WorldWideScience

Sample records for reactor concept designs

  1. Preliminary design concepts of an advanced integral reactor

    International Nuclear Information System (INIS)

    Moon, Kap S.; Lee, Doo J.; Kim, Keung K.; Chang, Moon H.; Kim, Si H.

    1997-01-01

    An integral reactor on the basis of PWR technology is being conceptually developed at KAERI. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts of the reactor to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway for confirming the technical adoption of those concepts to the rector design. The power output of the reactor will be in the range of 100MWe to 600MWe which is relatively small compared to the existing loop type reactors. The detailed analysis to assure the design concepts is in progress. (author). 3 figs, 1 tab

  2. Small propulsion reactor design based on particle bed reactor concept

    International Nuclear Information System (INIS)

    Ludewig, H.; Lazareth, O.; Mughabghab, S.; Perkins, K.; Powell, J.R.

    1989-01-01

    In this paper Particle Bed Reactor (PBR) designs are discussed which use 233 U and /sup 242m/Am as fissile materials. A constant total power of 100MW is assumed for all reactors in this study. Three broad aspects of these reactors is discussed. First, possible reactor designs are developed, second physics calculations are outlined and discussed and third mass estimates of the various candidates reactors are made. It is concluded that reactors with a specific mass of 1 kg/MW can be envisioned of 233 U is used and approximately a quarter of this value can be achieved if /sup 242m/Am is used. If this power level is increased by increasing the power density lower specific mass values are achievable. The limit will be determined by uncertainties in the thermal-hydraulic analysis. 5 refs., 5 figs., 6 tabs

  3. Preliminary Design Concept for a Reactor-internal CRDM

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Jong Wook; Kim, Tae Wan; Choi, Suhn; Kim, Keung Koo

    2013-01-01

    A rod ejection accident may cause severer result in SMRs because SMRs have relatively high control rod reactivity worth compared with commercial nuclear reactors. Because this accident would be perfectly excluded by adopting a reactor-internal CRDM (Control Rod Drive Mechanism), many SMRs accept this concept. The first concept was provided by JAERI with the MRX reactor which uses an electric motor with a ball screw driveline. Babcock and Wilcox introduced the concept in an mPower reactor that adopts an electric motor with a roller screw driveline and hydraulic system, and Westinghouse Electric Co. proposes an internal Control Rod Drive in its SMR with an electric motor with a latch mechanism. In addition, several other applications have been reported thus far. The reactor-internal CRDM concept is now widely adopted in many SMR designs, and this concept may also be applied in an evolutionary reactor development. So the preliminary study is conducted based on the SMART CRDM design. A preliminary design concept for a reactor-internal CRDM was proposed and evaluated through an electromagnetic analysis. It was found that there is an optimum design for the motor housing, and the results may contribute to the realization a reactor-internal CRDM for an evolutionary reactor development. More detailed analysis results will be reported later

  4. Reactor design concepts for radiation processing

    International Nuclear Information System (INIS)

    Berejka, A.J.

    2004-01-01

    During the formative years of irradiation processing, the 1950s and 1960s, there was laboratory and academic interest in the use of this form of energy transfer to initiate polymerization for the manufacture of plastics and in other chemical processes. Studies were often based on low-dose-rate Cobalt-60 systems. The electron beam (EB) accelerator technology of the time was not as yet at the robust and industrially reliable state that it is now at the beginning of the twenty-first century. A series of reactor designs illustrate how an electron beam can be incorporated into reactor vessels for initiating gas and liquid phase polymerizations on a continuous basis. Development of such approaches, which would rely upon contemporary, high current electron beams to initiate polymerization, would help the chemical processing industry alleviate its problems of catalyst disposal and its related environmental concerns. Systems for treating materials in bulk at low doses, such as those typically used for grain disinfection, at high through-put rates, are also illustrated. Simplified shielding is envisioned in each proposed process system

  5. Preliminary design concepts for the advanced neutron source reactor systems

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1988-01-01

    This paper describes the initial design work to develop the reactor systems hardware concepts for the advanced neutron source (ANS) reactor. This project has not yet entered the conceptual design phase; thus, design efforts are quite preliminary. This paper presents the collective work of members of the Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Engineering Division, and other participating organizations. The primary purpose of this effort is to show that the ANS reactor concept is realistic from a hardware standpoint and to show that project objectives can be met. It also serves to generate physical models for use in neutronic and thermal-hydraulic core design efforts and defines the constraints and objectives for the design. Finally, this effort will develop the criteria for use in the conceptual design of the reactor

  6. Fuel transfer cask concept design for reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Ahmad Nabil Ab Rahim; Phongsakorn Prak; Tonny Lanyau; Mohd Fazli Zakaria

    2010-01-01

    Reactor Triga PUSPATI (RTP) has been operated since 1982 till now. For such long period, the organization feels the need to upgrade the power from 1 MW to 3 MW which involved changing new fuels. Spent fuels will be stored in a Spent Fuel Pool. The process of transferring spent fuels into Spent Fuels Pool required a fuel transfer cask. This paper discussed the design concept for the fuel transfer cast which is essential equipment for reactor upgrading mission. (author)

  7. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  8. Concept design on RH maintenance of CFETR Tokamak reactor

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Songtao; Wan, Yuanxi; Li, Jiangang; Ye, Minyou; Zheng, Jinxing; Cheng, Yong; Zhao, Wenlong; Wei, Jianghua

    2014-01-01

    Highlights: •We discussed the concept design of the RH maintenance system based on the main design work of the key components for CFETR. •The main design work for RH maintenance in this paper was carried out including the divertor RH system, the blanket RH system and the transfer cask system. •The technical problems encountered in the design process were discussed. •The present concept design of remote maintenance system in this paper can meet the physical and engineering requirement of CFETR. -- Abstract: CFETR which stands for Chinese Fusion Engineering Testing Reactor is a superconducting Tokamak device. The concept design on RH maintenance of CFETR has been done in the past year. It is known that, the RH maintenance is one of the most important parts for Tokamak reactor. The fusion power was designed as 50–200 MW and its duty cycle time (or burning time) was estimated as 30–50%. The center magnetic field strength on the TF magnet is 5.0 T, the maximum capacity of the volt seconds provided by center solenoid winding will be about 160 VS. The plasma current will be 10 MA and its major radius and minor radius is 5.7 m and 1.6 m respectively. All the components of CFETR which provide their basic functions must be maintained and inspected during the reactor lifetime. Thus, the remote handling (RH) maintenance system should be a key component, which must be detailedly designed during the concept design processing of CFETR, for the operation of reactor. The main design work for RH maintenance in this paper was carried out including the divertor RH system, the blanket RH system and the transfer cask system. What is more, the technical problems encountered in the design process will also be discussed

  9. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized

  10. New concepts for controlled fusion reactor blanket design

    International Nuclear Information System (INIS)

    Conn, R.W.; Kulcinski, G.L.; Avci, H.; El-Maghrabi, M.

    1975-01-01

    Several new concepts for fusion reactor blanket design based on the idea of shifting, or tailoring, the neutron spectrum incident on the first structural wall are presented. The spectral shifter is a nonstructural element which can be made of graphite, silicon carbide, or three dimensionally woven carbon fibers (and containing other materials as appropriate) placed between the neutron source and the first structural wall. The softened neutron spectrum incident on the structural components leads to lower gas production and atom displacement rates than in more standard fusion blanket designs. In turn, this results in longer anticipated lifetimes for the structural materials and can significantly reduce radioactivity and afterheat levels. In addition, the neutron spectrum in the first structural wall can be made to approach the flux shape in fast breeder reactors. Such spectral softening means that existing radiation facilities may be more profitably used to provide relevant materials radiation damage data for the structural materials in these fusion blanket designs. This general class of blanket concepts are referred to as internal spectral shifter and energy converter, or ISSEC concepts. These specific design concepts fall into three main categories: ISSEC/EB concepts based on utilizing existing designs which breed tritium behind the first structural wall; ISSEC/IB concepts based on breeding tritium inside the first vacuum wall; and ISSEC/Bu concepts based on using boron, carbon, and perhaps, beryllium to obtain an energy multiplier and converter design that does not attempt to breed tritium or utilize lithium. The detailed analyses relate specifically to the nuclear performance of ISSEC systems and to a discussion of materials radiation damage problems in the structural material.(U.S.)

  11. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  12. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  13. Conceptual design of laser fusion reactor, SENRI-I - 1. concept and system design

    International Nuclear Information System (INIS)

    Ido, S.; Naki, S.; Norimatsu, T.

    1981-01-01

    Design features of a laser fusion reactor concept SENRI-I and new concepts are reviewed and discussed. The unique feature is the utilization of a magnetic field to guide and control the inner liquid Li flow. Basic requirements and typical parameters used in the design are presented. Items to be discussed are constitution of the system, performance of liquid Li flow, neutronics, thermo-electric cycle, fuel cycle and new concepts

  14. Concept and designs of new-generation fast reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.

    1993-01-01

    This article discusses the general safety requirements and characteristics for future nuclear power plants. It examines various designs - loop, block, and integrated layouts for reactors. Specifically, the article focuses an integrated design for sodium-cooled fast reactors noting that the BN-600 reactor has operated accident-free over the past 12 years. An obvious advantage of this scheme is that the coolant of the primary loop is localized in one volume (in a vessel), there are no short connections and large-diameter pipes, which of course sharply reduces the probability in coolant leaks. With an integrated scheme the problem of embrittlement of the reactor vessel by neutron irradiation is obviated. The neutron fluence for the vessels of the AST-500 and VPBER-600 reactors, built with an integrated scheme, is less than 10 17 cm -2 . Such a fluence does not cause any appreciable change in the mechanical properties of the vessel steel. The integrated layout of the reactor makes it possible to build a containment vessel. In this case it is possible to eliminate the danger of the reactor core drying out and thus cooling of the reactor in emergency situations can be simplified substantially. In an integrated layout, however, access is more difficult to the equipment inside the reactor, thus limiting or complicating maintenance work. The integrated layout, therefore, requires the use of highly reliable equipment built according to designs that have been proven in operation and have been passed representative service-life tests under laboratory conditions. The integrated layout considerably increases the mass and size characteristics of the reactor. New solutions thus are needed for the organization of work on reactor fabrication and assembly. In the case of the BN-600 and Superphenix reactors the welding of the reactor vessels and the assembly work were done on the building site

  15. Study of the reactor relevance of the NET design concept

    International Nuclear Information System (INIS)

    Reynolds, P.; Worraker, W.J.

    1987-08-01

    The objective of the study was to explore the reactor relevance of NET, i.e. whether the technologies and design principles proposed for NET can be directly extrapolated to a demonstration power reactor (DEMO). The main areas of study were those near to the plasma, namely the divertor, first wall and tritium breeding blanket. Other aspects which were investigated were tritium permeation and recovery, reactor maintenance, afterheat and effects of disruptions. The principal results of the study are briefly presented; the details of the work are given in fourteen appendices. These appendices were selected for INIS and indexed separately. The overall conclusion of the study is that the NET design is only partly relevant to the design requirements of a DEMO reactor. (U.K.)

  16. Status of the design concepts for a high fluence fast pulse reactor (HFFPR)

    International Nuclear Information System (INIS)

    Philbin, J.S.; Nelson, W.E.; Rosenstroch, B.

    1978-10-01

    The report describes progress that has been made on the design of a High Fluence Fast Pulse Reactor (HFFPR) through the end of calendar year 1977. The purpose of this study is to present design concepts for a test reactor capable of accommodating large scale reactor safety tests. These concepts for reactor safety tests are adaptations of reactor concepts developed earlier for DOE/OMA for the conduct of weapon effects tests. The preferred driver core uses fuel similar to that developed for Sandia's ACPR upgrade. It is a BeO/UO 2 fuel that is gas cooled and has a high volumetric heat capacity. The present version of the design can drive large (217) pin bundles of prototypically enriched mixed oxide fuel well beyond the fuel's boiling point. Applicability to specific reactor safety accident scenarios and subsequent design improvements will be presented in future reports on this subject

  17. Design features of BREST reactors. Experimental work to advance the concept of BREST reactors. Results and plans

    International Nuclear Information System (INIS)

    Filin, A.I.; Orlov, V.V.; Leonov, V.N.; Sila-Novitskij, A.G.; Smirnov, V.S.; Tsikunov, V.S.

    2001-01-01

    Principle designs of 300 MW(th) and 1200 MW(th) lead-cooled fast reactors are presented. Reactors of various output are shown to be built using the same principles. In conjunction with increased output and to implement inherent safety concept in BREST-1200 reactor design a number of new solutions, which may be used in BREST-300 concept too, has been taken including: pool-type reactor design not requiring metal vessel, hence, not limiting reactor power; new handling system allowing to reduce central hall and building dimensions as a whole; emergency cooling system using Field pipes, immersed directly in lead, which may be used to cool down reactor under normal conditions; by-pass line incorporated in coolant loop allowing to refuse the actively actuating valve initiated in pumps shut down. (author)

  18. Design concept of HYPER (HYbrid Power Extraction Reactor)

    International Nuclear Information System (INIS)

    Park, Won S.; Song, Tae Y.; Yu, Dong H.; Kim, Chang H.

    1999-01-01

    Korea Atomic Energy Research Institute (KAERI) has been performing accelerator driven system related research and development called HYPER for the transmutation of nuclear waste and energy production through the transmutation process. Some major design features of HYPER have been developed and employed. On-power fueling concepts are employed to keep system power constant with a minimum variation of accelerator power. A hollow cylinder-type metal fuel is designed for the on-line refueling concept. Pb-Bi is adopted as a coolant and spallation target material. 1 GeV 13 mA proton beam is designed to be provided for HYPER. HYPER is to transmute about 380 kg of TRU a year and produce 1000 MWth power. The support ratio of HYPER for LWR units producing the same power is believed to be 5 to 6. (author)

  19. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  20. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    International Nuclear Information System (INIS)

    Mynatt, Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-01-01

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs

  1. Concept of object-oriented intelligent support for nuclear reactor designing

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Gofuku, A.

    1991-01-01

    A concept of object-oriented intelligent CAD/CAE environment is proposed for the conceptual designing of advanced nuclear reactor system. It is composed of (i) object-oriented frame-structure database which represents the hierarchical relationship of the composite elements of reactor core and the physical properties, and (ii) object-oriented modularization of the elementary calculation processes, which are needed for reactor core design analysis. As an example practise, an object-oriented frame structure is constructed for representing a 3D configuration of a special fuel element of a space reactor design, by using a general-purpose expert system shell ESHELL/X. (author)

  2. An integral reactor design concept for a nuclear co-generation plant

    International Nuclear Information System (INIS)

    Lee, D.J.; Kim, J.I.; Kim, K.K.; Chang, M.H.; Moon, K.S.

    1997-01-01

    An integral reactor concept for nuclear cogeneration plant is being developed at KAERI as an attempt to expand the peaceful utilization of well established commercial nuclear technology, and related industrial infrastructure such as desalination technology in Korea. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway to evaluate the characteristics of various passive safety concepts and provide the proper technical data for the conceptual design. This paper describes the preliminary safety and design concepts of the advanced integral reactor. Salient features of the design are hexagonal core geometry, once-through helical steam generator, self-pressurizer, and seismic resistant fine control CEDMS, passive residual heat removal system, steam injector driven passive containment cooling system. (author)

  3. Inherent safe design of advanced high temperature reactors - concepts for future nuclear power plants

    International Nuclear Information System (INIS)

    Hodzic, A.; Kugeler, K.

    1997-01-01

    This paper discusses the applicable solutions for a commercial size High Temperature Reactor (HTR) with inherent safety features. It describes the possible realization using an advanced concept which combines newly proposed design characteristics with some well known and proven HTR inherent safety features. The use of the HTR technology offers the conceivably best solution to meet the legal criteria, recently stated in Germany, for the future reactor generation. Both systems, block and pebble bed ,reactor, could be under certain design conditions self regulating in terms of core nuclear heat, mechanical stability and the environmental transfer. 23 refs., 7 figs

  4. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  5. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Yoon, K. H.; Lee, C. B.

    2014-01-01

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness

  6. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K. H.; Lee, C. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness.

  7. Integral design concepts of advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    Under the sub-programme on non-electrical applications of advanced reactors, the International Atomic Energy Agency has been providing a worldwide forum for exchange of information on integral reactor concepts. Two Technical Committee meetings were held in 1994 and 1995 on the subject where state-of-the-art developments were presented. Efforts are continuing for the development of advanced nuclear reactors of both evolutionary and innovative design, for electricity, co-generation and heat applications. While single purpose reactors for electricity generation may require small and medium sizes under certain conditions, reactors for heat applications and co-generation would be necessary in the small and medium range and need to be located closer to the load centres. The integral design approach to the development of advanced light water reactors has received special attention over the past few years. Several designs are in the detailed design stage, some are under construction, one prototype is in operation. A need has been felt for guidance on a number of issues, ranging from design objectives to the assessment methodology needed to show how integral designs can meet these objectives, and also to identify their advantages and problem areas. The technical document addresses the current status of the design, safety and operational issues of integral reactors and recommends areas for future development

  8. Preliminary Assessment of Two Alternative Core Design Concepts for the Special Purpose Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Werner, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kennedy, John C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, Robert C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dion, Axel M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ananth, Krishnan P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-11-01

    The Special Purpose Reactor (SPR) is a small 5 MWt, heat pipe-cooled, fast reactor based on the Los Alamos National Laboratory (LANL) Mega-Power concept. The LANL concept features a stainless steel monolithic core structure with drilled channels for UO2 pellet stacks and evaporator sections of the heat pipes. Two alternative active core designs are presented here that replace the monolithic core structure with simpler and easier to manufacture fuel elements. The two new core designs are simply referred to as Design A and Design B. In addition to ease of manufacturability, the fuel elements for both Design A and Design B can be individually fabricated, assembled, inspected, tested, and qualified prior to their installation into the reactor core leading to greater reactor system reliability and safety. Design A fuel elements will require the development of a new hexagonally-shaped UO2 fuel pellet. The Design A configuration will consist of an array of hexagonally-shaped fuel elements with each fuel element having a central heat pipe. This hexagonal fuel element configuration results in four radial gaps or thermal resistances per element. Neither the fuel element development, nor the radial gap issue are deemed to be serious and should not impact an aggressive reactor deployment schedule. Design B uses embedded arrays of heat pipes and fuel pins in a double-wall tank filled with liquid metal sodium. Sodium is used to thermally bond the heat pipes to the fuel pins, but its usage may create reactor transportation and regulatory challenges. An independent panel of U.S. manufacturing experts has preliminarily assessed the three SPR core designs and views Design A as simplest to manufacture. Herein are the results of a preliminary neutronic, thermal, mechanical, material, and manufacturing assessment of both Design A and Design B along with comparisons to the LANL concept (monolithic core structure). Despite the active core differences, all three reactor concepts behave

  9. The KALIMER-600 Reactor Core Design Concept with Varying Fuel Cladding Thickness

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Jang, Jin Wook; Kim, Yeong Il

    2006-01-01

    Recently, Korea Atomic Energy Research Institute (KAERI) has developed a 600MWe sodium cooled fast reactor, the KALIMER-600 reactor core concept using single enrichment fuel. This reactor core concept is characterized by the following design targets : 1) Breakeven breeding (or fissile-self-sufficient) without any blanket, 2) Small burnup reactivity swing ( 23 n/cm 2 ). In the previous design, the single enrichment fuel concept was achieved by using the special fuel assembly designs where non-fuel rods (i.e., ZrH 1.8 , B 4 C, and dummy rods) were used. In particular, the moderator rods (ZrH 1.8 ) were used to reduce the sodium void worth and the fuel Doppler coefficient. But it has been known that this hydride moderator possesses relatively poor irradiation behavior at high temperature. In this paper, a new core design concept for use of single enrichment fuel is described. In this concept, the power flattening is achieved by using the core region wise cladding thicknesses but all non-fuel rods are removed to simplify the fuel assembly design

  10. Design concepts and status of the Korean next generation reactor (KNGR)

    International Nuclear Information System (INIS)

    Cho, Sung Jae; Kim, Han Gon

    1999-01-01

    The national project to develop KNGR, a 4000 MWth evolutionary advanced light water reactor (ALWR), has been organized in three phases according to the development status in 1992. During the first phase, the top-tier design requirements and the design concepts to meet the requirements had been established. The project is currently in the second phase of which the major objective is to complete the basic design sufficient to confirm the plant safety. This paper describes the overall design concepts and status of the KNGR briefly which developed and/or being developed through the project. (author)

  11. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  12. The design features and safety concepts of the nuclear heating reactor developed in China

    International Nuclear Information System (INIS)

    Zheng Wenxiang; Wang Dazhong

    1995-01-01

    Based on the specific conditions of the nuclear heat applications and the development objectives of the advanced reactors, the nuclear heating reactor (NHR) exploited in China has adhered to the new safety concepts and been designed with a number of advanced features, including the integrated arrangement, full power natural circulation capacity, self-pressurized performance, dynamically-hydraulic control rod drive and passive safety systems, so that higher standard of safety as well as simplification in the plant systems and improvement in economic viability has been achieved. This paper describes the special consideration in the design as well as the main design features and safety concepts of the NHR. Some experimental and analytical results are also presented to demonstrate the NHR safety features

  13. Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

    Directory of Open Access Journals (Sweden)

    Yeong-il Kim

    2013-01-01

    Full Text Available Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.

  14. A breed and burn reshuffling scheme for an Astrid-like reactor concept design

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, E. Y.; Francois L, J. L., E-mail: eliasgarcerv@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2016-09-15

    The greenhouse emissions has a serious impact on environmental terms, reason why energy supply needs to be provided by low carbon emission technologies. Nuclear power is and environmentally friendly energy with future concepts and designs that ensure safety, and in this paper is taken as a solution to be considered in the energy supply mix. This study presents an extension on the operation of the Advanced Sodium Technological Reactor for Industrial demonstration (Astrid) nuclear reactor through a breed and burn operation to extend the operation of the reactor. The Astrid nuclear reactor is a fourth generation sodium-cooled fast reactor of 1500 MWt h, and it considers an innovative design: the low void effect core (Cfv: Coeur a Faible effet de Vidange sodium) due to the reactor configuration and the radial and axial position of the fuel subassemblies. Previous research in the Astrid-like cores aimed the model validation of a conventional oxide-fueled core and its comparison with a proposed metallic-fueled core. Taking into account the amount of fissile material (mainly 239-Pu) after the first cycle, a reshuffling scheme was suggested, which consists in changing strategically the position of the nuclear fuel assemblies when the reactivity drops near to the critical state of the reactor. Two different reshuffling schemes were simulated in every developed model, having operation extensions of 805 days and 1775 days for the oxide and metallic designs respectively. The implementation of the reshuffling schemes in the developed models enhanced the fuel utilization and could save up to 2.20 and 5.96 tons of plutonium for oxide and metallic designs respectively, which has an economic impact. The breeding of 239-Pu achieved in the fertile zone of the metallic design reached half of the initial concentration of the 239-Pu in the fissile zone and for the oxide design, the breeding reached one third of the initial concentration of the 239-Pu in the fissile zone. (Author)

  15. A breed and burn reshuffling scheme for an Astrid-like reactor concept design

    International Nuclear Information System (INIS)

    Garcia C, E. Y.; Francois L, J. L.

    2016-09-01

    The greenhouse emissions has a serious impact on environmental terms, reason why energy supply needs to be provided by low carbon emission technologies. Nuclear power is and environmentally friendly energy with future concepts and designs that ensure safety, and in this paper is taken as a solution to be considered in the energy supply mix. This study presents an extension on the operation of the Advanced Sodium Technological Reactor for Industrial demonstration (Astrid) nuclear reactor through a breed and burn operation to extend the operation of the reactor. The Astrid nuclear reactor is a fourth generation sodium-cooled fast reactor of 1500 MWt h, and it considers an innovative design: the low void effect core (Cfv: Coeur a Faible effet de Vidange sodium) due to the reactor configuration and the radial and axial position of the fuel subassemblies. Previous research in the Astrid-like cores aimed the model validation of a conventional oxide-fueled core and its comparison with a proposed metallic-fueled core. Taking into account the amount of fissile material (mainly 239-Pu) after the first cycle, a reshuffling scheme was suggested, which consists in changing strategically the position of the nuclear fuel assemblies when the reactivity drops near to the critical state of the reactor. Two different reshuffling schemes were simulated in every developed model, having operation extensions of 805 days and 1775 days for the oxide and metallic designs respectively. The implementation of the reshuffling schemes in the developed models enhanced the fuel utilization and could save up to 2.20 and 5.96 tons of plutonium for oxide and metallic designs respectively, which has an economic impact. The breeding of 239-Pu achieved in the fertile zone of the metallic design reached half of the initial concentration of the 239-Pu in the fissile zone and for the oxide design, the breeding reached one third of the initial concentration of the 239-Pu in the fissile zone. (Author)

  16. Fourth Generation Reactor Concepts

    International Nuclear Information System (INIS)

    Furtek, A.

    2008-01-01

    Concerns over energy resources availability, climate changes and energy supply security suggest an important role for nuclear energy in future energy supplies. So far nuclear energy evolved through three generations and is still evolving into new generation that is now being extensively studied. Nuclear Power Plants are producing 16% of the world's electricity. Today the world is moving towards hydrogen economy. Nuclear technologies can provide energy to dissociate water into oxygen and hydrogen and to production of synthetic fuel from coal gasification. The introduction of breeder reactors would turn nuclear energy from depletable energy supply into an unlimited supply. From the early beginnings of nuclear energy in the 1940s to the present, three generations of nuclear power reactors have been developed: First generation reactors: introduced during the period 1950-1970. Second generation: includes commercial power reactors built during 1970-1990 (PWR, BWR, Candu, Russian RBMK and VVER). Third generation: started being deployed in the 1990s and is composed of Advanced LWR (ALWR), Advanced BWR (ABWR) and Passive AP600 to be deployed in 2010-2030. Future advances of the nuclear technology designs can broaden opportunities for use of nuclear energy. The fourth generation reactors are expected to be deployed by 2030 in time to replace ageing reactors built in the 1970s and 1980s. The new reactors are to be designed with a view of the following objectives: economic competitiveness, enhanced safety, minimal radioactive waste production, proliferation resistance. The Generation IV International Forum (GIF) was established in January 2000 to investigate innovative nuclear energy system concepts. GIF members include Argentina, Brazil, Canada, Euratom, France Japan, South Africa, South Korea, Switzerland, United Kingdom and United States with the IAEA and OECD's NEA as permanent observers. China and Russia are expected to join the GIF initiative. The following six systems

  17. A mechanism for proven technology foresight for emerging fast reactor designs and concepts

    International Nuclear Information System (INIS)

    Anuar, Nuraslinda; Muhamad Pauzi, Anas

    2016-01-01

    The assessment of emerging nuclear fast reactor designs and concepts viability requires a combination of foresight methods. A mechanism that allows for the comparison and quantification of the possibility of being a proven technology in the future, β for the existing fast reactor designs and concepts is proposed as one of the quantitative foresight method. The methodology starts with the identification at the national or regional level, of the factors that would affect β. The factors are then categorized into several groups; economic, social and technology elements. Each of the elements is proposed to be mathematically modelled before all of the elemental models can be combined. Once the overall β model is obtained, the β min is determined to benchmark the acceptance as a candidate design or concept. The β values for all the available designs and concepts are then determined and compared with the β min , resulting in a list of candidate designs that possess the β value that is larger than the β min . The proposed methodology can also be applied to purposes other than technological foresight

  18. A mechanism for proven technology foresight for emerging fast reactor designs and concepts

    Energy Technology Data Exchange (ETDEWEB)

    Anuar, Nuraslinda, E-mail: nuraslinda@uniten.edu.my; Muhamad Pauzi, Anas, E-mail: anas@uniten.edu.my [College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    The assessment of emerging nuclear fast reactor designs and concepts viability requires a combination of foresight methods. A mechanism that allows for the comparison and quantification of the possibility of being a proven technology in the future, β for the existing fast reactor designs and concepts is proposed as one of the quantitative foresight method. The methodology starts with the identification at the national or regional level, of the factors that would affect β. The factors are then categorized into several groups; economic, social and technology elements. Each of the elements is proposed to be mathematically modelled before all of the elemental models can be combined. Once the overall β model is obtained, the β{sub min} is determined to benchmark the acceptance as a candidate design or concept. The β values for all the available designs and concepts are then determined and compared with the β{sub min}, resulting in a list of candidate designs that possess the β value that is larger than the β{sub min}. The proposed methodology can also be applied to purposes other than technological foresight.

  19. Basic concept of fuel safety design and assessment for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Baba, Toshikazu; Kamimura, Katsuichiro

    2013-03-01

    'Philosophy in Safety Evaluation of Fast Breeder Reactors' was published as a guideline for safety design and safety evaluation of Sodium-Cooled Fast Reactor in Japan. This guideline points out that cladding creep and swelling due to internal pressure should be taken into account since the fuel is used under high temperature and high burnup, and that fuel assembly deformation and the prevention from coolant channel blockage should be taken into account in viewpoints of nuclear and thermal hydraulic design. However, the requirements including their criteria and evaluation items are not described. Two other domestic guidelines related to core design are applied for fuel design of fast reactor, but the description is considered to not be enough to practically use. In addition, technical standard for nuclear fuel used in power reactors is also applied for fuel inspection. Therefore, the technical standard and guideline for fuel design and safety evaluation are considered to be very important issue for nuclear safety regulation. This document has been developed according to the following steps: The guidelines and the technical standards, which are prepared in foreign countries and international organization, were reviewed. The technical background concerning fuel design and safety evaluation for fast reactor was collected and summarized in the world wide scale. The basic concept of fuel safety design and assessment for sodium-cooled fast reactor was developed by considering a wide range of views of the specialists in Japan. In order to discuss the content with foreign specialists IAEA Consultancy Meetings have been held on January, 2011 and January, 2012. The participants of the meeting came from USA, UK, EC, India, China and South Korea. The specialists of IAEA and JNES were also joined. Although this document is prepared for application to 'Monju'(prototype LMFR), it may be applied to experimental, demonstration and commercial types of LMFR after revising it by taking

  20. Design of subjects training on reactor simulator and feasibility study - toward the empirical evaluation of interface design concept

    International Nuclear Information System (INIS)

    Yamaguchi, Y.; Furukawa, H.; Tanabe, F.

    1998-01-01

    On-going JAERI's project for empirical evaluation of the ecological interface design concept was first described. The empirical evaluation is planned to be proceeded through three consecutive steps; designing and actual implementation of the interface on reactor simulator, verification of the interface created, and the validation by the simulator experiment. For conducting the project, three different experimental resources are prerequisite, that are, data analysis method for identifying the operator's strategies, experimental facility including reactor simulator, and experimental subjects or subjects training method. Among the three experimental resources, subjects training method was recently designed and a simulator experiment was earned out in order to examine the feasibility of the designed training method. From the experiment and analysis of the experimental records, we could conclude that it is feasible that the experimental subjects having an appropriate technical basis can gain the sufficient competence for evaluation work of the interface design concept by using the training method designed. (author)

  1. SCW Pressure-Channel Nuclear Reactors: Some Design Features and Concepts

    International Nuclear Information System (INIS)

    Duffey, R.B.; Pioro, I.L.; Gabaraev, B.A.; Kuznetsov, Yu. N.

    2006-01-01

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950's and 1960's in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with supercritical water (SCW) became attractive again as the ultimate development path for water-cooling. The main objectives of using SCW in nuclear reactors are 1) to increase the thermal efficiency of modern nuclear power plants (NPPs) from 33 -- 35% to about 40 -- 45%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (∼$ 1000 US/kW). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625 deg. C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia. Design features related to both channels and fuel bundles are discussed in this paper. Also, Russian experience with operating supercritical steam heaters at NPP is presented. The main conclusion is that development of SCW pressure-channel nuclear reactors is feasible and significant benefits can be expected over other thermal energy systems. (authors)

  2. New reactor concepts

    International Nuclear Information System (INIS)

    Meskens, G.; Govaerts, P.; Baugnet, J.-M.; Delbrassine, A.

    1998-11-01

    The document gives a summary of new nuclear reactor concepts from a technological point of view. Belgium supports the development of the European Pressurized-Water Reactor, which is an evolutionary concept based on the European experience in Pressurized-Water Reactors. A reorientation of the Belgian choice for this evolutionary concept may be required in case that a decision is taken to burn plutonium, when the need for flexible nuclear power plants arises or when new reactor concepts can demonstrate proved benefits in terms of safety and cost

  3. Accident analysis for new reactor concepts and VVER type reactor design with advanced fuel. STC with Russia. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Mittag, S.; Rohde, U.; Seidel, A.

    2000-10-01

    In the frame of a project on scientific-technical cooperation funded by BMBF/BMWi, the 3D reactor dynamics code DYN3D developed at Forschungszentrum Rossendorf (FZR), has been transferred to the Institute of Physics and Power Engineering (IPPE) Obninsk in Russia and integrated into the software package of IPPE. DYN3D has been coupled to a thermohydraulic system code used in IPPE making available 3D neutron kinetics within this software package. A new macroscopic cross section library has been created using a modified version of the WIMS/D4 code. This library includes data for modernized fuel design containing burnable absorbers in different concentrations, which is tested in VVER-1000 type reactors. The cross section library has been connected to DYN3D. Calculations were performed to check the library in comparison with other data libraries and codes. The code DYN3D and the coupled 3D neutron kinetics/thermal hydraulics code system were used to perform analyses of Anticipated Transients Without Scram (ATWS) for the reactor design ABV-67, an integral reactor concept with small power developed under participation of IPPE. The fluid dynamics code DINCOR developed at IPPE was transferred to FZR. It was used in validation calculations on test problems for the short-term core melt behaviour (CORVIS experiments). (orig.) [de

  4. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  5. An innovative fuel design concept for improved light water reactor performance and safety. Final technical report

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Connell, R.G.

    1995-07-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. The purpose of this research was to explore a technique for extending fuel performance by thermally bonding LWR fuel with a non-alkaline liquid metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide (UO 2 ) fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Due to the thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high conductivity liquid metal thermally bonds the fuel to the cladding, and eliminates the large temperature change across the gap, while preserving the expansion and pellet loading capabilities. The resultant lower fuel temperature directly impacts fuel performance limit margins and also core transient performance. The application of liquid bonding techniques to LWR fuel was explored for the purposes of increasing LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) has been developed under the program to analyze the in-reactor performance of the liquid metal bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of Liquid Metal Bonded LWR fuel

  6. An innovative fuel design concept for improved Light Water Reactor performance and safety

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Connell, R.G.

    1993-01-01

    The primary goal of this research is to develop a new fuel design which will have improved thermal/mechanical performance characteristics greatly superior to current thermal and mechanical design performance. The mechanical/thermal constraints define the lifetime of the fuel, the maximum power at which the fuel can be operated, the probability of fuel failure over core lifetime, and the integrity of a core during a transient excursion. The thermal/mechanical limits act to degrade fuel integrity when they are violated. The purpose of this project is to investigate a novel design for light water reactor fuel which will extend fuel performance limits and improve reactor safety even further than is currently achieved. This project is investigating liquid metal bonding of LWR fuel in order to radically decrease fuel centerline temperatures which has major performance and safety benefits. The project will verify the compatibility of the liquid metal bond with both the fuel pellets and cladding material, verify the performance enhancement features of the new design over the fuel lifetime, and verify the economic fabricability of the concept and will show how this concept will benefit the LWR nuclear industry

  7. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  8. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the Technical Meeting is to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials

  9. PRISM [Power Reactor Inherently Safe Module] design concept enhances waste management

    International Nuclear Information System (INIS)

    Thompson, M.L.; Berglund, R.C.

    1989-01-01

    PRISM, a modular advanced liquid metal reactor (ALMR), has been designed conceptually by GE under the US Department of Energy sponsorship. The concept design and analyses have been primarily focused on passive safety and improved construction and operating costs. Significantly, the unique design of multiple modules and features of PRISM enhance waste management over conventional reactor systems. This paper provides an overview of PRISM of these enhancements. Inherent to the ALMR's, the sodium coolant precludes crud buildup on reactor surfaces and in components and waste for disposal. Preliminary evaluations indicate this fundamental feature results in factors of 2-4 less waste volume and 2-3 orders of magnitude less curies per megawatt-electric for ultimate disposal. For example, the tap designed for sodium cleanup is expected to be exchanged only once every thirty years. Also, inherent to ALMR's, burning waste actinides and selected fission products to preclude their accumulation and burial is very attractive. The hard neutron spectrum of ALMR burns the actinides efficiently and is not poisoned by the actinides and fission products. The modular design of PRISM components (and the fuel cycle equipment) permit replacement without expensive and potentially hazardous volume reduction. For example, the functional components of the reference electromagnetic pump and IHK can be removed intact for waste disposal. Although development of the reference metal fuel is not completed, it is estimated that (low-level) waste from recycle of the fuel will result in significantly less volume than would be generated by aqueous recycle of oxide fuel. 6 refs., 10 figs

  10. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  11. Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path

  12. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  13. Design concepts and safety concerns of the small and medium size reactors (SMR)

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Lee, Jae Hun; Kim, Hho Jung

    1998-01-01

    The small and medium size reactors (SMR) and interface facilities such as desalination plant are expected to be located near the population area because of restrictions in transporting the plant products such as fresh water to long distance area. To protect the public around the plant facility from the possible release of radioactive materials, the design development of the SMR is focusing on an enhancement of the safety and reliability as well as the economics. In this study, the major safety concepts of the SMR designs significantly different from the current PWR designs are investigated and the safety concerns applicable to the integrated SMR design of Korea (called SMART), were identified. Those safety issues include the use of proven technology, application of strengthening defense in depth, event categorization and selection, simplification of emergency planning, determination of accident source terms and so on. The efforts to resolve the safety concerns in the design stage will provide an improvement of the safety of the SMART design

  14. Study on concept of web-based reactor piping design data platform

    International Nuclear Information System (INIS)

    Wang Yu; Zhou Yu; Dong Jianling; Meng Yang

    2005-01-01

    For solving the piping design problems such as design data deficiency, designer communication inconvenience and design project inconsistence, Reactor Piping Design Database Platform, which is the main part of the Integrated Nuclear Project Research Platform, is proposed by analyzing the nuclear piping designs in detail. The functions and system structures of the platform are described in the paper for the sake of the realization of the Reactor Piping Design Database Platform. The platform is constituted by web-based management interface, AutoPlant selected as CAD software, and relation database management system (DBMS). (authors)

  15. Overview of in-vessel retention concept involving level of passivity: with application to evolutionary pressurized water reactor design

    International Nuclear Information System (INIS)

    Ghyym, Seong H.

    1998-01-01

    In this work, one strategy of severe accident management, the applicability of the in-vessel retention (IVR) concept, which has been incorporated in passive type reactor designs, to evolutionary type reactor designs, is examined with emphasis on the method of external reactor vessel cooling (ERVC) to realize the IVR concept in view of two aspects: for the regulatory aspect, it is addressed in the context of the resolution of the issue of corium coolability; for the technical one, the reliance on and the effectiveness of the IVR concept are mentioned. Additionally, for the ERVC method to be better applied to designs of the evolutionary type reactor, the conditions to be met are pointed out in view of the technical aspect. Concerning the issue of corium coolability/quenchability, based on results of the review, plausible alternative strategies are proposed. According to the decision maker's risk behavior, these would help materialize the conceptual design for evolutionary type reactors, especially Korea Next Generation Reactors (KNGRs), which have been developing at the Korea Electric Power Research Institute (KEPRI): (A1) Strategy 1A: strategy based on the global approach using the reliance on the wet cavity method; (A2) Strategy 1B: strategy based on the combined approach using both the reliance on the wet cavity method and the counter-measures for preserving containment integrity; (A3) Strategy 2A: strategy based on the global approach to the reliance on the ERVC method; (A4) Strategy 2B: strategy based on the balanced approach using both the reliance on the ERVC method and the countermeasures for preserving containment integrity. Finally, in application to an advanced pressurized water reactor (PWR) design, several recommendations are made in focusing on both monitoring the status of approaches and preparing countermeasures in regard to the regulatory and the technical aspects

  16. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    In Canada the need for advanced neutron sources has long been recognized. During the past several years Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept. To date, the MAPLE program has focused on the development of a modest-cost multipurpose medium-flux neutron source to meet contemporary requirements for applied and basic research using neutron beams, for small-scale materials testing and analysis and for radioisotope production. The basic MAPLE concept incorporates a compact light-water cooled and moderated core within a heavy water primary reflector to generate strong neutron flux levels in a variety of irradiation facilities. In view of renewed Canadian interest in a high-flux neutron source, the MAPLE group has begun to explore advanced concepts based on AECL's experience with heavy water reactors. The overall objective is to define a high-flux facility that will support materials testing for advanced power reactors, new developments in extracted neutron-beam applications, and/or production of radioisotopes. The design target is to attain performance levels of HFR-Grenoble, HFBR, HFIR in a new heavy water-cooled, -moderated,-reflected reactor based on rodded LEU fuel. Physics, shielding, and thermohydraulic studies have been performed for the MAPLE heavy water reactor. 14 refs., 4 figs., 1 tab

  17. Integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Y.I.; Marchaterre, J.F.; Sevy, R.H.

    1984-01-01

    Key features of the IFR consist of a pool-type plant arrangement, a metal fuel-based core design, and an integral fuel cycle with colocated fuel cycle facility. Both the basic concept and the technology base have been demonstrated through actual integral cycle operation in EBR-II. This paper discusses the inherent safety characteristics of the IFR concept

  18. Power reactor design trends

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1985-01-01

    Cascade and Pulse Star represent new trends in ICF power reactor design that have emerged in the last few years. The most recent embodiments of these two concepts, and that of the HYLIFE design with which they will compare them, are shown. All three reactors depend upon protecting structural elements from neutrons, x rays and debris by injecting massive amounts of shielding material inside the reaction chamber. However, Cascade and Pulse Star introduce new ideas to improve the economics, safety, and environmental impact of ICF reactors. They also pose different development issues and thus represent technological alternatives to HYLIFE

  19. Inertial fusion reactor designs

    International Nuclear Information System (INIS)

    Meier, W.

    1987-01-01

    In this paper, a variety of reactor concepts are proposed. One of the prime concerns is dealing with the x-rays and debris that are emitted by the target. Internal neutron shielding can reduce radiation damage and activation, leading to longer life systems, reduced activation and fewer safety concerns. There is really no consensus on what the best reactor concept is at this point. There has been virtually no chamber technology development to date. This is the flip side of the coin of the separability of the target physics and the reactor design. Since reactor technology has not been required to do target experiments, it's not being developed. Economic analysis of conceptual designs indicates that ICF can be economically competitive with magnetic fusion, fission and fossil plants

  20. Generation-IV nuclear reactors, SFR concept

    International Nuclear Information System (INIS)

    Dufour, P.

    2010-01-01

    In this presentation author deals with development of sodium-cooled fast reactors and lead-cooled fast reactors. He concluded that: - SFR is a proved concept that has never achieved industrial deployment; - The GEN IV objectives need to reconsider the design of both the core and the reactor design : innovations are being analysed; Future design will benefit from considerable feedback of design, licensing, construction and operation of PX, SPX, etc.

  1. Design study on evaluation for power conversion system concepts in high temperature gas cooled reactor with gas turbine

    International Nuclear Information System (INIS)

    Minatsuki, Isao; Mizokami, Yorikata

    2007-01-01

    The design studies on High Temperature Gas Cooled Reactor with Gas Turbine (HTGR-GT) have been performed, which were mainly promoted by Japan Atomic Energy Agency (JAEA) and supported by fabricators in Japan. HTGR-GT plant feature is almost determined by selection of power conversion system concepts. Therefore, plant design philosophy is observed characteristically in selection of them. This paper describes the evaluation and analysis of the essential concepts of the HTGR-GT power conversion system through the investigations based on our experiences and engineering knowledge as a fabricator. As a result, the following concepts were evaluated that have advantages against other competitive one, such as the horizontal turbo machine rotor, the turbo machine in an individual vessel, the turbo machine with single shaft, the generator inside the power conversion vessel, and the power conversion system cycle with an intercooler. The results of the study can contribute as reference data when the concepts will be selected. Furthermore, we addressed reasonableness about the concept selection of the Gas Turbine High Temperature Reactor GTHTR300 power conversion system, which has been promoted by JAEA. As a conclusion, we recognized the GTHTR300 would be one of the most promising concepts for commercialization in near future. (author)

  2. Helium circulator design concepts for the modular high temperature gas-cooled reactor (MHTGR) plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Nichols, M.K.; Kaufman, J.S.

    1988-01-01

    Two helium circulators are featured in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) power plant - (1) the main circulator, which facilitates the transfer of reactor thermal energy to the steam generator, and (2) a small shutdown cooling circulator that enables rapid cooling of the reactor system to be realized. The 3170 kW(e) main circulator has an axial flow compressor, the impeller being very similar to the unit in the Fort St. Vrain (FSV) plant. The 164 kW(e) shutdown cooling circulator, the design of which is controlled by depressurized conditions, has a radial flow compressor. Both machines are vertically oriented, have submerged electric motor drives, and embody rotors that are supported on active magnetic bearings. As outlined in this paper, both machines have been conservatively designed based on established practice. The circulators have features and characteristics that have evolved from actual plant operating experience. With a major goal of high reliability, emphasis has been placed on design simplicity, and both machines are readily accessible for inspection, repair, and replacement, if necessary. In this paper, conceptual design aspects of both machines are discussed, together with the significant technology bases. As appropriate for a plant that will see service well into the 21st century, new and emerging technologies have been factored into the design. Examples of this are the inclusion of active magnetic bearings, and an automated circulator condition monitoring system. (author). 18 refs, 20 figs, 13 tabs

  3. Modular Stellarator Fusion Reactor concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR

  4. Robotic Irradiated Sample Handling Concept Design in Reactor TRIGA PUSPATI using Simulation Software

    International Nuclear Information System (INIS)

    Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Nurfarhana Ayuni Joha

    2015-01-01

    This paper introduces the concept design of an Robotic Irradiated Sample Handling Machine using graphical software application, designed as a general, flexible and open platform to work on robotics. Webots has proven to be a useful tool in many fields of robotics, such as manipulator programming, mobile robots control (wheeled, sub-aquatic and walking robots), distance computation, sensor simulation, collision detection, motion planning and so on. Webots is used as the common interface for all the applications. Some practical cases and application for this concept design are illustrated on the paper to present the possibilities of this simulation software. (author)

  5. Radiotoxicity study of a boiling water reactor core design based on a thorium-uranium fuel concept

    International Nuclear Information System (INIS)

    Nunez C, A.; Espinosa P, G.

    2007-01-01

    Full text: The innovative design of a Boiling Water Reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to 233 U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR. A comparison of the toxicity of the spent fuel showed that toxicity is lower in the thorium cycle than other commercial fuels as UO 2 and MOX (uranium and plutonium) in case of the one-through cycle for LWR. (Author)

  6. Neutronic design analyses for a dual-coolant blanket concept: Optimization for a fusion reactor DEMO

    International Nuclear Information System (INIS)

    Palermo, I.; Gómez-Ros, J.M.; Veredas, G.; Sanz, J.; Sedano, L.

    2012-01-01

    Highlights: ► Dual-Coolant He/Pb15.7Li breeding blanket for a DEMO fusion reactor is studied. ► An iterative process optimizes neutronic responses minimizing reactor dimension. ► A 3D toroidally symmetric geometry has been generated from the CAD model. ► Overall TBR values support the feasibility of the conceptual model considered. ► Power density in TF coils is below load limit for quenching. - Abstract: The generation of design specifications for a DEMO reactor, including breeding blanket (BB), vacuum vessel (VV) and magnetic field coils (MFC), requires a consistent neutronic optimization of structures between plasma and MFC. This work targets iteratively to generate these neutronic specifications for a Dual-Coolant He/Pb15.7Li breeding blanket design. The iteration process focuses on the optimization of allowable space between plasma scrapped-off-layer and VV in order to generate a MFC/VV/BB/plasma sustainable configuration with minimum global system volumes. Two VV designs have been considered: (1) a double-walled option with light-weight stiffeners and (2) a thick massive one. The optimization process also involves VV materials, looking to warrant radiation impact operational limits on the MFC. The resulting nuclear responses: peak nuclear heating in toroidal field (TF) coil, tritium breeding ratio (TBR), power amplification factor and helium production in the structural material are provided.

  7. Comparison of In-Vessel Shielding Design Concepts between Sodium-cooled Fast Burner Reactor and the Sodium-cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Yun, Sunghwan; Kim, Sang Ji

    2015-01-01

    In this study, quantities of in-vessel shields were derived and compared each other based on the replaceable shield assembly concept for both of the breeder and burner SFRs. Korean Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) like SFR was used as the reference reactor and calculation method reported in the reference was used for shielding analysis. In this paper, characteristics of in-vessel shielding design were studied for the burner SFR and breeder SFR based on the replaceable shield assembly concept. An in-vessel shield to prevent secondary sodium activation (SSA) in the intermediate heat exchangers (IHXs) is one of the most important structures for the pool type Sodium-cooled Fast Reactor (SFR). In our previous work, two in-vessel shielding design concepts were compared each other for the burner SFR. However, a number of SFRs have been designed and operated with the breeder concept, in which axial and radial blankets were loaded for fuel breeding, during the past several decades. Since axial and radial blanket plays a role of neutron shield, comparison of required in-vessel shield amount between the breeder and burner SFRs may be an interesting work for SFR designer. Due to the blanket, the breeder SFR showed better performance in axial neutron shielding. Hence, 10.1 m diameter reactor vessel satisfied the design limit of SSA at the IHXs. In case of the burner SFR, due to more significant axial fast neutron leakage, 10.6 m diameter reactor vessel was required to satisfy the design limit of SSA at the IHXs. Although more efficient axial shied such as a mixture of ZrH 2 and B 4 C can improve shielding performance of the burner SFR, additional fabrication difficulty may mitigate the advantage of improved shielding performance. Therefore, it can be concluded that the breeder SFR has better characteristic in invessel shielding design to prevent SSA at the IHXs than the burner SFR in the pool-type reactor

  8. Design Concept of Kijang Research Reactor for Neutron Transmutation Doping of 300 MM ingots

    International Nuclear Information System (INIS)

    Jun, B. J.; Kim, H. S.; Seo, C. G.; Kim, H. C.; Lee, B. C.

    2013-01-01

    Neutron transmutation doping will be one of the important utilization areas of the Kijang research reactor, which is currently under design. The reactor will serve for at least 50 years. As the diameter of a current NTD ingot is already large compared to the size of the reactor, unless a provision in the reactor design is specifically made for the irradiation of potential larger diameter ingots in the future, the lifetime sustainability of the NTD activity, if possible, may be difficult to achieve. While 200 mm became the largest diameter of NTD wafers a few years ago, 300 mm is the majority nowadays in the silicon semiconductor market, and one of the world leading device companies recently invested in the construction of a 450 mm fabrication plant. The usual peak time of a wafer diameter has been around 12 years. Though the generation gap of a NTD wafer diameter has become longer as time has passed, we can foresee that NTD demand for 300 mm ingots will arise within 20 years if their NTD is possible. Our calculations show that the radial uniformity for the 300 mm ingot irradiation may be acceptable by wafer companies. However, the NTD for 450 mm ingots is judged as impractical. The KJRR is designed to irradiate 6' and 200 mm ingots to accommodate the major demands in the current and near future markets. We suppose that a 6' irradiation facility will be modified into a 300 mm irradiation facility when the demand for a 300 mm NTD arises. As the demand for the 300 mm NTD increases, other 6' and 200 mm NTD facilities will be modified one by one. A minimization of the component replacement and long-lived radwaste and a facilitation of the replacement work for each modification are important factors along with a better performance of NTD facilities

  9. The integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Marchaterre, J.F.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) an integral fuel cycle, based on pyrometallurgical processing and injection-cast fuel fabrication, with the fuel cycle facility collocated with the reactor, if so desired. This paper gives a review of the IFR concept

  10. Establishment of design concept of large capacity passive reactor KP1000 and performance evaluation of safety system for LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong O.; Hwang, Young Dong; Kim, Young In; Chang, Moon Hee

    1997-03-01

    This study was performed to establish the design concepts and to evaluate the performance of safety features of large capacity passive reactor (1000 MWe grade). The design concepts of the large capacity passive reactor `KP1000` were established to generate 1000 MW electric power based on the AP600 of Westinghouse by increasing the number of reactor coolant loop and by increasing the size of reactor internals/core. To implement the analysis of the LBLOCA for KP1000, various kinds of computer codes being considered, it was concluded that RELAP5 was the most appropriate one in availability and operations in present situation. By the analysis of the computer code `RELAP5/Mod3.2.1.2`, following conclusions were derived as described below. First, by spectrum analysis of the discharge factor of the berak part, the most conservative discharge factor C{sub D}=1.2 and the PCT value of KP1000 was 1254F, which is slightly higher than the value of AP600 but is much less than the existing active reactor `Kori 3 and 4` where blowdown PCT value is 1693.4 deg F and reflooding PCT is 1918.4 deg F. Second, after the 200 seconds from the initiation of LBLOCA, IRWST water was supplied in a stable state and the maximum temperature of clad were maintained in a saturated condition. Therefore, it was concluded that the passive safety features of KP1000 keep reactor core from being damaged for large break LOCA. (author). 11 refs., 28 tabs., 37 figs.

  11. Evaluation of national and foreign design and application concepts for small-sized high-temperature reactors

    International Nuclear Information System (INIS)

    Hahn, L.; Nockenberg, B.

    1990-03-01

    There are currently the design types Modular HTR, MHTGR, HTTR, HTR-500, and GHR. The different design concepts are explained and are analysed with regard to their application potentials in Germany and abroad, their export into developing countries, their general and specific safety aspects, the relevant fuel cycle aspects (fuel supply and spent fuel management), and the resulting problems arising in connection with the principle of non-proliferation. In the concluding section of the report, misgivings are stated as to possible military applications of this reactor type. (DG) [de

  12. Integral fast reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFT development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: 1) a liquid metal (sodium) coolant, 2) a pool-type reactor primary system configuration, 3) an advanced ternary alloy metallic fuel, and 4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  13. Integral Fast Reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  14. New Concept of Designing Composite Fuel for Fast Reactors with Closing Fuel Cycle

    International Nuclear Information System (INIS)

    Savchenko, A.; Vatulin, A.; Uferov, O.; Kulakov, G.; Sorokin, V.

    2013-01-01

    For fast reactors a novel type of promising composite U-PuO2 fuel is proposed which is based on dispersion fuel elements. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. Novel fuel features higher characteristics in comparison to metallic or MOX fuel its fabrication technology is readily accomplished and is environmentally clean. A possibility is demonstrated of fabricating coated steel claddings to protect from interaction with fuel and fission products when use standard rod type MOX or metallic U-Pu-Zr fuel. Novel approach to reprocessing of composite fuel is demonstrated, which allows to separate uranium from burnt plutonium as well as the newly generated fissile plutonium from burnt one without chemical processes, which simplifies the closing of the nuclear fuel cycle. Novel composite fuel combines the advantages of metallic and ceramic types of fuel and has high uranium density that allows also to implicate it in BREST types reactor with conversion ratio more than 1. Peculiarities of closing nuclear cycle with composite fuel are demonstrated that allows more effective re-usage of generated Pu as well as, minimizing r/a wastes by incineration of MA in specially developed IMF design

  15. Design of the ITER (International Thermonuclear Experimental Reactor) neutral beam system beamline, United States concept

    International Nuclear Information System (INIS)

    Purgalis, P.; Anderson, O.A.; Cooper, W.S.; DeVries, G.E.; Lietzke, A.F.; Kunkel, W.B.; Kwan, J.W.; Matuk, C.A.; Nakai, T.; Stearns, J.W.; Soroka, L.; Wells, R.P.; Lindquist, W.B.; Neef, W.S.; Reginato, L.L.; Sedgley, D.W.; Brook, J.W.; Luzzi, T.E.; Myers, T.J.

    1989-01-01

    Design of a neutral beamline for ITER (International Thermonuclear Experimental Reactor) is described. The design incorporates a barium surface conversion D - source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to watercooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules that can be removed for remote maintenance. The neutral beam system delivers 75 MW of D degree into three ports with a total of nine modules arranged in stacks of three modules per port. To increase reliability each module is designed to deliver up to 10 MW at 1.3 MeV; this allows eight modules operating at partial capacity to deliver the required power in the event one module is removed from service. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 35 m from the port into the torus. Neutron shielding in the drift duct provides the added feature of limiting conductance and thus reducing gas flow to and from the torus. Alternative component choices are also discussed for the evolving design. 8 refs., 4 figs., 1 tab

  16. Design concept of control system for cryogenic distillation columns of fusion reactor

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1993-09-01

    Control systems were designed for cryogenic distillation columns in the main fuel cycle and the breeder blanket interface systems of fusion reactors. Three basic control modes were proposed for the column whose top product was more important; the column whose bottom product is more important; and the column having a feed back stream. The key component in the important product stream was selected for each column, and the analysis method for measurement of this key component was discussed. Some of the columns need the gas chromatography as the analysis instrument of the control system. The time required for the measurement of product purity by the gas chromatography considerably affects the stability of the control system. A significant conclusion is that permissible time is about 20 min. It is possible to complete the measurement within 20 minute by the gas chromatography. The gas chromatography is applicable for the control system of the column. (author)

  17. Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor

    Science.gov (United States)

    Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji

    1994-07-01

    A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column; it is avoided to withdraw side streams as products or feeds of down stream columns; and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns.

  18. Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji

    1994-07-01

    A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column: it is avoided to withdraw side streams as products or feeds of down stream columns: and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns. (author)

  19. New fast reactor installation concept

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The large size and complexity of fast reactor installations are emphasised and these difficulties will be increased with the advent of fast reactors of higher power. In this connection a new concept of fast reactor installation is described with a view to reducing the size of the installation and enabling most components, including even the primary vessel, to be constructed within the confines of a workshop. Full constructional details are given. (U.K.)

  20. Experimental study on design verification of new concept for integral reactor safety system

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Choi, Ki Yong; Park, Hyun Sik; Cho, Seok; Park, Choon Kyung; Lee, Sung Jae; Song, Chul Hwa

    2004-01-01

    The pressurized light water cooled, medium power (330 MWt) SMART (System-integrated Modular Advanced ReacTor) has been under development at KAERI for a dual purpose : seawater desalination and electricity generation. The SMART design verification phase was followed to conduct various separate effects tests and comprehensive integral effect tests. The high temperature / high pressure thermal-hydraulic test facility, VISTA(Experimental Verification by Integral Simulation of Transient and Accidents) has been constructed to simulate the SMART-P (the one fifth scaled pilot plant) by KAERI. Experimental tests have been performed to investigate the thermal-hydraulic dynamic characteristics of the primary and the secondary systems. Heat transfer characteristics and natural circulation performance of the PRHRS (Passive Residual Heat Removal System) of SMART-P were also investigated using the VISTA facility. The coolant flows steadily in the natural circulation loop which is composed of the Steam Generator (SG) primary side, the secondary system, and the PRHRS. The heat transfers through the PRHRS heat exchanger and ECT are sufficient enough to enable the natural circulation of the coolant

  1. Light ion driven inertial fusion reactor concepts

    International Nuclear Information System (INIS)

    Cook, D.L.; Sweeney, M.A.; Buttram, M.T.; Prestwich, K.R.; Moses, G.A.; peterson, R.R.; Lovell, E.G.; Englestad, R.L.

    1980-01-01

    The possibility of designing fusion reactor systems using intense beams of light ions has been investigated. concepts for beam production, transport, and focusing on target have been analyzed in light of more conservative target performance estimates. Analyses of the major criteria which govern the design of the beam-target-cavity tried indicate the feasibility of designing power systems at the few hundred megawatt (electric) level. This paper discusses light ion fusion reactor (LIFR) concepts and presents an assessment of the design limitations through quantitative examples

  2. Reactor concepts for laser fusion

    International Nuclear Information System (INIS)

    Meier, W.R.; Maniscalco, J.A.

    1977-07-01

    Scoping studies were initiated to identify attractive reactor concepts for producing electric power with laser fusion. Several exploratory reactor concepts were developed and are being subjected to our criteria for comparing long-range sources of electrical energy: abundance, social costs, technical feasibility, and economic competitiveness. The exploratory concepts include: a liquid-lithium-cooled stainless steel manifold, a gas-cooled graphite manifold, and fluidized wall concepts, such as a liquid lithium ''waterfall'', and a ceramic-lithium pellet ''waterfall''. Two of the major reactor vessel problems affecting the technical feasibility of a laser fusion power plant are: the effects of high-energy neutrons and cyclical stresses on the blanket structure and the effects of x-rays and debris from the fusion microexplosion on the first-wall. The liquid lithium ''waterfall'' concept is presented here in more detail as an approach which effectively deals with these damaging effects

  3. Optimization design study of an innovative divertor concept for future experimental tokamak-type fusion reactors

    International Nuclear Information System (INIS)

    Willem Janssens, Ir.; Crutzen, Y.; Farfaletti-Casali, F.; Matera, R.

    1991-01-01

    The design optimization study of an innovative divertor concept for future experimental tokamak-type fusion devices is both an answer to the actual problems encountered in the multilayer divertor proposals and an illustration of a rational modelling philosophy and optimization strategy for the development of a new divertor structure. Instead of using mechanical attachment or metallurgical bonding of the protective material to the heat sink as in most actual divertor concepts, the so-called brush divertor in this study uses an array of unidirectional fibers penetrating in both the protective armor and the underling composite heat sink. Although the approach is fully concentrated on the divertor performance, including both a description of its function from the theoretical point of view and an overview of the problems related to the materials choice and evaluation, both the approach followed in the numerical modelling and the judgment of the results are thought to be valid also for other applications. Therefore the spin-off of the study must be situated in both the technological progress towards a feasible divertor solution, which introduces no additional physical uncertainties, and in the general area of the thermo-mechanical finite-element modelling on both macro-and microscale. The brush divertor itself embodies the use, and thus the modelling, of advanced materials such as tailor-made metal matrix composites and dispersion strengthened metals, and is shown to offer large potential advantages, demanding however and experimental validation under working conditions. It is clearly indicated where the need originates for an integrated experimental program which must allow to verify the basic modelling assumptions in order to arrive at the use of numerical computation as a powerful and realistic tool of structural testing and life-time prediction

  4. The Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes the key features and potential advantages of the IFR concept, its technology development status, fuel cycle economics potential, and its future development path

  5. Development of physical conceptions of fast reactors

    International Nuclear Information System (INIS)

    Khomyakov, Yu.S.; Matveev, V.I.; Moiseev, A.V.

    2013-01-01

    • Russian experience in developing fast reactors has proved clearly scientific justification of conceptual physical principles and their technical feasibility. • However, the potential of fast reactors caused by their physical features has not been fully realized. • In order to assure the real possibility of transition to the nuclear power with fast reactors by about 2030 it is necessary to consistently update fast reactor designs for solving the following key problems: - increasing of self-protection level of reactor core; - improvement of technical and economical characteristics; - solution of the problems related to the fuel supply of nuclear power and assimilation of closed nuclear fuel cycle; - disposal of long lived radioactive waste and transmutation of minor actinides. • Russian program (2010-2020) on the development of basic concepts of the new generation reactors implies successive solution of the above problems. • New technical decisions will be demonstrated by development and assimilation of the new reactors: - BN-800 – development of the fuel cycle infrastructure and mastering of the new types of fuel; - BN-1200 reactor – demonstration economical efficiency of fast reactor and new level of safety; - BREST development and demonstration new heavy liquid metal coolant technology and alternative design concept

  6. Developing the MAPLE materials test reactor concept

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Donnelly, J.V.

    1992-05-01

    MAPLE-MTR is a new multipurpose research facility being planned by AECL Research as a possible replacement for the 35-year-old NRU reactor. In developing the MAPLE-MTR concept, AECL is starting from the recent design and licensing experience with the MAPLE-X10 reactor. By starting from technology developed to support the MAPLE-X10 design and adapting it to produce a concept that satisfies the requirements of fuel channel materials testing and fuel irradiation programs, AECL expects to minimize the need for major advances in nuclear technology (e.g., fuel, heat transfer). Formulation of the MAPLE-MTR concept is at an early stage. This report describes the irradiation requirements of the research areas, how these needs are translated into design criteria for the project and elements of the preliminary design concept

  7. Design of a boiling water reactor core based on an integrated blanket-seed thorium-uranium concept

    International Nuclear Information System (INIS)

    Nunez-Carrera, Alejandro; Francois, Juan Luis; Martin-del-Campo, Cecilia; Espinosa-Paredes, Gilberto

    2005-01-01

    This paper is concerned with the design of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material in an integrated blanket-seed (BS) assembly. The integrated BS concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned out in a once-through cycle. The idea behind the lattice design is to use the thorium conversion capability in a BWR spectrum, taking advantage of the 233 U build-up. A core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235 U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the fuel assembly

  8. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  9. Fast mixed spectrum reactor concept

    International Nuclear Information System (INIS)

    Kouts, H.J.C.; Fischer, G.J.; Cerbone, R.J.

    1979-04-01

    The Fast Mixed Spectrum Reactor is a highly promising concept for a fast reactor with improved features of proliferation resistance, and excellent utilization of uranium resources. In technology, it can be considered to be a branch of fast breeder development, though its operation and implications are different from those of FBR'S in important respects. Successful development programs are required in several areas to bring FMSR to reality, but the payoff from a successful program can be high

  10. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    High-flux neutron sources are continuing to be of interest both in Canada and internationally to support materials testing for advanced power reactors, new developments in extracted-neutron-beam applications, and commercial production of selected radioisotopes. The advanced MAPLE reactor concept has been developed to meet these needs. The advanced MAPLE reactor is a new tank-type D 2 O reactor that uses rodded low-enrichment uranium fuel in a compact annular core to generate peak thermal-neutron fluxes of 1 x 10 19 n·s -1 in a central irradiation rig with a thermal power output of 50 MW. Capital and incremental development costs are minimized by using MAPLE reactor technology to the greatest extent practicable

  11. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  12. SEBREZ: an inertial-fusion-reactor concept

    International Nuclear Information System (INIS)

    Meier, W.R.

    1982-01-01

    The neutronic aspects of an inertial fusion reactor concept that relies on asymmetrical neutronic effects to enhance the tritium production in the breeding zones have been studied. We find that it is possible to obtain a tritium breeding ratio greater than 1.0 with a chamber configuration in which the breeding zones subtend only a fraction of the total solid angle. This is the origin of the name SEBREZ which stands for SEgregated BREeding Zones. It should be emphasized that this is not a reactor design study; rather this study illustrates certain neutronic effects in the context of a particular reactor concept. An understanding of these effects forms the basis of a design technique which has broader application than just the SEBREZ concept

  13. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    Borkowski, J.A.; Smith, K.A.; Edwards, R.M.; Robinson, G.E.; Schultz, M.A.; Klevans, E.H.

    1987-01-01

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  14. Trends and developments in magnetic confinement fusion reactor concepts

    International Nuclear Information System (INIS)

    Baker, C.C.; Carlson, G.A.; Krakowski, R.A.

    1981-01-01

    An overview is presented of recent design trends and developments in reactor concepts for magnetic confinement fusion. The paper emphasizes the engineering and technology considerations of commercial fusion reactor concepts. Emphasis is placed on reactors that operate on the deuterium/tritium/lithium fuel cycle. Recent developments in tokamak, mirror, and Elmo Bumpy Torus reactor concepts are described, as well as a survey of recent developments on a wide variety of alternate magnetic fusion reactor concepts. The paper emphasizes recent developments of these concepts within the last two to three years

  15. Basic conceptions for reactor pressure vessel manipulators and their evaluation

    International Nuclear Information System (INIS)

    Popp, P.

    1987-01-01

    The study deals with application fields and basic design conceptions of manipulators in reactor pressure vessels as well as their evaluation. It is shown that manipulators supported at the reactor flange have essential advantages

  16. A new advanced safe nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    1999-01-01

    The reactor design is based on fluidized bed concept and utilizes pressurized water reactor technology. The fuel is automatically removed from the reactor by gravity under any accident condition. The reactor demonstrates the characteristics of inherent safety and passive cooling. Here two options for modification to the original design are proposed in order to increase the stability and thermal efficiency of the reactor. A modified version of the reactor involves the choice of supercritical steam as the coolant to produce a plant thermal efficiency of about 40%. Another is to modify the shape of the reactor core to produce a non-fluctuating bed and consequently guarantee the dynamic stability of the reactor. The mixing of Tantalum in the fuel is also proposed as an additional inhibition to power excursion. The spent fuel pellets may not be considered nuclear waste since they are in the shape and size that can easily be used as a a radioactive source for food irradiation and industrial applications. The reactor can easily operate with any desired spectrum by varying the porosity in order to be a plutonium burner or utilize a thorium fuel cycle. (author)

  17. Assessment of nuclear reactor concepts for low power space applications

    Science.gov (United States)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  18. Mirror fusion reactor design

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.; Carlson, G.A.

    1979-01-01

    Recent conceptual reactor designs based on mirror confinement are described. Four components of mirror reactors for which materials considerations and structural mechanics analysis must play an important role in successful design are discussed. The reactor components are: (a) first-wall and thermal conversion blanket, (b) superconducting magnets and their force restraining structure, (c) neutral beam injectors, and (d) plasma direct energy converters

  19. Development project HTR-electricity-generating plant, concept design of an advanced high-temperature reactor steam cycle plant with spherical fuel elements (HTR-K)

    International Nuclear Information System (INIS)

    1978-07-01

    The report gives a survey of the principal work which was necessary to define the design criteria, to determine the main design data, and to design the principal reactor components for a large steam cycle plant. It is the objective of the development project to establish a concept design of an edvanced steam cycle plant with a pebble bed reactor to permit a comparison with the direct-cycle-plant and to reach a decision on the concept of a future high-temperature nuclear power plant. It is tried to establish a largerly uniform basic concept of the nuclear heat-generating systems for the electricity-generating and the process heat plant. (orig.) [de

  20. Analysis and evaluation of the Dual Fluid Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang

    2017-06-27

    The Dual Fluid Reactor is a molten salt fast reactor developed by IFK in Berlin based on the Gen-IV Molten-Salt Reactor concept and the Liquid-Metal Cooled Reactor. The design aims to combine these two concepts to improve these two concepts. The Dissertation focuses on the concept and performs diverse calculations and estimations on the subjects of neutron physics, depletion and thermal-hydraulic behaviors to validate the new features of the concept. Based on the results it is concluded that this concept is feasible to its desired purpose and with great potential.

  1. PIUS principle and the SECURE reactor concepts

    International Nuclear Information System (INIS)

    Hannerz, K.

    1987-01-01

    The author introduces the SECURE reactor concept, a reactor intended for producing heat for district heating grids, desalination, and certain process industries. A detailed design of a 400 MWth plant has been completed and is being offered commercially. The authors present first, a summary of the current situation and then the design philosophy of the SECURE reactor concepts. The authors propose a design based on a light water reactor, as opposed to high temperature gas cooled reactor, but introduce new features which are designed to eliminate the element of human error in preparing for and handling emergencies. The authors propose two rules to avoid overheating, i.e.., the PIUS design principle, which are: to keep the core submerged in water; and to ensure that the rate of heat generation in the submerged core is low enough to avoid overheating of the fuel (dryout). The acronym PIUS stands for Process Inherent Ultimate Safety. A detailed system modeling is given of the PIUS primary system. The design of the plant is divided into two parts: the nuclear island, which is comprised of the concrete vessel and its contents; and the balance of the plant, which is comprised of all other components, including the turbine plant

  2. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    During the past several years, Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept, which is capable of generating peak thermal neutron fluxes of up to 3 x 10 18 n/m 2 s in its heavy water reflector at a nominal thermal power level of 15MW. An assessment of the MAPLE-D 2 O reactor has shown that it could also be used as a high-flux neutron source. it could be developed to be used for several applications if a 12-site annular core is used. Thermal fluxes several times greater than in existing facilities would be available (author)

  3. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    Science.gov (United States)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  4. Electron beam solenoid reactor concept

    International Nuclear Information System (INIS)

    Bailey, V.; Benford, J.; Cooper, R.; Dakin, D.; Ecker, B.; Lopez, O.; Putman, S.; Young, T.S.T.

    1977-01-01

    The electron Beam Heated Solenoid (EBHS) reactor is a linear magnetically confined fusion device in which the bulk or all of the heating is provided by a relativistic electron beam (REB). The high efficiency and established technology of the REB generator and the ability to vary the coupling length make this heating technique compatible with several radial and axial enery loss reduction options including multiple-mirrors, electrostatic and gas end-plug techniques. This paper addresses several of the fundamental technical issues and provides a current evaluation of the concept. The enhanced confinement of the high energy plasma ions due to nonadiabatic scattering in the multiple mirror geometry indicates the possibility of reactors of the 150 to 300 meter length operating at temperatures > 10 keV. A 275 meter EBHS reactor with a plasma Q of 11.3 requiring 33 MJ of beam eneergy is presented

  5. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-01-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B 4 C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  6. Advanced reactor concepts and safety

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1988-06-01

    The need for some consistency in the terms used to describe the evolution of methods for ensuring the safety of nuclear reactors has been identified by the IAEA. This is timely since there appears to be a danger that the precision of many valuable words is being diluted and that a new jargon may appear that will confuse rather than aid the communication of important but possibly diverse philosophies and concepts. Among the difficulties faced by the nuclear industry is promoting and gaining a widespread understanding of the risks actually posed by nuclear reactors. In view of the importance of communication to both the public and to the technical community generally, the starting point for the definition of terms must be with dictionary meanings and common technical usage. The nuclear engineering community should use such words in conformance with the whole technical world. This paper addresses many of the issues suggested in the invitation to meet and also poses some additional issues for consideration. Some examples are the role of the operator in either enhancing or degrading safety and how the meaning or interpretation of the word 'safety' can be expected to change during the next few decades. It is advantageous to use criteria against which technologies and ongoing operating performance can be judged provided that the criteria are generic and not specific to particular reactor concepts. Some thoughts are offered on the need to frame the criteria carefully so that innovative solutions and concepts are fostered, not stifled

  7. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    International Nuclear Information System (INIS)

    Allen, Francis; Bonin, Hugues

    2008-01-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU TM nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  8. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Francis [Director General Nuclear Safety, 280 Slater St, Ottawa, K1A OK2 (Canada); Bonin, Hugues [Royal Military College of Canada, 11 General Crerar Cres, Kingston, K7K 7B4 (Canada)

    2008-07-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU{sup TM} nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  9. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  10. Modular Stellarator Fusion Reactor (MSR) concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-01-01

    A preliminary conceptual study has been made of the Modulator Stellarator Reactor (MSR) as a stedy-state, ignited, DT-fueled, magnetic fusion reactor. The MSR concept combines the physics of classic stellarator confinement with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4.8-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. Neither an economic analysis nor a detailed conceptual engineering design is presented here, as the primary intent of this scoping study is the elucidation of key physics tradeoffs, constraints, and uncertainties for the ultimate power-reactor embodiment

  11. ULTRA SCWR+: Practical advanced water reactor concepts

    International Nuclear Information System (INIS)

    Duffey, Romney; Khartabil, Hussam; Kuran, Sermet; Zhou, Tracy; Pioro, Igor

    2008-01-01

    Modern thermal power plants now utilize supercritical steam cycles with thermal efficiencies of over 45%. Recent developments have lead to Ultra-SuperCritical (USC) systems, which adopt reheat turbines that can attain efficiencies of over 50%. Because these turbines are already developed, demonstrated and deployed worldwide, and use existing and traditional steam cycle technology, the simplest nuclear advance is to utilize these proven thermal cycle conditions by coupling this turbine type to a reactor. This development direction is fundamentally counter to the usual approach of adopting high-temperature gas-cooled (helium-cooled) reactor cycles, for which turbines have yet to be demonstrated on commercial scale unlike the supercritical steam turbines. The ULTRA (Ultra-supercritical Light water Thermal ReActor) SCWR+ concept adopts the fundamental design approach of matching a water and steam-cooled reactor to the ultra-supercritical steam cycle, adopting the existing and planned thermal power plant turbines. The HP and IP sections are fed with conditions of 25 MPa/625degC and 7 MPa/700degC, respectively, to achieve operating plant thermal efficiencies in excess of 50%, with a direct turbine cycle. By using such low-pressure reheated steam, this concept also adopts technology that was explored and used many years ago in existing water reactors, with the potential to produce large quantities of low cost heat, which can be used for other industrial and district processes. Pressure-Tube (PT) reactors are suitable for adoption of this design approach and, in addition, have other advantages that will significantly improve water-cooled reactor technology. These additional advantages include enhanced safety and improved resource utilization and proliferation resistance. This paper describes the PT-SCWR+ concept and its potential enhancements. (author)

  12. Concept Design of a Gravity Core Cooling Tank as a Passive Residual Heat Removal System for a Research Reactor

    International Nuclear Information System (INIS)

    Lee, Kwonyeong; Chi, Daeyoung; Kim, Seong Hoon; Seo, Kyoungwoo; Yoon, Juhyeon

    2014-01-01

    A core downward flow is considered to use a plate type fuel because it is benefit to install the fuel in the core. If a flow inversion from a downward to upward flow in the core by a natural circulation is introduced within a high heat flux region of residual heat, the fuel fails instantly due to zero flow. Therefore, the core downward flow should be sufficiently maintained until the residual heat is in a low heat flux region. In a small power research reactor, inertia generated by a flywheel of the PCP can maintain a downward flow shortly and resolve the problem of a flow inversion. However, a high power research reactor more than 10 MW should have an additional method to have a longer downward flow until a low heat flux. Usually, other research reactors have selected an active residual heat removal system as a safety class. But, an active safety system is difficult to design and expensive to construct. A Gravity Core Cooling Tank (GCCT) beside the reactor pool with a Residual Heat Removal Pipe connecting two pools was developed and designed preliminarily as a passive residual heat removal system for an open-pool type research reactor. It is very simple to design and cheap to construct. Additionally, a non-safety, but active residual heat removal system is applied with the GCCT. It is a Pool Water Cooling and Purification System. It can improve the usability of the research reactor by removing the thermal waves, and purify the reactor pool, the Primary Cooling System, and the GCCT. Moreover, it can reduce the pool top radiation level

  13. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  14. NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) PROGRAM GRANT NUMBER DE-FG03-00SF22168 TECHNICAL PROGRESS REPORT (Aug 15, 2002 to Nov. 15, 2002) - DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE GENERATION IV REACTOR SYSTEMS

    International Nuclear Information System (INIS)

    Fred R. Mynatt; Andy Kadak; Marc Berte; Larry Miller; Lawrence Townsend; Martin Williamson; Rupy Sawhney; Jacob Fife

    2002-01-01

    The objectives of this project are to develop and evaluate nuclear power plant designs and layout concepts to maximize the benefits of compact modular Generation IV reactor concepts including factory fabrication and packaging for optimal transportation and siting. This report covers the ninth quarter of the project. The three reactor concept teams have completed initial plant concept development, evaluation and layout. A significant design effort has proceeded with substantial change and evolution from original ideas. The concepts have been reviewed by the industry participants and improvements have been implemented. The third phase, industrial engineering simulation of reactor fabrication has begun

  15. KALIMER design concept report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Kyu; Kim, Young Cheol; Kim, Young In; Kim, Young Gyun; Kim, Eui Kwang; Song, Hoon; Chung, Hyun Tai; Hwang, Woan; Nam, Cheol; Sub, Sim Yoon; Kim, Yeon Sik; Whan, Wim Myung; Min, Byung Tae; Yoo, Bong; Lee, Jae Han; Lee, Hyeong Yeon; Kim, Jong Bum; Koo, Gyeong Hoi; Ham, Chang Shik; Kwon, Kee Choon; Kim, Jung Taek; Park, Jae Chang; Lee, Jung Woon; Lee, Yong Hee; Kim, Chang Hwoi; Sim, Bong Shick; Hahn, Do Hee; Choi, Jong Hyeun; Kwon, Sang Woon

    1997-07-01

    KAERI is working for the development of KALIMER and work is being done for methodology development, experimental facility set up and design concept development. The development target of KALIMER has been set as to make KALIMER safer, more economic, more resistant to nuclear proliferation, and yield less impact on the environment. To achieve the target, study has been made for setting up the design concept of KALIMER including the assessment of various possible design alternatives. This report is the results of the study for the KALIMER concept study and describes the design concept of KALIMER. The developed design concept study and describes the design concept of KALIMER. The developed design concept is to be used as the starting point of the next development phase of conceptual design and the concept will be refined and modified in the conceptual design phase. The scope of the work has been set as the NSSS and essential BOP systems. For systems, NSSS and functionally related major BOP are covered. Sizing and specifying conceptual structure are covered for major equipment. Equipment and piping are arranged for the parts where the arrangement is critical in fulfilling the foresaid intention of setting up the KALIMER design concept. This report consists of 10 chapters. Chapter 2 is for the top level design requirements of KALIMER and it serves as the basis of KALIMER design concept development. Chapter 3 summarizes the KALIMER concept and describes the general design features. The remaining chapters are for specific systems. (author). 29 tabs., 37 figs.

  16. KALIMER design concept report

    International Nuclear Information System (INIS)

    Park, Chang Kyu; Kim, Young Cheol; Kim, Young In; Kim, Young Gyun; Kim, Eui Kwang; Song, Hoon; Chung, Hyun Tai; Hwang, Woan; Nam, Cheol; Sim Yoon Sub; Kim, Yeon Sik; Wim Myung Whan; Min, Byung Tae; Yoo, Bong; Lee, Jae Han; Lee, Hyeong Yeon; Kim, Jong Bum; Koo, Gyeong Hoi; Ham, Chang Shik; Kwon, Kee Choon; Kim, Jung Taek; Park, Jae Chang; Lee, Jung Woon; Lee, Yong Hee; Kim, Chang Hwoi; Sim, Bong Shick; Hahn, Do Hee; Choi, Jong Hyeun; Kwon, Sang Woon.

    1997-07-01

    KAERI is working for the development of KALIMER and work is being done for methodology development, experimental facility set up and design concept development. The development target of KALIMER has been set as to make KALIMER safer, more economic, more resistant to nuclear proliferation, and yield less impact on the environment. To achieve the target, study has been made for setting up the design concept of KALIMER including the assessment of various possible design alternatives. This report is the results of the study for the KALIMER concept study and describes the design concept of KALIMER. The developed design concept study and describes the design concept of KALIMER. The developed design concept is to be used as the starting point of the next development phase of conceptual design and the concept will be refined and modified in the conceptual design phase. The scope of the work has been set as the NSSS and essential BOP systems. For systems, NSSS and functionally related major BOP are covered. Sizing and specifying conceptual structure are covered for major equipment. Equipment and piping are arranged for the parts where the arrangement is critical in fulfilling the foresaid intention of setting up the KALIMER design concept. This report consists of 10 chapters. Chapter 2 is for the top level design requirements of KALIMER and it serves as the basis of KALIMER design concept development. Chapter 3 summarizes the KALIMER concept and describes the general design features. The remaining chapters are for specific systems. (author). 29 tabs., 37 figs

  17. Particle bed reactor nuclear rocket concept

    International Nuclear Information System (INIS)

    Ludewig, H.

    1991-01-01

    The particle bed reactor nuclear rocket concept consists of fuel particles (in this case (U,Zr)C with an outer coat of zirconium carbide). These particles are packed in an annular bed surrounded by two frits (porous tubes) forming a fuel element; the outer one being a cold frit, the inner one being a hot frit. The fuel element are cooled by hydrogen passing in through the moderator. These elements are assembled in a reactor assembly in a hexagonal pattern. The reactor can be either reflected or not, depending on the design, and either 19 or 37 elements, are used. Propellant enters in the top, passes through the moderator fuel element and out through the nozzle. Beryllium used for the moderator in this particular design to withstand the high radiation exposure implied by the long run times

  18. Review of the current status of linear hybrid reactor concepts

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1977-07-01

    A review was made of the current status of linear fusion-fission hybrid reactor design studies in the USA. The linear hybrid reactor concepts reviewed include the linear theta-pinch hybrid reactor being studied at Los Alamos Scientific Laboratory, the electron beam-heated solenoid hybrid reactor under development at Physics International Co., the laser-heated solenoid hybrid reactor being investigated at Mathematical Sciences Northwest, Inc., and the linear fusion waste burning reactor being studied at General Atomic Company. The discussion addresses confinement and heating mechanisms for each concept, as well as the hybrid blanket designs. The current state of the four reactor designs is summarized and the performance of the various concepts compared

  19. Evaluating usability of the Halden Reactor Large Screen Display. Is the Information Rich Design concept suitable for real-world installations?

    International Nuclear Information System (INIS)

    Braseth, Alf Ove

    2013-01-01

    Large Screen Displays (LSDs) are beginning to supplement desktop displays in modern control rooms, having the potential to display the big picture of complex processes. Information Rich Design (IRD) is a LSD concept used in many real-life installations in the petroleum domain, and more recently in nuclear research applications. The objectives of IRD are to provide the big picture, avoiding keyhole related problems while supporting fast visual perception of larger data sets. Two LSDs based on the IRD concept have been developed for large-scale nuclear simulators for research purposes; they have however suffered from unsatisfying user experience. The new Halden Reactor LSD, used to monitor a nuclear research reactor, was designed according to recent proposed Design Principles compiled in this paper to mitigate previously experienced problems. This paper evaluates the usability of the Halden Reactor LSD, comparing usability data with the replaced analogue panel, and data for an older IRD large screen display. The results suggest that the IRD concept is suitable for use in real-life applications from a user experience point of view, and that the recently proposed Design Principles have had a positive effect on usability. (author)

  20. Containment concepts assessment for the SEAFP reactor

    International Nuclear Information System (INIS)

    Di Pace, L.; Natalizio, A.

    2000-01-01

    A simple methodology has been developed for making relative comparisons of potential containment designs for future fusion reactors. The assessment methodology requires only conceptual design information. The application of this methodology, at the early stages of a fusion reactor design, provides designers useful information regarding the suitability of various containment designs and design features. Because the radiation hazard from the operation of future fusion power reactors is expected to be low, the containment design, in addition to public safety, needs to take into account worker safety considerations, as well as factors important to the reliable and economical operation of the power plant. Several containment concepts have been assessed with a methodology that takes into account public safety, worker safety, operability and maintainability as well as cost. This paper describes this methodology and presents the results of the assessment. The paper concludes that, to obtain a containment design that is optimised with respect to safety, operational and cost factors, designers should focus on a containment that is conceptually simple-that is, one utilising a single, large containment building without relying on special features such as expansion volumes, pressure suppression pools or spray systems

  1. Iris reactor conceptual design

    International Nuclear Information System (INIS)

    Carelli, M.D.; Conway, L.E.; Petrovic, B.; Paramonov, D.V.; Galvin, M.; Todreas, N.E.; Lombardi, C.V.; Maldari, F.; Ricotti, M.E.; Cinotti, L.

    2001-01-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  2. Conceptual study of advanced PWR systems. A study of passive and inherent safety design concepts for advanced light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; No, Hee Cheon; Baek, Won Pil; Jae, Shim Young; Lee, Goung Jin; Na, Man Gyun; Lee, Jae Young; Kim, Han Gon; Kang, Ki Sig; Moon, Sang Ki; Kim, Yun Il; Park, Jae Wook; Yang, Soo Hyung; Kim, Soo Hyung; Lee, Seong Wook; Kim, Hong Che; Park, Hyun Sik; Jeong, Ji Hwan; Lee, Sang Il; Jung, Hae Yong; Kim, Hyong Tae; Chae, Kyung Sun; Moon, Ki Hoon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-08-01

    The five thermal-hydraulic concepts chosen for advanced PWR have been studied as follows: (1) Critical Heat Flux: Review of previous works, analysis of parametric trends, analysis of transient CHF characteristics, extension of the CHF date bank, survey and assessment of correlations, design of a intermediate-pressure CHF test loop have been performed. (2) Passive Cooling Concepts for Concrete Containment system: Review of condensation phenomena with noncondensable gases, selection of a promising concept (i.e., use of external condensers), design of test loop according to scaling laws have been accomplished. and computer programs based on the control-volume approach, and the conceptual design of test loop have been accomplished. (4) Fluidic Diode Concepts: Review of previous applications of the concept, analysis major parameters affecting the performance, development of a computational code, and conceptual investigation of the verification test loop have been performed. (5) Wet Thermal Insulator: Review of previous works, selection of promising methods ( i.e. ceramic fiber in a steel case and mirror-type insulator), and conceptual design of the experimental loop have been performed. (author). 9 refs.

  3. A computer code for Tokamak reactor concepts evaluation

    International Nuclear Information System (INIS)

    Rosatelli, F.; Raia, G.

    1985-01-01

    A computer package has been developed which could preliminarily investigate the engineering configuration of a tokamak reactor concept. The code is essentially intended to synthesize, starting from a set of geometrical and plasma physics parameters and the required performances and objectives, three fundamental components of a tokamak reactor core: blanket+shield, TF magnet, PF magnet. An iterative evaluation of the size, power supply and cooling system requirements of these components allows the judgment and the preliminary design optimization on the considered reactor concept. The versatility of the code allows its application both to next generation tokamak devices and power reactor concepts

  4. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    International Nuclear Information System (INIS)

    Wright, S.A.

    1991-01-01

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures

  5. In-vessel maintenance concepts for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Kelly, V.P.; Berger, J.D.; Yount, J.A.

    1983-01-01

    Concepts for rail-mounted and guided in-vessel handling machines (IVM) for remote maintenance inside tokamak fusion reactors are described. The IVM designs are based on concepts for tethered remotely operated vehicles and feature the use of multiple manipulator arms for remote handling and remote-controlled TV cameras for remote viewing. The concepts include IVMs for both single or dual rail systems located in the top or bottom of the reactor vessel

  6. Developments and Tendencies in Fission Reactor Concepts

    Science.gov (United States)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC

  7. Reactor pressure vessel design

    International Nuclear Information System (INIS)

    Foehl, J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 2, the general principles of reactor pressure vessel design are elaborated. Crack and fracture initiation and propagation are treated in some detail

  8. Extrap conceptual fusion reactor design study

    International Nuclear Information System (INIS)

    Eninger, J.E; Lehnert, B.

    1987-12-01

    A study has recently been initiated to asses the fusion reactor potential of the Extrap concept. A reactor model is defined that fulfills certain economic and environmental criteria. This model is applied to Extrap and a reference reactor is outlined. The design is optimized by varying parameters subject to both physics and engineering constraints. Several design options are examined and key engineering issues are identified and addressed. Some preliminary results and conclusions of this work are summarized. (authors)

  9. Status of fusion reactor concept development in Japan

    International Nuclear Information System (INIS)

    Tsuji-Iio, Shunji

    1996-01-01

    Fusion power reactor studies in Japan based on magnetic confinement schemes are reviewed. As D-T fusion reactors, a steady-state tokamak reactor (SSTR) was proposed and extensively studied at the Japan Atomic Energy Research Institute (JAERI) and an inductively operated day-long tokamak reactor (IDLT) was proposed by a group at the University of Tokyo. The concept of a drastically easy maintenance (DREAM) tokamak reactor is being developed at JAERI. A high-field tokamak reactor with force-balanced coils as a volumetric neutron source is being studied by our group at Tokyo Institute of Technology. The conceptual design of a force-free helical reactor (FFHR) is under way at the National Institute for Fusion Science. A design study of a D- 3 He field-reversed configuration (FRC) fusion reactor called ARTEMIS was conducted by the FRC fusion working group of research committee of lunar base an lunar resources. (author)

  10. Multicriteria selection in concept design of a divertor remote maintenance port in the EU DEMO reactor using an AHP participative approach

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Gironimo, G. Di, E-mail: giuseppe.digironimo@unina.it [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Esposito, G. [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Mäkinen, H. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Miccichè, G. [ENEA Brasimone, I:40032 Camugnano (Italy); Mozzillo, R. [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy)

    2016-11-15

    Highlights: • Concept Studies in Divertor Remote Handling. • Prioritization of concept alternatives. • Comparison and evaluation of product alternatives using AHP. - Abstract: The work behind this paper took place in the Eurofusion remote maintenance system project (WPRM) for the EU Demonstration Fusion Power Reactor (DEMO). Following ITER, the aim of DEMO is to demonstrate the capability of generating several hundreds of MW of net electricity by 2050. The main objective of this paper was the study of the most efficient design of the maintenance port for replacing the divertor cassettes in a Remote Handling (RH) point of view. In DEMO overall design, one important consideration is the availability and short down time operations. The inclination of the divertor port has a very important impact on all the RH tasks such as the design of the divertor mover, the divertor locking systems and the end effectors. The current reference scenario of the EU DEMO foresees a 45° inclined port for the remote maintenance (RM) of the divertor in the lower part of the reactor. Nevertheless, in the optic of the systems engineering (SE) approach, in early concept design phase, all possible configurations shall be taken into account. Even the solutions which seem not feasible at all need to be investigated, because they could lead to new and innovative engineering proposals. The different solutions were compared using an approach based on the Analytic Hierarchy Process (AHP). The technique is a multi-criteria decision making approach in which the factors that are important in making a decision are arranged in a hierarchic structure. The results of these studies show how the application of the AHP improved and focused the selection on the concept which is closer to the requirements arose from technical meetings with the experts of the RH field.

  11. Multicriteria selection in concept design of a divertor remote maintenance port in the EU DEMO reactor using an AHP participative approach

    International Nuclear Information System (INIS)

    Carfora, D.; Gironimo, G. Di; Esposito, G.; Huhtala, K.; Määttä, T.; Mäkinen, H.; Miccichè, G.; Mozzillo, R.

    2016-01-01

    Highlights: • Concept Studies in Divertor Remote Handling. • Prioritization of concept alternatives. • Comparison and evaluation of product alternatives using AHP. - Abstract: The work behind this paper took place in the Eurofusion remote maintenance system project (WPRM) for the EU Demonstration Fusion Power Reactor (DEMO). Following ITER, the aim of DEMO is to demonstrate the capability of generating several hundreds of MW of net electricity by 2050. The main objective of this paper was the study of the most efficient design of the maintenance port for replacing the divertor cassettes in a Remote Handling (RH) point of view. In DEMO overall design, one important consideration is the availability and short down time operations. The inclination of the divertor port has a very important impact on all the RH tasks such as the design of the divertor mover, the divertor locking systems and the end effectors. The current reference scenario of the EU DEMO foresees a 45° inclined port for the remote maintenance (RM) of the divertor in the lower part of the reactor. Nevertheless, in the optic of the systems engineering (SE) approach, in early concept design phase, all possible configurations shall be taken into account. Even the solutions which seem not feasible at all need to be investigated, because they could lead to new and innovative engineering proposals. The different solutions were compared using an approach based on the Analytic Hierarchy Process (AHP). The technique is a multi-criteria decision making approach in which the factors that are important in making a decision are arranged in a hierarchic structure. The results of these studies show how the application of the AHP improved and focused the selection on the concept which is closer to the requirements arose from technical meetings with the experts of the RH field.

  12. Iser: an international inherently safe reactor concept

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki

    1988-01-01

    Iser is a modular standardised 200-300 MWe power reactor based on the PIUS principle. It differs from PIUS in being simpler, and making full use of existing steel-vessel-based LWR technology. Iser is an inherently safe reactor concept under development in Japan. It is a generic concept, not a patented commodity, and it is expected that an international association to develop the concept will be formed. (U.K.)

  13. STARFIRE remote maintenance and reactor facility concept

    International Nuclear Information System (INIS)

    Graumann, D.W.; Field, R.E.; Lutz, G.R.; Trachsel, C.A.

    1981-01-01

    A total remote maintenance facility has been designed for all equipment located within the reactor building and hot cell, although operational flexibility has been provided by design of the reactor shielding such that personnel access into the reactor building within 24 hours after reactor shutdown is possible. The reactor design permits removal and replacement of all components if necessary, however, the vacuum pumps, isolation valves and blanket require scheduled, routine maintenance. Reactor scheduled maintenance does not dominate annual plant downtime, therefore, several scheduled operations can be added without affecting reactor availability. The maintenance facilities consist of the reactor building, the hot cell, the reactor service area and the remote maintenance control room. The reactor building contains the reactor, selected support system modules, and required maintenance equipment. The reactor and the support systems are maintained with (1) equipment that is mounted on a monorail system; (2) overhead cranes; and (3) bridge-mounted electromechanical manipulators. The hot cell is located outside of the reactor building to localize contamination products and permit independent operation. An equipment air lock connects the reactor building to the hot cell

  14. The Seismographic Design Concept

    DEFF Research Database (Denmark)

    Salamon, Karen Lisa; Engholm, Ida

    2015-01-01

    This article gives an overview of the theoretical development of the design concept through two centuries in Europe and North America. Drawing on the academic disciplines of design history and anthropology, the authors present seminal moments in the theorization of “design”. Historically formativ...... argues for a more historically reflective glance on theory’s influence on the moulding of practice from ideology also in the context of design, and presents itself as a step in this self reflective direction....

  15. Development of high nickel austenitic steels for the application to fast reactor cores, (I). Alloy design with the aid of the d-electrons concept

    International Nuclear Information System (INIS)

    Murata, Yoshinori; Morinaga, Masahiko; Yukawa, Natsuo; Ukai, Shigeharu; Nomura, Shigeo; Okuda, Takanari; Harada, Makoto

    1999-01-01

    The design of high nickel austenitic steels for the core materials of the fast reactors was performed following the d-electrons concept devised on the basis of molecular orbital calculations of transition-metal based alloys. In this design two calculated parameters are mainly utilized. The one is the d-orbital energy level (Md) of alloying transition elements, and the other is the bond order (Bo) that is a measure of the covalent bond strength between atoms. Using the Md-bar - Bo-bar phase stability diagram accurate prediction become possible for the phase stability of the austenite phase and 5% swelling at 140 dpa for nickel ions. Here, Md-bar and Bo-bar are the compositional average of Md and Bo parameters, respectively. On the basis of the phase stability diagram and preliminary experiments, guidelines for the alloy design of carbo-nitrides precipitated high nickel austenitic steels were constructed. Following the guidelines several new austenitic steels were designed for the fast reactors core material. (author)

  16. A nuclear power reactor concept for Brazil

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1980-01-01

    For the purpose of developing an independent national nuclear technology and effective manner of transferring such a technology, as well as developing a modern reactor, a new nuclear power reactor concept is proposed which is considered as a suitable and viable project for Brazil to support its development and finally construct its prototype as an indigeneous venture. (Author) [pt

  17. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  18. Preliminary studies leading to a conceptual design of a 1000 MWe fast neutron reactor; Etudes preliminaires conduisant a un concept de reacteur a neutrons rapides de 1000 MWe

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G.; Zaleski, C.P. [Association Euratom-CEA Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report presents the results of studies which seemed important to undertake in connexion with the development of fast neutron reactors. - It points out the advantage of high internal breeding ratios ({approx}1, 1) which are necessary in order to get a small change in time both in power distribution and reactivity (less: than 0.005 {delta}k/k in 18 months). - It shows how to achieve this goal, when simultaneously power distribution flattening is obtained. These results in a higher mean specific power (which is an economic gain) and therefore in a smaller doubling time (about 10 years). - It attempts to find criteria concerning the specific power that should be used in future reactor designs -It presents a conceptional design of a 1000 MWe fast neutron reactor, for the realisation of which no technological impossibility appears. - It shows that the dynamic behaviour seems satisfactory despite a positive total isothermal sodium coefficient. - It tries to predict the development of fast reactors within the future total nuclear program. It does not appear that fissile materials supply problems should in France slow down the development of fast neutron reactors, which will be essentially tied up to its economical ability to produce cheap electric power. (authors) [French] Ce rapport presente les etudes qu'il nous a paru important d'aborder dans le cadre du developpement des reacteurs a neutrons rapides. - Il met en evidence l'interet des taux de regeneration internes eleves ({approx}1, 1) pour obtenir une bonne evolution dans le temps de la distribution de puissance et de la reactivite (moins de 0,005 {delta}k/k pour 18 mois). - Il montre la possibilite d'y parvenir tout en applatissant la distribution des fissions, ce qui se traduit par une puissance specifique moyenne plus elevee (gain economique), et donc un temps de doublement plus faible de l'ordte de 10 ans - Il tente de definir un optimum de la puissance specifique valable pour les

  19. Preliminary studies leading to a conceptual design of a 1000 MWe fast neutron reactor; Etudes preliminaires conduisant a un concept de reacteur a neutrons rapides de 1000 MWe

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G; Zaleski, C P [Association Euratom-CEA Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report presents the results of studies which seemed important to undertake in connexion with the development of fast neutron reactors. - It points out the advantage of high internal breeding ratios ({approx}1, 1) which are necessary in order to get a small change in time both in power distribution and reactivity (less: than 0.005 {delta}k/k in 18 months). - It shows how to achieve this goal, when simultaneously power distribution flattening is obtained. These results in a higher mean specific power (which is an economic gain) and therefore in a smaller doubling time (about 10 years). - It attempts to find criteria concerning the specific power that should be used in future reactor designs -It presents a conceptional design of a 1000 MWe fast neutron reactor, for the realisation of which no technological impossibility appears. - It shows that the dynamic behaviour seems satisfactory despite a positive total isothermal sodium coefficient. - It tries to predict the development of fast reactors within the future total nuclear program. It does not appear that fissile materials supply problems should in France slow down the development of fast neutron reactors, which will be essentially tied up to its economical ability to produce cheap electric power. (authors) [French] Ce rapport presente les etudes qu'il nous a paru important d'aborder dans le cadre du developpement des reacteurs a neutrons rapides. - Il met en evidence l'interet des taux de regeneration internes eleves ({approx}1, 1) pour obtenir une bonne evolution dans le temps de la distribution de puissance et de la reactivite (moins de 0,005 {delta}k/k pour 18 mois). - Il montre la possibilite d'y parvenir tout en applatissant la distribution des fissions, ce qui se traduit par une puissance specifique moyenne plus elevee (gain economique), et donc un temps de doublement plus faible de l'ordte de 10 ans - Il tente de definir un optimum de la puissance specifique valable pour les projets de reacteurs futurs

  20. Design of an organic simplified nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States); Forrest, Eric [Primary Standards Laboratory, Sandia National Laboratories, Albuquerque (United States)

    2016-08-15

    Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  1. Design of an Organic Simplified Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-08-01

    Full Text Available Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  2. Safety characteristics of the integral fast reactor concept

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Cahalan, J.E.; Sevy, R.H.; Wright, A.E.

    1985-01-01

    The Integral Fast Reactor (IFR) concept is an innovative approach to liquid metal reactor design which is being studied by Argonne National Laboratory. Two of the key features of the IFR design are a metal fuel core design, based on the fuel technology developed at EBR-II, and an integral fuel cycle with a colocated fuel cycle facility based on the compact and simplified process steps made possible by the use of metal fuel. The paper presents the safety characteristics of the IFR concept which derive from the use of metal fuel. Liquid metal reactors, because of the low pressure coolant operating far below its boiling point, the natural circulation capability, and high system heat capacities, possess a high degree of inherent safety. The use of metallic fuel allows the reactor designer to further enhance the system capability for passive accommodation of postulated accidents

  3. Seismic design of reactors in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Akira [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan); Kuchiya, Masao; Yasuda, Naomitsu; Kitanaka, Tsutomu; Ogawa, Kazuhiko; Sakuraba, Koichi; Izawa, Naoki; Takeshita, Isao

    1997-03-01

    Basic concept and calculation method for the seismic design of the main equipment of the reactors in NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) are described with actual calculation examples. The present paper is published to help the seismic design of the equipment and application of the authorization for the design and constructing of facilities. (author)

  4. The concept of the innovative power reactor

    Directory of Open Access Journals (Sweden)

    Sang Won Lee

    2017-10-01

    Full Text Available The Fukushima accident reveals the vulnerability of existing active nuclear power plant (NPP design against prolonged loss of external electricity events. The passive safety system is considered an attractive alternative to cope with this kind of disaster. Also, the passive safety system enhances both the safety and the economics of NPPs. The adoption of a passive safety system reduces the number of active components and can minimize the construction cost of NPPs. In this paper, reflecting on the experience during the development of the APR+ design in Korea, we propose the concept of an innovative Power Reactor (iPower, which is a kind of passive NPP, to enhance safety in a revolutionary manner. The ultimate goal of iPower is to confirm the feasibility of practically eliminating radioactive material release to the environment in all accident conditions. The representative safety grade passive system includes a passive emergency core cooling system, a passive containment cooling system, and a passive auxiliary feedwater system. Preliminary analysis results show that these concepts are feasible with respect to preventing and/or mitigating the consequences of design base accidents and severe accidents.

  5. Status of fusion reactor blanket design

    International Nuclear Information System (INIS)

    Smith, D.L.; Sze, D.K.

    1986-02-01

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  6. Review of mirror fusion reactor designs

    International Nuclear Information System (INIS)

    Bender, D.J.

    1977-01-01

    Three magnetic confinement concepts, based on the mirror principle, are described. These mirror concepts are summarized as follows: (1) fusion-fission hybrid reactor, (2) tandem mirror reactor, and (3) reversed field mirror reactor

  7. Evaluation of the breed/burn fast reactor concept

    International Nuclear Information System (INIS)

    Atefi, B.; Driscoll, M.J.; Lanning, D.D.

    1979-12-01

    A core design concept and fuel management strategy, designated breed/burn, has been evaluated for heterogeneous fast breeder reactors. In this concept internal blanket assemblies after fissile material is bred in over several incore cycles, are shuffled into a moderated radial blanket and/or central island. The most promising materials combination identified used thorium in the internal blankets (due to the superior performance of epithermal Th-U233 systems) and zirconium hydride (ZrH 16 ) as the moderator

  8. ETF reactor design status

    International Nuclear Information System (INIS)

    Sager, P.H.

    1981-01-01

    Conceptual design studies of a tokamak Engineering Test Facility (ETF) are being carried out as a joint laboratory--industry effort at the ETF Design Center at Oak Ridge National Laboratory (ORNL). Designs are being developed for two reactors, one with a bundle divertor and one with a poloidal divertor. These machines, which are designed for ignition and a burn time of 100 s, both have a major radius of 5.4 m, a plasma minor radius of 1.3 m, and a D-shaped plasma elongation ratio of 1.6. The plasma chamber must be conditioned at 10 -7 Torr (10 -5 Pa). During the 13 s dwell between burns, the chamber must be pumped down from 3 x 10 -4 to 3 x 10 -5 Torr. In the design with the bundle divertor, four pairs of compound cryopumps, each pump with a 4 m 2 cryosorption pumping surface, are installed to pump down the plasma chamber. In the design with the poloidal divertor, the plasma chamber is evacuated with the ten pairs of compound cryopumps, each pump with a cryosorption pumping surface of 13 m 2 , installed to handle the divertor load. In both cases the pumps are installed in pairs so that one set can be regenerated while the other set is on-line

  9. Conceptual design of multipurpose compact research reactor

    International Nuclear Information System (INIS)

    Nagata, Hiroshi; Kusunoki, Tsuyoshi; Hori, Naohiko; Kaminaga, Masanori

    2012-01-01

    Conceptual design of the high-performance and low-cost multipurpose compact research reactor which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  10. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-01-01

    Conceptual Design of Fusion Experimental Reactor (FER) of which the objective will be to realize self-ignition with D-T reaction is reported. Mechanical Configurations of FER are characterized with a noncircular plasma and a double-null divertor. The primary aim of design studies is to demonstrate fissibility of reactor structures as compact and simple as possible with removable torus sectors. The structures of each component such as a first-wall, blanket, shielding, divertor, magnet and so on have been designed. It is also discussed about essential reactor plant system requirements. In addition to the above, a brief concept of a steady-state reactor based on RF current drive is also discussed. The main aim, in this time, is to examine physical studies of a possible RF steady-state reactor. (author)

  11. Nuclear Burning Wave Modular Fast Reactor Concept

    International Nuclear Information System (INIS)

    Kodochigov, N.G.; Sukharev, Yu.P.

    2014-01-01

    The necessity to provide nuclear power industry, comparable in a scope with power industry based on a traditional fuel, inspired studies of an open-cycle fast reactor aimed at: - solution of the problem of fuel provision by implementing the highest breeding characteristics of new fissile materials of raw isotopes in a fast reactor and applying accumulated fissile isotopes in the same reactor, independently on a spent fuel reprocessing rate in the external fuel cycle; - application of natural or depleted uranium for makeup fuel, which, with no spent fuel reprocessing, forms the most favorable non-proliferation conditions; - application of inherent properties of the core and reactor for safety provision. The present report, based on previously published papers, gives the theoretical backgrounds of the concept of the reactor with a nuclear burning wave, in which an enriched-fuel core (driver) is replaced by a blanket, and basic conditions for nuclear burning wave initiating and keeping are shown. (author)

  12. Compact magnetic fusin reactor concepts

    International Nuclear Information System (INIS)

    Chung, K.M.

    1984-01-01

    Compact, high-power-density approaches to fusion power represent alternatives to main-line fusion concepts, Tokamaks and mirrors. If technological issues are resolved, theses approaches would yield small, low-cost fusion power plants. This survey reviews the principal physics and technology employed by leading compact magnetic fusion plants. (Author)

  13. On blanket concepts of the Helias reactor

    International Nuclear Information System (INIS)

    Wobig, H.; Harmeyer, E.; Herrnegger, F.; Kisslinger, J.

    1999-07-01

    The paper discusses various options for a blanket of the Helias reactor HSR22. The Helias reactor is an upgrade version of the Wendelstein 7-X device. The dimensions of the Helias reactor are: major radius 22 m, average plasma radius 1.8 m, magnetic field on axis 4.75 T, maximum field 10 T, number of field periods 5, fusion power 3000 MW. The minimum distance between plasma and coils is 1.5 m, leaving sufficient space for a blanket and shield. Three options of a breeding blanket are discussed taking into account the specific properties of the Helias configuration. Due to the large area of the first wall (2600 m 2 ) the average neutron power load on the first wall is below 1 MWm .2 , which has a strong impact on the blanket performance with respect to lifetime and cooling requirements. A comparison with a tokamak reactor shows that the lifetime of first wall components and blanket components in the Helias reactor is expected to be at least two times longer. The blanket concepts being discussed in the following are: the solid breeder concept (HCPB), the dual-coolant Pb-17Li blanket concept and the water-cooled Pb-17Li concept (WCLL). (orig.)

  14. Design studies of Tokamak power reactor in JAERI

    International Nuclear Information System (INIS)

    Tone, T.; Nishikawa, M.; Tanaka, Y.

    1985-01-01

    Recent design studies of tokamak power reactor and related activities conducted in JAERI are presented. A design study of the SPTR (Swimming-Pool Type Reactor) concept was carried out in FY81 and FY82. The reactor design studies in the last two years focus on nuclear components, heat transport and energy conversion systems. In parallel of design studies, tokamak systems analysis code is under development to evaluate reactor performances, cost and net energy balance

  15. Reactor design for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Koenig, D.R.; Ranken, W.A.

    1979-01-01

    Conceptual design studies of a nuclear power plant for electric propulsion of spacecrafts have been on going for several years. An attractive concept which has evolved from these studies and which has been described in previous publications, is a heat-pipe cooled, fast spectrum nuclear reactor that provides 3 MW of thermal energy to out-of-core thermionic converters. The primary motivation for using heat pipes is to provide redundancy in the core cooling system that is not available in gas or liquid-metal cooled reactors. Detailed investigation of the consequences of heat pipe failures has resulted in modifications to the basic reactor design and has led to consideration of an entirely different core design. The new design features an integral laminated core configuration consisting of alternating layers of UO 2 and molybdenum sheets that span the entire diameter of the core. Design characteristics are presented and compared for the two reactors

  16. Analysis of digester design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Wilson, E. H.

    1979-01-29

    Engineering economic analyses were performed on various digester design concepts to determine the relative performance for various biomass feedstocks. A comprehensive literature survey describing the state-of-the-art of the various digestion designs is included. The digester designs included in the analyses are CSTR, plug flow, batch, CSTR in series, multi-stage digestion and biomethanation. Other process options investigated included pretreatment processes such as shredding, degritting, and chemical pretreatment, and post-digestion processes, such as dewatering and gas purification. The biomass sources considered include feedlot manure, rice straw, and bagasse. The results of the analysis indicate that the most economical (on a unit gas cost basis) digester design concept is the plug flow reactor. This conclusion results from this system providing a high gas production rate combined with a low capital hole-in-the-ground digester design concept. The costs determined in this analysis do not include any credits or penalties for feedstock or by-products, but present the costs only for conversion of biomass to methane. The batch land-fill type digester design was shown to have a unit gas cost comparable to that for a conventional stirred tank digester, with the potential of reducing the cost if a land-fill site were available for a lower cost per unit volume. The use of chemical pretreatment resulted in a higher unit gas cost, primarily due to the cost of pretreatment chemical. A sensitivity analysis indicated that the use of chemical pretreatment could improve the economics provided a process could be developed which utilized either less pretreatment chemical or a less costly chemical. The use of other process options resulted in higher unit gas costs. These options should only be used when necessary for proper process performance, or to result in production of a valuable by-product.

  17. Transient Analysis Needs for Generation IV Reactor Concepts

    International Nuclear Information System (INIS)

    Siefken, L.J.; Harvego, E.A.; Coryell, E.W.; Davis, C.B.

    2002-01-01

    The importance of nuclear energy as a vital and strategic resource in the U. S. and world's energy supply mix has led to an initiative, termed Generation IV by the U.S. Department of Energy (DOE), to develop and demonstrate new and improved reactor technologies. These new Generation IV reactor concepts are expected to be substantially improved over the current generation of reactors with respect to economics, safety, proliferation resistance and waste characteristics. Although a number of light water reactor concepts have been proposed as Generation IV candidates, the majority of proposed designs have fundamentally different characteristics than the current generation of commercial LWRs operating in the U.S. and other countries. This paper presents the results of a review of these new reactor technologies and defines the transient analyses required to support the evaluation and future development of the Generation IV concepts. The ultimate objective of this work is to identify and develop new capabilities needed by INEEL to support DOE's Generation IV initiative. In particular, the focus of this study is on needed extensions or enhancements to SCDAP/RELAP5/3D code. This code and the RELAP5-3D code from which it evolved are the primary analysis tools used by the INEEL and others for the analysis of design-basis and beyond-design-basis accidents in current generation light water reactors. (authors)

  18. Sellafield repository design concept

    International Nuclear Information System (INIS)

    1998-01-01

    Between 1989 and 1997, UK Nirex Ltd carried out a programme of investigations to evaluate the potential of a site adjacent to the BNFL Sellafield works to host a deep repository for the United Kingdom's intermediate-level and certain low-level radioactive waste. The programme of investigations was wound down following the decision in March 1997 to uphold the rejection of the Company's planning application for the Rock Characterisation Facility (RCF), an underground laboratory which would have allowed further investigations to confirm whether or not the site would be suitable. Since that time, the Company's efforts in relation to the Sellafield site have been directed towards documenting and publishing the work carried out. The design concept for a repository at Sellafield was developed in parallel with the site investigations through an iterative process as knowledge of the site and understanding of the repository system performance increased. This report documents the Sellafield repository design concept as it had been developed, from initial design considerations in 1991 up to the point when the RCF planning application was rejected. It shows, from the context of a project at that particular site, how much information and experience has been gained that will be applicable to the development of a deep waste repository at other potential sites

  19. New reactors concepts and scenarios

    International Nuclear Information System (INIS)

    Gandini, A.

    2001-01-01

    In recent years an increasing interest is observed with respect to subcritical, accelerator driven systems (ADS), for their possible role in perspective future nuclear energy scenarios, as actinide (Pu and MA) incinerators, and/or claimed energy plants with potential enhanced safety characteristics. Important research programs are devoted to the various related fields of research. Extensive studies on the ADS behavior under incidental conditions are in particular made, for verifying their claimed advantage, under the safety point of view, with respect to the corresponding critical reactors. Corresponding medium and long range scenarios are being studied to cope with a number of concerns associated with the safety (power excursions. residual heat risk), as well as with the fuel flow (criticality accidents, fuel diversion, radiological risk, proliferation). In the present work we shall try to review current lines of research in this field, and comment on possible scenarios so far envisaged. (author)

  20. Turning points in reactor design

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1995-01-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems

  1. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  2. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    A conceptual design study (option C) has been carried out for the fusion experimental reactor (FER). In addition to design of the tokamak reactor and associated systems based on the reference design specifications, feasibility of a water-shield reactor concept was examined as a topical study. The design study for the reference tokamak reactor has produced a reactor concept for the FER, along with major R D items for the concept, based on close examinations on thermal design, electromagnetics, neutronics and remote maintenance. Particular efforts have been directed to the area of electromagnetics. Detailed analyses with close simulation models have been performed on PF coil arrangements and configurations, shell effects of the blanket for plasma position unstability, feedback control, and eddy currents during disruptions. The major design specifications are as follows; Peak fusion power 437 MW Major radius 5.5 m Minor radius 1.1 m Plasma elongation 1.5 Plasma current 5.3 MA Toroidal beta 4 % Field on axis 5.7 T (author)

  3. Axial heterogeneous core concept applied for super phoenix reactor

    International Nuclear Information System (INIS)

    Batista, J.L.; Renke, C.A.C.; Waintraub, M.; Santos Bastos, W. dos; Brito Aghina, L.O. de.

    1991-11-01

    Always maintaining the current design rules, this paper presents a parametric study on the type of axial heterogeneous core concept (CHA), utilizing a core of fast reactor Super Phenix type, reaching a maximum thermal burnup rate of 150000 M W d/t and being managed in single batch. (author)

  4. Innovative reactor core: potentialities and design

    International Nuclear Information System (INIS)

    Artioli, C.; Petrovich, Carlo; Grasso, Giacomo

    2010-01-01

    Gen IV nuclear reactors are considered a very attractive answer for the demand of energy. Because public acceptance they have to fulfil very clearly the requirement of sustainable development. In this sense a reactor concept, having by itself a rather no significant interaction with the environment both on the front and back end ('adiabatic concept'), is vital. This goal in mind, a new way of designing such a core has to be assumed. The starting point must be the 'zero impact'. Therefore the core will be designed having as basic constraints: a) fed with only natural or depleted Uranium, and b) discharges only fission products. Meantime its potentiality as a net burner of Minor Actinide has to be carefully estimated. This activity, referred to the ELSY reactor, shows how to design such an 'adiabatic' core and states its reasonable capability of burning MA legacy in the order of 25-50 kg/GW e y. (authors)

  5. Borehole disposal design concept

    International Nuclear Information System (INIS)

    RANDRIAMAROLAHY, J.N.

    2007-01-01

    In Madagascar, the sealed radioactive sources are used in several socioeconomic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become radioactive waste and can be still dangerous because they can cause harmful effects to the public and the environment. This work entitled 'Borehole disposal design concept' consists in putting in place a site of sure storage of the radioactive waste, in particular, sealed radioactive sources. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeologic, geochemical, meteorological and demographic conditions. This type of storage is favorable for the developing countries because it is technologically simple and economic. The cost of construction depends on the volume of waste to store and the depth of the Borehole. The Borehole disposal concept provides a good level of safety to avoid the human intrusion. The future protection of the generations against the propagation of the radiations ionizing is then assured. [fr

  6. Health physics in fusion reactor design

    International Nuclear Information System (INIS)

    Wong, K.Y.; Dinner, P.J.

    1984-06-01

    Experience in the control of tritium exposures to workers and the public gained through the design and operation of Ontario Hydro's nuclear stations has been applied to fusion projects and to design studies on emerging fusion reactor concepts. Ontario Hydro performance in occupational tritium exposure control and environmental impact is reviewed. Application of tritium control technologies and dose management methodology during facility design is highlighted

  7. Fusion reactor design studies: standard accounts for cost estimates

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.; Young, J.R.

    1978-05-01

    The fusion reactor design studies--standard accounts for cost estimates provides a common format from which to assess the economic character of magnetically confined fusion reactor design concepts. The format will aid designers in the preparation of design concept costs estimates and also provide policymakers with a tool to assist in appraising which design concept may be economically promising. The format sets forth a categorization and accounting procedure to be used when estimating fusion reactor busbar energy cost that can be easily and consistently applied. Reasons for developing the procedure, explanations of the procedure, justifications for assumptions made in the procedure, and the applicability of the procedure are described in this document. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising design concepts thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  8. Aqueous self-cooled blanket concepts for fusion reactors

    International Nuclear Information System (INIS)

    Varsamis, G.; Embrechts, M.J.; Steiner, D.; Deutsch, L.; Gierszewski, P.

    1987-01-01

    A novel aqueous self-cooled blanket (ASCB) concept has been proposed. The water coolant also serves as the tritium breeding medium by dissolving small amounts of lithium compound in the water. The tritium recovery requirements of the ASCB concept may be facilitated by the novel in-situ radiolytic tritium separation technique in development at Chalk River Nuclear Laboratories. In this separation process deuterium gas is bubbled through the blanket coolant. Due to radiation induced processes, the equilibrium constant favors tritium migration to the deuterium gas stream. It is expected that the inherent simplicity of this design will result in a highly reliable, safe and economically attractive breeding blanket for fusion reactors. The available base of relevant information accumulated through water-cooled fission reactor programs should greatly facilitate the R and D effort required to validate the proposed blanket concept. Tests for tritium separation and corrosion compatibility show encouraging results for the feasibility of this concept

  9. Molten salt reactors. The AMSTER concept

    International Nuclear Information System (INIS)

    Vergnes, J.; Garzenne, C.; Lecarpentier, D.; Mouney, H.

    2001-01-01

    This article presents the concept of actinide molten salt transmuter (AMSTER). This reactor is graphite-moderated and is dedicated to the burning of actinides. The main difference with a molten salt reactor is that its liquid fuel undergoes an on-line partial reprocessing in which fission products are extracted and heavy nuclei are reintroduced into the fuel. In order to maintain the reactivity regular injections of 235 U-salt are made. In classical reactors, fuel burn-up is limited by the swelling of the cladding and the radiation fuel pellets resistance, in AMSTER there is no limitation to the irradiation time of the fuel, so all the actinides can be burnt or transmuted. (A.C.)

  10. Main engineering features driving design concept and engineering design constraints

    International Nuclear Information System (INIS)

    Saito, Ryusei; Kobayashi, Takeshi; Yamada, Masao

    1987-09-01

    Major engineering design philosophies are described, which are essential bases for an engineering design and may have significant impacts on a reactor design concept. Those design philosophies are classified into two groups, engineering design drivers and engineering design constraints. The design drivers are featured by the fact that a designer is free to choose and the choice may be guided by his opinion, such as coil system, a mechanical configuration, a tritium breeding scenario, etc.. The design constraints may follow a natural law or engineering limit, such as material strength, coil current density, and so on. (author)

  11. Main physics features driving design concept and physics design constraints

    International Nuclear Information System (INIS)

    Fujisawa, Noboru; Sugihara, Masayoshi; Yamamoto, Shin

    1987-07-01

    Major physics design philosophies are described, which are essential bases for a plasma design and may have significant impacts on a reactor design concept. Those design philosophies are classified into two groups, physics design drivers and physics design constraints. The design drivers are featured by the fact that a designer is free to choose and the choice may be guided by his opinion, such as ignition, a pulse length, an operation scenario, etc.. The design constraints may follow a physical law, such as plasma confinement, β-limit, density limit, and so on. (author)

  12. Evolution of CANDU reactor design

    International Nuclear Information System (INIS)

    Pon, G.A.

    1978-08-01

    The CANDU (CANada Deuterium Uranium) design had its begin-ings in the early 1950's with the preliminary engineering studies that led to the 20 MW(e) NPD (Nuclear Power Demonstration) and the 200 MW(e) Douglas Point station . The next decade saw the first operation of both these stations and the commitment of the 2000 MW(e) Pickering and 3000 MW(e) Bruce plants. The present decade has witnessed the excellent performance of Pickering and Bruce and commitments to construct Gentilly-2, Cordoba, Pt. Lepreau, Wolsung, Pickering B, Bruce B and Darlington. In most cases, successive CANDU designs have meant an increase in plant output. Evolutionary developments have been made to fit the requirements of higher ratings and sizes, new regulations, better reliability and maintainability and lower costs. These changes, which are described system by system, have been introduced in the course of engineering parallel reactor projects with overlapping construction schedules -circumstances which ensure close contact with the practical realities of economics, manufacturing functions, construction activities and performance in commissioning. Features for one project furnished alternative concepts for others still on the drawing board and the experience gained in the first application yielded a sound basis for its re-use in succeeding projects. Thus the experiences gained in NPD, Douglas Point, Gentilly-1 and KANUPP have contributed to Pickering and Bruce, which in turn have contributed to the design of Gentilly-2. (author)

  13. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-09-01

    The MAPLE-X10 reactor is a D 2 0-reflected, H 2 0-cooled and -moderated pool-type reactor under construction at the Chalk River Nuclear Laboratories. This 10-MW reactor will produce key medical and industrial radio-isotopes such as 99 Mo, 125 I, and 192 Ir. As the prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor since standards for the licensing of new research reactors have not been developed yet by the licensing authority in Canada

  14. The CAREM reactor and present currents in reactor design

    International Nuclear Information System (INIS)

    Ordonez, J.P.

    1990-01-01

    INVAP has been working on the CAREM project since 1983. It concerns a very low power reactor for electrical energy generation. The design of the reactor and the basic criteria used were described in 1984. Since then, a series of designs have been presented for reactors which are similar to CAREM regarding the solutions presented to reduce the chance of major nuclear accidents. These designs have been grouped under different names: Advanced Reactors, Second Generation Reactors, Inherently Safe Reactors, or even, Revolutionary Reactors. Every reactor fabrication firm has, at least, one project which can be placed in this category. Presently, there are two main currents of Reactor Design; Evolutionary and Revolutionary. The present work discusses characteristics of these two types of reactors, some revolutionary designs and common criteria to both types. After, these criteria are compared with CAREM reactor design. (Author) [es

  15. Identification of improvements of advanced light water reactor concepts

    International Nuclear Information System (INIS)

    Frisch, W.; Liesch, K.; Riegel, B.

    1993-01-01

    The scope of this report is to identify the improvement of reactor developments with respect to reactor safety. This includes the collection of non-proprietary information on the description of the advanced design characteristics, especially summary design descriptions and general publications. This documentation is not intended to include a safety evaluation of the advanced concepts; however, it is structured in such a way that it can serve as a basis for a future safety evaluation. This is taken into account in the structure of the information regarding the distinction of the various concepts with respect to their 'advancement' and the classification of design characteristics according to some basic safety aspects. The overall description concentrates on those features which are relevant to safety. Other aspects, such as economy, operational features, maintenance, the construction period, etc...are not considered explicitly in this report

  16. Conceptual design of RFC reactor

    International Nuclear Information System (INIS)

    Kumazawa, R.; Adati, K.; Hatori, T.; Ichimura, M.; Obayashi, H.; Okamura, S.; Sato, T.; Watari, T.; Emmert, G.A.

    1982-01-01

    A parametic analysis and a preliminary conceptual design for RFC reactor (including cusp field) with and without alpha particle heating are described. Steady state operations can be obtained for various RF ponderomotive potential in cases of alpha particle heating. (author)

  17. Scyllac fusion test reactor design

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Gerstl, S.A.; Houck, D.L.; Jalbert, R.A.; Krakowski, R.A.; Linford, R.K.; McDonald, T.E.; Rogers, J.D.; Thomassen, K.I.

    1975-01-01

    A general design of the system is given. The implosion heating and compression systems (METS) are described. Tritium handling, shielding and activation of the reactor, and safety and environmental aspects are discussed

  18. PSA in design of passive/active safety reactors

    International Nuclear Information System (INIS)

    Sato, T.; Tanabe, A.; Kondo, S.

    1995-01-01

    PSAs in the design of advanced reactors are applied mainly in level 1 PSA areas. However, even in level 1 PSA, there are certain areas where special care must be taken depending on plant design concepts. This paper identifies these areas both for passive and active safety reactor concepts. For example, 'long-term PSA' and shutdown PSA are very important for a passive safety reactor concept from the standpoint of effectiveness of a grace period and passive safety systems. External events are also important for an active safety reactor concept. These kinds of special PSAs are difficult to conduct precisely in a conceptual design stage. This paper shows methods of conducting these kinds of special PSAs simply and conveniently and the use of acquired insights for the design of advanced reactors. This paper also clarifies the meaning or definition of a grace period from the standpoint of PSA

  19. Systemization of Design and Analysis Technology for Advanced Reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Lee, J.; Zee, S. K.

    2009-01-01

    The present study is performed to establish the base for the license application of the original technology by systemization and enhancement of the technology that is indispensable for the design and analysis of the advanced reactors including integral reactors. Technical reports and topical reports are prepared for this purpose on some important design/analysis methodology; design and analysis computer programs, structural integrity evaluation of main components and structures, digital I and C systems and man-machine interface design. PPS design concept is complemented reflecting typical safety analysis results. And test plans and requirements are developed for the verification of the advanced reactor technology. Moreover, studies are performed to draw up plans to apply to current or advanced power reactors the original technologies or base technologies such as patents, computer programs, test results, design concepts of the systems and components of the advanced reactors. Finally, pending issues are studied of the advanced reactors to improve the economics and technology realization

  20. Jules Horowitz Reactor, basic design

    International Nuclear Information System (INIS)

    Bergamaschi, Y.; Bouilloux, Y.; Chantoin, P.; Guigon, B.; Bravo, X.; Germain, C.; Rommens, M.; Tremodeux, P.

    2003-01-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it. It has the ambition to provide the necessary nuclear data and maintain a fission research capacity in Europe after 2010. This capacity should be service-oriented. It will be established in Cadarache. The Jules Horowitz reactor will also: - represent a significant step in term of performances and experimental capabilities, - be designed with a high flexibility, in order to satisfy the current demand from European industry, research and be able to accommodate future requirements, - reach a high level of safety, according to the best current practice. This paper will present the main functionalities and the design options resulting from the 'preliminary design' studies. (authors)

  1. Jules Horowitz reactor, basic design

    International Nuclear Information System (INIS)

    Bergamaschi, Y.; Bouilloux, Y.; Chantoin, P.; Guigon, B.; Bravo, X.; Germain, C.; Rommens, M.; Tremodeux, P.

    2002-01-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it. It has the ambition to provide the necessary nuclear data and maintain a fission research capacity in Europe after 2010. This capacity should be service-oriented. It will be established in Cadarache. The Jules Horowitz reactor will also: represent a significant step in term of performances and experimental capabilities; be designed with a high flexibility, in order to satisfy the current demand from European industry, research and be able to accommodate future requirements; reach a high level of safety, according to the best current practice. This paper will present the main functionalities and the design options resulting from the 'preliminary design' studies. (author)

  2. Rapid-L Operator-Free Fast Reactor Concept Without Any Control Rods

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2003-01-01

    The 200-kW(electric) uranium-nitride-fueled lithium-cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for a lunar base power system. It is one of the variants of the RAPID (Refueling by All Pins Integrated Design) fast reactor concept, which enables quick and simplified refueling. The essential feature of the RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small-size reactor core, 2700 fuel pins are integrated and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 yr.Unique challenges in reactivity control systems design have been addressed in the RAPID-L concept. The reactor has no control rod but involves the following innovative reactivity control systems: lithium expansion modules (LEM) for inherent reactivity feedback, lithium injection modules (LIM) for inherent ultimate shutdown, and lithium release modules (LRM) for automated reactor startup. All these systems adopt 6 Li as a liquid poison instead of B 4 C rods. In combination with LEMs, LIMs, and LRMs, RAPID-L can be operated without an operator. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, the RAPID-L reactor concept and its transient characteristics are presented

  3. Designing concepts and strategies

    DEFF Research Database (Denmark)

    Kiib, Hans

    2012-01-01

    , that new developments often employ very modest research on the subject and often very little has been done in order to challenge traditional concepts and to invent new sustainable concepts for redevelopment. In order to avoid mistakes in urban redevelopment we need to learn from research and evaluation...... of the best planning practice. But what might be just as important is to learn from concept development practice, which can give us a comprehensive understanding of our complex cities and make us develop a way of experiencing the unique qualities of the architectural typologies at the site. Finally...... and strategies are briefly described in the article, and the adaption by city planners and developers has been critical reviewed....

  4. Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

    DEFF Research Database (Denmark)

    Zielke, Philipp; Xu, Yu; Simonsen, Søren Bredmose

    2016-01-01

    Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core-shell...... or decorated particles. Based on the simulation results, a reactor system employing a confined jet mixer in the first and a counter-flow mixer in the second stage was designed and built. The two-stage functionality and synthesis capacity is shown on the example of single- and two-stage syntheses of pure...... and mixed-phase NiO and YSZ particles....

  5. Reactor physical experimental program EROS in the frame of the molten salt applying reactor concepts development

    International Nuclear Information System (INIS)

    Hron, Miloslav; Kyncl, Jan; Mikisek, Miroslav

    2009-01-01

    After the relatively broad program of experimental activities, which have been involved in the complex R and D program for the Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept development in the Czech Republic, there has been a next stage (namely large-scale experimental verification of design inputs by use of MSR-type inserted zones into the existing light water moderated experimental reactor LR-0 called EROS project) started, which will be focused to the experimental verification of the rector physical or neutronic properties of other types of reactor concepts applying molten salts in the role of liquid fuel and/or coolant. This tendency is based on the recently accepted decision of the MSR SSC of GIF to consider for further period of its activity two baseline concepts- fast neutron molten salt reactor non-moderated (FMSR-NM) as a long-term alternative to solid fuelled fast neutron reactors and simultaneously, advanced high temperature reactor (AHTR) with pebble bed type solid fuel cooled by liquid salts. There will be a brief description of the prepared and performed experimental programs in these directions (as well as the preliminary results obtained so far) introduced in the paper. (author)

  6. Design characteristics of zero power fast reactor Lasta

    International Nuclear Information System (INIS)

    Milosevic, M.; Stefanovic, D.; Pesic, M.; Popovic, D.; Nikolic, D.; Antic, D.; Zavaljevski, N.

    1987-01-01

    The concept, purpose and preliminary design of a zero power fast reactor LASTA are described. The methods of computing the reactor core parameters and reactor kinetics are presented with the basic calculated results and analysis for one selected LASTA configuration. The nominal parameters are determined according to the selected reactor safety criteria and results of calculations. Important aspects related to the overall safety are examined in detail. (author)

  7. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1983-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and the USSR, under the auspices of the IAEA, to assess, define, design, construct and operate the next major experiment in the World Tokamak Program beyond the TFTR, JET, JT-60, T-15 generation. During the Zero-Phase (1979), a technical data base assessment was performed, leading to a positive assessment of feasibility. During Phase-I (1/80-6/81), a conceptual design was developed to define the concept. The programmatic objectives are that INTOR should: (1) be the maximum reasonable step beyond the TFTR, JET, JT-60, T-15 generation of tokamaks, (2) demonstrate the plasma performance required for tokamak DEMOs, (3) test the development and integration into a reactor system of those technologies required for a DEMO, (4) serve as a test facility for blanket, tritium production, materials, and plasma engineering technology, (5) test fusion reactor component reliability, (6) test the maintainability of a fusion reactor, and (7) test the factors affecting the reliability, safety and environmental acceptability of a fusion reactor. A conceptual design has been developed to define a device which is consistent with these objectives. The design concept could, with a reasonable degree of confidence, be developed into a workable engineering design of a tokamak that met the performance objectives of INTOR. There is some margin in the design to allow for uncertainty. While design solutions have been found for all of the critical issues, the overall design may not yet be optimal. (author)

  8. Advances in fusion reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.

    1987-01-01

    The author addresses the tokamak as a power reactor. Contrary to popular opinion, there are still a few people that think a tokamak might make a good fusion power reactor. In thinking about advances in fusion reactor design, in the U.S., at least, that generally means advances relevant to the Starfire design. He reviews some of the features of Starfire. Starfire is the last major study done of the tokamak as a reactor in this country. It is now over eight years old in the sense that eight years ago was really the time in which major decisions were made as to its features. Starfire was a tokamak with a major radius of seven meters, about twice the linear dimensions of a machine like TIBER

  9. ELMO Bumpy Torus fusion-reactor design study

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.

    1981-01-01

    A complete power plant design of a 1200-MWe ELMO Bumpy Torus Reactor (EBTR) is described that emphasizes those features that are unique to the EBT confinement concept, with subsystems and balance-of-plant items that are generic to magnetic fusion being adopted from past, more extensive tokamak reactor designs

  10. A novel concept for CRIEC-driven subcritical research reactors

    International Nuclear Information System (INIS)

    Nieto, M.; Miley, G.H.

    2001-01-01

    A novel scheme is proposed to drive a low-power subcritical fuel assembly by means of a long Cylindrical Radially-convergent Inertial Electrostatic Confinement (CRIEC) used as a neutron source. The concept is inherently safe in the sense that the fuel assembly remains subcritical at all times. Previous work has been done for the possible implementation of CRIEC as a subcritical assembly driver for power reactors. However, it has been found that the present technology and stage of development of IEC-based neutron sources can not meet the neutron flux requirements to drive a system as big as a power reactor. Nevertheless, smaller systems, such as research and training reactors, could be successfully driven with levels of neutron flux that seem more reasonable to be achieved in the near future by IEC devices. The need for custom-made expensive nuclear fission fuel, as in the case of the TRIGA reactors, is eliminated, and the CRIEC presents substantial advantages with respect to the accelerator-driven subcritical reactors in terms of simplicity and cost. In the present paper, a conceptual design for a research/training CRIEC-driven subcritical assembly is presented, emphasizing the description, principle of operation and performance of the CRIEC neutron source, highlighting its advantages and discussing some key issues that require study for the implementation of this concept. (author)

  11. Space reactor preliminary mechanical design

    International Nuclear Information System (INIS)

    Meier, K.L.

    1983-01-01

    An analysis was performed on the SABRE reactor space power system to determine the effect of the number and size of heat pipes on the design parameters of the nuclear subsystem. Small numbers of thin walled heat pipes were found to give a lower subsystem mass, but excessive fuel swelling resulted. The SP-100 preliminary design uses 120 heat pipes because of acceptable fuel swelling and a minimum nuclear subsystem mass of 1875 kg. Salient features of the reactor preliminary design are: individual fuel modules, ZrO 2 block core mounts, bolted collar fuel module restraints, and a BeO central plug

  12. Steady-state operation requirements of tokamak fusion reactor concepts

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1991-06-01

    In the last two decades tokamak conceptual reactor design studies have been deriving benefit from progressing plasma physics experiments, more depth in theory and increasing detail in technology and engineering. Recent full-scale reactor extrapolations such as the US ARIES-I and the EC Reference Reactor study provide information on rather advanced concepts that are called for when economic boundary conditions are imposed. The ITER international reactor design activity concentrated on defining the next step after the JET generation of experiments. For steady-state operation as required for any future commercial tokamak fusion power plants it is essential to have non-inductive current drive. The current drive power and other internal power requirements specific to magnetic confinement fusion have to be kept as low as possible in order to attain a competitive overall power conversion efficiency. A high plasma Q is primarily dependent on a high current drive efficiency. Since such conditions have not yet been attained in practice, the present situation and the degree of further development required are characterized. Such development and an appropriately designed next-step tokamak reactor make the gradual realization of high-Q operation appear feasible. (orig.)

  13. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-01-01

    This paper reports on the MAPLE-X10 reactor D 2 O-reflected, H 2 O-cooled and -moderated pool- type reactor, under construction at the Chalk River Nuclear Laboratories. This 10-MW will produce key medical and industrial radioisotopes such as 99 Mo, 125 I, and 192 Ir. The prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor as standards for the licensing of new research reactors have not been developed by the licensing authority in Canada

  14. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. Addendum 1. Alternate concepts. 12-month progress report addendum, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Schultz, K.R.; Dee, J.B.; Backus, G.A.; Culver, D.W.

    1976-01-01

    During the course of the Mirror Hybrid Fusion-Fission Reactor study several alternate concepts were considered for various reactor components. Several of the alternate concepts do appear to exhibit features with potential advantage for use in the mirror hybrid reactor. These are described and should possibly be investigated further in the future

  15. Core design with respect to the safety concept

    International Nuclear Information System (INIS)

    Kollmar, W.

    1981-01-01

    In the present paper the following topics are dealt with: Principles of reactor core design and optimization, fuel management and safety concept for higher cycles and results of risk analyses (e.g. rod ejection, steam line break etc.) (RW)

  16. Fast reactor core concepts to improve transmutation efficiency

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-01-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate

  17. Safety design study of fast breeder reactors in Japan

    International Nuclear Information System (INIS)

    Miura, M.; Inagaki, T.

    1992-01-01

    This paper reports on two fast breeder reactor (FBR) concepts, the tank type and the loop type, that have been studied as possible reactor designs to be used for a demonstration FBR (DFBR). The basic principle fo the DFBR design is to ensure plant safety through a defense-in-depth methodology. Improvements in the seismic and thermal stress designs have been attempted for both reactor concepts. The system design study strives to maximize the reliability of the safety-related systems and to rationalize commercialization of the plant

  18. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1985-01-01

    The Fusion Experimental Reactor (FER) being developed at JAERI as a next generation tokamak to JT-60 has a major mission of realizing a self-ignited long-burning DT plasma and demonstrating engineering feasibility. During FY82 and FY83 a comprehensive and intensive conceptual design study has been conducted for a pulsed operation FER as a reference option which employs a conventional inductive current drive and a double-null divertor. In parallel with the reference design, studies have been carried out to evaluate advanced reactor concepts such as quasi-steady state operation and steady state operation based on RF current drive and pumped limiter, and comparative studies for single-null divertor/pumped limiter. This report presents major results obtained primarily from FY83 design studies, while the results of FY82 design studies are described in previous references (JAERI-M 83-213--216). (author)

  19. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG ampersand G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options

  20. Conceptual design of the steady state tokamak reactor (SSTR)

    International Nuclear Information System (INIS)

    Oikawa, A.; Kikuchi, M.; Seki, Y.; Nishio, S.; Ando, T.; Ohara, Y.; Takizuka, Tani, K.; Ozeki, T.; Koizumi, K.; Ikeda, B.; Suzuki, Y.; Ueda, N.; Kageyama, T.; Yamada, M.; Mizoguchi, T.; Iida, F.; Ozawa, Y.; Mori, S.; Yamazaki, S.; Kobayashi, T.; Adachi, H.J.; Shinya, K.; Ozaki, A.; Asahara, M.; Konishi, K.; Yokogawa, N.

    1992-01-01

    This paper reports that on the basis of a high bootstrap current fraction observation with JT-60, the concept of steady state tokamak reactor , the SSTR, was conceived and was evolved with the design activity of the SSTR at JAERI. Also results of ITER/FER design activities has enhanced the SSTR design. Moreover the remarkable progress of R and D for fusion reactor engineering, especially in the development of superconducting coils and negative ion based NBI at JAERI have promoted the SSTR conceptual design as a realistic power reactor. Although present fusion power reactor designs are currently considered to be too large and costly, results of the SSTR conceptual design suggest that an efficient and promising tokamak reactor will be feasible. The conceptual design of the SSTR provides a realistic reference for a demo tokamak reactor

  1. Comparative analysis of sub-critical transmutation reactor concepts

    International Nuclear Information System (INIS)

    Chang, S. H.

    1997-01-01

    The long-lived nuclear wastes have been substantially generated from the light water reactor for a few decades. The toxicity of these spent fuels will be higher than that of the uranium ore, even if those will be stored in the repository more than ten thousands. Hence the means of transmuting the key long-lived nuclear wastes, primarily the minor actinides, using a hybrid proton accelerator and subcritical transmutation reactor, are proposed. Until now, the representative concepts for a subcritical transmutation reactor are the Energy Amplifier, the OMEGA project, the ATW and the MSBR. The detailed concepts and the specifications are illustrated in Table 1. The design requirements for the subcritical transmutation reactor are the high transmutation rate of long-lived nuclear wastes, safety and economics. And to propose the subcritical transmutation reactor concepts, the coolant, the target material and fuel type are carefully considered. In these aspects, the representative concepts for a subcritical transmutation reactor in Table 1 have been surveyed. The requirements for a target and a coolant are the reliable, low maintenance operation and safe operation to minimize the wastes. The reliable, low maintenance operation and safe operation to minimize the wastes. The reliable coolant must have the low melting point, high heat capacity and excellent physical properties. And the target material must have high neutron yield for a given proton condition and easy heat removal capability. Therefore in respect with the above requirements, Pb-Bi is proposed as the coolant and the target material for the subcritical reactor. Because the neutron yield for a given proton energy increases linearly with mass number up to bismuth but in heavier elements spallation events sharply increase both the neutron and heat outputs, Pb-Bi meets not only such the requirements as the above for the coolant but also those for the coolant and target, the simplification of system can be achieved

  2. Plant Control Concept for the Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Kim, S. O.

    2010-12-01

    A power plant is designed for incorporation into a utility's grid system and follows the load demand through the steam generator, intermediate heat exchanger(IHX), from the nuclear core. During the load-following transients, various plant parameters must be controlled to protect the reactor core and other components in the plant. The purpose of this report is to review design considerations to establish SFR plant control and to design plant control concepts. The governing equations and solution procedure of the computer code to calculate plant temperature conditions during the part-load operation was reviewed and 4 types of plant operation concepts were designed, and the results of the calculations were compared

  3. Analysis of a sustainable gas cooled fast breeder reactor concept

    International Nuclear Information System (INIS)

    Kumar, Akansha; Chirayath, Sunil S.; Tsvetkov, Pavel V.

    2014-01-01

    Highlights: • A Thorium-GFBR breeder for actinide recycling ability, and thorium fuel feasibility. • A mixture of 232 Th and 233 U is used as fuel and LWR used fuel is used. • Detailed neutronics, fuel cycle, and thermal-hydraulics analysis has been presented. • Run this TGFBR for 20 years with breeding of 239 Pu and 233 U. • Neutronics analysis using MCNP and Brayton cycle for energy conversion are used. - Abstract: Analysis of a thorium fuelled gas cooled fast breeder reactor (TGFBR) concept has been done to demonstrate the self-sustainability, breeding capability, actinide recycling ability, and thorium fuel feasibility. Simultaneous use of 232 Th and used fuel from light water reactor in the core has been considered. Results obtained confirm the core neutron spectrum dominates in an intermediate energy range (peak at 100 keV) similar to that seen in a fast breeder reactor. The conceptual design achieves a breeding ratio of 1.034 and an average fuel burnup of 74.5 (GWd)/(MTHM) . TGFBR concept is to address the eventual shortage of 235 U and nuclear waste management issues. A mixture of thorium and uranium ( 232 Th + 233 U) is used as fuel and light water reactor used fuel is utilized as blanket, for the breeding of 239 Pu. Initial feed of 233 U has to be obtained from thorium based reactors; even though there are no thorium breeders to breed 233 U a theoretical evaluation has been used to derive the data for the source of 233 U. Reactor calculations have been performed with Monte Carlo radiation transport code, MCNP/MCNPX. It is determined that this reactor has to be fuelled once every 5 years assuming the design thermal power output as 445 MW. Detailed analysis of control rod worth has been performed and different reactivity coefficients have been evaluated as part of the safety analysis. The TGFBR concept demonstrates the sustainability of thorium, viability of 233 U as an alternate to 235 U and an alternate use for light water reactor used fuel as a

  4. Revised design for the Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Brooks, J.N.

    1977-03-01

    A new, preliminary design has been identified for the tokamak experimental power reactor (EPR). The revised EPR design is simpler, more compact, less expensive and has somewhat better performance characteristics than the previous design, yet retains many of the previously developed design concepts. This report summarizes the principle features of the new EPR design, including performance and cost

  5. Fuel designs for VVER reactors

    International Nuclear Information System (INIS)

    Simonov, K.V.; Carbon, P.; Silberstein, A.

    1995-01-01

    That progresses in efficiency and safety through progresses in technology and better prediction with fully benchmarked upgraded computer codes is a common goal for on the one hand the original designer of the VVER reactors and their respective fuels and on the other hand for EVF a western company resulting from a combined force with highly diversified and complementary talents in reactor and fuel design and manufacturing. It can be expected that this new challenge and dialogue between the two Russian and European industrial ventures will be mutually beneficial and yield innovative and high quality products and as a consequence strong return will be produced for the best interest of utilities operating VVER reactors. (orig./HP)

  6. Engineering design of advanced marine reactor MRX

    International Nuclear Information System (INIS)

    1997-10-01

    JAERI has studied the design of an advanced marine reactor (named as MRX), which meets requirements of the enhancement of economy and reliability, by reflecting results and knowledge obtained from the development of N.S. Mutsu. The MRX with a power of 100 MWt is intended to be used for ship propulsion such as an ice-breaker, container cargo ship and so on. After completion of the conceptual design, the engineering design was performed in four year plan from FY 1993 to 1996. (1) Compactness, light-weightiness and simplicity of the reactor system are realized by adopting an integral-type PWR, i.e. by installing the steam generator, the pressurizer, and the control rod drive mechanism (CRDM) inside the pressure vessel. Because of elimination of the primary coolant circulation pipes in the MRX, possibility of large-scale pipe break accidents can be eliminated. This contributes to improve the safety of the reactor system and to simplify the engineered safety systems. (2) The in-vessel type CRDM contributes not only to eliminate possibilities of rod ejection accidents, but also to make the reactor system compact. (3) The concept of water-filled containment where the reactor pressure vessel is immersed in the water is adopted. It can be of use for emergency core cooling system which maintains core flooding passively in case of a loss-of-coolant accident. The water-filled containment system also contributes essentially light-weightness of the reactor system since the water inside containment acts as a radiation shield and in consequence the secondary radiation shield can be eliminated. (4) Adoption of passive decay heat removal systems has contributed in a greater deal to simplification of the engineered safety systems and to enhancement of reliability of the systems. (5) Operability has been improved by simplification of the whole reactor system, by adoption of the passive safety systems, advanced automatic operation systems, and so on. (J.P.N.)

  7. Comparison of three ICF reactor designs

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1984-01-01

    Three concepts for inertial confinement fusion (ICF) reactors are described and compared with each other, and with magnetic fusion and fission reactors on the basis of environmental impact, safety and efficiency. The critical technical developments of each concept are described. The three concepts represent alternative development paths for inertial fusion

  8. New reactor concepts; Nieuwe rectorconcepten - nouveaux reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Meskens, G.; Govaerts, P.; Baugnet, J.-M.; Delbrassine, A

    1998-11-01

    The document gives a summary of new nuclear reactor concepts from a technological point of view. Belgium supports the development of the European Pressurized-Water Reactor, which is an evolutionary concept based on the European experience in Pressurized-Water Reactors. A reorientation of the Belgian choice for this evolutionary concept may be required in case that a decision is taken to burn plutonium, when the need for flexible nuclear power plants arises or when new reactor concepts can demonstrate proved benefits in terms of safety and cost.

  9. Mechanical design of a magnetic fusion production reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Jassby, D.L.

    1986-01-01

    The mechanical aspects of a tandem mirror and tokamak concepts for the tritium production mission are compared, and a proposed breeding blanket configuration for each type of reactor is presented in detail, along with a design outline of the complete fusion reaction system. In both cases, the reactor design is developed sufficiently to permit preliminary cost estimates of all components. A qualitative comparison is drawn between both concepts from the view of mechanical design and serviceability, and suggestions are made for technology proof tests on unique mechanical features. Detailed cost breakdowns indicate less than 10% difference in the overall costs of the two reactors

  10. Conceptual design of Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tone, T.; Fujisawa, N.

    1983-01-01

    Conceptual design studies of the Fusion Experimental Reactor (FER) have been performed. The FER has an objective of achieving selfignition and demonstrating engineering feasibility as a next generation tokamak to JT-60. Various concepts of the FER have been considered. The reference design is based on a double-null divertor. Optional design studies with some attractive features based on advanced concepts such as pumped limiter and RF current drive have been carried out. Key design parameters are; fusion power of 440 MW, average neutron wall loading of 1MW/m 2 , major radius of 5.5m, plasma minor radius of 1.1m, plasma elongation of 1.5, plasma current of 5.3MA, toroidal beta of 4%, toroidal field on plasma axis of 5.7T and tritium breeding ratio of above unity

  11. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    Andersor, C.K.; Harris, R.P.; Crump, M.W.; Fuhrman, N.

    1987-01-01

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  12. Conceptual designs of tokamak reactor and R D

    International Nuclear Information System (INIS)

    Fukai, Yuzo; Yamato, Harumi; Sawada, Yoshio

    1983-01-01

    The conceptual design of both FER (Fusion Experimental Reactor) and R-project is now under way as the new step of JT-60. From the engineering viewpoint, these reactors, requiring D-T operation, have the challenge, such as the handling of tritium and components irradiated by neutron bombardment. Toshiba's design team is participating to these projects in order to realize the reactor and plant concept coping with the above objectives. This paper represents the conceptual design contributions of the FER and R-project as well as R D technology which are now under development, such as tritium handling app aratus, reactor materials, etc. (author)

  13. Conceptual design study of small lead-bismuth cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Hori, Toru; Kida, Masanori; Konomura, Mamoru

    2004-11-01

    In phase 2 of the feasibility study of commercialized fast reactor cycle systems of JNC, we make a concept of a small sodium cooled reactor for a power source of a city with various requirements, such as, safety and economical competitiveness. various reactor concepts are surveyed and a tank type reactor whose intermediate heat exchanger and primary main pumps are arranged in series is selected. In this study, a compact long life core and a simple reactor structure designs are pursued. The core type is three regional Zr concentration with one Pu enrichment core, the reactor outlet temperature achieves 550degC and the reactor electric output increases from 150 MWe to 165 MWe. The construction cost is much higher than the economical goal in the case of FOAK. But the construction cost in the case of NOAK is estimated to be 85.6% achieving the economical goal. (author)

  14. Study on plant concept for gas cooled fast reactor

    International Nuclear Information System (INIS)

    Moribe, Takeshi; Kubo, Shigenobu; Saigusa, Toshiie; Konomura, Mamoru

    2003-05-01

    In 'Feasibility Study on Commercialized Fast Reactor Cycle System', technological options including various coolant (sodium, heavy metal, gas, water, etc.), fuel type (MOX, metal, nitride) and output power are considered and classified, and commercialized FBR that have economical cost equal to LWR are pursued. In conceptual study on gas cooled FBR in FY 2002, to identify the prospect of the technical materialization of the helium cooled FBR using coated particle fuel which is an attractive concept extracted in the year of FY2001, the preliminary conceptual design of the core and entire plant was performed. This report summarizes the results of the plant design study in FY2002. The results of study is as follows. 1) For the passive core shutdown equipment, the curie point magnet type self-actuated device was selected and the device concept was set up. 2) For the reactor block, the concept of the core supporting structure, insulators and liners was set up. For the material of the heat resistant structure, SiC was selected as a candidate. 3) For the seismic design of the plant, it was identified that a design concept with three-dimensional base isolation could be feasible taking the severe seismic condition into account. 4) For the core catcher, an estimation of possible event sequences under severe core damage condition was made. A core catcher concept which may suit the estimation was proposed. 5) The construction cost was roughly estimated based on the amount of materials and its dependency on the plant output power was evaluated. The value for a small sized plant exceeds the target construction cost about 20%. (author)

  15. Design concept of KALIMER-600

    International Nuclear Information System (INIS)

    Hahn, Dohee; Kim, Yeong-Il; Kim, Seong-O; Lee, Jae-Han; Lee, Yong-Bum

    2005-01-01

    KALIMER-600 is a pool-type sodium-cooled reactor loaded with U-TRU-10%Zr metal fuels generating the net electricity output of 600 MWe. In order to enhance the proliferation resistance, no blanket assemblies are loaded in the core. To suppress the high power peaking factor, some of the fuel rods are replaced with B 4 C rods and dummy rods. The heat transport system is comprised of two independent loops of IHTS and SGS and the safety-grade residual heat removal system, PDRC, is a completely passive system. Main features of the mechanical structure design of KALIMER-600 are the seismically isolated reactor building, the reduced total pipe length of the IHTS, the simplified reactor support, and the compact reactor internal structures. From the safety analyses, the KALIMER-600 design is verified to be capable of accommodating all the analyzed ATWS events. This self-regulation capability of the KALIMER-600 is mainly due to the inherent reactivity feedback mechanisms and completely passive PDRC system. (author)

  16. The risks of nuclear energy technology. Safety concepts of light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Kern- und Energietechnk (IKET); Kessler, Guenter; Veser, Anke; Schlueter, Franz-Hermann

    2014-11-01

    Analyses the risks of nuclear power stations. Discusses the security concept of reactors. Analyzes possible crash of air planes on a reactor containment. Presents measures against the spread of radioactivity after a severe accident. Written in engaging style for professionals and policy makers. The book analyses the risks of nuclear power stations. The security concept of reactors is explained. Measures against the spread of radioactivity after a severe accident, accidents of core melting and a possible crash of an air plane on a reactor containment are discussed. The book covers three scientific subjects of the safety concepts of Light Water Reactors: - A first part describes the basic safety design concepts of operating German Pressurized Water Reactors and Boiling Water Reactors including accident management measures introduced after the reactor accidents of Three Mile Island and Chernobyl. These safety concepts are also compared with the experiences of the Fukushima accidents. In addition, the safety design concepts of the future modern European Pressurized Water Reactor (EPR) and of the future modern Boiling Water Reactor SWR-1000 (KERENA) are presented. These are based on new safety research results of the past decades. - In a second, part the possible crash of military or heavy commercial air planes on a reactor containment is analyzed. It is shown that reactor containments can be designed to resist to such an airplane crash. - In a third part, an online decision system is presented. It allows to analyze the distribution of radioactivity in the atmosphere and to the environment after a severe reactor accident. It provides data for decisions to be taken by authorities for the minimization of radiobiological effects to the population. This book appeals to readers who have an interest in save living conditions and some understanding for physics or engineering.

  17. Evolution of the technical concept of fast reactors. The concept of BREST

    International Nuclear Information System (INIS)

    Orlov, V.V.

    2001-01-01

    Having understood that conventional power was limited by available fuel resources, as well as the environmental concern, and willing to use the advantages of defense nuclear power achievements, the development of civil nuclear power was initiated. Scarce supply of uranium has been a matter of concern from the very beginning of nuclear power development, but plutonium produced in the thermal reactors was supposed to be used as fuel for the fast reactors which would not be limited by fuel resources. In order to attain high breeding ratio and high power density, the first generation of fast reactors were designed with sodium coolant, uranium blanket to make up for a decrease in breeding ratio if uranium oxides were used as fuel. Development of nuclear power in the sixties and seventies was followed by stagnation. Lessons learned from a 50-year experience and new conditions set for power industry demand a new concept of fast reactor which would meet a variety of cost-efficiency and safety requirements in their present understanding. Development of fast breeders in Russia began after commissioning of BN-350 and completion of BN-600 design. According to present demands BREST reactors should be designed so as to implement consistently the principles of natural safety without deviation from materials and technology which was proven in defense and civil nuclear power facilities

  18. Design improvements in TRIGA reactors

    International Nuclear Information System (INIS)

    Batch, John M.

    1970-01-01

    There have been many design improvements to TRIGA reactor hardware in the past twelve years. One of the more important and most obvious improvements has been in the area of reactor instrumentation. The low profile, completely transistorized Mark III console was a great step forward in a low maintenance, high reliability instrumentation system. Other design improvements include the lazy susan specimen pickup assembly; the specimen container; an empty stainless steel fuel element which can be filled with samples and can be located anywhere in the core; the flexible fuel handling tool; a new fuel measuring tool design; the shock absorber on the adjustable transient rod drive; new testing and evaluation procedures on the thermocouples and other

  19. Design study on sodium-cooled large-scale reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2001, which is the first year of Phase 2. In the JFY2001 design study, a plant concept has been constructed based on the design of the advanced loop type reactor, and fundamental specifications of main systems and components have been set. Furthermore, critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  20. An energy amplifier fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, F.; Seifritz, W.

    2001-01-01

    The concept of a fluidized bed nuclear reactor driven by an energy amplifier system is described. The reactor has promising characteristics of inherent safety and passive cooling. The reactor can easily operate with any desired spectrum in order to be a plutonium burner or have it operate with thorium fuel cycle. (orig.) [de

  1. Present status of inertial confinement fusion reactor design

    International Nuclear Information System (INIS)

    Mima, Kunioki; Ido, Shunji; Nakai, Sadao.

    1986-01-01

    Since inertial nuclear fusion reactors do not require high vacuum and high magnetic field, the structure of the reactor cavity becomes markedly simple as compared with tokamak type fusion reactors. In particular, since high vacuum is not necessary, liquid metals such as lithium and lead can be used for the first wall, and the damage of reactor structures by neutrons can be prevented. As for the core, the energy efficiency of lasers is not very high, accordingly it must be designed so that the pellet gain due to nuclear fusion becomes sufficiently high, and typically, the gain coefficient from 100 to 200 is necessary. In this paper, the perspective of pellet gain, the plan from the present status to the practical reactors, and the conceptual design of the practical reactors are discussed. The plan of fuel ignition, energy break-even and high gain by the implosion mode, of which the uncertain factor due to uneven irradiation and instability was limited to the minimum, was clarified. The scenario of the development of laser nuclear fusion reactors is presented, and the concept of the reactor system is shown. The various types of nuclear fusion-fission hybrid reactors are explained. As for the design of inertial fusion power reactors, the engineering characteristics of the core, the conceptual design, water fall type reactors and DD fuel reactors are discussed. (Kako, I.)

  2. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Berglund, R.C.

    1993-01-01

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  3. At-reactor storage concepts criteria for preliminary assessment

    International Nuclear Information System (INIS)

    Boydston, L.A.

    1981-12-01

    The licensing, safety, and environmental considerations of four wet and four dry at-reactor storage concepts are presented. Physical criteria for each concept are examined to determine the minimum site and facility requirements which must be met by a utility which desires to expand its at-reactor spent fuel storage capability

  4. Conceptual design of inherently safe integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Chang, M. H.; Lee, D. J. and others

    1999-03-01

    The design concept of a 300 MWt inherently safe integral reactor(ISIR) for the propulsion of extra large and superhigh speed container ship was developed in this report. The scope and contents of this report are as follows : 1. The state of the art of the technology for ship-mounted reactor 2. Design requirements for ISIR 3. Fuel and core design 4. Conceptual design of fluid system 5. Conceptual design of reactor vessel assembly and primary components 6. Performance analyses and safety analyses. Installation of two ISIRs with total thermal power of 600MWt and efficiency of 21% is capable of generating shaft power of 126,000kW which is sufficient to power a container ship of 8,000TEU with 30knot cruise speed. Larger and speedier ship can be considered by installing 4 ISIRs. Even though the ISIR was developed for ship propulsion, it can be used also for a multi-purpose nuclear power plant for electricity generation, local heating, or seawater desalination by mounting on a movable floating barge. (author)

  5. ETHICAL FASHION CONCEPT AND DESIGNERS

    Directory of Open Access Journals (Sweden)

    Pinar GOKLUBERK OZLU

    2015-01-01

    Full Text Available Some problems like rapidly developing industrialization, irregular population growth, environmental pollution and to feel the impact of global warming as seriously, has been giving significant damage to the earth. People has realized that, after polluting to clean is harder than polluting of the measures to be taken before. And again people showed the sensitivity to the environment through different reactions and sanctions, took measures and created the new concepts about the enviroment. "Ethical Fashion" concept was created by the conscious and responsible individuals in the last two decades. However, that are being implemented as a concept is noticeable. Textile and fashion industry cover "Ethical Fashion"; ecological product, working conditions, fair trade and sustainable product are all in that concept. "Ethical Fashion" appeared and developed especially in United Kingdom, the USA and the other European countries. Nowadays, we may see a lot of textile and fashion designers, fabric and clothing collections, fairs and some specific courses at the universities about "Ethical Fashion". In this research contains "Ethical Fashion" concept, it's development processes and fashion designers who is working for this concept at the present time, also the main target is in this research, semtinizing "Ethical Fashion" concept.

  6. Overall plant concept for a tank-type fast reactor

    International Nuclear Information System (INIS)

    Yamaki, Hideo; Davies, S.M.; Goodman, L.

    1984-01-01

    Japanese nuclear industries are expressing interest in the merits of the tank-type FBR as a large plant (demonstration) after JOYO (experimental, in operation) and MONJU (prototype, under construction). In response to this growing interest in a tank-type FBR demonstration plant, Hitachi has initiated a conceptual study of a 1000 MWe tank plant concept in collaboration with GE and Bechtel. Key objectives of this study have been: to select reliable and competitive tank plant concepts, with emphases on a seismic-resistant and compact tank reactor system;to select reliable shutdown heat removal system;and to identify R and D items needed for early 1990s construction. Design goals were defined as follows: capital costs must be less than twice, and as close as practical to 1.5 those of equivalent LWR plants;earthquake resistant structures to meet stringent Japanese seismic conditions must be as simple and reliable as practical;safety must be maintained at LWR-equivalent risks;and R and D needs must be limited to minimum cost for the limited time allowed. This paper summarizes the overall plant concepts with some selected topics, whereas detailed descriptions of the reactor assembly and the layout design are found in separate papers

  7. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  8. Development of design technology for advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Kim, Si Hwan; Chang, Moon Hee; Lee, Jong Chul

    1991-08-01

    In order to investigate the feasibility of the domestic passive reactor development, the analysis and evaluation on the development status, technical characteristics, and the safety and economy for the overseas passive reactors were carried out based on the vendor's information. Also the domestic nuclear technology basis was surveyed. The analysis and evaluation of the development status and technical characteristics were performed mainly for the AP-600 developed by Westing house and the SIR of UKAEA. The new design concepts and system characteristics have been evaluated by utilizing EPRI Utility Requirement Documents and Lahmeyer evaluation criteria. Based on this evaluation the recommendable design concepts in each major system were selected. The feasibility for the domestic passive reactor development has focused on the safety, technology and economy aspects, and on the applicability of the existing domestic technology to the design of the passive reactor. And the development plan for the domestic passive reactor was recommended in a step by step way. (Author)

  9. Nuclear design of ISER [intrinsically safe and economical reactor

    International Nuclear Information System (INIS)

    Yamano, Naoki; Yokoyama, Takashi

    1985-01-01

    A preliminary core design work on ISER (Intrinsically Safe and Economical Reactor) based on the concept of the PIUS reactor of ASEA-ATOM is performed in order to grasp the characteristics of the reactor core and the fuel management scheme. Certain relations between the fuel specifications and the cycle length are estimated. Items of improvement on the ISER core characteristics and problems to be considered on the nuclear design are presented. Experiments to be considered are also discussed in conjunction with the development of experimental reactor (ISER-E)

  10. Modified-open fuel cycle performance with breed-and-burn advanced reactor concepts

    International Nuclear Information System (INIS)

    Heidet, Florent; Kim, Taek K.; Taiwo, Temitope A.

    2011-01-01

    Recent advances in fast reactor designs enable significant increase in the uranium utilization in an advanced fuel cycle. The category of fast reactors, collectively termed breed-and-burn reactor concepts, can use a large amount of depleted uranium as fuel without requiring enrichment with the exception of the initial core critical loading. Among those advanced concepts, some are foreseen to operate within a once-through fuel cycle such as the Traveling Wave Reactor, CANDLE reactor or Ultra-Long Life Fast Reactor, while others are intended to operate within a modified-open fuel cycle, such as the Breed-and-Burn reactor and the Energy Multiplier Module. This study assesses and compares the performance of the latter category of breed-and-burn reactors at equilibrium state. It is found that the two reactor concepts operating within a modified-open fuel cycle can significantly improve the sustainability and security of the nuclear fuel cycle by decreasing the uranium resources and enrichment requirements even further than the breed-and-burn core concepts operating within the once-through fuel cycle. Their waste characteristics per unit of energy are also found to be favorable, compared to that of currently operating PWRs. However, a number of feasibility issues need to be addressed in order to enable deployment of these breed-and-burn reactor concepts. (author)

  11. Conceptual design report on advanced marine reactor MRX of Japan

    International Nuclear Information System (INIS)

    Wang Shengguo

    1995-01-01

    Design studies on the advanced marine reactors have been done continuously since 1983 at Japan Atomic Energy Institute (JAERI) in order to develop attractive marine reactors for the next generation. At present, two concepts of marine reactor are being formulated. One is 100 MWt MRX (marine Reactor X) for the marine reactor and the other is 150 kWe DRX (Deep Sea-Reactor X) for a deep-sea research vessel. They are characterized by an integral type PWR, built-type control rod drive mechanisms, a water-filled container and a passive decay heat removal system, which realize highly passive safe and compact reactors. The paper is a report about all major results of the MRX design study

  12. Preliminary concepts: safeguards for spent light-water reactor fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Dietz, R.J.

    1979-06-01

    The technology available for safeguarding spent nuclear fuels from light-water power reactors is reviewed, and preliminary concepts for a spent-fuel safeguards system are presented. Essential elements of a spent-fuel safeguards system are infrequent on-site inspections, containment and surveillance systems to assure the integrity of stored fuel between inspections, and nondestructive measurements of the fuel assemblies. Key safeguards research and development activities necessary to implement such a system are identified. These activities include the development of tamper-indicating fuel-assembly identification systems and the design and development of nondestructive spent-fuel measurement systems

  13. Conceptual design of ICF reactor SENRI, Part II. Advances in design and pellet gain scaling

    International Nuclear Information System (INIS)

    Ido, S.; Mima, K.; Nakai, S.; Tsuji, R.; Yamanaka, C.

    1984-01-01

    This chapter reviews the recent design studies on reactor concepts with magnetically guided lithium flow, SENRI-I, SENRI-IA and SENRI-II. The routes from the present status to power reactors and an advanced fuel pellet concept is also discussed. Topics covered include pellet design, magnetohydrodynamic design of liquid lithium flow; reactor cavity concepts with magnetically guided lithium flow, a thermo-hydraulic analysis, a tritium recovery system; and an advanced fuel pellet concept for an inertial confinement fusion (ICF) reactor without a tritium breeding blanket. An advanced fuel pellet for an ICF reactor without a T breeder was studied in the model calculations, which showed sufficiently high values of pellet gain. Includes a table and 8 diagrams

  14. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  15. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  16. SWR 1000: The new boiling water reactor power plant concept

    International Nuclear Information System (INIS)

    Brettschuh, W.

    1999-01-01

    Siemens' Power Generation Group (KWU) is currently developing - on behalf of and in close co-operation with the German nuclear utilities and with support from various European partners - the boiling water reactor SWR 1000. This advanced design concept marks a new era in the successful tradition of boiling water reactor technology in Germany and is aimed, with an electric output of 1000 MW, at assuring competitive power generating costs compared to large-capacity nuclear power plants as well as coal-fired stations, while at the same time meeting the highest of safety standards, including control of a core melt accident. This objective is met by replacing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. A short construction period, flexible fuel cycle lengths of between 12 and 24 months and a high fuel discharge burnup all contribute towards meeting this goal. The design concept fulfils international nuclear regulatory requirements and will reach commercial maturity by the year 2000. (author)

  17. Design criteria for advanced reactors

    International Nuclear Information System (INIS)

    Dennielou, Y.

    1991-01-01

    Design criteria for advanced reactors are discussed, including safety aspects, site selection, problems related to maintenance and possibility of repairing or replacing structures or components of a nuclear power plant, the human factor considerations. Bearing in mind that some of these criteria are the subject of consensus at international level, the author suggests to establish a table of different operator requirements, to prepare a dossier on the comparison of input data for probabilistic risk analysis, to take into consideration the means to control a severe accident from the very start of the design

  18. Evolution of the liquid metal reactor: The Integral Fast Reactor (IFR) concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) concept has been under development at Argonne National Laboratory since 1984. A key feature of the IFR concept is the metallic fuel. Metallic fuel was the original choice in early liquid metal reactor development. Solid technical accomplishments have been accumulating year after year in all aspects of the IFR development program. But as we make technical progress, the ultimate potential offered by the IFR concept as a next generation advanced reactor becomes clearer and clearer. The IFR concept can meet all three fundamental requirements needed in a next generation reactor. This document discusses these requirements: breeding, safety, and waste management. 5 refs., 4 figs

  19. Russian RBMK reactor design information

    International Nuclear Information System (INIS)

    1993-11-01

    This document concerns the systems, design, and operations of the graphite-moderated, boiling, water-cooled, channel-type (RBMK) reactors located in the former Soviet Union (FSU). The Russian Academy of Sciences Nuclear Safety Institute (NSI) in Moscow, Russia, researched specific technical questions that were formulated by the Pacific Northwest Laboratory (PNL) and provided detailed technical answers to those questions. The Russian response was prepared in English by NSI in a question-and-answer format. This report presents the results of that technical exchange in the context they were received from the NSI organization. Pacific Northwest Laboratory is generating this document to support the US Department of Energy (DOE) community in responding to requests from FSU states, which are seeking Western technological and financial assistance to improve the safety systems of the Russian-designed reactors. This report expands upon information that was previously available to the United States through bilateral information exchanges, international nuclear society meetings, International Atomic Energy Agency (IAEA) reactor safety programs, and Research and Development Institute of Power Engineering (RDIPE) reports. The response to the PNL questions have not been edited or reviewed for technical consistency or accuracy by PNL staff or other US organizations, but are provided for use by the DOE community in the form they were received

  20. Nuclear design of a very-low-activation fusion reactor

    International Nuclear Information System (INIS)

    Cheng, E.T.; Hopkins, G.R.

    1983-06-01

    An investigation was conducted to study the nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE tokamak reactor design

  1. Supercritical-pressure, once-through cycle light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi

    2001-01-01

    The purpose of the study is to develop new reactor concepts for the innovation of light water reactors (LWR) and fast reactors. Concept of the once-through coolant cycle, supercritical-pressure light water cooled reactor was developed. Major aspects of reactor design and safety were analysed by the computer codes which were developed by ourselves. It includes core design of thermal and fast reactors, plant system, safety criteria, accident and transient analysis, LOCA, PSA, plant control, start up and stability. High enthalpy rise as supercritical boiler was achieved by evaluating the cladding temperature directly during transients. Fundamental safety principle of the reactor is monitoring coolant flow rate instead of water level of LWR. The reactor system is compact and simple because of high specific enthalpy of supercritical water and the once-through cycle. The major components are similar to those of LWR and supercritical thermal plant. Their temperature are within the experiences in spite of the high outlet coolant temperature. The reactor is compatible with tight fuel lattice fast reactor because of the high head pumps and low coolant flow rate. The power rating of the fast reactor is higher than the that of thermal reactor because of the high power density. (author)

  2. Designing the Cascade inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1987-01-01

    The primary goal in designing inertial confinement fusion (ICF) reactors is to produce electrical power as inexpensively as possible, with minimum activation and without compromising safety. This paper discusses a method for designing the Cascade rotating ceramic-granule-blanket reactor (Pitts, 1985) and its associated power plant (Pitts and Maya, 1985). Although focus is on the cascade reactor, the design method and issues presented are applicable to most other ICF reactors

  3. Reactor physics challenges in GEN-IV reactor design

    International Nuclear Information System (INIS)

    Driscoll, Michael K.; Hejzlar, Pavel

    2005-01-01

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources

  4. Reactor physics challenges in GEN-IV reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Michael K.; Hejzlar, Pavel [Massachusetts Institute of Technology, MA (United States)

    2005-02-15

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources.

  5. The Traveling Wave Reactor: Design and Development

    Directory of Open Access Journals (Sweden)

    John Gilleland

    2016-03-01

    Full Text Available The traveling wave reactor (TWR is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place−sometimes referred to as the standing wave reactor (SWR. TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 235U and below, which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for reprocessing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technology development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.

  6. Standard mirror fusion reactor design study

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    This report covers the work of the Magnetic Fusion Energy Division's reactor study group during FY 1976 on the standard mirror reactor. The ''standard'' mirror reactor is characterized as a steady state, neutral beam sustained, D-T fusioning plasma confined by a Yin-Yang magnetic mirror field. The physics parameters are obtained from the same physics model that explains the 2XIIB experiment. The model assumes that the drift cyclotron loss cone mode occurs on the boundary of the plasma, and that it is stabilized by warm plasma with negligible energy investment. The result of the study was a workable mirror fusion power plant, steady-state blanket removal made relatively simple by open-ended geometry, and no impurity problem due to the positive plasma potential. The Q (fusion power/injected beam power) turns out to be only 1.1 because of loss out the ends from Coulomb collisions, i.e., classical losses. This low Q resulted in 77% of the gross electrical power being used to power the injectors, thereby causing the net power cost to be high. The low Q stimulated an intensive search for Q-enhancement concepts, resulting in the LLL reactor design effort turning to the field reversal mirror and the tandem mirror, each having Q of order 5

  7. Blanket concepts for the ARIES commercial tokamak reactor study

    International Nuclear Information System (INIS)

    Grotz, S.P.; Ghoniem, N.M.; Hasan, M.Z.; Martin, R.C.; Najmabadi, F.; Sharafat, S.; Hua, T.; Sze, D.K.; Cheng, E.T.; Creedon, R.L.; Wong, C.P.C.; Herring, J.S.; Klein, A.; Snead, L.; Steiner, D.

    1989-01-01

    The ARIES study is a 3-year effort, started in 1988, exploring the potential of the tokamak to be an attractive and competitive commercial power reactor. Several different versions of the tokamak are being considered, combining different levels of extrapolations in physics and engineering databases. The first version studied in detail, ARIES-I, combines present-day physics (with minimal extrapolation) with aggressive engineering technology such as very high-field, superconducting magnets and low-activation silicon carbide composite materials. The ARIES-I version is designed to meet acceptable safety and environmental criteria. In particular, achieving a passively safe concept that meets Class-C waste disposal is one of the high leverage items in the design. This paper summarizes the scoping analysis and engineering design of the ARIES-I fusion-power-core subsystems. The ARIES-I design is a 1000 MW e power reactor, operating at steady state in the 1 st stability regime and uses a high magnetic field. Typical operating parameters of the ARIES-I strawman design are listed

  8. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  9. The materials programme for the high-temperature gas-cooled reactor in the Federal Republic of Germany: Status of the development of high-temperature materials, integrity concept, and design codes

    International Nuclear Information System (INIS)

    Nickel, H.; Bodmann, E.; Seehafer, H.J.

    1990-01-01

    During the last 15 years, the research and development of materials for high temperature gas-cooled reactor (HTGR) applications in the Federal Republic of Germany have been concentrated on the qualification of high-temperature structural alloys. Such materials are required for heat exchanger components of advanced HTGRs supplying nuclear process heat in the temperature range between 750 deg. and 950 deg. C. The suitability of the candidate alloys for service in the HTGR has been established, and continuing research is aimed at verification of the integrity of components over the envisaged service lifetimes. The special features of the HTGR which provide a high degree of safety are the use of ceramics for the core construction and the low power density of the core. The reactor integrity concept which has been developed is based on these two characteristics. Previously, technical guidelines and design codes for nuclear plants were tailored exclusively to light water reactor systems. An extensive research project was therefore initiated which led to the formulation of the basic principles on which a high temperature design code can be based. (author)

  10. Conceptual design of the Purdue compact torus/passive liner fusion reactor

    International Nuclear Information System (INIS)

    Terry, W.K.

    1981-01-01

    This proposal describes a program for the conceptual development of a novel fusion reactor design, the Purdue Compact Torus/Passive Liner Reactor. The key features of the concept are described and a comparison is made with a conventional tokamak

  11. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion reactors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  12. The dual fluid reactor - a new concept for a highly effective fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huke, A.; Ruprecht, G. [Institut fur Festkorper-Kernphysik gGmbH, Leistikowstr, Berlin (Germany); WeiBbach, D. [Institut fur Festkorper-Kernphysik gGmbH, Leistikowstr, Berlin (Germany); Univ. Szczecin, ul. Wielkopolska, Inst. Fizyki, Wydzial Matematyczno-Fizyczny, Szczecin, (Poland); Gottlieb, S. [Institut fur Festkorper-Kernphysik gGmbH, Leistikowstr, Berlin (Germany); Hussein, A. [Institut fur Festkorper-Kernphysik gGmbH, Leistikowstr, Berlin (Germany); Univ. of Northern British Columbia, Dept. of Physics, Prince George, BC (Canada); Czerski, K. [Institut fur Festkorper-Kernphysik gGmbH, Leistikowstr, Berlin (Germany); Univ. Szczecin, ul. Wielkopolska, Inst. Fizyki, Wydzial Matematyczno-Fizyczny, Szczecin, (Poland)

    2014-07-01

    The Dual Fluid Reactor, DFR, is a novel concept of a fast heterogeneous nuclear reactor. Its key feature is the employment of two separate liquid cycles, one for fuel and one for the coolant. As opposed to other liquid-fuel concepts like the molten-salt fast reactor (MSFR), in the DFR both cycles can be separately optimized for their respective purpose, leading to advantageous consequences: A very high power density resulting in enormous cost savings, and a highly negative temperature feedback coefficient, enabling a self-regulation without any control rods or mechanical parts in the core. The fuel liquid, an undiluted actinide trichloride (consisting of isotope-purified {sup 37}Cl) in the reference design, circulates at an operating temperature of 1300 K and can be processed on-line in a small internal processing unit utilizing fractionated distillation or electro refining. Medical radioisotopes like Mo-99/Tc-99m are by-products and can be provided right away. In a more advanced design, an actinide metal alloy melt with an appropriately low solidus temperature is well possible which further compactifies the core and allows to further increase the operating temperature due to its high heat conductivity. The best choice for the coolant is pure lead which yields a very hard neutron spectrum. (author)

  13. Conceptual design of the advanced marine reactor MRX

    International Nuclear Information System (INIS)

    1991-02-01

    Design studies on the advanced marine reactors have been done continuously since 1983 at JAERI in order to develop attractive marine reactors for the next generation. At present, two marine reactor concepts are being formulated. One is 100 MWt MRX (Marine Reactor X) for an icebreaker and the other is 300 kWe DRX (Deep-sea Reactor X) for a deep-sea research vessel. They are characterized by an integral type PWR, built-in type control rod drive mechanisms, a water-filled container and a passive decay heat removal system, which realize highly passive safe and compact reactors. This paper is a detailed report including all major results of the MRX design study. (author)

  14. IVVS probe mechanical concept design

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it; Neri, Carlo; De Collibus, Mario Ferri; Mugnaini, Giampiero; Pollastrone, Fabio; Crescenzi, Fabio

    2015-10-15

    Highlights: • ENEA designed, developed and tested a laser based In Vessel Viewing System (IVVS). • IVVS mechanical design has been revised from 2011 to 2013 to meet ITER requirements. • Main improvements are piezoceramic actuators and a step focus system. • Successful qualification activities validated the concept design for ITER environment. - Abstract: ENEA has been deeply involved in the design, development and testing of a laser based In Vessel Viewing System (IVVS) required for the inspection of ITER plasma-facing components. The IVVS probe shall be deployed into the vacuum vessel, providing high resolution images and metrology measurements to detect damages and possible erosion. ENEA already designed and manufactured an IVVS probe prototype based on a rad-hard concept and driven by commercial micro-step motors, which demonstrated satisfying viewing and metrology performances at room conditions. The probe sends a laser beam through a reflective rotating prism. By rotating the axes of the prism, the probe can scan all the environment points except those present in a shadow cone and the backscattered light signal is then processed to measure the intensity level (viewing) and the distance from the probe (metrology). During the last years, in order to meet all the ITER environmental conditions, such as high vacuum, gamma radiation lifetime dose up to 5 MGy, cumulative neutron fluence of about 2.3 × 10{sup 17} n/cm{sup 2}, temperature of 120 °C and magnetic field of 8 T, the probe mechanical design was significantly revised introducing a new actuating system based on piezo-ceramic actuators and improved with a new step focus system. The optical and mechanical schemes have been then modified and refined to meet also the geometrical constraints. The paper describes the mechanical concept design solutions adopted in order to fulfill IVVS probe functional performance requirements considering ITER working environment and geometrical constraints.

  15. Design guide for Category III reactors: pool type reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-11-01

    The Department of Energy (DOE) in the ERDA Manual requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirement of Category III reactor structures, components, and systems

  16. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  17. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  18. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  19. Reversed-Field Pinch Reactor (RFPR) concept

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Cort, G.E.

    1979-08-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a Reversed-Field Pinch (FRP) configuration is presented. A 50% atomic mixture of deuterium and tritium (DT) is ohmically heated to ignition by currents flowing in the toroidal plasma; this plasma current also inherently produces the confining magnetic fields in a toroidal chamber having a major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and burns at 10 to 20 keV for approx. 20 s to give a fuel burnup of approx. 50%. Tritium breeding occurs in a granular Li 2 O blanket which is packed around an array of radially oriented coolant tubes carrying a mixture of high-pressure steam and water. The slightly superheated steam emerging from this blanket would be used to drive a turbine directly. Low-pressure helium containing trace amounts of oxygen is circulated through the packed Li 2 O bed to extract the tritium. A 20-mm-thick copper first wall serves as a neutron multiplier, acts as a tritium barrier, and supports image currents to provide plasma stabilization on a 0.1-s timescale; external windings provide stability for longer times

  20. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were set up, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  1. Development of mechanical design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were setup, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  2. Alternative fusion concepts and the prospects for improved reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1985-01-01

    Past trends, present status, and future directions in the search for an improved fusion reactor are reviewed, and promising options available to boh the principle tokamak and other supporting concept are summarized

  3. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  4. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  5. Design approaches for enhancing the engineering feasibility of tokamak power reactors

    International Nuclear Information System (INIS)

    Shannon, T.E.; Steiner, D.

    1977-01-01

    The design approach developed in the ORNL Fusion Power Demonstration Study is reviewed. The design concepts having greatest impact on reactor feasibility by the application of current or near term technology are described briefly. These are: blanket structural material, blanket coolant, power conversion system, and pulsed electrical system. Concepts relative to the approach taken to simplify the overall reactor design are listed

  6. Preliminary ALARA design concept for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs.

  7. Preliminary ALARA design concept for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs.

  8. Preliminary ALARA design concept for SMART

    International Nuclear Information System (INIS)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs

  9. Russian-American venture designs new reactor

    International Nuclear Information System (INIS)

    Newman, P.

    1994-01-01

    Russian and American nuclear energy experts have completed a joint design study of a small, low-cost and demonstrably accident-proof reactor that they say could revolutionize the way conventional reactors are designed, marketed and operated. The joint design is helium-cooled and graphite-moderated and has a power density of 3 MWt/cubic meter, which is significantly less than the standard American reactor. A prototype of this design should be operating in Chelyabinsk by June 1996

  10. Conceptual design of the SlimCS fusion DEMO reactor

    International Nuclear Information System (INIS)

    Tobita, Kenji; Nishio, Satoshi; Enoeda, Mikio; Nakamura, Hirofumi; Hayashi, Takumi; Asakura, Nobuyuki; Utoh, Hiroyasu; Tanigawa, Hiroyasu; Nishitani, Takeo; Isono, Takaaki; Sakurai, Shinji; Kurita, Genichi; Hayashi, Takao; Oyama, Naoyuki; Liu Changle; Hamamatsu, Kiyotaka; Inoue, Takashi; Ozeki, Takahisa; Sato, Masayasu; Suzuki, Satoshi; Kawashima, Hisato; Ezato, Koichiro; Tsuru, Daigo; Koizumi, Norikiyo; Sakamoto, Keiji; Ando, Masami; Sakamoto, Yoshiteru; Shibama, Yusuke; Suzuki, Takahiro; Takechi, Manabu; Takahashi, Koji; Hirose, Takanori; Sato, Satoru; Nozawa, Takashi; Tanigawa, Hisashi; Kakudate, Satoshi; Kawamura, Yoshinori; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Ochiai, Kentaro; Ide, Shunsuke; Aiba, Nobuyuki; Shimizu, Katsuhiro; Honda, Mitsuru; Nakamichi, Masaru; Nishi, Hiroshi; Seki, Yoji; Nakamura, Yukiharu; Tsuchiya, Kunihiko; Yoshida, Tohru; Song Yuntao

    2010-08-01

    This report describes the results of the conceptual design study of the SlimCS fusion DEMO reactor aiming at demonstrating fusion power production in a plant scale and allowing to assess the economic prospects of a fusion power plant. The design study has focused on a compact and low aspect ratio tokamak reactor concept with a reduced-sized central solenoid, which is novel compared with previous tokamak reactor concept such as SSTR (Steady State Tokamak Reactor). Owing to low aspect ratio, the reactor will be capable of having comparatively high beta limit and high elongation (which can elevate the Greenwald density limit), having potential for high power density. The reactor has the main parameters of a major radius of 5.5 m, aspect ratio of 2.6, elongation of 2.0, normalized beta of 4.3, fusion out put of 2.95 GW and average neutron wall load of 3 MW/m 2 . This report covers various aspects of design study including systematic design, physics design, torus configuration, blanket, superconducting magnet, maintenance and building, which were carried out increase the engineering feasibility of the concept. (author)

  11. The Integral Fast Reactor (IFR) concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    In addition to maintaining the viability of its present commercial nuclear technology, a principal challenge in the US in the 1990s and beyond will be to regain and maintain a position among the world leadership in advanced reactor research and development. In this paper we'll discuss factors which we believe should today provide the rationale and focus for advanced reactor R and D, and we will then review the status of the major US effort, the Integral Fast Reactor (IFR) program

  12. Design study on sodium cooled large-scale reactor

    International Nuclear Information System (INIS)

    Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki

    2004-07-01

    In Phase 1 of the 'Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2, design improvement for further cost reduction of establishment of the plant concept has been performed. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared. As a results of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  13. The problems of thermohydraulics of prospective fast reactor concepts

    International Nuclear Information System (INIS)

    Sedov, A.A.

    2000-01-01

    In this report the main requirements to fast reactors in system of future multicomponent Nuclear Power with closed U-Pu fuel cycle are regarded. The peculiarities of different liquid-metal (sodium and lead-alloyed) coolants as well as the thermohydraulics problems of prospective fast reactors (FR) concepts are discussed. (author)

  14. Packed-fluidized-bed blanket concept for a thorium-fueled commercial tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Miller, J.W.; Karbowski, J.S.; Chapin, D.L.; Kelly, J.L.

    1980-09-01

    A preliminary design of a thorium blanket was carried out as a part of the Commercial Tokamak Hybrid Reactor (CTHR) study. A fixed fuel blanket concept was developed as the reference CTHR blanket with uranium carbide fuel and helium coolant. A fixed fuel blanket was initially evaluated for the thorium blanket study. Subsequently, a new type of hybrid blanket, a packed-fluidized bed (PFB), was conceived. The PFB blanket concept has a number of unique features that may solve some of the problems encountered in the design of tokamak hybrid reactor blankets. This report documents the thorium blanket study and describes the feasibility assessment of the PFB blanket concept

  15. New concepts for the recovery and isotopic separation of tritium in fusion reactors

    International Nuclear Information System (INIS)

    Dombra, A.H.; Holtslander, W.J.; Miller, A.I.; Canadian Fusion Fuels Technology Project, Toronto, Ontario)

    1986-01-01

    New concepts for the recovery of tritium from light water coolant of LiPb blankets, and high-pressure helium coolant of Li-ceramic blankets are introduced. Application of these concepts to fusion reactors is illustrated with conceptual system designs for the anticipated NET blanket requirements. (author)

  16. Experimental investigation of the MSFR molten salt reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest University of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2014-11-15

    In the paper experimental modelling and investigation of the MSFR concept will be presented. MSFR is a homogeneous, single region liquid fuelled fast reactor concept. In case of molten salt reactors the core neutron flux and fission distribution is determined by the flow field through distribution and transport of fissile material and delayed neutron precursors. Since the MSFR core is a single region homogeneous volume without internal structures, it is a difficult task to ensure stable flow field, which is strongly coupled to the volumetric heat generation. These considerations suggest that experimental modelling would greatly help to understand the flow phenomena in such geometry. A scaled and segmented experimental mock-up of MSFR was designed and built in order to carry out particle image velocimetry measurements. Basic flow behaviour inside the core region can be investigated and the measurement data can also provide resource for the validation of computational fluid dynamics models. Measurement results of steady state conditions will be presented and discussed.

  17. Design of a New Research Reactor: Preliminary Conceptual Design (3rd Year)

    International Nuclear Information System (INIS)

    Park, Cheol; Lee, B. C.; Chae, H. T. and others

    2006-01-01

    A research reactor design is a kind of integral engineering project and a process to obtain a concrete shape through several years of concept development, conceptual design, basic design and detail design. So it requires close cooperation in various areas as well as lots of manpower and cost. The overall process at each stage may be said to be similar except for some stage-specific works. In 2005 as last year of a concept development stage, investigations on the various concepts of the fuel, reactor structure and systems which can meet the requirements established. The requirements for the process systems and I and C systems have also been embodied. The major tasks planned at the early of 2005 have been performed for each area of reactor design as follows: Establishment of the fuel and reactor core concept, and the core analysis, Preliminary thermal-hydraulic and safety analyses for the conceptual cores, Establishment and improvement of analysis system, Concept developments of the reactor structures and major systems, Test and test plan to verify the developed concepts, International cooperation to establish the foundations for exporting a research reactor

  18. Conceptual design study on inertial confinement reactor ''SENRI-II''

    International Nuclear Information System (INIS)

    Nakamura, N.; Ouura, H.

    1983-01-01

    Design features of a laser fusion reactor concept SENRI-II are reviewed and discussed. A conceptual design study of the ICF reactor SENRI-II (an advanced design of SENRI-I) has been carried out over 2 years in the Research Committee of ICF Reactors, Institute of Laser Engineering, Osaka University. While the ICF reactor SENRI-I utilized a magnetic field to guide and control an inner liquid lithium flow, SENRI-II is designed to use porous metal as the liquid lithium flow guide. In the design of SENRI-II, a metal porous lithium blanket serves as the protection of a wall against fusion products and as wall per se. Because of the separation of these two functions, a high power density can be attained

  19. SIR - small is safe [in reactor design

    International Nuclear Information System (INIS)

    Hayns, M.

    1989-01-01

    A joint USA-UK venture has been initiated to design a small nuclear reactor which offers low capital cost, greater flexibility and a potentially lower environmental impact. Called Safe Integral Reactor (SIR), the lead unit could be built in the United Kingdom Atomic Energy Authority's (UKAEA's) Winfrith site if the design is accepted by the UK Nuclear Installations Inspectorate (NII). This article describes the 320 MWe reactor unit that is the basis of the design being developed. (author)

  20. Preliminary Study for Conceptual Design of Advanced Long Life Small Modular Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, T. K. [Argonne National Laboratory, Argonne (United States)

    2015-05-15

    As one of the non-water coolant Small-Modular Reactor (SMR) core concepts for use in the mid- to long-term, ANL has proposed a 100 MWe Advanced sodium-cooled Fast Reactor core concept (AFR-100) targeting a small grid, transportable from pre-licensed factories to the remote plant site for affordable supply. Various breed-and-burn core concepts have been proposed to extend the reactor cycle length, which includes CANDLE with a cigar-type depletion strategy, TerraPower reactors with fuel shuffling for effective breeding, et al. UNIST has also proposed an ultra-long cycle fast reactor (UCFR) core concept having the power rating of 1000 MWe. By adopting the breed-and-burn strategies, the UCFR core can maintain criticality for a targeting reactor lifetime of 60 years without refueling. The objective of this project is to develop an advanced long-life SMR core concept by adopting both the small modular design features of the AFR-100 and the long-life breed-and-burn concept of the UCFR. A conceptual design of long life small modular fast reactor is under development by adopting both the small modular design features of the AFR-100 and the long-life breed-and-burn concept of the UCFR. The feasibility of the long-life fast reactor concepts was reviewed to obtain the core design guidelines and the reactor design requirements of long life small modular fast reactor were proposed in this study.

  1. Design and construction of multi research reactor

    International Nuclear Information System (INIS)

    1985-05-01

    This is the report about design and construction of multi research reactor, which introduces the purpose and necessity of the project, business contents, plan of progress of project and budget for the project. There are three appendixes about status of research reactor in other country, a characteristic of research reactor, three charts about evaluation, process and budget for the multi research reactor and three drawings for the project.

  2. International standardization of nuclear reactor designs - the way forward

    International Nuclear Information System (INIS)

    Raetzke, Christian

    2010-01-01

    The concept of 'International Standardization of Nuclear Reactor Designs' means that vendors could build their designs in every country without having to adapt it specifically to national safety requirements. Such standardization would have two main effects. It would greatly facilitate nuclear new build worldwide by giving greater efficiency and certainty to the national licensing procedures; by taking into account the fact that vendors, and nowadays also utilities, are active across borders; by helping developing countries to establish their nuclear new build programmes; and by reducing the strain on human resources on both the regulators' and the industry's side. The second valuable effect of standardization would be to further enhance safety by improving the exchange of construction and operating experience among a number of reactors belonging to fleets of the same design. The World Nuclear Association's CORDEL (Cooperation in Reactor Design Evaluation and Licensing) Group has developed a concept for implementation of international standardization of reactor designs. It has defined a number of steps to be taken by industry. At the same time, possibilities offered by national and international regulatory mechanisms would have to be fully made use of, and some changes in regulatory frameworks might be necessary. Some steps especially towards greater cooperation of regulators have already been taken; however, much still remains to be done. The concept of deploying standardized reactor designs across a number of countries supposes an alignment and, if possible, harmonization of national safety standards; a streamlining of national licensing procedures, making them more efficient and predictable; and the willingness of national regulators to take into account licensing done in other countries. In the end, this should lead to a mutual acceptance of design approvals or, in a more distant future, even to a multinational design approval process. All in all, the concept

  3. Evaluation of Metal-Fueled Surface Reactor Concepts

    International Nuclear Information System (INIS)

    Poston, David I.; Marcille, Thomas F.; Kapernick, Richard J.; Hiatt, Matthew T.; Amiri, Benjamin W.

    2007-01-01

    Surface fission power systems for use on the Moon and Mars may provide the first use of near-term reactor technology in space. Most near-term surface reactor concepts specify reactor temperatures <1000 K to allow the use of established material and power conversion technology and minimize the impact of the in-situ environment. Metal alloy fuels (e.g. U-10Zr and U-10Mo) have not traditionally been considered for space reactors because of high-temperature requirements, but they might be an attractive option for these lower temperature surface power missions. In addition to temperature limitations, metal fuels are also known to swell significantly at rather low fuel burnups (∼1 a/o), but near-term surface missions can mitigate this concern as well, because power and lifetime requirements generally keep fuel burnups <1 a/o. If temperature and swelling issues are not a concern, then a surface reactor concept may be able to benefit from the high uranium density and relative ease of manufacture of metal fuels. This paper investigates two reactor concepts that utilize metal fuels. It is found that these concepts compare very well to concepts that utilize other fuels (UN, UO2, UZrH) on a mass basis, while also providing the potential to simplify material safeguards issues

  4. Introduction to magnetic fusion reactor design

    International Nuclear Information System (INIS)

    Watanabe, Kenji

    1988-01-01

    Trend of the tokamak reactor design works so far carried out is reviewed, and method of conceptual design for commercial fusion reactor is critically considered concerning the black-box conpepts. System-framework of the engineering of magnetic fusion (commercial) reactor design is proposed as four steps. Based on it the next design studies are recommended in parallel approaches for making real-overcome of reactor material problem, from the view point of technological realization and not from the economical one. Real trials are involved. (author)

  5. Fusion reactor design and technology 1986. V. 1

    International Nuclear Information System (INIS)

    1987-01-01

    The first volume of the Proceedings of the Fourth Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology organized by the IAEA (Yalta, 26 May - 6 June 1986) includes 36 papers devoted to the following topics: fusion programmes (3 papers), tokamaks (15 papers), non-tokamak reactors and open systems (9 papers), inertial confinement concepts (5 papers), fission-fusion hybrids (4 papers). Each of these papers has a separate abstract. Refs, figs and tabs

  6. Recent progress in stellarator reactor conceptual design

    International Nuclear Information System (INIS)

    Miller, R.L.

    1985-01-01

    The Stellarator/Torsatron/Heliotron (S/T/H) class of toroidal magnetic fusion reactor designs continues to offer a distinct and in several ways superior approach to eventual commercial competitiveness. Although no major, integrated conceptual reactor design activity is presently underway, a number of international research efforts suggest avenues for the substantial improvement of the S/T/H reactor embodiment, which derive from recent experimental and theoretical progress and are responsive to current trends in fusion-reactor projection to set the stage for a third generation of designs. Recent S/T/H reactor design activity is reviewed and the impact of the changing technical and programmatic context on the direction of future S/T/H reactor design studies is outlined

  7. Small reactor technical and design characteristics proposed for Indonesia

    International Nuclear Information System (INIS)

    Nurdin, M.

    1992-01-01

    A Team for Small Nuclear Electricity Reactor has been formed in Indonesia since June 1990. It is responsible for assessment and design of a small reactor for electricity and/or sea-water desalination. This concept may become a good alternative for power-plants for small islands and for isolated areas in Indonesia, the system should function economically and environmentally sound. In addition to existing concepts, this presentation deals with modifications proposed in improving reliability and safety of reactor operation. For the size of 200 MWth or more (80 MWe or more), the possibility of designing an internal auxiliary heat removal system is discussed, hence there are two separate heat sinks for the core. Future development works for this concept should be directed in expanding their spectrum of utilization and their contribution to the national energy needs. (author). 7 refs., 4 tabs

  8. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion ractors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  9. Old and new ways in reactor technology. Reactor concepts and reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R

    1989-01-01

    Compared to developments of other technical-scale systems, the period between the recognition of the underlying physics of nuclear fission and the development of a functioning nuclear reactor and its further development to the present level of maturity has been relatively short. The whole development is based on the chain reaction and is rendered safe by the possible auto-stabilization of this reaction. Consequently, the safety of nuclear reactors properly designed is based on automatic mechanisms, which prevent spreads of radioactivity even in major accidents. Controversial opinions about nuclear power uses are mostly based on wrong perceptions both of reactor safety and of radioactive waste, unless they are characterized by sheer ideology. The use of nuclear power worldwide has assumed an important, growing role in the combined uses of a variety energy sources in a surprisingly short period of time and will continue to make a safe, economic, and thus responsible contribution in the long run.

  10. Design of a new research reactor : 1st year conceptual design

    International Nuclear Information System (INIS)

    Park, Cheol; Lee, B. C.; Chae, H. T.

    2004-01-01

    A new research reactor model satisfying the strengthened regulatory environments and the changed circumstances around nuclear society should be prepared for the domestic and international demand of research reactor. This can also lead to the improvement of technologies and fostering manpower obtained during the construction and the operation of HANARO. In this aspect, this study has been launched and the 1st year conceptual design has been carried out in 2003. The major tasks performed at the first year of conceptual design stage are as follows; Establishments of general design requirements of research reactors and experimental facilities, Establishment of fuel and reactor core concepts, Preliminary analysis of reactor physics and thermal-hydraulics for conceptual core, Conceptual design of reactor structure and major systems, International cooperation to establish foundations for exporting

  11. Space nuclear reactor concepts for avoidance of a single point failure

    International Nuclear Information System (INIS)

    El-Genk, M. S.

    2007-01-01

    This paper presents three space nuclear reactor concepts for future exploration missions requiring electrical power of 10's to 100's kW, for 7-10 years. These concepts avoid a single point failure in reactor cooling; and they could be used with a host of energy conversion technologies. The first is lithium or sodium heat pipes cooled reactor. The heat pipes operate at a fraction of their prevailing capillary or sonic limit. Thus, when a number of heat pipes fail, those in the adjacent modules remove their heat load, maintaining reactor core adequately cooled. The second is a reactor with a circulating liquid metal coolant. The reactor core is divided into six identical sectors, each with a separate energy conversion loop. The sectors in the reactor core are neurotically coupled, but hydraulically decoupled. Thus, when a sector experiences a loss of coolant, the fission power generated in it will be removed by the circulating coolant in the adjacent sectors. In this case, however, the reactor fission power would have to decrease to avoid exceeding the design temperature limits in the sector with a failed loop. These two reactor concepts are used with energy conversion technologies, such as advanced Thermoelectric (TE), Free Piston Stirling Engines (FPSE), and Alkali Metal Thermal-to- Electric Conversion (AMTEC). Gas cooled reactors are a better choice to use with Closed Brayton Cycle engines, such as the third reactor concept to be presented in the paper. It has a sectored core that is cooled with a binary mixture of He-Xe (40 gm/mole). Each of the three sectors in the reactor has its own CBC and neutronically, but not hydraulically, coupled to the other sectors

  12. Relevant thermal hydraulic aspects of advanced reactors design: status report

    International Nuclear Information System (INIS)

    1996-11-01

    This status report provides an overview on the relevant thermalhydraulic aspects of advanced reactor designs (e.g. ABWR, AP600, SBWR, EPR, ABB 80+, PIUS, etc.). Since all of the advanced reactor concepts are at the design stage, the information and data available in the open literature are still very limited. Some characteristics of advanced reactor designs are provided together with selected phenomena identification and ranking tables. Specific needs for thermalhydraulic codes together with the list of relevant and important thermalhydraulic phenomena for advanced reactor designs are summarized with the purpose of providing some guidance in development of research plans for considering further code development and assessment needs and for the planning of experimental programs

  13. Conceptual design study of Fusion Experimental Reactor (FY87FER)

    International Nuclear Information System (INIS)

    Miki, Nobuharu; Iida, Fumio; Wachi, Yoshihiro; Toyoda, Katsuyoshi; Hashizume, Takashi; Konno, Masayuki.

    1988-06-01

    This report describes the FER magnet design which was conducted last year (1987). Based on a large uncertainty of the physics assumption, two sets of FER concepts have been developed. One is based on the best existing physics data bases and another is based on rather conservative physics bases. In the magnet design, the improvements of superconducting magnet design were investigated to reduce the reactor size and to realize higher reactor-core performance. In addition, we studied several critical technical issues that affect the magnet design specification. (author)

  14. NSSS Component Control System Design of Integral Reactor

    International Nuclear Information System (INIS)

    Lee, Joon Koo; Kwon, Ho Je; Jeong, Kwong Il; Park, Heui Youn; Koo, In Soo

    2005-01-01

    MMIS(Man Machine Interface System) of an integral reactor is composed of a Control Room, Plant Protection System, Control System and Monitoring System which are related with the overall plant operation. MMIS is being developed with a new design concept and digital technology to reduce the Human Factor Error and improve the systems' safety, reliability and availability. And CCS(component control system) is also being developed with a new design concept and digital hardware technology A fully digitalized system and design concept are introduced in the NSSS CCS

  15. Conceptual design of reactor assembly of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Selvaraj, A.; Balasubramaniyan, V.; Raghupathy, S.; Elango, D.; Sodhi, B.S.; Chetal, S.C.; Bhoje, S.B.

    1996-01-01

    The conceptual design of Reactor Assembly of 500 MWe Prototype Fast Breeder Reactor (as selected in 1985) was reviewed with the aim of 'simplification of design', 'Compactness of the reactor assembly' and 'ease in construction'. The reduction in size has been possible by incorporating concentric core arrangement, adoption of elastomer seals for Rotatable plugs, fuel handling with one transfer arm type mechanism, incorporation of mechanical sealing arrangement for IHX at the penetration in Inner vessel redan and reduction in number of components. The erection of the components has been made easier by adopting 'hanging' support for roof slab with associated changes in the safety vessel design. This paper presents the conceptual design of the reactor assembly components. (author). 8 figs, 2 tabs

  16. Summary of Research on Light Water Reactor Improvement Concepts

    International Nuclear Information System (INIS)

    Mowery, Alfred L.

    2002-01-01

    The Arms Control and Disarmament Agency of the U.S. Department of State instituted a study aimed at improving the light water reactor (LWR) fuel consumption efficiency as an alternative to fuel recycle in the late 1970s. Comparison of the neutron balance tables of an LWR (1982 design) and an 'advanced' Canada deuterium uranium (CANDU) reactor explained that the relatively low fuel efficiency of the LWR was not primarily a consequence of water moderator absorptions. Rather, the comparatively low LWR fuel efficiency resulted from its use of poison to hold down startup reactivity together with other neutron losses. The research showed that each neutron saved could reduce fuel consumption by about 5%. In a typical LWR some 5 neutrons (out of 100) were absorbed in control poisons over a cycle. There are even more parasitic and leakage neutron absorptions. The objective of the research was to find ways to minimize control, parasitic, and other neutron losses aimed at improved LWR fuel consumption. Further research developed the concept of 'putting neutrons in the bank' in 238 U early in life and 'drawing them out of the bank' late in life by burning the 239 Pu produced. Conceptual designs were explored that could both control the reactor and substantially improve fuel efficiency and minimize separative work requirements.The U.S. Department of Energy augmented its high burnup fuel program based on the research in the late 1970s. As a result of the success of this program, fuel burnup in U.S. LWRs has almost doubled in the intervening two decades

  17. Summary of trial design of improved marine nuclear reactors

    International Nuclear Information System (INIS)

    1984-01-01

    In order to carry out the research and development of improved marine nuclear reactors, the Japan Nuclear Ship Research and Development Agency decided the project for the purpose in accordance with the procedure of research and development shown by the Nuclear Ship Research and Development Committee of Atomic Energy Commission in December, 1979, and along the basic plan regarding the development of nuclear ships of the Agency decided in February, 1981. As the first step, the Agency has been advancing the research on the design evaluation comprising the trial design and conceptual design to establish the concept of the marine reactor plant with excellent economical efficiency and reliability, which will be developed as the practical plant for future nuclear ships. The trial design started as a three-year project from 1983 is related to a 100 MWt marine reactor, and it is to obtain the concept of improved marine reactors which can be realized after adequate development period based on the pressurized water reactors of separate type, one-body type and semi-one-body type. In this summary, the works carried out in fiscal year 1983 are reported, that is, the design and calculation of the reactor core and the equipment of primary cooling system, and the selection of the required items of research and development. (Kako, I.)

  18. Small ex-core heat pipe thermionic reactor concept (SEHPTR)

    International Nuclear Information System (INIS)

    Jacox, M.G.; Bennett, R.G.; Lundberg, L.B.; Miller, B.G.; Drexler, R.L.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has developed an innovative space nuclear power concept with unique features and significant advantages for both Defense and Civilian space missions. The Small Ex-core Heat Pipe Thermionic Reactor (SEHPTR) concept was developed in response to Air Force needs for space nuclear power in the range of 10 to 40 kilowatts. This paper describes the SEHPTR concept and discusses the key technical issues and advantages of such a system

  19. Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials

  20. Development of core design and analyses technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  1. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  2. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    Dirar, H. M.

    2012-06-01

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  3. Conceptual design of imploding liner fusion reactors

    International Nuclear Information System (INIS)

    Turchi, P.J.; Robson, A.E.

    1976-01-01

    The basic new ingredient is the concept of rotationally stabilized liquid metal liners accelerated with free pistons. The liner motion is constrained on its outer surface by the pistons, laterally by channel walls, during acceleration, and on its inner surface, where megagauss field levels are attained by the centrifugal motion of the liner material. In this way, stable, reversible motion of the liner should be possible, permitting repetitive, pulsed operation at interior pressures far greater than can be allowed in static conductor systems. Such higher operating pressures permit the use of simple plasma geometries, such as theta pinches, with greatly reduced dimensions. Furthermore, the implosion of thick, lithium-bearing liners with large radial compression ratios inherently provides the plasma with a surrounding blanket of neutron absorbing liquid metal, thereby substantially reducing the problems of induced radioactivity and first wall damage that haunt conventional fusion reactor designs. The following article discusses the basic operation of liner reactors and several important features influencing their design

  4. Changing concepts of geologic structure and the problem of siting nuclear reactors: examples from Washington State

    International Nuclear Information System (INIS)

    Tabor, R.W.

    1986-01-01

    The conflict between regulation and healthy evolution of geological science has contributed to the difficulties of siting nuclear reactors. On the Columbia Plateau in Washington, but for conservative design of the Hanford reactor facility, the recognition of the little-understood Olympic-Wallowa lineament as a major, possibly still active structural alignment might have jeopardized the acceptability of the site for nuclear reactors. On the Olympic Peninsula, evolving concepts of compressive structures and their possible recent activity and the current recognition of a subducting Juan de Fuca plate and its potential for generating great earthquakes - both concepts little-considered during initial site selection - may delay final acceptance of the Satsop site. Conflicts of this sort are inevitable but can be accommodated if they are anticipated in the reactor-licensing process. More important, society should be increasing its store of geologic knowledge now, during the current recess in nuclear reactor siting

  5. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  6. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  7. Very High Efficiency Reactor (VHER) Concepts for Electrical Power Generation and Hydrogen Production

    International Nuclear Information System (INIS)

    PARMA JR, EDWARD J.; PICKARD, PAUL S.; SUO-ANTTILA, AHTI JORMA

    2003-01-01

    The goal of the Very High Efficiency Reactor study was to develop and analyze concepts for the next generation of nuclear power reactors. The next generation power reactor should be cost effective compared to current power generation plant, passively safe, and proliferation-resistant. High-temperature reactor systems allow higher electrical generating efficiencies and high-temperature process heat applications, such as thermo-chemical hydrogen production. The study focused on three concepts; one using molten salt coolant with a prismatic fuel-element geometry, the other two using high-pressure helium coolant with a prismatic fuel-element geometry and a fuel-pebble element design. Peak operating temperatures, passive-safety, decay heat removal, criticality, burnup, reactivity coefficients, and material issues were analyzed to determine the technical feasibility of each concept

  8. Advanced Nuclear Reactor Concepts for China

    International Nuclear Information System (INIS)

    Knoche, D.; Sassen, F.; Tietsch, W.; Yujie, Dong; Li, Cao

    2008-01-01

    China is one of the fastest growing economies in the world. With 1.3 billion people China also has the largest population worldwide. The growing economy, the migration of people from rural areas to cities and the augmentation in living standard will drive the energy demand of China in the coming decades. At present the installed electrical power is about 500 GW. In the years 2004 and 2005 the added electrical capacity was around 60 GW per year. Chinas primary energy demand is covered mainly by the use of coal. Coal also will remain the main energy source in the coming decades in China. Nevertheless taking into account more and more environmental aspects and the goal to reduce dependencies on energy imports a better energy mix strategy is planed to change including at an increasing level the renewable and nuclear option. Present the nuclear park is characterised by a large variety of different types of reactors. With the AP-1000, EPR and the gas-cooled High Temperature Reactor (HTR) the spectrum of different reactor types will be further enlarged. (authors)

  9. Advanced Nuclear Reactor Concepts for China

    Energy Technology Data Exchange (ETDEWEB)

    Knoche, D.; Sassen, F.; Tietsch, W. [Westinghouse Electric Germany, Postfach 10 05 63, 68140 Mannheim (Germany); Yujie, Dong; Li, Cao [INET, Tsinghua University, 100084 Beijing (China)

    2008-07-01

    China is one of the fastest growing economies in the world. With 1.3 billion people China also has the largest population worldwide. The growing economy, the migration of people from rural areas to cities and the augmentation in living standard will drive the energy demand of China in the coming decades. At present the installed electrical power is about 500 GW. In the years 2004 and 2005 the added electrical capacity was around 60 GW per year. Chinas primary energy demand is covered mainly by the use of coal. Coal also will remain the main energy source in the coming decades in China. Nevertheless taking into account more and more environmental aspects and the goal to reduce dependencies on energy imports a better energy mix strategy is planed to change including at an increasing level the renewable and nuclear option. Present the nuclear park is characterised by a large variety of different types of reactors. With the AP-1000, EPR and the gas-cooled High Temperature Reactor (HTR) the spectrum of different reactor types will be further enlarged. (authors)

  10. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    International Nuclear Information System (INIS)

    Chichester, Heather Jean MacLean; Hayes, Steven Lowe; Dempsey, Douglas; Harp, Jason Michael

    2016-01-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  11. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, Heather Jean MacLean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven Lowe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dempsey, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  12. The UK commercial demonstration fast reactor design

    International Nuclear Information System (INIS)

    Holmes, J.A.G.

    1987-01-01

    The paper on the UK Commercial Demonstration Fast Reactor design was presented to the seminar on 'European Commercial Fast Reactor Programme, London 1987. The design is discussed under the topic headings:- primary circuit, intermediate heat exchangers and pumps, fuel and core, refuelling, steam generators, and nuclear island layout. (U.K.)

  13. Design of megawatt power level heat pipe reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mcclure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  14. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Kobayashi, Takeshi; Yamada, Masao; Mizoguchi, Tadanori

    1987-09-01

    This report describes the results of the reactor configuration/structure design for the fusion experimental reactor (FER) performed in FY 1986. The design was intended to meet the physical and engineering mission of the next step device which was decided by the subcommittee on the next step device of the nuclear fusion council. The objectives of the design study in FY 1986 are to advance and optimize the design concept of the last year because the recommendation of the subcommittee was basically the same as the design philosophy of the last year. Six candidate reactor configurations which correspond to options C ∼ D presented by the subcommittee were extensively examined. Consequently, ACS reactor (Advanced Option-C with Single Null Divertor) was selected as the reference configuration from viewpoints of technical risks and cost performance. Regarding the reactor structure, the following items were investigated intensively: minimization of reactor size, protection of first wall against plasma disruption, simplification of shield structure, reactor configuration which enables optimum arrangement of poloidal field coils. (author)

  15. Utilization of particle fuels in different reactor concepts

    International Nuclear Information System (INIS)

    1983-04-01

    To date, particle fuel is only used in high temperature reactors (HTR). In this reactor type the particles exist of oxide fuel with a diameter of about 0.5 mm and are surrounded by various coatings in order to safely enclose fission products and decrease the radioactive release into the primary circuit. However, it is felt that fuel based upon spherical particles could have some advantages compared with pellets both on fabrication and in-core behaviour in several reactor concepts. This fuel is now of general interest and there is a high level of research and development activity in some countries. In order to collect, organize additional information and summarize experience on utilization of particle fuels in different reactor concepts, a questionnaire was prepared by IAEA in 1980 and sent to Member States, which might be involved in relevant developments. This survey has been prepared by a group of consultants and is mainly based on the responses to the IAEA questionnaire

  16. REACTOR - a Concept for establishing a System-of-Systems

    Science.gov (United States)

    Haener, Rainer; Hammitzsch, Martin; Wächter, Joachim

    2014-05-01

    well suited to establish brokers, which mediate metadata and semantic information about the resources of all involved systems. This concept has been developed within the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC) on the basis of semantic registries describing all facets of events and services utilisable for crisis management systems. The implementation utilises an operative infrastructure including an Enterprise Service Bus (ESB), adapters to proprietary sensor systems, a workflow engine, and a broker-based MOM. It also applies current technologies like actor-based frameworks for highly concurrent, distributed, and fault tolerant event-driven applications. Therefore REACTOR implementations are well suited to be hosted in a cloud that provides Infrastructure as a Service (IaaS). To provide low entry barriers for legacy and future systems, REACTOR adapts the principles of Design by Contract (DbC) as well as standardised and common information models like the Sensor Web Enablement (SWE) or the JavaScript Object Notation for geographic features (GeoJSON). REACTOR has been applied exemplarily within two different scenarios, Natural Crisis Management and Industrial Subsurface Development.

  17. Design of Concept Libraries for C++

    KAUST Repository

    Sutton, Andrew; Stroustrup, Bjarne

    2012-01-01

    algorithms and data structures and to gain insights into how best to support such concepts within C++. We start with the design of concepts rather than the design of supporting language features; the language design must be made to fit the concepts, rather

  18. Design codes for fast reactor steam generators

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1978-01-01

    The paper reviews the design methods and design criteria which are available for fast reactor structures, and discusses the materials data which are required to demonstrate the integrity of the plant components. (author)

  19. Advanced concept of reduced-moderation water reactor (RMWR) for plutonium multiple recycling

    International Nuclear Information System (INIS)

    Okubo, T.; Iwamura, T.; Takeda, R.; Yamamoto, K.; Okada, H.

    2001-01-01

    An advanced water-cooled reactor concept named the Reduced-Moderation Water Reactor (RMWR) has been proposed to attain a high conversion ratio more than 1.0 and to achieve the negative void reactivity coefficient. At present, several types of design concepts satisfying both the design targets have been proposed based on the evaluation for the fuel without fission products and minor actinides. In this paper, the feasibility of the RMWR core is investigated for the plutonium multiple recycling under advanced reprocessing schemes with low decontamination factors as proposed for the FBR fuel cycle. (author)

  20. Conceptual design of blanket structures for fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    Conceptual design study for in-vessel components including tritium breeding blanket of FER has been carried out. The objective of this study is to obtain the engineering and technological data for selecting the reactor concept and for its construction by investigating fully and broadly. The design work covers in-vessel components (such as tritium breeding blanket, first wall, shield, divertor and blanket test module), remote handling system and tritium system. The designs of those components and systems are accomplished in consideration of their accomodation to whole reactor system and problems for furthur study are clarified. (author)

  1. The fixed bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sahin, S.; Sefidvash, F.

    2007-01-01

    The core of a water moderated Fixed Bed Nuclear Reactor (FBNR), possessing, for instance, an electrical power of 40 MW, consists of 1.35 million fuel pellets (9.5 t) with a diameter of 1.5 cm each. The low enriched uranium fuel is made of TRISO type microspheres used in the HTGR, embedded in a graphite matrix and cladded by a shell of 1 mm SiC. Under any thinkable operational condition the fuel temperature will be below 400 C whereas its stability limit is at about 1600 C. The first characteristic of the FBNR is, therefore, its robust fuel under relatively 'cold' operating conditions and - due to the outer SiC - shell layer - the freedom from any hydrogen production. To operate the reactor the fuel pellets are pumped by a flow of water from below into the core regions where they form a stable fixed bed of about 4 cubic meter and become critical for energy production heating the outlet water to about 330 C (at 160 bar) which feeds a steam generator. The new safety feature is now the following: In case of any abnormity (e.g. external power failure, overheating etc.) the circulating pump stops and - due to gravity - the fuel pellets fall automatically out of the core region into a helical 'fuel chamber' underneath the core where their decay heat is transferred passively by natural circulation to a water tank housing the fuel chamber. The safety principle, applied here, is: The loss of an active component (circulating pump) induces a self-controlled, passively working shut-down manoeuvre accompanied by a foolproof decay heat removal without any emergency power system or any human interaction. The fuel chamber is sealed and is transported as the only reactor component to and from the reactor site. There is no possibility to irradiate fertile fuel, too. For a long-life core (larger than a 10 years cycle time) the fuel can either be poisoned by gadolinium-oxide or by a piston type core limiter adjusting the height and controlling thereby the number of the fuel pellets in

  2. Conceptual design of a commercial accelerator driven thorium reactor

    International Nuclear Information System (INIS)

    Fuller, C. G.; Ashworth, R. W.

    2010-01-01

    This paper describes the substantial work done in underpinning and developing the concept design for a commercial 600 MWe, accelerator driven, thorium fuelled, lead cooled, power producing, fast reactor. The Accelerator Driven Thorium Reactor (ADTR TM) has been derived from original work by Carlo Rubbia. Over the period 2007 to 2009 Aker Solutions commissioned this concept design work and, in close collaboration with Rubbia, developed the physics, engineering and business model. Much has been published about the Energy Amplifier concept and accelerator driven systems. This paper concentrates on the unique physics developed during the concept study of the ADTR TM power station and the progress made in engineering and design of the system. Particular attention is paid to where the concept design has moved significantly beyond published material. Description of challenges presented for the engineering and safety of a commercial system and how they will be addressed is included. This covers the defining system parameters, accelerator sizing, core and fuel design issues and, perhaps most importantly, reactivity control. The paper concludes that the work undertaken supports the technical viability of the ADTR TM power station. Several unique features of the reactor mean that it can be deployed in countries with aspirations to gain benefit from nuclear power and, at 600 MWe, it fits a size gap for less mature grid systems. It can provide a useful complement to Generation III, III+ and IV systems through its ability to consume actinides whilst at the same time providing useful power. (authors)

  3. Definition and conceptual design of a small fusion reactor

    International Nuclear Information System (INIS)

    1979-04-01

    The objective of this project is to evaluate various mirror fusion reactor concepts that might result in small systems for the effective production of electrical power or stored energy (e.g., nuclear and chemical fuels). The basic two-year program goal is to select a particular concept and develop the conceptual design of a pilot plant that could provide a useful output from fusion. The pilot plant would be built and operated in the late 1980s

  4. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-02-01

    This report describes the engineering conceptual design of Fusion Experimental Reactor (FER) which is to be built as a next generation tokamak machine. This design covers overall reactor systems including MHD equilibrium analysis, mechanical configuration of reactor, divertor, pumped limiter, first wall/breeding blanket/shield, toroidal field magnet, poloidal field magnet, cryostat, electromagnetic analysis, vacuum system, power handling and conversion, NBI, RF heating device, tritium system, neutronics, maintenance, cooling system and layout of facilities. The engineering comparison of a divertor with pumped limiters and safety analysis of reactor systems are also conducted. (author)

  5. Substantiation of physical concepts of fast reactors in Russia: experience and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P.N. [Russian Research Center ' Kurchatov Institute' (RRC KI), 1, Kurchatov Sq., Moscow, 123182 (Russian Federation); Vasiliev, B.A. [Experimental Design Bureau of Machine Building (OKBM) 15, Burnakovskiy Pr., N. Novgorod, 603074 (Russian Federation); Kormilitsyn, M.V. [State Scientific Center of Russian Federation - Research Institute of Atomic Reactors (NIIAR) Dimitrovgrad-10, Ulianovsk Reg., 433510 (Russian Federation); Lopatkin, A.V. [N.A. Dollezhal Research and Development Institute of Power Engineering (NIKIET) 2/8, M. Krasnoselskaya Str., Moscow, 107140 (Russian Federation); Seleznev, E.F. [All-Russian Research Institute for Nuclear Power Plant Operation (VNIIAES) 25, Ferganskaya, Moscow, 109507 (Russian Federation); Khomyakov, Yu.S.; Tsybulia, A.M. [State Scientific Center of the Russian Federation - A. I. Leypunsky Institute for Physics and Power Engineering (SSC RF- IPPE) 1, Bondarenko Sq., Obninsk, Kaluga Reg., 249033 (Russian Federation); Tocheny, L.V. [International Science and Technology Center (ISTC) 32-34 Krasnoproletarskaya Ulitsa, Moscow, 127473 (Russian Federation)

    2008-07-01

    The fast reactor concept in Russia has accumulated unique experience, since its advent in the 1950's and up to the present, from the creation of the first experimental installation BR-1, experimental reactors BR-5 and BOR-60, the pilot industrial reactors BN-350 in Kazakhstan and up to the BN-600 at Beloyarsk Atomic Power Station. Investigations on the first experimental installations BR-1 and BR-5/-10 proved the propriety of the idea that it is possible to create nuclear reactors that can produce more nuclear fuel than they consume, i.e. the idea of breeding. The architecture of such reactors was also designed, producing a current leader among fast reactors with sodium coolant and oxide uranium-plutonium fuel. Operational experience of BOR-60, BN-350 and, particularly, BN-600 confirmed the engineering and technical feasibility of the concept of fast reactors, the possibility for its realization both for power production and for certain other purposes as well, such as desalinisation of sea water (BN-350) and for radionuclide production (BN-350, BN-600), and it enabled the development and verification of different models, computer methods and codes. The paper presents a review of experience in the creation of plants with fast reactors, scientific research on these installations, principal results, the current status of experimental data analysis, and prospective directions in the development of fast reactors and the corresponding experimental basis in Russia. (authors)

  6. ELMO Bumpy Torus Reactor and power plant: conceptual design study

    International Nuclear Information System (INIS)

    Bathke, C.G.; Dudziak, D.J.; Krakowski, R.A.

    1981-08-01

    A complete power plant design of a 1200-MWe ELMO Bumpy Torus Reactor (EBTR) is presented. An emphasis is placed on those features that are unique to the EBT confinement concept, with subsystems and balance-of-plant items that are more generic to magnetic fusion being adapted from past, more extensive tokamak reactor designs. Similar to the latter tokamak studies, this conceptual EBTR design also emphasizes the use of conventional or near state-of-the-art engineering technology and materials. An emphasis is also placed on system accessibility, reliability, and maintainability, as these crucial and desirable characteristics relate to the unique high-aspect-ratio configuration of EBTs. Equal and strong emphasis is given to physics, engineering/technology, and costing/economics components of this design effort. Parametric optimizations and sensitivity studies, using cost-of-electricity as an object function, are reported. Based on these results, the direction for future improvement on an already attractive reactor design is identified

  7. Fast reactor fuel design and development

    International Nuclear Information System (INIS)

    Bishop, J.F.W.; Chamberlain, A.; Holmes, J.A.G.

    1977-01-01

    Fuel design parameters for oxide and carbide fast reactor fuels are reviewed in the context of minimising the total uranium demands for a combined thermal and fast reactor system. The major physical phenomena conditioning fast reactor fuel design, with a target of high burn-up, good breeding and reliable operation, are characterised. These include neutron induced void swelling, irradiation creep, pin failure modes, sub-assembly structural behaviour, behaviour of defect fuel, behaviour of alternative fuel forms. The salient considerations in the commercial scale fabrication and reprocessing of the fuels are reviewed, leading to the delineation of possible routes for the manufacture and reprocessing of Commercial Reactor fuel. From the desiderata and restraints arising from Surveys, Performance and Manufacture, the problems posed to the Designer are considered, and a narrow range of design alternatives is proposed. The paper concludes with a consideration of the development areas and the conceptual problems for fast reactors associated with those areas

  8. Safety aspects of designs for future light water reactors (evolutionary reactors)

    International Nuclear Information System (INIS)

    1993-07-01

    The main purpose of this document is to describe the major innovations of proposed designs of future light water reactors, to describe specific safety characteristics and safety analysis methodologies, and to give a general overview of the most important safety aspects related to future reactors. The reactors considered in this report are limited to those intended for fixed station electrical power production, excluding most revolutionary concepts. More in depth discussion is devoted to those designs that are in a more advanced state of completion and have been more extensively described and analysed in the open literature. Other designs will be briefly described, as evidence of the large spectrum of new proposals. Some designs are similar; others implement unique features and require specific discussion (not all aspects of designs with unique features are fully discussed in this document). 131 refs, 22 figs

  9. Concept design of the CFETR central solenoid

    International Nuclear Information System (INIS)

    Zheng, Jinxing; Song, Yuntao; Liu, Xufeng; Li, Jiangang; Wan, Yuanxi; Wan, Baonian; Ye, Minyou; Wu, Huan

    2015-01-01

    Highlights: • Main concept design work including coil's geometry, superconductor and support structure has been carried out. • The maximum magnetic field of CS coil is 11.9 T which is calculated by the coils’ operation current based on plasma equilibrium configuration. • The stray field in plasma area is less than 20 Gs under the CS coils’ operation currents designed for the plasma-heating phase. - Abstract: China Fusion Engineering Test Reactor (CFETR) superconducting tokamak is a national scientific research project of China with major and minor radius is 5.7 m and 1.6 m respectively. The magnetic field at the center of plasma with radius as R = 5.7 m is set to be 5.0 T. The major objective of the project is to build a fusion engineering tokamak reactor with fusion power in the range of 50–200 MW and should be self-sufficient by blanket. Six central solenoid coils of CFETR with same structure are made of Nb 3 Sn superconductor. Besides, the stray field in plasma area should be less than 20 Gs with the operation current of CS coils for plasma heating phase. The maximum magnetic field of CS coil is 11.9 T. It is calculated by the coils’ operation current based on plasma equilibrium configuration. The central solenoid needs to have enough stability margin under the condition of high magnetic field and strain. This paper discusses the design parameters, electromagnetic distribution, structure and stability analysis of the CS superconducting magnet for CFETR

  10. Design features to achieve defence-in-depth in small and medium sized reactors

    International Nuclear Information System (INIS)

    Kuznetsov, Vladimir

    2009-01-01

    Broader incorporation of inherent and passive safety design features has become a 'trademark' of many advanced reactor concepts, including several evolutionary designs and nearly all innovative small and medium sized design concepts. Ensuring adequate defence-in-depth is important for reactors of smaller output because many of them are being designed to allow more proximity to the user, specifically, when non-electrical energy products are targeted. Based on the activities recently performed by the International Atomic Energy Agency, the paper provides a summary description of the design features used to achieve defence in depth in the eleven representative concepts of small and medium sized reactors. (author)

  11. ITER [International Thermonuclear Experimental Reactor] reactor building design study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.; Delisle, M.W.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is at the midpoint of a two-year conceptual design. The ITER reactor building is a reinforced concrete structure that houses the tokamak and associated equipment and systems and forms a barrier between the tokamak and the external environment. It provides radiation shielding and controls the release of radioactive materials to the environment during both routine operations and accidents. The building protects the tokamak from external events, such as earthquakes or aircraft strikes. The reactor building requirements have been developed from the component designs and the preliminary safety analysis. The equipment requirements, tritium confinement, and biological shielding have been studied. The building design in progress requires continuous iteraction with the component and system designs and with the safety analysis. 8 figs

  12. Design and development of small and medium integral reactor core

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Chang, M. H.; Lee, C. C.; Song, J. S.; Cho, B. O.; Kim, K. Y.; Kim, S. J.; Park, S. Y.; Lee, K. B.; Lee, C. H.; Chun, T. H.; Oh, D. S.; In, W. K.; Kim, H. K.; Lee, C. B.; Kang, H. S.; Song, K. N.

    1997-07-01

    Recently, the role of small and medium size integral reactors is remarkable in the heat applications rather than the electrical generations. Such a range of possible applications requires extensive used of inherent safety features and passive safety systems. It also requires ultra-longer cycle operations for better plant economy. Innovative and evolutionary designs such as boron-free operations and related reactor control methods that are necessary for simple reactor system design are demanded for the small and medium reactor (SMR) design, which are harder for engineers to implement in the current large size nuclear power plants. The goals of this study are to establish preliminary design criteria, to perform the preliminary conceptual design and to develop core specific technology for the core design and analysis for System-integrated Modular Advanced ReacTor (SMART) of 330 MWt power. Based on the design criteria of the commercial PWR's, preliminary design criteria will be set up. Preliminary core design concept is going to be developed for the ultra-longer cycle and boron-free operation and core analysis code system is constructed for SMART. (author). 100 refs., 40 tabs., 92 figs

  13. Knowledge gaps in economic analyses of advanced reactor concepts

    International Nuclear Information System (INIS)

    Moore, M.; Pencer, J.; Leung, L.K.H.; Sadhankar, R.

    2014-01-01

    The development of next generation nuclear systems is predicated on improvement in sustainability, safety, proliferation resistance and economics. The economic assessment of the reactor concept is required as early as in the concept development stage. The Generation IV International Forum (GIF) has developed a methodology for economic assessment of the Generation IV (GEN-IV) nuclear energy systems. The GIF economics methodology was used for the assessment of one of the reactor concepts for the Super-Critical Water-cooled Reactors (SCWR), namely the European pressure-vessel type concept referred to as the High Performance Light Water Reactor (HPLWR). The economic analysis involved studying the sensitivity of two main economic indicators, namely, the Levelized Unit Electricity Cost (LUEC) and the Total Capital Investment Cost (TCIC). The knowledge gaps in estimating the capital costs and fuel costs, as well as the uncertainties in other cost parameters affecting the economic assessment of the nuclear energy system in the concept development stage are presented. (author)

  14. BN-1200 Reactor Power Unit Design Development

    International Nuclear Information System (INIS)

    Vasilyev, B.A.; Shepelev, S.F.; Ashirmetov, M.R.; Poplavsky, V.M.

    2013-01-01

    Main goals of BN-1200 design: • Develop a reliable new generation reactor plant for the commercial power unit with fast reactor to implement the first-priority objectives in changing over to closed nuclear fuel cycle; • Improve technical and economic indices of BN reactor power unit to the level of those of Russian VVER of equal power; • Enhance the safety up to the level of the requirements for the 4th generation RP

  15. Advanced Burner Reactor 1000MWth Reference Concept

    Energy Technology Data Exchange (ETDEWEB)

    Cahalan, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Fanning, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Kellogg, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Momozaki, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Park, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Reed, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Salev, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Seidensticker, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Tang, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Tzanos, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Chikazawa, Y. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2007-09-30

    The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence, to validate the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat.

  16. Potential mirror concepts for radiation testing of fusion reactor materials

    International Nuclear Information System (INIS)

    Miley, G.H.

    1977-01-01

    Studies under the University of Illinois PROMETHEUS (Plasma Reactor Optimized for Materials Experimentation for Thermonuclear Energy Usage) project are described that started in 1971 with the realization that a practical fusion-plasma neutron source was feasible with a net-power input (rather than production). The basic objectives were similar to those in later FERF (Fusion Engineering Research Facility) studies: namely, to maximize the neutron flux and usable experimental volume; to include the flexibility to handle a variety of both materials and engineering experiments; to minimize capital and operating costs; and to utilize near- term technology. The PROMETHEUS design provides a neutron flux of approximately 5x10 14 n/cm 2 s by injection of approximately 30 MW of neutral-beams into a 20 cm radius mirror-confined plasma. Charge-exchange bombardment of the first wall is viewed as a key problem in the design and is discussed in some detail. To gain yet higher neutron fluxes for accelerated testing, two alternate designs have been studied: a 'Twin-beam' injection device and a field reversed mirror concept. The latter potentially offers fluxes approaching 10 16 n/cm 2 s but involves more speculative technology. (Auth.)

  17. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  18. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    International Nuclear Information System (INIS)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept

  19. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept.

  20. Design of a multipurpose research reactor

    International Nuclear Information System (INIS)

    Sanchez Rios, A.A.

    1990-01-01

    The availability of a research reactor is essential in any endeavor to improve the execution of a nuclear programme, since it is a very versatile tool which can make a decisive contribution to a country's scientific and technological development. Because of their design, however, many existing research reactors are poorly adapted to certain uses. In some nuclear research centres, especially in the advanced countries, changes have been made in the original designs or new research prototypes have been designed for specific purposes. These modifications have proven very costly and therefore beyond the reach of developing countries. For this reason, what the research institutes in such countries need is a single sufficiently versatile nuclear plant capable of meeting the requirements of a nuclear research programme at a reasonable cost. This is precisely what a multipurpose reactor does. The Mexican National Nuclear Research Institute (ININ) plans to design and build a multipurpose research reactor capable at the same time of being used for the development of reactor design skills and for testing nuclear materials and fuels, for radioisotopes production, for nuclear power studies and basic scientific research, for specialized training, and so on. For this design work on the ININ Multipurpose Research Reactor, collaborative relations have been established with various international organizations possessing experience in nuclear reactor design: Atomehnergoeksport of the USSR: Atomic Energy of Canada Limited (AECL); General Atomics (GA) of the USA; and Japan Atomic Energy Research Institute

  1. Description of reactor fuel breeding with three integral concepts

    International Nuclear Information System (INIS)

    Ott, K.O.; Hanan, N.A.; Maudlin, P.J.; Borg, R.C.

    1979-01-01

    The time-dependent breeding of fuel in a growing system of breeder reactors can be characterized by the transitory (instantaneous) growth rate, γ(t). The three most important aspects of γ(t) can be expressed by time-independent integral concepts. Two of these concepts are in widespread use. A third integral concept that links the two earlier ones is introduced. The time-dependent growth rate has an asymptotic value, γ/sup infinity/, the equilibrium growth rate, which is the basis for the calculation of the doubling time. The equilibrium growth rate measures the breeding capability and represents a reactor property. Maximum deviation of γ(t) and γ/sup infinity/ generally appears at the initial startup of the reactor, where γ(t = 0) = γ 0 . This deviation is due to the difference between the initial and asymptotic fuel inventory composition. The initial growth rate can be considered a second integral concept; it characterizes the breeding of a particular fuel in a given reactor. Growth rates are logarithmic derivatives of the growing mass of fuel in breeder reactors, especially γ/sup infinity/, which describes the asymptotic growth by exp(γ/sup infinity/t). There is, however, a variation in the fuel-mass factor in front of this exponential function during the transition from γ 0 to γ/sup infinity/. It is shown that this variation of the fuel mass during transitioncan be described by a third integral concept, termed the breeding bonus, b. The breeding bonus measures the quality of a fuel for its use in a given reactor in terms of its impact on the magnitude of the asymptotically growing fuel mass. The calculation of γ 0 and γ/sup infinity/ is facilitated by use of the critical mass (CM) worths and the breeding worth factors, respectively

  2. Concept of an accelerator-driven subcritical research reactor within the TESLA accelerator installation

    International Nuclear Information System (INIS)

    Pesic, Milan; Neskovic, Nebojsa

    2006-01-01

    Study of a small accelerator-driven subcritical research reactor in the Vinca Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology

  3. Comparison of Design Concepts for SFR under Development

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Namduk; Choi, Yongwon; Bae, Moohoon; Shin, Andong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The goal of ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) with a capacity of 600 MWe is to study the technical demonstration that can be scaled up to commercial reactor. It was expected that the success of ASTRID project could eventually lead to operation of industrial reactor around 2040. On 2012, ASTRID designer has submitted the DOrS (Dossier d’Orientations de Sûreté, Safety Orientation Document) for ASTRID to IRSN and IRSN has issued a report after reviewing the DOrS. The report DOrS itself is not available publicly, intellectual property might be the reason, but the review document of IRSN is open to public, so we can understand the basic concept of ASTRID by IRSN report. The DOrS of ASTRID and the TTR for PGSFR have not the same format and also the same purpose, so it is not easy to compare the two design concepts directly. But, still, we think the concepts could be compared in a very general way. Thus, in this paper we have presented the very short comparison results of the two SFR design. Our opinion after first reviewing the TTR is that the PGSFR needs to be designed in a more systematic way. The requirements are coming basically from the previous document used for SMART licensing and do not show prototype reactor specific characters.

  4. Break preclusion concept and its application to the EPRTM reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chapuliot, S., E-mail: stephane.chapuliot@areva.com; Migné, C.

    2014-04-01

    This paper provides a synthesis of the technical basis supporting the break preclusion concept and its implementation on the Main Coolant Lines and Main Steam Lines of the EPR™ reactor. In a first step, it describes the background of the break preclusion concept, and then it details the requirements associated to its implementation in a Defense In Depth approach.In second steps, main benefits and few illustrative examples are given for the MCL.

  5. Nuclear-reactor remote-monitoring systems - concepts and implementations

    International Nuclear Information System (INIS)

    Rudolf, A.

    1987-01-01

    The paper presents general concepts and some examples of implemented nuclear-reactor remote-monitoring (RM) systems. Some functions and tasks of RM systems are demonstrated and three concepts are described in detail and assessed globally. Three examples of implemented RM systems are discussed using the Baden-Wurttemberg RM system for a description in greater detail. A brief prognosis of the future development of RM systems is made. (orig./DG) [de

  6. Application of the integrated blanket-coil concept (IBC) to fusion reactors

    International Nuclear Information System (INIS)

    Embrechts, M.J.; Steiner, D.; Mohanti, R.; Duggan, W.

    1987-01-01

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component and several unique applications to fusion reactor embodiments are identified. The proposed concept takes advantage of the fact that lithium is a good electrical conductor in addition to being a unique tritium-breeding material capable of energy recovery and transport at high temperatures. This concept, designated the ''integrated-blanket-coil (IBC) concept'' has the potential for: allowing fusion reactor embodiments which are easier to maintain; making fusion reactors more compact with an intrinsic ultra-high mass power density (net kW/sub E//metric tonne); and enhancing the tritium breeding potential for special coil applications such as ohmic heating and bean identation. By assuming a sandwich construction for the IBC walls (i.e., a layered combination of a thin wall of structural material, insulator and structural materials) the magnetohydrodynamic (MHD)-induced pressure drops and associated pressure stresses are modest and well below design limits. Possible unique applications of the IBC concept have been investigated and include the IBC concept applied to the poloidal field (PF) coils, toroidal field (TF) coils, divertor coils, ohmic heating (OH) coils, and identation coils for bean shaping

  7. Experimental investigation of a directionally enhanced DHX concept for high temperature Direct Reactor Auxiliary Cooling Systems

    International Nuclear Information System (INIS)

    Hughes, Joel T.; Blandford, Edward D.

    2016-01-01

    Highlights: • A novel directional heat exchanger design has been developed. • Hydrodynamic tests have been performed on the proposed design. • Heat transfer performance is inferred by hydrodynamic results. • Results are discussed and future work is suggested. - Abstract: The use of Direct Reactor Auxiliary Cooling Systems (DRACSs) as a safety-related decay heat removal system for advanced reactors has developed historically through the Sodium Fast Reactor (SFR) community. Beginning with the EBR-II, DRACSs have been utilized in a large number of past and current SFR designs. More recently, the DRACS has been adopted for Fluoride Salt-Cooled High-Temperature Reactors (FHRs) for similar decay heat removal functions. In this paper we introduce a novel directionally enhanced DRACS Heat Exchanger (DHX) concept. We present design options for optimizing such a heat exchanger so that shell-side heat transfer is enhanced in one primary coolant flow direction and degraded in the opposite coolant flow direction. A reduced-scale experiment investigating the hydrodynamics of a directionally enhanced DHX was built and the data collected is presented. The concept of thermal diodicity is expanded to heat exchanger technologies and used as performance criteria for evaluating design options. A heat exchanger that can perform as such would be advantageous for use in advanced reactor concepts where primary coolant flow reversal is expected during Loss-of-Forced-Circulation (LOFC) accidents where the ability to circulate coolant is compromised. The design could also find potential use in certain advanced Sodium Fast Reactor (SFR) designs utilizing fluidic diode concepts.

  8. Experimental investigation of a directionally enhanced DHX concept for high temperature Direct Reactor Auxiliary Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Joel T.; Blandford, Edward D., E-mail: edb@unm.edu

    2016-07-15

    Highlights: • A novel directional heat exchanger design has been developed. • Hydrodynamic tests have been performed on the proposed design. • Heat transfer performance is inferred by hydrodynamic results. • Results are discussed and future work is suggested. - Abstract: The use of Direct Reactor Auxiliary Cooling Systems (DRACSs) as a safety-related decay heat removal system for advanced reactors has developed historically through the Sodium Fast Reactor (SFR) community. Beginning with the EBR-II, DRACSs have been utilized in a large number of past and current SFR designs. More recently, the DRACS has been adopted for Fluoride Salt-Cooled High-Temperature Reactors (FHRs) for similar decay heat removal functions. In this paper we introduce a novel directionally enhanced DRACS Heat Exchanger (DHX) concept. We present design options for optimizing such a heat exchanger so that shell-side heat transfer is enhanced in one primary coolant flow direction and degraded in the opposite coolant flow direction. A reduced-scale experiment investigating the hydrodynamics of a directionally enhanced DHX was built and the data collected is presented. The concept of thermal diodicity is expanded to heat exchanger technologies and used as performance criteria for evaluating design options. A heat exchanger that can perform as such would be advantageous for use in advanced reactor concepts where primary coolant flow reversal is expected during Loss-of-Forced-Circulation (LOFC) accidents where the ability to circulate coolant is compromised. The design could also find potential use in certain advanced Sodium Fast Reactor (SFR) designs utilizing fluidic diode concepts.

  9. Advanced liquid metal fast breeder reactor designs

    International Nuclear Information System (INIS)

    Sayles, C.W.

    1978-01-01

    Fast Breeder reactor power plants in the 1000-1200 MW(e) range are being built overseas and are being designed in this country. While these reactors have many characteristics in common, a variety of different approaches have been adopted for some of the major features. Some of those alternatives are discussed

  10. Design study of 'HIBLIC-I' reactor cavity

    International Nuclear Information System (INIS)

    Fujiie, Y.

    1984-01-01

    A preliminary conceptual design of a reactor cavity for HIBLIC-1, a heavy ion fusion reactor system, was carried out. Design efforts have been concentrated mainly on the feasibility study of the physical scenario adopted and also on the system integration of the structures and components into a compact reactor cavity. The design features of the reactor are a compact reactor cavity, maximum coolant temperature up to 500 deg C, the protection of the sacrificial wall and cavity wall from radiation, the protection of the sacrificial wall from the pressure transient due to rapid heating, the selection of a ferritic steel HT-9 as the structural material and impurity control, and tritium breeding and recovery. The purpose of this paper is to describe the outline of the reactor cavity design of HIBLIC-1. The objectives of the preliminary conceptual design were to propose the idea and concept in order to constitute the physical scenario without contradiction and to find out the critical and fundamental problems to be studied in future. The cavity configuration and dynamics, tritium breeding and radiation damage, the behavior of a structural material in liquid lithium and tritium recovery are reported. (Kako, I.)

  11. Applying chemical engineering concepts to non-thermal plasma reactors

    Science.gov (United States)

    Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI

    2018-06-01

    Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.

  12. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  13. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  14. Concept Car Design and Ability Training

    Science.gov (United States)

    Lv, Jiefeng; Lu, Hairong

    The concept design as a symbol of creative design thinking, reflecting on the future design of exploratory and prospective, as a vehicle to explore the notion of future car design, design inspiration and creativity is not only a bold display, more through demonstrate the concept, reflects the company's technological strength and technological progress, and thus enhance their brand image. Present Chinese automobile design also has a very big disparity with world level, through cultivating students' concept design ability, to establish native design features and self-reliant brand image is practical and effective ways, also be necessary and pressing.

  15. Preliminary design studies on the Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Terry, W.J.; Terry, W.K.; Ryskamp, J.M.; Jahshan, S.N.; Fletcher, C.D.; Moore, R.L.; Leyse, C.F.; Ottewitte, E.H.; Motloch, C.G.; Lacy, J.M.

    1992-08-01

    This report describes progress made at the Idaho National Engineering Laboratory during the first three quarters of Fiscal Year (FY) 1992 on the Laboratory-Directed Research and Development (LDRD) project to perform preliminary design studies on the Broad Application Test Reactor (BATR). This work builds on the FY-92 BATR studies, which identified anticipated mission and safety requirements for BATR and assessed a variety of reactor concepts for their potential capability to meet those requirements. The main accomplishment of the FY-92 BATR program is the development of baseline reactor configurations for the two conventional conceptual test reactors recommended in the FY-91 report. Much of the present report consists of descriptions and neutronics and thermohydraulics analyses of these baseline configurations. In addition, we considered reactor safety issues, compared the consequences of steam explosions for alternative conventional fuel types, explored a Molten Chloride Fast Reactor concept as an alternate BATR design, and examined strategies for the reduction of operating costs. Work planned for the last quarter of FY-92 is discussed, and recommendations for future work are also presented

  16. Requirements, needs, and concepts for a new broad-application test reactor

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Fletcher, C.D.; Denison, A.B.; Liebenthal, J.L.

    1992-01-01

    For a variety of reasons, including (a) the increasing demands of the 1990s regulatory environment, (b) limited existing test capactiy and capability to satisfy projected future testing missions, and (c) an expected increasing need for nuclear information to support development of advanced reactors, there is a need for requirements and preliminary concepts for a new broad-application test reactor (BATR). These requirements must include consideration not only for a broad range of projected testing missions but also for current and projected regulatory compliance and safety requirements. The requirements will form the basis for development and assessment of preconceptual reactor designs and lead to the identification of key technologies to support the government's long-term strategic and programmatic planning. This paper outlines the need for a new BATR and suggests a few preliminary reactor concepts that can meet that need

  17. Consideration of severe accidents in design of advanced WWER reactors

    International Nuclear Information System (INIS)

    Fedorov, V.G.; Rogov, M.F.; Podshibyakin, A.K.; Fil, N.S.; Volkov, B.E.; Semishkin, V.P.

    1998-01-01

    Severe accident related requirements formulated in General Regulations for Nuclear Power Plant Safety (OPB-88), in Nuclear Safety Regulations for Nuclear Power Stations' Reactor Plants (PBYa RU AS-89) and in other NPP nuclear and radiation guides of the Russian Gosatomnadzor are analyzed. In accordance with these guides analyses of beyond design basis accidents should be performed in the reactor plant design. Categorization of beyond design basis accidents leading to severe accidents should be made on occurrence probability and severity of consequences. Engineered features and measures intended for severe accident management should be provided in reactor plant design. Requirements for severe accident analyses and for development of measures for severe accident management are determined. Design philosophy and proposed engineered measures for mitigation of severe accidents and decrease of radiation releases are demonstrated using examples of large, WWER-1000 (V-392), and medium size WWER-640 (V-407) reactor plant designs. Mitigation of severe accidents and decrease of radiation releases are supposed to be conducted on basis of consistent realization of the defense in depth concept relating to application of a system of barriers on the path of spreading of ionizing radiation and radioactive materials to the environment and a set of engineered measures protecting these barriers and retaining their effectiveness. Status of fulfilled by OKB Gidropress and other Russian organizations experimental and analytical investigations of severe accident phenomena supporting design decisions and severe accident management procedures is described. Status of the works on retention of core melt inside the WWER-640 reactor vessel is also characterized

  18. Concept of innovative water reactor for flexible fuel cycle (FLWR)

    International Nuclear Information System (INIS)

    Iwamura, T.; Uchikawa, S.; Okubo, T.; Kugo, T.; Akie, H.; Nakatsuka, T.

    2005-01-01

    In order to ensure sustainable energy supply in the future based on the matured Light Water Reactor (LWR) and coming LWR-Mixed Oxide (MOX) technologies, a concept of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) has been investigated in Japan Atomic Energy Research Institute (JAERI). The concept consists of two parts in the chronological sequence. The first part realizes a high conversion type core concept, which is basically intended to keep the smooth technical continuity from current LWR and coming LWR-MOX technologies without significant gaps in technical point of view. The second part represents the Reduced-Moderation Water Reactor (RMWR) core concept, which realizes a high conversion ratio over 1.0 being useful for the long-term sustainable energy supply through plutonium multiple recycling based on the well-experienced LWR technologies. The key point is that the two core concepts utilize the compatible and the same size fuel assemblies, and hence, the former concept can proceed to the latter in the same reactor system, based flexibly on the fuel cycle circumstances during the reactor operation period around 60 years. At present, since the fuel cycle for the plutonium multiple recycling with MOX fuel reprocessing has not been realized yet, reprocessed plutonium from the LWR spent fuel is to be utilized in LWR-MOX. After this stage, the first part of FLWR, i.e. the high conversion type, can be introduced as a replacement of LWR or LWR-MOX. Since the plutonium inventory of FLWR is much larger, the number of the reactor with MOX fuel will be significantly reduced compared to the LWR-MOX utilization. The size of the fuel assembly for the first part is the same as in the RMWR concept, i.e. the hexagonal fuel assembly with the inner face-to-face distance of about 200 mm. Fuel rods are arranged in the triangular lattice with a relatively wide gap size around 3 mm between rods, and the effective MOX length is less than 1.5 m without using the blanket. When

  19. Shielding design to obtain compact marine reactor

    International Nuclear Information System (INIS)

    Yamaji, Akio; Sako, Kiyoshi

    1994-01-01

    The marine reactors equipped in previously constructed nuclear ships are in need of the secondary shield which is installed outside the containment vessel. Most of the weight and volume of the reactor plants are occupied by this secondary shield. An advanced marine reactor called MRX (Marine Reactor X) has been designed to obtain a more compact and lightweight marine reactor with enhanced safety. The MRX is a new type of marine reactor which is an integral PWR (The steam generator is installed in the pressure vessel.) with adopting a water-filled containment vessel and a new shielding design method of no installation of the secondary shield. As a result, MRX is considerably lighter in weight and more compact in size as compared with the reactors equipped in previously constructed nuclear ships. For instance, the plant weight and volume of the containment vessel of MRX are about 50% and 70% of those of the Nuclear Ship MUTSU, in spite of the power of MRX is 2.8 times as large as the MUTSU's reactor. The shielding design calculation was made using the ANISN, DOT3.5, QAD-CGGP2 and ORIGEN codes. The computational accuracy was confirmed by experimental analyses. (author)

  20. Design concept of conducting shell and in-vessel components suitable for plasma vertical stability and remote maintenance scheme in DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Utoh, Hiroyasu, E-mail: uto.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Takase, Haruhiko [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Sakamoto, Yoshiteru; Tobita, Kenji [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); Mori, Kazuo; Kudo, Tatsuya [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Someya, Youji; Asakura, Nobuyuki; Hoshino, Kazuo; Nakamura, Makoto; Tokunaga, Shinsuke [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan)

    2016-02-15

    Highlights: • Conceptual design of in-vessel component including conducting shell has been investigated. • The conducting shell design for plasma vertical stability was clarified from the plasma vertical stability analysis. • The calculation results showed that the double-loop shell has the most effect on plasma vertical stability. - Abstract: In order to realize a feasible DEMO, we designed an in-vessel component including the conducting shell. The project is affiliated with the broader approach DEMO design activities and is conceptualized from a plasma vertical stability and engineering viewpoint. The dependence of the plasma vertical stability on the conducing shell parameters and the electromagnetic force at plasma disruption were investigated in numerical simulations (programmed in the 3D eddy current analysis code and a plasma position control code). The simulations assumed the actual shape and position of the vacuum vessel and in-vessel components. The plasma vertical stability was most effectively maintained by the double-loop shell.

  1. Innovation future reactors: the differential model of equivalent parameters. A decisional tool for conception

    International Nuclear Information System (INIS)

    Coudray, R.; Eid, M.; Fiorini, G.L.

    1992-01-01

    The study is developed in the frame of future reactors activities undertaken by the 'Commissariat a l'Energie Atomique' in France. The objective is to build the SAFETY and a QUALITY of the safety taking criteria, performances, experience... into account. In this purpose, we use the probabilistic reliability, maintainability, availability concepts, for the design and for the clustering of the parametric tendencies

  2. The integral fast reactor (IFR) concept: Physics of operation and safety

    International Nuclear Information System (INIS)

    Wade, D.C.; Chang, Y.I.

    1987-01-01

    The IFR concept employs a pool layout, a U/Pu/Zr metal alloy fuel and a closed fuel cycle based on pyrometallurgical reprocessing and injection casting refabrication. The reactor physics issues of designing for inherent safety and for a closed fissile self-sufficient integral fuel cycle with uranium startup and potential actinide transmutation are discussed

  3. The integral fast reactor (IFR) concept: physics of operation and safety

    International Nuclear Information System (INIS)

    Wade, D.C.; Chang, Y.I.

    1987-01-01

    The IFR concept employs a pool layout, a U/Pu/Zr metal alloy fuel and a closed fuel cycle based on pyrometallurgical reprocessing and injection casting refabrication. The reactor physics issues of designing for inherent safety and for a closed fissile self-sufficient integral fuel cycle with uranium startup and potential actinide transmutation are discussed

  4. Major NSSS design features of the Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Insk; Kim, Dong-Su

    1999-01-01

    In order to meet national needs for increasing electric power generation in the Republic of Korea in the 2000s, the Korean nuclear development group (KNDG) is developing a standardized evolutionary advanced light water reactor (ALWR), the Korean Next Generation Reactor (KNGR). It is an advanced version of the successful Korean Standard Nuclear Power Plant (KSNP) design, which meets utility needs for safety enhancement, performance improvement and ease of operation and maintenance. The KNGR design starts fro the proven design concept of the currently operating KSNPs with uprated power and advanced design features required by the utility. The KNGR design is currently in the final stage of the basic design, and the paper describes the major nuclear steam supply system (NSSS) design features of the KNGR together with introduction of the KNGR development program. (author)

  5. SEISMIC DESIGN CRITERIA FOR NUCLEAR POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R. A.

    1963-10-15

    The nature of nuclear power reactors demands an exceptionally high degree of seismic integrity. Considerations involved in defining earthquake resistance requirements are discussed. Examples of seismic design criteria and applications of the spectrum technique are described. (auth)

  6. Calculation methods for advanced concept light water reactor lattices

    International Nuclear Information System (INIS)

    Carmona, S.

    1986-01-01

    In the last few years s several advanced concepts for fuel rod lattices have been studied. Improved fuel utilization is one of the major aims in the development of new fuel rod designs and lattice modifications. By these changes s better performance in fuel economics s fuel burnup and material endurance can be achieved in the frame of the well-known basic Light Water Reactor technology. Among the new concepts involved in these studies that have attracted serious attention are lattices consisting of arrays of annular rods duplex pellet rods or tight multicells. These new designs of fuel rods and lattices present several computational problems. The treatment of resonance shielded cross sections is a crucial point in the analyses of these advanced concepts . The purpose of this study was to assess adequate approximation methods for calculating as accurately as possible, resonance shielding for these new lattices. Although detailed and exact computational methods for the evaluation of the resonance shielding in these lattices are possible, they are quite inefficient when used in lattice codes. The computer time and memory required for this kind of computations are too large to be used in an acceptable routine manner. In order to over- come these limitations and to make the analyses possible with reasonable use of computer resources s approximation methods are necessary. Usual approximation methods, for the resonance energy regions used in routine lattice computer codes, can not adequately handle the evaluation of these new fuel rod lattices. The main contribution of the present work to advanced lattice concepts is the development of an equivalence principle for the calculation of resonance shielding in the annular fuel pellet zone of duplex pellets; the duplex pellet in this treatment consists of two fuel zones with the same absorber isotope in both regions. In the transition from a single duplex rod to an infinite array of this kind of fuel rods, the similarity of the

  7. The design rationale of the Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Wade, D.C.; Hill, R.N.

    1997-01-01

    The Integral Fast Reactor (IFR) concept has been developed over the last ten years to provide technical solutions to perceptual concerns associated with nuclear power. Beyond the traditional advanced reactor objectives of increased safety, improved economy and more efficient fuel utilization, the IFR is designed to simplify waste disposal and increase resistance to proliferation. Only a fast reactor with an efficient recycle technology can provide for total consumption of actinides. The basic physics governing reactor design dictates that, for efficient recycle, the fuel form should be limited in burnup only by radiation damage to fuel cladding. The recycle technology must recover essentially all actinides. In a fast reactor, not all fission products need to be removed from the recycled fuel, and there is no need to produce pure plutonium. Recovery, recycle, and ultimate consumption of all actinides resolves several waste-disposal concerns. The IFR can be configured to achieve safe passive response to any of the traditional postulated reactor accident initiators, and can be configured for a variety of power output levels. Passive heat removal is achieved by use of a large inventory sodium coolant and a physical configuration that emphasizes natural circulation. An IFR can be designed to consume excess fissile material, to produce a surplus, or to maintain inventory. It appears that commercial designs should be economically competitive with other available alternatives. (author)

  8. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-01

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

  9. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    International Nuclear Information System (INIS)

    1986-10-01

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc

  10. Design concept of Hydro cascade control system

    International Nuclear Information System (INIS)

    Fustik, Vangel; Kiteva, Nevenka

    2006-01-01

    In this paper a design concept of the comple hydro cascade scheme is presented with the design parameters of the main technical features. The cascade control system architecture is designed considering up-to-date communication and information technology. The control algorithm is based on Pond Level Control and Economic Load Allocation concepts.

  11. Advances in ICF power reactor design

    International Nuclear Information System (INIS)

    Hogan, W.J.; Kulcinski, G.L.

    1985-01-01

    Fifteen ICF power reactor design studies published since 1980 are reviewed to illuminate the design trends they represent. There is a clear, continuing trend toward making ICF reactors inherently safer and environmentally benign. Since this trend accentuates inherent advantages of ICF reactors, we expect it to be further emphasized in the future. An emphasis on economic competitiveness appears to be a somewhat newer trend. Lower cost of electricity, smaller initial size (and capital cost), and more affordable development paths are three of the issues being addressed with new studies

  12. Contributions to safety studies for new concepts of nuclear reactors

    International Nuclear Information System (INIS)

    Perdu, F.

    2003-12-01

    The complete study of molten salt reactors, designed for a massive and durable nuclear energy production, must include neutronics, hydraulics and thermal effects. This coupled study, using the MCNP and Trio U codes, is undertaken in the case of the MSRE (molten salt reactor experiment) prototype. The obtained results fit very well the experiment. Their extrapolation suggests ways of improving the safety coefficients of power molten salt reactors. A second part is devoted to accelerator driven subcritical reactors, developed to incinerate radioactive waste.We propose a method to measure the prompt reactivity from the decay following a neutron pulse. It relies only on the distribution of times between generations, which is a characteristic of the reactor. This method is implemented on the results of the MUSE 4 experiment, and the obtained reactivity is accurate within 5%. (author)

  13. Setup of Design Concept for the Secondary System of the Sodium Cooled Fast Reactor and Development of Computational Code for the heat balance setup

    International Nuclear Information System (INIS)

    Kim, E. K.; Seong, S. H.; Kim, S. O.; Eoh, J. H.; Han, J. W.; Cha, J. E.

    2010-12-01

    KAERI developed KALIMER-600 on it own way and now is designing the 600MWe actual sized plant for SFR. Nowadays, it is emphasizing the necessity of the evaluation for NSSS design as a part of the verification for SFR design validity. In other words, it means that should be precede the setup of the heat balance and preliminary design for SFR BOP. Turbine composition was configurated to refer SAMCHEON-PO fossil plant which have similar steam condition. The heat balance of SFR BOP was deduced to based on the NSSS boundary condition of the 600MWe actual sized plant. The algorithm of the heat balance calculation program was developed to refer preliminary heat balance data. and then, the setup of the heat balance for SFR BOP was evaluated. In the performance analysis for the preliminary heat balance of the SFR BOP, it was demonstrated that turbine characteristics are similar to reference plant, such as the SAMCHEON-PO fossil plant and the PFBR of the India

  14. Conceptual design of main coolant pump for integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Seok; Kim, Jong In; Kim, Min Hwan [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The conceptual design for MCP to be installed in the integral reactor SMART was carried out. Canned motor pump was adopted in the conceptual design of MCP. Three-dimensional modeling was performed to visualize the conceptual design of the MCP and to check interferences between the parts. The theoretical design procedure for the impeller was developed. The procedures for the flow field and structural analysis of impeller was also developed to assess the design validity and to verify its structural integrity. A computer program to analyze the dynamic characteristics of the rotor shaft of MCP was developed. The rotational speed sensor was designed and its performance test was conducted to verify the possibility of operation. A prototypes of the canned motor was manufactured and tested to confirm the validity of the design concept. The MCP design concept was also investigated for fabricability by establishing the manufacturing procedures. 41 refs., 96 figs., 10 tabs. (Author)

  15. Conceptual design study of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1986-11-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. During two years from 1984 to 1985 FER concept was reviewed and redesigned. This report is the summary of the results obtained in the review and redesign activities in 1984 and 85. In the first year FER concept was discussed again and its frame work was reestablished. According to the new frame work the major reactor components of FER were designed. In the second year the whole plant system design including plant layout plan was conducted as well as the more detailed design analysis of the reactor conponents. The newly established frame for FER design is as follows: 1) Plasma : Self-ignition. 2) Operation scenario : Quasi-steady state operation with long burn pulse. 3) Neutron fluence on the first wall : 0.3 MWY/M 2 . 4) Blanket : Non-tritium breeding blanket with test modules for breeding blanket development. 5) Magnets : Superconducting Magnets. (author)

  16. A multi-crucible core-catcher concept: Design considerations and basic results

    International Nuclear Information System (INIS)

    Szabo, I.

    1995-01-01

    A multi-crucible core-catcher concept to be implemented in new light water reactor containments has recently been proposed. This paper deals with conceptual design considerations and the various ways this type of core-catcher could be designed to meet requirements for reactor application. A systematic functional analysis of the multi-crucible core-catcher concept and the results of the preliminary design calculation are presented. Finally, the adequacy of the multi-crucible core-catcher concept for reactor application is discussed. (orig.)

  17. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Mason, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability. The problems are both near-term, in developing maintainability for next generation engineering oriented reactors; and long range, in developing full maintainability for the more commercial concepts with their required high level of on-line time. The near-time challenge will include development of unqiue design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full mainatability required by commerical fusion

  18. A CONCEPT OF SOLAR TRACKER SYSTEM DESIGN

    OpenAIRE

    Meita Rumbayan *, Muhamad Dwisnanto Putro

    2017-01-01

    Improvement of solar panel efficiency is an ongoing research work recently. Maximizing the output power by integrating with the solar tracker system becomes a interest point of the research. This paper presents the concept in designing a solar tracker system applied to solar panel. The development of solar panel tracker system design that consist of system display prototype design, hardware design, and algorithm design. This concept is useful as the control system for solar tracker to improve...

  19. SCW Pressure-Channel Nuclear Reactor Some Design Features

    Science.gov (United States)

    Pioro, Igor L.; Khan, Mosin; Hopps, Victory; Jacobs, Chris; Patkunam, Ruban; Gopaul, Sandeep; Bakan, Kurtulus

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30-35% to about 45-48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (˜1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. Some design features of the Canadian concept related to fuel channels are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  20. Cooperation in reactor design evaluation and licensing

    International Nuclear Information System (INIS)

    Kaufer, B.; Wasylyk, A.

    2014-01-01

    In January 2007 the World Nuclear Association (WNA) established the Cooperation in Reactor Design Evaluation and Licensing (CORDEL) Working Group with the aim of stimulating a dialogue between the nuclear industry (including reactor vendors, operators and utilities) and nuclear regulators (national and international organisations) on the benefits and means of achieving a worldwide convergence of reactor safety standards for reactor designs. From the time of its inception to the present, CORDEL has evolved from a group of experts discussing how to achieve international standardisation in nuclear safety design to an established and recognised working group dedicated to analysing and forging common understandings in key areas as input to major decisions on nuclear energy policy. This paper will review the general directions and activities CORDEL plans to undertake during the next five-year period, including its general strategy, activities, priorities and interactions with its customers in order to meet its objectives. (author)

  1. Cooperation in reactor design evaluation and licensing

    Energy Technology Data Exchange (ETDEWEB)

    Kaufer, B.; Wasylyk, A. [World Nuclear Association, London (United Kingdom)

    2014-07-01

    In January 2007 the World Nuclear Association (WNA) established the Cooperation in Reactor Design Evaluation and Licensing (CORDEL) Working Group with the aim of stimulating a dialogue between the nuclear industry (including reactor vendors, operators and utilities) and nuclear regulators (national and international organisations) on the benefits and means of achieving a worldwide convergence of reactor safety standards for reactor designs. From the time of its inception to the present, CORDEL has evolved from a group of experts discussing how to achieve international standardisation in nuclear safety design to an established and recognised working group dedicated to analysing and forging common understandings in key areas as input to major decisions on nuclear energy policy. This paper will review the general directions and activities CORDEL plans to undertake during the next five-year period, including its general strategy, activities, priorities and interactions with its customers in order to meet its objectives. (author)

  2. ROP design for Enhanced CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Scherbakova, D; Kastanya, D.; Ovanes, M. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    The Enhanced CANDU 6 (EC6) nuclear power plant is a mid-sized pressurized heavy water reactor design, based on the highly successful CANDU 6 (C6) family of power plants, upgraded to meet today's Canadian and international safety requirements and to satisfy Generation III expectations. The EC6 reactor is equipped with two independent Regional Overpower Protection (ROP) systems to prevent overpowers in the reactor fuel. The ROP system design, retaining the traditional C6 methodology, is determined to cover the End-of-Life (EOL) reactor core condition since the reactor operating/thermal margin gradually decreases as plant equipment ages. Several design changes have been incorporated into the reference C6 plant to mitigate the ageing effect on the ROP trip margin. This paper outlines the basis for the EC6 ROP physics design and presents the ROP related improvements made in the EC6 design to ensure that full power operation is not limited by the ROP throughout the entire life of the reactor. (author)

  3. The design features of integrated modular water reactor (IMR)

    International Nuclear Information System (INIS)

    Kanagawa, T.; Goto, M.; Usui, S.; Suzuta, T.; Serizawa, A.; Kunugi, T.; Yamauchi, T.; Itoh, G.; Matsumura, T.

    2004-01-01

    Small-to-medium-sized (300-600 MWe) reactors are required for the electric power market in the near future (2010-2030). The main theme in the development of small-to-medium-sized reactor is how to realize competitive cost against other energy sources. As measures to this disadvantage, greatly simplified and small-scale design is needed. From such point of view, Integrated Modular Water Reactor (IMR), whose electric output power is 350 MWe, adopts integrated and high temperature two-phase natural circulation system for the primary system. In this design, main coolant pipes, a pressurizer, and reactor coolant pumps are not needed, and the sizes of the reactor vessel and steam generators are minimized. Additionally, to enhance the economy of the whole plant, fluid systems, and Instrumentation and Control systems of IMR have also been reviewed to make them simplest and smallest taking the advantage of the IMR concept and the state of the art technologies. For example, the integrated primary system and the stand-alone direct heat removal system make the safety system very simple, i.e., no injection, no containment spray, no emergency AC power, etc. The chemical and volume control system is also simplified by eliminating the boron control system and the seal water system of reactor coolant pumps. In this paper, the status of the IMR development and the outline of the IMR design efforts to achieve the simplest and smallest plant are presented. (authors)

  4. Innovative designs of nuclear reactors

    International Nuclear Information System (INIS)

    Gabaraev, B.A.; Cherepnin, Y.S.

    2010-01-01

    The world development scenarios predict at least a 2.5 time increase in the global consumption of primary energy in the first half of the twenty-first century. Much of this growth can be provided by the nuclear power which possesses important advantages over other energy technologies. However, the large deployment of nuclear sources may take place only when the new generation of reactors appears on the market and will be free of the shortcomings found in the existing nuclear power installations. The public will be more inclined to accept nuclear plants that have better economics; higher safety; more efficient management of the radioactive waste; lower risk of nuclear weapons proliferation, and provided that the focus is made on the energy option free of ∇ e 2 generation. Currently, the future of nuclear power is trusted to the technology based on fast reactors and closed fuel cycle. The latter implies reprocessing of the spent nuclear fuel of the nuclear plants and re-use of plutonium produced in power reactors

  5. Some basic concepts of fast breeder reactor safeguards

    International Nuclear Information System (INIS)

    Tkharev, E.; Walford, F.J.

    1987-04-01

    The range of discussion topics of this report is restricted to a few key areas of safeguards importance at Fast Breeder Reactors (FBR) only. The differences between thermal and fast reactors that may have safeguards significance in the case of FBRs are listed. The FBR principles of design are mentioned. The relevant safeguards objectives and criteria are given. The fundamental issues for safeguarding FBR are treated. An outline safeguards approach is presented. Model inspection activities are mentioned. 4 figs

  6. Decommissioning of the AVR reactor, concept for the total dismantling

    International Nuclear Information System (INIS)

    Marnet, C.; Wimmers, M.; Birkhold, U.

    1998-01-01

    After more than 21 years of operation, the 15 MWe AVR experimental nuclear power plant with pebble bed high temperature gas-cooled reactor was shout down in 1988. Safestore decommissioning began in 1994. In order to completely dismantle the plant, a concept for Continued dismantling was developed according to which the plant could be dismantled in a step-wise procedure. After each step, there is the possibility to transform the plant into a new state of safe enclosure. The continued dismantling comprises three further steps following Safestore decommissioning: 1. Dismantling the reactor vessels with internals; 2. Dismantling the containment and the auxiliary units; 3. Gauging the buildings to radiation limit, release from the validity range of the AtG (Nuclear Act), and demolition of the buildings. For these steps, various technical procedures and concepts were developed, resulting in a reference concept in which the containment will essentially remain intact (in-situ concept). Over the top of the outer reactor vessel a disassembling area for remotely controlled tools will be erected that tightens on that vessel and can move down on the vessel according to the dismantling progress. (author)

  7. Design characteristics of zero power fast reactor Lasta; Osnovne karakteristike brzog reaktora nulte snage Lasta

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, M; Stefanovic, D; Pesic, M; Popovic, D; Nikolic, D; Antic, D; Zavaljevski, N [Institut za nuklearne nauke Boris Kidric, Vinca, Beograd (Yugoslavia)

    1987-07-01

    The concept, purpose and preliminary design of a zero power fast reactor LASTA are described. The methods of computing the reactor core parameters and reactor kinetics are presented with the basic calculated results and analysis for one selected LASTA configuration. The nominal parameters are determined according to the selected reactor safety criteria and results of calculations. Important aspects related to the overall safety are examined in detail. (author)

  8. Materials design data for fusion reactors

    International Nuclear Information System (INIS)

    Tavassoli, A.A.F.

    1998-01-01

    Design data needed for fusion reactors are characterized by the diversity of materials and the complexity of loading situations found in these reactors. In addition, advanced fabrication techniques, such as hot isostatic pressing, envisaged for fabrication of single and multilayered in-vessel components, could significantly change the original materials properties for which the current design rules are written. As a result, additional materials properties have had to be generated for fusion reactors and new structural design rules formulated. This paper recalls some of the materials properties data generated for ITER and DEMO, and gives examples of how these are converted into design criteria. In particular, it gives specific examples for the properties of 316LN-IG and modified 9Cr-1Mo steels, and CuCrZr alloy. These include, determination of tension, creep, isochronous, fatigue, and creep-fatigue curves and their analysis and conversion into design limits. (orig.)

  9. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  10. Materials design data for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.A.F. [CEA Commissariat a l`Energie Atomique, Gif sur Yvette (France). CEREM

    1998-10-01

    Design data needed for fusion reactors are characterized by the diversity of materials and the complexity of loading situations found in these reactors. In addition, advanced fabrication techniques, such as hot isostatic pressing, envisaged for fabrication of single and multilayered in-vessel components, could significantly change the original materials properties for which the current design rules are written. As a result, additional materials properties have had to be generated for fusion reactors and new structural design rules formulated. This paper recalls some of the materials properties data generated for ITER and DEMO, and gives examples of how these are converted into design criteria. In particular, it gives specific examples for the properties of 316LN-IG and modified 9Cr-1Mo steels, and CuCrZr alloy. These include, determination of tension, creep, isochronous, fatigue, and creep-fatigue curves and their analysis and conversion into design limits. (orig.) 19 refs.

  11. Mirror Advanced Reactor Study interim design report

    International Nuclear Information System (INIS)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  12. Savannah River Site reactor hardware design modification study

    International Nuclear Information System (INIS)

    Fisher, J.E.

    1990-01-01

    A study was undertaken to assess the merits of proposed design modifications to the Savannah River Site (SRS) reactors. The evaluation was based on the responses calculated by the RELAP5 systems code to double-ended guillotine break loss-of-coolant-accidents (DEGB LOCAs). The three concepts evaluated were (a) elevated plenum inlet piping with a guard vessel and clamshell enclosures, (b) closure of both rotovalves in the affected loop, and (c) closure of the pump suction valve in the affected loop. Each concept included a fast reactor shutdown (to 65% power in 100 ms) and a 2-s ac pump trip. System recovery potential was evaluated for break locations at the pump suction, the pump discharge, and the plenum inlet. The code version used was RELAP5/MOD2.5 version 3d3, a preliminary version of RELAP5/MOD3. The model was a three-dimensional representation of the K-Reactor water plenum and moderator tank. It included explicit representations of all six loops, which were based on the configuration of L-Reactor. A combination of features is recommended to ensure liquid inventory recovery for all break locations. Valve closure design performance for a break location in the short section of piping between the reactor concrete shield and the pump suction valve would benefit from the clamshell enclosing that section of piping. 7 refs., 10 figs., 2 tabs

  13. Safety design concept and analysis for the upgrading JRR-3

    International Nuclear Information System (INIS)

    Onishi, N.; Isshiki, M.; Takahashi, H.; Takayanagi, M.

    1990-01-01

    The Research Reactor No.3 (JRR-3) is under reconstruction for upgrading. This paper describes the safety design concepts of the architectural and engineering design, anticipated operational transients and accident conditions which are the postulated initiating events for the safety evaluation, and the safety criteria of the upgraded JRR-3. The safety criteria are defined taking into account those of Light Water Reactors and the characteristics of the research reactor. Using the example of the safety analysis, this paper describes analytical results of a reactivity insertion by removal of in-core irradiation samples, a pipeline break at the primary coolant loop and flow blockage to a coolant channel, which are the severest postulated initiating events of the JRR-3

  14. Gas reactor international cooperative program interim report: German Pebble Bed Reactor design and technology review

    International Nuclear Information System (INIS)

    1978-09-01

    This report describes and evaluates several gas-cooled reactor plant concepts under development within the Federal Republic of Germany (FRG). The concepts, based upon the use of a proven Pebble Bed Reactor (PBR) fuel element design, include nuclear heat generation for chemical processes and electrical power generation. Processes under consideration for the nuclear process heat plant (PNP) include hydrogasification of coal, steam gasification of coal, combined process, and long-distance chemical heat transportation. The electric plant emphasized in the report is the steam turbine cycle (HTR-K), although the gas turbine cycle (HHT) is also discussed. The study is a detailed description and evaluation of the nuclear portion of the various plants. The general conclusions are that the PBR technology is sound and that the HTR-K and PNP plant concepts appear to be achievable through appropriate continuing development programs, most of which are either under way or planned

  15. Concept and optimization of burning and transmutation reactor in nuclear fuel recycle system

    International Nuclear Information System (INIS)

    Marsodi; Mulyanto; Kitamoto, Asashi.

    1994-01-01

    Basic concept of B/T reactor, not only produces thermal energy but also performs burning and/or transmutation of MA and long-lived FPs, was introduced here based on numerical computation model. The advantage of nuclear reaction by thermal or fast neutron was combined conceptually with each other in order to maximize the overall B/T rate obtained by a composite system of fast and thermal reactor. According to the mass balance analysis of B/T reactors with P-T treatment, fast reactor hardened neutron energy may be effective for MA burning. Furthermore, a high flux reactor operated by fast or thermal neutron could be different from a reactor with high B/T rate or high capacity for loading of MA and/or long-lived FPs. The purpose of this study is to make clear the concept and the performance of fast and thermal B/T reactor designed under high neutron utilization for HLW disposal. (author)

  16. Development of intellectual reactor design system IRDS

    International Nuclear Information System (INIS)

    Kugo, T.; Tsuchihashi, K.; Nakagawa, M.; Mori, T.

    1993-01-01

    An intellectual reactor design system IRDS has been developed to support feasibility study and conceptual design of new type reactors in the fields of reactor core design including neutronics, thermal-hydraulics and fuel design. IRDS is an integrated software system in which a variety of computer codes in the different fields are installed. An integration of simulation modules are performed by the information transfer between modules through design model in which the design information of the current design work is stored. An object oriented architecture is realized in frame representation of core configuration in a design data base. The knowledge relating to design tasks to be performed are encapsulated, to support the conceptual design work. The system is constructed on an engineering workstation, and supports efficiently design work through man-machine interface adopting the advanced information processing technologies. Optimization methods for design parameters with use of the artificial intelligence technique are now under study, to reduce the parametric study work. A function to search design window in which design is feasible is realized in the fuel pin design. (orig.)

  17. State of the art of the fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, F.; Vilhena, M.T.M.B. de; Streck, E.; Borges, V.; Johansson, M.

    1987-01-01

    A small and simple nuclear reactors with inherent safety using the fluidized bed concept is under research and study. In this paper a brief study neutronics and thermal hydraulics of this reactor concept is presented. (Author) [pt

  18. Status of small reactor designs without on-site refuelling

    International Nuclear Information System (INIS)

    2007-01-01

    There is an ongoing interest in member states in the development and application of small and medium sized reactors (SMRs). In the near term, most new NPPs are likely to be evolutionary designs building on proven systems while incorporating technological advances and often the economics of scale, resulting from the reactor outputs of up to 1600 MW(e). For the longer term, the focus is on innovative designs aiming to provide increased benefits in the areas of safety and security, non-proliferation, waste management, resource utilization and economy, as well as to offer a variety of energy products and flexibility in design, siting and fuel cycle options. Many innovative designs are reactors within the small-to-medium size range, having an equivalent electric power less than 700 MW(e) or even less than 300 MW(e). A distinct trend in design and technology development, accounting for about half of the SMR concepts developed worldwide, is represented by small reactors without on-site refuelling. Such reactors, also known as battery-type reactors, could operate without reloading and shuffling of fuel in the core over long periods, from 5 to 25 years and beyond. Upon the advice and with the support of IAEA member states, within its Programme 1 'Nuclear Power, Fuel Cycle, and Nuclear Science', the IAEA provides a forum for the exchange of information by experts and policy makers from industrialized and developing countries on the technical, economic, environmental, and social aspects of SMRs development and implementation in the 21st century, and makes this information available to all interested Member States by producing status reports and other publications dedicated to advances in SMR technology. The objective of this report is to provide Member States, including those just considering the initiation of nuclear power programmes and those already having practical experience in nuclear power, with a balanced and objective information on important development trends and

  19. On the Design Concept in Engineering Ethics

    Science.gov (United States)

    Ohishi, Toshihiro

    The purpose of this study is to clarify the meaning of the trendy concept in engineering ethics education that ethical problems should be comprehended from the viewpoint of design. First, I present two objections against the concept and the content of it. Second, I examine the concept and show that the essence of it is pragmatic methods. That is, we should understand ethical problems and design problems pragmatically. Finally, I point out that the objections are not true of this pragmatic understanding.

  20. Concept of an inherently-safe high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro

    2012-01-01

    As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R and D items for the inherently-safe HTGR are described in this paper.

  1. Mechanical design of a PERMCAT reactor module

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, S. [Associazione ENEA Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy)], E-mail: tosti@frascati.enea.it; Bettinali, L. [Associazione ENEA Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Borgognoni, F. [Tesi Sas, Via Bolzano 28, Rome (Italy); Murdoch, D.K. [EFDA CSU, Boltzmannstr. 2, D-85748 Garching bei Munchen (Germany)

    2007-02-15

    The PERMCAT is a membrane reactor proposed for processing fusion reactor plasma exhaust gas: tritium removal is obtained by isotopic swamping operating in counter-current mode. In this work, a membrane reactor using a permeator tube of length about 500 mm produced via diffusion welding of Pd-Ag thin foils is described. An appropriate mechanical design of the membrane module has been developed in order to avoid any significant compressive and bending stresses on the very long and thin wall permeator tube: two expanded bellows have been applied to the Pd-Ag tube, so that it has been pre-tensioned before operating. The elongation of the metal permeator under hydrogenation has been theoretically estimated and experimentally verified for properly designing the membrane reactor.

  2. Physics design of the upgraded TREAT reactor

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Lell, R.M.; Liaw, J.R.; Ulrich, A.J.; Wade, D.C.; Yang, S.T.

    1980-01-01

    With the deferral of the Safety Test Facility (STF), the TREAT Upgrade (TU) reactor has assumed a lead role in the US LMFBR safety test program for the foreseeable future. The functional requirements on TU require a significant enhancement of the capability of the current TREAT reactor. A design of the TU reactor has been developed that modifies the central 11 x 11 fuel assembly array of the TREAT reactor such as to provide the increased source of hard spectrum neutrons necessary to meet the functional requirements. A safety consequence of the increased demands on TU is that the self limiting operation capability of TREAT has proved unattainable, and reliance on a safety grade Plant Protection System is necessary to ensure that no clad damage occurs under postulated low-probability reactivity accidents. With that constraint, the physics design of TU provides a means of meeting the functional requirements with a high degree of confidence

  3. The multi region molten-salt reactor concept

    International Nuclear Information System (INIS)

    Gyula, Csom; Sandor, Feher; Szieberth, M.; Szabolcs, Czifrus

    2003-01-01

    The molten-salt reactor (MSR) concept is one of the most promising systems for the realisation of transmutation. The objective is the development of a transmutation technique along with a device implementing it, which yield higher transmutation efficiencies than that of the known procedures. The procedure is the multi-step transmutation, in which the transformation is carried out in several consecutive steps of different neutron flux and spectrum. In order to implement this, a multi-region transmutation device, i.e. nuclear reactor or sub-critical system is proposed, in which several separate flow-through irradiation rooms are formed with various neutron spectra and fluxes. The paper presents calculations that were performed for a special 5-region version of the multi-region molten-salt reactor. (author)

  4. A conceptual design of LIB fusion reactor: UTLIF(2)

    International Nuclear Information System (INIS)

    Madarame, Haruki; Kondo, Shunsuke; Iwata, Shuichi; Oka, Yoshiaki; Miya, Kenzo.

    1984-01-01

    UTLIF(2) is a conceptual design study on a light ion beam driven fusion reactor based on a concept of rod-bundle blanket. Survivability and maintainability of the first wall and the blanket are regarded as of major importance in the design. The blanket rod is composed of a thick tube which has enough stiffness, a thin wrapping wall which receives high heat flux, and liquid lithium which breeds tritium and removes generated heat. The rod can be pulled out from the outside of the reactor vessel, hence the replacement is very easy. Nuclear and thermal analysis have been made and the performance of the reactor has been shown to be satisfactory. (author)

  5. Evaluation of potential blanket concepts for a Demonstration Tokamak Hybrid Reactor

    International Nuclear Information System (INIS)

    Chapin, D.L.; Chi, J.W.H.; Kelly, J.L.

    1978-01-01

    An evaluation has been made of several different blanket concepts for use in a near-term Demonstration Tokamak Hybrid Reactor (DTHR), whose main objective would be to produce a significant amount of fissile fuel while demonstrating the feasibility of the tokamak hybrid reactor concept. The desirability of a simple design using proven technology plus a proliferation resistant fuel cycle led to the selection of a low temperature and pressure water-cooled, zircaloy clad ThO 2 blanket concept to breed 233 U. The nuclear performance and thermal-hydraulics characteristics of the blanket were evaluated to arrive at a consistent design. The blanket was found to be feasible for producing a significant amount of fissile fuel even with the limited operating conditions and blanket coverage in the DTHR

  6. Promising design options for the encapsulated nuclear heat source reactor

    Energy Technology Data Exchange (ETDEWEB)

    Conway, L.; Carelli, M.D.; Dzodzo, M. [Westinghouse Science and Technology, Pittsburgh, PA (United States); Hossain, Q.; Brown, N.W. [Lawrence Livermore National Lab., CA (United States); Wade, D.C.; Sienick, J.J. [Argonne National Lab., IL (United States); Greenspan, E.; Kastenberg, W.E.; Saphier, D. [University of California Dept of Nuclear Engineering, Berkeley, CA (United States)

    2001-07-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  7. Promising design options for the encapsulated nuclear heat source reactor

    International Nuclear Information System (INIS)

    Conway, L.; Carelli, M.D.; Dzodzo, M.; Hossain, Q.; Brown, N.W.; Wade, D.C.; Sienick, J.J.; Greenspan, E.; Kastenberg, W.E.; Saphier, D.

    2001-01-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  8. ETHICAL FASHION CONCEPT AND DESIGNERS

    OpenAIRE

    Pinar GOKLUBERK OZLU; Kenan SAATCIOGLU

    2015-01-01

    Some problems like rapidly developing industrialization, irregular population growth, environmental pollution and to feel the impact of global warming as seriously, has been giving significant damage to the earth. People has realized that, after polluting to clean is harder than polluting of the measures to be taken before. And again people showed the sensitivity to the environment through different reactions and sanctions, took measures and created the new concepts about the enviroment. "Eth...

  9. Kriging-based algorithm for nuclear reactor neutronic design optimization

    International Nuclear Information System (INIS)

    Kempf, Stephanie; Forget, Benoit; Hu, Lin-Wen

    2012-01-01

    Highlights: ► A Kriging-based algorithm was selected to guide research reactor optimization. ► We examined impacts of parameter values upon the algorithm. ► The best parameter values were incorporated into a set of best practices. ► Algorithm with best practices used to optimize thermal flux of concept. ► Final design produces thermal flux 30% higher than other 5 MW reactors. - Abstract: Kriging, a geospatial interpolation technique, has been used in the present work to drive a search-and-optimization algorithm which produces the optimum geometric parameters for a 5 MW research reactor design. The technique has been demonstrated to produce an optimal neutronic solution after a relatively small number of core calculations. It has additionally been successful in producing a design which significantly improves thermal neutron fluxes by 30% over existing reactors of the same power rating. Best practices for use of this algorithm in reactor design were identified and indicated the importance of selecting proper correlation functions.

  10. New trends in reactor physics design methods

    International Nuclear Information System (INIS)

    Jagannathan, V.

    1993-01-01

    Reactor physics design methods are aimed at safe and efficient management of nuclear materials in a reactor core. The design methodologies require a high level of integration of different calculational modules of many a key areas like neutronics, thermal hydraulics, radiation transport etc in order to follow different 3-D phenomena under normal and transient operating conditions. The evolution of computer hardware technology is far more rapid than the software development and has rendered such integration a meaningful and realizable proposition. The aim of this paper is to assess the state of art of the physics design codes used in Indian thermal power reactor applications with respect to meeting the design, operational and safety requirements. (author). 50 refs

  11. HYLIFE-II reactor chamber design refinements

    International Nuclear Information System (INIS)

    House, P.A.

    1994-06-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li 2 BeF 4 ) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (>12 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GWe and 2 GWe reactor chamber are presented

  12. Design considerations for epithermal pulse reactors

    International Nuclear Information System (INIS)

    Ostensen, R.W.

    1978-01-01

    Simplified design criteria were developed for scoping analyses of epithermal pulse reactors for use in LMFBR safety testing. By using these criteria, materials and designs were investigated to determine performance limits of moderately sized reactor cores. Several designs are suggested for further study. These are a gas-cooled core fueled with a heterogeneous mixture of Fe-UO 2 cermet and BeO-UO 2 ceramic fuels, and a heavy-water-cooled core fueled with an Fe-UO 2 cermet

  13. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-06-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-1 through 4 and PULSAR 1 and 2. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. Also, the requirements of engineering and physics systems for a pulsed reactor were evaluated by the PULSAR design studies. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies

  14. Innovative Control concepts for German pressurized water reactors

    International Nuclear Information System (INIS)

    Brzozowski, Raphael; Kuhn, Andreas

    2010-01-01

    Controlling reactor power without any manual support is becoming more and more important. The READIG project (READIG = Reactor Instrumentation and Digital Control) power control system installed in unit 2 of the Philippsburg nuclear power station (KKP 2) requires no manual intervention except for specific strategy criteria settings. It was even possible to eliminate the power distribution set points. With minor adaptations, this concept can be applied in other PWR plants as well. KKP 2 is a PWR plant with particularly sophisticated core charges; as a consequence, the I and C systems were adapted accordingly. The increase in integral reactor power and the low-leakage core charges are the main reasons for lower limiting margins, especially in peak limiting. The standard control concept was supplemented in such a way that a more precise fine control concept for power distribution in the full-load regime is achieved. The READIG project fully utilizes the possibilities offered by digital TXS Technology, which is why use is also made of physical parameterization. The new power distribution control concept has these advantages: - Operation at small peak-/DNB-reactor output limitation margins. - Stable control without manual intervention also in load cycles and in the frequency control mode. - Simplified operation due to omission of the power distribution set point. - Reduction to zero of the frequency of L-bank steps at constant power with superimposed frequency control mode. - Reduction to zero of the frequency of D-bank steps at constant power with superimposed frequency control mode. - Lower quantities of demineralized water to be fed at constant power with superimposed frequency control mode (±1%). (orig.)

  15. Design options for a bunsen reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  16. In-reactor testing of the closed cycle gas core reactor---the nuclear light bulb concept

    International Nuclear Information System (INIS)

    Gauntt, R.O.; Slutz, S.A.; Harms, G.A.; Latham, T.S.; Roman, W.C.; Rodgers, R.J.

    1993-01-01

    The Nuclear Light Bulb (NLB) concept is an advanced closed cycle space propulsion rocket engine design that offers unprecidented performance characteristics in terms of specific impulse (>1800 s) and thrust (>445 kN). The NLB is a gas-core nuclear reactor making use of thermal radiation from a high temperature U-plasma core to heat the hydrogen propellant to very high temperatures (∼4000 K). The following paper describes analyses performed in support of the design of in-reactor tests that are planned to be performed in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories in order to demonstrate the technical feasibility of this advanced concept. The tests will examine the stability of a hydrodynamically confined fissioning U-plasma under steady and transient conditions. Testing will also involve study of propellant heating by thermal radiation from the plasma and materials performance in the nuclear environment of the NLB. The analyses presented here include neutronic performance studies and U-plasma radiation heat-transport studies of small vortex-confined fissioning U-plasma experiments that are irradiated in the ACRR. These analyses indicate that high U-plasma temperatures (4000 to 9000 K) can be sustained in the ACRR for periods of time on the order of 5 to 20 s. These testing conditions are well suited to examine the stability and performance requirements necessary to demonstrate the feasibility of this concept

  17. Savannah River Site reactor hardware design modification study

    International Nuclear Information System (INIS)

    Fisher, J.E.

    1990-03-01

    A study was undertaken to assess the merits of proposed design modifications to the SRS reactors. The evaluation was based on the responses calculated by the RELAP5 systems code to double-ended guillotine break loss-of-coolant-accidents (DEGB LOCAs). The three concepts evaluated were (a) elevated plenum inlet piping with a guard vessel and clamshell enclosures, (b) closure of both rotovalves in the affected loop, and (c) closure of the pump suction valve in the affected loop. Each concept included a fast reactor shutdown (to 65% power in 100 ms) and a 2-s ac pump trip. For the elevated piping design, system recovery was predicted for breaks in the plenum inlet or pump suction piping; response to the pump discharge break location did not show improvement compared to the present system configuration. The rotovalve closure design improved system response to plenum inlet or pump discharge breaks; recovery was not predicted for pump suction breaks. The pump suction valve closure design demonstrated system recovery for all break locations downstream of the valve. A combination of features is recommended to ensure liquid inventory recovery for all break locations. The elevated piping design performance during pump discharge breaks would be improved with addition of a dc pump trip in the affected loop. Valve closure design performance for a break location in the short section of piping between the reactor concrete shield and the pump suction valve would benefit from the clamshell enclosing that section of piping. 12 refs., 10 figs., 2 tabs

  18. Conceptual designs for advanced, high-temperature CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bushby, S.J. [Atomic Energy of Canada Ltd., Corrosion and Surface Science Branch, Chalk River Laboratories, Chalk River, ON (Canada); Dimmick, G.R. [Atomic Energy of Canada Ltd., Fuel Channel Thermmalhydraulics Branch, Chalk River, ON (Canada); Duffey, R.B. [Atomic Energy of Canada Ltd., Principal Scientist, Chalk River Laboratories, Chalk River, On (Canada); Spinks, N.J. [Atomic Energy of Canada Ltd., Researcher Emeritus, Chalk River Laboratories, Chalk River, ON (Canada); Burrill, K.A. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, ON (Canada); Chan, P.S.W. [Atomic Energy of Canada Ltd., Reactor Core Physics Branch, Mississauga, ON (Canada)

    2000-07-01

    AECL is studying advanced reactor concepts with the aim of significant cost reduction through improved thermodynamic efficiency and plant simplification. The program, generically called CANDU-X, also incorporates enhanced safety features, and flexible, proliferation-resistant fuel cycles, whilst retaining the fundamental design characteristics of CANDU: neutron economy, horizontal fuel channels, and a separate D{sub 2}O moderator that provides a passive heat sink. Where possible, proven, existing components and materials would be adopted, so that 'first-of-a-kind' costs and uncertainties are avoided. Three reactor concepts ranging in output from {approx}375 MW(e) to 1150 MW(e) are described. The modular design of a pressure tube reactor allows the plant size for each concept to be tailored to a given market through the addition or removal of fuel channels. Each concept uses supercritical water as the coolant at a nominal pressure of 25 MPa. Core outlet temperatures range from {approx}400degC to 625degC, resulting in substantial improvements in thermodynamic efficiencies compared to current nuclear stations. The CANDU-X Mark 1 concept is an extension of the present CANDU design. An indirect cycle is employed, but efficiency is increased due to higher coolant temperature, and changes to the secondary side; as well, the size and number of pumps and steam generators are reduced. Safety is enhanced through facilitation of thermo-siphoning of decay heat by increasing the temperature of the moderator. The CANDU-X NC concept is also based on an indirect cycle, but natural convection is used to circulate the primary coolant. This approach enhances cycle efficiency and safety, and is viable for reactors operating near the pseudo-critical temperature of water because of large changes in heat capacity and thermal expansion in that region. In the third concept (CANDUal-X), a dual cycle is employed. Supercritical water exits the core and feeds directly into a very high

  19. Design of water detritiation system for fusion reactor

    International Nuclear Information System (INIS)

    Xie Bo; Wang Heyi; Liu Yunnu; Guan Rui

    2006-01-01

    The water detritiation system (WDS) of tritium plant for the International Thermonuclear Experimental Reactor (ITER) was designed. The concept of the Combined Electrolysis Catalytic Exchange and Gas Chromatography (CECE-GC) process was selected for the system and subsystems' descriptions of the WDS. ITER-WDS is characterised from the present demonstration system by rejecting the use of a recombiner and alkali electrolyzer, but a solid polymer electrolyzer (SPE) and a Pd/Ag membrane permeator system are adopted to recover tritium. (authors)

  20. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  1. Planning a new research reactor for AECL: The MAPLE-MTR concept

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Donnelly, J.V.

    1992-01-01

    AECL Research is assessing its needs and options for future irradiation research facilities. A planning team has been assembled to identify the irradiation requirements for AECL's research programs and compile options for satisfying the irradiation requirements. The planning team is formulating a set of criteria to evaluate the options and will recommend a plan for developing an appropriate research facility. Developing the MAPLE Materials Test Reactor (MAPLE-MTR) concept to satisfy AECL's irradiation requirements is one option under consideration by the planning team. AECL is undertaking this planning phase because the NRU reactor is 35 years old and many components are nearing the end of their design life. This reactor has been a versatile facility for proof testing CANDU components and fuel designs because the CANDU irradiation environment was simulated quite well. However, the CANDU design has matured and the irradiation requirements have changed. Future research programs will emphasize testing CANDU components near or beyond their design limits. To provide these irradiation conditions, the NRU reactor needs to be upgraded. Upgrading and refurbishing the NRU reactor is being considered, but the potentially large costs and regulatory uncertainties make this option very challenging. AECL is also developing the MAPLE-MTR concept as a potential replacement for the NRU reactor. The MAPLE-MTR concept starts from the recent MAPLE-X10 design and licensing experience and adapts this technology to satisfy the primary irradiation requirements of AECL's research programs. This approach should enable AECL to minimize the need for major advances in nuclear technology (e.g., fuel design, heat transfer). The preliminary considerations for developing the MAPLE-MTR concept are presented in this report. A summary of AECL's research programs is presented along with their irradiation requirements. This is followed by a description of safety criteria that need to be taken into

  2. Jules Horowitz reactor (RJH): its design

    International Nuclear Information System (INIS)

    Dupuy, J.P.

    2002-01-01

    This article presents the design of the new irradiation facility (Jules Horowitz reactor) that is planned to be built on the Cadarache site of Cea. 2 principles have been followed. The first one is based on a physical separation between the systems and activities related to the reactor and the experiments from one hand and the other systems and means dedicated to the treatment of the experimental devices before and after irradiation on the other hand. This first principle implies to build 2 buildings: the reactor building and the nuclear auxiliaries building. Inside the reactor building activities from the reactor itself are separated from those dedicated to experimentation. In order to maximize the efficiency of such a reactor, an important number of simultaneous experiments is expected, which will generate an endless flux of incoming and out-going experiments and as a consequence an important handling work between the different work posts. The second principle aims at easing any handling work without breaking the rules of confinement. The different storing pools, the water pits that lead to the 5 hot cells and the reactor tank will communicate through a water-filled canal that will link the 2 buildings. (A.C.)

  3. Development of MMIS design concepts for the KNGR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Ku, In Su; Heo, Seop; Jeong, Chel Hwan; Lee, Hyun Chol; Park, Hui Yun; Lee, Chol Gwon; So, Yong Suk; Kim, Dong Hun; Jang, Gwi Sook; Lee, Ki Yonug; Lee, Jun; Kim, Young In [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    The design goals of MMIS for the next generation nuclear power plant are to improve plant safety and the cost effectiveness of nuclear power plants, and to meet with regulatory requirements. For the optimized design of MMIS, conceptual design bases are required for the optimization of MMIS design to establish the design concepts for NGR MMIS. The conceptual design bases are also required for performing the basic design, and verifying the design. The objectives of this study are establishment of MMIS design bases and the development of next generation MMIS configuration concepts. The MMIS design bases for by adopting MMIS requirements developed in the previous study on next generation reactor evaluation techniques and advanced MMIS technologies. The next generation MMIS design requirements are to be developed based on the device obsolescence problems by applying modern digital technology. This report describes the design concepts for the next generation MMIS. In order to develop the design concepts, new technologies were analyzed, and the characteristics of new advanced MMIS designs were reviewed. In addition, reviewing the advanced design features (ADF) resulted from the 3 rd stage of standardization project, the strategy for the application of the results from these activities are prepared. This report includes the comparison results of the design characteristics of next generation MMIS with those of existing plants, YGN 3 and 4, UCN 3 and 4, and NUPLEX 80+. This report also describes the conceptual MMIS configuration of next generation control room, based on the results from the comparison. The results of this study will be an input for the detailed design guidelines and a regulatory requirements review report for the next generation MMIS design, and provide basis for the basis and detailed design of MMI and I and C for main control room. 1 fig., 1 tab., 46 refs. (Author) .new.

  4. Development of MMIS design concepts for the KNGR

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Ku, In Su; Heo, Seop; Jeong, Chel Hwan; Lee, Hyun Chol; Park, Hui Yun; Lee, Chol Gwon; So, Yong Suk; Kim, Dong Hun; Jang, Gwi Sook; Lee, Ki Yonug; Lee, Jun; Kim, Young In

    1995-12-01

    The design goals of MMIS for the next generation nuclear power plant are to improve plant safety and the cost effectiveness of nuclear power plants, and to meet with regulatory requirements. For the optimized design of MMIS, conceptual design bases are required for the optimization of MMIS design to establish the design concepts for NGR MMIS. The conceptual design bases are also required for performing the basic design, and verifying the design. The objectives of this study are establishment of MMIS design bases and the development of next generation MMIS configuration concepts. The MMIS design bases for by adopting MMIS requirements developed in the previous study on next generation reactor evaluation techniques and advanced MMIS technologies. The next generation MMIS design requirements are to be developed based on the device obsolescence problems by applying modern digital technology. This report describes the design concepts for the next generation MMIS. In order to develop the design concepts, new technologies were analyzed, and the characteristics of new advanced MMIS designs were reviewed. In addition, reviewing the advanced design features (ADF) resulted from the 3 rd stage of standardization project, the strategy for the application of the results from these activities are prepared. This report includes the comparison results of the design characteristics of next generation MMIS with those of existing plants, YGN 3 and 4, UCN 3 and 4, and NUPLEX 80+. This report also describes the conceptual MMIS configuration of next generation control room, based on the results from the comparison. The results of this study will be an input for the detailed design guidelines and a regulatory requirements review report for the next generation MMIS design, and provide basis for the basis and detailed design of MMI and I and C for main control room. 1 fig., 1 tab., 46 refs. (Author) .new

  5. Advanced gas cooled reactors - Designing for safety

    International Nuclear Information System (INIS)

    Keen, Barry A.

    1990-01-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme

  6. Advanced gas cooled reactors - Designing for safety

    Energy Technology Data Exchange (ETDEWEB)

    Keen, Barry A [Engineering Development Unit, NNC Limited, Booths Hall, Knutsford, Cheshire (United Kingdom)

    1990-07-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme.

  7. Design study on small CANDLE reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, H; Yan, M [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (Japan)

    2007-07-01

    A new reactor burnup strategy CANDLE was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move to an axial direction. Here important points are that the solid fuel is fixed at each position and that any movable burnup reactivity control mechanisms such as control rods are not required. This burnup strategy can derive many merits. The change of excess reactivity along burnup is theoretically zero, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed along burnup. Therefore, the operation of the reactor becomes much easier than the conventional reactors especially for high burnup reactors. The transportation and storage of replacing fuels become easy and safe, since they are free from criticality accidents. In our previous works it is appeared that application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replacing fuels. The average burnup of the spent fuel is about 40% that is equivalent to 40% utilization of the natural uranium without the reprocessing and enrichment. This reactor can be realized for large reactor, since the neutron leakage becomes small and its neutron economy becomes improved. In the present paper we try to design small CANDLE reactor whose performance is similar to the large reactor by increasing its fuel volume ration of the core, since its performance is strongly required for local area usage. Small long life reactor is required for some local areas. Such a characteristic that only natural uranium is required after second core is also strong merit for this case. The core with 1.0 m radius, 2.0 m length can realize CANDLE burn-up with nitride (enriched N-15) natural uranium as fresh fuel. Lead-Bismuth is

  8. Design study on small CANDLE reactor

    International Nuclear Information System (INIS)

    Sekimoto, H.; Yan, M.

    2007-01-01

    A new reactor burnup strategy CANDLE was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move to an axial direction. Here important points are that the solid fuel is fixed at each position and that any movable burnup reactivity control mechanisms such as control rods are not required. This burnup strategy can derive many merits. The change of excess reactivity along burnup is theoretically zero, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed along burnup. Therefore, the operation of the reactor becomes much easier than the conventional reactors especially for high burnup reactors. The transportation and storage of replacing fuels become easy and safe, since they are free from criticality accidents. In our previous works it is appeared that application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replacing fuels. The average burnup of the spent fuel is about 40% that is equivalent to 40% utilization of the natural uranium without the reprocessing and enrichment. This reactor can be realized for large reactor, since the neutron leakage becomes small and its neutron economy becomes improved. In the present paper we try to design small CANDLE reactor whose performance is similar to the large reactor by increasing its fuel volume ration of the core, since its performance is strongly required for local area usage. Small long life reactor is required for some local areas. Such a characteristic that only natural uranium is required after second core is also strong merit for this case. The core with 1.0 m radius, 2.0 m length can realize CANDLE burn-up with nitride (enriched N-15) natural uranium as fresh fuel. Lead-Bismuth is

  9. Key issues in european reactor seismic design

    International Nuclear Information System (INIS)

    Cicognani, G.; Martelli, A.

    1984-01-01

    The paper focuses on the main problems which have arisen in FBR design in Europe due to seismic conditions. Its first part, derived from the final report of a CEC-Belgonucleaire study contract, clarifies how ''real'' is the seismic problem for each site. Then, the second and main part deals with the studies carried out in the european countries on the relevant subjects, typical of FBRs or related to specific needs of single FBRs: these studies, for which contributions were provided by ENEA, CEA, NNC and INTERATOM, concern mainly the numerical and experimental analysis of the core, the reactor vessel, the shut-down system and the reactor building of FBRs under construction or in advanced design phase. Attention is also paid to the studies started for future purposes, the feed-backs on the design due to seismic conditions, and the instructions for future reactors

  10. Magnet design considerations for Tokamak fusion reactors

    International Nuclear Information System (INIS)

    Purcell, J.R.; Chen, W.; Thomas, R.

    1976-01-01

    Design problems for superconducting ohmic heating and toroidal field coils for large Tokamak fusion reactors are discussed. The necessity for making these coils superconducting is explained, together with the functions of these coils in a Tokamak reactor. Major problem areas include materials related aspects and mechanical design and cryogenic considerations. Projections and comparisons are made based on existing superconducting magnet technology. The mechanical design of large-scale coils, which can contain the severe electromagnetic loading and stress generated in the winding, are emphasized. Additional major tasks include the development of high current conductors for pulsed applications to be used in fabricating the ohmic heating coils. It is important to note, however, that no insurmountable technical barriers are expected in the course of developing superconducting coils for Tokamak fusion reactors. (Auth.)

  11. System design study of small lead-bismuth cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Hori, Toru; Konomura, Mamoru

    2003-07-01

    In phase II of the feasibility study of JNC, we will make a concept of a dispersion power source reactor with various requirements, such as economical competitiveness and safety. In the study of a small lead-bismuth cooled reactor, a concept whose features are long life core, inherent safety, natural convection of cooling system and steam generators in the reactor vessel has been designed since 2000. The investigations which have been done in 2002 are shown as follows; Safety analysis of UTOP considering uncertainty of reactivity. Possibility of reduction of number of control rods. Estimation of construction cost. Transient analyses of UTOP have been done in considering uncertainty of reactivity in order to show the inherent safety in the probabilistic method. And the inherent safety in UTOP is realized under the condition of considering uncertainty. Transient analyses of UTOP with various numbers of control rods have been done and it is suggested that there is possibility of reduction of the number of control rods considering accident managements. The method of cost estimation is a little modified. The cost of reactor vessel is estimated from that of medium sized lead-bismuth cooled reactor and the estimation of a purity control system is by coolant volume flow rate. The construction cost is estimated 850,000yen/kWe. (author)

  12. Structural design and dynamic analysis of underground nuclear reactor containments

    International Nuclear Information System (INIS)

    Kierans, T.W.; Reddy, D.V.; Heale, D.G.

    1975-01-01

    Present actual experience in the structural design of undeground containments is limited to only four rather small reactors all located in Europe. Thus proposals for future underground reactors depend on the transposition of applicable design specifications, constraints and criteria from existing surface nuclear power plants to underground, and the use of many years of experience in the structural design of large underground cavities and cavity complexes for other purposes such as mining, hydropower stations etc. An application of such considerations in a recent input for the Underground Containment sub-section of the Seismic Task Group Report to the ASCE Committee for Nuclear Structures and Materials is presented as follows: underground concept considerations, siting criteria and structural selection, structural types, analytical and semi-analytical approaches, design and other miscellaneous considerations

  13. Blanket design study for a Commercial Tokamak Hybrid Reactor (CTHR)

    International Nuclear Information System (INIS)

    Chapin, D.L.; Green, L.; Lee, A.Y.; Culbert, M.E.; Kelly, J.L.

    1979-09-01

    The results are presented of a study on two blanket design concepts for application in a Commercial Tokamak Hybrid Reactor (CTHR). Both blankets operate on the U-Pu cycle and are designed to achieve tritium self-sufficiency while maximizing the fissile fuel production within thermal and mechanical design constraints. The two blanket concepts that were evaluated were: (1) a UC fueled, stainless steel clad and structure, helium cooled blanket; and (2) a UO 2 fueled, zircaloy clad, stainless steel structure, boiling water cooled blanket. Two different tritium breeding media, Li 2 O and LiH, were evaluated for use in both blanket concepts. The use of lead as a neutron multiplier or reflector and graphite as a reflector was also considered for both blankets

  14. Design of Concept Libraries for C++

    KAUST Repository

    Sutton, Andrew

    2012-01-01

    We present a set of concepts (requirements on template arguments) for a large subset of the ISO C++ standard library. The goal of our work is twofold: to identify a minimal and useful set of concepts required to constrain the library\\'s generic algorithms and data structures and to gain insights into how best to support such concepts within C++. We start with the design of concepts rather than the design of supporting language features; the language design must be made to fit the concepts, rather than the other way around. A direct result of the experiment is the realization that to simply and elegantly support generic programming we need two kinds of abstractions: constraints are predicates on static properties of a type, and concepts are abstract specifications of an algorithm\\'s syntactic and semantic requirements. Constraints are necessary building blocks of concepts. Semantic properties are represented as axioms. We summarize our approach: concepts = constraints + axioms. This insight is leveraged to develop a library containing only 14 concepts that encompassing the functional, iterator, and algorithm components of the C++ Standard Library (the STL). The concepts are implemented as constraint classes and evaluated using Clang\\'s and GCC\\'s Standard Library test suites. © 2012 Springer-Verlag.

  15. Design verification for reactor head replacement

    International Nuclear Information System (INIS)

    Dwivedy, K.K.; Whitt, M.S.; Lee, R.

    2005-01-01

    This paper outlines the challenges of design verification for reactor head replacement for PWR plants and the program for qualification from the prospective of the utility design engineering group. This paper is based on the experience with the design confirmation of four reactor head replacements for two plants, and their interfacing components, parts, appurtenances, and support structures. The reactor head replacement falls under the jurisdiction of the applicable edition of the ASME Section XI code, with particular reference to repair/replacement activities. Under any repair/replacement activities, demands may be encountered in the development of program and plan for replacement due to the vintage of the original design/construction Code and the design reports governing the component qualifications. Because of the obvious importance of the reactor vessel, these challenges take on an added significance. Additional complexities are introduced to the project, when the replacement components are fabricated by vendors different from the original vendor. Specific attention is needed with respect to compatibility with the original design and construction of the part and interfacing components. The program for reactor head replacement requires evaluation of welding procedures, applicable examination, test, and acceptance criteria for material, welds, and the components. Also, the design needs to take into consideration the life of the replacement components with respect to the extended period of operation of the plant after license renewal and other plant improvements. Thus, the verification of acceptability of reactor head replacement provides challenges for development and maintenance of a program and plan, design specification, design report, manufacturer's data report and material certification, and a report of reconciliation. The technical need may also be compounded by other challenges such as widely scattered global activities and organizational barriers, which

  16. Once-through cycle, supercritical-pressure light water cooled reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Y.; Koshizuka, S. [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2001-07-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  17. Once-through cycle, supercritical-pressure light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.

    2001-01-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  18. The near boiling reactor: design of a small nuclear reactor for extending the operational envelope of the Victoria Class Submarine

    International Nuclear Information System (INIS)

    Cole, C.; Bonin, H.

    2005-01-01

    A small, inherently safe nuclear reactor that will provide enough power to maintain the hotel load of the Victoria Class Submarine and extend her operational envelope, has been conceptually designed. The final reactor concept, named the Near Boiling (NB) Reactor, employs TRISO fuel particles in Zirconium cladded fuel rods. The reactor is light water moderated and cooled. The core life is specifically designed to coincide with the refit cycle of the Victoria Class Submarine. The reactor employs a simple and reliable control and shut down system that requires little intervention on the part of the submarine's crew. Also, a kinetic model is developed that demonstrates the inherent safety features of the reactor during several accident scenarios. (author)

  19. The near boiling reactor: design of a small nuclear reactor for extending the operational envelope of the Victoria Class Submarine

    Energy Technology Data Exchange (ETDEWEB)

    Cole, C.; Bonin, H. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)]. E-mail: chris.cole@rmc.ca; bonin-h@rmc.ca

    2005-07-01

    A small, inherently safe nuclear reactor that will provide enough power to maintain the hotel load of the Victoria Class Submarine and extend her operational envelope, has been conceptually designed. The final reactor concept, named the Near Boiling (NB) Reactor, employs TRISO fuel particles in Zirconium cladded fuel rods. The reactor is light water moderated and cooled. The core life is specifically designed to coincide with the refit cycle of the Victoria Class Submarine. The reactor employs a simple and reliable control and shut down system that requires little intervention on the part of the submarine's crew. Also, a kinetic model is developed that demonstrates the inherent safety features of the reactor during several accident scenarios. (author)

  20. Remote maintenance design for Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tachikawa, K.; Iida, H.; Nishio, S.; Tone, T.; Aota, T.; Iwamoto, T.; Niikura, S.; Nishizawa, H.

    1984-01-01

    Design of Fusion Experimental Reactor, FER, has been conducted by Japan Atomic Energy Research Institute (JAERI) since 1981. Two typical reactors can be classified in general from the viewpoints of remote maintenance among four design concepts of FER. In the case of the type 1 FER, the torus module consists of shield structure and blanket, and the connective joints between toruses provided at the outer region of the reactor. As for the type 2 FER, the shield structure is joined with the vacuum cryostat, and only the blanket module is allowed to move, but connection between toruses are located in the inner region of the reactor. Comparing type 1 with type 2 FER, this paper describes on the remote maintenance of FER including reactor configurations, work procedures, remote systems/equipments, repairing facility and future R and D problems. Reviewing design studies and investigation for the existing robotics technologies, R and D for FER remote maintenance technology should be performed under the reasonable long-term program. The main items of remote technology required to start urgently are multi-purpose manipulator system with performance of dextrousity, tele-viewing system which reduces operator fatigue and remote tests for commercially available components

  1. A compact, inherently safe liquid metal reactor plant concept for terrestrial defense power applications

    International Nuclear Information System (INIS)

    Magee, P.M.; Dubberley, A.E.; Lutz, D.E.; Palmer, R.S.

    1987-01-01

    A compact, inherently safe, liquid metal reactor concept based on the GE PRISM innovative LMR design has been developed for terrestrial defense power applications in the 2-50 MWe range. The concept uses a small, sodium-cooled, U-5%Zr metal fueled reactor contained within two redundant steel vessels. The core is designed to operate at a low power density and temperature (925 F) and can operate 30 years without refueling. One two primary coolant loops, depending upon the plant size, transport heat from the core to sodium-to-air, double-wall heat exchangers. Power is produced by a gas turbine operated in a closed ''bottoming'' cycle that employs intercoolers between the compressor stages and a recuperator. Inherent safety is provided by passive means only; operator action is not required to ensure plant safety even for events normally considered Beyond Design Basis Accidents. In addition to normal shutdown heat removal via the sodium-to-air heat exchangers, the design utilizes an inherently passive radiant vessel auxiliary cooling system similar to that designed for PRISM. The use of an air cycle gas turbine eliminates the cost and complexity of the sodium-water reactor pressure relief system required for a steam cycle sodium-cooled reactor

  2. Design of a nuclear reactor cooperative controller

    International Nuclear Information System (INIS)

    Alang-Rashid, N.K.; Heger, A.S.

    1991-01-01

    This paper describes the development of a fuzzy logic controller software package and explores the feasibility of its use in nuclear reactor operation. The controller complements reactor operator actions, and the operators can override the controller decisions. Techniques of providing learning capability to the controller are also being investigated to improve the reasoning and control skill of the controller. The fuzzy logic controller is implemented in C language and its overall structure is shown. The heart of the systems consists of a fuzzifier, a rule interpreter, and a defuzzifier. The controller is designed as a stand-alone package that can be interfaced to a simulated model of a nuclear reactor. Since no model is an accurate representation of the actual process being modeled, some tuning must be performed to use the controller in an actual reactor. This is accomplished using the learning feature of the controller

  3. Development of core thermal-hydraulics module for intelligent reactor design system (IRDS)

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Fujii, Sadao.

    1994-08-01

    We have developed an innovative reactor core thermal-hydraulics module where a designer can easily and efficiently evaluate his design concept of a new type reactor in the thermal-hydraulics field. The main purpose of this module is to decide a feasible range of basic design parameters of a reactor core in a conceptual design stage of a new type reactor. The module is to be implemented in Intelligent Reactor Design System (IRDS). The module has the following characteristics; 1) to deal with several reactor types, 2) four thermal hydraulics and fuel behavior analysis codes are installed to treat different type of reactors and design detail, 3) to follow flexibly modification of a reactor concept, 4) to provide analysis results in an understandable way so that a designer can easily evaluate feasibility of his concept, and so on. The module runs on an engineering workstation (EWS) and has a user-friendly man-machine interface on a pre- and post-processing. And it is equipped with a function to search a feasible range called as Design Window, for two design parameters by artificial intelligence (AI) technique and knowledge engineering. In this report, structure, guidance for users of an usage of the module and instruction of input data for analysis modules are presented. (author)

  4. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  5. Reactor core design aiding system

    International Nuclear Information System (INIS)

    Kanazawa, Nobuhiro; Hamaguchi, Yukio; Nakao, Takashi; Kondo, Yasuhide

    1995-01-01

    A two-dimensional radial power distribution and an axial one-dimensional power distribution are determined based on a distribution of a three-dimensional infinite multiplication factor, to obtain estimated power distribution estimation values. The estimation values are synthesized to obtain estimated three-dimensional power distribution values. In addition, the distribution of a two-dimensional radial multiplication factor and the distribution of an one-dimensional axial multiplication factor are determined based on the three-dimensional power distribution, to obtain estimated values for the multiplication factor distribution. The estimated values are synthesized to form estimated values for the three-dimensional multiplication factor distribution. Further, estimated fuel loading pattern value is determined based on the three-dimensional power distribution or the two-dimensional radial power distribution. Since the processes for determining the estimated values comprise only additive and multiplying operations, processing time can be remarkably saved compared with calculation based on a detailed physical models. Since the estimation is performed on every fuel assemblies, a nervous circuit network not depending on the reactor core system can be constituted. (N.H.)

  6. Design concept of the HPLWR moderator flow path

    International Nuclear Information System (INIS)

    Koehly, Christina; Schulenberg, Thomas; Starflinger, Joerg

    2009-01-01

    The latest design concept of the High Performance Light Water Reactor (HPLWR) includes a thermal core in which supercritical water at 25 MPa inlet pressure is heated up from 280degC reactor inlet temperature to 500degC core exit temperature in three steps with intermediate coolant mixing to minimize peak cladding temperatures of the fuel rods. Prior to entering the first fuel assemblies, the coolant is used as moderator in water rods inside assemblies, in the gap volume between assembly boxes, as well as in the surrounding axial or radial reflectors. Even though assembly boxes and moderator rods are designed with a certain thermal insulation, heat is generated in the moderator water or transferred to it from the superheated steam inside assemblies, causing concern of natural convection phenomena with uncontrolled neutronic feedback on the core power distribution. Moreover, bypass flows of the moderator water need to be minimized at any thermal expansion of the reactor internal structures to avoid an unpredictable moderator mass flow. The design concept of the moderator flow path described in this paper is trying to overcome these problems. Downward flow of moderator water is limited to sub-cooled conditions, well below the pseudo-critical point of supercritical water. Dedicated orifices are foreseen to allow later correction of the mass flow split. The sealing concept accounts for larger thermal expansions of reactor components by using C-rings or bellows. A welded construction is preferred wherever possible to minimize leakage. The removable steam plenum is aligned at the extractable steam pipes to minimize thermal displacements at the sealing positions. The paper is showing several design details to illustrate the technical solutions. (author)

  7. Conceptual design of light ion beam inertia nuclear fusion reactors

    International Nuclear Information System (INIS)

    1983-07-01

    Light ion beam, inertia nuclear fusion system drew attention recently as one of the nuclear fusion systems for power reactors in the history of the research on nuclear fusion. Its beginning seemed to be the judgement that the implosion of fusion fuel pellets with light ions can be realized with the light ions which can be obtained in view of accelerator techniques. Of course, in order to generate practically usable nuclear fusion reaction by this system and maintain it, many technical difficulties must be overcome. This research was carried out for the purpose of discovering such technical problems and searching for their solution. At the time of doing the works, the following policy was adopted. Though their is the difference of fine and rough, the design of a whole reactor system is performed conformably. In order to make comparison with other reactor types and nuclear fusion systems, the design is carried out as the power plant of about one million kWe output. As the extent of the design, the works at conceptual design stage are performed to present the concept of design which satisfies the required function. Basically, the design is made from conservative standpoint. This research of design was started in 1981, and in fiscal 1982, the mutual adjustment among the design of respective parts was performed on the basis of the results in 1981, and the possible revision and new proposal were investigated. (Kako, I.)

  8. Progress on traveling-wave reactor design

    International Nuclear Information System (INIS)

    Gilleland, John

    2009-01-01

    TerraPower LLC is leading a collaborative effort to develop physics and engineering designs for several kinds of sodium-cooled traveling-wave reactors. This collaboration includes nuclear engineering groups at TerraPower, M.I.T., U.N.L.V., Argonne National Laboratory, and the Columbia River Basin Consulting Group, as well as individual consultants from Lawrence Livermore National Laboratory, U.C. Berkeley, and several other institutions. The goal of this initiative is to develop innovative technologies that will enable cost-effective breed-and-burn reactors, which produce electricity from fuel composed almost wholly of depleted uranium. We will present conceptual designs ranging in reactor vessel size from five meters to 13 meters and in output from about 100 MWe to more than 1,000 MWe. Our Monte Carlo simulations for these reactors predict refueling intervals ranging from 40 to 125 years. Scaling designs from small to large sizes requires a shift in basic design approach; lessons learned from this effort will be discussed. We will also share our evolving understanding of the ways in which the core design can be simplified by improvements to certain limiting technologies. (author)

  9. Concept study of the Steady State Tokamak Reactor (SSTR)

    International Nuclear Information System (INIS)

    1991-06-01

    The Steady State Tokamak Reactor (SSTR) concept has been proposed as a realistic fusion power reactor to be built in the near future. An overall concept of SSTR is introduced which is based on a small extension of the present day physics and technologies. The major feature of SSTR is the maximum utilization of a bootstrap current in order to reduce the power required for the steady state operation. This requirement leads to the choice of moderate current (12 MA), and high βp (2.0) for the device, which are achieved by selecting high aspect ratio (A=4) and high toroidal magnetic field (16.5 T). A negative-ion-based neutral beam injection system is used both for heating and central current drive. Notable engineering features of SSTR are: the use of a uniform vacuum vessel and periodical replacements of the first wall and blanket layers and significant reduction of the electromagnetic force with the use of functionally gradient material. It is shown that a tokamak machine comparable to ITER in size can become a power reactor capable of generating about 1 GW of electricity with a plant efficiency of ∼30%. (author)

  10. Safety concept of high-temperature reactors based on the experience with AVR and THTR

    International Nuclear Information System (INIS)

    Wachholz, Winfried; Kroeger, Wolfgang

    1990-01-01

    In the Federal Republic of Germany a reactor is considered safe if verification has been furnished that the requirements contained in paragraph 7 of the Federal German Atomic Energy Act are met for this reactor: demonstration of sufficient precautions against damage required according to the actual state of the art, and especially compliance with the dose rate limits for normal operation and accidental conditions. These requirements result in a deterministic multi-stage safety concept with specified requirements for the engineered safety systems. In recent years, proposals for enhanced safety of nuclear power reactors or a radical change in safety philosophy have been made. This is characterised by 'inherently safe', 'super safe' and similar slogans. A quantitative definition of these requirements has not yet been established, but it is clear as a common objective that the event of beyond design basis accidents evacuation, relocation, and large scale contamination of ground should not occur. As a consequence of the Chernobyl accident the safety of all the NPPs in Germany has been reviewed. This analysis was completed for the THTR reactor in 1988. The same has been done for AVR reactor. The final evaluation of the HTR specific safety features have been fully confirmed. The HTR concepts under development are based on this experience. The HTR-Modul unit is currently being designed

  11. Optical design considerations for laser fusion reactors

    International Nuclear Information System (INIS)

    Monsler, M.J.; Maniscalco, J.A.

    1977-09-01

    The plan for the development of commercial inertial confinement fusion (ICF) power plants is discussed, emphasizing the utilization of the unique features of laser fusion to arrive at conceptual designs for reactors and optical systems which minimize the need for advanced materials and techniques requiring expensive test facilities. A conceptual design for a liquid lithium fall reactor is described which successfully deals with the hostile x-ray and neutron environment and promises to last the 30 year plant lifetime. Schemes for protecting the final focusing optics are described which are both compatible with this reactor system and show promise of surviving a full year in order to minimize costly downtime. Damage mechanisms and protection techniques are discussed, and a recommendation is made for a high f-number metal mirror final focusing system

  12. Scyllac fusion test reactor design

    International Nuclear Information System (INIS)

    Linford, R.K.; Oliphant, T.A.; Thomassen, K.I.

    1976-01-01

    The SFTR is a proposed 80-m diameter D-T burning toroidal theta pinch. The system is designed to achieve Q = 1 where Q is the ratio of the total thermonuclear energy output to the maximum stored energy in the plasma. SFTR design studies [1] will provide valuable guidance to the Scyllac related research and to the needed technological development. The portion of the system directly related to the plasma confinement, stability, and heating, is described, and the approach used to obtain an operating point consistent with Q = 1, m = 1 stability, and technological limitations is outlined. (U.K.)

  13. Scyllac fusion test reactor design

    International Nuclear Information System (INIS)

    Linford, R.K.; Oliphant, T.A.; Thomassen, K.I.

    1975-01-01

    The SFTR is a proposed 80-m diameter D--T burning toroidal theta pinch. The system is designed to achieve Q = 1 where Q is the ratio of the total thermonuclear energy output to the maximum stored energy in the plasma. SFTR design studies will provide valuable guidance to the Scyllac related research and to the needed technological development. This paper describes the portion of the system directly related to the plasma confinement, stability, and heating, and outlines the approach used to obtain an operating point consistent with Q = 1, m = 1 stability, and technological limitations. (auth)

  14. Core concept of fast power reactor with zero sodium void reactivity

    International Nuclear Information System (INIS)

    Matveev, V.I.; Chebeskov, A.N.; Krivitsky, I.Y.

    1991-01-01

    The paper presents a core concept of BN-800 - type fast power reactor with zero sodium void reactivity (SVR). Consideration is given to the layout-and some design features of such a core. Some considerations on the determination of the required SVR value as one of the fast reactor safety criteria in accidents with coolant boiling are presented. Some methodical considerations an the development of calculation models that give a correct description of the new core features are stated. The results of the integral SVR calculation studies are included. reactivity excursions under different scenarios of sodium boiling are estimated, some corrections into the calculated SVR value are discussed. (author)

  15. Temperature feedback effects in a supercritical water reactor concept with multiple heat-up steps

    Energy Technology Data Exchange (ETDEWEB)

    Barragan-Martinez, A.M., E-mail: albrm29@yahoo.com [Universidad Nacional Autonoma de Mexico, Departamento de Sistemas Energeticos, Facultad de Ingenieria, Jiutepec, Mor (Mexico); Espinosa-Paredes, G.; Vazquez-Rodriguez, A., E-mail: gepe@xanum.uam.mx, E-mail: vara@xanum.uam.mx [Universidad Autonoma Metropolitana-Iztapalapa, Area de Ingenieria en Rescursos Energeticos, Col. Vicentina (Mexico); Martin-del-Campo, C.; Francois, J.L., E-mail: cecilia.martin.del.campo@gmail.com, E-mail: juan.louis.francois@gmail.com [Universidad Nacional Autonoma de Mexico, Departamento de Sistemas Energeticos, Facultad de Ingenieria, Jiutepec, Mor (Mexico)

    2014-07-01

    The Supercritical Water Cooled Reactor (SCWR) is one of the most promising and innovative designs selected by the Generation IV International Forum. One of the concepts being studied is the High Performance Light Water Reactor (HPLWR), which is the European version of the SCWR. In this paper we present the numerical analysis of the behavior of a HPLWR with temperature feedback effects. The neutronic process, the heat transfer in the fuel rod and the thermalhydraulics in the core of the HPLWR were considered in this study. The neutronic calculations were performed with HELIOS-2 and the obtained results were used to evaluate the reactivity due to fuel temperature and supercritical water density. (author)

  16. Temperature feedback effects in a supercritical water reactor concept with multiple heat-up steps

    International Nuclear Information System (INIS)

    Barragan-Martinez, A.M.; Espinosa-Paredes, G.; Vazquez-Rodriguez, A.; Martin-del-Campo, C.; Francois, J.L.

    2014-01-01

    The Supercritical Water Cooled Reactor (SCWR) is one of the most promising and innovative designs selected by the Generation IV International Forum. One of the concepts being studied is the High Performance Light Water Reactor (HPLWR), which is the European version of the SCWR. In this paper we present the numerical analysis of the behavior of a HPLWR with temperature feedback effects. The neutronic process, the heat transfer in the fuel rod and the thermalhydraulics in the core of the HPLWR were considered in this study. The neutronic calculations were performed with HELIOS-2 and the obtained results were used to evaluate the reactivity due to fuel temperature and supercritical water density. (author)

  17. ISABELLE control system: design concepts

    International Nuclear Information System (INIS)

    Humphrey, J.W.

    1979-01-01

    ISABELLE is a Department of Energy funded proton accelerator/storage ring being built at Brookhaven National Laboratory (Upton, Long Island, New York). It is large (3.8 km circumference) and complicated (approx. 30,000 monitor and control variables). It is based on superconducting technology. Following the example of previous accelerators, ISABELLE will be operated from a single control center. The control system will be distributed and will incorporate a local computer network. An overview of the conceptual design of the ISABELLE control system will be presented

  18. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Masson, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability for the next generation engineering oriented reactors; and long range, in developing full maintainability for the more complicated commercial concepts with their required high level of on-line time. The near-term challenge will include development of unique design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full maintainability required by commercial fusion. In addition to the purely technical challenges, the fusion community is also faced with the problem of developing programmatic means to assure that reactor maintenance issues are given proper and timely emphasis as the nuclear phase of fusion is approached

  19. Thermal and flow design of helium-cooled reactors

    International Nuclear Information System (INIS)

    Melese, G.; Katz, R.

    1984-01-01

    This book continues the American Nuclear Society's series of monographs on nuclear science and technology. Chapters of the book include information on the first-generation gas-cooled reactors; HTGR reactor developments; reactor core heat transfer; mechanical problems related to the primary coolant circuit; HTGR design bases; core thermal design; gas turbines; process heat HTGR reactors; GCFR reactor thermal hydraulics; and gas cooling of fusion reactors

  20. Design and analysis of multicavity prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Goodpasture, D.W.; Burdette, E.G.; Callahan, J.P.

    1977-01-01

    During the past 25 years, a rather rapid evolution has taken place in the design and use of prestressed concrete reactor vessels (PCRVs). Initially the concrete vessel served as a one-to-one replacement for its steel counterpart. This was followed by the development of the integral design which led eventually to the more recent multicavity vessel concept. Although this evolution has seen problems in construction and operation, a state-of-the-art review which was recently conducted by the Oak Ridge National Laboratory indicated that the PCRV has proven to be a satisfactory and inherently safe type of vessel for containment of gas-cooled reactors from a purely functional standpoint. However, functionalism is not the only consideration in a demanding and highly competitive industry. A summary is presented of the important considerations in the design and analysis of multicavity PCRVs together with overall conclusions concerning the state of the art of these vessels

  1. Conceptual design of D-3He FRC reactor 'ARTEMIS'

    International Nuclear Information System (INIS)

    Momota, H.; Ishida, A.; Kohzaki, Y.

    1991-07-01

    A comprehensive design study of the D- 3 He fueled field-reversed configuration (FRC) reactor 'ARTEMIS' is carried out for the purpose of proving its attractive characteristics and clarifying the critical issues for a commercial fusion reactor. The FRC burning plasma is stabilized and sustained in a steady equilibrium by means of a preferential trapping of D- 3 He fusion-produced energetic protons. A novel direct energy converter for 15MeV protons is also presented. On the bases of a consistent scenario of the fusion plasma production and simple engineering, a compact and simple reactor concept is presented. The design of the D- 3 He FRC power plant definitely offers the most attractive prospect for energy development. It is environmentally acceptable in view of radio-activity and fuel resources; and the estimated cost of electricity is low compared to a light water reactor. Critical issues concerning physics or engineering for the development of the D- 3 He FRC reactor are clarified. (author)

  2. Building a dynamic code to simulate new reactor concepts

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.-T.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.

    2012-01-01

    Highlights: ► We develop a stochastic neutronic code based on an existing High Energy Physics code. ► The code simulates innovative reactor designs including Accelerator Driven Systems. ► Core materials evolution will be dynamically simulated, including fuel burnup. ► Continuous feedback between the main inter-related parameters will be established. ► A description of the current research development and achievements is also given. - Abstract: Innovative nuclear reactor designs have been proposed, such as the Accelerator Driven Systems (ADSs), the “candle” reactors, etc. These reactor designs introduce computational nuclear technology problems the solution of which necessitates a new, global and dynamic computational approach of the system. A continuous feedback procedure must be established between the main inter-related parameters of the system such as the chemical, physical and isotopic composition of the core, the neutron flux distribution and the temperature field. Furthermore, as far as ADSs are concerned, the ability of the computational tool to simulate the nuclear cascade created from the interaction of accelerated protons with the spallation target as well as the produced neutrons, is also required. The new Monte Carlo code ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is being developed based on the GEANT3 High Energy Physics code, aiming to progressively satisfy all the above requirements. A description of the capabilities and methodologies implemented in the present version of ANET is given here, together with some illustrative applications of the code.

  3. Design analysis and microprocessor based control of a nuclear reactor

    International Nuclear Information System (INIS)

    Sabbakh, N.J.

    1988-01-01

    The object of this thesis is to design and test a microprocessor based controller, to a simulated nuclear reactor system. The mathematical model that describes the dynamics of a typical nuclear reactor of one group of delayed neutrons approximations with temperature feedback was chosen. A digital computer program has been developed for the design and analysis of a simulated model based on the concept of state-variable feedback in order to meet a desired system response with maximum overshoot of 3.4% and setting time of 4 sec. The state variable feedback coefficients are designed for the continuous system, then an approximation is used to obtain in the state variable feedback vector for the discrete system. System control was implemented utilizing Direct Digital Control (DDC) of a nuclear reactor simulated model through a control algorithm that was performed by means of a microprocessor based system. The controller performance was satisfactorily tested by exciting the reactor system with a transient reactivity disturbance and by a step change in power demand. Direct digital control, when implemented on a microprocessor adds versatility, flexibility in system design with the added advantage of possible use of optimal control algorithms. 6 tabs.; 30 figs.; 46 refs.; 6 apps

  4. Design review of the N Reactor

    International Nuclear Information System (INIS)

    1986-09-01

    This review of the design features of the N Reactor was initiated at the request of the Secretary of Energy, John S. Herrington, shortly after, and as a consequence of, reports of the accident at the Soviet reactor complex located at Chernobyl, on April 26, 1986. In the review, special attention was given to those plant systems which are most important in preventing the release of radioactive materials from the plant in the event of combined major equipment failures and human errors. Also, the review studied the potential effects of various severe accident sequences, and addressed the question of whether an event similar in causes or consequences to the Chernobyl accident could occur in the N Reactor. In light of experiences at both Three Mile Island and Chernobyl, the potential for accumulation of hydrogen in excess of flammable limits was given particular attention. The review team was also asked to identify possible improvements to the N Reactor plant, and to evaluate the effects and significance of service-induced degradation. The overall conclusion of the design review is that the N Reactor is safe to operate and that there is no reason to stop or alter its operation in any major respect at this time. Certain additional analyses and testing, are recommended to provide a firmer basis for decisions on long-term operation and on measures which may be needed in the future to accommodate long-term operation

  5. Preliminary design of a tandem mirror reactor

    International Nuclear Information System (INIS)

    Strohmayer, J.N.

    1984-04-01

    The purpose of this thesis is to examine the TARA mirror experiment as a possible tandem mirror reactor configuration. This is a preliminary study to size the coil structure based on using the smallest end cell axial length that physics and engineering allow, zeroing the central cell parallel currents and having interchange stability. The input powers are estimated for the final reactor design so a Q value may be estimated. The Q value is defined as the fusion power divided by the total injected power absorbed by the plasma. A computer study was performed on the effect of the transition size, the transition vertical spacing and transition current. These parameters affect the central cell parallel currents, the recircularization of the flux tube and the ratio of central cell beta to anchor beta needed for marginal stability. Two designs were identified. The first uses 100 keV and 13 keV neutral beams to pump the ions that trap in the thermal barrier. The Q value of this reactor is 11.3. The second reactor uses a pump beam at 40 keV. This energy is chosen because there is a resonance for the charge exchange cross section between D 0 and He 2+ at this energy, thus the alpha ash will be pumped along with the deuterium and tritium. The Q value of this reactor is 11.6

  6. Liquid metal fast reactor transient design

    International Nuclear Information System (INIS)

    Horak, C.; Purvis, E. III

    2000-01-01

    An examination has been made of how the currently available computing capabilities could be used to reduce Liquid Metal Fast Reactor design, manufacturing, and construction cost. While the examination focused on computer analyses some other promising means to reduce costs were also examined. (author)

  7. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    IAS Admin

    technologies which produce 5780 MW of electric power. Reactors are .... The fuel pin is the elementary entity of the NR. We shall arrive at the ..... Design is given short shrift in physics education both in high school and in college. The simple ...

  8. Modular Stellarator Reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  9. Modular stellarator reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  10. Pressurized water reactor fuel rod design methodology

    International Nuclear Information System (INIS)

    Silva, A.T.; Esteves, A.M.

    1988-08-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  11. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    International Nuclear Information System (INIS)

    Klein, Andrew; Lenhof, Renae; Deason, Wesley; Harter, Jackson

    2015-01-01

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  12. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andrew [Oregon State Univ., Corvallis, OR (United States). Nuclear Engineering and Radiation Health Physics; Matthews, Topher [Oregon State Univ., Corvallis, OR (United States); Lenhof, Renae [Oregon State Univ., Corvallis, OR (United States); Deason, Wesley [Oregon State Univ., Corvallis, OR (United States); Harter, Jackson [Oregon State Univ., Corvallis, OR (United States)

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  13. Reactor Design for Bioelectrochemical Systems

    KAUST Repository

    Mohanakrishna, G.

    2017-12-01

    Bioelectrochemical systems (BES) are novel hybrid systems which are designed to generate renewable energy from the low cost substrate in a sustainable way. Microbial fuel cells (MFCs) are the well studied application of BES systems that generate electricity from the wide variety of organic components and wastewaters. MFC mechanism deals with the microbial oxidation of organic molecules for the production of electrons and protons. The MFC design helps to build the electrochemical gradient on anode and cathode which leads for the bioelectricity generation. As whole reactions of MFCs happen at mild environmental and operating conditions and using waste organics as the substrate, it is defined as the sustainable and alternative option for global energy needs and attracted worldwide researchers into this research area. Apart from MFC, BES has other applications such as microbial electrolysis cells (MECs) for biohydrogen production, microbial desalinations cells (MDCs) for water desalination, and microbial electrosynthesis cells (MEC) for value added products formation. All these applications are designed to perform efficiently under mild operational conditions. Specific strains of bacteria or specifically enriched microbial consortia are acting as the biocatalyst for the oxidation and reduction of BES. Detailed function of the biocatalyst has been discussed in the other chapters of this book.

  14. Reactor Design for Bioelectrochemical Systems

    KAUST Repository

    Mohanakrishna, G.; Kalathil, Shafeer; Pant, Deepak

    2017-01-01

    Bioelectrochemical systems (BES) are novel hybrid systems which are designed to generate renewable energy from the low cost substrate in a sustainable way. Microbial fuel cells (MFCs) are the well studied application of BES systems that generate electricity from the wide variety of organic components and wastewaters. MFC mechanism deals with the microbial oxidation of organic molecules for the production of electrons and protons. The MFC design helps to build the electrochemical gradient on anode and cathode which leads for the bioelectricity generation. As whole reactions of MFCs happen at mild environmental and operating conditions and using waste organics as the substrate, it is defined as the sustainable and alternative option for global energy needs and attracted worldwide researchers into this research area. Apart from MFC, BES has other applications such as microbial electrolysis cells (MECs) for biohydrogen production, microbial desalinations cells (MDCs) for water desalination, and microbial electrosynthesis cells (MEC) for value added products formation. All these applications are designed to perform efficiently under mild operational conditions. Specific strains of bacteria or specifically enriched microbial consortia are acting as the biocatalyst for the oxidation and reduction of BES. Detailed function of the biocatalyst has been discussed in the other chapters of this book.

  15. Concepts for space nuclear multi-mode reactors

    International Nuclear Information System (INIS)

    Myrabo, L.; Botts, T.E.; Powell, J.R.

    1983-01-01

    A number of nuclear multi-mode reactor power plants are conceptualized for use with solid core, fixed particle bed and rotating particle bed reactors. Multi-mode systems generate high peak electrical power in the open cycle mode, with MHD generator or turbogenerator converters and cryogenically stored coolants. Low level stationkeeping power and auxiliary reactor cooling (i.e., for the removal of reactor afterheat) are provided in a closed cycle mode. Depending on reactor design, heat transfer to the low power converters can be accomplished by heat pipes, liquid metal coolants or high pressure gas coolants. Candidate low power conversion cycles include Brayton turbogenerator, Rankine turbogenerator, thermoelectric and thermionic approaches. A methodology is suggested for estimating the system mass of multi-mode nuclear power plants as a function of peak electric power level and required mission run time. The masses of closed cycle nuclear and open cycle chemical power systems are briefly examined to identify the regime of superiority for nuclear multi-mode systems. Key research and technology issues for such power plants are also identified

  16. A preliminary conceptual design study for Korean fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keeman, E-mail: kkeeman@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Kim, Hyoung Chan; Oh, Sangjun; Lee, Young Seok; Yeom, Jun Ho; Im, Kihak; Lee, Gyung-Su [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Neilson, George; Kessel, Charles; Brown, Thomas; Titus, Peter [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2013-10-15

    Highlights: ► Perform a preliminary conceptual study for a steady-state Korean DEMO reactor. ► Present design guidelines and requirements of Korean DEMO reactor. ► Present a preliminary design of TF (toroidal field) and CS (central solenoid) magnet. ► Present a preliminary result of the radial build scheme of Korean DEMO reactor. -- Abstract: As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy, so called fast-track approach. Korean strategy for fusion energy can be regarded as a fast-track approach and one special concept discussed in this paper is a two-stage development plan. At first, a steady-state Korean DEMO Reactor (K-DEMO) is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used as a component test facility. Then, at its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electric generation on the order of 300 MWe and the competitiveness in cost of electricity (COE). The major radius is designed to be just below 6.5 m, considering practical engineering feasibilities. By using high performance Nb{sub 3}Sn-based superconducting cable currently available, high magnetic field at the plasma center above 8 T can be achieved. A design concept for TF magnets and radial builds for the K-DEMO considering a vertical maintenance scheme, are presented together with preliminary design parameters.

  17. Design Principles of Open Innovation Concept – Universal Design Viewpoint

    OpenAIRE

    Mustaquim, Moyen; Nyström, Tobias

    2013-01-01

    The concept of open innovation is becoming an increasingly popular topic of interest and seems to promise a lot in organizational development. However, to date there are no certain design principles that can be followed by organizations on how to use open innovation successfully. In this paper seven design principles of open innovation concept have been proposed. The derived principles are the outcome which is based on the principles of universal design. The open innovation design, based on t...

  18. HYLIFE-II reactor chamber mechanical design

    International Nuclear Information System (INIS)

    House, P.A.

    1992-01-01

    Mechanical design features of the reactor chamber for the HYLIFE-11 inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams are used for shielding and blast protection. The system is designed for an 8 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (20 m/s) salt streams and also recover up to half of the dynamic head

  19. A HUMAN AUTOMATION INTERACTION CONCEPT FOR A SMALL MODULAR REACTOR CONTROL ROOM

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya; Spielman, Zach; Hill, Rachael

    2017-06-01

    Many advanced nuclear power plant (NPP) designs incorporate higher degrees of automation than the existing fleet of NPPs. Automation is being introduced or proposed in NPPs through a wide variety of systems and technologies, such as advanced displays, computer-based procedures, advanced alarm systems, and computerized operator support systems. Additionally, many new reactor concepts, both full scale and small modular reactors, are proposing increased automation and reduced staffing as part of their concept of operations. However, research consistently finds that there is a fundamental tradeoff between system performance with increased automation and reduced human performance. There is a need to address the question of how to achieve high performance and efficiency of high levels of automation without degrading human performance. One example of a new NPP concept that will utilize greater degrees of automation is the SMR concept from NuScale Power. The NuScale Power design requires 12 modular units to be operated in one single control room, which leads to a need for higher degrees of automation in the control room. Idaho National Laboratory (INL) researchers and NuScale Power human factors and operations staff are working on a collaborative project to address the human performance challenges of increased automation and to determine the principles that lead to optimal performance in highly automated systems. This paper will describe this concept in detail and will describe an experimental test of the concept. The benefits and challenges of the approach will be discussed.

  20. Model predictive controller design of hydrocracker reactors

    OpenAIRE

    GÖKÇE, Dila

    2011-01-01

    This study summarizes the design of a Model Predictive Controller (MPC) in Tüpraş, İzmit Refinery Hydrocracker Unit Reactors. Hydrocracking process, in which heavy vacuum gasoil is converted into lighter and valuable products at high temperature and pressure is described briefly. Controller design description, identification and modeling studies are examined and the model variables are presented. WABT (Weighted Average Bed Temperature) equalization and conversion increase are simulate...

  1. Reactor design considerations for inertial confinement fusion

    International Nuclear Information System (INIS)

    Booth, L.A.

    1979-01-01

    The most challenging reactor design consideration is protection of the cavity wall from the various energy forms as released by the pellet and as affected by the reaction-chamber phenomena. These phenomena depend on both the design and the yield of the pellet, as well as on ambient conditions in the chamber at the time of the pellet microexplosion. The effects on pellet energy-release mechanisms of various reaction chamber atmosphere options are summarized

  2. Concept of spatial channel theory applied to reactor shielding analysis

    International Nuclear Information System (INIS)

    Williams, M.L.; Engle, W.W. Jr.

    1977-01-01

    The concept of channel theory is used to locate spatial regions that are important in contributing to a shielding response. The method is analogous to the channel-theory method developed for ascertaining important energy channels in cross-section analysis. The mathematical basis for the theory is shown to be the generalized reciprocity relation, and sample problems are given to exhibit and verify properties predicted by the mathematical equations. A practical example is cited from the shielding analysis of the Fast Flux Test Facility performed at Oak Ridge National Laboratory, in which a perspective plot of channel-theory results was found useful in locating streaming paths around the reactor cavity shield

  3. Conception of divertorless tokamak reactor with turbulent plasma blanket

    International Nuclear Information System (INIS)

    Nedospasov, A.V.; Tokar, M.Z.

    1980-01-01

    The results of the calculations presented here demonstrate that, with technically reasonable degree of the magnetic field stochastisation, the turbulent plasma blanket can take the place of a divertor. It performs the three main functions of the divertor: (a) the exhaust of the helium and unburned fuel; (b) weakening of the fast particle flux to the wall surface; and (c) essential reduction of the impurity content in the active zone of the reactor. Taking into account that plasma flows to the first wall along field lines, we may figuratively say that the first wall plays the role of a divertor in our conception. (orig.)

  4. Technical feasibility study of 60 MWe fast reactor concept: RAPID

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Ueda, Nobuyuki; Uotani, Masaki

    1993-01-01

    A study has been performed on the passive safety features and technical feasibility of an inherently safe 60 MWe fast reactor concept RAPID to meet various power requirements in Japan. The system dynamic analyses on the UTOP and ULOF transients revealed that the enhanced reactivity feedback derived from an annular core configuration and the integrated fuel assembly provides a high margin of self-protection. Structural integrity of the integrated fuel assembly has also been confirmed. The following innovative key technologies have been demonstrated; Lithium Injection Modules (LIM) for ultimate shutdown, Lithium Expansion Modulus (LEM) for inherent reactivity feedback and Void Leading Channel (VLC) for the sodium void worth reduction. (author)

  5. Conceptual design tool development for a Pb-Bi cooled reactor

    International Nuclear Information System (INIS)

    Lee, K. G.; Chang, S. H.; No, H. C.; Chunm, M. H.

    2000-01-01

    Conceptual design is generally ill-structured and mysterious problem solving. This leads the experienced experts to be still responsible for the most of synthesis and analysis task, which are not amenable to logical formulations in design problems. Especially because a novel reactor such as a Pb-Bi cooled reactor is going on a conceptual design stage, it will be very meaningful to develop the conceptual design tool. This tool consists of system design module with artificial intelligence, scaling module, and validation module. System design decides the optimal structure and the layout of a Pb-Bi cooled reactor, using design synthesis part and design analysis part. The designed system is scaled to be optimal with desired power level, and then the design basis accidents (Dbase) are analyzed in validation module. Design synthesis part contains the specific data for reactor components and the general data for a Pb-Bi cooled reactor. Design analysis part contains several design constraints for formulation and solution of a design problem. In addition, designer's intention may be externalized through emphasis on design requirements. For the purpose of demonstration, the conceptual design tool is applied to a Pb-Bi cooled reactor with 125 M Wth of power level. The Pb-Bi cooled reactor is a novel reactor concept in which the fission-generated heat is transferred from the primary coolant to the secondary coolant through a reactor vessel wall of a novel design. The Pb-Bi cooled reactor is to deliver 125 M Wth per module for 15 effective full power years without any on-site fuel handling. The conceptual design tool investigated the feasibility of a Pb-Bi cooled reactor. Application of the conceptual design tool will be, in detail, presented in the full paper. (author)

  6. Automated Design and Optimization of Pebble-bed Reactor Cores

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Ougouag, Abderrafi M.; Terry, William K.

    2010-01-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  7. Design of the prestressed concrete reactor vessel for gas-cooled heating reactors

    International Nuclear Information System (INIS)

    Becker, G.; Notheisen, C.; Steffen, G.

    1987-01-01

    The GHR pebble bed reactor offers a simple, safe and economic possibility of heat generation. An essential component of this concept is the prestressed concrete reactor vessel. A system of cooling pipes welded to the outer surface of the liner is used to transfer the heat from the reactor to the intermediate circuit. The high safety of this vessel concept results from the clear separation of the functions of the individual components and from the design principle of the prestressed conncrete. The prestressed concrete structure is so designed that failure can be reliably ruled out under all operating and accident conditions. Even in the extremely improbable event of failure of all decay heat removal systems when decay heat and accumulated heat are transferred passively by natural convection only, the integrity of the vessel remains intact. For reasons of plant availability the liner and the liner cooling system shall be designed so as to ensure safe elimination of failure over the total operating life. The calculations which were peformed partly on the basis of extremely adverse assumption, also resulted in very low loads. The prestressed concrete vessel is prefabricated to the greatest possible extent. Thus a high quality and optimized fabrication technology can be achieved especially for the liner and the liner cooling system. (orig./HP)

  8. FED/INTOR reactor design studies

    International Nuclear Information System (INIS)

    Brown, T.G.; Cramer, B.A.; Davisson, J.P.; Kunselman, M.H.; Reiersen, W.T.; Sager, P.H.; Strickler, D.J.

    1982-03-01

    Upon completing the design studies identified in this report, an overall assessment of the design options is made that will form the bases to define the configuration of the next major Tokamak device. The TF coil size will be defined, along with the vacuum boundary, the PF coil arrangement, and the torus configuration. After the configuration is established, an overall performance and cost re-assessment should be made to finally trade off device performance with machine capital and operating costs to establish a reactor design point for a given set of design requirements

  9. Structural design of SBWR reactor building complex using microcomputers

    International Nuclear Information System (INIS)

    Mandagi, K.; Rajagopal, R.S.; Sawhney, P.S.; Gou, P.F.

    1993-01-01

    The design concept of Simplified Boiling Water Reactor (SBWR) plant is based on simplicity and passive features to enhance safety and reliability, improve performance, and increase economic viability. The SBWR utilizes passive systems such as Gravity Driven Core-Cooling System (GDCS) and Passive Containment Cooling System (PCCS). To suit these design features the Reactor Building (RB) complex of the SBWR is configured as an integrated structure consisting of a cylindrical Reinforced Concrete Containment Vessel (RCCV) surrounded by square reinforced concrete safety envelope and outer box structures, all sharing a common reinforced concrete basemat. This paper describes the structural analysis and design aspects of the RB complex. A 3D STARDYNE finite element model has been developed for the structural analysis of the complex using a PC Compaq 486/33L microcomputer. The structural analysis is performed for service and factored load conditions for the applicable loading combinations. The dynamic responses of containment structures due to pool hydrodynamic loads have been calculated by an axisymmetric shell model using COSMOS/M program. The RCCV is designed in accordance with ASME Section 3, Division 2 Code. The rest of the RB which is classified as Seismic Category 1 structure is designed in accordance with the ACI 349 Code. This paper shows that microcomputers can be efficiently used for the analysis and design of large and complex structures such as RCCV and Reactor Building complex. The use of microcomputers can result in significant savings in the computational cost compared with that of mainframe computers

  10. Vacuum problems of thermonuclear reactor design

    International Nuclear Information System (INIS)

    Paty, L.

    1981-01-01

    A thermonuclear reactor can be considered to be a vacuum system in which constant concentration should be maintained of reacting particles while permanently discharging the undesirable particles using a system of pumps. The discharging proceeds in two stages: in the former, the reactor is degassed using external pumps connected to the reactor chamber through a pumping pipe. The latter in which hydrogen is admitted, uses high pump-rate machines based on the principle of the binding of the gas to the pump surface and must not introduce molecules of higher atomic mass in the system. Turbomolecular pumps of diffusion oil pumps are most suitable for the former stage while condensation, cryosorption, titanium pumping machines and special pumping methods are most suitable for the latter stage. Examples are shown of the pump system design for Tokamak 10 and for facilities at the Euratom laboratory in Fontenay-aux-Roses. (M.D.)

  11. Spherical torus (ST) concept and its reactor implications

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Lazarus, E.A.; Miller, R.L.; Carreras, B.A.; Hogan, J.T.; Krakowski, R.A.; Seed, T.J.; Zubrin, R.M.; Schnurr, N.M.

    1986-01-01

    A brief description of the spherical torus design is given. The design concept includes resistive demountable toroidal field coils, poloidal divertor for impurity control, oscillating-field current maintenance, RF initiation and ramp-up of the plasma current, and flowing liquid-metal breeding blanket. 4 refs., 6 figs

  12. MAPLE: a Canadian multipurpose reactor concept for national nuclear development

    International Nuclear Information System (INIS)

    Lidstone, R.F.

    1984-06-01

    Atomic Energy of Canada Limited, following an investigation of Canadian and international needs and world-market prospects for research reactors, has developed a new multipurpose concept, called MAPLE (Multipurpose Applied Physics Lattice Experimental). The MAPLE concept combines H 2 O- and D 2 O-moderated lattices within a D 2 O calandria tank in order to achieve the flux advantages of a basic H 2 O-cooled and moderated core along with the flexibility and space of a D 2 O-moderated core. The SUGAR (Slowpoke Uprated for General Applied Research) MAPLE version of the conept provides a range of utilization that is well suited to the needs of countries with nuclear programs at an early stage. The higher power MAPLE version furnishes high neutron flux levels and the variety of irradiation facilities that are appropriate for more advanced nuclear programs

  13. Conceptual designs for very high-temperature CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bushby, S.J.; Dimmick, G.R.; Duffey, R.B. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)

    2000-07-01

    Although its environmental benefits are demonstrable, nuclear power must be economically competitive with other energy sources to ensure it retains, or increases, its share of the changing and emerging energy markets of the next decades. In recognition of this, AECL is studying advanced reactor concepts with the goal of significant reductions in capital cost through increased thermodynamic efficiency and plant simplification. The program, generically called CANDU-X, examines concepts for the future, but builds on the success of the current CANDU designs by keeping the same fundamental design characteristics: excellent neutron economy for maximum flexibility in fuel cycle; an efficient heavy-water moderator that provides a passive heat sink under upset conditions; and, horizontal fuel channels that enable on-line refueling for optimum fuel utilization and power profiles. Retaining the same design fundamentals takes maximum advantage of the existing experience base, and allows technological and design improvements developed for CANDU-X to be incorporated into more evolutionary CANDU plants in the short to medium term. Three conceptual designs have been developed that use supercritical water (SCW) as a coolant. The increased coolant temperature results in the thermodynamic efficiency of each CANDU-X concept being significantly higher than conventional nuclear plants. The first concept, CANDU-X Mark 1, is a logical extension of the current CANDU design to higher operating temperatures. To take maximum advantage of the high heat capacity of water at the pseudo-critical temperature, water at nominally 25 MPa enters the core at 310{sup o}C, and exits at {approx}410{sup o}C. The high specific heat also leads to high heat transfer coefficients between the fuel cladding and the coolant. As a result, Zr-alloys can be used as cladding, thereby retaining relatively high neutron economy. The second concept, CANDU-X NC, is aimed at markets that require smaller simpler distributed

  14. Conceptual designs for very high-temperature CANDU reactors

    International Nuclear Information System (INIS)

    Bushby, S.J.; Dimmick, G.R.; Duffey, R.B.

    2000-01-01

    Although its environmental benefits are demonstrable, nuclear power must be economically competitive with other energy sources to ensure it retains, or increases, its share of the changing and emerging energy markets of the next decades. In recognition of this, AECL is studying advanced reactor concepts with the goal of significant reductions in capital cost through increased thermodynamic efficiency and plant simplification. The program, generically called CANDU-X, examines concepts for the future, but builds on the success of the current CANDU designs by keeping the same fundamental design characteristics: excellent neutron economy for maximum flexibility in fuel cycle; an efficient heavy-water moderator that provides a passive heat sink under upset conditions; and, horizontal fuel channels that enable on-line refueling for optimum fuel utilization and power profiles. Retaining the same design fundamentals takes maximum advantage of the existing experience base, and allows technological and design improvements developed for CANDU-X to be incorporated into more evolutionary CANDU plants in the short to medium term. Three conceptual designs have been developed that use supercritical water (SCW) as a coolant. The increased coolant temperature results in the thermodynamic efficiency of each CANDU-X concept being significantly higher than conventional nuclear plants. The first concept, CANDU-X Mark 1, is a logical extension of the current CANDU design to higher operating temperatures. To take maximum advantage of the high heat capacity of water at the pseudo-critical temperature, water at nominally 25 MPa enters the core at 310 o C, and exits at ∼410 o C. The high specific heat also leads to high heat transfer coefficients between the fuel cladding and the coolant. As a result, Zr-alloys can be used as cladding, thereby retaining relatively high neutron economy. The second concept, CANDU-X NC, is aimed at markets that require smaller simpler distributed power plants

  15. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  16. Trial visualization of fast reactor design knowledge

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji; Minami, Masaki; Takahashi, Tadao

    2011-01-01

    In design problems of large-scale systems like fast breeder reactors, inter-relations among design specifications are very important where a selected specification option is transferred to other specification selections as a premise to be taken account in engineering judgments. These inter-relations are also important in design case studies with the hypothetical adoption of rejected design options for the evaluation of deviation propagations among design specifications. Some of these rejected options have potential worth for future reconsideration by some circumstance changes (e.g., advanced simulations to exclude needs for mock-up tests, etc.), to contribute to flexibility in system designs. In this study, a computer software is built to visualize a design problem structure by representing engineering knowledge nodes on individual specification selections along with inter-relations of design specifications, to validate the knowledge representation method and to derive open problems. (author)

  17. Development of fluid system design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. J.; Chang, M. H.; Kang, D. J. and others

    1999-03-01

    This study presents the technology development of the system design concepts of SMART, a multi-purposed integral reactor with enhanced safety and operability, for use in diverse usages and applications of the nuclear energy. This report contains the following; - Design characteristics - Performance and safety related design criteria - System description: Primary system, Secondary system, Residual heat removal system, Make-up system, Component cooling system, Safety system - Development of design computer code: Steam generator performance(ONCESG), Pressurizer performance(COLDPZR), Steam generator flow instability(SGINS) - Development of component module and modeling using MMS computer code - Design calculation: Steam generator thermal sizing, Analysis of feed-water temperature increase at a low flow rate, Evaluation of thermal efficiency in the secondary system, Inlet orifice throttling coefficient for the prevention of steam generator flow instability, Analysis of Nitrogen gas temperature in the pressurizer during heat-up process, evaluation of water chemistry and erosion etc. The results of this study can be utilized not only for the foundation technology of the next phase basic system design of the SMART but also for the basic model in optimizing the system concepts for future advanced reactors. (author)

  18. New reactor concepts. An analysis of the actual research status; Neue Reaktorkonzepte. Eine Analyse des aktuellen Forschungsstands

    Energy Technology Data Exchange (ETDEWEB)

    Pistner, Christoph; Englert, Matthias

    2017-04-15

    The report on new reactor concepts covers the following issues: characterization and survey of new reactor concepts; evaluation criteria: safety, resources for fuel supply, waste problems, economy and proliferation; comprehensive relevant aspects: thorium as alternative resource, partitioning and transmutation; actual developments and preliminary experiences for fast breeding reactor (FBR), high-temperature reactor (HTR), molten salt reactor (MSR), small modular reactor (SMR).

  19. The PRISM concept for a safe, economic and testable liquid metal fast reactor plant

    International Nuclear Information System (INIS)

    Berglund, R.C.; Salerno, L.N.; Tippets, F.E.

    1987-01-01

    The PRISM project is underway at General Electric as part of an advanced reactor conceptual design program sponsored by the US Department of Energy. The PRISM concept emphasizes inherent safety, modular construction, and factory fabrication. These features are intended to improve the basis for public acceptance, reduce cost,improve licensability, and reduce the risk of schedule delays and cost increases during construction. A PRISM power plant comprises a number of reactor modules. The relatively small size of the reactor module facilitates the use of passive, inherent self-shutdown and shutdown heat removal features for safe accommodation of accidents. These inherent safety features permit simplification and reduction of conventional safety-related systems in the plant. Testing of a full-size prototype reactor module is planned in the late 1990's to demonstrate these inherent safety characteristics. It is intended that the results of the test be used to obtain certification of the design by the US Nuclear Regulatory Commission preparatory to use of reactor modules built to this standard design in licensed commercial plants

  20. Projecting regulatory expectations for advanced reactor designs

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    This paper explores the overarching safety principles that will likely guide the safety design of advanced reactor technologies. As will be shown, the already established safety framework provides a solid foundation for the safety design of future nuclear power plants. As a specific example, the principle of 'proven technology' is presented in greater detail and its implications for a novel technology are discussed. Research, modeling and prototyping are shown to be components in satisfying this principle. While the fundamental safety principles are in place, their interpretation may depend both on the considered technology as well as the national context. Thus, the regulatory authority will need to be engaged, at an appropriate stage of the technology development, in specifying the regulatory requirements that will have to be met for a specific reactor design. (author)