, however, this is not possible in critical reactors due to the limitations imposed by the maximum achievable burn-up. An alternative option to attain very high percentages of nuclear natural materials exploitation, while meeting other objectives of Nuclear Sustainability, could consist of using externally-driven subcritical reactors to reach the desired high burn-ups (of the order of 30% and more) without reprocessing. Such scheme would lead to an efficient exploitation of the available raw material, without any risk of proliferation. Exploring this type of reactor concept, this paper analyzes the different ways to accomplish this goal while identifying potential setbacks.

  8. New renewable energy sources; Nye fornybare energikilder

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This booklet describes in simple terms the so-called new renewable energy sources: solar energy, biomass, wind power and wave power. In addition, there are brief discussions on hydrogen, ocean thermal energy conversion (OTEC), tidal power, geothermal energy, small hydropower plants and energy from salt gradients. The concept of new renewable energy sources is used to exclude large hydropower plants as these are considered conventional energy sources. The booklet also discusses the present energy use, the external frames for new renewable energy sources, and prospects for the future energy supply.

  9. An advanced liquid hydrogen cold source for the NIST research reactor

    International Nuclear Information System (INIS)

    Williams, R.E.; Kopetka, P.; Rowe, J.M.

    1999-01-01

    A second-generation liquid hydrogen cold neutron source is currently being fabricated and will be installed in the NIST reactor early next year. The existing source has operated very successfully over the last four years, providing a six-fold increase in the cold neutron yield compared to the previous heavy ice source. The design of the new source is based on our operating experience with the existing LH 2 source and extensive neutron transport calculations using improved MCNP modeling and computational capabilities. Enhanced mechanical design and manufacturing tools are exploited in the fabrication of the advanced source, which is expected to nearly double the yield of the existing LH 2 source. (author)

  10. Ion source development for a photoneutralization based NBI system for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simonin, A.; Esch, H. P. L. de; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A. [CEA-Cadarache, IRFM, F-13108 St. Paul-lez-Durance (France); LPSC, Grenoble-Alpes University, F-38026 Grenoble France (France)

    2015-04-08

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D{sup −} beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R and D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.

  11. Ion source development for a photoneutralization based NBI system for fusion reactors

    International Nuclear Information System (INIS)

    Simonin, A.; Esch, H. P. L. de; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A.

    2015-01-01

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D − beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R and D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities

  12. Energy Sources | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Sources Energy Sources Many opportunities exist to improve the efficiency of energy supply systems at the central plant and then evaluate potential renewable energy sources and systems. Central Plant Begin by evaluating energy efficiency at the central plant through: Fuel Sources Heat Pumps and Combined

  13. Final report. U.S. Department of Energy University Reactor Sharing Program

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, John A

    2003-01-21

    Activities supported at the MIT Nuclear Reactor Laboratory under the U.S. DOE University Reactor Sharing Program are reported for Grant DE FG02-95NE38121 (September 16, 1995 through May 31, 2002). These activities fell under four subcategories: support for research at thesis and post-doctoral levels, support for college-level laboratory exercises, support for reactor tours/lectures on nuclear energy, and support for science fair participants.

  14. The law for the Power Reactor and Nuclear Fule Development Corporation

    International Nuclear Information System (INIS)

    1977-01-01

    The Corporation is designated to engage in the independent development of fast breeder and advanced thermal reactors, the production, reprocessing and holding of nuclear fuel materials, and the exploration, mining and ore dressing of nuclear source materials to promoting the development and utilization of atomic energy. These activities are based on the Atomic Energy Basic Law, and limited to the peaceful uses. The basic concepts of a fast breeder reactor and an advanced thermal reactor are defined. A chapter is dedicated to the number, constitution, duties, competence, appointment and dismissal of the officers. The score of business is specified, beginning from the development and research of the reactors and ending with the import, export, purchase and selling of nuclear fuel materials and nuclear source materials. (Okada, K.)

  15. Action plan for renewable energy sources

    International Nuclear Information System (INIS)

    2000-03-01

    In the Finnish Energy Strategy, approved by the Finnish Government in 1997, the emphasis is laid on the importance of bioenergy and other renewable energy sources for the creation of such prerequisites for the Finnish energy economy that the supply of energy can be secured, the price on energy is competitive and the emissions from energy generation are within the limits set by the international commitments made by Finland. In 1998, the European Union Meeting of the Ministers of Energy adopted a resolution taking a positive attitude to the Communication from the Commission 'Energy for the future: Renewable sources of energy' - White Paper for a Community Strategy and Action Plan. National measures play a key role in the achievement of the objectives set in the White Paper. This Action Plan for Renewable Energy Sources is a national programme in line with the EU's White Paper. It comprises all renewable sources of energy available in Finland. It encompasses even peat, which in Finland has traditionally been considered to be a solid biofuel but is internationally classified as one of the non-renewable sources of energy. In the Action Plan, objectives are set for the volume of renewable energy sources used in the year 2010 including a prognosis on the development by the year 2025. The goal is that by the year 2010 the volume of energy generated using renewable energy sources has increased by 50% compared with the year 1995. This would mean an increase by 3 Mtoe, which is about 1 Mtoe more than anticipated in the outlook based on the Finnish Energy Strategy. A further goal is to double the use of renewable energy sources by the year 2025. The aggregate use of renewable energy sources depends to a large extent both on the development of the price on energy produced using other energy sources and on possible changes in the production volume of the Finnish forest industry. The most important objective stated in the Action Plan is to improve the competitiveness of renewable

  16. The effect of temperature and the control rod position on the spatial neutron flux distribution in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2007-01-01

    The effect of water and fuel temperature increase and changes in the control rod positions on the spatial neutron flux distribution in the Syrian Miniature Neutron Source Reactor (MNSR) is discussed. The cross sections of all the reactor components at different temperatures are generated using the WIMSD4 code. These group constants are used then in the CITATION code to calculate the special neutron flux distribution using four energy groups. This work shows that water and fuel temperature increase in the reactor during the reactor daily operating time does not affect the spatial neutron flux distribution in the reactor. Changing the control rod position does not affect as well the spatial neutron flux distribution except in the region around the control rod position. This stability in the spatial neutron flux distribution, especially in the inner and outer irradiation sites, makes MNSR as a good tool for the neutron activation analysis (NAA) technique and production of radioisotopes with medium or short half lives during the reactor daily operating time. (author)

  17. Holland's reactor centre makes the shift to energy research

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The change of name in 1976 of Reactor Centrum Nederland (RCN) to Energieonderzoek Centrum Nederland (ECN) reflects its expansion to activities in non-nuclear fields. A brief summary is given of these activities, including those in co-operation with other organisations. Amongst the fields of interest in non-nuclear fields are joint projects on risk analysis, future energy strategies, wind power, and environmental research. Work on fusion reactor technology is expanding. (UK)

  18. Review of the accident source terms for aluminide fuel: Application to the BR2 reactor

    International Nuclear Information System (INIS)

    Joppen, F.

    2005-01-01

    A major safety review of the BR2, a material test reactor, is to be conducted for the year 2006. One of the subjects selected for the safety review is the definition of source terms for emergency planning and in particular the development of accident scenarios. For nuclear power plants the behaviour of fuel under accident conditions is a well studied object. In case of non-power reactors this basic knowledge is rather scarce. The usefulness of information from power plant fuels is limited due to the differences in fuel type, power level and thermohydraulical conditions. First investigation indicates that using data from power plant fuel leads to an overestimation of the source terms. Further research on this subject could be very useful for the research reactor community, in order to define more realistic source terms and to improve the emergency preparedness. (author)

  19. Energy models for commercial energy prediction and substitution of renewable energy sources

    International Nuclear Information System (INIS)

    Iniyan, S.; Suganthi, L.; Samuel, Anand A.

    2006-01-01

    In this paper, three models have been projected namely Modified Econometric Mathematical (MEM) model, Mathematical Programming Energy-Economy-Environment (MPEEE) model, and Optimal Renewable Energy Mathematical (OREM) model. The actual demand for coal, oil and electricity is predicted using the MEM model based on economic, technological and environmental factors. The results were used in the MPEEE model, which determines the optimum allocation of commercial energy sources based on environmental limitations. The gap between the actual energy demand from the MEM model and optimal energy use from the MPEEE model, has to be met by the renewable energy sources. The study develops an OREM model that would facilitate effective utilization of renewable energy sources in India, based on cost, efficiency, social acceptance, reliability, potential and demand. The economic variations in solar energy systems and inclusion of environmental constraint are also analyzed with OREM model. The OREM model will help policy makers in the formulation and implementation of strategies concerning renewable energy sources in India for the next two decades

  20. Studying the effect of xenon poisoning on the power of the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-07-01

    The uranium 235 is often used as a fuel to produce the energy in nuclear reactors. Uranium nuclei are fissioned with thermal neutrons and produce energy plus a number of neutrons. A fraction of such fission neutrons is involved in other fission with new nuclei to sustain the fission reactions. The remain fraction of the neutrons is lost from the reactor in two ways: escaped from the reactor, or absorbed with other nuclei that exist in the reactor before or produced from fission. Fission nuclei which absorb neutrons heavily are called p oison , such as Xe 135. Because Xe 135 absorbs neutrons heavily, it reduces the number of neutrons in the reactor. Hence, Xe 135 is studied explicitly in the MNSR reactor, and calculation of its negative reactivity is presented in this research during the operation, equilibrium, and after the shutting down of the reactor. (author)

  1. Measurement of the physics properties of gas-cooled fast reactors in the zero energy reactor PROTEUS and analysis of the results

    International Nuclear Information System (INIS)

    Richmond, R.

    1982-12-01

    The main aim of the fast reactor physics measurements carried out in the zero energy reactor PROTEUS was to check the performance of data sets and calculation methods used in the design of fast breeder reactors. This allowed the accuracy of the power reactor calculations to be determined and enabled an assessment to be made of whether this accuracy would be sufficient to allow the design, construction and licensing of the GCFR power reactor. In order to carry out the physics measurements an existing zero energy reactor was converted to a form in which a central fast reactor lattice was surrounded by thermal zones to drive the reactor critical. One of the most important measuring techniques used to check the performance of data sets and calculation methods was the determination of reaction rate ratios and, by using an appropriate range of nuclides, it was possible to obtain a detailed picture covering 70% of reactions taking place in the central part of the fast reactor zone and with an accuracy of +-1.5% in a typical ratio. A further technique used during the work on GCFR-PROTEUS was the measurement of neutron spectrum which was carried out in a wide range of environments and, in the later stages of the work, covered the energy range from 9 keV to 2.3 MeV. These measurements, in particular, indicated significant errors in the FGL4 scattering cross-sections. A third technique, which was developed to a high degree of accuracy, was the measurement of reactivity worths. This was used in measurements of the worths of small samples and also in the application of the null reactivity technique to determine k-infinity and hence the absorption cross-sections of reactor structural materials. (Auth.)

  2. Consideration of emergency source terms for pebble-bed high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Tao, Liu; Jun, Zhao; Jiejuan, Tong; Jianzhu, Cao

    2009-01-01

    Being the last barrier in the nuclear power plant defense-in-depth strategy, emergency planning (EP) is an integrated project. One of the key elements in this process is emergency source terms selection. Emergency Source terms for light water reactor (LWR) nuclear power plant (NPP) have been introduced in many technical documents, and advanced NPP emergency planning is attracting attention recently. Commercial practices of advanced NPP are undergoing in the world, pebble-bed high-temperature gas-cooled reactor (HTGR) power plant is under construction in China which is considered as a representative of advanced NPP. The paper tries to find some pieces of suggestion from our investigation. The discussion of advanced NPP EP will be summarized first, and then the characteristics of pebble-bed HTGR relating to EP will be described. Finally, PSA insights on emergency source terms selection and current pebble-bed HTGR emergency source terms suggestions are proposed

  3. Thorium as an energy source. Opportunities for Norway; Thorium som energikilde - Muligheter for Norge

    Energy Technology Data Exchange (ETDEWEB)

    2008-02-15

    Final Recommendations of the Thorium Report Committee: 1) No technology should be idolized or demonized. All carbon-dioxide (Co2) emission-free energy production technologies should be considered. The potential contribution of nuclear energy to a sustainable energy future should be recognized. 2) An investigation into the resources in the Fen Complex and other sites in Norway should be performed. It is essential to assess whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations. Furthermore, the application of new technologies for the extraction of thorium from the available mineral sources should be studied. 3) Testing of thorium fuel in the Halden Reactor should be encouraged, taking benefit of the well recognized nuclear fuel competence in Halden. 4) Norway should strengthen its participation in international collaborations by joining the EURATOM fission program and the GIF program on Generation IV reactors suitable for the use of thorium. 5) The development of an Accelerator Driven System (ADS) using thorium is not within the capability of Norway working alone. Joining the European effort in this field should be considered. Norwegian research groups should be encouraged to participate in relevant international projects, although these are currently focused on waste management. 6) Norway should bring its competence in waste management up to an international standard and collaboration with Sweden and Finland could be beneficial. 7) Norway should bring its competence with respect to dose assessment related to the thorium cycle up to an international standard. 8) Since the proliferation resistance of uranium-233 depends on the reactor and reprocessing technologies, this aspect will be of key concern should any thorium reactor be built in Norway. 9) Any new nuclear activities in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium, a strong long

  4. The reactor antineutrino anomaly and low energy threshold neutrino experiments

    Science.gov (United States)

    Cañas, B. C.; Garcés, E. A.; Miranda, O. G.; Parada, A.

    2018-01-01

    Short distance reactor antineutrino experiments measure an antineutrino spectrum a few percent lower than expected from theoretical predictions. In this work we study the potential of low energy threshold reactor experiments in the context of a light sterile neutrino signal. We discuss the perspectives of the recently detected coherent elastic neutrino-nucleus scattering in future reactor antineutrino experiments. We find that the expectations to improve the current constraints on the mixing with sterile neutrinos are promising. We also analyze the measurements of antineutrino scattering off electrons from short distance reactor experiments. In this case, the statistics is not competitive with inverse beta decay experiments, although future experiments might play a role when compare it with the Gallium anomaly.

  5. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  6. Molt salts reactors capacity for wastes incineration and energy production

    International Nuclear Information System (INIS)

    David, S.; Nuttin, A.

    2005-01-01

    The molten salt reactors present many advantages in the framework of the IV generation systems development for the energy production and/or the wastes incineration. After a recall of the main studies realized on the molten salt reactors, this document presents the new concepts and the identified research axis: the MSRE project and experience, the incinerators concepts, the thorium cycle. (A.L.B.)

  7. Alternative energy sources: ECC report

    International Nuclear Information System (INIS)

    Renwick, Lord; Stoddart, Lord; Lauderdale, Earl of

    1988-01-01

    The European Communities Committee Report on Alternative Energy Resources was debated. Six alternative energy sources were first described - wind power, biomass, geothermal energy, solar energy, wave and tidal power. Combined heat and power was also mentioned. General questions concerning alternative energy sources were then considered. In particular, their potential contribution to the energy demand was assessed. The evidence presented to the committee suggested that they would only make a small contribution in the near future and could not be considered as a substitute for coal and nuclear power. However, by the year 2030 it would be possible for 18% of the national electricity demand to be met by alternative energy sources. The economic and environmental issues were assessed briefly and the report's conclusions were summarized. An independent review of wave power was called for in view of conflicting evidence presented to the committee. The debate which followed lasted three hours and is reported verbatim. Other issues raised included energy conservation, public attitudes to energy, the environment, government and private funding of research and development of nuclear power, including fusion. (U.K.)

  8. The atomic energy basic law

    International Nuclear Information System (INIS)

    1977-01-01

    The law establishes clearly the principles that Japan makes R and D, and utilizations of atomic energy only for the peaceful purposes. All the other laws and regulations concerning atomic energy are based on the law. The first chapter lays down the above mentioned objective of the law, and gives definitions of basic concepts and terms, such as atomic energy, nuclear fuel material, nuclear source material, nuclear reactor and radiation. The second chapter provides for the establishment of Atomic Energy Commission which conducts plannings and investigations, and also makes decisions concerning R and D, and utilizations of atomic energy. The third chapter stipulates for establishment of two government organizations which perform R and D of atomic energy developments including experiments and demonstrations of new types of reactors, namely, Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. Chapters from 4th through 8th provide for the regulations on development and acquisition of the minerals containing nuclear source materials, controls on nuclear fuel materials and nuclear reactors, administrations of the patents and inventions concerning atomic energy, and also prevention of injuries due to radiations. The last 9th chapter requires the government and its appointee to compensate the interested third party for damages in relation to the exploitation of nuclear source materials. (Matsushima, A.)

  9. Renewable sources of energy in Austria 1993

    International Nuclear Information System (INIS)

    Faninger, G.

    1993-07-01

    Present contribution of renewable sources of energy to the overall energy requirements in Austria. Estimated potential of renewable sources of energy in Austria: firewood and biogeneous fuels, environmental energy, combustible wastes. Ecological aspects of utilising renewable sources of energy. Market barriers and strategies for overcoming them

  10. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1977-01-01

    According to the provisions of The Law, those stipulated as internationally controlled materials are nuclear source materials, nuclear fuel materials, moderating materials, reactors and facilities, transferred from such as the U.S.A., the U.K. and Canada on the agreements of peaceful uses of atomic energy, and nuclear fuel materials accruing therefrom. (Mori, K.)

  11. Implementation and training methodology of subcritical reactors neutronic calculations triggered by external neutron source and applications

    International Nuclear Information System (INIS)

    Carluccio, Thiago

    2011-01-01

    This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k eff and k src , and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)

  12. Reactor Start-up and Control Methodologies: Consideration of the Space Radiation Environment

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2004-01-01

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable the accomplishment of ambitious space exploration missions. The natural radiation environment in space provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Initial investigation using MCNPX 2.5.b for proton transport through the SAFE-400 reactor indicates a secondary neutron net current of 1.4x107 n/s at the core-reflector interface, with an incoming current of 3.4x106 n/s due to neutrons produced in the Be reflector alone. This neutron population could provide a reliable startup source for a space reactor. Additionally, this source must be considered in developing a reliable control strategy during reactor startup, steady-state operation, and power transients. An autonomous control system is developed and analyzed for application during reactor startup, accounting for fluctuations in the radiation environment that result from changes in vehicle location (altitude, latitude, position in solar system) or due to temporal variations in the radiation field, as may occur in the case of solar flares. One proposed application of a nuclear electric propulsion vehicle is in a tour of the Jovian system, where the time required for communication to Earth is significant. Hence, it is important that a reactor control system be designed with feedback mechanisms to automatically adjust to changes in reactor temperatures, power levels, etc., maintaining nominal operation without user intervention. This paper will evaluate the potential use of secondary neutrons produced by proton interactions in the reactor vessel as a startup source for a space reactor and will present a

  13. Recent activities of the international Group on Research Reactors (IGORR) and of the Advanced Neutron Source (ANS)

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The International Group on Research Reactors (IGORR) was formed in 1990 to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. The Advanced Neutron Source Project expects to complete conceptual design in mid-1992. In the present design concept, the neutron source is a heavy-water-cooled, moderated, and reflected reactor of about 350 MW(f) power. (author)

  14. 10 CFR 39.53 - Energy compensation source.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which is...

  15. New options for developing of nuclear energy using an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator's length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel

  16. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  17. Inverse kinetics method with source term for subcriticality measurements during criticality approach in the IPEN/MB-01 research reactor

    International Nuclear Information System (INIS)

    Loureiro, Cesar Augusto Domingues; Santos, Adimir dos

    2009-01-01

    In reactor physics tests which are performed at the startup after refueling the commercial PWRs, it is important to monitor subcriticality continuously during criticality approach. Reactivity measurements by the inverse kinetics method are widely used during the operation of a nuclear reactor and it is possible to perform an online reactivity measurement based on the point reactor kinetics equations. This technique is successful applied at sufficiently high power level or to a core without an external neutron source where the neutron source term in point reactor kinetics equations may be neglected. For operation at low power levels, the contribution of the neutron source must be taken into account and this implies the knowledge of a quantity proportional to the source strength, and then it should be determined. Some experiments have been performed in the IPEN/MB-01 Research Reactor for the determination of the Source Term, using the Least Square Inverse Kinetics Method (LSIKM). A digital reactivity meter which neglects the source term is used to calculate the reactivity and then the source term can be determined by the LSIKM. After determining the source term, its value can be added to the algorithm and the reactivity can be determined again, considering the source term. The new digital reactivity meter can be used now to monitor reactivity during the criticality approach and the measured value for the reactivity is more precise than the meter which neglects the source term. (author)

  18. Energy Efficiency for Biodiesel Production by Combining Two Orifices in Hydrodynamic Cavitation Reactor

    Directory of Open Access Journals (Sweden)

    Mahlinda Mahlinda

    2014-12-01

    Full Text Available Research of energy efficiency for biodiesel production process by combining two orifices on  hydrodynamic cavitation reactor had been carried out. The aim of this reseach was to studied effect of the number of orifices toward increasing temperature without using external energy source to produce biodiesel that generated by cavitation effects on orifices. The results of preliminary research showed by combining two orifices arranged in series can produce the highest thermal energy reached 48oC. Result of biodiesel production showed that yield of the highest biodiesel was 96.34% using molar ratio a methanol:oil with comparison 6:1, KOH as catalyst (1% for 50 minutes processing time. For biodiesel quality testing showed all selected parameter met the requirements of the Indonesian National Standard (SNI 04-7182:2006. Identification of biodiesel compound using GCMS showed the biodiesel compounds consisted of methyl oleate, methyl palmitate, acid linoleid, methyl stearate, palmitic acid and oleic acid with the total contents 98.39%.

  19. Geothermal energy, a new energy source

    Energy Technology Data Exchange (ETDEWEB)

    Murr, K

    1960-05-01

    A survey is made of the historical development of geothermal energy, and the geological situations appropriate for its exploitation are described. When prospecting for steam sources, several vertical drillings of about 200 m depth and 60-120 mm diameter are usually sufficient to give adequate knowledge of subsurface conditions. In Iceland, geothermal energy is used primarily for domestic space-heating and climate control in greenhouses, but due to the ready availability of hydroelectricity, geothermal energy is not widely applied for the generation of electricity. In Katanga (Congo), a tin mine is supplied by 220-275 kW power plant which is driven by a nearby hot-water source. Other major developments at the time (1960) included Larderello in Italy and Wairakei in New Zealand. Preliminary results from exploratory boreholes in El Salvador are discussed.

  20. TLD gamma-ray energy deposition measurements in the zero energy fast reactor ZEBRA

    International Nuclear Information System (INIS)

    Knipe, A.D.

    1977-01-01

    A recent study of gamma-ray energy deposition was carried out in the Zebra reactor at AEE Winfrith during a collaborative programme between the UKAEA and PNC of Japan. The programme was given the title MOZART. This paper describes the TLD experiments in the MOZART MZB assembly and discusses the technique and various corrections necessary to relate the measured quantity to the calculated energy deposition

  1. Alternative energy sources

    International Nuclear Information System (INIS)

    Chapman, P.

    1978-01-01

    It is suggested that the development of alternative energy sources has made them more attractive than nuclear power, due to their characteristics, such as small scale and short lead times, moderate costs and minimal environmental impact. The objectives of energy policy are discussed in relation to forecasts of energy demand. Tables show (a) projected useful energy demands UK; (b) patterns of end-use of energy; (c) costs of heating fuels; (d) net present value of gas purchases; (e) useful-energy by end-use analysis; and (f) primary fuel summary 2025. The contributions of hydro, nuclear, waves, solar, oil, gas and coal are estimated to 2025. (U.K.)

  2. Engineering economics of alternative energy sources

    International Nuclear Information System (INIS)

    Denno, K.

    1990-01-01

    This textbook presents a comprehensive picture of the economic aspects, feasibility and adaptability of alternative energy sources and their interconnections. The author intends for this treatment of energy sources to be total and complete. It therefore includes such topics as low temperature and high temperature fuel cells, rechargeable storage batteries (including lead acid, nickel-cadmium, lithium, and sodium-sulfur), Redox flows cells energy system in compatibility with fuel cells and storage batteries, MHD energy systems using non-fossil renewable fuels, solar energy system using direct thermal units and photovoltaic generators, wind energy conversion systems, tidal ocean wave energy converters, geothermal energy, and ocean thermal energy conversion systems. The book is structured so that each major energy source is given one chapter. Each chapter begins with a discussion of the basic structural components of the energy source, as well as operational and fuel characteristics. This is followed by an economic analysis, which includes incremental energy cost curves and economic coordination equations for each possible system of operation. Where appropriate, economic scheduling of generation is applied to several modes of system consumption (e.g., localized dispersed systems, interconnected load centers, and central systems)

  3. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  4. Research reactor of the future: The advanced neutron source

    International Nuclear Information System (INIS)

    Appleton, B.; West, C.

    1994-01-01

    Agents for cancer detection and treatment, stronger materials, better electronic gadgets, and other consumer and industrial products - these are assured benefits of a research reactor project proposed for Oak Ridge. Just as American companies have again assumed world leadership in producing semiconductor chips as well as cars and trucks, the United States is poised to retake the lead in neutron science by building and operating the $2.9 billion Advanced Neutron Source (ANS) research reactor by the start of the next century. In 1985, the neutron community, led by ORNL researchers, proposed a pioneering project, later called the ANS. Scheduled to begin operation in 2003, the ANS is seen not only as a replacement for the aging HFIR and HFBR but also as the best laboratory in the world for conducting neutron-based research

  5. Enhanced performance of solid oxide electrolysis cells by integration with a partial oxidation reactor: Energy and exergy analyses

    International Nuclear Information System (INIS)

    Visitdumrongkul, Nuttawut; Tippawan, Phanicha; Authayanun, Suthida; Assabumrungrat, Suttichai; Arpornwichanop, Amornchai

    2016-01-01

    Highlights: • Process design of solid oxide electrolyzer integrated with a partial oxidation reactor is studied. • Effect of key operating parameters of partial oxidation reactor on the electrolyzer performance is presented. • Exergy analysis of the electrolyzer process is performed. • Partial oxidation reactor can enhance the solid oxide electrolyzer performance. • Partial oxidation reactor in the process is the highest exergy destruction unit. - Abstract: Hydrogen production without carbon dioxide emission has received a large amount of attention recently. A solid oxide electrolysis cell (SOEC) can produce pure hydrogen and oxygen via a steam electrolysis reaction that does not emit greenhouse gases. Due to the high operating temperature of SOEC, an external heat source is required for operation, which also helps to improve SOEC performance and reduce operating electricity. The non-catalytic partial oxidation reaction (POX), which is a highly exothermic reaction, can be used as an external heat source and can be integrated with SOEC. Therefore, the aim of this work is to study the effect of operating parameters of non-catalytic POX (i.e., the oxygen to carbon ratio, operating temperature and pressure) on SOEC performance, including exergy analysis of the process. The study indicates that non-catalytic partial oxidation can enhance the hydrogen production rate and efficiency of the system. In terms of exergy analysis, the non-catalytic partial oxidation reactor is demonstrated to be the highest exergy destruction unit due to irreversible chemical reactions taking place, whereas SOEC is a low exergy destruction unit. This result indicates that the partial oxidation reactor should be improved and optimally designed to obtain a high energy and exergy system efficiency.

  6. Advanced neutron source reactor probabilistic flow blockage assessment

    International Nuclear Information System (INIS)

    Ramsey, C.T.

    1995-08-01

    The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool

  7. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    Hassan, Abobaker Mohammed Rahmtalla

    2014-09-01

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  8. Multi-step Monte Carlo calculations applied to nuclear reactor instrumentation - source definition and renormalization to physical values

    Energy Technology Data Exchange (ETDEWEB)

    Radulovic, Vladimir; Barbot, Loic; Fourmentel, Damien; Villard, Jean-Francois [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Snoj, Luka; Zerovnik, Gasper [Jozef Stefan Institute, Reactor Physics Department, Jamova cesta 39, SI-1000 Ljubljana, (Slovenia); Trkov, Andrej [IAEA, Vienna International Centre, PO Box 100, A-1400 Vienna, (Austria)

    2015-07-01

    Significant efforts have been made over the last few years in the French Alternative Energies and Atomic Energy Commission (CEA) to adopt multi-step Monte Carlo calculation schemes in the investigation and interpretation of the response of nuclear reactor instrumentation detectors (e.g. miniature ionization chambers - MICs and self-powered neutron or gamma detectors - SPNDs and SPGDs). The first step consists of the calculation of the primary data, i.e. evaluation of the neutron and gamma flux levels and spectra in the environment where the detector is located, using a computational model of the complete nuclear reactor core and its surroundings. These data are subsequently used to define sources for the following calculation steps, in which only a model of the detector under investigation is used. This approach enables calculations with satisfactory statistical uncertainties (of the order of a few %) within regions which are very small in size (the typical volume of which is of the order of 1 mm{sup 3}). The main drawback of a calculation scheme as described above is that perturbation effects on the radiation conditions caused by the detectors themselves are not taken into account. Depending on the detector, the nuclear reactor and the irradiation position, the perturbation in the neutron flux as primary data may reach 10 to 20%. A further issue is whether the model used in the second step calculations yields physically representative results. This is generally not the case, as significant deviations may arise, depending on the source definition. In particular, as presented in the paper, the injudicious use of special options aimed at increasing the computation efficiency (e.g. reflective boundary conditions) may introduce unphysical bias in the calculated flux levels and distortions in the spectral shapes. This paper presents examples of the issues described above related to a case study on the interpretation of the signal from different types of SPNDs, which

  9. Can renewable energy sources satiate Slovakia's future energy needs?

    Energy Technology Data Exchange (ETDEWEB)

    Tomis, Igor; Koval, Peter; Janicek, Frantisek; Darula, Ivan

    2010-09-15

    The paper examines the options for replacing the current energy mix of non-renewable, conventional energy sources solely with renewable sources in the long term within the context of the Slovak environment, possibly combined with nuclear energy in the 50-year horizon. Vital needs are outlined in household energy consumption and energy consumption for industrial and transportation purposes to fulfil in order for Slovakia to become independent of foreign sources in energy supplies.

  10. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    In Canada the need for advanced neutron sources has long been recognized. During the past several years Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept. To date, the MAPLE program has focused on the development of a modest-cost multipurpose medium-flux neutron source to meet contemporary requirements for applied and basic research using neutron beams, for small-scale materials testing and analysis and for radioisotope production. The basic MAPLE concept incorporates a compact light-water cooled and moderated core within a heavy water primary reflector to generate strong neutron flux levels in a variety of irradiation facilities. In view of renewed Canadian interest in a high-flux neutron source, the MAPLE group has begun to explore advanced concepts based on AECL's experience with heavy water reactors. The overall objective is to define a high-flux facility that will support materials testing for advanced power reactors, new developments in extracted neutron-beam applications, and/or production of radioisotopes. The design target is to attain performance levels of HFR-Grenoble, HFBR, HFIR in a new heavy water-cooled, -moderated,-reflected reactor based on rodded LEU fuel. Physics, shielding, and thermohydraulic studies have been performed for the MAPLE heavy water reactor. 14 refs., 4 figs., 1 tab

  11. The tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.; Rose, R.P.

    1981-01-01

    At a time when the potential benefits of various energy options are being seriously evaluated in many countries through-out the world, it is both timely and important to evaluate the practical application of fusion reactors for their economical production of nuclear fissile fuels from fertile fuels. The fusion hybrid reactor represents a concept that could assure the availability of adequate fuel supplies for a proven nuclear technology and have the potential of being an electrical energy source as opposed to an energy consumer as are the present fuel enrichment processes. Westinghouse Fusion Power Systems Department, under Contract No. EG-77-C-02-4544 with the Department of Energy, Office of Fusion Energy, has developed a preliminary conceptual design for an early twenty-first century fusion hybrid reactor called the commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) Plants. To the depth this study has been performed, no insurmountable technical problems have been identified. The study has provided a basis for reasonable cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources. A nearer-term concept is also defined using a beam driven fusion driver in lieu of the longer term ignited operating mode. (orig.)

  12. Electric Energy Consumption of Multi Purpose Reactor GA. Siwabessy During Reactor Operation

    International Nuclear Information System (INIS)

    Koes Indrakoesoema

    2012-01-01

    Electrical power supply of Reactor Center Multi Purpose obtained from PT PLN to 3030 kVA power contracts. Distribution to existing loads in PRSG divided into 3 (three) lines, each of which is supplied through a transformer BHT01, BHT02 and BHT03, each transformer have capacity of 1600 kVA. During reactor operation, only 2 lines that serve loads, each line serve 2 primary pump motor and 2 secondary pump motor. Electrical power for 24 hours for measurement BHT01, the average is 288 kW, for BHT02 is 641 kW and BHT03 is 466 kW. The energy absorbed by each transformer for 24 hours of measurement, for BHT01 is 6.44 MWh, BHT02 absorb 14.8 MWh and BHT03 absorb 10.9 MWh. (author)

  13. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments. The major application is in the health care industry where irradiators are used to sterilize single use medical products. These irradiators are designed and built by MDS Nordion and are used by manufacturers of surgical kits, gloves, gowns, drapes and other medical products. The irradiator is a large shielded room with a storage pool for the cobalt-60 sources. The medical products are circulated through the shielded room and exposed to the cobalt-60 sources. This treatment sterilizes the medical products which can then be shipped to hospitals for immediate use. Other applications for this irradiation technology include sanitisation of cosmetics, microbial reduction of pharmaceutical raw materials and food irradiation. The cobalt-60 sources are manufactured by MDS Nordion in their Cobalt Operations Facility in Kanata. More than 75,000 cobalt-60 sources for use in irradiators have been manufactured by MDS Nordion. The cobalt-60 sources are double encapsulated in stainless steel capsules, seal welded and helium leak tested. Each source may contain up to 14,000 curies. These sources are shipped to over 170 industrial irradiators around the world. This paper will focus on the MDS Nordion proprietary technology used to produce the cobalt-60 isotope in CANDU reactors. Almost 55 years ago MDS Nordion and Atomic Energy of Canada developed the process for manufacturing cobalt-60 at the Chalk River Labs, in Ontario, Canada. A cobalt-59 target was introduced into a research reactor where the cobalt-59 atom absorbed one neutron to become cobalt-60. Once the cobalt-60 material was removed from the research reactor it was encapsulated in stainless steel and seal welded using a Tungsten Inert Gas weld. The first cobalt-60 sources manufactured using material from the Chalk River Labs were used in cancer

  14. Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Shuai, Yong; Gong, Liang; Tan, Heping

    2014-01-01

    Highlights: • H 2 production by hybrid solar energy and methane steam reforming is analyzed. • MCRT and FVM coupling method is used for chemical reaction in solar porous reactor. • LTNE model is used to study the solid phase and fluid phase thermal performance. • Modified P1 approximation programmed by UDFs is used for irradiative heat transfer. - Abstract: The calorific value of syngas can be greatly upgraded during the methane steam reforming process by using concentrated solar energy as heat source. In this study, the Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is developed to investigate the hydrogen production performance via methane steam reforming in porous media solar thermochemical reactor which includes the mass, momentum, energy and irradiative transfer equations as well as chemical reaction kinetics. The local thermal non-equilibrium (LTNE) model is used to provide more temperature information. The modified P1 approximation is adopted for solving the irradiative heat transfer equation. The MCRT method is used to calculate the sunlight concentration and transmission problems. The fluid phase energy equation and transport equations are solved by Fluent software. The solid phase energy equation, irradiative transfer equation and chemical reaction kinetics are programmed by user defined functions (UDFs). The numerical results indicate that concentrated solar irradiation on the fluid entrance surface of solar chemical reactor is highly uneven, and temperature distribution has significant influence on hydrogen production

  15. Increased sharing of renewable energies in the electricity production system: what impact on the reactor fleet?

    International Nuclear Information System (INIS)

    Cany, C.; Devezeaux de Lavergne, J.G.; Mansilla, C.; Mathonniere, G.

    2017-01-01

    This article presents the flexibility of an individual reactor and of the complete fleet of reactors as a means to cope with the variability of renewable energies like solar or wind energies. Flexibility means the ability for load following and this ability is limited by both safety rules and limits on the release of radionuclides in the environment. The flexibility of the fleet depends on individual reactor flexibility but also on organisational and economic constraints. The participation of a reactor to load following depends on: its availability (not in maintenance or testing phase), its position in the cycle, the positioning of its scheduled shutdowns and the minimization of the volume of effluents. The study presents the future need of flexibility for the reactor fleet as the shares of wind and solar energies increase in the French energy mix. (A.C.)

  16. WWER type reactors used as multipurpose nuclear power sources

    International Nuclear Information System (INIS)

    Fiala, J.; Mulak, J.

    1976-01-01

    Safety aspects are assessed of the siting of nuclear power installations in the vicinity of large housing estates and in areas with a high population density, mainly the aspect of the liquidation of the consequences of the maximum credible accident, i.e., the transversal rupture of the primary coolant circuit. The application of WWER type reactors as multipurpose nuclear power sources in Czechoslovakia is justified. It is shown that such a multipurpose nuclear power source differs from a purely condensation nuclear power plant mainly in the design of the secondary stage. The possibilities of such projects are indicated with a view to power and heat operation. (F.M.)

  17. Renewable energy sources (promotion)

    International Nuclear Information System (INIS)

    Cook, F.

    1986-01-01

    Permission to present a Bill to establish an independent commission directly responsible for the research, development and demonstration of clean, renewable, alternative sources of energy (to nuclear energy) is requested. The paragraphs of the preamble to the Bill are summarized by the Member seeking permission. The main reason for promoting renewable energy sources is opposition to the nuclear industry. One objection was raised. However, permission was granted to present the Bill and it was read for the first time with a second reading ordered for 7 March 1986. The Bill itself is not reprinted but the permission and question are reported verbatim. (U.K.)

  18. Energy-analysis of the total nuclear energy cycle based on light water reactors

    International Nuclear Information System (INIS)

    Kistemaker, J.

    1975-01-01

    The energy economy of the total nuclear energy cycle is investigated. Attention is paid to the importance of fossil fuel saving by using nuclear energy. The energy analysis is based on the construction and operation of power plants with an electric output of 1000MWe. Light water moderated reactors with a 2.7 - 3.2% enriched uranium core are considered. Additionally, the whole fuel cycle including ore winning and refining, enrichment and fuel element manufacturing and reprocessing has been taken into account. Neither radioactive waste storage problems nor safety problems related to the nuclear energy cycle and safeguarding have been dealt with, as exhaustive treatments can be found elswhere

  19. Acceleration of relativistic electrons in plasma reactors and non-linear spectra of cosmic radio sources

    International Nuclear Information System (INIS)

    Kaplan, S.A.; Lomadze, R.D.

    1978-01-01

    A second approximation to the theory of turbulent plasma reactors in connection with the problem of interpretation of the non-linear spectra of cosmic radio sources has been investigated by the authors (Kaplan and Lomadze, 1977; Lomadze, 1977). The present paper discusses the basic results received for a Compton reactor with plasma waves of phase velocities smaller than the velocity of light, as well as for the synchrotron reactor. The distortion of the distribution function of relativistic electrons caused by their diffusion from the reactor is also presented as an example. (Auth.)

  20. The spatial kinetic analysis of accelerator-driven subcritical reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; An, Y.; Chen, X.

    1998-02-01

    The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code

  1. Survey lecture on renewable energy sources. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Meliss, M

    1977-01-01

    The essay deals with utilizable regenerative energy sources: geothermal energy, tidal energy, solar energy, running water energy, and wind energy. Tests for the development of these sources have been carried out, but only one of them has a considerable share in meeting the energy demand--that gained from running water. The others are only of regional importance (geothermal energy, tidal energy) or have lost the importance they once had (wind energy, biochemical energy in the form of wood). The latest discussions about the restrictions on fossil and nuclear energy sources and the environmental effects of the technologies necessary for their utilization have increased the interest in the ''inexhaustible'' energy sources. This is why the author outlines the possible importance of renewable energy sources.

  2. Energy sources for future. Change to a sustainable energy system

    International Nuclear Information System (INIS)

    Morris, C.

    2005-01-01

    Can Germany give up gasoline and power from coal or nuclear energy and how much does it cost? The book does away with all common misunderstandings due to renewable energy sources and describes a compatible model for a sustainable energy mixing in future. Nevertheless fossil fuels are not denounced but seen as a platform for the advanced system. The author explains first why objections to renewable energy sources base on bad information, and pursues quite an other argumentation as such authors emphasizing the potential of these energy sources. Than he shows in detail the possibility of the optimal energy mixing for biomass, solar power, wind power, geothermal energy, hydropower and energy efficiency. The environment will reward us for this and instead buying expensive resources from foreign countries we will create work places at home. The number of big power plants - taking into account safety risks - will decrease and small units of on-site power generation feeded with this renewable sources will play more and more an important role. (GL) [de

  3. Determination of internationally controlled materials according to provisions of the law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The internationally controlled materials determined according to the law for nuclear source materials, etc. are the following: nuclear source materials, nuclear fuel materials, moderating materials, facilities including reactors, etc. sold, transferred, etc. to Japan according to the agreements for peaceful uses of atomic energy between Japan, and the United States, the United Kingdom, Canada, Australia and France by the respective governments and those organs under them; nuclear fuel materials resulting from usage of the above sold and transferred materials, facilities; nuclear fuel materials sold to Japan according to agreements set by the International Atomic Energy Agency; nuclear fuel materials involved with the safeguards in nuclear weapons non-proliferation treaty with IAEA. (Mori, K.)

  4. Old and new ways in reactor technology. Reactor concepts and reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R

    1989-01-01

    Compared to developments of other technical-scale systems, the period between the recognition of the underlying physics of nuclear fission and the development of a functioning nuclear reactor and its further development to the present level of maturity has been relatively short. The whole development is based on the chain reaction and is rendered safe by the possible auto-stabilization of this reaction. Consequently, the safety of nuclear reactors properly designed is based on automatic mechanisms, which prevent spreads of radioactivity even in major accidents. Controversial opinions about nuclear power uses are mostly based on wrong perceptions both of reactor safety and of radioactive waste, unless they are characterized by sheer ideology. The use of nuclear power worldwide has assumed an important, growing role in the combined uses of a variety energy sources in a surprisingly short period of time and will continue to make a safe, economic, and thus responsible contribution in the long run.

  5. Analysis of the energy transport and deposition within the reaction chamber of the Prometheus inertial fusion energy reactor

    International Nuclear Information System (INIS)

    Eggleston, J.E.; Abdou, M.A.; Tillack, M.S.

    1995-01-01

    The thermodynamic response of the Prometheus reactor chamber was analyzed and, from this analysis, a simplified thermodynamic response model was developed for parametric studies on this conceptual reactor design. This paper discusses the thermodynamic response of the cavity gas and models the condensation/evaporation of vapor to and from the first wall. Models of X-ray attenuation and ion slowing down are used to estimate the fraction of the pellet energy that is absorbed in the vapor. It was found that the gas absorbs enough energy to become partially ionized. To treat this problem, methods developed by Zel'dovich and Raizer are used in modeling the internal energy and the radiative heat flux of the vapor.From this analysis, RECON was developed, which runs with a relatively short computational time, yet retains enough accuracy for conceptual reactor design calculations. The code was used to determine whether the reactor designs could meet the stringent mass density limits that are placed on them by the physics of beam propagation through matter. RECON was also used to study the effect that the formation of a local dry spot would have on the first wall of the reactor. It was found that, for a typical reactor lifetime of 30 years, the first wall could not have a dry spot over any one section for more than 15.5 min for the laser driver design and 4.5 min for the heavy ion driver design. These times are relatively short, which implies that there is a need to keep the liquid film attached at all times. (orig.)

  6. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    McCarthy, K.A.; Williams, D.L.; Reister, R.

    2012-01-01

    The US Department of Energy Light Water Reactor Sustainability (LWRS) Program is focused on enabling the long-term operation of US commercial power plants. Decisions on life extension will be made by commercial power plant owners - the information provided by the research and development activities in the LWRS Program will reduce the uncertainty (and therefore the risk) associated with making those decisions. The LWRS Program encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper provides an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables. (author)

  7. Status of and prospects for the application of unconventional energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Stanescu, I D

    1975-01-01

    A review is provided of the status of various non-conventional energy sources. The economics and technical aspects of oil shale utilization are described. Oil shale is currently burned in power plants in the USSR. Oil sands are a similar resource, the most significant deposits belonging to Canada, the USA, Venezuela, and Madagascar. Geothermal resources are divided into dry steam, wet steam, hot water, geopressured, and hot-dry-rock categories. The geopressured type contains natural gas which is dissolved in saline water under pressure. Hot-dry-rock fields, in which cold water is heated by passing it through hot formations, are described. Solar energy applications are presently limited to domestic heating and hot water, but several power plant designs are under development. Wind energy is especially attractive for remote applications. A tidal energy power plant with a 240 MW output is operational in France. Other plants of this type have been proposed in the USSR, UK, Canada, and Argentina. Two ocean thermal gradient power plants are planned for the Gulf Stream, south of Miami. The production of energy from garbage by way of pyrolysis, hydrogenation, and anaerobic fermentation is discussed. High-temperature and fast-breeder reactors are briefly detailed.

  8. History and evolution of the breeder reactor

    International Nuclear Information System (INIS)

    Carle, R.

    1989-01-01

    The concept of the breeder reactor is almost as old as the idea of the nuclear reactor itself. From the very first years following the discovery of nuclear fission, scientists and technicians tried to turn mankind's eternal dream into reality; that is, enjoy an abundant source of energy without using up our raw material reserves. Nuclear energy offered several solutions to realize this dream. One of them, fusion, seemed out of our grasp in the near future. But fission of 235 U was possible, and the Manhattan Project soon furnished ample proof of this theory. However, everyone working in this field was conscious of the fact that thermal neutron reactors make very inefficient use of the energy potential contained in natural uranium. The solution was to use in a core sufficiently rich in fissile matter, the excess neutrons to convert the 238 U, so poorly used by other types of reactors, into fissile 239 Pu. Regeneration, or 'breeding' of fuel, can multiply the energy drawn from a ton of uranium by a factor of 50 to 100. This would enable us to ward off the specter of an energy shortage and the rapid depletion of uranium mines. As early as 1945 in Los Alamos, Enrico Fermi stated: 'The country which first develops a breeder reactor will have a great competitive edge in atomic energy.' The development of the breeder reactor in the USA and around the world is discussed

  9. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  10. Comparisons of calculated and measured spectral distributions of neutrons from a 14-MeV neutron source inside the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Santoro, R.T.; Barnes, J.M.; Alsmiller, R.G. Jr.; Emmett, M.B.; Drischler, J.D.

    1985-12-01

    A recent paper presented neutron spectral distributions (energy greater than or equal to0.91 MeV) measured at various locations around the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The neutron source for the series of measurements was a small D-T generator placed at various positions in the TFTR vacuum chamber. In the present paper the results of neutron transport calculations are presented and compared with these experimental data. The calculations were carried out using Monte Carlo methods and a very detailed model of the TFTR and the TFTR test cell. The calculated and experimental fluences per unit energy are compared in absolute units and are found to be in substantial agreement for five different combinations of source and detector positions

  11. Impact of source terms on distances to which reactor accident consequences occur

    International Nuclear Information System (INIS)

    Ostmeyer, R.M.

    1982-01-01

    Estimates of the distances over which reactor accident consequences might occur are important for development of siting criteria and for emergency response planning. This paper summarizes the results of a series of CRAC2 calculations performed to estimate these distances. Because of the current controversy concerning the magnitude of source terms for severe accidents, the impact of source term reductions upon distance estimates is also examined

  12. Potential of renewable and alternative energy sources

    Science.gov (United States)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  13. Assessment of a small pressurized water reactor for industrial energy

    International Nuclear Information System (INIS)

    Klepper, O.H.; Fuller, L.C.; Myers, M.L.

    1977-01-01

    An evaluation of several recent ERDA/ORNL sponsored studies on the application of a small, 365 MW(t) pressurized water reactor for industrial energy is presented. Preliminary studies have investigated technical and reliability requirements; costs for nuclear and fossil based steam were compared, including consideration of economic inflation and financing methods. For base-load industrial steam production, small reactors appear economically attractive relative to coal fired boilers that use coal priced at $30/ton

  14. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  15. Thermal Reactor Safety

    International Nuclear Information System (INIS)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods

  16. Alternatives sources of energy in the Czech energy mix

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Lisy; Marek, Balas; Zdenek, Skala

    2010-09-15

    The paper features a basic outline of the situation in the energy sector of the Czech Republic. It brings information about the current state of the country's energy mix and indicative targets of the State Energy Policy. Though coal and nuclear energy will remain the country's energy staples, great stress is also put on the growth of share of renewable and alternative energy sources. Out of these, the greatest potential in the Czech Republic is that of biomass and waste. To make the use of these sources cost-effective, it is necessary to put stress on heat and power cogeneration.

  17. Reactor physics methods, models, and applications used to support the conceptual design of the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Gehin, J.C.; Worley, B.A.; Renier, J.P.; Wemple, C.A.; Jahshan, S.N.; Ryskammp, J.M.

    1995-08-01

    This report summarizes the neutronics analysis performed during 1991 and 1992 in support of characterization of the conceptual design of the Advanced Neutron Source (ANS). The methods used in the analysis, parametric studies, and key results supporting the design and safety evaluations of the conceptual design are presented. The analysis approach used during the conceptual design phase followed the same approach used in early ANS evaluations: (1) a strong reliance on Monte Carlo theory for beginning-of-cycle reactor performance calculations and (2) a reliance on few-group diffusion theory for reactor fuel cycle analysis and for evaluation of reactor performance at specific time steps over the fuel cycle. The Monte Carlo analysis was carried out using the MCNP continuous-energy code, and the few- group diffusion theory calculations were performed using the VENTURE and PDQ code systems. The MCNP code was used primarily for its capability to model the reflector components in realistic geometries as well as the inherent circumvention of cross-section processing requirements and use of energy-collapsed cross sections. The MCNP code was used for evaluations of reflector component reactivity effects and of heat loads in these components. The code was also used as a benchmark comparison against the diffusion-theory estimates of key reactor parameters such as region fluxes, control rod worths, reactivity coefficients, and material worths. The VENTURE and PDQ codes were used to provide independent evaluations of burnup effects, power distributions, and small perturbation worths. The performance and safety calculations performed over the subject time period are summarized, and key results are provided. The key results include flux and power distributions over the fuel cycle, silicon production rates, fuel burnup rates, component reactivities, control rod worths, component heat loads, shutdown reactivity margins, reactivity coefficients, and isotope production rates

  18. New developments in small reactors

    International Nuclear Information System (INIS)

    McDonnell, F.N.; Reed, A.

    1990-08-01

    During the fifty years since nuclear fission was discovered, nuclear energy has emerged to play an increasingly important role in meeting global energy needs. At the recent World Energy Conference in Montreal, 1989 September, experts agreed that nuclear power will continue to be an essential part of the future energy mix. The demand for economic and reliable energy sources is driven by the growth in the world's population and the essential role energy plays in industrial development. Global energy requirements, expected to double over the next 40 years, will seriously challenge suppliers in their ability to meet the demand. Ultimately, efficient energy utilization will become singularly important. Industrialization and economic development manifest themselves in urbanization. Urban dwellers consume significantly more energy per capita compared with their rural neighbours. Consequently, concentrated and environmentally acceptable energy sources, combined with efficient distribution systems, are now recognized as essential to meet urban energy demands. In considering the alternatives that will meet these requirements, nuclear energy qualifies as both a concentrated and environmentally benign source. Nuclear electricity generation is a mature technology that paves the way for other applications. If nuclear energy is to realize its full potential as a safe and cost-effective alternative to fossil fuels, applications beyond those that are currently being serviced by large, central nuclear power stations must be identified, and appropriately designed and sized reactors developed as an investment in the future. To meet this potential, new small reactor concepts are being developed to satisfy the expected energy demands, while also displaying characteristics that address current public concerns for providing minimal environmental impact. Concepts ranging in sized from 10 MW(t) to 1000 MW(t) are being pursued in a number of countries, including Canada, USA, UK, China, and

  19. Energy deposition measurements in fast reactor safety experiments with fission thermocouple detectors

    International Nuclear Information System (INIS)

    Wright, S.A.; Scott, H.L.

    1979-01-01

    The investigation of phenomena occurring in in-pile fast reactor safety experiments requires an accurate measurement of the time dependent energy depositions within the fissile material. At Sandia Laboratories thin-film fission thermocouples are being developed for this purpose. These detectors have high temperature capabilities (400 to 500 0 C), are sodium compatible, and have milli-second time response. A significant advantage of these detectors for use as energy deposition monitors is that they produce an output voltage which is directly dependent on the temperature of a small chip of fissile material within the detectors. However, heat losses within the detector make it necessary to correct the response of the detector to determine the energy deposition. A method of correcting the detector response which uses an inverse convolution procedure has been developed and successfully tested with experimental data obtained in the Sandia Pulse Reactor (SPR-II) and in the Annular Core Research Reactor

  20. Advanced Nuclear Reactor Concepts for China

    International Nuclear Information System (INIS)

    Knoche, D.; Sassen, F.; Tietsch, W.; Yujie, Dong; Li, Cao

    2008-01-01

    China is one of the fastest growing economies in the world. With 1.3 billion people China also has the largest population worldwide. The growing economy, the migration of people from rural areas to cities and the augmentation in living standard will drive the energy demand of China in the coming decades. At present the installed electrical power is about 500 GW. In the years 2004 and 2005 the added electrical capacity was around 60 GW per year. Chinas primary energy demand is covered mainly by the use of coal. Coal also will remain the main energy source in the coming decades in China. Nevertheless taking into account more and more environmental aspects and the goal to reduce dependencies on energy imports a better energy mix strategy is planed to change including at an increasing level the renewable and nuclear option. Present the nuclear park is characterised by a large variety of different types of reactors. With the AP-1000, EPR and the gas-cooled High Temperature Reactor (HTR) the spectrum of different reactor types will be further enlarged. (authors)

  1. Advanced Nuclear Reactor Concepts for China

    Energy Technology Data Exchange (ETDEWEB)

    Knoche, D.; Sassen, F.; Tietsch, W. [Westinghouse Electric Germany, Postfach 10 05 63, 68140 Mannheim (Germany); Yujie, Dong; Li, Cao [INET, Tsinghua University, 100084 Beijing (China)

    2008-07-01

    China is one of the fastest growing economies in the world. With 1.3 billion people China also has the largest population worldwide. The growing economy, the migration of people from rural areas to cities and the augmentation in living standard will drive the energy demand of China in the coming decades. At present the installed electrical power is about 500 GW. In the years 2004 and 2005 the added electrical capacity was around 60 GW per year. Chinas primary energy demand is covered mainly by the use of coal. Coal also will remain the main energy source in the coming decades in China. Nevertheless taking into account more and more environmental aspects and the goal to reduce dependencies on energy imports a better energy mix strategy is planed to change including at an increasing level the renewable and nuclear option. Present the nuclear park is characterised by a large variety of different types of reactors. With the AP-1000, EPR and the gas-cooled High Temperature Reactor (HTR) the spectrum of different reactor types will be further enlarged. (authors)

  2. Study of nuclear reactions involving heavy nuclei and intermediate- and high-energy protons and an application in nuclear reactor physics (ADS)

    International Nuclear Information System (INIS)

    Matuoka, Paula Fernanda Toledo

    2016-01-01

    In the present work, intermediate- and high-energy nuclear reactions involving heavy nuclei and protons were studied with the Monte Carlo CRISP (Rio - Ilheus - Sao Paulo Collaboration) model. The most relevant nuclear processes studied were intranuclear cascade and fission-evaporation competition. Preliminary studies showed fair agreement between CRISP model calculation and experimental data of multiplicity of evaporated neutrons (E 20 MeV) were emitted mostly in the intranuclear cascade stage, while evaporation presented larger neutron multiplicity. Fission cross section of 209 mb and spallation cross section of 1788 mb were calculated { both in agreement with experimental data. The fission process resulted in a symmetric mass distribution. Another Monte Carlo code, MCNP, was used for radiation transport in order to understand the role of a spallation neutron source in a ADS (Accelerator Driven System) nuclear reactor. Initially, a PWR reactor was simulated to study the isotopic compositions in spent nuclear fuel. As a rst attempt, a spallation neutron source was adapted to an industrial size nuclear reactor. The results showed no evidence of incineration of transuranic elements and modifications were suggested. (author)

  3. Nuclear reactor safety program in US department of energy and future perspectives

    International Nuclear Information System (INIS)

    Song, Y.T.

    1988-01-01

    The US Department of Energy (DOE) establishes policy, issues orders, and assures compliance with requirements. The contractors who design, construct, modify, operate, maintain and decommission DOE reactors, set forth the assessment of the safety of cognizant reactors and implement DOE orders. Teams of experts in the Department, through scheduled and unscheduled review programs, reassess the safety of reactors in every phases of their lives. As new technology develops, the safety programs are reevaluated and policies are modified to accommodate these new technologies. The diagnostic capabilities of the computer using multiple alarms to enhance detection of defects and control of a reactor have been greatly utilized in reactor operating systems. The Application of artificial intelligence technologies for diagnostic and even for the decision making process in the event of reactor accidents would be one of the future trends in reactor safety programs

  4. Contribution of the IV generation fast reactors to the sustainable development

    International Nuclear Information System (INIS)

    Mendoza G, G.; Klapp E, J.L.

    2007-01-01

    During the XXI century all the energy forms are necessary for the sustainable development. A balanced energy politics has to use a mixture of energy sources that completes the objective of responding to the increase in the demand and that it uses non emitting gases sources of greenhouse effect like the nuclear one. It is evident the great existent difficulty to turn the objectives of emissions for the coming years without having the nuclear energy. Later on, the process continued outlining serious commitments among the development necessity, the improvement of the level of life and the competitiveness, and the execution from the established environmental requirements to world level. It is very foregone that the energy nuclear become the best energy source to improve the environmental conditions and that new initiatives are determined in those that this energy will have an important paper. The solution is to build a nuclear central of advanced design, using technologies that its help to brake the diffusion of the nuclear weapons. The nucleo electric energy at great scale should be developed on the base of designs of reactors and innovative processes of fuel that can lend technological support to the not nuclear proliferation regime, and that at the same time they contribute to satisfy the electricity demand in the world. In a scenario of increase of energy demand, mainly in the development countries, and of growing interest in the pollutants reduction originated by the use of fossil fuels, the nuclear reactors of IV Generation arise as proposal and challenge. Meanwhile the search of new technologies and innovations become imperative, translating an enormous evolution, not only in the conceptual projects, as well as in the fuel cycle so that, in a scenario of open economy, turn its more competitive. Inside the reactors of fourth generation, the quick reactors are configured as those that more assist to such demands and they will be, without a doubt, the reactors in

  5. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  6. The secondary neutron sources for generation of particular neutron fluxes

    International Nuclear Information System (INIS)

    Tracz, G.

    2007-07-01

    The foregoing paper presents the doctor's thesis entitled '' The secondary neutron sources for generation of particular neutron fluxes ''. Two secondary neutron sources have been designed, which exploit already existing primary sources emitting neutrons of energies different from the desired ones. The first source is devoted to boron-neutron capture therapy (BNCT). The research reactor MARIA at the Institute of Atomic Energy in Swierk (Poland) is the primary source of the reactor thermal neutrons, while the secondary source should supply epithermal neutrons. The other secondary source is the pulsed source of thermal neutrons that uses fast 14 MeV neutrons from a pulsed generator at the Institute of Nuclear Physics PAN in Krakow (Poland). The physical problems to be solved in the two mentioned cases are different. Namely, in order to devise the BNCT source the initial energy of particles ought to be increased, whilst in the other case the fast neutrons have to be moderated. Slowing down of neutrons is relatively easy since these particles lose energy when they scatter in media; the most effective moderators are the materials which contain light elements (mostly hydrogen). In order to increase the energy of neutrons from thermal to epithermal (the BNCT case) the so-called neutron converter should be exploited. It contains a fissile material, 235 U. The thermal neutrons from the reactor cause fission of uranium and fast neutrons are emitted from the converter. Then fissile neutrons of energy of a few MeV are slowed down to the required epithermal energy range. The design of both secondary sources have been conducted by means of Monte Carlo simulations, which have been carried out using the MCNP code. In the case of the secondary pulsed thermal neutron source, some of the calculated results have been verified experimentally. (author)

  7. Alternative energy sources in the Czech Republic

    International Nuclear Information System (INIS)

    1999-10-01

    The hereby presented report was elaborated for the Royal Netherlands Embassy in Prague, Czech Republic by the Netherlands Chamber of Commerce in Prague from July to October 1999. The report is constituted so as to provide a complete introductory overview of the situation in the Czech Republic relating to alternative energy sources. For the purposes of this report, the term alternative energy sources is conceived as renewable energy sources and combined generation of heat and electricity. Renewable energy sources comprise sun, water, wind, geothermal energy and energy generated from biomass or waste. The report features a glimpse at the history of alternative energy sources' utilisation in the Czech Republic, a description of the current state and an extrapolation of existing trends into expectable medium- and long-run developments. The report also includes an insight into the relevant legal framework and a general scan of market opportunities. The objective of the report is to prepare a solid starting platform for Dutch companies which specialise in renewable energy sources and/or cogeneration and which may be interested in extending their scope of activities to the Czech Republic

  8. A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2017-06-26

    A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gaps in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.

  9. Cylindrical IEC neutron source design for driven research reactor operation

    International Nuclear Information System (INIS)

    Miley, G.H.; Ulmen, B.; Amadio, G.; Leon, H.; Hora, H.

    2009-01-01

    A resurgence in nuclear power use is now underway worldwide. However, due many university research reactors shutdown, they must rely on using subcritical assemblies which employs a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The source is inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory. (author)

  10. An accelerator based steady state neutron source

    International Nuclear Information System (INIS)

    Burke, R.J.; Johnson, D.L.

    1985-01-01

    Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  11. Fuel-element failures in Hanford single-pass reactors 1944--1971

    Energy Technology Data Exchange (ETDEWEB)

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report.

  12. Opportunities for TRIGA reactors in neutron radiography

    International Nuclear Information System (INIS)

    Barton, John P.

    1978-01-01

    In this country the two most recent installations of TRIGA reactors have both been for neutron radiography, one at HEDL and the other at ANL. Meanwhile, a major portion of the commercial neutron radiography is performed on a TRIGA fueled reactor at Aerotest. Each of these installations has different primary objectives and some comparative observations can be drawn. Another interesting comparison is between the TRIGA reactors for neutron radiography and other small reactors that are being installed for this purpose such as the MIRENE slow pulse reactors in France, a U-233 fueled reactor for neutron radiography in India and the L88 solution reactor in Denmark. At Monsanto Laboratory, in Ohio, a subcritical reactor based on MTR-type fuel has recently been purchased for neutron radiography. Such systems, when driven by a Van de Graaff neutron source, will be compared with the standard TRIGA reactor. Future demands on TRIGA or competitive systems for neutron radiography are likely to include the pulsing capability of the reactor, and also the extraction of cold neutron beams and resonance energy beams. Experiments recently performed on the Oregon State TRIGA Reactor provide information in each of these categories. A point of particular current concern is a comparison made between the resonance energy beam intensity extracted from the edge of the TRIGA core and from a slot which penetrated to the center of the TREAT reactor. These results indicate that by using such slots on a TRIGA, resonance energy intensities could be extracted that are much higher than previously predicted. (author)

  13. Conceptual Study for development of a low power research reactor

    International Nuclear Information System (INIS)

    Park, C.; Kim, H. S.; Park, J. H.; Chae, H. T.; Lee, B. C.

    2013-01-01

    Even though the nuclear society is again facing with difficult situations after Fukusima accident, some countries still continues to consider nuclear power as one option of national energy sources and to introduce nuclear energy. As a research reactor has been regarded as a step-stone to establish infrastructures for the nuclear power development program, some countries that have plan to introduce the nuclear power energy are considering to construct a research reactor. Particularly, a low power research reactor whose main purpose is basic researches on the nuclear technology and education/training would be of interest to developing countries when taking the economy and level of science and technology into consideration. And many low power research reactors at operation are obsolescent and their numbers are decreasing. Hence, some concepts on a low power research reactor are being studied for the future needs. This paper presents the conceptual study on the basic requirements and the preliminary design features of a low power research reactor

  14. Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview

    Science.gov (United States)

    Doshi, Bharat; Reddy, D. Chenna

    2017-04-01

    Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion

  15. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    2016-04-17

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooled fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the

  16. Development or Deployment of 'Grid-Appropriate' Reactors for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Ingersoll, D. T.

    2008-01-01

    The world energy demand is expected to nearly double by 2030, largely driven by rapidly increasing demand in the developing parts of the world. Many of the countries that will experience the greatest growth in energy demand have little or no current nuclear power experience and have significant constraints on the size and type of power plant that can be accommodated. Although a few reactor vendors are beginning to address this market need, most traditional vendors continue to offer only very large nuclear power plants with capacities exceeding 1500 MWe per unit. The Global Nuclear Energy Partnership (GNEP), which was initiated in the United States and now includes a partnership of 20 countries, seeks to facilitate the large-scale global growth in nuclear power. Within the GNEP program, the 'grid-appropriate' reactors (GAR) campaign has been initiated to coordinate and facilitate the development, demonstration, and deployment of reactor designs that are better suited for those countries that need or prefer smaller power plant capacities. The GNEP/GAR program addresses the full spectrum of issues for the deployment of new reactor designs to new nuclear power countries, including: reactor technology and engineering, licensing and regulatory impacts, and infrastructure needs (physical, workforce, and institutional). Initially, the program is focused on meeting the current global demand for small or medium-sized reactors using demonstrated technologies. The program will also address the development of new reactor technologies that will further enhance the safety, security, and proliferation resistance of future designs. International collaborations are being established to: (1) develop suitable requirements and criteria for GAR designs, (2) conduct R and D for longer-term reactor technologies and innovative designs, and (3) assisting new nuclear power countries in assessing their infrastructure needs. The status of these activities will be presented and future program

  17. Non-electric applications of pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Adamov, E.O.; Cherkashov, Yu.M.; Romenkov, A.A.

    1997-01-01

    This paper recommends the use of pool-type light water reactors for thermal energy production. Safety and reliability of these reactors were already demonstrated to the public by the long-term operation of swimming pool research reactors. The paper presents the design experience of two projects: Apatity Underground Nuclear Heating Plant and Nuclear Sea-Water Desalination Plant. The simplicity of pool-type reactors, the ease of their manufacturing and maintenance make this type of a heat source attractive to the countries without a developed nuclear industry. (author). 6 figs, 1 tab

  18. Data bank for economic viability calculation of energy sources for a typical rural community at the Brazil Northern and Northeastern

    International Nuclear Information System (INIS)

    Menzel, Francine; Sabundjian, Gaiane; Vanni, Silvia Regina

    2009-01-01

    This work elaborates a data bank containing information relevant relative to energy sources in Brazil with viability and sustainability, The data bank was elaborated using the computer program Excel, where all the references are linked to the articles and to the correspondent sites. This data bank was the base for the development or the Program for the Calculation of the Economic Viability of the Alternative Energies Solar, Aeolian and Biomass (PEASEB), which results were compared to the energy generated by innovator and compact reactors (IRIS)

  19. Innovative Energy Planning and Nuclear Option Using CANDLE Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, H; Nagata, A; Mingyu, Y [Tokyo Institute of Technology, Tokyo (Japan)

    2008-07-01

    A new reactor burn-up strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move upward (or downward) along its core axis. This burn-up strategy can derive many merits. The change of excess reactivity along burn-up is theoretically zero for ideal equilibrium condition, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed during life of operation. Therefore, the operation of the reactor becomes much easier than the conventional reactors. The infinite-medium neutron multiplication factor of replacing fuel is less than unity. Therefore, the transportation and storage of replacing fuels becomes easy and safe, since they are free from criticality accidents. Small long life fast reactor with CANDLE burn-up concept has investigated with depleted uranium as a replacing fuel. Both core diameter and height are chosen to be 2.0 m, and the thermal power is 200 MW. Lead-bismuth is used as a coolant, and nitride (enriched N-15) fuel are employed. The velocity of burning region along burn-up is less than 1.0 cm/year that enables a long life design easily. The core averaged discharged fuel burn-up is about 40 percent. It is about ten times of light water reactor burn-up. The spent fuel volume becomes one-tenth of light water reactor spent fuel. If a light water reactor with a certain power output has been operated for 40 years, the CANDLE reactor can be operated for 2000 years with the same power output and with only depleted uranium left after fuel production for the light water reactor. The system does not need any reprocessing or enrichment. Therefore, the reactor operation becomes very safe, the waste

  20. Innovative Energy Planning and Nuclear Option Using CANDLE Reactors

    International Nuclear Information System (INIS)

    Sekimoto, H.; Nagata, A.; Mingyu, Y.

    2008-01-01

    A new reactor burn-up strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move upward (or downward) along its core axis. This burn-up strategy can derive many merits. The change of excess reactivity along burn-up is theoretically zero for ideal equilibrium condition, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed during life of operation. Therefore, the operation of the reactor becomes much easier than the conventional reactors. The infinite-medium neutron multiplication factor of replacing fuel is less than unity. Therefore, the transportation and storage of replacing fuels becomes easy and safe, since they are free from criticality accidents. Small long life fast reactor with CANDLE burn-up concept has investigated with depleted uranium as a replacing fuel. Both core diameter and height are chosen to be 2.0 m, and the thermal power is 200 MW. Lead-bismuth is used as a coolant, and nitride (enriched N-15) fuel are employed. The velocity of burning region along burn-up is less than 1.0 cm/year that enables a long life design easily. The core averaged discharged fuel burn-up is about 40 percent. It is about ten times of light water reactor burn-up. The spent fuel volume becomes one-tenth of light water reactor spent fuel. If a light water reactor with a certain power output has been operated for 40 years, the CANDLE reactor can be operated for 2000 years with the same power output and with only depleted uranium left after fuel production for the light water reactor. The system does not need any reprocessing or enrichment. Therefore, the reactor operation becomes very safe, the waste

  1. Neutron energy spectra calculations in the low power research reactor

    International Nuclear Information System (INIS)

    Omar, H.; Khattab, K.; Ghazi, N.

    2011-01-01

    The neutron energy spectra have been calculated in the fuel region, inner and outer irradiation sites of the zero power research reactor using the MCNP-4C code and the combination of the WIMS-D/4 transport code for generation of group constants and the three-dimensional CITATION diffusion code for core analysis calculations. The neutron energy spectrum has been divided into three regions and compared with the proposed empirical correlations. The calculated thermal and fast neutron fluxes in the low power research reactor MNSR inner and outer irradiation sites have been compared with the measured results. Better agreements have been noticed between the calculated and measured results using the MCNP code than those obtained by the CITATION code. (author)

  2. High thermal efficiency x-ray energy conversion scheme for advanced fusion reactors

    International Nuclear Information System (INIS)

    Quimby, D.C.; Taussig, R.T.; Hertzberg, A.

    1977-01-01

    This paper reports on a new radiation energy conversion scheme which appears to be capable of producing electricity from the high quality x-ray energy with efficiencies of 60 to 70 percent. This new reactor concept incorporates a novel x-ray radiation boiler and a new thermal conversion device known as an energy exchanger. The low-Z first walls of the radiation boiler are semi-transparent to x-rays, and are kept cool by incoming working fluid, which is subsequently heated to temperatures of 2000 to 3000 0 K in the interior of the boiler by volumetric x-ray absorption. The radiation boiler may be a compact part of the reactor shell since x-rays are readily absorbed in high-Z materials. The energy exchanger transfers the high-temperature working fluid energy to a lower temperature gas which drives a conventional turbine. The overall efficiency of the cycle is characterized by the high temperature of the working fluid. The high thermal efficiencies which appear achievable with this cycle would make an otherwise marginal advanced fusion reactor into an attractive net power producer. The operating principles, initial conceptual design, and engineering problems of the radiation boiler and thermal cycle are presented

  3. Renewable energy sources in the Colombian energy policy, analysis and perspectives

    International Nuclear Information System (INIS)

    Ruiz, B.J.; Rodriguez-Padilla, V.

    2006-01-01

    In this work; five basic elements for the formulation of a policy on renewable energy sources for Colombia, are discussed. A balance of the institutions of the energy sector related to the formulation, elaboration and execution of plans, programs and projects on renewable energy sources is carried out. The technology costs that take advantage of such sources are compared and the 967 Law issued in 2001 and its regulatory decree are analyzed. This law promotes the efficient and rational use of energy and also promotes the alternative energies

  4. Investigation of the possibility of using residual heat reactor energy

    Science.gov (United States)

    Aminov, R. Z.; Yurin, V. E.; Bessonov, V. N.

    2017-11-01

    The largest contribution to the probable frequency of core damage is blackout events. The main component of the heat capacity at each reactor within a few minutes following a blackout is the heat resulting from the braking of beta-particles and the transfer of gamma-ray energy by the fission fragments and their decay products, which is known as the residual heat. The power of the residual heat changes gradually over a long period of time and for a VVER-1000 reactor is about 15-20 MW of thermal power over 72 hours. Current cooldown systems increase the cost of the basic nuclear power plants (NPP) funds without changing the amount of electricity generated. Such systems remain on standby, accelerating the aging of the equipment and accordingly reducing its reliability. The probability of system failure increases with the duration of idle time. Furthermore, the reactor residual heat energy is not used. A proposed system for cooling nuclear power plants involves the use of residual thermal power to supply the station’s own needs in emergency situations accompanied by a complete blackout. The thermal power of residual heat can be converted to electrical energy through an additional low power steam turbine. In normal mode, the additional steam turbine generates electricity, which makes it possible to ensure spare NPP and a return on the investment in the reservation system. In this work, experimental data obtained from a Balakovo NPP was analyzed to determine the admissibility of cooldown of the reactors through the 2nd circuit over a long time period, while maintaining high-level parameters for the steam generated by the steam generators.

  5. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  6. Linear programming optimization of nuclear energy strategy with sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Lee, Je Whan; Jeong, Yong Hoon; Chang, Yoon Il; Chang, Soon Heung

    2011-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. A Sodium-cooled Fast Reactor (SFR) was developed to extend uranium resource utilization under a growing nuclear energy scenario while concomitantly providing a nuclear waste management solution. Key questions in this scenario are when to introduce SFRs and how many reactors should be introduced. In this study, a methodology using Linear Programming is employed in order to quantify an optimized growth pattern of a nuclear energy system comprising light water reactors and SFRs. The optimization involves tradeoffs between SFR capital cost premiums and the total system U3O8 price premiums. Optimum nuclear growth patterns for several scenarios are presented, as well as sensitivity analyses of important input parameters

  7. Development of source term evaluation method for Korean Next Generation Reactor(III)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Jae; Park, Jin Baek; Lee, Yeong Il; Song, Min Cheonl; Lee, Ho Jin [Korea Advanced Institue of Science and Technology, Taejon (Korea, Republic of)

    1998-06-15

    This project had investigated irradiation characteristics of MOX fuel method to predict nuclide concentration at primary and secondary coolant using a core containing 100% of all MOX fuel and development of source term evaluation tool. In this study, several prediction methods of source term are evaluated. Detailed contents of this project are : an evaluation of model for nuclear concentration at Reactor Coolant System, evaluation of primary and secondary coolant concentration of reference Nuclear Power Plant using purely MOX fuel, suggestion of source term prediction method of NPP with a core using MOX fuel.

  8. New nuclear heat sources for district heating

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The means by which urban oil heating may be taken over by new energy sources, especially nuclear, are discussed. Several possibilities exist: pressurized water reactors for high powers, and low-temperature swimming-pool-type process-heat reactors for lower powers. Both these cases are discussed [fr

  9. Achievement and development of neutron beam utilization in research reactors

    International Nuclear Information System (INIS)

    Isshiki, Masahiko

    1996-01-01

    Especially regarding the neutron beam experiment in Japan, the basic research has been developed by utilizing the JRR-2 of Japan Atomic Energy Research Institute and the KUR of Kyoto University over long years. Now, the JRR-3M of JAERI was revived as a high performance, general purpose reactor, and bears important roles as the neutron beam experiment center in Japan. Thanks to one of the most powerful reactor neutron sources in the world and the cold neutron source, the environment of research was greatly improved, and the excellent results of researches began to be reported. The discovery of neutrons by Chadwick and the history of the related researches are described. As neutron sources, radioisotopes, accelerators and nuclear reactors are properly used corresponding to purposes. As the utilization of research reactors for neutron sources, the utilization for irradiation and neutron beam experiment are carried out. The outline of the research reactor JRR-3M is explained. The state of utilization in neutron scattering experiment, neutron radiography, prompt γ-ray analysis and the medical irradiation of neutrons is reported. (K.I.)

  10. Solar energy versus nuclear energy as energy sources at the transition period

    International Nuclear Information System (INIS)

    Sastroamidjojo, MSA.

    Technical aspects and social aspects of nuclear power plants and solar energy system as energy sources, were comparatively evaluated. The evaluation proves that solar energy is better than nuclear energy. (SMN)

  11. The low power miniature neutron source reactors: Design, safety and applications

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, M.; Bezboruah, T.; Johri, M.; Akaho, E.H.K.

    2006-04-01

    The Chinese Miniature Neutron Source Reactor (MNSR) is a low power research reactor with maximum thermal neutron flux of 1 x 10 12 n.cm -2 .s -1 in one of its inner irradiation channels and thermal power of approximately 30kW. The MNSR is designed based on the Canadian SLOWPOKE reactor and is one of the smallest commercial research reactors presently available in the world. Its commercial versions currently in operation in China, Ghana, Iran, Nigeria, Pakistan and Syria, is considered as an excellent tool for Neutron Activation Analysis (NAA), training of Scientist, and Engineers in nuclear science and technology and small scale radioisotope production. The paper highlights the basic design and theory of the commercial MNSR, its safety features, applications and advantages over the Chinese Prototype. The experimental flux characteristics determined in this work and in similar studies by other authors reveal that the commercial MNSR has more flux stability, longer life span, higher negative temperature coefficient of reactivity and low under-moderation compared to its prototype in China. The result shows that the facility is safe for reactor physics experiments, teaching and training of students and also ideal for application of NAA for the determination of elemental composition of biological and environmental samples. It can also be a useful tool for geochemical and soil fertility mapping. (author)

  12. Analysis of energy released from core disruptive accident of sodium cooled fast reactor using CDA-ER and VENUS-II codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. H.; Ha, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    feedback (Doppler and displacement) VENUS-II has the following assumptions. The reactor materials behave like a homogeneous mixture with the property of an isotropic and nonviscous fluid. The reactivity change caused by a material displacement can be calculated with first-order perturbation theory. Further, the reactivity worth of spatial gradients remain constant and distort with the grid. The heat transfer from the fuel can be ignored. Although several heat transfer mechanisms can become significant, one of the greatest potential influence would appear to be a rapid molten-fuel-coolant interaction (MFCI). The non fuel core constituents are considered to be compressible, but inert, materials. The fuel vapor pressure and compression of the reactor materials are the only sources of internal pressure. Thus, such potential pressure sources such as fission gas and sodium vapor pressure are ignored. The time history of the power level can be described using point kinetics, and the spatial power-density distribution remains constant. In this work, the energy released from core disruptive accident (CDA) of sodium cooled fast reactor was investigated using CDA-ER and VENUS-II code for various reactivity insertion rates up to 100$/s, and their results were compared. The calculation results of two codes showed similar trends of energy, power and pressure from CDA. But most results of VENUS-II were found to be larger than those of CDA-ER. The released energy results calculated from VENUS-II were about 2 ∼ 3 times higher than those from CDA-ER.

  13. Analysis of energy released from core disruptive accident of sodium cooled fast reactor using CDA-ER and VENUS-II codes

    International Nuclear Information System (INIS)

    Kang, S. H.; Ha, K. S.

    2013-01-01

    displacement) VENUS-II has the following assumptions. The reactor materials behave like a homogeneous mixture with the property of an isotropic and nonviscous fluid. The reactivity change caused by a material displacement can be calculated with first-order perturbation theory. Further, the reactivity worth of spatial gradients remain constant and distort with the grid. The heat transfer from the fuel can be ignored. Although several heat transfer mechanisms can become significant, one of the greatest potential influence would appear to be a rapid molten-fuel-coolant interaction (MFCI). The non fuel core constituents are considered to be compressible, but inert, materials. The fuel vapor pressure and compression of the reactor materials are the only sources of internal pressure. Thus, such potential pressure sources such as fission gas and sodium vapor pressure are ignored. The time history of the power level can be described using point kinetics, and the spatial power-density distribution remains constant. In this work, the energy released from core disruptive accident (CDA) of sodium cooled fast reactor was investigated using CDA-ER and VENUS-II code for various reactivity insertion rates up to 100$/s, and their results were compared. The calculation results of two codes showed similar trends of energy, power and pressure from CDA. But most results of VENUS-II were found to be larger than those of CDA-ER. The released energy results calculated from VENUS-II were about 2 ∼ 3 times higher than those from CDA-ER

  14. Energy policy and renewable energy sources

    International Nuclear Information System (INIS)

    2000-01-01

    According to Shell, by 2050, renewable energy sources may supply over 50% of the energy, worldwide. This concentration on renewable energy sources is primarily due to the intensified environmental demands. The UN climate panel has estimated that to avoid irreversible climate change it is necessary to reduce the global emissions of CO2 by 50 to 60% during the next 100 years. Biomass energy includes a number of biological raw materials from forestry and agriculture. The forests provide wood, wood chips, bark, branches and treetops, and from agriculture, straw. Although biomass energy is not entirely pollution-free, it is renewable and CO2-neutral as long as growth and consumption are in balance. In Norway, the total annual growth of available biomass corresponds to about 80 TWh. The technical potential is estimated to 30 TWh per year, allowing for operationally reasonable ways of producing the biomass. However, there is competition for the biomass since it is used by the wood processing industry. The use of biomass and waste for energy generation varies considerably among the Nordic countries. In Denmark, agriculture dominates and large quantities of straw are burned in cogeneration plants. Sweden and Finland have well-developed forest industries, and the wood processing industry in these countries uses much more biomass fuel (bark, fibre mud, black liquor) than the Norwegian wood processing industry. In Norway, more energy can be obtained by retrofitting old hydroelectric plants such as by installing a flexible liner in existing tunnels. This improves energy flexibility and increases energy production without negative environmental consequences. The potential for wind power is larger in Norway than in Denmark and Germany. The cost of wind power has fallen considerably as a consequence of the technological development of the sector

  15. Energy sources and power plants

    International Nuclear Information System (INIS)

    Schulz, Detlef; Schulz, Karen

    2013-01-01

    Energy is obtained from various energy sources (coal, petroleum, natural gas, nuclear fuels, wind energy, solar energy, hydro power, biomass, geothermal energy). These differ in each case with respect to their availability, methods of their production and the required power plant technologies. As technologies of the future fuel cells and nuclear fusion are traded. [de

  16. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    Science.gov (United States)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  17. Prospects of renewable-energy sources in Pakistan

    International Nuclear Information System (INIS)

    Zaigham, N.A.; Nayyar, Z.A.

    2005-01-01

    Pakistan, despite the enormous potential of its energy resources, remains energy- deficient and has to rely heavily on imports to satisfy its needs. Moreover, a very large part of the rural areas does not have the electrification facilities, because they are either too remote and/or too expensive to connect to the national grid. Pakistan obtains its energy requirements from a variety of traditional and commercial sources. Share of various primary energy-sources in energy-supply mix remained during last few years as oil: 43.5%, gas: 41.5%, LPG: 0.3%, coal: 4.5%, hydro-electricity: 9.2%, and nuclear electricity: 1.1%. The electric-power generation included 71.9% thermal, 25.2% hydel and 2.9% nuclear. While there is no prospect for Pakistan to reach self-sufficiency in hydrocarbons, a good option is the exploitation and utilization of the huge coal-reserves of Thar and the other renewable energy sources. Pakistan has wide spectrum of high potential renewable energy sources, conventional as well as non-conventional, which have not been adequately explored, exploited and developed. 'Thus, the primary energy supplies today are not enough to meet even the present demand. So, Pakistan, like other developing countries of the region, is facing a serious challenge of energy deficit. The development of the renewable energy sources can play an important role in meeting this challenge. Present observations, based on reviewing the geological setup, geographical position, climatological cycles and the agricultural/industrial/ urbanization activities, reveal that there are bright prospects for the exploitation of various renewable-energy sources, which include mega and macro/micro-hydel, biomass, biogas, wind, solar, co-generation, city and other solid wastes, utilization of low-head canal levels, sea wave and tide and geothermal energies etc. Technologically, all these renewable-energy sources are viable and consequently suited to efforts for poverty alleviation and cleaner

  18. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    Science.gov (United States)

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  19. Nuclear district heating. 1. Process heat reactors and transmission and distribution networks

    International Nuclear Information System (INIS)

    Caizergues, R.

    1979-01-01

    Three kinds of production station are considered: joint electricity and heat-producing stations, heat-producing stations with CAS reactors and heat-producing stations with Thermos reactors. The thermal energy supply possibilities of these stations, the cost price of this energy and the cost price per therm produced by the district heating source and conveyed to the user are studied [fr

  20. A comparison of world-wide uses of severe reactor accident source terms

    International Nuclear Information System (INIS)

    Ang, M.L.; Frid, W.; Kersting, E.J.; Friederichs, H.G.; Lee, R.Y.; Meyer-Heine, A.; Powers, D.A.; Soda, K.; Sweet, D.

    1994-09-01

    The definitions of source terms to reactor containments and source terms to the environment are discussed. A comparison is made between the TID-14844 example source term and the alternative source term described in NUREG-1465. Comparisons of these source terms to the containments and those used in France, Germany, Japan, Sweden, and the United Kingdom are made. Source terms to the environment calculated in NUREG-1500 and WASH-1400 are discussed. Again, these source terms are compared to those now being used in France, Germany, Japan, Sweden, and the United Kingdom. It is concluded that source terms to the containment suggested in NUREG-1465 are not greatly more conservative than those used in other countries. Technical bases for the source terms are similar. The regulatory use of the current understanding of radionuclide behavior varies among countries

  1. Environmental impact of non-conventional energy sources

    International Nuclear Information System (INIS)

    Abbasi, S.A.; Abbasi, Naseema; Nipaney, P.C.; Ramasamy, E.V.

    1995-01-01

    Whereas the global attention has always been focused on the adverse environmental impacts of conventional energy sources, only a few studies have been conducted on the clean environment image of the non-conventional energy sources, particularly the renewable ones. The question whether the non-conventional sources are really as benign as they are made out to be is addressed in the present paper in the background of a classical paradigm developed by Lovin which had postulated the hard (malignant) and soft (benign) energy concepts in the first place. It then assesses the likely environmental impacts of several major non-conventional energy sources and comes up with the note of caution that in many cases the adverse impacts may not be insubstantial; indeed in some cases they can be as strongly negative as the impacts of the conventional energy sources. (author). 31 refs

  2. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    International Nuclear Information System (INIS)

    Muswema, J.L.; Ekoko, G.B.; Lukanda, V.M.; Lobo, J.K.-K.; Darko, E.O.; Boafo, E.K.

    2015-01-01

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  3. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    Energy Technology Data Exchange (ETDEWEB)

    Muswema, J.L., E-mail: jeremie.muswem@unikin.ac.cd [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Ekoko, G.B. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Lukanda, V.M. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Democratic Republic of the Congo' s General Atomic Energy Commission, P.O. Box AE1 (Congo, The Democratic Republic of the); Lobo, J.K.-K. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Darko, E.O. [Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Boafo, E.K. [University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, ONL1 H7K4 (Canada)

    2015-01-15

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  4. Fuel development for reactors of new generation in Ukraine

    International Nuclear Information System (INIS)

    Odeychuk, N.P.

    2006-01-01

    Full text: On the background of critical situation in traditional power engineering due to deficiency of organic fuel, physical and moral ageing of the of thermal power stations equipment and their harmful influence on the ecology of environment, the nuclear engineering works stably enough and, by keeping all safety measures, is the most non-polluting energy source. In Ukraine the atomic engineering became one of main sources of energy production and is the important factor of guarantee the power engineering independence of the state. The main center on development of the components of nuclear reactors active zones is the National scientific center K harkov institute of Physics and Technology . The significant place in institutes' investigations was occupied with works on creation the constructional materials and nuclear fuel for heavy water reactors E-circumflexS-150, OR-1000, OR-2000, light water reactors WWER-1000 and RBMK-1500, high-temperature gas cooled reactors ABTU and HTGR, gas reactors on fast neutrons BGR and BRGD, and also the reactor - converter ROMASHKA and other special reactors of special assignment. Radiation tests and post-irradiation research confirm intended material-study, technological and design decisions and fuel elements capacity work on the whole. Nevertheless, by the present conditions, it is necessary to pay special attention to development of the new, safe guaranteed nuclear energy sources. In Ukraine proceed works on research and development of new safe nuclear reactors: basing the underground nuclear thermal power stations; development the reactors with managed chain reaction of nucleus division in an active zone with the help of an external source of neutrons; power thermonuclear installations; high-temperature helium reactors which are especially actual now from the point of view of the hydrogen production; the advanced pressure water reactors, heavy water reactors. In the paper also discussed the state of works in Ukraine on fuel

  5. Nuclear reactor development in China for non-electrical applications

    International Nuclear Information System (INIS)

    Sun Yuliang; Zhong Daxin; Dong Duo; Xu Yuanhui

    1998-01-01

    In parallel to its vigorous program of nuclear power generation, China has attached great importance to the development of nuclear reactors for non-electrical applications. The Institute of Nuclear Energy Technology (INET) in Beijing has been developing technologies of the water-cooled heating reactor and the modular high temperature gas-cooled reactor. In 1989, a 5 MW water cooled test reactor was erected. Currently, an industrial demonstration nuclear heating plant is being projected. Feasibility studies are being made of sea-water desalination using the INET developed nuclear heating reactor as heat source. Also, a 10 MW high temperature gas-cooled test reactor is being constructed at INET in the framework of China's national high-tech program. The paper gives an overview of China's energy market situation. With respect to China's technology development of high temperature gas-cooled reactors and water cooled heating reactors, the paper describes some general requirements on the technical development, reviews the national programs and activities, describes briefly the design and safety features of the reactor concepts, discusses aspects of application potentials. (author)

  6. Renewable Energy Sources Brno '93

    International Nuclear Information System (INIS)

    1993-01-01

    The proceedings contain 27 contributions dealing with unconventional energy sources. The numbers of contributions in the individual classes of topics indicate that interest has mostly concentrated on the direct utilization of solar energy, whereas wind energy, hydroelectric energy and geothermal energy receive less attention and the use of biomass is at the margin of interest. (J.B.)

  7. A vision of inexhaustible energy: The fast breeder reactor in Swedish nuclear power history 1945-80

    International Nuclear Information System (INIS)

    Fjaestad, Maja

    2010-01-01

    The fast breeder is a type of nuclear reactor that aroused much attention in the 1950s and 1960s. Its ability to produce more nuclear fuel than it consumes offered promises of cheap and reliable energy, and thereby connected it to utopian ideas about an eternal supply of energy, Furthermore. the ideas of breeder reactors were a vital part of the post-war visions about the nuclear future. This dissertation investigates the plans for breeder reactors in Sweden, connecting them to the contemporary development of nuclear power with heavy or light water and the discussions of nuclear weapons, as well as to the general visions of a prosperous technological future. The history of the Swedish breeder reactor is traced from high hopes in the beginning, via the fiasco of the Swedish heavy water program, partly focusing on the activities at the company AB Atomenergi and investigating how it planned and argued for its breeder program and how this was received by the politicians. The story continues into the intensive environmental movement in the 1970s, ending with the Swedish referendum on nuclear energy in 1980, which can be seen as the final point for the Swedish breeder. The thesis discusses how the nuclear breeder reactor was transformed from an argument for nuclear power to an argument against it. The breeder began as a part of the vision of a society with abundant energy, but was later seen as a threat against the new sustainable world. The nuclear breeder reactor is an example of a technological vision that did not meet its industrial expectations. But that does not prevent the fact that breeder was an influential technology in an age where important decisions about nuclear energy were made. The thesis argues that important decisions about the contemporary reactors were taken with the idea that they in a foreseeable future would be replaced with the efficient breeder. And the last word on the breeder reactor is not said - today, reactor engineers around the world are

  8. Reactors Project Delivery: The Value of Experiance

    International Nuclear Information System (INIS)

    Stosic, V. Zoran

    2014-01-01

    State of Affairs: Energy Potential and Density versus Environmental Load of different Energy Sources, Development of Fuel into Energy/Electricity Generation, Production Costs of Electricity, Contributions of Nuclear Energy to Security of Energy Supply, Recent Nuclear Development, Public Support growing again. Projects Status: Reactors under Construction, Different Projects Industrial Schemes, Projects Overview. The Value of Experience: Licensing, Standardization on Early Engineering Activities, Supply Chain and Manufacturing of Heavy Components, Installation, Procurement. (author)

  9. Renewable energy sources and ecology

    International Nuclear Information System (INIS)

    Panajotova, Yu.

    1998-01-01

    The share of renewable energy sources (RES) in the world energy balance is estimated from 1-2 to 10% of the total primary energy sources consumption. In EU since 1990 until now the power energy production from these sources is growing continuously by over 3% annually. The features of the updated Environmental Strategy for Bulgaria (ESB) elaborated with the World Bank in 1994 are: increasing the energy efficiency; utilising RES; granting preference to the regional energy concept and establishing regional energy centres based on the EU experience. In ESB the basic priorities are linked with disease factors - pollutants as lead in the air and soils (from leaded petrol, resp. from metallurgical enterprises), dust particles in the air (from household heating, industry and thermo-electric power stations) and sulfur dioxide and other gases (also from energy sector and industry). There is consistent policy for harmonization of the Bulgarian standards with those of the WHO. Among the implemented projects preference is granting to ones concerning new energy saving technologies and RES. Bulgaria got an environmental protection law harmonized with the international legislation and adapted to the economic situation inflicted by the market economy transition. The development of RES needs high investment cost and has low efficiency factor compared to the classical methods of energy production. Implementation of Environmental Action Programme (EAP) in Bulgaria with an international co-operation includes: solid wastes management; water sources management; water pollution problems; soil degradation; transport and environment; nuclear safety and nuclear waste problems and full value utilization of the RES. The Ministry of Environment and local Authorities have to develop their policies and implementing them by a range of activities to identify pollution control strategies, to identify areas where the greatest environmental benefits can be achieved at least cost and to incorporate the

  10. Research Reactors Types and Utilization

    International Nuclear Information System (INIS)

    Abdelrazek, I.D.

    2008-01-01

    A nuclear reactor, in gross terms, is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate. The nuclei of fuel heavy atoms (mostly 235 U or 239 Pu), when struck by a slow neutron, may split into two or more smaller nuclei as fission products,releasing energy and neutrons in a process called nuclear fission. These newly-born fast neutrons then undergo several successive collisions with relatively low atomic mass material, the moderator, to become thermalized or slow. Normal water, heavy water, graphite and beryllium are typical moderators. These neutrons then trigger further fissions, and so on. When this nuclear chain reaction is controlled, the energy released can be used to heat water, produce steam and drive a turbine that generates electricity. The fission process, and hence the energy release, are controlled by the insertion (or extraction) of control rods through the reactor. These rods are strongly neutron absorbents, and thus only enough neutrons to sustain the chain reaction are left in the core. The energy released, mostly in the form of heat, should be continuously removed, to protect the core from damage. The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for power in some military ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. Research reactors are used for radioisotope production and for beam experiments with free neutrons. Historically, the first use of nuclear reactors was the production of weapons grade plutonium for nuclear weapons. Currently all commercial nuclear reactors are based on nuclear fission. Fusion power is an experimental technology based on nuclear fusion instead of fission.

  11. Aerosol core nuclear reactor for space-based high energy/power nuclear-pumped lasers

    International Nuclear Information System (INIS)

    Prelas, M.A.; Boody, F.P.; Zediker, M.S.

    1987-01-01

    An aerosol core reactor concept can overcome the efficiency and/or chemical activity problems of other fuel-reactant interface concepts. In the design of a laser using the nuclear energy for a photon-intermediate pumping scheme, several features of the aerosol core reactor concept are attractive. First, the photon-intermediate pumping concept coupled with photon concentration methods and the aerosol fuel can provide the high power densities required to drive high energy/power lasers efficiently (about 25 to 100 kW/cu cm). Secondly, the intermediate photons should have relatively large mean free paths in the aerosol fuel which will allow the concept to scale more favorably. Finally, the aerosol core reactor concept can use materials which should allow the system to operate at high temperatures. An excimer laser pumped by the photons created in the fluorescer driven by a self-critical aerosol core reactor would have reasonable dimensions (finite cylinder of height 245 cm and radius of 245 cm), reasonable laser energy (1 MJ in approximately a 1 millisecond pulse), and reasonable mass (21 kg uranium, 8280 kg moderator, 460 kg fluorescer, 450 kg laser medium, and 3233 kg reflector). 12 references

  12. Comparative table of various energy sources

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    This table provides wide informations on the technological facets of various sources of primary energy. One of the outstanding features of this table is that it exposes and compares various technological problems involved in the energy conversion processes. The primary energy sources treated here are the solar energy (heat and light are treated separately), the geothermal energy, coal (gasification and liquefaction are treated separately), oil, natural gas, oceano-energy (tidal energy, temperature difference, and wave energy are treated separately), organic wastes, oil shale, tar sand, hydraulic power, wind power, biomass, uranium, thorium, and deuterium and lithium. On the other hand, the comparisons are made in three major items, i.e. charactersitics as natural resources, conversion or refinement to secondary energy sources, and economical characteristics. The first item includes the estimated and recognized amount of deposits, easiness of mining, storage, and transportation, and cleanliness and safety. As for conversion characteristics, the easiness, controlability, efficiency, cleanliness, and safety of various conversion processes are compared. Finally, as for economical problems, cost comparisons are made for gathering or mining those resources, including required energy input, man power, required facilities, and site conditions.

  13. Ageing of research reactors

    International Nuclear Information System (INIS)

    Ciocanescu, M.

    2001-01-01

    Historically, many of the research institutions were centred on a research reactor facility as main technological asset and major source of neutrons for research. Important achievements were made in time in these research institutions for development of nuclear materials technology and nuclear safety for nuclear energy. At present, ageing of nuclear research facilities among these research reactors and ageing of staff are considerable factors of reduction of competence in research centres. The safe way of mitigation of this trend deals with ageing management by so called, for power reactors, Plant Life Management and new investments in staff as investments in research, or in future resources of competence. A programmatic approach of ageing of research reactors in correlation with their actual and future utilisation, will be used as a basis for safety evaluation and future spending. (author)

  14. An initial assessment of the Chernobyl-4 reactor accident release source

    International Nuclear Information System (INIS)

    Macdonald, H.F.; ApSimon, H.M.; Wilson, J.J.N.

    1986-07-01

    The long-range atmospheric dispersion model MESOS has been used to provide a preliminary evaluation of the effects over Western Europe of radioactivity released during the accident which occurred at the Chernobyl-4 reactor in the USSR in April 1986. The results of this analysis have been compared with observations during the first week or so following the accident of airborne contamination levels at a range of locations across Europe in order to obtain an estimate of accident release source. The work presented here was performed during the 6-8 weeks following the accident and the results obtained will be subject to refinement as more detailed data become available. However, at this early stage they indicate a release source for the Chernobyl accident, expressed as a fraction of the estimated reactor core inventory, of approx. 15-20% of the iodine and caesium isotopes, approx. 1% of the ruthenium and lesser amounts of the other fission products and actinides, together with an implied major fraction of the krypton and xenon noble gases. (author)

  15. Reactor concepts for laser fusion

    International Nuclear Information System (INIS)

    Meier, W.R.; Maniscalco, J.A.

    1977-07-01

    Scoping studies were initiated to identify attractive reactor concepts for producing electric power with laser fusion. Several exploratory reactor concepts were developed and are being subjected to our criteria for comparing long-range sources of electrical energy: abundance, social costs, technical feasibility, and economic competitiveness. The exploratory concepts include: a liquid-lithium-cooled stainless steel manifold, a gas-cooled graphite manifold, and fluidized wall concepts, such as a liquid lithium ''waterfall'', and a ceramic-lithium pellet ''waterfall''. Two of the major reactor vessel problems affecting the technical feasibility of a laser fusion power plant are: the effects of high-energy neutrons and cyclical stresses on the blanket structure and the effects of x-rays and debris from the fusion microexplosion on the first-wall. The liquid lithium ''waterfall'' concept is presented here in more detail as an approach which effectively deals with these damaging effects

  16. Regulatory impact of nuclear reactor accident source term assumptions. Technical report

    International Nuclear Information System (INIS)

    Pasedag, W.F.; Blond, R.M.; Jankowski, M.W.

    1981-06-01

    This report addresses the reactor accident source term implications on accident evaluations, regulations and regulatory requirements, engineered safety features, emergency planning, probabilistic risk assessment, and licensing practice. Assessment of the impact of source term modifications and evaluation of the effects in Design Basis Accident analyses, assuming a change of the chemical form of iodine from elemental to cesium iodide, has been provided. Engineered safety features used in current LWR designs are found to be effective for all postulated combinations of iodine source terms under DBA conditions. In terms of potential accident consequences, it is not expected that the difference in chemical form between elemental iodine and cesium iodide would be significant. In order to account for the current information on source terms, a spectrum of accident scenerios is discussed to realistically estimate the source terms resulting from a range of potential accident conditions

  17. Structure shielding from cloud and fallout gamma ray sources for assessing the consequences of reactor accidents

    International Nuclear Information System (INIS)

    Burson, Z.G.; Profio, A.E.

    1975-12-01

    Radiation shielding provided by transportation vehicles and structures typical of where people live and work were estimated for cloud and fallout gamma-ray sources resulting from a hypothetical reactor accident. Dose reduction factors are recommended for a variety of situations for realistically assessing the consequences of reactor accidents

  18. PRA insights applicable to the design of the Broad Applications Test Reactor

    International Nuclear Information System (INIS)

    Khericha, S.T.; Reilly, H.J.

    1993-01-01

    Design insights applicable to the design of a new Broad Applications Test Reactor (BATR), being studied at Idaho National Engineering Laboratory, are summarized. Sources of design insights include past probabilistic risk assessments and related studies for department of Energy-owned Class A reactors and for commercial reactors. The report includes a preliminary risk allocation scheme for the BATR

  19. Innovative designs of nuclear reactors

    International Nuclear Information System (INIS)

    Gabaraev, B.A.; Cherepnin, Y.S.

    2010-01-01

    The world development scenarios predict at least a 2.5 time increase in the global consumption of primary energy in the first half of the twenty-first century. Much of this growth can be provided by the nuclear power which possesses important advantages over other energy technologies. However, the large deployment of nuclear sources may take place only when the new generation of reactors appears on the market and will be free of the shortcomings found in the existing nuclear power installations. The public will be more inclined to accept nuclear plants that have better economics; higher safety; more efficient management of the radioactive waste; lower risk of nuclear weapons proliferation, and provided that the focus is made on the energy option free of ∇ e 2 generation. Currently, the future of nuclear power is trusted to the technology based on fast reactors and closed fuel cycle. The latter implies reprocessing of the spent nuclear fuel of the nuclear plants and re-use of plutonium produced in power reactors

  20. MC21 v.6.0 - A continuous-energy Monte Carlo particle transport code with integrated reactor feedback capabilities

    International Nuclear Information System (INIS)

    Grieshemer, D.P.; Gill, D.F.; Nease, B.R.; Carpenter, D.C.; Joo, H.; Millman, D.L.; Sutton, T.M.; Stedry, M.H.; Dobreff, P.S.; Trumbull, T.H.; Caro, E.

    2013-01-01

    MC21 is a continuous-energy Monte Carlo radiation transport code for the calculation of the steady-state spatial distributions of reaction rates in three-dimensional models. The code supports neutron and photon transport in fixed source problems, as well as iterated-fission-source (eigenvalue) neutron transport problems. MC21 has been designed and optimized to support large-scale problems in reactor physics, shielding, and criticality analysis applications. The code also supports many in-line reactor feedback effects, including depletion, thermal feedback, xenon feedback, eigenvalue search, and neutron and photon heating. MC21 uses continuous-energy neutron/nucleus interaction physics over the range from 10 -5 eV to 20 MeV. The code treats all common neutron scattering mechanisms, including fast-range elastic and non-elastic scattering, and thermal- and epithermal-range scattering from molecules and crystalline materials. For photon transport, MC21 uses continuous-energy interaction physics over the energy range from 1 keV to 100 GeV. The code treats all common photon interaction mechanisms, including Compton scattering, pair production, and photoelectric interactions. All of the nuclear data required by MC21 is provided by the NDEX system of codes, which extracts and processes data from EPDL-, ENDF-, and ACE-formatted source files. For geometry representation, MC21 employs a flexible constructive solid geometry system that allows users to create spatial cells from first- and second-order surfaces. The system also allows models to be built up as hierarchical collections of previously defined spatial cells, with interior detail provided by grids and template overlays. Results are collected by a generalized tally capability which allows users to edit integral flux and reaction rate information. Results can be collected over the entire problem or within specific regions of interest through the use of phase filters that control which particles are allowed to score each

  1. Improvements in streaking nuclear reactors

    International Nuclear Information System (INIS)

    Pedrick, A.P.

    1976-01-01

    In this type of reactor atomic nuclei are stripped of their electron shells by heating to form a very high temperature plasma which is passed at high speed through a chamber in which they are forced into contact with a 'wall' formed by a unidirectional stream of photons from continuous laser beams. In this way it should be possible to brush off from the surface of the nuclei protons and neutrons, with release of their binding energy. The energy thus produced can be subjected to much more gentle control than with a fission or fusion reactor. Furthermore, if this concept can be successfully applied to elements of high atomic number which are normally regarded as stable and unfissionable, a vast new source of nuclear energy release will have been made available. It also seems possible that an atomic nucleus might be spun sufficiently in such a reactor to disintegrate it completely into nucleons by simple centrifugal action, with great release of binding energy. The reactor described has a central body with radial ducts through which the nuclei are passed, and a number of lasers are provided whose beams are arranged so that the nuclei are discharged at the cross-over point of two or more laser beams which form a corner at the junction of two or more photon walls. (U.K.)

  2. Hybrid nuclear reactors and muon catalysis

    International Nuclear Information System (INIS)

    Petrov, Yu.

    1983-01-01

    Three methods are described of the conversion of isotope 238 U to 239 Pu by neutron capture in fast breeder reactors, in the breeding blanket of hybrid thermonuclear reactors using neutrons generated by fusion and electronuclear breeding in which the target is bombarded with 1 GeV protons. Their possible use in power production is discussed. Another prospective energy source is the use of muon catalysis in the fusion of deuterium and tritium nuclei. (J.P.)

  3. A three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition in graphite components of advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D.O.; Robinson, A.T.; Allen, D.A.; Picton, D.J.; Thornton, D.A. [TCS, Serco, Rutherford House, Olympus Park, Quedgeley, Gloucester, Gloucestershire GL2 4NF (United Kingdom); Shaw, S.E. [EDF Energy, Barnet Way, Barnwood, Gloucester GL4 3RS (United Kingdom)

    2011-07-01

    This paper describes the development of a three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition (or nuclear heating) throughout the graphite cores of the UK's Advanced Gas-cooled Reactors. Advances in the development of the Monte Carlo radiation transport code MCBEND have enabled the efficient production of detailed fully three-dimensional models that utilise three-dimensional source distributions obtained from Core Follow data supplied by the reactor physics code PANTHER. The calculational approach can be simplified to reduce both the requisite number of intensive radiation transport calculations, as well as the quantity of data output. These simplifications have been qualified by comparison with explicit calculations and they have been shown not to introduce significant systematic uncertainties. Simple calculational approaches are described that allow users of the data to address the effects on neutron damage and nuclear energy deposition predictions of the feedback resulting from the mutual dependencies of graphite weight loss and nuclear energy deposition. (authors)

  4. Balmorel open source energy system model

    DEFF Research Database (Denmark)

    Wiese, Frauke; Bramstoft, Rasmus; Koduvere, Hardi

    2018-01-01

    As the world progresses towards a cleaner energy future with more variable renewable energy sources, energy system models are required to deal with new challenges. This article describes design, development and applications of the open source energy system model Balmorel, which is a result...... of a long and fruitful cooperation between public and private institutions within energy system research and analysis. The purpose of the article is to explain the modelling approach, to highlight strengths and challenges of the chosen approach, to create awareness about the possible applications...... of Balmorel as well as to inspire to new model developments and encourage new users to join the community. Some of the key strengths of the model are the flexible handling of the time and space dimensions and the combination of operation and investment optimisation. Its open source character enables diverse...

  5. DIRECT ENERGY CONVERSION (DEC) FISSION REACTORS - A U.S. NERI PROJECT

    International Nuclear Information System (INIS)

    Beller, D.; Polansky, G.

    2000-01-01

    The direct conversion of the electrical energy of charged fission fragments was examined early in the nuclear reactor era, and the first theoretical treatment appeared in the literature in 1957. Most of the experiments conducted during the next ten years to investigate fission fragment direct energy conversion (DEC) were for understanding the nature and control of the charged particles. These experiments verified fundamental physics and identified a number of specific problem areas, but also demonstrated a number of technical challenges that limited DEC performance. Because DEC was insufficient for practical applications, by the late 1960s most R and D ceased in the US. Sporadic interest in the concept appears in the literature until this day, but there have been no recent programs to develop the technology. This has changed with the Nuclear Energy Research Initiative that was funded by the U.S. Congress in 1999. Most of the previous concepts were based on a fission electric cell known as a triode, where a central cathode is coated with a thin layer of nuclear fuel. A fission fragment that leaves the cathode with high kinetic energy and a large positive charge is decelerated as it approaches the anode by a charge differential of several million volts, it then deposits its charge in the anode after its kinetic energy is exhausted. Large numbers of low energy electrons leave the cathode with each fission fragment; they are suppressed by negatively biased on grid wires or by magnetic fields. Other concepts include magnetic collimators and quasi-direct magnetohydrodynamic generation (steady flow or pulsed). We present the basic principles of DEC fission reactors, review the previous research, discuss problem areas in detail and identify technological developments of the last 30 years relevant to overcoming these obstacles. A prognosis for future development of direct energy conversion fission reactors will be presented

  6. Molten salt reactor technology for long-range and wide-scale nuclear energy system

    International Nuclear Information System (INIS)

    Ignatiev, V.; Alexseev, P.; Menshikov, L.; Prusakov, V.; Subbotine, S.

    1997-01-01

    A possibility of creation of multi-component nuclear power system in which alongside with thermal and fast reactors, molten salt burner reactors, for incineration of weapon grade plutonium, some minor actinides and transmutation of some fission products will be presented. The purposes of this work are to review the present status of the molten salt reactor technology and innovative non-aqueous chemical processing methods, to indicate the importance of the uncertainties remaining, to identify the additional work needed, and to evaluate the probability of success in obtaining improved safety characteristics for new concept of molten salt - burner reactor with external neutron source. 8 refs., 3 figs., 2 tabs

  7. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  8. Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Ingersoll, Daniel T.

    2007-01-01

    The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scale Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are 'right sized' for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral

  9. Estimation of the sub-criticality of the sodium-cooled fast reactor Monju using the modified neutron source multiplication method

    International Nuclear Information System (INIS)

    Truchet, G.; Van Rooijen, W. F. G.; Shimazu, Y.; Yamaguchi, K.

    2012-01-01

    The Modified Neutron Source Method (MNSM) is applied to the Monju reactor. This static method to estimate sub-criticality has already given good results on commercial Pressurized Water Reactors. The MNSM consists both in the extraction of the fundamental mode seen by a detector to avoid the effect of higher modes near sources, and the correction of flux distortion effects due to control rod movement. Among Monju's particularities that have a big influence on MNSM factors are: the presence of two californium sources and the position of the detector which is located far from the core outside of the reactor vessel. The importance of spontaneous fission and (α, n) reactions which have increased during the shutdown period of 15 years will also be discussed. The relative position of detectors and sources deeply affect the correction factors in some regions. In order to evaluate the detector count rate, an analytical propagation has been conducted from the reactor vessel. For two subcritical states, an estimation of the reactivity has been made and compared to experimental data obtained in the restart experiments at Monju (2010). (authors)

  10. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  11. Japan: The institute for the economy of energy recommends a quick re-start of nuclear reactors

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    The Japanese Institute for the Economy of the Energy (IEEJ) considers that the sooner the nuclear reactors will re-start, the better the Japanese economy and environment will be. The 48 Japanese reactors were stopped after the Fukushima accident and their restart is linked to the implementation of new measures for reinforcing safety. Until now only 2 reactors Sendai 1 and Sendai 2 have been allowed to re-start. The procedure for the safety assessment of the reactors is slower than expected. A study shows that only 7 reactors may be allowed to re-start before march 2015 and a total of 19 units may be operating in march 2016. In this scenario 2% of the electricity will come from nuclear energy in 2014 and 15% in 2015, natural gas imports will still be necessary for the production of electricity and their global cost is estimated to reach 56 billions euros while Japan's rate of energy independence will drop by 4.6%. (A.C.)

  12. Management of development of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Inić Branimir P.

    2014-01-01

    Full Text Available The aim of the paper: 'Management of development of renewable energy sources is to point out the possible solutions for neutralizing the threat of energy shortages. The paper outlines major short and long term energy problems facing humanity. The increase of world human population is, inevitably, accompanied by higher energy consumption. Reserves decrease of nonrenewable energy sources like oil, gas, and coal is a major threat to maintaining current living conditions, and thus requires solutions in order to neutralize the threat. This is why the management of development of renewable energy sources is an imperative for Serbia. The paper emphasizes the use of solar energy, because the annual average of solar radiation in Serbia is about 40% higher than the European average, however, the actual use of the sun's energy to generate electricity in Serbia is far behind the countries of the European Union. Solar energy is clean, renewable, and the fact that 4.2 kilowatt-hours are received daily per square meter averaged over the entire surface of the planet, makes it an almost unused energy source, Compared to EU countries, the price of non-renewable derived energy is, on average, higher in Serbia. Taking this into consideration, the use of solar energy, as an unused resource, imposes itself as indispensable.

  13. Source-term reevaluation for US commercial nuclear power reactors: a status report

    International Nuclear Information System (INIS)

    Herzenberg, C.L.; Ball, J.R.; Ramaswami, D.

    1984-12-01

    Only results that had been discussed publicly, had been published in the open literature, or were available in preliminary reports as of September 30, 1984, are included here. More than 20 organizations are participating in source-term programs, which have been undertaken to examine severe accident phenomena in light-water power reactors (including the chemical and physical behavior of fission products under accident conditions), update and reevaluate source terms, and resolve differences between predictions and observations of radiation releases and related phenomena. Results from these source-term activities have been documented in over 100 publications to date

  14. A nuclear reactor for district heating

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Fenton, N.

    1989-07-01

    Global energy requirements are expected to double over the next 40 years. In the northern hemisphere, many countries consume in excess of 25 percent of their primary energy supply for building heating. Satisfying this need, within the constraints now being acknowledged for sustainable global development, provides an important opportunity for district heating. Fuel-use flexibility, energy and resource conservation, and reduced atmospheric pollution from acid gases and greenhouse gases, are important features offered by district heating systems. Among the major fuel options, only hydro-electricity and nuclear heat completely avoid emissions of combustion gases. To fill the need for an economical nuclear heat source, Atomic Energy of Canada Limited has designed a 10 MW plant that is suitable as a heat source within a network or as the main supply to large individual users. Producing hot water at temperatures below 100 degrees C, it incorporates a small pool-type reactor based on AECL's successful SLOWPOKE Research Reactor. A 2 MW prototype for the commercial unit is now being tested at the Whiteshell Nuclear Research Establishment in Manitoba. With capital costs of $7 million (Canadian), unit energy costs are projected to be $0.02/kWh for a 10 MW unit operating in a heating grid over a 30-year period. By keeping the reactor power low and the water temperature below 100 degrees C, much of the complexity of the large nuclear power plants can be avoided, thus allowing these small, safe nuclear heating systems to be economically viable

  15. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  16. Decommissioning of the Dragon High Temperature Reactor (HTR) Located at the Former United Kingdom Atomic Energy Authority (UKAEA) Research Site at Winfrith - 13180

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Anthony A. [Research Sites Restoration Ltd, Winfrith, Dorset (United Kingdom)

    2013-07-01

    The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] it is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)

  17. Power conditioning system for energy sources

    Science.gov (United States)

    Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  18. High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor

    International Nuclear Information System (INIS)

    Lu, Jianfeng; Chen, Yuan; Ding, Jing; Wang, Weilong

    2016-01-01

    Highlights: • Energy storage of methane reforming in a tubular packed reactor is investigated. • Thermochemical storage efficiency approaches maximum at optimal temperature. • Sensible heat and heat loss play important roles in the energy storage system. • The reaction and energy storage models of methane reforming reactor are established. • The simulated methane conversion and energy storage efficiency fit with experiments. - Abstract: High temperature heat transfer and energy storage performances of methane reforming with carbon dioxide in tubular packed reactor are investigated under different operating conditions. Experimental results show that the methane reforming in tubular packed reactor can efficiently store high temperature thermal energy, and the sensible heat and heat loss besides thermochemical energy storage play important role in the total energy storage process. When the operating temperature is increased, the thermochemical storage efficiency first increases for methane conversion rising and then decreases for heat loss rising. As the operating temperate is 800 °C, the methane conversion is 79.6%, and the thermochemical storage efficiency and total energy efficiency can be higher than 47% and 70%. According to the experimental system, the flow and reaction model of methane reforming is established using the laminar finite-rate model and Arrhenius expression, and the simulated methane conversion and energy storage efficiency fit with experimental data. Along the flow direction, the fluid temperature in the catalyst bed first decreases because of the endothermic reaction and then increases for the heat transfer from reactor wall. As a conclusion, the maximum thermochemical storage efficiency will be obtained under optimal operating temperature and optimal flow rate, and the total energy efficiency can be increased by the increase of bed conductivity and decrease of heat loss coefficient.

  19. 47 CFR 80.1099 - Ship sources of energy.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at... batteries used as part of a reserve source of energy for the radio installations. (b) A reserve source of...

  20. Updated pipe break analysis for Advanced Neutron Source Reactor conceptual design

    International Nuclear Information System (INIS)

    Wendel, M.W.; Chen, N.C.J.; Yoder, G.L.

    1994-01-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor to be built at the Oak Ridge National Laboratory that will supply the highest continuous neutron flux levels of any reactor in the world. It uses plate-type fuel with high-mass-flux and highly subcooled heavy water as the primary coolant. The Conceptual Safety Analysis for the ANSR was completed in June 1992. The thermal-hydraulic pipe-break safety analysis (performed with a specialized version of RELAP5/MOD3) focused primarily on double-ended guillotine breaks of the primary piping and some core-damage mitigation options for such an event. Smaller, instantaneous pipe breaks in the cold- and hot-leg piping were also analyzed to a limited extent. Since the initial analysis for the conceptual design was completed, several important changes to the RELAP5 input model have been made reflecting improvements in the fuel grading and changes in the elevation of the primary coolant pumps. Also, a new philosophy for pipe-break safety analysis (similar to that adopted for the New Production Reactor) accentuates instantaneous, limited flow area pipe-break accidents in addition to finite-opening-time, double-ended guillotine breaks of the major coolant piping. This paper discloses the results of the most recent instantaneous pipe-break calculations

  1. ALTERNATIVE SOURCES OF ENERGY - ALTERNATIVE SOURCES OF POLLUTION?

    Directory of Open Access Journals (Sweden)

    Marius-Razvan SURUGIU

    2007-06-01

    Full Text Available In many countries of the world investments are made for obtaining energy efficiency, pursuing to increase the generation of non-polluting fuels due to the fact that energy is vital for any economy. The increase in non-polluting fuels and in renewable energy generation might lead to diminishing the dependence of countries less endowed with conventional energy resources on oil and natural gas from Russia or from Arab countries. Nevertheless, environmental issues represent serious questions facing the mankind, requiring the identification, prevention, and why not, their total solving.European Union countries depend on imports of energy, especially on oil imports. At the same time, the European Union countries record a high volume of greenhouse gas emissions, substances adding to global warming. The transport sector is the main consumer of fossil fuels and generator of greenhouse gas emissions. Therefore, diversifying the energy supply used in the transport sector with less polluting sources is an essential objective of the European Union policy in the transport, energy and environment sector. Road transports’ is the sector recording the highest consumption of energy and the highest volume of greenhouse gas emissions.The use of ecologic fuels in the transport sector is an important factor for achieving the objectives of European policies in the field. It is yet to be seen to what extent alternative energy sources are damaging to the environment, as it is a known fact that even for them is recorded a certain level of negative externalities.

  2. Research applications of the Livermore RTNS-II neutron sources

    International Nuclear Information System (INIS)

    Davis, J.C.

    1978-01-01

    The Lawrence Livermore Laboratory has completed construction of the Rotating Target Neutron Source-II (RTNS-II) Facility. These sources, built and operated for the Office of Fusion Energy of the Department of Energy, will be operated by LLL as a national facility for the study of materials damage processes induced by 14-MeV neutrons. Design strength of the sources is 4 x 10 13 n/s with a maximum flux of 1 X 10 13 n/cm 2 s. The 400 keV, 150 mA D + accelerators and 5000 rpm titanium--tritide target assemblies were built using experience gained with LLL's RTNS-I neutron source. The RTNS-I source, producing 6 x 10 12 n/s, is currently the most intense 14-MeV source available. RTNS-I has been used for fusion reactor materials studies for the past six years. The experimental program for the new sources will be oriented toward fundamental measurements of high energy neutron-induced effects. The data produced will be used to develop models of damage processes to help guide materials selection for future fusion reactors

  3. Implications for global energy markets: implications for non-fossil energy sources

    International Nuclear Information System (INIS)

    Grubb, Michael

    1998-01-01

    This paper highlights the recent developments concerning non-fossil energy and examines the impact of the Kyoto Protocol on non-fossil energy sources, and the implications for non-fossil sources in the implementation of the Kyoto Protocol. The current contributions of fossil and non-fossil fuels to electricity production, prospects for expansion of the established non-fossil sources, new renewables in Europe to date, renewables in Europe to 2010, and policy integration in the EU are discussed. Charts illustrating the generating capacity of renewable energy plant in Britain (1992-1966), wind energy capacity in Europe (1990-2000), and projected renewable energy contributions in the EU (wind, small hydro, photovoltaic, biomass and geothermal) are provided. (UK)

  4. Modified divergence theorem for analysis and optimization of wall reflecting cylindrical UV reactor

    Directory of Open Access Journals (Sweden)

    Milanović Đurđe R.

    2011-01-01

    Full Text Available In this paper, Modified Divergence Theorem (MDT, known in earlier literature as Gauss-Ostrogradsky theorem, was formulated and proposed as a general approach to electromagnetic (EM radiation, especially ultraviolet (UV radiation reactor modeling. Formulated mathematical model, based on MDT, for multilamp UV reactor was applied to all sources in a reactor in order to obtain intensity profiles at chosen surfaces inside reactor. Applied modification of MDT means that intensity at a real opaque or transparent surface or through a virtual surface, opened or closed, from different sides of the surface are added and not subtracted as in some other areas of physics. Derived model is applied to an example of the multiple UV sources reactor, where sources are arranged inside a cylindrical reactor at the coaxial virtual cylinder, having the radius smaller than the radius of the reactor. In this work, optimization of a reactor means maximum transfer of EM energy sources into the fluid for given fluid absorbance and fluid flow-dose product. Obtained results, for in advanced known water quality, gives unique solution for an optimized model of a multilamp reactor geometry. As everyone can easily verify, MDT is very good starting point for every reactor modeling and analysis.

  5. SOURCES OF ENERGY AND THE ENVIRONMENT

    OpenAIRE

    Spash, Clive L.; Young, A.

    1994-01-01

    Energy from fossil fuels have become dominant in the industrialised and industrialising economies of the world. However, fossil fuels are also recognised as heavily polluting and responsible for a range of modern environmental and health problems. Nuclear power is a similar conventional energy source in that it relies upon depletion of a limited stock resource and is associated with a range of social and environmental problems. However, the alternative energy sources relying upon flow reso...

  6. Energy requirement of some energy resources

    International Nuclear Information System (INIS)

    Chapman, P.F.; Hemming, D.F.

    1976-01-01

    The energy requirements for the sources of energy under examination are expressed as the fraction of total energy consumed in the production of a unit of gross output. Clearly there are vast differences between the energy requirements of these sources of fuels. Using energy analysis it is possible to indicate points of futility where no net energy is produced (i.e. Xsub(f) = 1). For North Sea oil fields using current technology, this appears to occur at a field size of 100,000-200,000 tons of recoverable reserves of oil. For oil shales exploited using above-ground retorting, the outer limit is at a grade of about 5 gal/ton. For uranium ores used to fuel a burner reactor, the cut-off grade was found to be of the order of 20 ppm. However, it should be remembered that at Xsub(f) = 1, there is no net output and the price of the fuel would be infinite. Because of payments to labour and capital, the upper limit of economic viability may well occur at values of Xsub(f) from 0.1 to 0.2. Thus uranium ores of a grade of 100 ppm U 3 O 8 or less may not be ecomically viable using current burner reactors and this in turn implies an upper bound for the total thermal reactor capacity. For oil shales exploited using above-ground retorting and room-and-pillar mining 15-20 gal/ton shale may represent the upper limit of economic viability, depending on the efficiency that can be achieved in a commercial-scale retort

  7. An improvement of source-jerk method for measuring high antireactivities of reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Bosevski, T; Spiric, V [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-10-15

    In this paper we modified the well known source jerk method /1/ thus obtaining a method for experimental determination of negative reactivities of reactor systems by which, based on the basic idea of the source jerk method, a new experimental procedure and an analysis were developed. The analysis and numerical preparation allows direct application of the method to heavy water and graphite systems. Compared with the source jerk method the experimental procedure and the interpretation of results is faster, simpler and more exact (author)

  8. Energy for the long run: fission or fusion

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Kessler, G.; Holdren, J.; Haefele, W.

    1979-01-01

    The alternatives of the most likely and controversial long-range energy sources, fusion and fast-breeder fission, are compared in several areas: potential biological and social hazards, costs of research and development, capital costs, technical complexity, and time factors. It is concluded that from biological and social hazards standpoint, fusion is preferable to fast-breeder fission reactors; however, the LMFBR has already passed on the threshold of scientific and engineering feasibility. It is pointed out that LMFBR should not be compared with short-term energy sources, e.g. coal or oil, but should be compared only with other long-term energy sources, e.g. other types of breeder reactors

  9. Sources of radioactive waste from light-water reactors and their physical and chemical properties

    International Nuclear Information System (INIS)

    Bell, M.J.; Collins, J.T.

    1979-01-01

    The general physical and chemical properties of waste streams in light-water reactors (LWRs) are described. The principal mechanisms for release and the release pathways to the environment are discussed. The calculation of liquid and gaseous source terms using one of the available models is presented. These calculated releases are compared with observed releases from operating LWRs. The computerized mathematical model used is the GALE Code which is the Nuclear Regulatory Commission (NRC) staff's model for calculating source terms for effluents from LWRs (USNRC76a, USNRC76b). Programs currently being conducted at operating reactors by the NRC, Electric Power Research Institute, and various utilities to better define the characteristics of waste streams and the performance of radwaste process equipment are described

  10. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Present trends in magnetic fusion research and development indicate the promise of commercialization of one of a limited number of inexhaustible energy options early in the next century. Operation of the large-scale fusion experiments, such as the Joint European Torus (JET) and Takamak Fusion Test Reactor (TFTR) now under construction, are expected to achieve the scientific break even point. Early design concepts of power producing reactors have provided problem definition, whereas the latest concepts, such as STARFIRE, provide a desirable set of answers for commercialization. Safety and environmental concerns have been considered early in the development of magnetic fusion reactor concepts and recognition of proplem areas, coupled with a program to solve these problems, is expected to provide the basis for safe and environmentally acceptable commercial reactors. First generation reactors addressed in this paper are expected to burn deuterium and tritium fuel because of the relatively high reaction rates at lower temperatures compared to advanced fuels such as deuterium-deuterium. This paper presents an overwiew of the safety and environmental problems presently perceived, together with some of the programs and techniques planned and/or underway to solve these problems. A preliminary risk assessment of fusion technology relative to other energy technologies is made. Improvements based on material selection are discussed. Tritium and neutron activation products representing potential radiological hazards in fusion reactor are discussed, and energy sources that can lead to the release of radioactivity from fusion reactors under accident conditions are examined. The handling and disposal of radioactive waste are discussed; the status of biological effects of magnetic fields are referenced; and release mechanisms for tritium and activation products, including analytical methods, are presented. (orig./GG)

  11. Modeling Chilled-Water Storage System Components for Coupling to a Small Modular Reactor in a Nuclear Hybrid Energy System

    Science.gov (United States)

    Misenheimer, Corey Thomas

    The intermittency of wind and solar power puts strain on electric grids, often forcing carbonbased and nuclear sources of energy to operate in a load-follow mode. Operating nuclear reactors in a load-follow fashion is undesirable due to the associated thermal and mechanical stresses placed on the fuel and other reactor components. Various Thermal Energy Storage (TES) elements and ancillary energy applications can be coupled to nuclear (or renewable) power sources to help absorb grid instabilities caused by daily electric demand changes and renewable intermittency, thereby forming the basis of a candidate Nuclear Hybrid Energy System (NHES). During the warmer months of the year in many parts of the country, facility air-conditioning loads are significant contributors to the increase in the daily peak electric demand. Previous research demonstrated that a stratified chilled-water storage tank can displace peak cooling loads to off-peak hours. Based on these findings, the objective of this work is to evaluate the prospect of using a stratified chilled-water storage tank as a potential TES reservoir for a nuclear reactor in a NHES. This is accomplished by developing time-dependent models of chilled-water system components, including absorption chillers, cooling towers, a storage tank, and facility cooling loads appropriate for a large office space or college campus, as a callable FORTRAN subroutine. The resulting TES model is coupled to a high-fidelity mPower-sized Small Modular Reactor (SMR) Simulator, with the goal of utilizing excess reactor capacity to operate several sizable chillers in order to keep reactor power constant. Chilled-water production via single effect, lithium bromide (LiBr) absorption chillers is primarily examined in this study, although the use of electric chillers is briefly explored. Absorption chillers use hot water or low-pressure steam to drive an absorption-refrigeration cycle. The mathematical framework for a high-fidelity dynamic

  12. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  13. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    Science.gov (United States)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  14. A Study on Conjugate Heat Transfer Analysis of Reactor Vessel including Irradiated Structural Heat Source

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Cho, Hyuksu; Im, Inyoung; Kim, Eunkee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    Though Material reliability programs (MRPs) have a purpose to provide the evaluation or management methodologies for the operating RVI, the similar evaluation methodologies can be applied to the APR1400 fleet in the design stage for the evaluation of neutron irradiation effects. The purposes of this study are: to predict the thermal behavior whether or not irradiated structure heat source; to evaluate effective thermal conductivity (ETC) in relation to isotropic and anisotropic conductivity of porous media for APR1400 Reactor Vessel. The CFD simulations are performed so as to evaluate thermal behavior whether or not irradiated structure heat source and effective thermal conductivity for APR1400 Reactor Vessel. In respective of using irradiated structure heat source, the maximum temperature of fluid and core shroud for isotropic ETC are 325.8 .deg. C, 341.5 .deg. C. The total amount of irradiated structure heat source is about 5.41 MWth and not effect to fluid temperature.

  15. Final Report on Developing Microstructure-Property Correlation in Reactor Materials using in situ High-Energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Almer, Jonathan D. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materials subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were

  16. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.

    1994-05-01

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  17. Modelling and experimental study of low temperature energy storage reactor using cementitious material

    International Nuclear Information System (INIS)

    Ndiaye, Khadim; Ginestet, Stéphane; Cyr, Martin

    2017-01-01

    Highlights: • Numerical study of a thermochemical reactor using a cementitious material for TES. • Development and test of an original prototype based on this original material. • Comparison of the experimental and numerical results. • Energy balance of the experimental setup (charging and discharging phases). - Abstract: Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Most adsorbent materials are capable of storing heat, in a large range of temperature. Ettringite, the main product of the hydration of sulfoaluminate binders, has the advantage of high energy storage density at low temperature, around 60 °C. The objective of this study is, first, to predict the behaviour of the ettringite based material in a thermochemical reactor during the heat storage process, by heat storage modelling, and then to perform experimental validation by tests on a prototype. A model based on the energy and mass balance in the cementitious material was developed and simulated in MatLab software, and was able to predict the spatiotemporal behaviour of the storage system. This helped to build a thermochemical reactor prototype for heat storage tests in both the charging and discharging phases. Thus experimental tests validated the numerical model and served as proof of concept.

  18. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    Charvin, P.

    2007-11-01

    The aim of this work is to identify, to test and to estimate new thermochemical cycles able to efficiently produce hydrogen from concentrated solar energy. In fact, the aim is to propose a hydrogen production way presenting a global energetic yield similar to electrolysis, that is to say 20-25%, electrolysis being at the present time the most advanced current process for a clean hydrogen production from water. After a first chapter dealing with the past and present researches on thermochemical cycles, the first step of this study has consisted on a selection of a limited number of thermochemical cycles able to produce great quantities of hydrogen from concentrated solar energy. It has consisted in particular on a review of the thermochemical cycles present in literature, on a first selection from argued criteria, and on an exergetic and thermodynamic analysis of the retained cycles for a first estimation of their potential. The second step of this study deals with the experimental study of all the chemical reactions occurring in the retained cycles. Two different oxides cycles have been particularly chosen and the aims are to demonstrate the feasibility of the reactions, to identify the optimal experimental conditions, to estimate and optimize the kinetics and the chemical yields. The following part of this work deals with the design, the modeling and the test of a solar reactor. A CFD modeling of a high temperature reactor of cavity type allows to identify the main heat losses of the reactor and to optimize the geometry of the cavity. A dynamic modeling of the reactor gives data on its behaviour in transient regime and under a real solar flux. The results of the preliminary experimental results are presented. The last part of this study deals with a process analysis of the thermochemical cycles from the results of the experimental study (experimental conditions, yields...). The matter and energy balances are established in order to estimate the global energetic

  19. World energy resources, demand and supply of energy, and the prospects for the fast breeder reactor

    International Nuclear Information System (INIS)

    Haefele, W.

    1978-01-01

    In the past it was taken for granted that the prime role of fast breeder reactors was to complement light water reactors, mainly because of their similar and compatible fuel cycles. In particular, the plutonium converted in LWRs is most intelligently disposed of and used in FBRs. Evaluation of the time horizon of such reactor strategies generally extended only to the year 2000. It is important to realize, however, that the salient task in the breeder field after 2000 - besides electricity generation - will be to substitute for conventional ''cheap'' oil. Electricity today makes up only 10% to 12% of the total secondary energy, while liquids essentially command up to about 50%. Thus the future application of the FBR technology will have to be geared more to the production of a liquid secondary energy carrier than to electricity. A new yardstick for all these considerations is the strongly rising energy prices. They may double, for example, leading to an oil price of US 24/bbl. Under these circumstances it is prudent to generalize the scope for future fast breeders. The key element of such a new fast breeder strategy would be the production of hydrogen by electrolysis or thermolysis or a combination of both. For example, methanol synthesized from hydrogen and residual fossil fuels would thus become economically attractive. The FBR breeding gain, on the other hand, would be used for the continued supply of LWRs generating electricity. The paper identifies order-of-magnitude considerations most important for such a fast breeder application against a global energy demand scenario for the year 2030. (author)

  20. Utilization of nuclear energy for generating electric power in the FRG, with special regard to LWR-type reactors

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    Comments on interdependencies in energy industry and energy generation as seen by energy supply utilities, stating that the generation of electric power in Germany can only be based on coal and nuclear energy in the long run, are followed by the most important, fundamental, nuclear-physical, technological and in part political interdependencies prevailing in the starting situation of 1955/58 when the construction of nuclear power plant reactors began. Then the development ranging to the 28000 MW nuclear power output to be expected in 1985 is outlined, totalling in 115000 MW electric power in the FRG. Finally, using the respectively latest order, the technical set up of each of the reactor types with 1300 MWe unit power offered by German manufacturers are described: BBC/BBR PWR-type reactor Neupotz, KWU-PWR-type reactor Hamm and KWU PWR-type reactor double unit B+C Gundremmingen. (orig.) [de

  1. Science Hall of Atomic Energy in Research Reactor Institute, Kyoto University

    International Nuclear Information System (INIS)

    Hayashi, Takeo

    1979-01-01

    The Science Hall of Atomic Energy was built as a subsidiary facility of the Research Reactor Institute, Kyoto University. The purpose of this facility is to accept outside demands concerning the application of the research reactor. The building is a two story building, and has the floor area of 901.47 m 2 . There are an exhibition room, a library, and a big lecture room. In the exhibition room, models of the Kyoto University Research Reactor and the Kyoto University Critical Assembly are placed. Various pictures concerning the application of the reactor are on the wall. In the library, people from outside of the Institute can use various books on science. Books for boys and girls are also stocked and used for public use. At the lecture room, various kinds of meeting can be held. (Kato, T.)

  2. Thermal energy and bootstrap current in fusion reactor plasmas

    International Nuclear Information System (INIS)

    Becker, G.

    1993-01-01

    For DT fusion reactors with prescribed alpha particle heating power P α , plasma volume V and burn temperature i > ∼ 10 keV specific relations for the thermal energy content, bootstrap current, central plasma pressure and other quantities are derived. It is shown that imposing P α and V makes these relations independent of the magnitudes of the density and temperature, i.e. they only depend on P α , V and shape factors or profile parameters. For model density and temperature profiles analytic expressions for these shape factors and for the factor C bs in the bootstrap current formula I bs ∼ C bs (a/R) 1/2 β p I p are given. In the design of next-step devices and fusion reactors, the fusion power is a fixed quantity. Prescription of the alpha particle heating power and plasma volume results in specific relations which can be helpful for interpreting computer simulations and for the design of fusion reactors. (author) 5 refs

  3. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  4. Guide to power reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    The IAEA's major first scientific publication is the Directory of Power Reactors now in operation or under construction in various parts of the world. The purpose of the directory is to present important details of various power projects in such a way as to provide a source of easy reference for anyone interested in the development of the peaceful uses of atomic energy, either at the technical or management level. Six pages have been devoted to each reactor the first of which contains general information, reactor physics data and information about the core. The second and third contain sketches of the fuel element or of the fuel element assembly, and of the horizontal and vertical sections of the reactor. On the fourth page information is grouped under the following heads: fuel element, core heat transfer, control, reactor vessel and over-all dimensions, and fluid flow. The fifth page shows a simplified flow diagram, while the sixth provides information on reflector and shielding, containment and turbo generator. Some information has also been given, when available, on cost estimates and operating staff requirements. Remarks and a bibliography constitute the last part of the description of each reactor. Reactor projects included in this directory are pressurized light water cooled power reactors. Boiling light water cooled power reactors, heavy water cooled power reactors, gas cooled power reactors, organic cooled power reactors liquid metal cooled power reactors and liquid metal cooled power reactors

  5. Source composition of cosmic rays at high energy

    International Nuclear Information System (INIS)

    Juliusson, E.; Cesarsky, C.J.; Meneguzzi, M.; Casse, M.

    1975-01-01

    The source composition of the cosmic ray is usually calculated at an energy of a few GeV per nucleon. Recent measurements have however indicated that the source composition may be energy dependent. In order to give a quantitative answer to this question the source composition at 50GeV/nucleon has been calculated using an exponential distribution of path lengths and in the slab approximation. The results obtained at high energy agree very well with the source composition obtained at lower energies, except the abundance of carbon which is significantly lower than the generally accepted value of low energies [fr

  6. Wearable energy sources based on 2D materials.

    Science.gov (United States)

    Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan

    2018-05-08

    Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.

  7. Status of power reactor fuel reprocessing in India

    International Nuclear Information System (INIS)

    Kansra, V.P.

    1999-01-01

    Spent fuel reprocessing in India started with the commissioning of the Trombay Plutonium Plant in 1964. This plant was intended for processing spent fuel from the 40 MWth research reactor CIRUS and recovering plutonium required for the research and development activities of the Indian Atomic Energy programme. India's nuclear energy programme aims at the recycle of plutonium in view of the limited national resources of natural uranium and abundant quantities of thorium. This is based on the approach which aims at separating the plutonium from the power reactor spent fuel, use it in the fast reactors to breed 233 U and utilise the 233 U generated to sustain a virtually endless source of power through thorium utilisation. The separated plutonium is also being utilised to fabricate MOX fuel for use in thermal reactors. Spent fuel treatment and extracting plutonium from it makes economic sense and a necessity for the Indian nuclear power programme. This paper describes the status and trends in the Indian programme for the reprocessing of power reactor fuels. The extraction of plutonium can also be seen as a far more positive approach to long-term waste management. The closed cycle approach visualised and pursued by the pioneers in the field is now steadily moving India towards the goal of a sustainable source of power through nuclear energy. The experience in building, operating and refurbishing the reprocessing facilities for uranium and thorium has resulted in acquiring the technological capability for designing, constructing, operating and maintaining reprocessing plants to match India's growing nuclear power programme. (author)

  8. Nuclear energy and radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1980-01-01

    Both the light water reactor and the Canadian heavy water reactor systems produce electricity cheaply and efficiently. They produce some fissionable byproducts, which can be recycled to extend energy sources many-fold. Besides the production of electrical power, the nuclear industry produces various radioistopes used for treatment of cancer, in diagnostic procedures in nuclear medicine, in ionization smoke detectors, and as radioactive tracers with various technological applications including the study of the mechanisms of life. The increment in environmental radiation levels resulting from operation of nuclear power reactors represents a very small fraction of the radiation levels to which we are all exposed from natural sources, and of the average radiation exposures resulting from diagnostic procedures in the healing arts. The total health hazard of the complete nuclear power cycle is generally agreed to be smaller than the hazards associated with the generation of an equal amount of electricity from most other currently available sources of energy. The hazards from energy production in terms of shortened life expectancy are much smaller in all cases than the resulting increase in health and life expectancy. (auth)

  9. Isotope and machine sources for food irradiation

    International Nuclear Information System (INIS)

    Balcazar G, M.

    1992-05-01

    Artificial radioactive sources as Co-60 and Cs- 137 are produced by bombarding Co-59 with neutrons in a nuclear reactor and by chemical separation of spent nuclear fuel respectively. Both radioactive sources emit very high frequency electromagnetic radiation called y-rays. This highly penetrating radiation is employed for preservation of food. Each y-ray emitted from a radioactive source transports energy from the source to the irradiated food. Penetration of y-rays and their intensity depend on y-energy. Inside this study the advantages and disadvantages of both sources are compared. (Author)

  10. Isotope and machine sources for food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar G, M

    1992-05-15

    Artificial radioactive sources as Co-60 and Cs- 137 are produced by bombarding Co-59 with neutrons in a nuclear reactor and by chemical separation of spent nuclear fuel respectively. Both radioactive sources emit very high frequency electromagnetic radiation called y-rays. This highly penetrating radiation is employed for preservation of food. Each y-ray emitted from a radioactive source transports energy from the source to the irradiated food. Penetration of y-rays and their intensity depend on y-energy. Inside this study the advantages and disadvantages of both sources are compared. (Author)

  11. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  12. Nuclear reactor safety program in U.S. Department of Energy and future perspectives

    International Nuclear Information System (INIS)

    Song, Y.T.

    1987-01-01

    The U.S. Department of Energy (DOE) establishes policy, issues orders, and assures compliance with requirements. The contractors who design, construct, modify, operate, maintain and decommission DOE reactors, set forth the assessment of the safety of cognizant reactors and impliment DOE orders. Teams of experts in the Depatment, through scheduled and unscheduled review programs, reassess the safety of reactors in every phases of their lives. As new technology develops, the safety programs are reevaluated and policies are modified to accommodate these new technologies. The diagnostic capabilities of the computer using multiple alarms to enhance detection of defects and control of a reactor have been greatly utilized in reactor operating systems. The application of artificial intelligence (AI) technologies for diagnostic and even for the decision making process in the event of reactor accidents would be one of the future trends in reactor safety programs. (author)

  13. Comparative analysis of public's perception of economic feasibility and reality for selected energy sources in Korea

    International Nuclear Information System (INIS)

    Roh, Seungkook; Jeong, Ik; Lee, Kibog; Kim, Dongwook; Kim, Hyunjin

    2016-01-01

    Controversy on nuclear energy has persisted ever since, but nuclear energy has maintained around 30% of electricity generation in Korea. This is because Korean wants to secure energy security and diversity of energy sources, but the most rational driver behind nuclear energy is the economic feasibility. Looking at the actual prices of electricity traded in the Korean Power Exchange, the price of electricity generated by nuclear energy is 39.1 Korean won per kWh, which is lower than that of other sources: 58.9 (bituminous coal), 221.8 (oil), 158.6 (gas), 170.9 (hydropower), 162.8 (wind) and 463.1 (photovoltaic). However only experts, regulators and people from electricity generation industry are aware of this fact and the public does not seem to be perceiving this correctly. This research, therefore, will compare the economic feasibility of energy sources and how it is perceived by the public in general. This research was able to identify the large gap between public's perception on and reality of economic feasibility of energy sources. There are two possible reasons for the gap. Firstly, the electricity price paid by the public is agnostic of energy sources. Therefore, it is difficult for the public to be aware that the electricity from nuclear energy is benefiting them and hence the public would be indifferent to the real economic feasibility. Secondly, public's awareness of nuclear reactor decommissioning and spent fuel processing along with easier access to relevant information the media would have played a role. In fact, number of press and media has questioned the economic feasibility of nuclear energy. However, the price of electricity generated by nuclear energy includes costs for future activities such as decommissioning, radioactive waste disposal and spent fuel disposal. The public seems to be not aware of such fact and therefore favoring the media. Such analysis leads to two major policy implications. Most importantly, the government should emphasize the

  14. Evaluation of tubular reactor designs for supercritical water oxidation of U.S. Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-12-01

    Supercritical water oxidation (SCWO) is an emerging technology for industrial waste treatment and is being developed for treatment of the US Department of Energy (DOE) mixed hazardous and radioactive wastes. In the SCWO process, wastes containing organic material are oxidized in the presence of water at conditions of temperature and pressure above the critical point of water, 374 C and 22.1 MPa. DOE mixed wastes consist of a broad spectrum of liquids, sludges, and solids containing a wide variety of organic components plus inorganic components including radionuclides. This report is a review and evaluation of tubular reactor designs for supercritical water oxidation of US Department of Energy mixed waste. Tubular reactors are evaluated against requirements for treatment of US Department of Energy mixed waste. Requirements that play major roles in the evaluation include achieving acceptable corrosion, deposition, and heat removal rates. A general evaluation is made of tubular reactors and specific reactors are discussed. Based on the evaluations, recommendations are made regarding continued development of supercritical water oxidation reactors for US Department of Energy mixed waste

  15. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  16. Investigation of applications for high-power, self-critical fissioning uranium plasma reactors. Final technical report

    International Nuclear Information System (INIS)

    Rodgers, R.J.; Latham, T.S.; Krascella, N.L.

    1976-09-01

    Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction. (Author)

  17. Status of fusion reactor blanket design

    International Nuclear Information System (INIS)

    Smith, D.L.; Sze, D.K.

    1986-02-01

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  18. Assessment on health and energy sources

    International Nuclear Information System (INIS)

    Acket, C.; Yvon, M.

    2013-01-01

    After having recalled some issues related to the prevention of environmental health risks and mentioned in the preparation of the debate on energy transition in France, this document gathers actual objective elements for an assessment of health impact of the different energy sources. It discusses the impacts on health (mortality, sicknesses and diseases) of fossil fuels (coal and its wastes, gas), of renewable energies, of nuclear energy. For this last one, the document outlines the lack of documentation for various topics, discusses some results published on the dose impact of nuclear operation, and comment the issue of waste storage. It also recalls the main accidents (Three Mile Island, Chernobyl, and Fukushima) and some of the known and assessed impacts. The third part proposes comparisons between the different energy sources in terms of deadly accidents, of pollution and greenhouse effect (current and late mortality), of released radioactivity (release sources and collective dose). In conclusion, the authors outline that the impact on health of environmental risks must be one of the essential issues for the definition of energy policy, and discuss the resulting implications. Various data are provided in appendix: energy in France and in the world, origins of radioactivity

  19. Energy policy, the energy price fallacy and the role of nuclear energy in the UK

    International Nuclear Information System (INIS)

    Brookes, L.G.

    1978-01-01

    The widely held belief that the world energy problem will be solved by rising prices - closing the energy gap by reducing demand and bringing in new, large, previously overcostly energy sources is rejected by the author who feels that high prices are the problem and not the solution. It is argued that supply and demand will be brought into balance at some price, and the objective of energy policy should be to make it as low as possible, by concentrating on the exploitation of large, low-cost energy sources. The role of nuclear energy in this discussion is considered with respect to three specific points: the currently identified reserves of low-cost uranium, if used in fast reactors, represent an energy source greater than all other energy sources put together; nuclear power is the cheapest, safest and cleanest way of producing electricity; and electricity production accounts for a very large part of total primary energy consumption. (U.K.)

  20. Can renewable energy sources sustain affluent society?

    International Nuclear Information System (INIS)

    Trainer, F.E.

    1995-01-01

    Figures commonly quoted on costs of generating energy from renewable sources can give the impression that it will be possible to switch to renewables as the foundation for the continuation of industrial societies with high material living standards. Although renewable energy must be the sole source in a sustainable society, major difficulties become evident when conversions, storage and supply for high latitudes are considered. It is concluded that renewable energy sources will not be able to sustain present rich world levels of energy use and that a sustainable world order must be based on acceptance of much lower per capita levels of energy use, much lower living standards and a zero growth economy. (Author)

  1. Matching of dense plasma focus devices with fission reactors

    International Nuclear Information System (INIS)

    Harms, A.A.; Heindler, M.

    1978-01-01

    The potential role of dense plasma focus devices as compact neutron sources for fissile fuel breeding in conjunction with existing fission reactors is considered. It is found that advanced plasma focus devices can be used effectively in conjunction with neutronically efficient fission reactors to constitute ''self-sufficient'' breeders. Correlations among the various parameters such as the power output and conversion ratio of the fission reactor with the neutron yield and capacitor bank energy of the dense plasma focus device are presented and discussed

  2. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  3. Analysis of a Spanish energy scenario with Generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Ochoa, Raquel; Jimenez, Gonzalo; Perez-Martin, Sara

    2013-01-01

    Highlights: • Spanish energy scenario for the hypothetical deployment of Gen-IV SFR reactors. • Availability of national resources is assessed, considering SFR’s breeding. • An assessment of the impact of transmuting MA on the final repository. • SERPENT code with own pre- and post-processing tools were employed. • The employed SFR core design is based on the specifications of the CP-ESFR. - Abstract: The advantages of fast-spectrum reactors consist not only of an efficient use of fuel through the breeding of fissile material and the use of natural or depleted uranium, but also of the potential reduction of the amount of actinides such as americium and neptunium contained in the irradiated fuel. The first aspect means a guaranteed future nuclear fuel supply. The second fact is key for high-level radioactive waste management, because these elements are the main responsible for the radioactivity of the irradiated fuel in the long term. The present study aims to analyze the hypothetical deployment of a Gen-IV Sodium Fast Reactor (SFR) fleet in Spain. A nuclear fleet of fast reactors would enable a fuel cycle strategy different than the open cycle, currently adopted by most of the countries with nuclear power. A transition from the current Gen-II to Gen-IV fleet is envisaged through an intermediate deployment of Gen-III reactors. Fuel reprocessing from the Gen-II and Gen-III Light Water Reactors (LWR) has been considered. In the so-called advanced fuel cycle, the reprocessed fuel used to produce energy will breed new fissile fuel and transmute minor actinides at the same time. A reference case scenario has been postulated and further sensitivity studies have been performed to analyze the impact of the different parameters on the required reactor fleet. The potential capability of Spain to supply the required fleet for the reference scenario using national resources has been verified. Finally, some consequences on irradiated final fuel inventory are assessed

  4. Measurements of gamma-ray energy deposition in a heterogeneous reactor experimental configuration and their analysis

    International Nuclear Information System (INIS)

    Calamand, D.; Wouters, R. de; Knipe, A.D.; Menil, R.

    1984-10-01

    An important contribution to the power output of a fast reactor is provided by the energy deposition from gamma-rays, and is particularly significant in the inner fertile zones of heterogeneous breeder reactor designs. To establish the validity of calculational methods and data for such systems an extensive series of measurements was performed in the zero power reactor Masurca, as part of the RACINE programme. The experimental study involved four European laboratories and the measurement techniques covered a range of thermoluminescent dosemeters and an ionization chamber. The present paper describes and compares the gamma-ray energy deposition measurements and analysis

  5. SWOT analysis of the renewable energy sources in Romania - case study: solar energy

    Science.gov (United States)

    Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.

    2016-08-01

    The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.

  6. Optimal initial fuel distribution in a thermal reactor for maximum energy production

    International Nuclear Information System (INIS)

    Moran-Lopez, J.M.

    1983-01-01

    Using the fuel burnup as objective function, it is desired to determine the initial distribution of the fuel in a reactor in order to obtain the maximum energy possible, for which, without changing a fixed initial fuel mass, the results for different initial fuel and control poison configurations are analyzed and the corresponding running times compared. One-dimensional, two energy-group theory is applied to a reflected cylindrical reactor using U-235 as fuel and light water as moderator and reflector. Fissions in both fast and thermal groups are considered. The reactor is divided into several annular regions, and the constant flux approximation in each depletion step is then used to solve the fuel and fission-product poisons differential equations in each region. The computer code OPTIME was developed to determine the time variation of core properties during the fuel cycle. At each depletion step, OPTIME calls ODMUG, [12] a criticality search program, from which the spatially-averaged neutron fluxes and control poison cross sections are obtained

  7. Reactor-building-basement radionuclide and source distribution studies. Volume 3

    International Nuclear Information System (INIS)

    Cox, T.E.; Horan, J.T.; Worku, G.

    1983-06-01

    The Three Mile Island Unit 2 (TMI-2) Reactor Building basement has been sampled several times since August 1979. This report compiles the analytical results and sample history for the liquid and solid samples obtained to date. In addition, basement radiation levels were also obtained using thermoluminescent dosimeters (TLDs). The data obtained will provide information to support ongoing mass balance and source term studies and will aid in characterizing the 282-ft elevation for decontamination planning and dose reduction

  8. Reactor installation and maintenance for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Smith, B.R.

    1993-01-01

    Advanced Neutron Source (ANS) reactor assembly components have been modeled in great detail in IGRIP in order to realistically simulate preliminary installation and maintenance processes. Animation of these processes has been captured in a 15-minute video with narration. Approximately 90% of the parts were initially translated from CADAM (a two-dimensional drawing package) to IGRIP and then revolved or extruded. IGRIP's IGES translator greatly reduced the time required to perform this operation. The interfacing of devices in the work cell has identified numerous design inconsistencies. Most of the modeled reactor components are devices with a single degree of freedom (DOF) however, some of the slanted experiments required 6 DOF so that they could be removed at an angle in order to clear the reflector vessel flanges. IGRIP's collision detection feature proved to be extremely helpful in determining interferences when removing the experiments. The combination of three-dimensional visualization and collision detection allows engineers to clearly and easily visualize potential design problems before the construction phase of the project

  9. Energy and exergy prices of various energy sources along with their CO2 equivalents

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Hepbasli, Arif

    2010-01-01

    Various types of energy sources are used in the residential and industrial sectors. Choosing the type of sources is important. When an energy source is selected, its CO 2 equivalent and energy and exergy prices must be known for a sustainable future and for establishing energy policies. These prices are based on their energy values. Exergy analysis has been recently applied to a wide range of energy-related systems. Thus, obtaining the exergy values has become more meaningful for long-term planning. In this study, energy and exergy prices of various energy sources along with CO 2 equivalents are calculated and compared for residential and industrial applications in Turkey. Energy sources considered include coal, diesel oil, electricity, fuel oil, liquid petroleum gas (LPG), natural gas, heat pumps and geothermal, and their prices were obtained over a period of 18 months, from January 2008 to June 2009. For the residential and industrial sectors, minimum energy and exergy prices were found for ground source heat pumps, while maximum energy and exergy prices belong to LPG for both sectors.

  10. Scope of activities and organization of an interuniversity reactor institute

    International Nuclear Information System (INIS)

    de Bruin, M.

    1990-01-01

    The Reactor Instituut Delft was founded in 1958 and was at that time part of the Delft University of Technology. In 1969, the institute was converted into an interuniversity institute, owned and directed by the combined Dutch universities. Since 1987, the institute has again constituted part of the Delft University of Technology, still continuing its role as an interuniversity institute and with provisions in the organizational structure to secure this role. The major facility of the institute is the Hoger Onderwijs reactor, a 2-MW swimming pool reactor operated 24 h/day, 5 days/week. The reactor is used in neutron beam studies, reactor physics research, and for isotope production, neutron activation analysis (NAA), and commercial irradiation. The institute's 3-MeV Van de Graaff electron accelerator is mainly used for radiation chemistry. It can deliver subnanosecond high-current pulses and is provided with fast optical and conductivity measuring equipment. The variable energy positron source is being used for the study of defects at metal surfaces and interfaces. The experience obtained with this source is used in the development of a much stronger source as the basis of a positron microbeam in one of the reactor beam tubes

  11. Sustaining with efficiency the renewable energy sources

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    European energy policy requires actions, in favour of a more widespread diffusion of renewable energy sources. Is essential to have an efficient financial support to reduce costs. Are presented an estimated of electric power from renewable energy sources and some criticism. Is proposed a modification of green certificates market based on bilateral tradable agreements [it

  12. Proceedings of the workshop on the cooling of advanced reactors

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Nishihara, Hideaki; Mishima, Kaichiro

    1991-02-01

    Nuclear power has become to meet electric power demand by considerable proportion, and the peaceful utilization of atomic energy steadily returns scientific and technological results to the society. As to the problem of 'Heat removal from high performance nuclear reactors' taken up successively since the last year, there are the problem of heat transport in the reactors of new types as the source of energy supply, especially the pursuit from the viewpoint of the improvement of safety and reliability related to thermal engineering, and regarding nuclear reactors, the problem of the design and operation control of experimental facilities under the utmost condition in the core and its vicinity, not only the problem of reactors proper. Particularly regarding research reactors, precision has become to be demanded in addition to the safety and reliability thermally for various facilities. In the workshop of this year, the presenting of reports and discussion were carried out from the standpoint of thermal engineering on fast reactors and light water reactors of next generation, new research reactors and experimental facilities. (K.I.)

  13. Next generation of energy production systems; Lancement pour les systemes du futur

    Energy Technology Data Exchange (ETDEWEB)

    Rouault, J.; Garnier, J.C. [CEA Saclay Dir. de l' Energie Nucleaire DEN, 91 - Gif sur Yvette (France); Carre, F. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares - DDIN, 91 - Gif Sur Yvette (France)] [and others

    2003-07-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources.

  14. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Turgut, M. H.

    2009-01-01

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  15. 46 CFR 111.10-5 - Multiple energy sources.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...

  16. The renewable energies sources in France 1970-2000

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this report is to describe the energy production from renewable sources in France since 1970. In France the rate of using renewable energy sources is unequal. Some of them as hydro energy show a confirmed industrial and commercial interest when other techniques have not still reach the same level of maturity. The renewable energy sources chosen to calculate the electric and thermal production of France are: for electric power, hydro energy, wind energy, solar energy, geothermal energy, the urban wastes, the wood wastes, the harvesting residues, the biogas. For the thermal production, the thermal solar energy, the geothermal energy, the urban wastes, the wood and wood wastes, the harvesting residues, the biogas and bio fuels. The figures are marked in thirty tables. (N.C.)

  17. Home brew technetium : clinical scale desktop plasma fusion neutron source to produce Tc99m as an alternative to industrial scale fission reactor sources

    International Nuclear Information System (INIS)

    Bosi, S.G.; Khachan, J.; Oborn, B.M.

    2011-01-01

    Full text: Tc-99m (decay product of Mo-99) accounts for ∼ 90% of world's production of radiopharmaceuticals. Recent unexpected shutdowns of two fission reactors and routine maintenance closures .e created a global shortage of Tc-99m, hence the large global effort to find alternative sources. This project aims to design and produce a novel prototype Mo-99/Tc-99m source. An operational desktop neutron source is available at the University of Sydney, employing a deuterium fusion-plasma to create 2.45 MeV neutrons. These neutrons will be used to activate Mo-98 thin an activation vessel. In one embodiment, the activation vessel contains an aqueous slurry or gel containing Mo-98 which converts to 0-99 upon activation. The decay product Tc-99m could then be milked, similar to existing Tc-99m generators. Monte Carlo will be :ed to assess yield versus size and geometry for various vessel designs. The neutron source filled with deuterium operating at 250 W, produces 3 x 106 neutrons continuously. The neutron flux can be increased ∼ 100-fold if the fill gas is 50% tritium and by another ∼ 100-1000-fold by increasing the power. This is being designed for local use, perhaps on the scale f one or a few hospitals, so the yield would not need to be industrial ;ale as with fission reactor sources. This device is low cost <$300 K) compared with cyclotrons and fission reactors.

  18. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  19. Renewable energy for rural development to protect environmental pollution from energy sources

    International Nuclear Information System (INIS)

    Mathur, A.N.

    2001-01-01

    Energy is the key input for technological industrial, social and economical development of a nation. The present energy scenario is heavily biased towards the conventional energy sources, such as petroleum products, coal, atomic energy, etc., which are finite in nature and causes environmental pollution. The energy utilization pattern is also meant for the energy requirement in urban areas. To meet the growing energy requirement of rural areas through the conventional energy sources will cause serious harmful effect on the environmental pollution. The man's thurst to use more energy after about 150 thousand years ago, invention of wheel, use of petroleum products for power generation and invention of steam and coal has brought him to use the energy sources for his comfort irrespective of the environmental consideration. The extensive use of energy operated devices in domestic, industrial, transport and for agriculture sectors in urban and rural areas have resulted in economical development of the society

  20. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  1. Nuclear fusion, an energy source of the future

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.

    1994-01-01

    The paper discusses the possibility to obtain energy by nuclear fusion. It deals successively with: The physical bases of nuclear fusion, research and development with a view to harnessing nuclear fusion, properties of a fusion reactor, and programme and timetable to economic exploitation. (orig./UA) [de

  2. Cyanate as energy source for nitrifiers

    DEFF Research Database (Denmark)

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico

    2015-01-01

    recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 using cyanate as the sole source of energy and reductant; to our knowledge, the first...... organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family...

  3. Unused energy sources inducing minimal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Voss, A [Inst. fur Reaktorentwicklung, Kernforschungsanlage Julich GmbH, German Federal Republic

    1974-01-01

    The contribution of hydroelectricity to the growing worldwide energy demand is not expected to exceed 6%. As the largest amount of hydroelectric potential is located in developing nations, it will find its greatest development outside the currently industrialized sphere. The potential of 60 GW ascribed to tidal and geothermal energy is a negligible quantity. Solar energy represents an essentially inexhaustible source, but technological problems will preclude any major contribution from it during this century. The environmental problems caused by these 'new' energy sources are different from those engendered by fossil and nuclear power plants, but they are not negligible. It is irresponsible and misleading to describe them as pollution-free.

  4. Energy production from renewable energy sources

    International Nuclear Information System (INIS)

    2001-04-01

    This table summarizes the electricity and heat produced in France and in overseas departments from renewable energy sources for 1998 (revised), 1999 (temporary) and 2000 (estimated): hydraulic, wind, solar photovoltaic and thermal, geothermal, solid municipal wastes, wood and wood wastes, biogas, ethanol and ester bio-fuels. (J.S.)

  5. Using Flow Electrodes in Multiple Reactors in Series for Continuous Energy Generation from Capacitive Mixing

    KAUST Repository

    Hatzell, Marta C.

    2014-12-09

    Efficient conversion of “mixing energy” to electricity through capacitive mixing (CapMix) has been limited by low energy recoveries, low power densities, and noncontinuous energy production resulting from intermittent charging and discharging cycles. We show here that a CapMix system based on a four-reactor process with flow electrodes can generate constant and continuous energy, providing a more flexible platform for harvesting mixing energy. The power densities were dependent on the flow-electrode carbon loading, with 5.8 ± 0.2 mW m–2 continuously produced in the charging reactor and 3.3 ± 0.4 mW m–2 produced in the discharging reactor (9.2 ± 0.6 mW m–2 for the whole system) when the flow-electrode carbon loading was 15%. Additionally, when the flow-electrode electrolyte ion concentration increased from 10 to 20 g L–1, the total power density of the whole system (charging and discharging) increased to 50.9 ± 2.5 mW m–2.

  6. CO2 Energy Reactor - Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization

    OpenAIRE

    Rafael M Santos; Pol CM Knops; Keesjan L Rijnsburger; Yi Wai eChiang

    2016-01-01

    To overcome the challenges of mineral CO2 sequestration, Innovation Concepts B.V. is developing a unique proprietary gravity pressure vessel (GPV) reactor technology and has focussed on generating reaction products of high economic value. The GPV provides intense process conditions through hydrostatic pressurization and heat exchange integration that harvests exothermic reaction energy, thereby reducing energy demand of conventional reactor designs, in addition to offering other benefits. In ...

  7. Safety and environmental advantages of breeding blanketless fusion reactors

    International Nuclear Information System (INIS)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-01-01

    Next-step reactors will use DT cycle. However, environmental advantage will be the main chance for fusion to compete with other energy sources. The environmental problems of DT cycle due to tritium and neutron activation, are examined. Fusion commercial reactors could be based on alternative fuel cycles like D-He3. Advantages and disadvantages of this fuel cycle are outlined. All the technologies related with the self-breeding of tritium and the concept of breeding blanket itself may be not reactor relevant. In the frame of the Next-step studies, the potential advantages of intermediate DT devices without breeding blanket are discussed. Simplified design, lower cost, higher safety are the main ones. The problem of the source of tritium is examined. (author)

  8. Dynamic energy management employing renewable energy sources in IP over DWDM networks

    DEFF Research Database (Denmark)

    Chen, Xin; Phillips, Chris; Wang, Jiayuan

    2013-01-01

    management framework employing renewable energy sources in IP over DWDM core networks. The main concept is to combine infrastructure sleeping and virtual router migration to improve the network energy efficiency. By using the energy source information provided by the smart grid, the nodes that are powered...

  9. Nuclear energy: salvaging the atomic age

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1979-01-01

    The history of atomic power is reviewed from the first chain reaction in Chicago in 1942 to the worst-to-date accident at the Three Mile Island power plant in March, 1979. While media coverage during the Three Mile Island incident made the public aware of some reactor hardware and radiation hazards, Weinberg suggests that an acceptable nuclear future should have six characteristics: increased physical isolation of reactors, further technical improvements, separation of generation and distribution, professionalization of the nuclear cadre, heightened security, and public education about the hazards of radiation. Weinberg feels the question of low-level radiation effects to be critical to public acceptance of nuclear energy. Since the effects (if any) are so rarely seen because exposures are so small, the issue may be beyond the ability of science to decipher. Weinberg again explains his reference to nuclear energy as a Faustian Bargain: ''...nuclear energy, that miraculous and quite unsuspected source of energy, demands an unprecedented degree of expertise, attention to detail, and social stability. In return, man has, in the breeder reactor, an inexhaustible energy source.''

  10. Renewable energy sources. European Commission papers

    International Nuclear Information System (INIS)

    1997-05-01

    The ''Directive on the Promotion of Electricity from Renewable Sources of Energy in the Internal Electricity Market'' was adopted in September 2001. Its purpose is to promote an increase in the contribution of renewable energy sources to electricity production in the internal market for electricity and to create a basis for a future Community framework. Energie-Cites provides in this document a summary of its opinion on the Green Paper and on Alterner II and gives a proposal for an Action Plan concerning the White Paper. (A.L.B.)

  11. New lineup of light water reactors

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi; Oshima, Koichiro; Kitsukawa, Keisuke

    2007-01-01

    Toshiba is promoting technical studies for upcoming nuclear power plants based on its large accumulation of experience in boiling water reactor (BWR) design, manufacturing, construction, and maintenance. Our goal is to achieve higher reliability, lower life-cycle costs, and better competitiveness for nuclear power plants compared with other energy sources. In addition, we are developing a new light water reactor (LWR) lineup featuring the safest and most economical LWRs in the world as next-generation reactors almost at new construction and replacement in the Japanese and international markets expected to start from the 2020s. We are committed not only to developing BWRs with the world's highest performance but also to participating in the pressurized water reactor (PWR) market, taking advantage of the synergistic effect of both Toshiba's and Westinghouse's experience. (author)

  12. Status of fusion reactor concept development in Japan

    International Nuclear Information System (INIS)

    Tsuji-Iio, Shunji

    1996-01-01

    Fusion power reactor studies in Japan based on magnetic confinement schemes are reviewed. As D-T fusion reactors, a steady-state tokamak reactor (SSTR) was proposed and extensively studied at the Japan Atomic Energy Research Institute (JAERI) and an inductively operated day-long tokamak reactor (IDLT) was proposed by a group at the University of Tokyo. The concept of a drastically easy maintenance (DREAM) tokamak reactor is being developed at JAERI. A high-field tokamak reactor with force-balanced coils as a volumetric neutron source is being studied by our group at Tokyo Institute of Technology. The conceptual design of a force-free helical reactor (FFHR) is under way at the National Institute for Fusion Science. A design study of a D- 3 He field-reversed configuration (FRC) fusion reactor called ARTEMIS was conducted by the FRC fusion working group of research committee of lunar base an lunar resources. (author)

  13. The European Fusion Energy Research Programme towards the realization of a fusion demonstration reactor

    International Nuclear Information System (INIS)

    Gasparotto, M.; Laesser, R.

    2006-01-01

    Since its inception, the European Fusion Programme has been orientated towards the establishment of the knowledge base needed for the definition of a reactor to be used for power production. Its ultimate goal is then to demonstrate the scientific and the technological feasibility of fusion power while incorporating the assessment of the safety, environmental, social and economic features of this type of energy source. At present, the JET device, the largest tokamak in the world, and the other medium-sized experimental machines are contributing essentially to the basic scientific phase of this development path. Their successful operation greatly contributed to support the design basis of ITER, the next step in fusion, which will aim to demonstrate the scientific and technical feasibility of fusion power production by achieving extended D-T burning plasma operation. Following ITER, the conception and construction of the DEMO device is planned. DEMO will be a demonstration power plant which will be the first fusion device to generate a significant amount of electrical power from fusion. This paper describes the status of fusion research and the European strategy for achievement of the ultimate goal of construction of a prototype reactor. (author)

  14. Agreement of 10 September 1991 between the International Atomic Energy Agency and the Government of the Islamic Republic of Pakistan for the application of safeguards in connection with the supply of a miniature neutron source reactor from the People's Republic of China

    International Nuclear Information System (INIS)

    1991-10-01

    The document reproduces the text of the Agreement of 10 September 1991, between the Government of the Islamic Republic of Pakistan and the International Atomic Energy Agency for the application of safeguards in connection with the supply of a miniature neutron source reactor from the People's Republic of China. The Agreement was approved by the Agency's Board of Governors on 20 February 1990 and entered into force upon signature on 10 September 1991

  15. HTR-2002: Proceedings of the conference on high temperature reactors

    International Nuclear Information System (INIS)

    2002-01-01

    High temperature reactors are considered as future inherently safe and efficient energy sources. The presentations covered all the relevant aspects of the existing HTGRs and/or helium cooled pebble bed reactors. They were sorted into 7 sessions: HTR Projects and Programmes; Fuel and Fuel Cycle; Physics and Neutronics; Thermohydraulic Calculation; Engineering, Design and Applications; Materials and Components; Safety and Licensing

  16. New coal-based energy systems

    International Nuclear Information System (INIS)

    Barnert, H.

    1986-01-01

    Conversion of coal into liquid fuels or into coal gas is considered and the use of high temperature nuclear reactors whose waste heat can be used for remote (district) heating mentioned. The use of high temperature reactors as energy source for coal gasification is also examined and, finally, the extraction of heat from combined coal, steel and high temperature nuclear reactors is suggested. (G.M.E.)

  17. Fission, fusion and the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, S E [Aston Univ., Birmingham (UK)

    1980-01-01

    The subject is covered in chapters, entitled: living on capital (energy reserves and consumption forecasts); the atom and its nucleus, mass and energy; fission and the bomb; the natural uranium reactor; enriched reactors; control and safety; long-term economics (the breeder reactions and nuclear fuel reserves); short-term economics (cost per kilowatt hour); national nuclear power programmes; nuclear power and the environment (including reprocessing, radioactive waste management, public relations); renewable energy sources; the fusion programme; summary and comment.

  18. A comparative table of various energy sources

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This table provides wide informations on the technological facets of various sources of primary energy. One of the outstanding features of this table is that it exposes and compares various technological problems involved in the energy conversion processes. The primary energy sources treated here are the solar energy (heat and light are treated separately), the geothermal energy, coal (gasification and liquefaction are treated separately), oil, natural gas, oceano-energy (tidal energy, temperature difference, and wave energy are treated separately), organic wastes, oil shale, tar sand, hydraulic power, wind power, biomass, uranium, thorium, and deuterium and lithium. On the other hand, the comparisons are made in three major items, i.e. charactersitics as natural resources, conversion or refinement to secondary energy sources, and economical characteristics. The first item includes the estimated and recognized amount of deposits, easiness of mining, storage, and transportation, and cleanliness and safety. As for conversion characteristics, the easiness, controlability, efficiency, cleanliness, and safety of various conversion processes are compared. Finally, as for economical problems, cost comparisons are made for gathering or mining those resources, including required energy input, man power, required facilities, and site conditions. (Aoki, K.)

  19. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2010-01-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  20. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.