WorldWideScience

Sample records for reactor building dome

  1. Confirmatory Survey Results for the Reactor Building Dome Upper Structural Surfaces, Rancho Saco Nuclear Generating Station, Herald, California

    International Nuclear Information System (INIS)

    Wade C. Adams

    2006-01-01

    Results from a confirmatory survey of the upper structural surfaces of the Reactor Building Dome at the Rancho Seco Nuclear Generating Station (RSNGS) performed by the Oak Ridge Institute for Science and Education for the NRC. Also includes results of interlaboratory comparison analyses on several archived soil samples that would be provided by RSNGS personnel. The confirmatory surveys were performed on June 7 and 8, 2006

  2. Pickering NGS A reactor building 1 dome refurbishment long-term monitoring of coating

    International Nuclear Information System (INIS)

    Deans, J.J.; Chan, P.; Gomme, R.

    2006-01-01

    'Full text:' To reduce air leakage through the dome of Pickering NGS A Reactor Building 1, in August 1993 a portion of the exterior concrete surface was coated with a single component elastomeric polyurethane material. An internal positive pressure test of the building, conducted between November 5 and 7, 1993, found that the air leakage rates were significantly lower in this test than leakage rates which had been measured during a pressure test conducted in 1992. This reduction in leakage was attributed to the successful performance of the coating. The need for a high-performance, elastomeric surface coating was identified for reduction of air leakage levels through the dome of Reactor Building l of Ontario Power Generation's (formerly Ontario Hydro's) Pickering 'A' Nuclear Generating Station near Toronto. A number of candidate coatings were extensively tested to assess the performance characteristics and identify a material that could withstand the elements and perform effectively for around 20 years. Under normal operating conditions, a licensing limit of 2.7% of contained mass/hour is set for permissible containment leakage whilst the operational working target is less than 1%. The facility's engineers determined that any leakages were pressure-dependent, so in an effort to remain well within their working target, they sought a system that would bridge and seal any hairline cracks in the concrete dome and thereby prevent the passage of gas or vapour through the substrate. On the basis of scheduling and cost, they concluded that a high performance coating was most appropriate for the project, and hired Kinectrics (formerly Ontario Hydro Technologies (OHT)) to select, test, assess and arrange for the application to the RB 1 Dome. In all, nearly 70 separate manufacturers were approached by Kinectrics with a view to obtaining recommendations for treatment. The respective performance data of the respondents' products were compared with a set of specific design

  3. Seismic analysis of a PWR 900 reactor: study of reactor building with soil-structure interaction and evaluation of floor spectra

    International Nuclear Information System (INIS)

    Gantenbein, F.; Aguilar, J.

    1983-08-01

    The purpose of this paper is the evaluation of seismic response and floor spectra for a typical PWR 900 reactor building with respect to soil-structure interaction for soil stiffness). The typical PWR 900 reactor building consists of a concrete cylindrical external building and roof dome, a concrete internal structure (internals) on a common foundation mat as illustrated. The seismic response is obtained by SRSS method and floor spectra directly from ground spectrum and modal properties of the structure. Seismic responses and floor spectra computation is performed in the case of two different ground spectra: EDF spectrum (mean of oscillator spectra obtained from 8 californian records) normalized to 0.2 g, and DSN spectrum (typical of shallow seism) normalized to 0.3 g. The first section is devoted to internals' modelisation, the second one to the axisymmetric model of the reactor, the third one to the seismic response, the fourth one to floor spectra

  4. Computational Analysis of Natural Ventilation Flows in Geodesic Dome Building in Hot Climates

    Directory of Open Access Journals (Sweden)

    Zohreh Soleimani

    2016-08-01

    Full Text Available For centuries, dome roofs were used in traditional houses in hot regions such as the Middle East and Mediterranean basin due to its thermal advantages, structural benefits and availability of construction materials. This article presents the computational modelling of the wind- and buoyancy-induced ventilation in a geodesic dome building in a hot climate. The airflow and temperature distributions and ventilation flow rates were predicted using Computational Fluid Dynamics (CFD. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS equations were solved using the CFD tool ANSYS FLUENT15. The standard k-epsilon was used as turbulence model. The modelling was verified using grid sensitivity and flux balance analysis. In order to validate the modelling method used in the current study, additional simulation of a similar domed-roof building was conducted for comparison. For wind-induced ventilation, the dome building was modelled with upper roof vents. For buoyancy-induced ventilation, the geometry was modelled with roof vents and also with two windows open in the lower level. The results showed that using the upper roof openings as a natural ventilation strategy during winter periods is advantageous and could reduce the indoor temperature and also introduce fresh air. The results also revealed that natural ventilation using roof vents cannot satisfy thermal requirements during hot summer periods and complementary cooling solutions should be considered. The analysis showed that buoyancy-induced ventilation model can still generate air movement inside the building during periods with no or very low wind.

  5. Dynamic analysis of a reactor building on alluvial soil

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Paul, D.K.; Warudkar, A.S.

    1977-01-01

    The reactor building consists of reinforced concrete internal framed structure enclosed in double containment shells of prestressed and reinforced concrete all resting on a common massive raft. The external cylindrical shell is capped by a spherical dome while the internal shell carries a cellular gird slab. The building is partially buried under ground. The soil consists of alluvial going to 1000 m depth. The site lies in a moderate seismic zone. The paper presents the dynamic analysis of the building including soil-structure interaction. The mathematical model consists of four parallel, suitably interconnected struxtures, namely inner containment, outer containment, internal frame and the calandria vault. Each one of the parallel structures consists of lumped-mass beam elements. The soil below the raft and on the sides of outer containment shell is represented by elastic springs in both horizontal and vertical directions. The various assumpions required to be made in developing the mathematical model are briefly discussed in the paper. (Auth.)

  6. Nuclear reactor buildings

    International Nuclear Information System (INIS)

    Nagashima, Shoji; Kato, Ryoichi.

    1985-01-01

    Purpose: To reduce the cost of reactor buildings and satisfy the severe seismic demands in tank type FBR type reactors. Constitution: In usual nuclear reactor buildings of a flat bottom embedding structure, the flat bottom is entirely embedded into the rock below the soils down to the deck level of the nuclear reactor. As a result, although the weight of the seismic structure can be decreased, the amount of excavating the cavity is significantly increased to inevitably increase the plant construction cost. Cross-like intersecting foundation mats are embedded to the building rock into a thickness capable withstanding to earthquakes while maintaining the arrangement of equipments around the reactor core in the nuclear buildings required by the system design, such as vertical relationship between the equipments, fuel exchange systems and sponteneous drainings. Since the rock is hard and less deformable, the rigidity of the walls and the support structures of the reactor buildings can be increased by the embedding into the rock substrate and floor responsivity can be reduced. This enables to reduce the cost and increasing the seismic proofness. (Kamimura, M.)

  7. Reactor building

    International Nuclear Information System (INIS)

    Ebata, Sakae.

    1990-01-01

    At least one valve rack is disposed in a reactor building, on which pipeways to a main closure valve, valves and bypasses of turbines are placed and contained. The valve rack is fixed to the main body of the building or to a base mat. Since the reactor building is designed as class A earthquake-proofness and for maintaining the S 1 function, the valve rack can be fixed to the building main body or to the base mat. With such a constitution, the portions for maintaining the S 1 function are concentrated to the reactor building. As a result, the dispersion of structures of earthquake-proof portion corresponding to the reference earthquake vibration S 1 can be prevented. Accordingly, the conditions for the earthquake-proof design of the turbine building and the turbine/electric generator supporting rack are defined as only the class B earthquake-proof design conditions. In view of the above, the amount of building materials can be saved and the time for construction can be shortened. (I.S.)

  8. Seismic response of reactor building on alluvial soil by direct implicit integration

    International Nuclear Information System (INIS)

    Thakkar, S.K.; Dinkar, A.K.

    1983-01-01

    The evaluation of seismic response of a reactor building is a complex problem. A study has been made in this paper of seismic response of a reactor building by direct implicit integration method. The direct implicit integration methods besides being unconditionally stable have the merit of including response of higher modes without much effort. A reactor building consisting of external shell, internal shell, internals and raft is considered to be resting on alluvium. The complete building including the foundation is idealized by axisymmetric finite elements. The structure is analyzed separately for horizontal and vertical components of ground motion using harmonic analysis. Total response is found by superposition of two responses. The variation of several parameters, such as soil stiffness, embedment depth, inertia of foundation, viscous boundary and damping on seismic response is studied. The structural response is seen to depend significantly on the soil stiffness and damping. The seismic response is observed to be less sensitive to embedment depth and inertia of foundation. The vertical accelerations on the raft, boiler room floor slab and dome due to vertical ground motions are quite appreciable. The viscous boundary is seen to alter structural response in significantly compared to rigid boundaries in a larger mesh and its use appears to be promising in absorbing energy of body waves when used with direct implicit integration method. (orig.)

  9. Evaluation of organic coatings to reduce air leakage through cracks in the Pickering NGS 'A' reactor building 1

    International Nuclear Information System (INIS)

    Deans, J.J.; Sato, J.A.; Hampton, J.H.D.; Cullen, R.; Paterson, G.; Chan, P.; Rajagopalan, R.

    1994-01-01

    Pressure tests conducted in 1992 on the Pickering NGS 'A' Reactor Building 1 showed that the containment leakage rate of the building was close to the licensing limit. The leakage was found to be pressure dependent and was attributed to cracks in the concrete dome. A number of solutions were studied by a task group, and the application of an organic coating to the exterior surface of the dome was identified as the most viable solution under the constraints of schedule and cost. In addition to reducing the air leakage rate, the coating material must be flexible to bridge existing moving cracks, it must have excellent adhesion to the concrete substrate to sustain the design pressure of 41.4 kPa(g) during pressure tests, and it must be durable for an exterior application and service conditions. Five candidate organic coating materials were selected for laboratory testing. As a result of the testing, a single-component elastomeric polyurethane coating was selected to be used on the dome. This paper discusses the selection process, laboratory tests and results, and the application of the polyurethane coating system to the exterior concrete dome surface. However, the main emphasis of the paper is on the laboratory evaluation of the five candidate materials. (author). 2 refs., 3 tabs., 1 fig

  10. Mud dome, stone dome and mud and stone dome in the rural buildings of vernacular architecture in center of Castilla y León (Spain

    Directory of Open Access Journals (Sweden)

    O. Abril Revuelta

    2017-06-01

    Full Text Available In the center of Castilla y León there are few examples of old rural buildings linked to economic activities that have developed in the agrarian field. These are known chozos and casetas, and they have been built with dome-shaped solutions using autochthon materials: mud and stone. The influence of traditional techniques of both elements has generated a singular typological rarely seen in the rest of the Iberian Peninsula. Different types of domes have been analyzed in situ. And they have been contrasted by documentary sources and it has significantly expanded the information published of them, especially about their typological variety and their construction process. This research aims to provide tools to restore a constructive knowledge that is forgotten in place, to value its architectural wealth, which can encourage their rehabilitation.

  11. Air temperature and relative humidity in Dome Fuji Station buildings, East Antarctic ice sheet, in 2003

    Directory of Open Access Journals (Sweden)

    Takao Kameda

    2008-06-01

    Full Text Available In order to clarify the living condition in Dome Fuji Station in 2003, air temperature and relative humidity in the station were measured. Thermocouples with data logger and a ventilated psychrometer were used for the measurements. Average air temperature from February 11, 2003 to January 14, 2004 (missing period: July 19 to August 17 in the Dome Fuji Station buildings were as follows: Generator room 24.7℃, Dining room 23.5℃, Observation room 21.1℃, Dormitory room 18.2℃, Corridor 18.2℃, Food storage 8.2℃ and Old ice coring site -51.3℃. Average outside air temperature (1.5m height from the snow surface during the period was -54.4℃. A remarkable increase of outside air temperature (+30℃ at maximum due to a blocking high event was observed from October 31, 2003 to November 10, 2003 at Dome Fuji, during which increase of air temperature from 5 to 8°C in the station buildings was recorded. Snow on the station buildings was partly melted and some of the melted water penetrated into the station. This was the only time snow melted during the wintering over party's stay at the station. Average relative humidity in the station buildings obtained using a small humidifier was about 25%; the relative humidity without using the humidifier ranged from 9.0 to 22.9%.

  12. Device for protecting the containment vessel dome of a nuclear reactor

    International Nuclear Information System (INIS)

    Allain, A.; Filloleau, E.; Mulot, P.

    1976-01-01

    A device is disclosed for protecting the dome of a nuclear reactor containment vessel against the upward displacement of the concrete shield slab of said reactor and the resultant effects of tilting of an equipment unit mounted on the shield slab at the periphery of said slab, wherein said device comprises: (1) means for separating the equipment unit into two sections consisting of an upper section and a lower section, said lower section being rigidly fixed to said shield slab and said means being actuated by the upward displacement of said slab, (2) a system for vertical rectilinear guiding of said upper section within the containment vessel, and (3) rigid mechanical components which provide a coupling between the aforesaid upper and lower sections of the equipment unit and exert on said upper section under the action of the tilting motion of said lower section a thrust which causes the upward displacement of said upper section

  13. Building a roll-off roof or dome observatory a complete guide for design and construction

    CERN Document Server

    Hicks, John Stephen

    2016-01-01

    Almost every practical astronomer eventually aspires to have a fixed, permanent observatory for his or her telescope. A roll-off roof or dome observatory is the answer for the most popular home observatory design.  Almost every practical astronomer eventually aspires to have a fixed, permanent observatory for his or her telescope. A roll-off roof or dome observatory is the answer for the most popular home observatory design. Building a Roll-Off or Dome Observatory will help you decide whether to embark on the venture and will certainly increase your enthusiasm for the project. The author, both an amateur astronomer and a professional landscape architect, answers many of the common questions asked about observatory construction, covering the following topics: • Zoning, and by-law requirements common to most states, towns and municipalities • Where to locate the observatory • How to tailor the observatory for your particular needs • Tools and structural components required • Possible variations in de...

  14. Nuclear reactor building

    International Nuclear Information System (INIS)

    Oshima, Nobuaki.

    1991-01-01

    The secondary container in a nuclear reactor building is made of a transparent structure having a shielding performance such as lead glass, by which the inside of the secondary container can be seen without undergoing radiation exposure. In addition, an operator transportation facility capable of carrying about 5 to 10 operators at one time is disposed, and the side of the facility on the secondary container is constituted with a transparent material such as glass, to provide a structure capable of observing the inside of the secondary container. The ventilation and air conditioning in the operator's transportation facility is in communication with the atmosphere of a not-controlled area. Accordingly, operators at the outside of the reactor building can reach the operator's transportation facility without taking and procedures for entering the controlled area and without undergoing radiation exposure. The inside of the secondary container in the reactor building can be seen from various directions through the transparent structure having the shielding performance. (N.H.)

  15. Solar radiation on domed roofs

    Energy Technology Data Exchange (ETDEWEB)

    Faghih, Ahmadreza K.; Bahadori, Mehdi N. [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran)

    2009-11-15

    Solar radiation received and absorbed by four domed roofs was estimated and compared with that of a flat roof. The domed roofs all had the same base areas, and equal to that of the flat roof. One of the roofs considered was the dome of the St. Peter's Church in Rome. Compared with the other roofs considered, this dome had a higher aspect ratio. It was found that all domed roofs received more solar radiation than the flat roof. Considering glazed tiles to cover a selected dome in Iran and the dome of the St. Peter's Church, it was found that the solar radiation absorbed by these roofs is reduced appreciably. In the case of the dome of St. Peter's Church, the amount of radiation absorbed was roughly equal to that absorbed by the comparable flat roof in the warm months. In the case of the glazed reference dome located in Yazd, Iran (a city with very high solar radiation), the radiation absorbed was less than that of flat roof at all times. In addition to aesthetics, this may be a reason for employing glazed tiles to cover the domes of all mosques, shrines, and other large buildings in Iran. (author)

  16. Transparent Inflatable Column Film Dome for Nuclear Stations, Stadiums, and Cities

    Directory of Open Access Journals (Sweden)

    Alexander Bolonkin

    2011-01-01

    Full Text Available In a series of previous articles, one of the authors published designs of the AB Dome which can cover a city, important large installations or subregions by a transparent thin film supported by a small additional air overpressure. The AB Dome keeps the outside atmospheric conditions from the interior protecting a city from chemical, bacterial, and radioactive weapons (wastes. The design in this article differs from previous one as this design employs an inflatable columns which does not need an additional pressure (overpressure inside the dome and is cheaper in construction (no powered air pumping station and in operation (no special entrance airlock and permanent pumping expense. When dome is supported by columns, no overpressure is required inside the dome which is important when the dome covers a damaged nuclear reactor. The nuclear reactor may produce radioactive gases and dust, and, as inflatable domes are not typically hermetically sealed, the increased pressure inside the dome can leak out gas and dust into the atmosphere. The suggested design does not have this drawback. Positive pressure gradients expel dust particles—neutral pressure gradients will not. (Negative pressure gradients may even be possible in certain configurations.

  17. Reactor building

    International Nuclear Information System (INIS)

    Maruyama, Toru; Murata, Ritsuko.

    1996-01-01

    In the present invention, a spent fuel storage pool of a BWR type reactor is formed at an upper portion and enlarged in the size to effectively utilize the space of the building. Namely, a reactor chamber enhouses reactor facilities including a reactor pressure vessel and a reactor container, and further, a spent fuel storage pool is formed thereabove. A second spent fuel storage pool is formed above the auxiliary reactor chamber at the periphery of the reactor chamber. The spent fuel storage pool and the second spent fuel storage pool are disposed in adjacent with each other. A wall between both of them is formed vertically movable. With such a constitution, the storage amount for spent fuels is increased thereby enabling to store the entire spent fuels generated during operation period of the plant. Further, since requirement of the storage for the spent fuels is increased stepwisely during periodical exchange operation, it can be used for other usage during the period when the enlarged portion is not used. (I.S.)

  18. ITER [International Thermonuclear Experimental Reactor] reactor building design study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.; Delisle, M.W.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is at the midpoint of a two-year conceptual design. The ITER reactor building is a reinforced concrete structure that houses the tokamak and associated equipment and systems and forms a barrier between the tokamak and the external environment. It provides radiation shielding and controls the release of radioactive materials to the environment during both routine operations and accidents. The building protects the tokamak from external events, such as earthquakes or aircraft strikes. The reactor building requirements have been developed from the component designs and the preliminary safety analysis. The equipment requirements, tritium confinement, and biological shielding have been studied. The building design in progress requires continuous iteraction with the component and system designs and with the safety analysis. 8 figs

  19. Building Guastavino dome in China: A historical survey of the dome of the Auditorium at Tsinghua University

    Directory of Open Access Journals (Sweden)

    Yishi Liu

    2014-06-01

    The first part combs up the intellectual origins and precedents of the campus planning by Henry Murphy. As the dome is a focal point of the study, a brief course on the history of dome construction in the West is needed. The third part, based upon field measurement in July 2013, compares the actual dome with its original design featured by the Guastavino method, deducing possible reasons that resulted in the differences, including architect׳s unfamiliarity with Guastavino Company and its parameters, considerations about cost, and local construction tradition.

  20. Seismic retrofitting of Apsara reactor building

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Rao, K.N.; Narasimhan, Rajiv; Srinivas, K.; Basha, S.M.; Thomas, V.S.; Soma Kumar, K.

    2006-01-01

    Seismic analysis of Apsara Reactor building was carried out and was found not meeting the current seismic requirements. Due to the building not qualifying for seismic loads, a retrofit scheme using elasto-plastic dampers is proposed. Following activities have been performed in this direction: Carried out detailed seismic analysis of Apsara reactor building structure incorporating proposed seismic retrofit. Demonstrating the capability of the retrofitted structure to with stand the earth quake level for Trombay site as per the current standards by analysis and by model studies. Implementation of seismic retrofit program. This paper presents the details of above aspects related to Seismic analysis and retrofitting of Apsara reactor building. (author)

  1. Characterization of the Three Mile Island Unit-2 reactor building atmosphere prior to the reactor building purge

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Mandler, J.W.; Duce, S.W.; Motes, B.G.

    1981-05-01

    The Three Mile Island Unit-2 reactor building atmosphere was sampled prior to the reactor building purge. Samples of the containment atmosphere were obtained using specialized sampling equipment installed through penetration R-626 at the 358-foot (109-meter) level of the TMI-2 reactor building. The samples were subsequently analyzed for radionuclide concentration and for gaseous molecular components (O 2 , N 2 , etc.) by two independent laboratories at the Idaho National Engineering Laboratory (INEL). The sampling procedures, analysis methods, and results are summarized

  2. Dynamic analysis of a reactor building on alluvial soil

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Paul, D.K.

    1977-01-01

    The reactor building consists of reinforced concrete internal framed structure enclosed in double containment shells of prestressed and reinforced concrete all resting on a common massive raft. The external cylindrical shell is capped by a spherical dome while the internal shell carries a cellular grid slab. The building is partially buried under ground. The soil consists of alluvial going to 1000 m depth. The site lies in a moderate seismic zone. The paper presents the dynamic analysis of the building including soil-structure interaction. The mathematical model consists of four parallel, suitably interconnected structures, namely inner containment, outer containment, internal frame and the calandria vault. Each one of the parallel structures consists of lumped-mass beam elements. The soil below the raft and on the sides of outer containment shell is represented by elastic springs in both horizontal and vertical directions. The various assumptions required to be made in developing the mathematical model are briefly discussed in the paper. Transfer matrix technique has been used to determine the frequencies and mode shapes. The deformations due to bending, shear and effect of the rotary inertia have been included. Various alternatives of laterally interconnecting the internals and the shells have been examined and the best alternative from earthquake considerations has been obtained. In the study, the effect of internal structure flexibility and Calandria vault flexibility on the whole building have been studied. The resulting base raft motion and the structural timewise response of all floors have been determined for the design basis (safe shutdown) earthquake by mode superposition

  3. Ultrasonic test results for the reactor pressure vessel of the HTTR. Longitudinal welding line of bottom dome

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Ohwada, Hiroyuki; Kato, Yasushi

    2008-06-01

    This paper describes the inspection method, the measured area, etc. of the ultrasonic test of the in-service inspection (ISI) for welding lines of the reactor pressure vessel of the HTTR and the inspection results of the longitudinal welding line of the bottom dome. The pre-service inspection (PSI) results for estimation of occurrence and progression of defects to compare the ISI results is described also. (author)

  4. PERSIAN DOMES: HISTORY, MORPHOLOGY AND TYPOLOGIES

    Directory of Open Access Journals (Sweden)

    Maryam Ashkan

    2009-11-01

    Full Text Available Persian master builders had introduced an architectural innovation which had an imperishable effect on dome architecture in the Middle East and Central Asia: surmounting a dome on squinches. This paper aims to provide a broader perspective of Persian domes as the most significant feature of Eastern domes in the Middle East. As opposed to previous general historic studies, this paper introduces a new analytical approach directed towards analysis of architectural concepts and stylistic attributes of Persian domes based on an epistemological premise of their space syntax. By analytic reviewing of examples, the paper addresses the origin of Persian domes, their formal morphological constitutions, and their typological forms based on the diversity of the external shell over the specific timeline, from the pre-Islamic era through the Qajar period in Iran. The study of the Persian dome’s characteristics can illustrate undiscovered information about the essences of developing dome constructions in the Middle East. It can also establish new design standards regarding the frameworks of domical building configurations to be used for creating typological diversity in dome design and to renew the morphological principles of the traditional dome compositions in contemporary architectural designs. Finally, the insights gained can inform conservation efforts on domical structures in the region and elsewhere.

  5. Feedback phenomena in nuclear reactors

    International Nuclear Information System (INIS)

    Fiebig, R.

    1977-01-01

    It is investigated what influence the thermodynamic behaviour of the steam dome of a reactor with pressure autocontrol has on the dynamics of the reactor system. For automatic control, either the circuit water must be thermally coupled with the steam dome or, without coupling, there must be a sufficiently large subcooling of the reactor core. The coupling mechanisms between water and steam in the steam dome to be considered are heat conduction, boiling, and condensation. A heat sink in the steam dome enforces a thermodynamic equilibrium between water and steam and provides good autocontrol properties. Without a heat sink, thermal heat coupling is ended when the pressure rises. Nevertheless, with direct contact between circuit and steam dome the reactor remains controllable. At the reactor of the NCS-80, where the circuit is separated from the steam dome by a buffer volume, autocontrol takes place with a heat sink in the steam dome and with sufficient shifting of the working point into the subcooled region caused by the rising of bubbles. (orig.) [de

  6. Assessment of Extent and Degree of Thermal Damage to Polymeric Materials in the Three Mile Island Unit 2 Reactor Building

    International Nuclear Information System (INIS)

    Alvares, N. J.

    1984-02-01

    Thermal damage to susceptible materials in accessible regions of the TMI-2 reactor building shows damage-distribution patterns that indicate non-uniform intensity of exposure. No clear explanation for non-uniformity is found in existing evidence; e.g., in some regions a lack of thermally susceptible materials frustrates analysis. Elsewhere, burned materials are present next to materials that seem similar but appear unscathed-leading to conjecture that the latter materials preferentially absorb water vapor during periods of high local steam concentration. Most of the polar crane pendant shows heavy burns on one half of its circumferential surface. This evidence suggests that the polar crane pendant side that experienced heaviest burn damage was exposed to intense radiant energy from a transient fire plume in the reactor containment volume. Tests and simple heat-transfer calculations based on pressure and temperature records from the accident show that the atmosphere inside the reactor building was probably 8% hydrogen in air, a value not inconsistent with the extent of burn damage. Burn-pattern geography indicates uniform thermal exposure in the dome volume to the 406-ft level (about 6 ft below the polar crane girder), partial thermal exposure in the volume between the 406- and 347-ft levels as indicated by the polar crane cable, and lack of damage to most thermally susceptible materials in the west quadrant of the reactor building; some evidence of thermal exposure Is seen in the free volume between the 305- and 347-ft levels. (author)

  7. Pressure suppression device for nuclear reactor building

    International Nuclear Information System (INIS)

    Ikegame, Noboru.

    1992-01-01

    In a nuclear reactor building, there are disposed cooling coils connected to an air supply duct at the outside of the building, an air supply blower, an air supply duct having the top end opened, an exhaustion duct having the top end opened and a bypassing pipeline interposed between the exhaustion duct and the air supply duct on the side of the inlet of the cooling coils. In the reactor building, when a radioactive material leakage accident should occur, an isolation valve is closed to isolate the building from the outside. Further, bypassing isolation valve is opened to form a closed cooling circuit by the cooling coils, the air supply blower and the air supply duct, the exhaustion duct and the bypassing pipeline in the reactor building. With such a constitution, since air as the atmosphere in the building is circulated through the closed cooling circuit and cooled by the cooling coils, the temperature is not elevated. Accordingly, since the pressure elevation of the atmosphere in the building is suppressed, the atmosphere containing radioactive materials do not flow out of the building. (I.N.)

  8. Aircraft Impact Assessment of APR1400 Reactor Containment Building

    International Nuclear Information System (INIS)

    Moon, Il Hwan; Kim, Do Yeon; Kim, Jae Hee; Kim, Sang Yun

    2011-01-01

    The implementation of a protection to withstand aircraft impact on safety-related structures and systems is basically based on a probabilistic evaluation for each site, if the licensing body doesn't require a deterministic approach. Existing nuclear power plants in Korea were designed based on the probabilistic approach, and the aircraft impact hazard remained less than a probability of 10 -7 . However, a man-made aircraft impact have been considered as a possible external accident for the nuclear power plant. New plant designs that are to be constructed in the U.S. after July 2009 must consider the effect of impact from a large commercial aircraft according to the requirements of 10 CFR 50.150. Especially, Reactor Containment Building (RCB) housing the safety-related equipment and fuels should be protected safely against aircraft crash without perforation and scabbing failure of external wall. APR1400 RCB is constructed as a prestressed concrete containment vessel (PCCV) which is surrounded by the auxiliary building housing additional safety-related equipment and other systems. In this study, the aircraft impact analyses for the RCB are carried out using Riera forcing function and aircraft model. Considered external wall thickness is 4 ft 6 in. for the cylindrical wall and 4 ft for the dome. Actual strengths of concrete and steel are considered as the material properties. For these analyses, the dynamic increment factor and concrete aging effect are considered in accordance with NEI 07-13(2011)

  9. Vibration-damping structure for reactor building

    International Nuclear Information System (INIS)

    Kuno, Toshio; Iba, Chikara; Tanaka, Hideki; Kageyama, Mitsuru

    1998-01-01

    In a damping structure of a reactor building, an inner concrete body and a reactor container are connected by way of a vibration absorbing member. As the vibration absorbing member, springs or dampers are used. The inner concrete body and the reactor container each having weight and inherent frequency different from each other are opposed displaceably by way of the vibration absorbing member thereby enabling to reduce seismic input and reduce shearing force at least at leg portions. Accordingly, seismic loads are reduced to increase the grounding rate of the base thereby enabling to satisfy an allowable value. Therefore, it is not necessary to strengthen the inner concrete body and the reactor container excessively, the amount of reinforcing rods can be reduced, and the amount of a portion of the base buried to the ground can be reduced thereby enabling to constitute the reactor building easily. (N.H.)

  10. Photogrammetric Analysis of the Current Dome-Building Eruption of Mount St. Helens Volcano

    Science.gov (United States)

    Diefenbach, A. K.; Dzurisin, D.; Crider, J. G.; Schilling, S. P.

    2006-12-01

    Beginning in October 2004 and continuing to present day, the eruption of Mount St. Helens has provided a unique opportunity to experiment with new tools and techniques to study the dome-building eruption of a Cascade volcano. At the onset of eruption, a permanent camera station called Sugar Bowl was installed on the northeast rim of the crater about 2 km from the vent. Since that time, four additional cameras have been installed on the rim and crater floor to provide continuous visual observation of dome growth and crater conditions. We have analyzed images from four of the cameras to measure variations in three-dimensional lineal growth rates of lava spines extruding from the growing dome. Using photogrammetric techniques it is possible to obtain quantitative information on the geometry and displacement of a changing topographic model, in this case the evolving dome and glaciers in the crater of Mount St. Helens. The technique is an inexpensive, high-resolution, and efficient method that uses standard commercial software and an off-the-shelf digital camera to determine the x, y, z positions of selected points on the model surface. The model geometry at any given time is defined by the positions of all the points, and displacements are measured by tracking the changing positions of the points through time. Lineal extrusion rates during the first few months of the eruption ranged from 6-11 m/d, and subsequent estimates by other techniques were 4-5 m/d (Dzurisin et. al, 2005). For the past six months the extrusion rate has leveled off at 1 m/d, possibly indicative of steady-state extrusion or an approaching pause in the eruption. Another aspect of the project involves the use of overlapping oblique photos taken from a helicopter in 2004 and 2005 to produce fast and coarse digital elevation models (DEMs), which supplement high resolution DEMs produced by the USGS every 1 - 2 months. Comparing these results with seismicity and ground tilt measured by shallow borehole

  11. Hanford B Reactor Building Hazard Assessment Report

    International Nuclear Information System (INIS)

    Griffin, P. W.

    1999-01-01

    The 105-B Reactor (hereinafter referred to as B Reactor) is located in the 100 Area of the Hanford Site near Richland, Washington. The B Reactor is one of nine plutonium production reactors that were constructed in the 1940s during the Cold War Era. Construction of the B Reactor began June 7, 1943, and operation began on September 26, 1944. The Environmental Restoration Contractor was requested by RL to provide an assessment/characterization of the B Reactor building to determine and document the hazards that are present and could pose a threat to the environment and/or to individuals touring the building. This report documents the potential hazards, determines the feasibility of mitigating the hazards, and makes recommendations regarding areas where public tour access should not be permitted

  12. Air conditioning device for reactor buildings

    International Nuclear Information System (INIS)

    Kikuchi, Shiro.

    1982-01-01

    Purpose: To decrease the opening areas of pipe lines for an air conditioning device at the portions passing through the shielding walls of a reactor building for a FBR type reactor, as well as reduce the size of the building. Constitution: Airs in the building for containing reactor are liquefied in an air liquefying mechanism. The liquefied airs are sent by way of pipe lines to each of evaporators, wherein each of the chambers are cooled because of latent heat of evaporation and evaporated airs are released to each of the chambers. The airs released to each of the chambers are collected into an exhaust chamber and sent by way of a duct to the air liquefying mechanism and liquefied again. Since the volume of the liquefied airs may be smaller than the amount conventionally required for usual cooled airs, the pipe lines passing through the shielding walls of the building can be of smaller diameter. This can decrease the opening areas of the pipe lines at the portions passing through the walls of the shieldings and, since the opening areas are smaller, the structure of the radiation shieldings can be simplified in these portions. Further, since the space of the pipe lines in the building is reduced extremely, the size of the building can be reduced. (Moriyama, K.)

  13. Reactor building for a nuclear reactor

    International Nuclear Information System (INIS)

    Haidlen, F.

    1976-01-01

    The invention concerns the improvement of the design of a liner, supported by a latticed steel girder structure and destined for guaranteeing a gastight closure for the plant compartments in the reactor building of a pressurized water reactor. It is intended to provide the steel girder structure on their top side with grates, being suited for walking upon, and to hang on their lower side diaphragms in modular construction as a liner. At the edges they may be sealed with bellows in order to avoid thermal stresses. The steel girder structure may at the same time serve as supports for parts of the steam pipe. (RW) [de

  14. Lightning protection system analysis at Multipurpose Reactor G A. Siwabessy building

    International Nuclear Information System (INIS)

    Teguh-Sulistyo

    2003-01-01

    Analysis to the part of lightning protection system at Multi Purpose Reactor GA Siwabessy (RSG-GAS) have been done. Observation examined the damage of some part of the earthing system caused by human error of chemically system. The analysis performed some assumptions and simulations to the points of lightning stroke. From this analysis obtained that the reactor building do not have vertical finial which can protect effectively to the whole reactor building and auxiliary building. Installing some new finials at some places are needed to protect building therefore the reactor building and auxiliary building well safe from lighting stroke

  15. Thermohydraulic feedbacks in self-pressurized reactor systems

    International Nuclear Information System (INIS)

    Fiebig, R.

    1977-01-01

    The impact on the dynamic behaviour of a self-pressurized reactor by the thermodynamic properties of the steam dome is investigated. For self-stabilization of the system the water of the primary circuit must be coupled thermodynamically to the steam in the steam dome, or alternatively the water in the reactor core must be subcooled sufficiently. Ways of thermodynamically coupling the water to the steam are heat conduction, boiling and condensation. A heat sink within the steam dome forces thermodynamic equilibrium between water and steam. This condition yields excellent self-control. Without heat sink thermal coupling is suspended at transients resulting in pressure rises. However, the reactor is still controlable as long as circuit and steam dome have direct contact. At the reactor of the NCS-80 a buffer volume of water separates primary circuit and steam volume. Stability is achieved by a heat sink in the steam dome and a shift of the core temperature into the subcooled domain effected by steam bubbles rising into the steam dome. (orig.) [de

  16. Thermohydraulic feedbacks in self-pressurized reactor systems

    International Nuclear Information System (INIS)

    Fiebig, R.

    1977-01-01

    The impact on the dynamic behaviour of a self-pressurized reactor by the thermodynamic properties of the steam dome is investigated. For self-stabilization of the system the water of the primary circuit must be coupled thermodynamically to the steam in the steam dome, or alternatively the water in the reactor core must be subcooled sufficiently. Ways of thermodynamically coupling the water to the steam are heat conduction, boiling and condensation. A heat sink within the steam dome forces thermodynamic equilibrium between water and steam. This condition yields excellent self-control. Without heat sink thermal coupling is suspended at transients resulting in pressure rises. However, the reactor is still controllable as long as circuit and steam dome have direct contact. At the reactor of the NCS-80 a buffer volume of water separates primary circuit and steam volume. Stability is achieved by a heat sink in the steam dome and a shift of the core temperature into the subcooled domain effected by steam bubbles rising into the steam dome. (orig.) [de

  17. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  18. Simulation of hydrogen deflagration and detonation in a BWR reactor building

    International Nuclear Information System (INIS)

    Manninen, M.; Silde, A.; Lindholm, I.; Huhtanen, R.; Sjoevall, H.

    2002-01-01

    A systematic study was carried out to investigate the hydrogen behaviour in a BWR reactor building during a severe accident. BWR core contains a large amount of Zircaloy and the containment is relatively small. Because containment leakage cannot be totally excluded, hydrogen can build up in the reactor building, where the atmosphere is normal air. The objective of the work was to investigate, whether hydrogen can form flammable and detonable mixtures in the reactor building, evaluate the possibility of onset of detonation and assess the pressure loads under detonation conditions. The safety concern is, whether the hydrogen in the reactor building can detonate and whether the external detonation can jeopardize the containment integrity. The analysis indicated that the possibility of flame acceleration and deflagration-to-detonation transition (DDT) in the reactor building could not be ruled out in case of a 20 mm 2 leakage from the containment. The detonation analyses indicated that maximum pressure spike of about 7 MPa was observed in the reactor building room selected for the analysis

  19. Ventilation system in the RA reactor building - design specifications

    International Nuclear Information System (INIS)

    Badrljica, R.

    1984-09-01

    Protective role of the ventilation system of nuclear facilities involve construction of ventilation barriers which prevent release of radioactive particulates or gases, elimination od radioactive particulates and gases from the air which is released from contaminated zones into the reactor environment. Ventilation barriers are created by dividing the building into a number of ventilation zones with different sub pressure compared to the atmospheric pressure. The RA reactor building is divided into four ventilation zones. First zone is the zone of highest risk. It includes reactor core with horizontal experimental channels, underground rooms of the primary coolant system (D 2 O), helium system, hot cells and the space above the the reactor core. Second zone is the reactor hall and the room for irradiated fuel storage. The third zone includes corridors in the basement, ground floor and first floor where the probability of contamination is small. The fourth zone includes the annex where the contamination risk is low. There is no have natural air circulation in the reactor building. Ventilators for air input and outlet maintain the sub pressure in the building (pressure lower than the atmospheric pressure). This prevents release of radioactivity into the atmosphere [sr

  20. Overview of the Westinghouse Small Modular Reactor building layout

    Energy Technology Data Exchange (ETDEWEB)

    Cronje, J. M. [Westinghouse Electric Company LLC, Centurion (South Africa); Van Wyk, J. J.; Memmott, M. J. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of the plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed

  1. Dynamic analysis of reactor containment building using axisymmetric finite element model

    International Nuclear Information System (INIS)

    Thakkar, S.K.; Dubey, R.N.

    1989-01-01

    The structural safety of nuclear reactor building during earthquake is of great importance in view of possibility of radiation hazards. The rational evaluation of forces and displacements in various portions of structure and foundation during strong ground motion is most important for safe performance and economic design of the reactor building. The accuracy of results of dynamic analysis is naturally dependent on the type of mathematical model employed. Three types of mathematical models are employed for dynamic analysis of reactor building beam model axisymmetric finite element model and three dimensional model. In this paper emphasis is laid on axisymmetric model. This model of containment building is considered a reinfinement over conventional beam model of the structure. The nuclear reactor building on a rocky foundation is considered herein. The foundation-structure interaction is relatively less in this condition. The objective of the paper is to highlight the significance of modelling of non-axisymmetric portion of building, such as reactor internals by equivalent axisymmetric body, on the structural response of the building

  2. Method of decommissioning nuclear reactor building by utilizing sea water buyoancy

    International Nuclear Information System (INIS)

    Iwashima, Sumio; Ogoshi, Shigeru; Kobari, Shin-ichi.

    1989-01-01

    Upon dismantling nuclear reactor buildings, peripheral yards are excavated and channels leading to sea shore are formed. Since the outer walls of the reactor buildings are made of iron-reinforced concretes, the opening poritons are grouted with concretes to attain a tightly such closed structure that radioactive wastes, etc. in the inside are not flown out upon reactor discommisioning. Peripheral buildings at relatively low level of radiation contaminations are dismantled and withdrawn. The fundations of the nuclear reactor buildings were dug out and jacked to separate base rocks and the reactor buildings. Then, sea water is introduced into the water channels to entirely float up the buildings. A water gate is disposed in the water channel on the side of sea shore to control the level of sea water. The buildings are moved and guided to the sea shore and towed to a site optimum as a permanent storage area and then burried in that place. The operation period for the discommissioning work can greatly be shortened and the radiation dose and the amount of the wastes can be reduced. (T.M.)

  3. Analysis of the procedure proposed by AREVA to prove adequate toughness of the domes of the Flamanville 3 EPR reactor pressure vessel (RPV) lower head and closure head. Session of 30 September 2015. Public version

    International Nuclear Information System (INIS)

    Catteau, R.; Cadet-Mercier, S.

    2015-01-01

    undergone an in-plant hydraulic test. It was installed at the beginning of 2014 in the reactor pit situated in the reactor building and was welded to the primary branches. The vessel head produced from the upper dome underwent repairs after ultrasonic inspections revealed indications in the welds of the control rod drive mechanism (CRDM) penetrations. These repairs had been examined by the Advisory Committee of Experts for Nuclear Pressure Equipment during the session of 14 September 2011. Ultrasonic inspections of the new welds have been carried out since then and the work is nearing completion. The vessel head is still in the manufacturer's shops and must undergo a hydraulic test before being shipped to the site. This report gives a recap of the regulatory framework and the history of application of the technical qualification requirement, then presents and analyses the procedure adopted by AREVA to prove the adequate toughness of the material of the domes of the Flamanville 3 EPR RPV. It adopts a position more specifically on the new test campaign proposed by AREVA to evaluate the mechanical properties of the segregation zone. The Rapporteur underlines however that the proof of adequate toughness has been defined in the AREVA file on the basis of a list of operating situations that could not be analysed for inclusion in this report given the late date of transmission of the elements and the time available. The results of the new tests that are going to be performed, the exhaustive and encompassing nature of the chosen operating situations and the impact of the mechanical properties of the segregation zone on the analysis of the mechanical behaviour of the vessel in incident, accident and test situations shall be analysed in a later phase. This report has been drawn up jointly by IRSN and the Nuclear Pressure Equipment Department (DEP) of ASN

  4. Magma Dynamics in Dome-Building Volcanoes

    Science.gov (United States)

    Kendrick, J. E.; Lavallée, Y.; Hornby, A. J.; Schaefer, L. N.; Oommen, T.; Di Toro, G.; Hirose, T.

    2014-12-01

    The frequent and, as yet, unpredictable transition from effusive to explosive volcanic behaviour is common to active composite volcanoes, yet our understanding of the processes which control this evolution is poor. The rheology of magma, dictated by its composition, porosity and crystal content, is integral to eruption behaviour and during ascent magma behaves in an increasingly rock-like manner. This behaviour, on short timescales in the upper conduit, provides exceptionally dynamic conditions that favour strain localisation and failure. Seismicity released by this process can be mimicked by damage accumulation that releases acoustic signals on the laboratory scale, showing that the failure of magma is intrinsically strain-rate dependent. This character aids the development of shear zones in the conduit, which commonly fracture seismogenically, producing fault surfaces that control the last hundreds of meters of ascent by frictional slip. High-velocity rotary shear (HVR) experiments demonstrate that at ambient temperatures, gouge behaves according to Byerlee's rule at low slip velocities. At rock-rock interfaces, mechanical work induces comminution of asperities and heating which, if sufficient, may induce melting and formation of pseudotachylyte. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The bulk composition, mineralogy and glass content of the magma all influence frictional behaviour, which supersedes buoyancy as the controlling factor in magma ascent. In the conduit of dome-building volcanoes, the fracture and slip processes are further complicated: slip-rate along the conduit margin fluctuates. The shear-thinning frictional melt yields a tendency for extremely unstable slip thanks to its pivotal position with regard to the glass transition. This thermo-kinetic transition bestows the viscoelastic melt with the ability to either flow or

  5. Elastic-plastic dynamic analysis of a reactor building

    International Nuclear Information System (INIS)

    Umemura, Hajime; Tanaka, Hiroshi.

    1976-01-01

    The basic characteristics of the dynamic response of a reactor building to severe earthquake ground motion are very important for the evaluation of the safety of nuclear plant systems. A computer program for elastic-plastic dynamic analysis of reactor buildings using lumped mass models is developed. The box and cylindrical walls of boiling water reactor buildings are treated as vertical beams. The nonlinear moment-rotation and shear force-shear deformation relationships of walls are based in part upon the experiments of prototype structures. The geometrical non-linearity of the soil rocking spring due to foundation separation is also considered. The nonlinear equation of motion is expressed in incremental form using tangent stiffness matrices, following the algorithm developed by E.L. Wilson et al. The damping matrix in the equation is formulated as the combination of the energy evaluation method and Penzien-Wilson's approach to accomodate the different characteristics of soil and building damping. The analysis examples and the comparison of elastic and elastic-plastic analysis results are presented. (auth.)

  6. Prediction of hydrogen distribution in the reactor building in CANDU6 plant

    International Nuclear Information System (INIS)

    Jin, Y.; Song, Y.

    2008-01-01

    The CANDU plants have a lot of zircaloy. The fuel cladding, calandria tubes and pressure tubes are made of zircaloy. The zircaloy can be oxidized and hydrogen is generated during severe accident progression. The detonation or deflagration to detonation transition (DDT) due to hydrogen combustion may occur if the local hydrogen concentration or global hydrogen concentration exceeds certain value. The detonation may result in the rupture of the reactor building. The inside of the reactor building of CANDU plants is complex. So prediction of hydrogen distribution in the reactor building is important. This prediction is made using ISAAC code and GOTHIC code. ISAAC code partitioned the reactor building in to 7 compartments. GOTHIC code modeled the CANDU6 reactor building using 12 nodes. The hydrogen concentrations in the various compartments in the reactor building are compared. GOTHIC code slightly underpredicts hydrogen concentration in the F/M rooms than ISAAC code, but trend is same. The hydrogen concentration in the boiler room and the moderator room shows almost same as for both codes. (author)

  7. Venting krypton-85 from the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Burton, H.M.

    1981-01-01

    To permit the less restricted access to the reactor building necessary to maintain instrumentation and equipment, and to proceed towad the total decontamination of the facility, General Public Utilities, operators of the facility referred to hereafter as GPU, asked the United States Nuclear Regulatory Commission, or NRC, for permission to remove the 85 Kr from the reactor building by venting it to the environment. GPU supported their request with the Safety Analysis and Environmental Assessment Report on the proposed reactor building venting plan. On June 12, 1980, after seven months of licensing deliberations and numerous public hearings, the NRC granted GPU's request. The actual venting took place between June 28 and July 11, 1980. This report presents an overview of the detailed effort involved in the TMI-2 reactor building venting program. The findings reported here are condensed from a published report entitled TMI-2 Reactor Building Purge--Kr-85 Venting

  8. Dome craters on Ganymede

    International Nuclear Information System (INIS)

    Moore, J.M.; Malin, M.C.

    1987-01-01

    Voyager observations reveal impact craters on Ganymede that are characterized by the presence of broad, high albedo, topographic domes situated within a central pit. Fifty-seven craters with central domes were identified in images covering approx. 50% of the surface. Owing to limitations in resolution, and viewing and illumination angles, the features identified are most likely a subset of dome craters. The sample appears to be sufficiently large to infer statistically meaningful trends. Dome craters appear to fall into two distinct populations on plots of the ratio of dome diameter to crater rim diameter, large-dome craters and small-dome craters. The two classes are morphologically distinct from one another. In general, large dome craters show little relief and their constituent landforms appear subdued with respect to fresh craters. The physical attributes of small-dome craters are more sharply defined, a characteristic they share with young impact craters of comparable size observed elsewhere in the solar system. Both types of dome craters exhibit central pits in which the dome is located. As it is difficult to produce domes by impact and/or erosional processes, an endogenic origin for the domes is reasonably inferred. Several hypotheses for their origin are proposed. These hypotheses are briefly reviewed

  9. Dynamic response of domes in CANDU 600 MWe containments

    International Nuclear Information System (INIS)

    Aziz, T.S.; Meng, V.; Alizadeh, A.

    1981-01-01

    CANDU reactors of the 600 MWe type are typically housed in a cylindrical prestressed concrete containment structure; rising from a flat slab and ending in a domed roof. The principal components of this structure are: (a) a circular base slab, (b) a vertical cylinder and (c) a spherical dome cap. A unique feature of a CANDU 600 MWe containment structure is the existence of an inner spherical concrete dome, located below the outer spherical dome, which serves as the bottom of a reservoir for the storage of 560,000 imperial gallons of douzing water. The thickness of the prestressed cylinder wall is approximately doubled between the two domes to create a ring beam. Inside the containment there exists an internal concrete structure which is independent of the containment structure except for support on the base slab. The containment boundary is a fully prestressed concrete structure. This paper deals with the seismic behaviour of the CANDU 600 MWe containment structure and the effect of its unique features; such as the lower dome and the douzing water on this behaviour. The objective of the study is to evaluate the interaction (coupling) effects between the different components of the structure. The approach taken is to study each component of the structure individually, then an assembly of the different components, and finally the total containment structure. This presentation is limited to the vertical response of the structure under a vertical earthquake only. Axisymmetric finite elements were used in all models. The vertical responses at selected points of the structure were obtained by the response spectrum method as well as the time-history method. It was observed that the response spectrum method over-estimates the vertical response of the domes and under-estimates the vertical responses of the ring girder and the containment cylinder compared to the time-history method. (orig./RW)

  10. Study on the hydrogen explosion risk at reactor building during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES carried out analysis on the hydrogen mixing and explosion at reactor building with CFD code and explosion analysis code to evaluate what exactly has happened at the reactor buildings of the Fukushima Daiichi NPS. Based on the MELCOR severe accident analysis results of Fukushima Daiichi Unit 1 and Unit 3, sensitivity study using the CFD code FLUENT was carried out on the parameter of the release rate, total mass of hydrogen gas, the release path between reactor building and PCV, and so on. Then an analysis using AUTODYN code was carried out to investigate the explosion at the reactor building of Unit 4 as well as Unit 1 and, Unit 3. With those analysis results it became possible to estimate the leaked path and the total amount of leaked hydrogen gas from PCV to reactor building. (author)

  11. Building reactor operator sustain expert system with C language integrated production system

    International Nuclear Information System (INIS)

    Ouyang Qin; Hu Shouyin; Wang Ruipian

    2002-01-01

    The development of the reactor operator sustain expert system is introduced, the capability of building reactor operator sustain expert system is discussed with C Language Integrated Production System (Clips), and a simple antitype of expert system is illustrated. The limitation of building reactor operator sustain expert system with Clips is also discussed

  12. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    Science.gov (United States)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  13. The 2004–2008 dome-building eruption at Mount St. Helens, Washington: Epilogue

    Science.gov (United States)

    Dzurisin, Daniel; Moran, Seth C.; Lisowski, Michael; Schilling, Steve P.; Anderson, Kyle R.; Werner, Cynthia A.

    2015-01-01

    The 2004–2008 dome-building eruption at Mount St. Helens ended during winter 2007–2008 at a time when field observations were hampered by persistent bad weather. As a result, recognizing the end of the eruption was challenging—but important for scientists trying to understand how and why long-lived eruptions end and for public officials and land managers responsible for hazards mitigation and access restrictions. In hindsight, the end of the eruption was presaged by a slight increase in seismicity in December 2007 that culminated on January 12–13, 2008, with a burst of more than 500 events, most of which occurred in association with several tremor-like signals and a spasmodic burst of long-period earthquakes. At about the same time, a series of regular, localized, small-amplitude tilt events—thousands of which had been recorded during earlier phases of the eruption—came to an end. Thereafter, seismicity declined to 10–20 events per day until January 27–28, when a spasmodic burst of about 50 volcano-tectonic earthquakes occurred over a span of 3 h. This was followed by a brief return of repetitive “drumbeat” earthquakes that characterized much of the eruption. By January 31, however, seismicity had declined to 1–2 earthquakes per day, a rate similar to pre-eruption levels. We attribute the tilt and seismic observations to convulsive stagnation of a semisolid magma plug in the upper part of the conduit. The upward movement of the plug ceased when the excess driving pressure, which had gradually decreased throughout the eruption as a result of reservoir deflation and increasing overburden from the growing dome, was overcome by increasing friction as a result of cooling and crystallization of the plug.

  14. Measurement of Narora reactor building relative settlement

    International Nuclear Information System (INIS)

    Deo, P.M.; Pande, K.C.; Patwardhan, H.S.

    1977-01-01

    The civil construction of the reactor building of Narora Atomic Power Project has a special problem. The stability of the structure is liable to settlement as this location falls in seismic zone. To obviate the possibility of large scale unequal settlements, the reactor building is founded on a 4 meter thick rigid raft concreted in three layers, at a depth of 13 meters below ground. Stainless steel tanks will be embedded at 17 locations to measure relative settlements. The relative elevation difference will be detected by electrical probes when the water level in any one of the tanks touches the tip of the probes. The design envisages a maximum permissible unequal settlements of about 10 mm. over a period of 20 years. (K.B.)

  15. Radionuclide distribution in TMI-2 reactor building basement liquids and solids

    International Nuclear Information System (INIS)

    Horan, J.T.; McIsaac, C.V.; Keefer, D.G.

    1984-01-01

    As a result of the TMI-2 accident, approximately 2.46 x 10 6 L of contaminated water were released to the Reactor Building basement. The principal fission product release pathway from the damaged core was through the reactor coolant system (RCS) to the pressurizer, through the pressure-operated relief valve (PORV) on the pressurizer to the Reactor Coolant Drain Tank (RCDT), and then through the RCDT rupture disk to the Reactor Building basement. Since August 1979, a number of efforts have been made to determine the location, quantity, and composition of fission products released to the Reactor Building basement. These efforts have included sampling of the basement water and solids, the basement sump pump recirculation line, the RCDT, and visual surveys using a closed circuit television (CCTV) system. The analysis of basement samples has provided data on the physical and radioisotopic characteristics of the liquids and solids. This paper describes the sample collection techniques and discusses radiochemical analyses results

  16. Aging management program of the reactor building concrete at Point Lepreau Generating Station

    Science.gov (United States)

    Aldea, C.-M.; Shenton, B.; Demerchant, M. M.; Gendron, T.

    2011-04-01

    In order for New Brunswick Power Nuclear (NBPN) to control the risks of degradation of the concrete reactor building at the Point Lepreau Generating Station (PLGS) the development of an aging management plan (AMP) was initiated. The intention of this plan was to determine the requirements for specific structural components of concrete of the reactor building that require regular inspection and maintenance to ensure the safe and reliable operation of the plant. The document is currently in draft form and presents an integrated methodology for the application of an AMP for the concrete of the reactor building. The current AMP addresses the reactor building structure and various components, such as joint sealant and liners that are integral to the structure. It does not include internal components housed within the structure. This paper provides background information regarding the document developed and the strategy developed to manage potential degradation of the concrete of the reactor building, as well as specific programs and preventive and corrective maintenance activities initiated.

  17. Safety equipment in a reactor

    International Nuclear Information System (INIS)

    Shiratori, Hirozo; Ishiyama, Satoshi; Ugawa, Yukio.

    1976-01-01

    Object: To safely retain, even if fuel should be molten and flown through the bottom of a container in a reactor, the molten fuel to remove heat generation of the fuel to prevent occurrence of a critical trouble. Structure: A reactor container housing a core and coolant has thereunder a separation dome in a central portion thereof and a partitioning plate coaxially and circularly disposed in the periphery of the separation dome, with a tray formed of magnesium oxide being disposed. Further, a cooling path system is provided so as to surround the tray. The cooling path system and the reactor container are surrounded and protected by a reactor wall provided with heat insulating refractory bricks, a coolant pouring system extends through the reactor wall, and the coolant is supplied to the tray. (Furukawa, Y.)

  18. Considerations on safety against seismic excitations in the project of reactor auxiliary building and control building in nuclear power plants

    International Nuclear Information System (INIS)

    Santos, S.H.C.; Castro Monteiro, I. de

    1986-01-01

    The seismic requests to be considered in the project of main buildings of a nuclear power plant are discussed. The models for global seismic analysis of nuclear power plant structures, as well as models for global strength distribution are presented. The models for analysing reactor auxiliary building and control building, which together with the reactor building and turbine building form the main energy generation complex in a nuclear power plant, are described. (M.C.K.) [pt

  19. Aging management program of the reactor building concrete at Point Lepreau Generating Station

    Directory of Open Access Journals (Sweden)

    Gendron T.

    2011-04-01

    Full Text Available In order for New Brunswick Power Nuclear (NBPN to control the risks of degradation of the concrete reactor building at the Point Lepreau Generating Station (PLGS the development of an aging management plan (AMP was initiated. The intention of this plan was to determine the requirements for specific structural components of concrete of the reactor building that require regular inspection and maintenance to ensure the safe and reliable operation of the plant. The document is currently in draft form and presents an integrated methodology for the application of an AMP for the concrete of the reactor building. The current AMP addresses the reactor building structure and various components, such as joint sealant and liners that are integral to the structure. It does not include internal components housed within the structure. This paper provides background information regarding the document developed and the strategy developed to manage potential degradation of the concrete of the reactor building, as well as specific programs and preventive and corrective maintenance activities initiated.

  20. Cassette blanket and vacuum building: key elements in fusion reactor maintenance

    International Nuclear Information System (INIS)

    Werner, R.W.

    1977-01-01

    The integration of two concepts important to fusion power reactors is discussed. The first concept is the vacuum building which improves upon the current fusion reactor designs. The second concept, the use of the cassette blanket within the vacuum building environment, introduces four major improvements in blanket design: cassette blanket module, zoning concept, rectangular blanket concept, and internal tritium recovery

  1. DomeHaz, a Global Hazards Database: Understanding Cyclic Dome-forming Eruptions, Contributions to Hazard Assessments, and Potential for Future Use and Integration with Existing Cyberinfrastructure

    Science.gov (United States)

    Ogburn, S. E.; Calder, E.; Loughlin, S.

    2013-12-01

    Dome-forming eruptions can extend for significant periods of time and can be dangerous; nearly all dome-forming eruptions have been associated with some level of explosive activity. Large Plinian explosions with a VEI ≥ 4 sometimes occur in association with dome-forming eruptions. Many of the most significant volcanic events of recent history are in this category. The 1902-1905 eruption of Mt. Pelée, Martinique; the 1980-1986 eruption of Mount St. Helens, USA; and the 1991 eruption of Mt. Pinatubo, Philippines all demonstrate the destructive power of VEI ≥ 4 dome-forming eruptions. Global historical analysis is a powerful tool for decision-making as well as for scientific discovery. In the absence of monitoring data or a knowledge of a volcano's eruptive history, global analysis can provide a method of understanding what might be expected based on similar eruptions. This study investigates the relationship between large explosive eruptions and lava dome growth and develops DomeHaz, a global database of dome-forming eruptions from 1000 AD to present. It is currently hosted on VHub (https://vhub.org/groups/domedatabase/), a community cyberinfrastructure for sharing data, collaborating, and modeling. DomeHaz contains information about 367 dome-forming episodes, including duration of dome growth, duration of pauses in extrusion, extrusion rates, and the timing and magnitude of associated explosions. Data sources include the The Smithsonian Institution Global Volcanism Program (GVP), Bulletin of the Global Volcanism Network, and all relevant published review papers, research papers, and reports. This database builds upon previous work (e.g Newhall and Melson, 1983) in light of newly available data for lava dome eruptions. There have been 46 new dome-forming eruptions, 13 eruptions that continued past 1982, 151 new dome-growth episodes, and 8 VEI ≥ 4 events since Newhall and Melson's work in 1983. Analysis using DomeHaz provides useful information regarding the

  2. Study on vertical seismic response model of BWR-type reactor building

    International Nuclear Information System (INIS)

    Konno, T.; Motohashi, S.; Izumi, M.; Iizuka, S.

    1993-01-01

    A study on advanced seismic design for LWR has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan. As a part of the study, it has been investigated to construct an accurate analytical model of reactor buildings for a seismic response analysis, which can reasonably represent dynamic characteristics of the building. In Japan, vibration models of reactor buildings for horizontal ground motion have been studied and examined through many simulation analyses for forced vibration tests and earthquake observations of actual buildings. And now it is possible to establish a reliable horizontal vibration model on the basis of multi-lumped mass and spring model. However, vertical vibration models have not been so much studied as horizontal models, due to less observed data for vertical motions. In this paper, the vertical seismic response models of a BWR-type reactor building including soil-structure interaction effect are numerically studied, by comparing the dynamic characteristics of (1) three dimensional finite element model, (2) multi-stick lumped mass model with a flexible base-mat, (3) multi-stick lumped mass model with a rigid base-mat and (4) single-stick lumped mass model. In particular, the BWR-type reactor building has the long span truss roof which is considered to be one of the critical members to vertical excitation. The modelings of the roof trusses are also studied

  3. Seismic analysis of a reactor building with eccentric layout

    International Nuclear Information System (INIS)

    Itoh, T.; Deng, D.Z.F.; Lui, K.

    1987-01-01

    Conventional design for a reactor building in a high seismic area has adopted an essentially concentric layout in response to fear of excessive torsional effect due to horizontal seismic load on an eccentric plant. This concentric layout requirement generally results in an inflexible arrangement of the plant facilities and thus increases the plant volume. This study is performed to investigate the effect of eccentricity on the overall seismic structural response and to provide technical information in this regard to substantiate the volume reduction of the overall power plant. The plant layout is evolved from the Bechtel standard plan of a PWR plant by integrating the reactor building and the auxiliary building into a combined building supported on a common basemat. This plant layout is optimized for volume utilization and to reduce the length of piping systems. The mass centers at various elevations of the combined building do not coincide with the rigidity center (RC) of the respective floor and the geometric center of the basemat, thus creating an eccentric response of the building in a seismic environment. Therefore, the torsional effects of the structure have to be taken into account in the seismic analysis

  4. RA reactor building and installations; Zgrada 'RA' i instalacije

    Energy Technology Data Exchange (ETDEWEB)

    Badrljica, R; Sanovic, V; Skoric, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1985-08-15

    RA reactor building is made of reinforced concrete and bricks. It is closed facility with a limited number of controlled openings, doors and windows. The site of the building is 100 m above the sea level, 20 m above the mean Danube level and 8 m above the level of the neighbouring stream Mlaka. The building consists of three parts: central prismatic part, annex - surrounding the central part and the sanitary corridor. The biggest space is the reactor hall. In addition to the detailed description and drawings of the reactor building this documents includes design specifications of: electrical installation, water supply system, sewage system, ventilation and heating, gas and compressed air systems. A separate chapter is devoted to fire protection. Zgrada reaktora RA izgradjena je od armiranog betona i opeke, kao zatvoreni objekat ogranicenog broja kontolisanih otvora, sa ogranicenim brojem vrata i prozora. Plato na kojem je zgrada izgradjena nalazi se na 100 m nadmorske visine, na 20 m iznad srednjeg vodostaja Dunava i 8 m iznad nivoa obliznjeg potoka Mlaka. Zgrada se sastoji iz tri dela: sredisnjeg prizmaticnog dela, aneksa - prstenastog okvira sredisnog dela i sanitarnog propusnika. Pojedinacno najveci prostor zauzima reaktorska hala. Pored detaljnog opisa i plana zgrade, ovaj dokument sadrzi projekat elektricne instalacije, projekat vodovoda i kanalizacije, ventilacije i grejanja, instalacije gasa i komprimovanog vazduha. Posebno poglavlje posveceno je protivpozarnoj zastiti.

  5. Near-dome geologic findings - Richton Dome, Mississippi: annual status report for FY 83

    International Nuclear Information System (INIS)

    1984-10-01

    Basin Analysis is a study of the regional and local stratigraphic, tectonic, and salt-tectonic conditions that influenced the development of the Mississippi Salt Basin and Richton Dome, an element within that basin. During FY 83, work was concentrated on the local area surrounding Richton Dome and included the writing of the Midyear FY 83 Richton Dome Screening and Suitability Review, input to the Site Characterization Plan that is being prepared by the Southern Region Geologic Project Manager, and initial development of a near-dome geologic model. The geologic model was compiled using information from approximately 300 oil and gas well geophysical logs and 128 line km (80 line mi) of seismic-reflection profiles. In addition to analysis and interpretation of the logs and profiles, stratigraphic data from each were assembled in a computer-based file and were used to produce computer-generated structural contour maps. Major findings from the analyses include a new configuration for the northern end of Richton Dome and improved definitions of near-dome faults and the rim syncline on the northern and eastern flanks of Richton Dome. 4 references, 6 figures

  6. Consideration on hydrogen explosion scenario in APR 1400 containment building during small breakup loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kweonha, E-mail: khpark@kmou.ac.kr [Division of Mechanical & Energy Systems Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of); Khor, Chong Lee, E-mail: itachi_829@hotmail.com [Department of Mechanical Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of)

    2015-11-15

    Highlights: • Hydrogen behavior in the containment building of APR1400 nuclear plant up to 15 h after the failure happened. • The risk of hydrogen explosion largely depends on the combination of air, hydrogen and steam in the containment. • Hydrogen explosion risk at different locations in the containment was analyzed. - Abstract: This paper describes the analytical result of the potential risk of hydrogen gas up to 15 h after the failure takes place. The major cause of the disaster occurred in Fukushima Daiichi nuclear reactor was the detonation of accumulated hydrogen in the containment by highly increased reactor core temperatures after the failure of the emergency cooling system. The hydrogen risk should be considered in severe accident strategies in current and future NPPs. A hydrogen explosion scenario is proposed. Hydrogen is accumulated on top of the dome during the hydrogen release period. At this point, there are no risk of explosion due to the steam that resides in upper part of the dome. As the hydrogen concentration increase, substantial amount of steams are released. Subsequently, hydrogen is forced into the lower part of the building with high air density—small explosion and dormant steam condensation phase are possible. The light hydrogen rises up slowly with air, gathering on top of the building with high air density. Massive hydrogen explosion is anticipated upon ignition at this stage.

  7. Life management for a non replaceable structure: the reactor building

    International Nuclear Information System (INIS)

    Torres, V.; Francia, L.

    1998-01-01

    Phase 1 of UNESA N.P.P. Lifetime Management Project identified and ranked important components, relative to plant life management. The list showed the Reactor Containment Structure in the third position, and thirteen concrete structures were among the list top twenty. Since the Reactor Containment Building, together with the Reactor Vessel, is the only non-replaceable plant component, and has a big impact on the plant technical life, there is an increasing interest on understanding its behavior to maintain structural integrity. This paper presents: a) IAEA (International Atomic Energy Agency) Coordinated Research Program experiences and studies. Under this Program, international experts address the most frequent degradation mechanisms affecting the containment building. b) IAEA Aging Management Program adapted to our plants. The paper addresses the aging mechanisms affecting the concrete structures, reinforcing steel and prestress systems as well as the aging management programs and the mitigation and control methods. Finally, this paper presents a new module called STRUCTURES, included in phase 2 of the above mentioned project, which will monitor and document the different aging mechanisms and management programs described in item b) regarding the Reactor Containment Building (concrete liner, post stressing system, anchor elements). This module will also support the Maintenance Rule related practices. (Author)

  8. The dynamic pressure measurements of the nuclear reactor coolant for condition-based maintenance of the reactor

    International Nuclear Information System (INIS)

    Es-Saheb, M.H.H.

    1990-01-01

    The condition-based maintenance of the nuclear reactor, by monitoring and measuring the instantaneous dynamic pressure distribution of the coolant (water) impact on the solid surfaces of the reactor during operation is presented. The behaviour of water domes (jets) produced by underwater explosions of small changes of P.E.T.N. at various depths in two different size cylindrical containers, which simulate the nuclear reactor, is investigated. Water surface domes (jets) from the underwater explosions are photographed. Depending on the depth of the charge, curved and flat top jets of up to 455 mm diameter and impact speeds of up to 70 m/sec. are observed. The instabilities in the dome surfaces are observed and the instantaneous profiles are analysed. It is found that, in all cases tested, the maximum pressure takes place at the center of the jet and could reach up to 3.0 times the on-dimensional impact pressure value. The use of their measurements, as online monitoring for condition-based maintenance and design-out maintenance is discussed. 18 refs

  9. Response characteristics of reactor building on weathered soft rock ground

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Tochigi, Hitoshi

    1991-01-01

    The purpose of this study is to investigate the seismic stability of nuclear power plants on layered soft bedrock grounds, focusing on the seismic response of reactor buildings. In this case, the soft bedrock grounds refer to the weathered soft bedrocks with several tens meter thickness overlaying hard bedrocks. Under this condition, there are two subjects regarding the estimation of the seismic response of reactor buildings. One is the estimation of the seismic response of surface ground, and another is the estimation of soil-structure interaction characteristics for the structures embedded in the layered grounds with low impedandce ratio between the surface ground and the bedrock. Paying attention to these subjects, many cases of seismic response analysis were carried out, and the following facts were clarified. In the soft rock grounds overlaying hard bedrocks, it was proved that the response acceleration was larger than the case of uniform hard bedrocks. A simplified sway and rocking model was proposed to consider soil-structure interaction. It was proved that the response of reactor buildings was small when the effect of embedment was considered. (K.I.)

  10. Acoustic of monolithic dome structures

    Directory of Open Access Journals (Sweden)

    Mostafa Refat Ismail

    2018-03-01

    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  11. Experimental and analytical studies on soil-structure interaction behavior of nuclear reactor building

    International Nuclear Information System (INIS)

    Tsushima, Y.

    1978-01-01

    The purpose of this study is to estimate damping effects due to soil-structure interaction by the dissipation of vibrational energy to the ground through the foundation in a building with a short fundamental period such as a nuclear reactor building. The author performed experimental and analytical studies on the vibrational characteristics of model steel structures ranging from one to four stories high erected on the rigid base and located on soil, which are simulated from the vibrational characteristics of a prototype reactor building: the former study is to obtain damping effects due to inner friction of steel frames and the latter to obtain radiation damping effects due to soil-structure interaction. The author also touches upon the results of experiments performed on a BWR-type reactor building in 1974, which showed damping ratios higher than 20% of those in fundamental modes. Then the author attempts to estimate the damping effects of the reactor building by his own method proposed in the report. Through these studies the author finally concludes that the experimental damping effects are remarkable in the lower modes by the energy dissipation and the analytical results show a fairly good fit to the experimental ones

  12. Analysis of soil-structure interaction and floor response spectrum of reactor building for China advanced research reactor

    International Nuclear Information System (INIS)

    Rong Feng; Wang Jiachun; He Shuyan

    2006-01-01

    Analysis of Soil-Structure Interaction (SSI) and calculation of Floor Response Spectrum (FRS) is substantial for anti-seismic design for China Advanced Research Reactor (CARR) project. The article uses direct method to analyze the seismic reaction of the reactor building in considering soil-structure interaction by establishing two-dimensional soil-structure co-acting model for analyzing and inputting of seismic waves from three directions respectively. The seismic response and floor response spectrum of foundation and floors of the building under different cases have been calculated. (authors)

  13. Seismicity associated with dome growth and collapse at the Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Miller, A.D.; Stewart, R.C.; White, R.A.; Luckett, R.; Baptie, B.J.; Aspinall, W.P.; Latchman, J.L.; Lynch, L.L.; Voight, B.

    1998-01-01

    Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a built-up of pressure in the upper conduit which is later released by magma moving into the dome.Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular, short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a build-up of pressure in the upper conduit which is later released by magma moving into the dome.

  14. Reactor building integrity testing: A novel approach at Gentilly 2 - principles and methodology

    International Nuclear Information System (INIS)

    Collins, N.; Lafreniere, P.

    1991-01-01

    In 1987, Hydro-Quebec embarked on an ambitious development program to provide the Gentilly 2 nuclear power station with an effective, yet practical reactor building Integrity Test. The Gentilly 2 Integrity Test employs an innovative approach based on the reference volume concept. It is identified as the Temperature Compensation Method (TCM) System. This configuration has been demonstrated at both high and low test pressure and has achieved extraordinary precision in the leak rate measurement. The Gentilly 2 design allows the Integrity Test to be performed at a nominal 3 kPa(g) test pressure during an (11) hour period with the reactor at full power. The reactor building Pressure Test by comparison, is typically performed at high pressure 124 kPa(g)) in a 7 day window during an annual outage. The Integrity Test was developed with the goal of demonstrating containment availability. Specifically it was purported to detect a leak or hole in the 'bottled-up' reactor building greater in magnitude than an equivalent pipe of 25 mm diameter. However it is considered feasible that the high precision of the Gentilly 2 TCM System Integrity Test and a stable reactor building leak characteristic will constitute sufficient grounds for the reduction of the Pressure Test frequency. It is noted that only the TCM System has, to this date, allowed a relevant determination of the reactor building leak rate at a nominal test pressure of 3 kPa(g). Classical method tests at low pressure have lead to inconclusive results due to the high lack of precision

  15. Analysis of the consequences of the anomaly in the Flamanville EPR reactor pressure vessel head domes on their serviceability. Report to the Advisory Committee of Experts for Nuclear Pressure Equipment. Public version. Session of 26 and 27 June 2017

    International Nuclear Information System (INIS)

    CATTEAU, R.; HERVIOU, K.

    2017-06-01

    The Flamanville EPR reactor pressure vessel closure and bottom head domes were manufactured in 2006 and 2007 by forging in the Areva NP Creusot Forge plant. These components are subject to the technical qualification requirement of the ESPN order in reference because they present a risk of heterogeneity in their properties. For the purposes of this technical qualification, Areva NP measured bending rupture energy values lower than those mentioned in point 4 of appendix I to the ESPN order in reference [3], which led it in 2015 to propose an approach to ASN to demonstrate the adequate toughness of the material of these components, based on a program of testing on scale-one replica domes and mechanical assessments of the risk of fast fracture. This approach was examined by ASN and the French institute for radiation protection and nuclear safety (IRSN) and written up in the report in reference, was the subject of an opinion in reference of the Advisory Committee of experts for nuclear pressure equipment (GP ESPN), which met on 30 September 2015, and of ASN requests, more specifically concerning the in-service inspection provisions, in its letter in reference. Subject to these requests being taken into account, ASN considered that the demonstration approach is appropriate, provided that the phenomenon in question is identified and explained and that the data acquired through the test program are sufficient to characterise it. The first test results, in April 2016, led Areva NP to change its demonstration approach, notably the test program on scale-one replica domes, which gave rise to an information meeting with the GP ESPN on 24 June 2016, on the basis of the summary report drawn up by ASN and IRSN in reference. On the basis of the observations of the GP ESPN in reference, ASN informed Areva NP of additional requests in its letter in reference. The Areva NP test program was conducted for the most part in 2016. On 16 December 2016, Areva NP sent ASN a file in reference

  16. Development of remote decontamination technologies improving internal environment of reactor buildings at Fukushima Daiichi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hotta, Koji; Hayashi, Hirotada; Sakai, Hitoshi

    2016-01-01

    The reactor buildings at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc., which was seriously damaged by the Great East Japan Earthquake of March 11, 2011, have been highly contaminated by radioactive materials. To safely and efficiently advance the processes related to the forthcoming decommissioning of the reactors, it is necessary to improve the hazardous environment inside the reactor buildings. During the more than four years that have elapsed since the Great East Japan Earthquake, Toshiba has been implementing various measures to reduce the ambient dose rates inside the reactor buildings through decontamination work and participation in a national project for the development of remote decontamination technologies for reactor buildings. A variety of vehicles and technologies to support decontamination work have been developed through these activities, and are significantly contributing to improvement of the environment inside the reactor buildings. (author)

  17. Reactor building seismic analysis of a PWR type - NPP

    International Nuclear Information System (INIS)

    Kakubo, Masao

    1983-01-01

    Earthquake engineering studies raised up in Brazil during design licensing and construction phases of Almirante Alvaro Alberto NPP, units 1 and 2. State of art of soil - structure interaction analysis with particular reference to the impedance function calculation analysis with particular reference to the impedance function calculation of a group of pile is presented in this M.Sc. Dissertation, as an example the reactor building dynamic response of a 1325 MWe NPP PWR type is calculated. The reactor building is supported by a pile foundation with 2002 end bearing piles. Upper and lower bound soil parameters are considered in order to observe their influence on dynamic response of structure. Dynamic response distribution on pile heads show pile-soil-pile interaction effects. (author)

  18. Method of constructing reactor buildings

    International Nuclear Information System (INIS)

    Hyuga, Takenori; Nagai, Fumio; Akutsu, Masayoshi.

    1985-01-01

    Purpose: To shorten the construction period for LMFBR type reactors, as well as smoothly introduce high pressure steams generated in concretes upon loss of coolant accidents to the outside of the system. Method: After disposing a liner plate as a chamber lining of reactor buildings, heat insulation materials having steam discharge channels at the outer surface are attached to the outside of the liner plate and, further, an organic films are disposed to the outside of the heat insulation materials. Then, concretes are spiked to the outside of the organic films using the liner plate and the heat insulation material as the mold for concretes. In this way, the construction period can be shortened by utilizing the liner plate and the heat insulation materials as the mold for concretes, as well as steams at high temperature resulted in the concretes upon loss of coolant accidents can smoothly be discharged to the outside of the system. (Moriyama, K.)

  19. Study on the leak rate test for HANARO reactor building

    International Nuclear Information System (INIS)

    Choi, Y. S.; Kim, Y. K.; Kim, M. J.; Park, J. M.; Woo, J. S.

    2002-01-01

    The reactor building of HANARO adopts the confinement concept, which allows a certain amount of air leakage. In order to restrict the air leakage through the confinement boundary, negative pressure of at least 2.5 mmWG is maintained in normal operating condition while maintaining 25 mmWG of negative pressure in abnormal condition, the inside air filtered by a train of charcoal filter is released to the atmosphere through the stack. In this situation, if the emergency ventilation system is not operable, the reactor building is isolated from the outside then the trapped air inside will be leaked out through the building by ground release concept. As the leak rate may be affected by an effect of wind velocity outside the reactor building, the air tightness of confinement should be maintained to limit the leak rate below the allowable value. The local leak rate test method was used since the beginning of the commissioning until July 1999. However it has been pointed out as a defect that the method is so susceptible to the change of temperature and atmospheric pressure during testing. For more accurate leak rate testing, we have introduced a new test method. We have periodically carried out the new leak rate testing and the results indicate that the bad effect by the temperature and atmospheric pressure change is considerably reduced, which gives more stable leak rate measurement

  20. Parliament votes against building fifth power reactor

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    After a heated three-day debate, Finland's parliament voted on September 24 to reject the proposal to build the country's fifth nuclear power reactor. As predicted, the vote was close: 107 voted against more nuclear power, 90 were in favor, two members of the 200-seat parliament were not present, and the speaker did not vote

  1. Calculation of prefabricated part of WWR-K reactor building

    International Nuclear Information System (INIS)

    Belyashova, N.N.; Aptikaev, F.F.; Kopnichev, Yu.F.

    1998-01-01

    According of factual characteristics a strength and deformation of over-land part of carrier constructions under construction movement is defined. Direct dynamical calculation of design elements under action of inertial loads from supports shifts shows, that seismic stability of enclosing construction is not ensured. Possibly practically total collapse of coating construction is possibly, under which following levels of damages of internal design constructions of reactor central room have been forecasted: 1. Fall of destroyed design construction on reactor vessel in time moment (1.56-1.59 s) after coming to building of earthquake seismic waves of 10 balls. 2. It is possibly cracks formation in radial direction in lower part of reactor cap, but destroying of cap does not incident; 3. It is possibly cracks formation within stretched concrete zone of reactor construction at the mark from - 0.859 up to 0.100. Destroy of concrete's compressive zone of reactor construction have not being expected. 4. Collapse of reactor first contour coating constructions have not being expected

  2. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Peters, H.B.

    1980-01-01

    The salt within these domes has penetrated as much as 20,000 feet of Mesozoic and Cenozoic strata, and presently extends to within 120 to 800 feet of the land surface. The salt penetrates or closely underlies major freshwater and salinewater aquifers within the basin. To provide a safe repository for radioactive wastes within one or more of these domes, a thorough understanding of the geohydrology needs to be obtained, and the hydrologic stability of the domes needs to be established for the expected life of the storage facility. Dissolution may exist at all four candidate salt domes, possibly through contact with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome

  3. Culham conceptual Tokamak reactor MkII. Conceptual layout of buildings for a twin reactor power station

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.; Harding, N.H.

    1981-01-01

    This paper discusses the conceptual design of the nuclear complex of a 2400 MWe twin fusion reactor power station utilising common services and a single containment building. The design is based upon environmental and maintenance logistical requirements, the provision of adequate storage, workshop and construction facilities and the constraints imposed by the geometry of the main and auxiliary reactor coolant systems. (author)

  4. Lunar domes properties and formation processes

    CERN Document Server

    Lena, Raffaello; Phillips, Jim; Chiocchetta, Maria Teresa

    2013-01-01

    Lunar domes are structures of volcanic origin which are usually difficult to observe due to their low heights. The Lunar Domes Handbook is a reference work on these elusive features. It provides a collection of images for a large number of lunar domes, including telescopic images acquired with advanced but still moderately intricate amateur equipment as well as recent orbital spacecraft images. Different methods for determining the morphometric properties of lunar domes (diameter, height, flank slope, edifice volume) from image data or orbital topographic data are discussed. Additionally, multispectral and hyperspectral image data are examined, providing insights into the composition of the dome material. Several classification schemes for lunar domes are described, including an approach based on the determined morphometric quantities and spectral analyses. Furthermore, the book provides a description of geophysical models of lunar domes, which yield information about the properties of the lava from which the...

  5. Effects of non-uniform embedments on earthquake responses of nuclear reactor building

    International Nuclear Information System (INIS)

    Koyanagi, Y.; Okamoto, S.; Yoshida, K.; Inove, H.

    1989-01-01

    The nuclear reactor buildings have the portion embedded in soil. In the seismic design of such structures, it is essential to consider the effects of the embedment on the earthquake response. Most studies on these effects, however, assume the uniform embedment, i.e. the depth of the embedment is constant, which is convenient for the design and analysis. The behavior of the earthquake response considering the three-dimensional aspects of non-uniform embedment has not been made clear yet. In this paper, the authors evaluate the effects of the non-uniform embedment in an inclined ground surface on the earthquake response of a nuclear reactor building as illustrated. A typical PWR type reactor building is chosen as an analysis structure model. Four different types of embedment are set up for the comparison study. The three-dimensional analysis is carried out considering the geometry of embedment

  6. Seismic calculations for underground reactor buildings

    International Nuclear Information System (INIS)

    Altes, J.; Koschmieder, D.

    1977-08-01

    Embedding the buildings in soil changes their seismic response behaviour as compared to surface buildings, i.e. higher stiffness and increased radiation damping is attained. Finite element models are best suited for determinig the effects of embedment and of layered subsoil. The code used was the LUSH2-programme, which is applicable to 2-dimensional problems and provides an approximate treatment for non-linear dynamic soil behaviour. For embedded buildings there is a good agreement between 2- and 3-dimensional models of the response for points below the soil surface. It is therefore permissible to use the less costly 2-dimensional programmes. To simulate earthquake, three different acceleration-time histories, derived from actual measurements and from artificial synthesis, with differing response spectra were fed in. The soil characteristics assumed are applicable to a representative site in Germany. Three different types of models were examined, using analytical models with only a few elements for parametric studies and with up to 716 elements for more precise calculations. A comparison was made between the semi-embedment, the total embedment, and installation of the reactor building above-ground. (orig.) [de

  7. In-pile inspections of the Calder and Chapelcross nuclear reactors

    International Nuclear Information System (INIS)

    Stewart, G.

    1984-01-01

    The subject is discussed under the headings: introduction (relevant data about the reactors); inspection policy; photographic inspection (equipment; inspection results (vessel seam welds and plates; top dome welds; top dome internals)); ultrasonic equipment; manipulator; television inspections; concluding remarks. (U.K.)

  8. Effective pine bark composting with the Dome Aeration Technology

    International Nuclear Information System (INIS)

    Trois, Cristina; Polster, Andreas

    2007-01-01

    In South Africa garden refuse is primarily disposed of in domestic landfills. Due to the large quantities generated, any form of treatment would be beneficial for volume reduction, waste stabilization and resource recovery. Dome Aeration Technology (DAT) is an advanced process for aerobic biological degradation of garden refuse and general waste [Paar, S., Brummack, J., Gemende, B., 1999a. Advantages of dome aeration in mechanical-biological waste treatment. In: Proceedings of the 7th International Waste Management and Landfill Symposium, Cagliari, 4-8 October 1999; Paar, S., Brummack, J., Gemende, B., 1999b. Mechanical-biological waste stabilization by the dome aeration method. Environment Protection Engineering 25 (3/99). Mollekopf, N., Brummack, J., Paar, S., Vorster, K., 2002. Use of the Dome Aeration Technology for biochemical stabilization of waste prior to landfilling. In: Proceedings of the Wastecon 2002, Waste Congress and Exhibition, Durban, South Africa.]. It is a non-reactor open windrow composting process, with the main advantage being that the input material needs no periodic turning. A rotting time of only 3-4 months indicates the high efficiency. Additionally, the low capital/operational costs, low energy inputs and limited plant requirements provide potential for use in aerobic refuse stabilization. The innovation in the DAT process is the passive aeration achieved by thermally driven advection through open windrows caused by temperature differences between the degrading material and the outside environment. This paper investigates the application of Dome Aeration Technology to pine bark composting as part of an integrated waste management strategy. A full-scale field experiment was performed at the Bisasar Road Landfill Site in Durban to assess the influence of climate, waste composition and operational conditions on the process. A test windrow was constructed and measurements of temperature and airflow through the material were taken. The process

  9. Investigation of hydrogen-burn damage in the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Alvares, N.J.; Beason, D.G.; Eidem, G.R.

    1982-06-01

    About 10 hours after the March 28, 1979 Loss-of-Coolant Accident began at Three Mile Island Unit 2, a hydrogen deflagration of undetermined extent occurred inside the reactor building. Examinations of photographic evidence, available from the first fifteen entries into the reactor building, yielded preliminary data on the possible extent and range of hydrogen burn damage. These data, although sparse, contributed to development of a possible damage path and to an estimate of the extent of damage to susceptible reactor building items. Further information gathered from analysis of additional photographs and samples can provide the means for estimating hydrogen source and production rate data crucial to developing a complete understanding of the TMI-2 hydrogen deflagration. 34 figures

  10. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  11. Monitoring current rates of salt dome movement

    International Nuclear Information System (INIS)

    Thoms, R.L.; Manning, T.A.

    1977-01-01

    The tectonic stability of salt domes is a major concern for long-term domal storage of noxious wastes. A necessary phase of the many faceted dome storage study includes obtaining a measure of current vertical movement of any potential storage dome. This information then can be combined with data obtained from studies involving geologic time scales so as to provide a history of dome movement that includes present time. A system of instrumentation for monitoring current rates of dome movement is described. Complimentary finite element modelling of plausible dome movement also is presented. The proposed instrumentation system includes tiltmeters, precise levelling, laser ranging, and monitoring of microseisms. Thus, components of rotation and vertical and horizontal movements at the ground surface over a dome can be monitored. In addition, a measure of dome movement also may be obtained acoustically. The finite element modelling furnishes an aid for: (1) locating instrument sites over a dome so as to maximize instrument sensitivity, and (2) interpreting data obtained from the instrumentation system. An example of tiltmeter installation and operation over a dome in northwest Louisiana is included. Typical tiltmeter output is presented and discussed

  12. What factors control superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  13. Evaluation of the Three Mile Island Unit 2 reactor building decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, D.; Adams, J. W.

    1983-08-01

    Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation.

  14. Evaluation of the Three Mile Island Unit 2 reactor building decontamination process

    International Nuclear Information System (INIS)

    Dougherty, D.; Adams, J.W.

    1983-08-01

    Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation

  15. Characteristics and mode of emplacement of gneiss domes and plutonic domes in central-eastern Pyrenees

    Science.gov (United States)

    Soula, Jean-Claude

    Gneiss domes and plutonic granitoid domes make up almost 50% of the pre-Hercynian terrains in the Central and Eastern Pyrenees. From a structural study of the shape and internal structure of the domes and of their relationships with the enclosing rocks, it can be shown that both types of domes were emplaced diapirically during the major regional deformation phase and the peak of regional metamorphism. The study also shows that the internal structure, the overall shape and general behaviour relative to the host rocks are similar for plutonic domes and for gneiss domes. This appears to be in good agreement with H. Ramberg's (1967, Gravity Deformation and the Earth's Crust. Academic Press, London; 1970, Model studies in relation to intrusion of plutonic bodies. In: Mechanisms of Igneous Intrusion (edited by Newall, G. & Rast, N.) Geol. J. Spec. Issue2, 261-286.) model studies showing that dome or mushroom-like structures, similar to those observed, develop when there is a small viscosity ratio between the rising body and its enclosing medium. This implies a high crystal content for the granitoid magma. This crystal content has been estimated by (i) calculating the viscosity and density in natural conditions from petrological data for the magma considered as a suspension, using the model and program of J. P. Carron et al. (1978 Bull Soc. géol. Fr.20, 739-744.); (ii) using the recent results of experimental deformation of partially melted granites of I. van der Molen & M. S. Paterson (1979, Contr. Miner. Petrol.70, 299-318.) and (ii) comparing the preceding results with the data obtained by deformation experiments on rocks similar to those enclosing the domes. The minimum crystal content for the development of a dome-like structure has been, thus, estimated to about 70%, i.e. a value very close to that estimated by van der Molen & Paterson (1979) to be the critical value separating the granular framework flow from suspension-like behaviour. The effect of small

  16. Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Owen, M.B.

    1997-04-01

    This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future.

  17. Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1

    International Nuclear Information System (INIS)

    Owen, M.B.

    1997-04-01

    This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future

  18. Environmental assessment: Richton Dome site, Mississippi

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines

  19. Environmental assessment: Richton Dome Site, Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.

  20. Environmental assessment: Richton Dome site, Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.

  1. Environmental assessment: Richton Dome Site, Mississippi

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines

  2. Determination of the NPP Cernavoda reactor building seismic response

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.

    1997-01-01

    Seismic input for systems and equipment installed in buildings depends on: - the seismic movement in free field on site; - the building movement in the soil; - the building deflection. The percentage of the 3 movements for the system and equipment input, depends on the position of the systems and equipment inside the building as well on the type of the foundation soil. The type of the foundation soil is important because if it is stiff it transfers a lot of energy to the building, energy which amplify the movement of the building on the top. If the foundation soil is soft, it accommodates the overall movement of the building in the soil, amplifying the movement to lower levels and the building response is attenuated if a resonance phenomenon between the whole building movement and the seismic excitation does not exist. This input is given with the design floor response spectra (FRS), in the logarithmic scale and seismic anchor movement (SAM). The design floor response spectra for NPP Cernavoda U1 Nuclear Building were determined in several stages starting with simple models (STICK type) without twisting movement and ending with detailed 3-dimensional models. From the point of view of dynamic behavior, the Reactor Building can be considered to be made up of 4 sub-structures: the containment building, internal structures containing separate elements such as the reactor vault, the fuel transfer structure and itself. Each sub-structure has its own movement (some of the structures present also some local effects) which combines with the overall movement of the building in the soil and the seismic excitation produce the total movement so that the response spectrum for each point of the sub-structure is specific. One should note that for structures which also show the twisting effect, the selection of the points on the floor, for the determination on the response spectra, is an engineering decision so that the response should be relevant for the equipment installed on the

  3. Model tests and numerical analysis on restoring force characteristics of reactor buildings

    International Nuclear Information System (INIS)

    Uchiyama, Y.; Suzuki, S.; Akino, K.

    1987-01-01

    Seismic shear walls of nuclear reactor buildings are composed of cylindrical, truncated cone-shape, box-shape, irregular polygonal walls or its combination and they are generally heavily reinforced concrete (RC) walls. So the elasto-plastic behaviors of those RC structures in ultimate regions have many unsolved and may be considered as especially important factors for explaining nonlinear response of nuclear reactor buildings. Following these research demands, the authors have prepared a nonlinear F.E.M. code called ''SANREF'' and made an extensive study for the restoring force characteristics of the inner concrete structures (I/C) of a PWR-type containment vessel and the principal seismic shear walls of a BWR-type reactor building by some series of reduced model tests and simulation analysis for the tests results. The detailed objectives of this study can be summarized as follows: (1) Examine the effectiveness of the configurations of shear walls, reinforcement ratios, shear span ratios (M/Qd) and vertical axial stress by ''partial model test'' which simulates some independent shear walls of the PWR-type and BWR-type reactor buildings. (2) Obtain fundamental data of restoring force characteristics of the complex shaped RC structures by ''composite model test'' which models are composed of the partial model test specimens. (3) Verify the applicability of analytical methods and constitutive modelings in SANREF code for complex shaped RC structures through nonlinear simulation analysis for the composite model test

  4. Seismic stability analyses of various reactor buildings on quaternary deposit

    International Nuclear Information System (INIS)

    Takeuchi, Y.; Tsutagawa, M.; Asakura, S.; Katoh, T.; Tomura, H.; Uchiyama, S.; Koyama, M.; Oguro, E.; Akino, K.; Iizuka, S.; Hayashi, M.

    1993-01-01

    Many nuclear power plants have been built on Quaternary deposits in Europe and U.S.A., however, Japanese basic policy is to construct the reactor building and other auxiliary buildings on a bed rock which are important to safety, because large earthquakes are postulated to occur. Being limited bed rock sites in Japan, it has become necessary to increase possible place for nuclear power plant in order to cope with the middle and long term siting problems. For the purpose of establishing the draft of guideline on seismic design of reactor building on the Quaternary sand and gravel deposit in Japan, foundation soil stability and seismic resistance of the reactor building and plant equipment have been investigated and studied from 1983 to 1998. The studies have shown the following: 1) The response rotation angles of both common light weight basement (CL) and step basement (ES) plants during the earthquake reduce to 1/2 of the BR plant value, and the bearing pressure between the basement and the soil of improved plant are reduced as well; (2) every structure built on quaternary sand and gravel deposit, having 400m/s shear velocity, maintains enough seismic resistance, because the shear stress caused in the wall is small. The maximum shear strain of soil below the basemat of BR-BWR, which suffers the largest bearing pressure, is 1.1x10 -9 , but it can be said that the soil has enough stability according to the past soil tests for the Quaternary sand and gravel deposit that had been done by authors

  5. Site characterization plan: Gulf Coast salt domes

    International Nuclear Information System (INIS)

    1983-12-01

    The National Waste Terminal Storage (NWTS) program of the US Department of Energy (DOE) is responsible for developing technology and providing facilities for safe, environmentally acceptable, permanent disposal of high-level nuclear waste. The Office of Nuclear Waste Isolation has been intensively investigating Gulf Coast Salt Dome Basin salt domes and bedded salt in Texas and Utah since 1978. In the Gulf Coast, the application of screening criteria in the region phase led to selection of eight domes for further study in the location phase. Further screening in the area phase identified four domes for more intensive study in the location phase: Oakwood Dome, Texas; Vacherie Dome, Louisiana; and Richton Dome and Cypress Creek Dome, Mississippi. For each dome, this Site Characterization Plan identifies specific hydrologic, geologic, tectonic, geochemical, and environmental key issues that are related to the DOE/NWTS screening criteria or affect the feasibility of constructing an exploratory shaft. The Site Characterization Plan outlines studies need to: (1) resolve issues sufficiently to allow one or more salt domes to be selected and compared to bedded salt sites in order to determine a prime salt site for an exploratory shaft; (2) conduct issue-related studies to provide a higher level of confidence that the preferred salt dome site is viable for construction of an exploratory shaft; and (3) provide a vehicle for state input to issues. Extensive references, 7 figures, 20 tables

  6. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    Science.gov (United States)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional

  7. Axisymmetric modeling of prestressing tendons in nuclear containment dome

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Se-Jin [DAEWOO E and C, Institute of Construction Technology, 60 Songjook-dong, Jangan-gu, Suwon, Kyonggi 440-210 (Korea, Republic of)]. E-mail: jsj@dwconst.co.kr; Chung, Chul-Hun [Department of Civil and Environmental Engineering, Dankook University, San 8, Hannam-dong, Youngsan-gu, Seoul 140-714 (Korea, Republic of)

    2005-12-15

    Simple axisymmetric modeling of a nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as internal pressure. In this case, the prestressing tendons placed in the containment dome should be axisymmetrically approximated, since most dome tendons are not arranged in an axisymmetric manner. Some procedures are proposed that can realistically implement the actual three-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in two or three ways depending on a containment type, are converted into the equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, the equivalent load method and the initial stress method are devised, respectively, and the corresponding loads or stresses are derived in terms of the axisymmetric model. The proposed schemes are verified through some numerical examples comparing the results of the axisymmetric models to those of the actual three-dimensional model. The examples show that the proper level of the prestressing in the hoop direction of the axisymmetric dome plays an important role in tracing the actual behavior induced by the prestressing. Finally, some correction factors are discussed that can further improve the analysis results.

  8. Axisymmetric modeling of prestressing tendons in nuclear containment dome

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Chung, Chul-Hun

    2005-01-01

    Simple axisymmetric modeling of a nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as internal pressure. In this case, the prestressing tendons placed in the containment dome should be axisymmetrically approximated, since most dome tendons are not arranged in an axisymmetric manner. Some procedures are proposed that can realistically implement the actual three-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in two or three ways depending on a containment type, are converted into the equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, the equivalent load method and the initial stress method are devised, respectively, and the corresponding loads or stresses are derived in terms of the axisymmetric model. The proposed schemes are verified through some numerical examples comparing the results of the axisymmetric models to those of the actual three-dimensional model. The examples show that the proper level of the prestressing in the hoop direction of the axisymmetric dome plays an important role in tracing the actual behavior induced by the prestressing. Finally, some correction factors are discussed that can further improve the analysis results

  9. Remote tritium-in-air sampling in reactor building at NAPS

    International Nuclear Information System (INIS)

    Mitra, S.R.; Lal Chand

    2000-01-01

    Tritium-in-air activity is an important parameter in PHW reactors from the point of view of internal exposure and heavy water escape from the system. The sampling technique in vogue in PHWRs, for measurement of tritium-in-air activity, requires collection of on the spot sample from different areas using a portable sampler. This sampler uses the bubbler method of sampling. As the areas of sampling are numerous, this technique is time consuming, laborious and can lead to significant internal exposure in areas where tritium-in-air activity is high. This technique is also error prone due to the heavy workload involved. A new scheme, in which the sampling of all the areas of reactor building is done through a sampling station, has been introduced for the first time in NAPS. This sampling station facilitates collection of samples from all the areas of reactor building, remotely and simultaneously at one place thereby reducing time, labour, exposure and error. This paper gives the details of the sampling system installed at NAPS. (author)

  10. Evaluation of tritiated water retention capacity of fusion reactor concrete building

    International Nuclear Information System (INIS)

    Numata, S.; Fujii, Y.; Okamoto, M.

    1992-01-01

    In this paper the diffusion of tritiated water vapor into concrete walls is studied to evaluate tritiated water retention capacity of a fusion reactor concrete building. Using a model of the tritiated water diffusion determined form experimental results, depth profiles of tritiated water in concrete are calculated in the case of being exposed to air containing tritiated water vapor during the normal operational condition of a fusion reactor. A 0.5-m-thick concrete is sufficient for reactor hall walls from a viewpoint of the tritium containment

  11. Earthquake response of nuclear reactor buildings deeply embedded in soil

    International Nuclear Information System (INIS)

    Masao, T.; Takasaki, Y.; Hirasawa, M.; Okajima, M.; Yamamoto, S.; Kawata, E.; Koori, Y.; Ochiai, S.; Shimizu, N.

    1980-01-01

    This paper is concerned with experimental and analytical studies to investigate dynamic behavior of deeply embedded structures such as nuclear reactor buildings. The principal points studied are as follows: (1) Examination of stiffness and radiation damping effects according to embedded depth, (2) verification for distributions of earth pressure according to embedded depth, (3) differences of response characteristics during oscillation according to embedded depth, and (4) proposal of an analytical method for seismic design. Experimental studies were performed by two ways: forced vibration test, and earthquake observation against a rigid body model embedded in soil. Three analytical procedures were performed to compare experimental results and to examine the relation between each procedure. Finally, the dynamic behavior for nuclear reactor buildings with different embedded depths were evaluated by an analytical method. (orig.)

  12. Cryovolcanic Emplacement of Domes on Europa

    Science.gov (United States)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Stephen M.

    2016-01-01

    Here we explore the hypothesis that certain domes on Europa may have been produced by the extrusion of viscous cryolavas. A new mathematical method for the emplacement and relaxation of viscous lava domes is presented and applied to putative cryovolcanic domes on Europa. A similarity solution approach is applied to the governing equation for fluid flow in a cylindrical geometry, and dome relaxation is explored assuming a volume of cryolava has been rapidly emplaced onto the surface. Nonphysical sin- gularities inherent in previous models for dome relaxation have been eliminated, and cryolava cooling is represented by a time-variable viscosity. We find that at the onset of relaxation, bulk kinematic viscosities may lie in the range between 10(exp 3) and 10(exp 6) sq m/s, while the actual fluid lava viscosity may be much lower. Plausible relaxation times to form the domes, which are linked to bulk cryolava rheology, are found to range from 3.6 days to 7.5 years. We find that cooling of the cryolava, while dominated by conduction through an icy skin, should not prevent fluids from advancing and relaxing to form domes within the timescales considered. Determining the range of emplacement conditions for putative cryolava domes will shed light on Europa's resurfacing history. In addition, the rheologies and compositions of erupted cryolavas have implications for subsurface cryomagma ascent and local surface stress conditions on Europa.

  13. Experimental and analytical studies of a deeply embedded reactor building model considering soil-building interaction. Pt. 1

    International Nuclear Information System (INIS)

    Tanaka, H.; Ohta, T.; Uchiyama, S.

    1979-01-01

    The purpose of this paper is to describe the dynamic characteristics of a deeply embedded reactor building model derived from experimental and analytical studies which considers soil-building interaction behaviour. The model building is made of reinforced concrete. It has two stories above ground level and a basement, resting on sandy gravel layer at a depth of 3 meters. The backfill around the building was made to ground level. The model building is simplified and reduced to about one-fifteenth (1/15) of the prototype. It has bearing wall system for the basement and the first story, and frame system for the second. (orig.)

  14. Air leakage analysis of research reactor HANARO building in typhoon condition for the nuclear emergency preparedness

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Goany Up; Lee, Hae Cho; Kim, Bong Seok; Kim, Jong Soo; Choi, Pyung Kyu [Dept. of Emergency Preparedness, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    To find out the leak characteristic of research reactor 'HANARO' building in a typhoon condition MELCOR code which normally is used to simulate severe accident behavior in a nuclear power plant was used to simulate the leak rate of air and fission products from reactor hall after the shutdown of the ventilation system of HANARO reactor building. For the simulation, HANARO building was designed by MELCOR code and typhoon condition passed through Daejeon in 2012 was applied. It was found that the leak rate is 0.1%·day{sup -1} of air, 0.004%·day{sup -1} of noble gas and 3.7×10{sup -5}%·day{sup -1} of aerosol during typhoon passing. The air leak rate of 0.1%·day can be converted into 1.36 m{sup 3}·hr{sup -1} , but the design leak rate in HANARO safety analysis report was considered as 600 m3·hr{sup -1} under the condition of 20 m·sec{sup -1} wind speed outside of the building by typhoon. Most of fission products during the maximum hypothesis accident at HANARO reactor will be contained in the reactor hall, so the direct radiation by remained fission products in the reactor hall will be the most important factor in designing emergency preparedness for HANARO reactor.

  15. Air leakage analysis of research reactor HANARO building in typhoon condition for the nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Lee, Goany Up; Lee, Hae Cho; Kim, Bong Seok; Kim, Jong Soo; Choi, Pyung Kyu

    2016-01-01

    To find out the leak characteristic of research reactor 'HANARO' building in a typhoon condition MELCOR code which normally is used to simulate severe accident behavior in a nuclear power plant was used to simulate the leak rate of air and fission products from reactor hall after the shutdown of the ventilation system of HANARO reactor building. For the simulation, HANARO building was designed by MELCOR code and typhoon condition passed through Daejeon in 2012 was applied. It was found that the leak rate is 0.1%·day -1 of air, 0.004%·day -1 of noble gas and 3.7×10 -5 %·day -1 of aerosol during typhoon passing. The air leak rate of 0.1%·day can be converted into 1.36 m 3 ·hr -1 , but the design leak rate in HANARO safety analysis report was considered as 600 m3·hr -1 under the condition of 20 m·sec -1 wind speed outside of the building by typhoon. Most of fission products during the maximum hypothesis accident at HANARO reactor will be contained in the reactor hall, so the direct radiation by remained fission products in the reactor hall will be the most important factor in designing emergency preparedness for HANARO reactor

  16. Geohydrolic studies of Gulf Coast interior salt domes

    International Nuclear Information System (INIS)

    Smith, C.G. Jr.

    1977-01-01

    Disposal of high-level radioactive wastes in Gulf Coast salt domes requires that the cavities be free from groundwater dissolution for 250,000 years. Salinity variations of groundwater near selected domes were investigated. Saline groundwater anomalies (saline plumes) in aquifers pierced or uplifted by the dome may be the result of salt solution by groundwater. In the Northeast Texas salt dome basin electric logs of oil and gas wells have been used to estimate groundwater salinities in aquifers near selected domes. Thus far, the analyses have revealed saline groundwater anomalies around 4 of the 9 domes studied. Estimates of the rate of salt dissolution from domes associated with saline groundwater plumes indicate that less than 30 meters of salt will be removed from the upper surfaces of the dome in 250,000 years. Thus, these preliminary studies show that even apparently unstable domes may be sufficiently stable to serve as waste disposal sites. 6 figures

  17. Structural response of nuclear containment shield buildings with unanticipated construction openings

    Science.gov (United States)

    Mac Namara, Sinead Caitriona

    As Nuclear Power Plants age many require steam generator replacement. There is a nickel alloy in the steam generator tubes that is susceptible to stress cracking and although these cracks can be sealed the generator becomes uneconomical without 10%-15% of the tubes. The steam generator in a typical nuclear power plant is housed in the containment structure next to the reactor. The equipment hatch is not big enough to facilitate steam generator replacement, thus construction openings in the dome of the containment structure are required. To date the structural consequences of construction openings in the dome have not been examined. This thesis examines the effects of such openings. The prototype concrete dome is made up of a 2 ft thick dome atop 3 ft thick and 170 ft high cylindrical walls (radius 65.5 ft) with a tension ring 15 ft high and 8 ft thick in between. The dome of the building is cast in two layers; a lower 9 inch layer that serves as the formwork for an upper 15 inch layer. The weight of the dome is carried in axial compression along the hoops and meridians of the dome. The first finite element model uses shell elements and considers two limiting load cases; where the two layers act as one, and where the lower layer carries the weight of both. The openings interrupt the hoops and meridians and the weight of the dome must be redistributed around the openings. Without openings, the stresses due to dead load in the structure are very low when compared to the material strength. The impact of the openings is increased compression stresses near the opening. The maximum stresses are approximately four times larger than in the original structure. These results are confirmed by the second model which is made from layers of solid elements. This model shows a significant difference between the compression on the top surface of the dome, in the affected areas, and that on the bottom surface, leading to shear stresses. These shear stresses are largest around the

  18. Manufacturing and material properties of forgings for reactor pressure vessel of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Sato, I.; Suzuki, K.

    1994-01-01

    For the reactor pressure vessel (RPV) of high temperature engineering test reactor (HTTR) which has been developed by Japan Atomic Energy Research Institute (JAERI), 2 1/4Cr-1Mo steel is used first in the world. Material confirmation test has been carried out to demonstrate good applicability of forged low Si 2 1/4Cr-1Mo steel to the RPV of HTTR. Recently, JSW has succeeded in the manufacturing of large size ring forgings and large size forged cover dome integrated with nozzles for stand pipe for the RPV. This paper describes the results of the material confirmation test as well as the manufacturing and material properties of the large forged cover dome integrated with nozzles for stand pipe. (orig.)

  19. Decontamination and concrete core sampling by teleoperated robot at Fukushima Daiichi reactor buildings

    International Nuclear Information System (INIS)

    Watanabe, Masaru; Onitsuka, Hironori; Shimonabe, Noriaki; Fujita, Jun; Matsumura, Takumi; Okumura, Atsushi

    2015-01-01

    For decommissioning of Fukushima daiichi nuclear power station, reduction of the dose equivalent rates inside the reactor buildings is an important issue. Concrete core sampling from the buildings to investigate the contamination is necessary for study about effective decontamination. However, dose rate inside the reactor buildings is very high. For example, dose rate of 1st floor on the Unit 1 is 1.2 - 1820 [mSv / h], the Unit 2 is 2.5 - 220 [mSv / h] and Unit 3 is 2.2 - 4780 [mSv / h]. So it is difficult for workers to work long hours. Therefore, a teleoperated robot, named 'MHI-MEISTeR (Mitsubishi Heavy Industries - Maintenance Equipment Integrated System of Telecontrol Robot)', has been developed to conduct operations like concrete core samples from the reactor buildings. Actually, some concrete core samples from Fukushima daiichi were taken by MHI-MEISTeR. In addition, MHI-MEISTeR is designed as a versatile robot, and so it can conduct suction / blast decontamination works as well as concrete core sampling. The above operations were performed by MHI-MEISTeR in Fukushima daiichi nuclear power station. (author)

  20. Build-up of actinides in irradiated fuel rods of the ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Naguib, K.; Morcos, H.N

    2001-09-01

    The content concentrations of actinides are calculated as a function of operating reactor regime and cooling time at different percentage of fuel burn-up. The build-up transmutation equations of actinides content in an irradiated fuel are solved numerically .A computer code BAC was written to operate on a PC computer to provide the required calculations. The fuel element of 10% {sup 235}U enrichment of ET-RR-1 reactor was taken as an example for calculations using the BAC code. The results are compared with other calculations for the ET-RR-1 fuel rod. An estimation of fissile build-up content of a proposed new fuel of 20% {sup 235}U enrichment for ET-RR-1 reactor is given. The sensitivity coefficients of build-up plutonium concentrations as a function of cross-section data uncertainties are also calculated.

  1. The construction of a PWR power station reactor building liner

    International Nuclear Information System (INIS)

    Skirving, N.; Goulding, J.S.; Gibson, J.A.

    1991-01-01

    Cleveland Bridge and Engineering Co Ltd (CBE) are constructing the Reactor Building Liner Plate containment of the Sizewell 'B' Power Station for Nuclear Electric Ltd. This has entailed extensive offsite prefabrication of components and their subsequent erection at Sizewell. It has been necessary to engineer temporary supporting mechanisms to enable manufacture and erection to proceed, yet also to withstand wet concrete forces during the progressive construction. The Reactor Building Liner Plate is a safety related system and as such, in addition to strict compliance with the ASME code, the Quality Assurance (QA) requirements of BS 5882 are applicable. A dedicated Project Team was established by CBE to control and direct the work. Equally important as satisfying the rigorous Q.A. requirements has been the need to meet programme and budget. This paper details CBE execution of the Project. (author)

  2. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    International Nuclear Information System (INIS)

    Merat, S.

    2008-01-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  3. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Merat, S. [Wardrop Engineering Inc., Toronto, Ontario (Canada)

    2008-07-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  4. Structural safety of HDR reactor building during large scale vibration tests

    International Nuclear Information System (INIS)

    Stangenberg, F.; Zinn, R.

    1985-01-01

    In the second phase of the HDR investigations, a high shaker excitation of the building is planned using a large shaker which will be located on the operating floor and will be brought up to speed in a balanced condition and then unbalanced and decoupled from the drive system. With decreasing speed the shaker comes in resonance with the building frequencies and its energy is transferred to the building. In this paper the structural safety of the reactor building during the projected shaker tests is analysed. Dynamic response calculations with coupling between building and shaker by simultaneously integrating the equilibrium equations of both building and shaker are presented. The resulting building stresses, soil pressures etc. are compared with allowable values. (orig.)

  5. What factors control the superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  6. Study on vertical seismic response characteristics of deeply embedded reactor building

    International Nuclear Information System (INIS)

    Morishita, H.; Nakamura, N.; Uchiyama, S.; Fukuoka, A.; Ishizaki, M.

    1993-01-01

    This paper describes vertical response characteristics, especially effects of embedment, and analytical methods for seismic design of a deeply embedded reactor building. The influence of embedment on vertical response was found to be minimal by evaluating results of forced vibration tests of a reactor building model and performing simplified analyses. Subsequently, simulation analyses of the forced vibration test and actual earthquake induced response were performed using both the axisymmetric FEM model and the simplified mass and spring model. It was concluded that the analytical models taking the embedment into the consideration closely simulated the observation records, and the omission of embedment in the analyses tended to increase the predicted response which was conservative in respect an actual design consideration. (author)

  7. Decontamination and decommissioning of the SPERT-I Reactor Building at the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Dolenc, M.R.

    1986-02-01

    This final report documents the decontamination and decommissioning of the SPERT-I Reactor Building. This 20- by 40-ft galvanized steel building was dismantled; and the resultant contaminated sludge, liquid, and carbon steel were disposed of at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. This report presents the results of the characterization, decision analysis, planning, and decommissioning of the facility. The total cost of these activities was $139,500. Of this total, $103,500 was required for decommissioning operations. (This latter figure represents a 20% savings over the estimated costs generated during the planning effort.) The objectives of decommissioning this facility were to stabilize the seepage pit area and remove the reactor building. The D and D work was divided into two parts; the seepage pit was decommissioned in 1984, and the reactor building in 1985. The entire area was backfilled with radiologically clean soil, graded, and seeded. Two markers were installed to identify the locations of the pit and reactor building. The only isotopes found in either decommissioning operation were cesium-137 and uranium-235 in very low concentrations. Decommissioning operations of the reactor building were carried out during August 1985. The project generate 297 ft 3 of radioactive waste. No personnel radiation exposure above background was received by D and D workers

  8. Nonlinear seismic response analysis of an embedded reactor building based on the substructure approach

    International Nuclear Information System (INIS)

    Hasegawa, M.; Ichikawa, T.; Nakai, S.; Watanabe, T.

    1987-01-01

    A practical method to calculate the elasto-plastic seismic response of structures considering the dynamic soil-structure interaction is presented. The substructure technique in the time domain is utilized in the proposed method. A simple soil spring system with the coupling effects which are usually evaluated by the impedance matrix is introduced to consider the soil-structure interaction for embedded structures. As a numerical example, the response of a BWR-MARK II type reactor building embedded in the layered soil is calculated. The accuracy of the present method is verified by comparing its numerical results with exact solutions. The nonlinear behaivor and the soil-structure interaction effects on the response of the reactor building are also discussed in detail. It is concluded that the present method is effective for the aseismic design considering both the material nonlinearity of the nuclear reactor building and the dynamic soil-structure interaction. (orig.)

  9. Seismic simulation analysis of nuclear reactor building by soil-building interaction model

    International Nuclear Information System (INIS)

    Muto, K.; Kobayashi, T.; Motohashi, S.; Kusano, N.; Mizuno, N.; Sugiyama, N.

    1981-01-01

    Seismic simulation analysis were performed for evaluating soil-structure interaction effects by an analytical approach using a 'Lattice Model' developed by the authors. The purpose of this paper is to check the adequacy of this procedure for analyzing soil-structure interaction by means of comparing computed results with recorded ones. The 'Lattice Model' approach employs a lumped mass interactive model, in which not only the structure but also the underlying and/or surrounding soil are modeled as descretized elements. The analytical model used for this study extends about 310 m in the horizontal direction and about 103 m in depth. The reactor building is modeled as three shearing-bending sticks (outer wall, inner wall and shield wall) and the underlying and surrounding soil are divided into four shearing sticks (column directly beneath the reactor building, adjacent, near and distant columns). A corresponding input base motion for the 'Lattice Model' was determined by a deconvolution analysis using a recorded motion at elevation -18.5 m in the free-field. The results of this simulation analysis were shown to be in reasonably good agreement with the recorded ones in the forms of the distribution of ground motions and structural responses, acceleration time histories and related response spectra. These results showed that the 'Lattice Model' approach was an appropriate one to estimate the soil-structure interaction effects. (orig./HP)

  10. Development and operation of the Above Dome Inspection Rig (ADIR)

    International Nuclear Information System (INIS)

    Dickson, R.P.; Moorby, J.

    1984-01-01

    Hinkley Point 'B' is developing its remote inspection equipment in order to be able to inspect reactor internals adequately without manned vessel entry. The Above Dome Inspection Rig has been built to allow a number of inspection systems to be introduced and operated within the reactor. The ability to introduce, use and remove inspection equipment without the necessity to lift the rig from the reactor is a vital feature in the speed achieved in completing inspections quickly. Television was selected for the A.D.M. because it has significant advantages in terms of operational convenience. However the quality of image obtained in terms of information available compares unfavourably with photography. The sharpness of a photographic image is largely dictated by the chemical structure of the emulsion, whereas video is limited by the picture line structure and bandwidth. The need for a photographic system for in reactor use is therefore essential for high definition inspection requirements. The first inspection system that has been developed for the ADIR is the Telefilm camera. It consists of a Hasselblad photographic camera using an Insight television camera looking through its viewfinder. The characteristics of television and photography have been combined. (author)

  11. An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards

    Science.gov (United States)

    Ball, Jessica L.; Calder, Eliza S.; Hubbard, Bernard E.; Bernstein, Marc L.

    2013-01-01

    A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water–rock interaction, but the Na–Mg–K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration

  12. Investigation of base isolation for fast breeder reactor building

    International Nuclear Information System (INIS)

    Morishita, M.; Kobatake, M.; Ohta, K.; Okada, Y.

    1989-01-01

    Achievement of great rationalization for seismic-resistant design of equipment system is necessary and indispensable from the viewpoints of economical and structural validity for a fast breeder reactor to be made practical. The method of reducing seismic loads on the building and equipment by application of base isolation may be an effective method, but in application to nuclear facilities, it will become necessary to examine the feasibility to actual design considering the severe seismic design requirements in Japan. With these considerations as the background, the authors carried out analytical studies from various viewpoints such as restoring force characteristics of base isolation device, influence of input earthquake motion, soil-structure interaction in base- isolated structure, etc. in case of providing base isolation system for a fast breeder reactor building. Based on these analytical studies, vibration tests on a base-isolated structure using a triaxial shaking table and simulation analyses of the tests were performed attempting to verify the effectiveness of the base isolation system and appropriateness of the analysis method. Results are presented

  13. Structure of steel reactor building and construction method therefor

    International Nuclear Information System (INIS)

    Yamakawa, Toshikimi.

    1997-01-01

    The building of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevation of inner pressure and keeping airtightness, and shielding concretes are filled between the double steel plate walls. It also has empty double steel plate walls not filled with concretes and has pipelines, vent ducts, wirings and a support structures for attaching them between the double steel plate walls. It is endurable to a great inner pressure satisfactory and keeps airtightness by the two spaced steel plates. It can be greatly reduced in the weight, and can be manufactured efficiently with high quality in a plant by so called module construction, and the dimension of the entire of the reactor building can be reduced. It is constructed in a dock, transported on the sea while having the space between the two steel plate walls as a ballast tanks, placed in the site, and shielding concretes are filled between the double steel plate walls. The term for the construction can be reduced, and the cost for the construction can be saved. (N.H.)

  14. Thermal influences on spontaneous rock dome exfoliation

    Science.gov (United States)

    Collins, Brian D.; Stock, Greg M.; Eppes, Martha C.; Lewis, Scott W.; Corbett, Skye C.; Smith, Joel B.

    2018-01-01

    Rock domes, with their onion-skin layers of exfoliation sheets, are among the most captivating landforms on Earth. Long recognized as integral in shaping domes, the exact mechanism(s) by which exfoliation occurs remains enigmatic, mainly due to the lack of direct observations of natural events. In August 2014, during the hottest days of summer, a granitic dome in California, USA, spontaneously exfoliated; witnesses observed extensive cracking, including a ~8000 kg sheet popping into the air. Subsequent exfoliation episodes during the following two summers were recorded by instrumentation that captured—for the first time—exfoliation deformation and stress conditions. Here we show that thermal cycling and cumulative dome surface heating can induce subcritical cracking that culminates in seemingly spontaneous exfoliation. Our results indicate that thermal stresses—largely discounted in dome formation literature—can play a key role in triggering exfoliation and therefore may be an important control for shaping domes worldwide.

  15. Observer Kalman Filter Identification of Suspen-Dome

    Directory of Open Access Journals (Sweden)

    Guojun Sun

    2017-01-01

    Full Text Available A number of Suspen-Dome structures have been built, but there is some difficulty in using experimental data to obtain good modal parameters, especially modal damping. In this paper, an ANSYS numerical simulation of the 35.4 m span Suspen-Dome is presented. Firstly, the natural vibration characteristics of Suspen-Dome and dynamic response under some random forces were obtained. Then the results of the numerical simulation established that 60 modes are sufficient for a reasonable dynamic model. This model is used to represent the Suspen-Dome dynamic behavior, and OKID is then used to try to identify a model from simulated data. A 400-order model generated from OKID is shown to contain the 60 modes from ANSYS and is shown to give good predictions of the dynamic behavior of Suspen-Dome. The results of this paper can confirm that it can be a very efficient tool for the identification of models of Suspen-Dome dynamics.

  16. Construction techniques for containment dome shuttering work of nuclear island of fast reactor

    International Nuclear Information System (INIS)

    Qiao Shoucheng

    2008-01-01

    The difficult dome shuttering work was completed with more or less traditional construction method based on the shuttering system formed with shaped-steel belfast truss of the positioning beam, wood camber beam as keel, 50 mm-thick wood block as face plate, and fastener or bowl-buckle scaffold tool as the support, in which certain social and economic benefits were made. All these are supported by technology. (authors)

  17. Damage of reactor buildings occurred at the Fukushima Daiichi accident. Focusing on sequence leading to hydrogen explosions

    International Nuclear Information System (INIS)

    Naito, Masanori

    2011-01-01

    Fukushima Daiichi accident discharged enormous radioactive materials confined inside into the environment due to hydrogen explosions occurred at reactor buildings and forced many people to live the refugee life. This article described overview of Great East Japan Earthquake, specifications of Fukushima Daiichi nuclear power plants, sequence of plant status after earthquake occurrence and computerized simulation of plant behavior of Unit 1 leading to core melt and hydrogen explosion. Simulation results with estimated and assumed conditions showed water level decreased to bottom of reactor core after 4 hrs and 15 minutes passed, core melt started after 6 hrs and 49 minutes passed, failure of core support plate after 7 hrs and 18 minutes passed and through failure of penetration at bottom of pressure vessel after 7 hrs and 25 minutes passed. Hydrogen concentration at operating floor of reactor building of Unit 1 would be 15% accumulated and the pressure would amount to about 5 bars after hydrogen explosion if reactor building did not rupture with leak-tight structure. Since reactor building was not pressure-proof structure, walls of operating floor would rupture before 5 bars attained. (T. Tanaka)

  18. Forced vibration tests and simulation analyses of a nuclear reactor building. Part 2: simulation analyses

    International Nuclear Information System (INIS)

    Kuno, M.; Nakagawa, S.; Momma, T.; Naito, Y.; Niwa, M.; Motohashi, S.

    1995-01-01

    Forced vibration tests of a BWR-type reactor building. Hamaoka Unit 4, were performed. Valuable data on the dynamic characteristics of the soil-structure interaction system were obtained through the tests. Simulation analyses of the fundamental dynamic characteristics of the soil-structure system were conducted, using a basic lumped mass soil-structure model (lattice model), and strong correlation with the measured data was obtained. Furthermore, detailed simulation models were employed to investigate the effects of simultaneously induced vertical response and response of the adjacent turbine building on the lateral response of the reactor building. (author). 4 refs., 11 figs

  19. Structural analysis of reactor buildings with help of complete FE models

    International Nuclear Information System (INIS)

    Diaz, B.E.; Vaz, L.E.; Martha, L.F.R.; Costa, E.

    1984-01-01

    The reinforced concrete structures located within the steel containment shell of a Reactor Building are formed by highly complex structures subjected to a large amount of actions due to different causes. The analysis of this complex structure can be performed with help of small models, each one representing a part of the global structure. The interaction effects among the partial models are accounted for in approximate way. This approach has been used previously with entire success in the design of 1300 MW PWR nuclear power plants. However a new and entire different approach can be used in the design of these structures. The entire assembly of structural elements of the building is represented and analyzed with help of a single and very large FE model. This paper will present the main characteristics of this type of analysis as well as all the necessary procedures, which must be implemented for the proper data processing of the forces and the automatic reinforced concrete design of the structural elements of the Reactor Building. (Author) [pt

  20. Study of vibration analysis for nuclear reactor building

    International Nuclear Information System (INIS)

    Hirashima, Shin-ichi

    1978-01-01

    The mutual interference between the contiguous buildings with separate foundations and also that between the outer wall under the ground and the foundation bottom of the building were taken into consideration for the vibration analysis with spring-mass system. For two contiguous foundations of buildings it was attempted to represent the static mutual interference by a spring-mass system model. The theoretical analysis formulas are shown for the combination of the vertical movement and rocking motion, and for the interfering forces between the foundation and the outer wall of a building. The method of extending the model to dynamic one is explained. Several spring constants utilized in the analysis were obtained, for example, for mutual interference springs regarding vertical motion, mutual interfering springs for the foundation and the outer wall of a building and the mutual interference springs concerning horizontal movement. These models and analysis were applied to the BWR-MARK II-1100 MW nuclear reactor building and the contiguous turbine building. The structures and level relations of two buildings are shown, and the spring-mass system model for these buildings is expressed. The masses of about 20, the weights, the rotating inertia, the sectional moment of inertia, the spring constant and the damping coefficient for each mass are tabulated. As the results, the peak displacements occur at 2.556 Hz, 6.918 Hz, 10.43 Hz and 13.85 Hz. The damping coefficient is large and about 10 - 30% at the lower order modes. The calculated and the measured vibration characteristics for the BWR plant buildings are not much different, and this spring-mass system model is verified to be adequate. (Nakai, Y.)

  1. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  2. Geothermal studies of seven interior salt domes

    International Nuclear Information System (INIS)

    1983-06-01

    This report defines and compares the geothermal environments of eight selected Gulf Coast salt domes. The thermal regimes in and around Gulf Coast salt domes are not well documented. The data base used for this study is an accumulation of bottom-hole temperature readings from oil and gas exploration wells and temperature logs run for the National Waste Terminal Storage (NWTS) program. The bottom-hole tempreatures were corrected in order to estimate the actual geothermal environments. Prior thermal studies and models indicate temperatures in and around salt domes are elevated above the norm by 1 0 F to 25 0 F. Using existing geothermal data and accepted theory, geothermal gradients for the selected domes and surrounding sediments were estimated. This study concludes that salt domes within a given basin have similar geothermal gradients, but that the basins differ in average geothermal gradients. This relationship is probably controlled by deep basement structural trends. No evidence of residual heat of emplacement was found associated with any of the selected domes

  3. Environmental assessment for decontamination of the Three Mile Island Unit 2 reactor building atmosphere. Addendum 2. Draft NRC staff report for public comment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-04-01

    The reactor building purge system is an existing system originally installed for purging the reactor building atmosphere during normal operation or maintenance conditions. Use of the reactor building purge system in conjunction with the hydrogen control subsystem evaluated in Section 6.1 represents a variation in the purging alternative for decontaminating the Unit 2 reactor building atmosphere. This variation in the purging alternative would function only under meteorological conditions favorable to atmospheric dispersion. The reactor building purge system is capable of purging the building at flow rates of 5,000-50,000 cfm. Actual purge rates authorized during any time interval would be dependent on meteorological conditions and reactor building concentrations. Like the hydrogen control subsystem, this system would remove reactor building atmosphere through a filter system and discharge it through the 160-ft plant vent stack to the environment. The advantage of using the reactor building purge system in conjunction with the hydrogen control system is that it could decontaminate the reactor building atmosphere in a total elapsed purge time as short as approximately 5 days, as compared with the 60 days that would be required if the hydrogen purge subsystem were used alone. Use of this variation in the purge alternative would result in the release of radioactive materials to the environment. However, calculations based on actual meteorological and release-rate data would be used to monitor radioactive releases so that they do not exceed the requirements of 10 CFR Part 20, the design objectives of 10 CFR Part 50, Appendix 1 and the applicable requirements of 40 CFR 190.10.

  4. PENGEMBANGAN DESA WISATA RUMAH DOME BERBASIS AGROINDUSTRI PANGAN LOKAL (Kajian Diversifikasi Ketela Pohon di Desa Wisata Rumah Dome Prambanan

    Directory of Open Access Journals (Sweden)

    Susi Wuri Ani

    2013-11-01

    Full Text Available Pangan merupakan kebutuhan utama dalam kehidupan manusia. Pemenuhan kebutuhan pangan baik dari segi jumlah, mutu, gizi maupun keamanan berkaitan dengan Sumberdaya Manusia (SDM. Kualitas konsumsi pangan dan gizi masyarakat menentukan SDM masyarakat tersebut. Agroindustri pangan lokal merupakan kegiatan yang memberdayakan sumberdaya lokal (indigenous resources. Seluruh potensi lokal dimanfaatkan untuk menguatkan agroindustri pangan lokal. Penduduk di kawasan wisata Rumah Dome belum mampu mengolah bahan pangan lokal. Kegiatan ini bertujuan membentuk kelompok usaha produktif Ibu-Ibu PKK di Rumah Dome untuk dapat meningkatkan nilai ekonomis pangan lokal (ketela pohon. Hal yang dilakukan adalah memberikan pelatihan pengolahan ketela pohon menjadi ceriping singkong berbagai rasa, keripik belut daun singkong, membuat brownies berbahan tepung ketela, mengemas produk dengan brand Rumah Dome dan memberikan pelatihan pembukuan sederhana. Dengan kegiatan ini diharapkan akan tumbuh kelompok usaha produktif sehingga dapat mengangkat citra wisata Rumah Dome dan meningkatkan pendapatan masyarakat di Rumah Dome. Abstract Food is a major necessity in human life. Food needs are important for human resource (HR both in terms of quantity and quality. Quality of food consumption and nutrition communities determine the HR community. Local food agroindustry is an activity that empowers local resources (indigenous resources. The whole potential of local food used to strengthen local agroindustry. Residents in the tourist area of Dome House have not been able to process local food. This activity aims to establish productive business of woman group (PKK in Dome House to increase the economic value of local food (cassava. The activities are training for production process, packaging with Dome House’s brand and simple accounting management. The cassava processing training are: (1 making variety flavors of cassava chips; (2 producing eel chips from cassava leaves and (3

  5. Dissolution of the Mors salt dome

    International Nuclear Information System (INIS)

    Lindstroem Jensen, K.E.

    1982-01-01

    Regardless of the interpretation of the measured salinity profiles above the Mors salt dome, they can at most be the result of dissolution rates of about 0.004 mm per year. This means that it would take more than 2.5 mill. years to dissolve 10 m of salt. Variations in groun water velocity and cap rock porosity will not significantly change this condition. The stability of the Mors salt dome is therefore not affected by dissolution of the dome. (EG)

  6. Structure of pool in reactor building

    International Nuclear Information System (INIS)

    Yokoyama, Shigeki.

    1997-01-01

    Shielding walls made of iron-reinforced concrete having a metal liner including two body walls rigidly combined to the upper surface of a reactor container are disposed at least to one of an equipment pool or spent fuel storage pool in a reactor building. A rack for temporarily placing an upper lattice plate is detachably attached at least above one of a steam dryer or a gas/liquid separator temporarily placed in the temporary pool, and the height from the bottom portion to the upper end of the shielding wall is determined based on the height of an upper lattice plate temporary placed on the rack and the water depth required for shielding radiation from the upper lattice plate. An operator's exposure on the operation floor can be reduced by the shielding wall, and radiation dose from the spent fuels is reduced. The increase of the height of a pool guarder enhances bending resistance as a ceiling. In addition, the total height of them is made identical with the depth of the spent fuel storage pool thereby enabling to increase storage area for spent fuels. (N.H.)

  7. Neutron activation of building materials used in the reactor shield

    International Nuclear Information System (INIS)

    Hernandez, A.T.; Perez, G.; D'Alessandro, K.

    1993-01-01

    Cuban concretes and their main components (mineral aggregates and cement) were investigated through long-lived activation products induced by neutrons from a reactor. The multielemental content in the materials studied was obtained by neutron activation analysis in an IBR-2 reactor and gamma activation analysis in an MT-25 microtron from Join Institute of Nuclear Research of Dubna. After irradiation of building materials for 30 years by a neutron flow of unitary density, induced radioactivity was calculated according to experimental data. The comparative evaluation of different concretes aggregates and two types of cement related to the activation properties is discussed

  8. Aircraft-crash-protected steel reactor building roof structure for the European market

    International Nuclear Information System (INIS)

    Posta, B.A.; Kadar, I.; Rao, A.S.

    1996-01-01

    This paper recommends the use of all steel roof structures for the reactor building of European Boiling Water Reactor (BWR) plants. This change would make the advanced US BWR designs more compatible with European requirements. Replacement of the existing concrete roof slab with a sufficiently thick steel plate would eliminate the concrete spelling resulting from a postulated aircraft crash, potentially damaging the drywell head or the spent fuel pool

  9. The Hanford Site N Reactor buildings task identification and evaluation of historic properties

    International Nuclear Information System (INIS)

    Stapp, D.C.; Marceau, T.E.

    1996-01-01

    The New Production Reactor complex at Hanford (hereafter referred to as N Reactor) is proposed to be deactivated, decommissioned, and demolished in the coming years. Recognizing that the Hanford Site has been important to the nation, state, and local community, a task was funded to examine the effects that these activities may have on the historic properties of N Reactor. The objectives of the N Reactor buildings task were to identify potential historic properties at N Reactor, to complete Historic Property Inventory forms for all structures considered eligible and ineligible for listing in the National Register of Historic Places, and to prepare a Memorandum of Agreement that identifies the measures required to mitigate any adverse effects

  10. Dynamic response of aircraft impact of a reactor building with protective shell on independent foundation

    International Nuclear Information System (INIS)

    Constantopoulos, I.V.; Vardanega, C.; Attalla, I.

    1981-01-01

    Aircraft impact loading can penalize significantly the design of the equipment in a conventional containment building. An alternative scheme was developed in an attempt to reduce the aircraft impact response. A preliminary study was carried out to investigate the feasibility of the alternative scheme. This study was made in such perspective and for the purpose of comparing the response to aircraft impact of a standard reactor building, to that of a reactor building having an independently founded outer shell. In the second scheme, the outer shell is meant to receive the aircraft impact, so that the load will be transmitted to the reactor building internals only by way of the structure-soil-structure system. In both cases, the aircraft impact was postulated to occur on a linear single degree of freedom oscillator which modeled, approximately, the plastification of the impact area. The soil was considered as a half-space with properties corresponding to a medium stiff soil, and modeled by lumped soil springs and dashpots. The reactor internals, inner shell and protective outer shell were modeled with beam elements and concentrated inertias. In modeling the coupled system, soil-structure interaction and structure-to-structure interaction through the soil were represented by a global stiffness matrix corresponding to the three degrees the freedom of each foundation, i.e. horizontal, vertical and rocking. (orig./HP)

  11. On-line reactor building integrity testing at Gentilly-2 (summary of results 1987-1994)

    International Nuclear Information System (INIS)

    Collins, N.; Lafreniere, P.

    1994-01-01

    In 1987, Hydro-0uebec embarked on an ambitious development program to provide the Gentilly-2 Nuclear Power Station with an effective and practical Reactor Building Containment integrity Test (CIT). In October 1992, the inaugural low pressure (3 kPa(g) nominal) CIT at 100% F.P was performed. The test was conclusive and the CIT was declared In-Service for containment integrity verification on-line. Five subsequent CITs performed in 1993 and 1994 have demonstrated the expected leak rate results and good reliability. The outstanding feature of the CITs is the demonstrated accurary of better than 5% of the measured leak rate. The CIT was developed with the primary goal of demonstrating 'overall' containment availability. Specifically it was designed to detect a 25 mm. diameter leak or hole in the Reactor Building. However, the remarkable CIT accuracy allows reliable detection of a 2 mm. hole. The Gentilly-2 CIT is an innovative approach based on the Temperature Compensation Method (TCM) which uses a reference volume composed of an extensive tubular network of several different diameters. This eliminates the need to track numerous temperature points. A second independent tubular network includes numerous humidity sampling points, thereby enabling the mearurernent of minute pressure variations inside the Reactor Building, independant of the spatial and temporal humidity behaviour. This Gentilly-2 TOM System has been demonstrated to work at both high and low test pressures. The GentiIly-2 design allows the CIT to be performed at a nominal 3 kPa(g) test pressure during a 12-hour period (28 hours total with alignment time) with the reactor at full power. The traditional Reactor Building Pressure Test (RBPT) is typically performed at high pressure (124 kPa(g) in a 5-day critical path window (7 days total with alignment time) during an annual shutdown

  12. IRON DOME

    African Journals Online (AJOL)

    6 Israeli Navy 'First Arm of the Sea: The Successful Interception of the Iron Dome Rocket .... sky to destroy them whilst in flight to minimise civilian casualties. ..... Including The Moon and Celestial Bodies.53 Demeyere further emphasises the.

  13. Incorporating higher order WINKLER springs with 3-D finite element model of a reactor building for seismic SSI analysis

    International Nuclear Information System (INIS)

    Ermutlu, H.E.

    1993-01-01

    In order to fulfill the seismic safety requirements, in the frame of seismic requalification activities for NPP Muehleberg, Switzerland, detailed seismic analysis performed on the Reactor Building and the results are presented previously. The primary objective of the present investigation is to assess the seismic safety of the reinforced concrete structures of reactor building. To achieve this objective requires a rather detailed 3-D finite element modeling for the outer shell structures, the drywell, the reactor pools, the floor decks and finally, the basemat. This already is a complicated task, which enforces need for simplifications in modelling the reactor internals and the foundation soil. Accordingly, all internal parts are modelled by vertical sticks and the Soil Structure Interaction (SSI) effects are represented by sets of transitional and higher order rotational WINKLER springs, i.e. avoiding complicated finite element SSI analysis. As a matter of fact, the availability of the results of recent investigations carried out on the reactor building using diversive finite element SSI analysis methods allow to calibrate the WINKLER springs, ensuring that the overall SSI behaviour of the reactor building is maintained

  14. Internal structure of reactor building for Madras Atomic Power Project

    International Nuclear Information System (INIS)

    Pandit, D.P.

    1975-01-01

    The structural configuration and analysis of structural elements of the internal structure of reactor building for the Madras Atomic Power Project has been presented. Two methods of analysis of the internal structure, viz. Equivalent Plane Frame and Finite Element Method, are explained and compared with the use of bending moments obtained. (author)

  15. Midyear FY 1983 Richton Dome screening and suitability review

    International Nuclear Information System (INIS)

    1983-08-01

    The NWTS screening of Gulf Coast salt domes for suitable nuclear waste repository sites identified three candidate domes. These are, in order of preference, Richton Dome, Mississippi; Vacherie Dome, Louisiana; and Cypress Creek Dome, Mississippi. A qualitative review of information obtained since this initial ranking gives no basis for revising this ranking. A review of unresolved siting issues at Richton Dome shows siting concerns presently center on the geologic stability and hydrology suitability of Richton Dome and vicinity. Tectonic concerns of regional uplift and faulting are examined, as are salt tectonic concerns related to salt dome movement and dissolution. Both geologic and geodetic data suggest the Mississippi Salt Basin is experiencing uplift. However, uplift rates estimated from geologic evidence are an order of magnitude less than rates estimated from releveling data. Faults are present throughout much of the basin, and most are the result of horizontal and vertical movements of the Louann Salt during the Cretaceous and Early Tertiary. Several faults are present in the sediments surrounding Richton Dome, but current evidence suggests no movements have occurred since the Miocene. Richton Dome's hydrologic suitability is considered in analysis of the regional ground-water flow system. A three-dimensional, ground-water flow model has been utilized to calculate travel paths and travel times for releases of contaminants from various points on the dome. Based on model analyses, a release at repository level would take nearly 39,000 years to reach the upper aquifer and would eventually discharge into the Leaf River or upper reaches of the Pascagoula River over 50 km from the dome. This estimate of travel time greatly exceeds the minimum 1000 year travel time required by proposed Department of Energy (DOE) guidelines. 76 references

  16. Arc jet testing of a Dynasil dome

    Science.gov (United States)

    Burrell, Jack O.; Strobel, Forrest A.

    1999-07-01

    Arc jet testing of the Hera modified ballistic reentry vehicle - 1E (MBRV-1E) nosetip was conducted in June of 1998. The tests were conducted in the Air Force's Arnold Engineering Development Center HEAT-H1 arc plasma test facility in Tullahoma, Tennessee. The MBRV-1 vehicle is a separating short- to medium-range target. The MBRV-1E nosetip incorporates a custom designed quartz dome that is integrated into the nosetip stagnation region. The dome was bonded to the baseline nosetip material, a well characterized carbon-carbon composite material, using a silica based ceramic bond materials. The objectives of the test were to demonstrate the thermal performance and structural integrity of the nosetip design by exposing tip to arc plasma-heated flow simulating the reentry flight environment. Pre-test analysis of the Dynasil dome performed using finite element analysis predicted the dome would survive the test conditions with no failures. Post-test inspection of the dome revealed a hard, opaque coating on the outer surface of the dome. Once removed, the dome was shown to have numerous surface cracks near the stagnation region. In addition to the surface cracks, significant pitting on the surface was observed through both an optical microscope and a scanning electron microscope. Post-test analyses were performed to determine the cause of these surface cracks. It was concluded that the cracks occurred during cooldown, and were a result of significant strength degradation which was caused by the surface pitting.

  17. Structural design of SBWR reactor building complex using microcomputers

    International Nuclear Information System (INIS)

    Mandagi, K.; Rajagopal, R.S.; Sawhney, P.S.; Gou, P.F.

    1993-01-01

    The design concept of Simplified Boiling Water Reactor (SBWR) plant is based on simplicity and passive features to enhance safety and reliability, improve performance, and increase economic viability. The SBWR utilizes passive systems such as Gravity Driven Core-Cooling System (GDCS) and Passive Containment Cooling System (PCCS). To suit these design features the Reactor Building (RB) complex of the SBWR is configured as an integrated structure consisting of a cylindrical Reinforced Concrete Containment Vessel (RCCV) surrounded by square reinforced concrete safety envelope and outer box structures, all sharing a common reinforced concrete basemat. This paper describes the structural analysis and design aspects of the RB complex. A 3D STARDYNE finite element model has been developed for the structural analysis of the complex using a PC Compaq 486/33L microcomputer. The structural analysis is performed for service and factored load conditions for the applicable loading combinations. The dynamic responses of containment structures due to pool hydrodynamic loads have been calculated by an axisymmetric shell model using COSMOS/M program. The RCCV is designed in accordance with ASME Section 3, Division 2 Code. The rest of the RB which is classified as Seismic Category 1 structure is designed in accordance with the ACI 349 Code. This paper shows that microcomputers can be efficiently used for the analysis and design of large and complex structures such as RCCV and Reactor Building complex. The use of microcomputers can result in significant savings in the computational cost compared with that of mainframe computers

  18. Site specific study for possible ongoing salt dome movement

    International Nuclear Information System (INIS)

    Thoms, R.L.; Manning, T.A.; Paille, L.K.; Gehle, R.M.

    1977-01-01

    U.S. Gulf Coast salt domes, among other geologic structures, currently are being considered for storage of commercial radioactive wastes. A major concern with dome storage of long lived radioactive wastes lies with the possible tectonic movement of the host dome. Any ongoing movement of a salt dome can be monitored with a site specific complementary system of field instrumentation and finite element modelling. Field instrumentation and accompanying finite element analyses for a study dome in northwest Louisiana are described. Site specific data and early experience associated with tiltmeters over the dome are presented. Also, recommendations are made for modifications and extensions of the field instrumentation and finite element modelling appropriate to the specific site under study

  19. Study of seismic responses of Candu-3 reactor building using isolator bearings

    International Nuclear Information System (INIS)

    Biswas, J.K.

    1992-01-01

    Seismic isolator bearings are known to increase reliability, reduce cost and increase the potential sitings for nuclear power plants located in regions of high seismicity. High seismic activities in Canada occur mainly in the western coast, the Grand Banks and regions of Quebec along the St. Lawrence river. In Canada, nuclear power plants are located in Ontario, Quebec and New Brunswick where the seismicity levels are low to moderate. Consequently, seismic isolator bearings have not been used in the existing nuclear power plants in Canada. The present paper examines the effect of using seismic isolator bearings in the design for the new CANDU3 which would be suitable for regions having high seismicity. The CANDU3 Nuclear Power Plant is rated at 450 MW of net output power and is a smaller version of its predecessor CANDU6 successfully operating in Canada and abroad. The design of CANDU3 is being developed by AECL CANDU. Advanced technologies for design, construction and plant operation have been utilized. During the conceptual development of the CANDU3 design, various design options including the use of isolator bearings were considered. The present paper presents an overview of seismic isolation technology and summarizes the analytical work for predicting the seismic behavior of the CANDU3 reactor building. A lumped-parameter dynamic model for the reactor building is used for the analysis. The characteristics of the bearings are utilized in the analysis work. The time-history modal analysis has been used to compute the seismic responses. Seismic responses of the reactor building with and without isolator bearings are compared. The isolator bearings are found to reduce the accelerations of the reactor building. As a result, a lower level of seismic qualification for components and systems would be required. The use of these bearings however increases rigid body seismic displacements of the structure requiring special considerations in the layout and interfaces for

  20. Nonlinear analysis of a reactor building for airplane impact loadings

    International Nuclear Information System (INIS)

    Zimmermann, T.; Rodriguez, C.; Rebora, B.

    1981-01-01

    The purpose is to analyze the influence of material nonlinear behavior on the response of a reinforced concrete reactor building and on equipment response for airplane impact loadings. Two analyses are performed: first, the impact of a slow-flying commercial airplane (Boeing 707), then the impact of a fast flying military airplane (Phantom). (orig./HP)

  1. Initial stresses in two-layer metal domes due to imperfections of their production and assemblage

    Directory of Open Access Journals (Sweden)

    Lebed Evgeniy Vasil’evich

    2015-04-01

    Full Text Available The process of construction of two-layer metal domes is analyzed to illustrate the causes of initial stresses in the bars of their frames. It has been noticed that it is impossible to build such structures with ideal geometric parameters because of imperfections caused by objective reasons. These imperfections cause difficulties in the process of connection of the elements in the joints. The paper demonstrates the necessity of fitting operations during assemblage that involve force fitting and yield initial stresses due to imperfections. The authors propose a special method of computer modeling of enforced elimination of possible imperfections caused by assemblage process and further confirm the method by an analysis of a concrete metal dome.

  2. Japanese contributions to containment structure, assembly and maintenance and reactor building for ITER

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Honda, Tsutomu; Kanamori, Naokazu

    1991-06-01

    Joint design work on Conceptual Design Activity of International Thermonuclear Experimental Reactor (ITER) with four parties, Japan, the United States, the Soviet Union and the European Community began in April 1988 and was successfully completed in December 1990. In Japan, the home team was established in wide range of collaboration between JAERI and national institute, universities and heavy industries. The Fusion Experimental Reactor (FER) Team at JAERI is assigned as a core of the Japanese home team to support the joint Team activity and mainly conducted the design and R and D in the area of containment structure, remote handling and plant system. This report mainly describes the Japanese contribution on the ITER containment structure, remote handling and reactor building design. Main areas of contributions are vacuum vessel, attaching locks, electromagnetic analysis, cryostat, port and service line layout for containment structure, in-vessel handling equipment design and analysis, blanket handling equipment design and related short term R and D for assembly and maintenance, and finally reactor building design and analysis based on the equipment and service line layout and components flow during assembly and maintenance. (author)

  3. Performance of skylight illuminance inside a dome shaped adobe house under composite climate at New Delhi (India: A typical zero energy passive house

    Directory of Open Access Journals (Sweden)

    Arvind Chel

    2014-06-01

    Full Text Available This paper presents annual experimental performance of pyramid shaped skylight for daylighting of a dome shaped adobe house located at solar energy park in New Delhi (India. This approach of single story dome shaped building with skylight is more useful for rural and semi-urban sectors for both office and residential buildings reducing artificial lighting energy consumption. The hourly measured data of inside and outside illuminance for three different working surface levels inside the existing rooms are presented for each month of the year. The embodied energy payback time of the skylight is also determined on the basis of lighting energy saving potential.

  4. Hydrogen behavior in a large-dry pressurized water reactor containment building during a severe accident

    International Nuclear Information System (INIS)

    Hsu Wensheng; Chen Hungpei; Hung Zhenyu; Lin Huichen

    2014-01-01

    Following severe accidents in nuclear power plants, large quantities of hydrogen may be generated after core degradation. If the hydrogen is transported from the reactor vessel into the containment building, an explosion might occur, which might threaten the integrity of the building; this can ultimately cause the release of radioactive materials. During the Fukushima Daiichi nuclear accident in 2011, the primary containment structures remained intact but contaminated fragments broke off the secondary containment structures, which disrupted mitigation activities and triggered subsequent explosions. Therefore, the ability to predict the behavior of hydrogen after severe accidents may facilitate the development of effective nuclear reactor accident management procedures. The present study investigated the behavior of hydrogen in a large-dry pressurized water reactor (PWR). The amount of hydrogen produced was calculated using the Modular Accident Analysis Program. The hydrogen transport behavior and the effect of the explosion on the PWR containment building were simulated using the Flame Acceleration Simulator. The simulation results showed that the average hydrogen volume fraction is approximately 7% in the containment building and that the average temperature is 330 K. The maximum predicted pressure load after ignition is 2.55 bar, which does not endanger the structural integrity of the containment building. The results of this investigation indicate that the hydrogen mitigation system should be arranged on both the upper and lower parts of the containment building to reduce the impact of an explosion. (author)

  5. BWR type reactors

    International Nuclear Information System (INIS)

    Tsunoyama, Shigeaki; Tanabe, Akira.

    1979-01-01

    Purpose: To provide a main steam pressure shock absorber for reflecting the effect of the pressure propagation to coolants surface in the reactor core. Constitution: An annular shock absorber having near the water level through holes for water level measurement is provided to the gap between the skirt of a steam separator and a pressure vessel. Pressure waves are made the rapid closure of a main steam check valve. If arrived from the dome to the shock absorber, are mostly reflected to the side of the dome and give no substantial effects on the water surface. If the through holes are made small enough, the effects of pressure waves passing through the holes are negligible if they reach the water surface. (Kawakami, Y.)

  6. Environmental assessment for decontamination of the Three Mile Island Unit 2 reactor building atmosphere. Draft NRC staff report for public comment

    International Nuclear Information System (INIS)

    1980-03-01

    The krypton-85 (Kr-85) released to the reactor building during the accident at TMI-2 must be removed from the reactor building in order to permit greater access to the building than is currently possible. The gases currently in the building emit sufficient radiation (1.2 rem/hr total body, 150 rad/hr skin dose) that occupation of the reactor building is severely limited even with protective clothing. Greater access is likely to be necessary to maintain instrumentation and equipment required to keep the reactor in a safe shutdown condition. In addition greater access would facilitate the gathering of data needed for planning the building decontamination program. An additional consideration is that prolonged enclosure of the Kr-85 within the building greatly increases the risk of its successive uncontrolled releases to the outside environment. The staff's evaluation of alternative methods for removing the krypton shows that each could be implemented with little risk to the health and safety of the public. The reactor building purge system, charcoal adsorption system, gas compression, selective absorption process system, and cryogenic processing system could each be operated to keep levels of airborne radioactive materials to unrestricted areas in compliance with the requirements of 10 CFR Part 20, and the design objectives of Appendix 1 to 10 CFR Part 50 of the Commission's regulations, and with the applicable requirements of 40 CFR Part 190.10

  7. Environmental assessment for decontamination of the Three Mile Island Unit 2 reactor building atmosphere. Draft NRC staff report for public comment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The krypton-85 (Kr-85) released to the reactor building during the accident at TMI-2 must be removed from the reactor building in order to permit greater access to the building than is currently possible. The gases currently in the building emit sufficient radiation (1.2 rem/hr total body, 150 rad/hr skin dose) that occupation of the reactor building is severely limited even with protective clothing. Greater access is likely to be necessary to maintain instrumentation and equipment required to keep the reactor in a safe shutdown condition. In addition greater access would facilitate the gathering of data needed for planning the building decontamination program. An additional consideration is that prolonged enclosure of the Kr-85 within the building greatly increases the risk of its successive uncontrolled releases to the outside environment. The staff's evaluation of alternative methods for removing the krypton shows that each could be implemented with little risk to the health and safety of the public. The reactor building purge system, charcoal adsorption system, gas compression, selective absorption process system, and cryogenic processing system could each be operated to keep levels of airborne radioactive materials to unrestricted areas in compliance with the requirements of 10 CFR Part 20, and the design objectives of Appendix 1 to 10 CFR Part 50 of the Commission's regulations, and with the applicable requirements of 40 CFR Part 190.10.

  8. The decorative program of the domes and area under the domes in the church of the monastery Resava

    Directory of Open Access Journals (Sweden)

    Prolović Jadranka

    2008-01-01

    Full Text Available Because the dome is interpreted as a symbol of the heavens, it is reserved for heavenly subjects. The calotte of the dome is seen as a vault of heaven or 'heaven in the heavens' and, as such, as the 'house of Christ'. As the commentator in the 19th century reports, the image of Christ Pantokrator was once located at the zenith of the central dome of Resava. The preserved scenes and figures below the dome, specifically the heavenly liturgy and the prophets, confirm the original existence of this image. Together they build an iconology that was very widespread in late Byzantine art. The composition of the central dome of Resava resembles in its complete appearance, supported by some particularities, the central dome of Ravanica, which served as a model for the artists of Resava. One can find close parallels for the decoration of the side domes in Ravanica. The similar arrangement of heavenly powers in the tambours of the domes in Ravanica and Resava indicate that, like in Ravanica, Christ Emmanuel, the Age of Days, the Mother of God and the Archangel Michael could have been depicted in the zenith of the side domes of Resava. This type of decorative scheme in side domes is common in late Byzantine monumental painting. The remaining fragments with images of angels as deacons positioned in the ring around the zenith of the central dome show that the Heavenly Liturgy was depicted here, specifically the Large Entrance which, aside from the communion, was the only part of the liturgy visible to the faithful. In Resava, the Heavenly Liturgy is completed by the images of crowds of angels, which are portrayed in the tambours of the side domes. The liturgical hymns that accompany these images of angels confirm this order. The rendering of orders of angels in the tambours of the side domes in Resava comply with the traditional program in which these heavenly beings - who being closest to God, who were his first creations and the only to whom a look in the

  9. Exposure mode study to xenon-133 in a reactor building

    International Nuclear Information System (INIS)

    Perier, Aurelien

    2014-01-01

    The work described in this thesis focuses on the external and internal dose assessment to xenon-133. During the nuclear reactor operation, fission products and radioactive inert gases, as 133 Xe, are generated and might be responsible for the exposure of workers in case of clad defect. Particle Monte Carlo transport code is adapted in radioprotection to quantify dosimetric quantities. The study of exposure to xenon-133 is conducted by using Monte-Carlo simulations based on GEANT4, an anthropomorphic phantom, a realistic geometry of the reactor building, and compartmental models. The external exposure inside a reactor building is conducted with a realistic and conservative exposure scenario. The effective dose rate and the eye lens equivalent dose rate are determined by Monte-Carlo simulations. Due to the particular emission spectrum of xenon-133, the equivalent dose rate to the lens of eyes is discussed in the light of expected new eye dose limits. The internal exposure occurs while xenon-133 is inhaled. The lungs are firstly exposed by inhalation, and their equivalent dose rate is obtained by Monte-Carlo simulations. A biokinetic model is used to evaluate the internal exposure to xenon-133. This thesis gives us a better understanding to the dosimetric quantities related to external and internal exposure to xenon-133. Moreover the impacts of the dosimetric changes are studied on the current and future dosimetric limits. The dosimetric quantities are lower than the current and future dosimetric limits. (author)

  10. Mechanical Design of Metal Dome for Industrial Application

    Science.gov (United States)

    Jin-Chee Liu, Thomas; Chen, Li-Wei; Lin, Nai-Pin

    2018-02-01

    In this paper, the mechanical design of metal domes is studied using finite element analysis. The snap-through behavior of a practical button design that uses a metal dome is found. In addition, the individual click ratio and maximum force for a variety of metal domes are determined. This paper provides guidance on button design for industrial engineers.

  11. Autonomous Dome for a Robotic Telescope

    Science.gov (United States)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  12. Clinch River Breeder Reactor Plant: a building block in nuclear technology

    International Nuclear Information System (INIS)

    McCormack, M.

    1979-01-01

    Interest in breeder reactors dates from the Manhatten Project to the present effort to build the Clinch River Liquid Metal Fast Breeder Reactor (LMFBR) demonstration plant. Seven breeder-type reactors which were built during this time are described and their technological progress assessed. The Clinch River Breeder Reactor Project (CRBRP) has been designed to demonstrate that it can be licensed, can operate on a large power grid, and can provide industry with important experience. As the next logical step in LMFBR development, the project has suffered repeated cancellation efforts with only minor modifications to its schedule. Controversies have developed over the timing of a large-scale demonstration plant, the risks of proliferation, economics, and other problems. Among the innovative developments adopted for the CRBRP is a higher thermal efficiency potential, the type of development which Senator McCormack feels justifies continuing the project. He argues that the nuclear power program can and should be revitalized by continuing the CRBRP

  13. Clinch River Breeder Reactor Plant: a building block in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, M.

    1979-01-01

    Interest in breeder reactors dates from the Manhatten Project to the present effort to build the Clinch River Liquid Metal Fast Breeder Reactor (LMFBR) demonstration plant. Seven breeder-type reactors which were built during this time are described and their technological progress assessed. The Clinch River Breeder Reactor Project (CRBRP) has been designed to demonstrate that it can be licensed, can operate on a large power grid, and can provide industry with important experience. As the next logical step in LMFBR development, the project has suffered repeated cancellation efforts with only minor modifications to its schedule. Controversies have developed over the timing of a large-scale demonstration plant, the risks of proliferation, economics, and other problems. Among the innovative developments adopted for the CRBRP is a higher thermal efficiency potential, the type of development which Senator McCormack feels justifies continuing the project. He argues that the nuclear power program can and should be revitalized by continuing the CRBRP.

  14. Geologic study of Kettle dome, northeast Washington. Final report

    International Nuclear Information System (INIS)

    1980-10-01

    This geologic study of Kettle dome, northeast Washington, encompasses an area of approximately 800 square miles (2048 sq km). The evaluation of uranium occurrences associated with the igneous and metamorphic rocks of the dome and the determination of the relationship between uranium mineralization and stratigraphic, structural, and metamorphic features of the dome are the principal objectives. Evaluation of the validity of a gneiss dome model is a specific objective. The principal sources of data are detailed geologic mapping, surface radiometric surveys, and chemical analyses of rock samples. Uranium mineralization is directly related to the presence of pegmatite dikes and sills in biotite gneiss and amphibolite. Other characteristics of the uranium occurrences include the associated migmatization and high-grade metamorphism of wallrock adjacent to the pegmatite and the abrupt decrease in uranium mineralization at the pegmatite-gneiss contact. Subtle chemical characteristics found in mineralized pegmatites include: (1) U increase as K 2 O increases, (2) U decreases as Na 2 O increases, and (3) U increases as CaO increases at CaO values above 3.8%. The concentration of uranium occurrences in biotite gneiss and amphibolite units results from the preferential intrusion of pegmitites into these well-foliated rocks. Structural zones of weakness along dome margins permit intrusive and migmatitic activity to affect higher structural levels of the dome complex. As a result, uranium mineralization is localized along dome margins. The uranium occurrences in the Kettle dome area are classified as pegmatitic. Sufficient geologic similarities exist between Kettle dome and the Rossing uranium deposit to propose the existence of economic uranium targets within Kettle dome

  15. Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting: New geochronology of Gianbul dome, northwestern India

    Science.gov (United States)

    Horton, Forrest; Lee, Jeffrey; Hacker, Bradley; Bowman-Kamaha'o, Meilani; Cosca, Michael A.

    2015-01-01

    A general lack of consensus about the origin of Himalayan gneiss domes hinders accurate thermomechanical modeling of the orogen. To test whether doming resulted from tectonic contraction (e.g., thrust duplex formation, antiformal bending above a thrust ramp, etc.), channel flow, or via the buoyant rise of anatectic melts, this study investigates the depth and timing of doming processes for Gianbul dome in the western Himalaya. The dome is composed of Greater Himalayan Sequence migmatite, Paleozoic orthogneiss, and metasedimentary rock cut by multiple generations of leucogranite dikes. These rocks record a major penetrative D2 deformational event characterized by a domed foliation and associated NE-SW–trending stretching lineation, and they are flanked by the top-down-to-the-SW (normal-sense) Khanjar shear zone and the top-down-to-the-NE (normal sense) Zanskar shear zone (the western equivalent of the South Tibetan detachment system). Monazite U/Th-Pb geochronology records (1) Paleozoic emplacement of the Kade orthogneiss and associated granite dikes; (2) prograde Barrovian metamorphism from 37 to 33 Ma; (3) doming driven by upper-crustal extension and positive buoyancy of decompression melts between 26 and 22 Ma; and (4) the injection of anatectic melts into the upper levels of the dome—neutralizing the effects of melt buoyancy and potentially adding strength to the host rock—by ca. 22.6 Ma on the southwestern flank and ca. 21 Ma on the northeastern flank. As shown by a northeastward decrease in 40Ar/39Ar muscovite dates from 22.4 to 20.2 Ma, ductile normal-sense displacement within the Zanskar shear zone ended by ca. 22 Ma, after which the Gianbul dome was exhumed as part of a rigid footwall block below the brittle Zanskar normal fault, tilting an estimated 5°–10°SW into its present orientation.

  16. The Discovery Dome: A Tool for Increasing Student Engagement

    Science.gov (United States)

    Brevik, Corinne

    2015-04-01

    The Discovery Dome is a portable full-dome theater that plays professionally-created science films. Developed by the Houston Museum of Natural Science and Rice University, this inflatable planetarium offers a state-of-the-art visual learning experience that can address many different fields of science for any grade level. It surrounds students with roaring dinosaurs, fascinating planets, and explosive storms - all immersive, engaging, and realistic. Dickinson State University has chosen to utilize its Discovery Dome to address Earth Science education at two levels. University courses across the science disciplines can use the Discovery Dome as part of their curriculum. The digital shows immerse the students in various topics ranging from astronomy to geology to weather and climate. The dome has proven to be a valuable tool for introducing new material to students as well as for reinforcing concepts previously covered in lectures or laboratory settings. The Discovery Dome also serves as an amazing science public-outreach tool. University students are trained to run the dome, and they travel with it to schools and libraries around the region. During the 2013-14 school year, our Discovery Dome visited over 30 locations. Many of the schools visited are in rural settings which offer students few opportunities to experience state-of-the-art science technology. The school kids are extremely excited when the Discovery Dome visits their community, and they will talk about the experience for many weeks. Traveling with the dome is also very valuable for the university students who get involved in the program. They become very familiar with the science content, and they gain experience working with teachers as well as the general public. They get to share their love of science, and they get to help inspire a new generation of scientists.

  17. Identifying suitable piercement salt domes for nuclear waste storage sites

    International Nuclear Information System (INIS)

    Kehle, R.; e.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes

  18. Evaluation for rigidity of box construction of nuclear reactor building

    International Nuclear Information System (INIS)

    Yamakawa, Tetsuo

    1979-01-01

    A huge box-shaped structure (hereafter, called box construction) of reinforced concrete is presently utilized as the reactor building structure in nuclear power plants. Evaluation of the rigidity of the huge box construction is required for making a vibration analysis model of nuclear reactor buildings. It is necessary to handle the box construction as the plates to which the force in plane is applied. This paper describes that the bending theory in elementary beam theory is equivalent to a peculiar, orthogonally anisotropic plate, the shearing rigidity and film rigidity in y direction of which are put to infinity and the Poisson's ratio is put to zero, viewed from the two-dimensional theory of elasticity. The form factor of 1.2 for shearing deformation in rectangular cross section was calculated from the parabolic distribution of shearing stress intensity, and it is the maximum value. The factor is equal to 1.2 for slender beams, but smaller than 1.2 for short and thick beams, having tendency to converge to 1.0. The non-conformity of boundary conditions regarding the shearing force at the both ends of cantilevers does not affect very seriously the evaluation of shearing rigidity. From the above results, it was found that the application of the theory to the box construction was able to give the rigidity evaluation with sufficient engineering accuracy. The theory can also be applied to the evaluation of tube type ultrahigh buildings. (Wakatsuki, Y.)

  19. The research of suspen-dome structure

    Science.gov (United States)

    Gong, Shengyuan

    2017-09-01

    After overcoming the shortcomings of single-layer latticed shell and cable dome structure, the suspen-dome was developed by inheriting the advantages of them, and it was recognized and applied as a new type of prestressed force large span space structure. Based on the analysis of the background and mechanical principle, the researches of suspen-dome are reviewed, including form-finding analysis, the analysis of static force and stability, the dynamic behaviors and the earthquake resistant behavior, the analysis of prestressing force and optimization design, and the research status of the design of the fir-resistant performance etc. This thesis summarizes the methods of various researches, being a reference for further structural performance research and structural engineering application.

  20. Decommissioning the Jason Argonaut research reactor at a world heritage site

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, R.J.S.; Beeley, P.A. [HMS Sultan, Gosport, Hampshire (United Kingdom)

    2001-07-01

    The Jason low power Argonaut type, water and graphite moderated reactor was located in King William Building, which is a Grade 1 listed building within the Royal Naval College, Greenwich, London. The College itself is a Scheduled Ancient Monument with World Heritage Site status and is situated about a mile from the Greenwich Dome. The decision to decommission Jason to International Atomic Energy Agency Stage 3 status (unrestricted site use) was taken in 1996. All physical decommissioning work was completed by October 1999, site radiological clearance was obtained in November 1999, the site license was withdrawn and the site was handed over for future unrestricted use on 9 December 1999. The Jason decommissioning project was safely completed to time, cost and quality by the Millennium [2] without any adverse effects on World Heritage aspects of the site. In this paper details are provided about the Jason fuel removal phase and an outline of the other phases of the project.

  1. Environmental assessment overview: Richton Dome site, Mississippi

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Richton Dome site as one of five sites suitable for characterization. 3 figs

  2. Geologic study of the interior Salt Domes of Northeast Texas Salt-Dome basin to investigate their suitability for possible storage of radioactive waste material

    International Nuclear Information System (INIS)

    1976-05-01

    The purpose of this study was to investigate the movement and hydrologic stability of the domes, to identify the domes which appear suitable for further study and consideration, and to outline the additional information needed to evaluate these domes. The growth of the interior salt domes appears to have slowed with geologic time and to have halted altogether. The Bullard, Whitehouse, and Keechi domes probably are not subject to significant dissolution at the present time. However, caprock found at Bullard and Whitehouse indicates that salt dissolution occurred at some period during the past 50 million years since Wilcox was deposited. It is recommended that shallow water wells be drilled and tested

  3. Geological evolution of the Afro-Arabian dome

    Science.gov (United States)

    Almond, D. C.

    1986-12-01

    The Afro-Arabian dome includes the elevated continental regions enclosing the Red Sea, Gulf of Aden, and the Ethiopian rift system, and extends northwards as far as Jordan. It is more than an order of magnitude larger than other African uplifts. Both the structures and the igneous rocks of the dome appear to be products of the superimposition of two, perhaps three, semi-independent generating systems, initiated at different times but all still active. A strain pattern dominated by NW-trending basins and rifts first became established early in the Cretaceous. By the end of the Oligocene, much of the extensional strain had been taken up along the Red Sea and Gulf of Aden axes, which subsequently developed into an ocean. Palaeogene "trap" volcanism of mildly alkaline to transitional character was related to this horizontal extension rather than to doming. Further west, the East Sahara swell has a history of intermittent alkaline volcanicity which began in the Mesozoic and was independent of magmatism in the Afro-Arabian dome. Volcanicity specifically related to doming began in the Miocene along a N-S zone of uplift extending from Ethiopia to Syria. This elongated swell forms the northern termination of the East African system of domes and rifts, characterized by episodic vertical uplift but very little extension. Superimposition of epeirogenic uplift upon structures formed by horizontal extension took place in the Neogene. Volcanicity related to vertical tectonics is mildly alkaline in character, whereas transitional and tholeiitic magmas are found along the spreading axes.

  4. Geology--hydrology of Avery Island Salt Dome

    International Nuclear Information System (INIS)

    Jacoby, C.H.

    1977-07-01

    After a review of the geology of the Gulf Coast salt domes, the geology (geomorphology and tectonics) and hydrology of Avery Island Dome, 10 miles south-southwest of New Iberia, Louisiana, were studied in detail. Rock mechanics were studied using grouts and piezometers. 17 figs

  5. Shapes of Venusian 'pancake' domes imply episodic emplacement and silicic composition

    Science.gov (United States)

    Fink, Jonathan H.; Bridges, Nathan T.; Grimm, Robert E.

    1993-01-01

    The main evidence available for constraining the composition of the large circular 'pancake' domes on Venus is their gross morphology. Laboratory simulations using polyethylene glycol show that the height to diameter (aspect) ratios of domes of a given total volume depend critically on whether their extrusion was continuous or episodic, with more episodes leading to greater cooling and taller domes. Thus without observations of their emplacement, the compositions of Venusian domes cannot be uniquely constrained by their morphology. However, by considering a population of 51 Venusian domes to represent a sampling of many stages during the growth of domes with comparable histories, and by plotting aspect ratio versus total volume, we find that the shapes of the domes are most consistent with episodic emplacement. On Earth this mode of dome growth is found almost exclusively in lavas of dacite to rhyolite composition, strengthening earlier inferences about the presence of evolved magmas on Venus.

  6. Self-pressurization analysis of the natural circulation integral nuclear reactor using a new dynamic model

    Directory of Open Access Journals (Sweden)

    Ali Farsoon Pilehvar

    2018-06-01

    Full Text Available Self-pressurization analysis of the natural circulation integral nuclear reactor through a new dynamic model is studied. Unlike conventional pressurized water reactors, this reactor type controls the system pressure using saturated coolant water in the steam dome at the top of the pressure vessel. Self-pressurization model is developed based on conservation of mass, volume, and energy by predicting the condensation that occurs in the steam dome and the flashing inside the chimney using the partial differential equation. A simple but functional model is adopted for the steam generator. The obtained results indicate that the variable measurement is consistent with design data and that this new model is able to predict the dynamics of the reactor in different situations. It is revealed that flashing and condensation power are in direct relation with the stability of the system pressure, without which pressure convergence cannot be established. Keywords: Condensation Power, Flashing Phenomenon, Natural Circulation, Self-Pressurization, Small Modular Reactor

  7. Alternative co-digestion scenarios for efficient fixed-dome reactor biomethanation processes

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Laranjeiro, Tiago; Angelidaki, Irini

    2016-01-01

    where low-tech reactors have been abandoned. Thus, the aims of this study were: a) to identify and evaluate alternative biomasses as anaerobic digestion substrates at a remote rural area site in India; b) to propose an efficient continuous biomethanation scenario for low-tech reactors; c) to assess......-digestion scenario with 45% and 13% higher energy recovery from biomasses' utilization and 69% and 25% less greenhouse gas (GHG) emissions, compared to R30 and R45, respectively. These results indicate that it is possible to operate efficiently low-tech biogas reactors with utilized biomasses as anaerobic digestion...

  8. A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings.

    Science.gov (United States)

    Zhou, Jianguo; Xu, Yaming; Zhang, Tao

    2016-06-14

    Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes.

  9. Borehole locations on seven interior salt domes

    International Nuclear Information System (INIS)

    Simcox, A.C.; Wampler, S.L.

    1982-08-01

    This report is designed as an inventory of all wells known to have been drilled within a five-mile radius of each of seven salt domes within the Interior Salt Basin in east Texas, northern Louisiana and Mississippi. There are 72 boreholes that entered salt above an elevation of -3000 feet mean sea level. For these, details of location, drilling dates, depth of casing and cement, elevation of top of caprock and salt, etc., are given on tables in the appendix. Of the seven domes, Oakwood has the largest number of boreholes, thirty-eight (including two sidetracked wells) that enter the salt stock above -3000 feet mean sea level; another dome in northeast Texas, Keechi, has eight; in northern Louisiana, Rayburn's has four and Vacherie has five; in southern Mississippi, Cypress Creek has seven, Lampton has one, and Richton has nine. In addition, all wells known outside the supra-domal area, but within a five-mile radius of the center of the 7 domes are separately catalogued

  10. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  11. High-resolution seismic reflection study, Vacherie Dome

    International Nuclear Information System (INIS)

    1984-06-01

    A high-resolution seismic reflection study, consisting of recording, processing, and interpreting four seismic reflection lines, was made at Vacherie Dome, Louisiana. The presumed shape of the dome, as pictured in the geologic area characterization report by Law Engineering Testing Company in 1982, was based largely on interpretation of gravity data, constrained by a few wells and exploration-type seismic profiles. The purpose of the study was to obtain refined profiles of the dome above -914 m (-3000 ft) elevation. Additional study had been recommended by Louisiana State University in 1967 and the Office of Nuclear Waste Isolation in 1981 because the interpreted size of Vacherie Dome was based on limited seismic and gravity data. Forty-eight traces of seismic data were recorded each time shots were made to generate energy. Twelve-fold, common-depth-point data were obtained using geophone stations spaced at 15-m (50-ft) intervals with shots at 30-m (100-ft) intervals. The time-sampling interval used was 1 ms. Processing intended to enhance resolution included iterative static corrections, deconvolution before stacking, and both time- and depth-migration. The locations of the steep dome sides were inferred primarily from terminations of strong reflections (migrated) from strata near the top of the upper and lower Cretaceous sections. This interpretation agrees closely with the presumed shape from the top of the dome to about -610 m (-2000 ft) elevation, but below this on three of the profiles, this interpretation indicates a steeper salt face than the presumed shape. The area reduction at -914 m (-3000 ft) elevation is estimated to be on the order of 20 percent. 10 references, 11 figures, 4 tables

  12. Assessment of extent and degree of thermal damage to polymeric materials in the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1986-01-01

    This paper describes assumptions and procedures used to perform thermal damage analysis caused by post loss-of-coolant-accident (LOCA) hydrogen deflagration at Three Mile Island Unit 2 Reactor. Examination of available photographic evidence yields data on the extent and range of thermal and burn damage. Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, the authors assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. A control pendant from the polar crane located in the top of the reactor building sustained asymmetric burn damage of decreasing degree from top to bottom. Evidence suggests the polar-crane pendant side that experienced heaviest damage was exposed to intense radiant energy from a transient fire plume in the reactor containment volume. Simple hydrogen-fire-exposure tests and heat transfer calculations approximate the degree of damage found on inspected materials from the containment building and support for an estimated 8% pre-fire hydrogen

  13. Assessment of extent and degree of thermal damage to polymeric materials in the Three Mile Island Unit 2 Reactor building

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1985-06-01

    This paper describes assumptions and procedures used to perform thermal damage analysis caused by post loss-of-coolant-accident (LOCA) hydrogen deflagration at Three Mile Island Unit 2 Reactor. Examination of available photographic evidence yields data on the extent and range of thermal and burn damage. Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, we assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. A control pendant from the polar crane located in the top of the reactor building sustained asymmetric burn damage of decreasing degree from top to bottom. Evidence suggests the polar-crane pendant side that experienced heaviest damage was exposed to intense radiant energy from a transient fire plume in the reactor containment volume. Simple hydrogen-fire-exposure tests and heat transfer calculations approximate the degree of damage found on inspected materials from the containment building and support for an estimated 8% pre-fire hydrogen

  14. Reactor building pressure proof test (PPT) and leak rate test (LRT) of Qinshan phase III (CANDU) project

    International Nuclear Information System (INIS)

    Gu Jun; Shi Jinqi; Fan Fuping

    2004-12-01

    As the first reactor building (R/B) without stainless steel liner in china, TQNPC studied the containment characteristics, such as strong concrete absorb/release air effect, poor containment penetration. etc. And carefully prepared test scheme and emergency response, creatively introduced the instrument air self-supply system in reactor building, developed the special measurement and analysis system for PPT and LRT, organized work under high-pressure on large-scale in the test. Finally got the containment leak rate result and the test-cost-time value is the best in all same type tests. (authors)

  15. Susceptibility of lava domes to erosion and collapse by toppling on cooling joints

    Science.gov (United States)

    Smith, John V.

    2018-01-01

    The shape of lava domes typically leads to the formation of radial patterns of cooling joints. These cooling joints define the orientation of the columnar blocks which plunge toward the center of the dome. In the lower parts of the dome the columns plunge into the dome at low angles and are relatively stable. Higher in the dome the columns plunge into the dome at steep angles. These steeply plunging columns are susceptible to toppling and, if the lower part of a dome is partially removed by erosion or collapse, the unstable part of the dome becomes exposed leading to toppling failure. Examples of this process are provided from coastal erosion of lava domes at Katsura Island, Shimane Peninsula, western Japan. An analogue model is presented to demonstrate the mechanism. It is proposed that the mechanism can contribute to collapse of lava domes during or after emplacement.

  16. Topical reports on Louisiana salt domes

    International Nuclear Information System (INIS)

    1983-09-01

    The Institute for Environmental Studies at Louisiana State University conducted research into the potential use of Louisiana salt domes for disposal of nuclear waste material. Topical reports generated in 1981 and 1982 related to Vacherie and Rayburn's domes are compiled and presented, which address palynological studies, tiltmeter monitoring, precise releveling, saline springs, and surface hydrology. The latter two are basically a compilation of references related to these topics. Individual reports are abstracted

  17. Gut-associated Lymphoid Tissue (GALT) Carcinoma or Dome Carcinoma?

    Science.gov (United States)

    Rubio, Carlos A; Schmidt, Peter T

    2016-10-01

    The vast majority of colorectal carcinomas (CRCs) evolve from mucosa not associated to lymphoid tissues aggregates via the adenoma-carcinoma sequence or via the serrated pathway. Rarely CRCs evolve from gut mucosa associated to lymphoid tissue (GALT). Based on the presence of a circumscribed elevation in the colorectal mucosa, GALT carcinomas are also referred to as dome carcinomas (DC). Descriptions of the surface mucosa covering 21 GALT-CRCs appearing in pathological reports were reviewed. Three of the 21 GALT-CRCs fulfilled the criteria of dome carcinoma. Of the remaining 18 GALT-CRCs, nine were described as polypoid lesions, five as plaque-like lesions, two as sessile elevated lesions or mass, one as ulcerated and one as histological finding. Hence, only 14.3% (n=3) of the 21 GALT-CRCs displayed a dome configuration, whereas the majority, 85.7% (n=18), exhibited structures other than dome shapes at gross or at histologic examination. It becomes apparent that by using "dome" in addressing carcinomas in the colorectal mucosa, many cases of GALT carcinomas might be overlooked. Another drawback of using the "dome" nomenclature is that dome-like outlines may be detected in small metastatic tumors in the submucosa or in small colorectal carcinomas not arising from GALT mucosa. Instead, by using "GALT carcinoma", that is the histologic diagnosis in addressing these neoplasias, all cases of GALT-CRCs will be included. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. The use of aluminum dome tank roofs

    International Nuclear Information System (INIS)

    Morovich, G.L.

    1992-01-01

    Since the late 1970's the aluminum dome tank roof has gained wide usage for both new and retrofit applications. The increased application for the structure results from a need for maintenance reduction, environmental considerations, concern for product quality and economics. The American Petroleum Institute (API) has approved Standard API 650, Appendix G - Structurally Supported Aluminum Dome Roofs for publication. The aluminum dome was originally used as weather cover for retrofiting external floating roof tanks. The roof was considered for the reduction of maintenance related to draining water from the external floating roofs and problems resulting from freezing of drain lines and snow accumulation. This paper reports that environmental concerns have expanded the value of aluminum dome roofs. Rainwater bypassing the seals of an external floating roof became classified as a hazardous material requiring special and expensive disposal procedures. The marketing terminal facilities typically do not have the capacity for proper treatment of contaminated bottom water. With new fuel additives being water soluble, water contamination not only created a hazardous waste disposal problem, but resulted in reduced product quality

  19. The compression dome concept: the restorative implications.

    Science.gov (United States)

    Milicich, Graeme

    2017-01-01

    Evidence now supports the concept that the enamel on a tooth acts like a compression dome, much like the dome of a cathedral. With an overlying enamel compression dome, the underlying dentin is protected from damaging tensile forces. Disruption of a compression system leads to significant shifts in load pathways. The clinical restorative implications are significant and far-reaching. Cutting the wrong areas of a tooth exposes the underlying dentin to tensile forces that exceed natural design parameters. These forces lead to crack propagation, causing flexural pain and eventual fracture and loss of tooth structure. Improved understanding of the microanatomy of tooth structure and where it is safe to cut teeth has led to a revolution in dentistry that is known by several names, including microdentistry, minimally invasive dentistry, biomimetic dentistry, and bioemulation dentistry. These treatment concepts have developed due to a coalescence of principles of tooth microanatomy, material science, adhesive dentistry, and reinforcing techniques that, when applied together, will allow dentists to repair a compromised compression dome so that it more closely replicates the structure of the healthy tooth.

  20. Status of Gulf Coast salt dome characterization

    International Nuclear Information System (INIS)

    Swanson, O.E.; Gibbons, M.G.; Deyling, M.A.; McPherson, R.B.

    1982-01-01

    Screening and characterization for a potential nuclear waste repository have progressed through the area phase in these Gulf Coast Salt Basins. The domes studied during the area phase are described briefly. The area characterization studies are outlined, and the resulting reports are listed. Geologic and environmental studies resulted in elimination of four domes from further consideration. The remaining domes were judged acceptable and were classified as to their favorability to license. Site characterization planning for location phase activities deals primarily with technical, environmental, and socioeconomic issues of concern to the states and/or to the Office of Nuclear Waste Isolation (ONWI), Department of Energy (DOE). These issues are listed and discussed. 16 references, 9 figures

  1. Iron fluxes to Talos Dome, Antarctica, over the past 200 kyr

    Directory of Open Access Journals (Sweden)

    P. Vallelonga

    2013-03-01

    Full Text Available Atmospheric fluxes of iron (Fe over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and the reorganisation of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we confirm that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO2 is approximately 20 ppmv.

  2. Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data

    Science.gov (United States)

    Krippner, Janine B.; Belousov, Alexander B.; Belousova, Marina G.; Ramsey, Michael S.

    2018-04-01

    For the years 2001 to 2013 of the ongoing eruption of Shiveluch volcano, a combination of different satellite remote sensing data are used to investigate the dome-collapse events and the resulting pyroclastic deposits. Shiveluch volcano in Kamchatka, Russia, is one of the world's most active dome-building volcanoes, which has produced some of the largest known historical block-and-ash flows (BAFs). Globally, quantitative data for deposits resulting from such large and long-lived dome-forming eruptions, especially like those at Shiveluch, are scarce. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data to analyze the dome-collapse scars and BAF deposits that were formed during eruptions and collapse events in 2001, 2004, 2005, 2007, 2009, 2010, and two events in 2013. These events produced flows with runout distances of as far as 19 km from the dome, and with aerial extents of as much as 22.3 km2. Over the 12 years of this period of investigation, there is no trend in deposit area or runout distances of the flows through time. However, two potentially predictive features are apparent in our data set: 1) the largest dome-collapse events occurred when the dome exceeded a relative height (from dome base to top) of 500 m; 2) collapses were preceded by thermal anomalies in six of the cases in which ASTER data were available, although the areal extent of these precursory thermal areas did not generally match the size of the collapse events as indicated by scar area (volumes are available for three collapse events). Linking the deposit distribution to the area, location, and temperature profiles of the dome-collapse scars provides a basis for determining similar future hazards at Shiveluch and at other dome-forming volcanoes. Because of these factors, we suggest that volcanic hazard analysis and mitigation at volcanoes with similar BAF emplacement behavior may

  3. Blowing off steam: Tuffisite formation as a regulator for lava dome eruptions

    Directory of Open Access Journals (Sweden)

    Jackie Evan Kendrick

    2016-04-01

    the lava dome’s ability to seal and build pressure that drives explosions. Indeed, the time interval between explosions during 2007 to 2011 gradually increased before the onset of a period of quiescence starting in June 2011. We suggest that the permeability evolution during tuffisite formation has important consequences for modeling of gas-and-ash explosions, common at dome-forming volcanoes.

  4. Reactor-building-basement radionuclide and source distribution studies. Volume 3

    International Nuclear Information System (INIS)

    Cox, T.E.; Horan, J.T.; Worku, G.

    1983-06-01

    The Three Mile Island Unit 2 (TMI-2) Reactor Building basement has been sampled several times since August 1979. This report compiles the analytical results and sample history for the liquid and solid samples obtained to date. In addition, basement radiation levels were also obtained using thermoluminescent dosimeters (TLDs). The data obtained will provide information to support ongoing mass balance and source term studies and will aid in characterizing the 282-ft elevation for decontamination planning and dose reduction

  5. HELB Analysis for ESBWR Reactor Building and Main Steam Tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Noguera Oliva, O.

    2011-07-01

    The Reactor Building compartments and tbe Main Steam Tunnel are modeled using GOTHIC 7.2a. These models are based on Control Volumes (Rooms/Compartments/Regions), Flow Paths (junctions such as vent path or any opening) and Boundary Conditions (Mass and energy releases and outside conditions). Due to the different break locations, four models are built to analyze the short-term pressurization response. Are shown the cases analyzed, the results obtained and the models used for this purpose.

  6. Precautions against axial fan stall in reactor building to Tianwan NPP

    International Nuclear Information System (INIS)

    Liu Chunlong; Pei Junmin

    2011-01-01

    The paper introduces the mechanism and harm of rotating stall of axial fans, analyzes the necessity for prevention against axial fan stall in reactor building of Tianwan NPP, introduces the precautions, and then makes an assessment on anti-stall effect of flow separators. It can provide reference for model-selection or reconstruction of similar fans in power stations, and for operation and maintenance of axial fans. (authors)

  7. Evaluation of the structure and stratigraphy over Richton Dome, Mississippi

    International Nuclear Information System (INIS)

    Werner, M.L.

    1986-05-01

    The structure and stratigraphy over Richton Salt Dome, Mississippi, have been evaluated from 70 borings that were completed to various depths above the dome. Seven lithologic units have been identified and tentatively correlated with the regional Tertiary stratigraphy. Structure-contour and thickness maps of the units show the effects of dome growth from Eocene through early Pliocene time. Growth of the salt stock from late Oligocene through early Pliocene is estimated to have averaged 0.6 to 2.6 centimeters (0.2 to 1.1 inches) per 1000 years. No dome growth has occurred since the early Pliocene. The late Oligocene to early Pliocene strata over and adjacent to the dome reflect arching over the entire salt stock; some additional arching over individual centers may represent pre-Quaternary differential movement in the salt stock. The lithology and structure of the caprock at the Richton Salt Dome indicate that the caprock probably was completely formed by late Oligocene. In late Oligocene, the caprock was fractured by arching and altered by gypsum veining. Since late Oligocene, there are no indications of significant hydrologic connections through the caprock - that is, there are no indications of dissolution collapse or further anhydrite caprock accumulation. This structural and stratigraphic analysis provides insights on dome growth history, dome geometry, and neardome hydrostratigraphy that will aid in planning site characterization field activities, including an exploratory shaft, and in the conceptual design of a high-level waste (HLW) repository

  8. Effects of different SSI parameters on the floor response spectra of a nuclear reactor building

    International Nuclear Information System (INIS)

    Kabir, A.F.; Bolourchi, S.; Maryak, M.E.

    1991-01-01

    The effects of several critical soil-structure interaction (SSI) parameters on the floor response spectra (FRS) of a typical nuclear reactor building have been examined. These parameters are computation of soil impedance functions using different approaches, scattering effects (reductions in ground motion due to embedment and rigidity of building foundation) and strain dependency of soil dynamic properties. This paper reports that the significant conclusions of the study, which are applicable to a deeply embedded very rigid nuclear reactor building, are as follows: FRS generated without considering scattering effects are highly conservative; differences between FRS, generated considering strain-dependency of soil dynamic properties, and those generated suing low-strain values, are not significant; and the lumped-parameter approach of SSI calculations, which only uses a single value of soil shear modulus in impedance calculations, may not be able to properly compute the soil impedances for a soil deposit with irregularly varying properties with depth

  9. Ventilation system in the RA reactor building - design specifications; Sistem ventilacije u objektu 'RA' - Tehnicki opis

    Energy Technology Data Exchange (ETDEWEB)

    Badrljica, R [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1984-09-15

    Protective role of the ventilation system of nuclear facilities involve construction of ventilation barriers which prevent release of radioactive particulates or gases, elimination od radioactive particulates and gases from the air which is released from contaminated zones into the reactor environment. Ventilation barriers are created by dividing the building into a number of ventilation zones with different sub pressure compared to the atmospheric pressure. The RA reactor building is divided into four ventilation zones. First zone is the zone of highest risk. It includes reactor core with horizontal experimental channels, underground rooms of the primary coolant system (D{sub 2}O), helium system, hot cells and the space above the the reactor core. Second zone is the reactor hall and the room for irradiated fuel storage. The third zone includes corridors in the basement, ground floor and first floor where the probability of contamination is small. The fourth zone includes the annex where the contamination risk is low. There is no have natural air circulation in the reactor building. Ventilators for air input and outlet maintain the sub pressure in the building (pressure lower than the atmospheric pressure). This prevents release of radioactivity into the atmosphere. Zastitne uloge ventilacionog sistema kod nuklearnih postrojenja obuhvataju formiranje ventilacionih barijera koje onemugucavaju sirenje radioaktivnih cestica ili gasova putem cirkulacije vazduha; eliminaciju radioaktivnih cestica i gasova iz vazduha koji se evakuise iz kontaminiranih prostora u okolinu reaktorskog postrojenja. Formiranje zastitnih ventilacionih barijera ostvaruje se obicno podelom unutrasnjosti objekta na vise ventilacionih zona razlicitih podpritisaka u odnosu na spoljni atmosferski pritisak. Celi prostor zgrade reaktora RA podeljen je u cetiri ventilacione zone. Prva zona je zona najveceg rizika, u koju spadaju reaktorsko jezgro sa horizontalnim eksperimentalnim kanalima, tehnoloske

  10. Incoherent SSI Analysis of Reactor Building using 2007 Hard-Rock Coherency Model

    International Nuclear Information System (INIS)

    Kang, Joo-Hyung; Lee, Sang-Hoon

    2008-01-01

    Many strong earthquake recordings show the response motions at building foundations to be less intense than the corresponding free-field motions. To account for these phenomena, the concept of spatial variation, or wave incoherence was introduced. Several approaches for its application to practical analysis and design as part of soil-structure interaction (SSI) effect have been developed. However, conventional wave incoherency models didn't reflect the characteristics of earthquake data from hard-rock site, and their application to the practical nuclear structures on the hard-rock sites was not justified sufficiently. This paper is focused on the response impact of hard-rock coherency model proposed in 2007 on the incoherent SSI analysis results of nuclear power plant (NPP) structure. A typical reactor building of pressurized water reactor (PWR) type NPP is modeled classified into surface and embedded foundations. The model is also assumed to be located on medium-hard rock and hard-rock sites. The SSI analysis results are obtained and compared in case of coherent and incoherent input motions. The structural responses considering rocking and torsion effects are also investigated

  11. Environmental assessment, Richton Dome site, Mississippi

    International Nuclear Information System (INIS)

    1986-05-01

    The Nuclear Waste Policy Act of 1982 (42 USC Sections 10101-10226) requires the environmental assessment of a potential site to include a statement of the basis for the nomination of a site as suitable for characterization. Volume 2 of this environmental assessment provides a detailed evaluation of the Richton Dome Site and its suitability as the site for a radioactive waste disposal facility under DOE siting guidelines, as well as a comparison of the Richton Dome site with other proposed sites. Evaluation of the Richton Dome site is based on the reference repository design, but the evaluation will not change if based on the Mission Plan repository concept. The comparative evaluation of proposed sites is required under DOE guidelines, but is not intended to directly support the subsequent recommendation of three sites for characterization as candidate sites. 428 refs., 24 figs., 62 tabs

  12. Study to evaluate the feasibility of constructing a retrofit containment for the 105-L reactor at the Savannah River Plant

    International Nuclear Information System (INIS)

    Quinn, R.D.

    1989-01-01

    This paper presents a summary of a study performed to determine the feasibility of constructing a retrofit containment dome meeting the requirements of the ASME Boiler and Pressure Vessel Code for nuclear containment vessels over the existing Savannah River 105-L reactor. Using existing large dome structures as a guide, design concepts were developed and analyses performed to evaluate the structural feasibility of containment dome structures. Construction schedules and costs were estimated to assess financial feasibility as well. It was concluded that such a retrofit containment dome was structurally feasible and within the capabilities of present day construction technology

  13. Seismic experiments on Showa-Shinzan lava dome using firework shots

    Science.gov (United States)

    Miyamachi, Hiroki; Watanabe, Hidefumi; Moriya, Takeo; Okada, Hiromu

    1987-11-01

    Seismic experiments were conducted on Showa-Shinzan, a parasitic lava dome of volcano Usu, Hokkaido, which was formed during 1943 1945 activity. Since we found that firework shots fired on the ground can effectively produce seismic waves, we placed many seismometers on and around the dome during the summer festivals in 1984 and 1985. The internal structure had been previously studied using a prospecting technique employing dynamite blasts in 1954. The measured interval velocity across the dome in 1984 ranges 1.8 2.2 km/s drastically low compared to the results (3.0 4.0 km/s) in 1954; in addition, the velocity is 0.3 0.5 km/s higher than that in the surrounding area. The variation of the observed first arrival amplitudes can be explained by geometrical spreading in the high velocity lava dome. These observations show a marked change in the internal physical state of the dome corresponding to a drop in the measured highest temperature at fumaroles on the dome from 800°C in 1947 to 310°C in 1986.

  14. Some aspects of the development of NW-German salt domes

    International Nuclear Information System (INIS)

    Jaritz, W.

    1980-01-01

    Aspects of the development of salt structures that may be of some importance to the safety of a final disposal site for radioactive waste are salt ascent and salt dissolution at the surface. The geological history of the salt domes is described in terms of the dissolution of the salt at the dome surface. In many cases it can be distinguished whether dissolution was caused by the ascent of the salt into strata containing groundwater by diapirism or by epeirogenic uplift or both. The salt domes of Wesendorf, Heide, and Marne are used as examples in a discussion of the transition from dissolution to the deposition of a cover of impermeable sediments. Moreover, the development of the Gorleben salt dome is described. The author's studies show the average rate of uplift of the NW-German salt domes in the diapiric stage to have ranged from a little less than 0.1 to about 0.5 mm per year. For salt domes in later stages, the rate of uplift is several hundredths of a millimeter per year at most. (orig.) [de

  15. BWR type reactor system

    International Nuclear Information System (INIS)

    Morooka, Shin-ichi.

    1980-01-01

    Purpose: To reduce the internal structure in a reactor by rapidly and efficiently transferring heat generated in a reactor core out of the reactor and eliminating the danger of radiation exposure. Constitution: Steam generated in a pressure vessel is introduced into heat pipe group by inserting the heat pipe group into the steam dome of the pressure vessel. The introduced steam is condensed in the heat pipes to transfer the heat of the steam to the heat pipe group. The transferred heat is transmitted to a heat exchanger provided out of a containment vessel to generate steam to operate a turbine. Thus, it is not necessary to introduce the steam including radioactive substance externally and can remove only the heat so as to carry out the desired purpose. (Kamimura, M.)

  16. Response of a NPP reactor building under seismic action with regard to different soil properties

    International Nuclear Information System (INIS)

    Wagenknecht, E.

    1987-01-01

    The object of this investigation is the response of a reactor building on seismic action with systematic variation of the soil stiffness. A thin-walled orthotropic containment shell on varying heavy and rigid foundations is regarded as calculation model. The soil stiffness is simulated by meand of spring elements for horizontal translation and for rocking motions of the building. By the response spectra method the loads of the containment shell are calculated for a horizontal seismic excitation. The investigation is aimed at determining the influence of differentiated soil stiffnesses on the containment action effects and at recognizing the causes for the occuring effects. The results are thoroughly represented by selected quantities of the building's response, the effects from the soil-structure interaction are discussed and the causes of the effects cleary explained. Apossibility is provided for determining critical soil stiffnesses which cause a siginificat intensification effect. The results of the investigations show that both the soil stiffness and structural configuration of the reactor building particulary in case of the substructure being heavy and rigid, exert a decisive on the loading of the superstructure. (orig.)

  17. The Lifferth Dome for Small Telescopes

    Science.gov (United States)

    Wilson, B. L.; Olsen, C. S.; Iverson, E. P.; Paget, A.; Lifferth, W.; Brown, P. J.; Moody, J. W.

    2004-12-01

    The Lifferth Dome is a pull-off roof designed for small telescopes and other observational equipment. It was specifically designed for the needs of the ROVOR project. The roof itself is completely removed from the observatory housing walls and cranked off to the side below the optical horizon. This is done using two swing arms on either side of the observatory that work in unison to lift the roof off the structure and rotate down and away into a cleared location. The torque is provided by a threaded rod connected to an electric motor at the back of the building. As the motor rotates, the threads turn through a threaded sleeve connected directly to the support arms. Advantages to this design are no lost horizon, no roller surfaces to keep clean, low power and simple limit switches. Operation is by computer control using by National Instruments LabVIEW via the internet. We present its design and construction.

  18. Study on reactor building structure using ultrahigh strength materials, 1

    International Nuclear Information System (INIS)

    Ishimura, Kikuo; Odajima, Masahiro; Irino, Kazuo; Hashiba, Toshio.

    1991-01-01

    This study was promoted to be aimed at realization of the optimal nuclear reactor building structure of the future. As the first step, the study regarding ultrahigh strength reinforced concrete (abbr. RC) shear wall was selected. As the result of various tests, the application of ultrahigh strength RC shear walls was verified. The tests conducted were relevant to; ultrahigh strength concrete material tests; pure shear tests of RC flat panels; and bending shear tests and its simulation analysis of RC shear walls. (author)

  19. Fluid dynamic simulation of the non homogeneous steam-air mixture motion in the dome of MARS safety core cooling system

    International Nuclear Information System (INIS)

    Said, S.A.; Caira, M.; Gramiccia, L.; Naviglio, A.

    1992-01-01

    One of the main features of the MARS, an inherently safe nuclear reactor of the new generation, is the innovative decay heat removal system. This has a high inherent reliability thanks to the complete absence of active components. The core decay heat is removed by the vaporization of the water in an emergency reservoir; then the steam collected in the dome over the pool condenses in the air condenser and returns back to the reservoir creating a heat sink of nearly infinite capacity. The transient fluid dynamic numerical simulation of the steam-air mixture flow in the dome is presented. This allows an assessment to be made of the time required for the uncondensable gases to be evacuated. After that time the condenser works at its rated capacity. (4 figures) (Author)

  20. A Scalable and Modular Dome Illumination System for Scientific Microphotography on a Budget.

    Directory of Open Access Journals (Sweden)

    Ricardo Kawada

    Full Text Available A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs remain expensive and inflexible with respect to new LED technology. Further, a one-size-fits-all dome cannot accommodate the large breadth of insect size encountered in nature, forcing the photographer to adapt, in some cases, to a less than ideal dome design. The dome described here is scalable, as it is based on a isodecahedron, and the template for the dome is available as a downloaded file from the internet that can be printed on any printer, on the photographer's choice of media. As a result, a photographer can afford, using this design, to produce a series of domes of various sizes and materials, and LED ring lights of various sizes and color temperatures, depending on the need.

  1. Comparison of computer codes relative to the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Bunz, H.; Dunbar, I.; Gauvain, J.; Ricchena, R.

    1986-01-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes (AEROSIM-M, UK; AEROSOLS/B1, France; CORRAL-2, CEC and NAUA Mod5, Germany) used in order to assess the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR. Topics considered in this paper include aerosols, containment buildings, reactor safety, fission product release, reactor cores, meltdown, and monitoring

  2. Retrofitting Heritage Buildings by Strengthening or Using Seismic Isolation

    International Nuclear Information System (INIS)

    Danieli, Moshe; Bloch, Jacob; Ribakov, Yuri

    2008-01-01

    Many heritage buildings in the Mediterranean area include stone domes as a structural and architectural element. Present stage of these buildings often requires strengthening or retrofitting in order to increase their seismic resistance. Strengthening is possible by casting above existing dome a thin reinforced concrete shell with a support ring. It yields reduction of stresses and strains in the dome. This paper deals with examples of actual restoration and strengthening of three structures in Georgia, two of them damaged by an earthquake in 1991, (a temple in Nikortzminda and a synagogue in Oni, built in 11 th and 19 r century, respectively) and a mosque in Akhaltzikhe, built in 18th century. Retrofitting of these structures was aimed at preservation of initial geometry and appearance by creating composite (stone--reinforced concrete, or stone--shotcrete) structures, which were partially or fully hidden. Further improving of seismic response may be achieved by using hybrid seismic isolation decreasing the seismic forces and adding damping. A brief description of the design procedure for such cases is presented

  3. Type 1 neovascularization with polypoidal lesions complicating dome shaped macula

    OpenAIRE

    Naysan, Jonathan; Dansingani, Kunal K; Balaratnasingam, Chandrakumar; Freund, K Bailey

    2015-01-01

    Dome-shaped macula is described as an inward bulge of the macula within a posterior staphyloma in highly myopic eyes. Choroidal neovascularization is a known complication that can cause visual loss in dome-shaped macula. Herein, we describe a patient who presented with features of polypoidal choroidal neovascularization that developed on a background of high myopia with dome-shaped macula.

  4. Determination of n, γ radiation field around the building of the swimming-pool reactor

    International Nuclear Information System (INIS)

    Jiang Jinling; Wen Youqin; Chen Changmao

    1986-01-01

    This work has measured the dose distribution of n, gamma radiation field around the building of the swimming-pool reactor by use of the highly sensitive neutron Rem counter and PTB-H 7907 exposure ratemeter. The measured datum show that the maximum value of n, gamma dose are 3-4 times greater than the background on certain distance from the building. Generally, the neutron doses are 2-3 times larger than gamma doses on most points

  5. Earthquake proof device for nuclear power plant building

    International Nuclear Information System (INIS)

    Okada, Yasuo.

    1991-01-01

    The structure of the present invention enables three dimensional vibration proof, i.e., in horizontal and vertical directions of a reactor container building. That is, each of the reactor container building and a reactor auxiliary building is adapted as an independent structure. The periphery of the reactor container building is surrounded by the reactor auxiliary building. The reactor auxiliary building is supported against the ground by way of a horizontal vibration proof device. The reactor container building is supported against the ground by way of a three-dimensional vibration proof device that prevents vibrations in both of the horizontal directions, and the vertical directions. The reactor container building is connected to the auxiliary building by way of a vertical vibration proof device. With such a constitution, although the reactor container building is vibration proof against both of the horizontal and the vertical vibrations, the vertical vibration proofness is an extension of inherent vertical vibration period. Accordingly, the head of the building undergoes rocking vibrations. However, since the reactor container building is connected to the reactor auxiliary building, the rocking vibrations are prevented by the reactor auxiliary building. As a result, safety upon occurrence of an earthquakes can be ensured. (I.S.)

  6. Effects of embedment including slip and separation on seismic SSI response of a nuclear reactor building

    International Nuclear Information System (INIS)

    Saxena, Navjeev; Paul, D.K.

    2012-01-01

    Highlights: ► Both the slip and separation of reactor base reduce with increase in embedment. ► The slip and separation become insignificant beyond 1/4 and 1/2 embedment respectively. ► The stresses in reactor reduce significantly upto 1/4 embedment. ► The stress reduction with embedment is more pronounced in case of tensile stresses. ► The modeling of interface is important beyond 1/8 embedment as stresses are underestimated otherwise. - Abstract: The seismic response of nuclear reactor containment building considering the effects of embedment, slip and separation at soil–structure interface requires modeling of the soil, structure and interface altogether. Slip and separation at the interface causes stress redistribution in the soil and the structure around the interface. The embedment changes the dynamic characteristics of the soil–structure system. Consideration of these aspects allows capturing the realistic response of the structure, which has been a research gap and presented here individually as well as taken together. Finite element analysis has been carried out in time domain to attempt the highly nonlinear problem. The study draws important conclusions useful for design of nuclear reactor containment building.

  7. A new patented building technology based on ancient Roman knowledge

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2010-01-01

    Super-light structures with pearl-chains is a new patented building technology by means of which you can build houses, bridges, tunnels, and even ships with longer spans, less material-, and energy consumption, without scaffolding, and making the use of arches, vaults, domes, ribbed shells, and new...

  8. A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION –A FEASIBILITY CASE STUDY IN JAPAN-

    Directory of Open Access Journals (Sweden)

    TETSUO KUBO

    2014-10-01

    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  9. Piercing of the containment shell of a reactor building in case of airplane crash

    International Nuclear Information System (INIS)

    Herzog, M.

    1978-01-01

    The author presents a simple calculation model for a realistic check of the piercing safety of containments of reactor buildings in case of airplane crash. Its application is illustrated by a numerical example (Starfighter crash on the Unterweser nuclear power plant). (orig.) [de

  10. Spatial variations of growth within domes having different patterns of principal growth directions

    Directory of Open Access Journals (Sweden)

    Jerzy Nakielski

    2014-01-01

    Full Text Available Growth rate variations for two paraboloidal domes: A and B, identical when seen from the outside but differing in the internal pattern of principal growth directions, were modeled by means of the growth tensor and a natural coordinate system. In dome A periclinal trajectories in the axial plane were given by confocal parabolas (as in a tunical dome, in dome B by parabolas converging to the vertex (as in a dome without a tunica. Accordingly, two natural coordinate systems, namely paraboloidal for A and convergent parabolic for B, were used. In both cases, the rate of growth in area on the surfaces of domes was assumed to be isotropic and identical in corresponding points. It appears that distributions of growth rates within domes A and B are similar in their peripheral and central parts and different only in their distal regions. In the latter, growth rates are relatively large; the maximum relative rate of growth in volume is around the geometric focus in dome A, and on the surface around the vertex in dome B.

  11. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor building decontamination. Summary status report. Volume 2

    International Nuclear Information System (INIS)

    Doerge, D.H.; Miller, R.L.; Scotti, K.S.

    1986-05-01

    This document summarizes information relating to decontamination of the Three Mile Island Unit 2 (TMI-2) reactor building. The report covers activities for the period of June 1, 1979 through March 29, 1985. The data collected from activity reports, reactor containment entry records, and other sources were entered into a computerized data system which permits extraction/manipulation of specific information which can be used in planning for recovery from an accident similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during decontamination of the reactor building. Support activities conducted outside of radiation areas are excluded from the scope of this report. Computerized reports included in this document are: a chronological summary listing work performed relating to reactor building decontamination for the period specified; and summary reports for each major task during the period. Each task summary is listed in chronological order for zone entry and subtotaled for the number of personnel entries, exposures, and man-hours. Manually-assembled table summaries are included for: labor and exposures by department and labor and exposures by major activity

  12. Atmospheric scintillation at Dome C, Antarctica: implications for photometry and astrometry

    Science.gov (United States)

    Kenyon, S.; Lawrence, J.; Ashley, M. C. B.; Storey, J. W. V.; Tokovinin, A.; Fossat, E.

    2006-08-01

    Night-time turbulence profiles of the atmosphere above Dome C, Antarctica, were measured during 2004, using a MASS instrument. We compare this data with turbulence profiles above Cerro Tololo and Cerro Pachon, also measured with a MASS, and find, with the exception of the owest layer, that Dome C has significantly less turbulence. In addition, the integrated at turbulence 16 km above Dome C is always less than the median values at the two Chilean sites. Using average wind speed profiles, we assess the photometric noise produced by scintillation, and the atmospheric contribution to the error budget in narrow angle differential astrometry. In comparison with the two mid-latitude sites in Chile, Dome C offers a potential gain of about 3.6 in both photometric precision (for long integrations) and narrow-angle astrometry precision. Although the data from Dome C cover a fairly limited time frame, they lend strong support to expectations that Dome C will offer significant advantages for photometric and astrometric studies.

  13. Seismic strengthening of the ILL High Flux Reactor building

    International Nuclear Information System (INIS)

    Germane, Lionel; Plewinski, Francois; Thiry, Jean-Michel

    2006-01-01

    The Institut Max von Laue - Paul Langevin is an international research organisation and world leader in neutron science and technology. Since 1971 it has been operating the ILL HFR (High-Flux Reactor), the most intense continuous neutron source in the world. The ILL is governed by an international cooperation agreement between France, Germany and the United Kingdom; the fourth ten-year extension to the agreement was signed at the end of 2002, thus ensuring that the Institute will continue to operate until at least the end of 2013. In 2002 the facility underwent a general safety review, including an assessment of the impact of a safe shutdown earthquake. A broader programme for upgrading the installations and improving safety levels is now under way. As this has been treated in another paper, we will focus here on the seismic study carried out on the reactor building. The paper has the following contents: 1. Context; 1.1. Presentation of the ILL; 1.2. Description of the installations; 1.3. Safety objectives in the event of an earthquake; 1.4. Safety functions to be guaranteed in the event of an earthquake; 1.5. Safety functions required of the building; 2. Description of the building; 3. Organisation of the project; 3.1. Background; 3.2. Organisation; 4. General Methodology of the studies; 5. Progress of the studies; 5.1. Definition of the strengthening measures; 5.2. Validation of the strengthening option; 6. Seismic strengthening of the building; 6.1. Description of the strengthening measures; 6.2. Implementation of the strengthening measures; 6.2.1. Pilot operation; 6.2.2. Main operation; 7. Conclusion. To summarize, the presence of specialists in the ILL team, and the fact that the initial studies were performed by the project team itself, improved our general understanding of the issues and facilitated dialogue and exchange between all those involved (operators, technicians, outside experts, technical contractors and the French safety authorities). Everyone was

  14. Structure and evolution of an active resurgent dome evidenced by geophysical investigations: The Yenkahe dome-Yasur volcano system (Siwi caldera, Vanuatu)

    Science.gov (United States)

    Brothelande, E.; Lénat, J.-F.; Chaput, M.; Gailler, L.; Finizola, A.; Dumont, S.; Peltier, A.; Bachèlery, P.; Barde-Cabusson, S.; Byrdina, S.; Menny, P.; Colonge, J.; Douillet, G. A.; Letort, J.; Letourneur, L.; Merle, O.; Di Gangi, F.; Nakedau, D.; Garaebiti, E.

    2016-08-01

    In this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus

  15. Wide-scan dielectric dome antenna with reduced profile

    NARCIS (Netherlands)

    Gandini, E.; Silvestri, F.; Benini, A.; Gerini, G.; Martini, E.; Maci, S.; Viganò, M.C.; Toso, G.; Monni, S.

    2017-01-01

    In this contribution, a dielectric dome antenna design in Ka-band is presented. The dome antenna is based on the combination of a phased array and a dielectric lens. The goal of the combination of these structures is to enlarge the field of view of the antenna. In particular, the array is considered

  16. Geological and hydrological exploration of Gulf Coast Salt Domes

    International Nuclear Information System (INIS)

    Laughon, R.B.

    1979-01-01

    The geologic exploration program in the Gulf Coast Salt Dome Region is based on a screening process that includes a series of increasingly detailed studies. The screening procedure takes the following steps: (1) determination of regions for further study (in this case, the salt domes of the interior Gulf Coast); (2) regional surveys and the determination of areas within those regions which are thought to be most suitable and which are recommended for further evaluation (in this case, eight specific salt domes); (3) area characterizations and the determination of locations within the areas which are thought to have a high probability of suitability (in this case, two or three of the eight salt domes); (4) location studies and the determination of a potential repository site, which is thought to be suitable and licensable and which is recommended for completion of site characterization studies

  17. THEMIS Observations of Domes and Associated Lineaments in Arcadia Planitia

    Science.gov (United States)

    Milam, K. A.; McSween, H. Y.

    2003-12-01

    The northern plains of Mars contain several high concentrations (Acidalia, Utopia, Elysium, etc.) of small (System (THEMIS), visible images from THEMIS and the Mars Orbiter Camera, and elevation data from the Mars Orbiter Laser Altimeter were used to study a 390,000 km 2 area ˜1500 km to the northwest of Elysium Mons. Of interest is a region centered on Tyndall crater and bordered by Phlegras Montes to the west. The area is characterized by gentle, westward-sloping plains, with noticeable slope breaks along several N-S trending wrinkle ridges. Several hundred circular domes dot this area. Domes display features consistent with a volcanic origin. Most are circular to slightly elliptical at their base, with basal diameters ranging from 0.5-6 km. Summits typically rise material (as compared to the coarser-grained summits). Less than 25% of domes appear to have summit depressions and ~ 1% show fractured summit areas. Some domes appear to be randomly distributed, but many are aligned in chains according to wrinkle ridge orientations. Using THEMIS data, we have detected over 165 domes that are aligned with and superimposed upon over 145 lineaments. Most lineaments are cut by lineaments. No laterally extensive flows have been detected as emanating from lineaments, nor have similar lineaments been detected immediately outside the study area. The association of domes and lineaments is consistent with observations of volcanic constructs along open fissures in many terrestrial volcanic fields. Assuming a volcanic origin, the dome-lineament relationship suggests localized, structurally-controlled eruptions along open fissures. Initial extension caused the opening of fractures, which was followed by localized extrusions. Such localized development can provide information about eruption rates, magma compositions, or the physical properties of erupted lava. Either during or after volcanic activity, continued extension led to several domes being dissected by fissures.

  18. Assessment of thermal damage to polymeric materials by hydrogen deflagration in the Three Mile Island Unit 2 Reactor Building

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1985-05-01

    Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, we assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. Simple hydrogen-fire-exposure tests and heat transfer calculations duplicate the degree of damage found on inspected materials from the containment building. These data support estimated 8% pre-fire hydrogen concentration predictions based on various hydrogen production mechanisms

  19. Slow clean-up for fast reactor

    Science.gov (United States)

    Banks, Michael

    2008-05-01

    The year 2300 is so distant that one may be forgiven for thinking of it only in terms of science fiction. But this is the year that workers at the Dounreay power station in Northern Scotland - the UK's only centre for research into "fast" nuclear reactors - term as the "end point" by which time the site will be completely clear of radioactive material. More than 180 facilities - including the iconic dome that housed the Dounreay Fast Reactor (DFR) - were built at at the site since it opened in 1959, with almost 50 having been used to handle radioactive material.

  20. STARFIRE remote maintenance and reactor facility concept

    International Nuclear Information System (INIS)

    Graumann, D.W.; Field, R.E.; Lutz, G.R.; Trachsel, C.A.

    1981-01-01

    A total remote maintenance facility has been designed for all equipment located within the reactor building and hot cell, although operational flexibility has been provided by design of the reactor shielding such that personnel access into the reactor building within 24 hours after reactor shutdown is possible. The reactor design permits removal and replacement of all components if necessary, however, the vacuum pumps, isolation valves and blanket require scheduled, routine maintenance. Reactor scheduled maintenance does not dominate annual plant downtime, therefore, several scheduled operations can be added without affecting reactor availability. The maintenance facilities consist of the reactor building, the hot cell, the reactor service area and the remote maintenance control room. The reactor building contains the reactor, selected support system modules, and required maintenance equipment. The reactor and the support systems are maintained with (1) equipment that is mounted on a monorail system; (2) overhead cranes; and (3) bridge-mounted electromechanical manipulators. The hot cell is located outside of the reactor building to localize contamination products and permit independent operation. An equipment air lock connects the reactor building to the hot cell

  1. Experimental study and numerical optimization of tensegrity domes - A case study

    Science.gov (United States)

    Winkelmann, Karol; Kłos, Filip; Rąpca, Mateusz

    2018-01-01

    The paper deals with the design, experimental analysis and numerical optimization of tensegrity dome models. Two structures are analyzed - a Geiger system dome (preliminary dome), with PVC-U bars and PA6/PP/PET tendons and a Fuller system dome (target dome), with wooden bars and steel cables as tendons. All used materials are experimentally tested in terms of Young's modulus and yield stress values, the compressed bars are also tested for the limit length demarcating the elastic buckling from plastic failure. The data obtained in experiments is then implemented in SOFiSTiK commercial software FE model. The model's geometrical parameters are considered uniform random variables. Geometrically and materially nonlinear analysis is carried out. Based on the obtained structural response (displacements), a Monte Carlo simulation - based approach is incorporated for both structural design point formulation and the SLS requirements fulfillment analysis. Finally, an attempt is made to erect the Fuller dome model in order to compare the numerical results of an experimentally-derived model with the in situ measurements of an actual structure.

  2. Three-reflections telescope proposal as flat-field anastigmat for wide field observations at Dome C

    Science.gov (United States)

    Ferrari, M.; Lemaître, G.; Viotti, R.; La Padula, C.; Comte, G.; Blanc, M.; Boer, M.

    It is now evident that the exceptional seeing at Dome C will allow, in the next years, to pursue astronomical programs with conditions better than at any other observatory in the world, and very close to space experiments. Considering a new type of wide-field telescope, particular astronomical programs could be well optimized for observations at Dome C such as surveys for the discovery and follow up of near-Earth asteroids, search for extra-solar planets using transit or micro-lensing events, and stellar luminosity variations. We propose to build a 1.5 2m class three-reflections telescope, with 1 1.5degree FOV, four times shorter than an equivalent Schmidt telescope, and providing a flat field without requiring a triplet- or quadruplet-lens corrector since its design is anastigmatic. We present the preliminary optical tests of such designs: MINITRUST1 and 2 are two 45cm identical prototypes based in France and Italy, and manufactured using active optics techniques.

  3. On the response of a reactor building and its equipment to aircraft crash

    International Nuclear Information System (INIS)

    Larsson, G.; Lundsager, P.

    1977-01-01

    The present study investigates the dynamic response of the ASEA-ATOM BWR 75 reactor building in terms of response spectra at significant locations considering various aircraft and points of load application. In the first part of the study a total of 21 forcing functions, most of them from the open literature and including the commonly used standard functions, have been studied with respect to documentation, consistency and frequency content. Since none of the forcing functions have been experimentally verified, their validity must be assessed mainly by judging the structural models and assumptions used in their derivation and by checking their consistency. In the second part, linear dynamical models of various degrees of detailedness have been investigated regarding their capacity to describe the behavior of the reactor building under this high frequency loading. The most detailed model consists of plane stress finite elements for every significant wall and floor. In the third part of the study the effects of a number of parameters on the response of the building are investigated. The parameters include the points of attack, damping values, soil spring stiffness as well as different forcing functions of various frequency contents. The reponse is displayed as response spectra and member forces for characteristic locations. The results serve as a basis for development of standardized design floor response spectra and for the structural verification of the bui

  4. Teapot Dome: past, present, and future

    Energy Technology Data Exchange (ETDEWEB)

    Curry, W.H. Jr.

    1977-05-01

    The Teapot Dome field is the 99th largest oil field in the United States with a proved reserve of 42,515,000 bbl, yet the field is sparsely drilled and underdeveloped. The writer credits Naval Petroleum Reserve No. 3 with 38 million bbl of future reserves. The long history of Teapot Dome since the early 1900s, sometimes turbulent, sometimes dormant, was marred by government scandal, akin to Watergate in notoriety, in the 1920s. Harry F. Sinclair's Mammoth Oil Company obtained leases from the Department of the Interior in a fraudulent manner which led to prison sentences for some of the principals. Oil production in the Teapot Dome field is from three formations; the shallow Shannon at depths of 400 to 1,000 ft (122 to 305 m); the Second Wall Creek member of the Frontier Formation at 2,500 to 3,000 ft (362 to 914 m); and the Tensleep Sandstone at 5,500 ft (1,676 m). The Second Wall Creek is the principal producing sandstone and has the greatest future production potential. Current production is small. As of December 1973, each of the 42 Navy wells averaged 4.4 b/d from the Shannon Sandstone, and 49 offset wells averaged 2.2 b/d each. In the Second Wall Creek, each of the 23 Navy wells averaged 10 b/d and 8 offset wells averaged 14.9 b/d each. Total daily production was 416 bbl and grand total for Teapot Dome through December 1975 was 7,762,709 bbl.

  5. CFD simulation analysis and validation for CPR1000 pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Mingqian; Ran Xiaobing; Liu Yanwu; Yu Xiaolei; Zhu Mingli

    2013-01-01

    Background: With the rapid growth in the non-nuclear area for industrial use of Computational fluid dynamics (CFD) which has been accompanied by dramatically enhanced computing power, the application of CFD methods to problems relating to Nuclear Reactor Safety (NRS) is rapidly accelerating. Existing research data have shown that CFD methods could predict accurately the pressure field and the flow repartition in reactor lower plenum. But simulations for the full domain of the reactor have not been reported so far. Purpose: The aim is to determine the capabilities of the codes to model accurately the physical phenomena which occur in the full reactor vessel. Methods: The flow field of the CPR1000 reactor which is associated with a typical pressurized water reactor (PWR) is simulated by using ANSYS CFX. The pressure loss in reactor pressure vessel, the hydraulic loads of guide tubes and support columns, and the bypass flow of head dome were obtained by calculations for the full domain of the reactor. The results were validated by comparing with the determined reference value of the operating nuclear plant (LingAo nuclear plant), and the transient simulation was conducted in order to better understand the flow in reactor pressure vessel. Results: It was shown that the predicted pressure loss with CFD code was slightly different with the determined value (10% relative deviation for the total pressure loss), the hydraulic loads were less than the determined value with maximum relative deviation 50%, and bypass flow of head dome was approximately the same with determined value. Conclusion: This analysis practice predicts accurately the physical phenomena which occur in the full reactor vessel, and can be taken as a guidance for the nuclear plant design development and improve our understanding of reactor flow phenomena. (authors)

  6. Morphological and structural changes at the Merapi lava dome monitored in 2012-15 using unmanned aerial vehicles (UAVs)

    Science.gov (United States)

    Darmawan, Herlan; Walter, Thomas R.; Brotopuspito, Kirbani Sri; Subandriyo; I Gusti Made Agung Nandaka

    2018-01-01

    Dome-building volcanoes undergo rapid and profound topographic changes that are important to quantify for the purposes of hazard assessment. However, as hazardous lava domes often develop on high-altitude volcanoes that exhibit steep-sided topography, it is challenging to obtain direct field access and thus to analyze these morphological and structural changes. Merapi Volcano in Indonesia is a type example of such a volcano, as soon after its 2010 eruption, a new lava dome developed. This dome was partially destroyed during six distinct steam-driven explosions that occurred between 2012 and 2014. Here, we investigate the topographic and structural changes associated with these six steam-driven explosions by comparing close-range photogrammetric data obtained before and after these explosions. To accomplish this, we performed two UAV campaigns in 2012 and 2015. By applying the Structure from Motion (SfM) technique, we are able to construct three-dimensional point clouds, assess their quality by comparing them to a terrestrial laser scanning (TLS) dataset, and generate high-resolution Digital Elevation Models (DEMs) and photomosaics. The comparison of these two DEMs and photomosaics reveals changes in topography and the appearance of fractures. In the 2012 dataset, we find a dense fracture network striking to the NNW-SSE. In the post-eruptive 2015 dataset, we see that this NNW-SSE fracture trend is much more strongly expressed; we also detect the formation of aligned and elongated explosion craters, which are associated with the removal of over 200,000 m3 of dome material, most of which ( 70%) was deposited outside the crater region. Therefore, this study suggests that the locations of the steam-driven explosions at Merapi Volcano were controlled by the reactivation of preexisting structures. Moreover, some of the newly developed and reactivated fractures delineate a block on the southern slope of the dome, which could become structurally unstable and potentially

  7. Environmental assessment, Richton Dome site, Mississippi (US)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    The Nuclear Waste Policy Act of 1982 (42 USC Sections 10101-10226) requires the environmental assessment of a potential site to include a statement of the basis for the nomination of a site as suitable for characterization. Volume 2 of this environmental assessment provides a detailed evaluation of the Richton Dome Site and its suitability as the site for a radioactive waste disposal facility under DOE siting guidelines, as well as a comparison of the Richton Dome site with other proposed sites. Evaluation of the Richton Dome site is based on the reference repository design, but the evaluation will not change if based on the Mission Plan repository concept. The comparative evaluation of proposed sites is required under DOE guidelines, but is not intended to directly support the subsequent recommendation of three sites for characterization as candidate sites. 428 refs., 24 figs., 62 tabs. (MHB)

  8. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    International Nuclear Information System (INIS)

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome

  9. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome.

  10. SPECIFICATIONS FOR HIGH TEMPERATURE LATTICE TEST REACTOR BUILDING 318 PROJECT CAH-100

    Energy Technology Data Exchange (ETDEWEB)

    Vitro Engineering Company

    1964-07-15

    This is the specifications for the High Temperature Lattice Test Reactor Building 318 and it is divided into the following 21 divisions or chapters: (1) Excavating, Backfill & Grading; (2) Reinforced Concrete; (3) Masonry; (4) Structural Steel & Miscellaneous Metal Items, Contents - Division V; (5) Plumbing, Process & Service Piping; (6) Welding; (7) Insulated Metal Siding; (8) Roof Decks & Roofing; (9) Plaster Partitions & Ceiling; (10) Standard Doors, Windows & Hardware; (11) Shielding Doors; (12) Sprinkler System & Fire Extinguishers, Contents - Division XIII; (13) Heating, Ventilating & Air Conditioning; (14) Painting, Protective Coating & Floor Covering, Contents - Division XV; (15) Electrical; (16) Communications & Alarm Systems; (17) Special Equipment & Furnishings; (18) Overhead Bridge Crane; (19) Prefabricated Steel Building; (20) Paved Drive; and (21) Landscaping & Irrigation Sprinklers.

  11. On-site experimental dynamic analysis for evaluating the soil-structure interaction and the seismic behaviour of the Italian PEC fast reactor building

    International Nuclear Information System (INIS)

    Casirati, M.; Castoldi, A.; Panzeri, P.; Pezzoli, P.; Martelli, A.; Masoni, P.; Brancati, V.

    1988-01-01

    The paper describes the on-site dynamic tests carried out on the PEC fast reactor building, using various excitation methods (two eccentric back-rotating-mass mechanical vibrator, blasting in bore-hole, hydraulic actuators at the building foundations). It points out the purposes of the four tests campaigns performed at various construction stages and reports the main experimental results. These results concern both the design safety margins and the data for the validation of the three-dimensional numerical model of the reactor building, including soil-structure interaction phenomena. (author)

  12. Dome-shaped macula: a compensatory mechanism in myopic anisometropia?

    Science.gov (United States)

    Keane, Pearse A; Mitra, Arijit; Khan, Imran J; Quhill, Fahd; Elsherbiny, Samer M

    2012-05-31

    The purpose of this article was to describe a patient with dome-shaped macula in the setting of mild myopic anisometropia and to speculate regarding the role of this feature as a compensatory mechanism in ocular development. The clinical records of a 49-year-old woman with this condition were reviewed. Spectral-domain optical coherence tomographic images revealed evidence of a dome-shaped macula. B-scan ultrasonography measured axial lengths of 23.8 mm in the right eye and 22.8 mm in the left eye. Spherical equivalents were -1.375 and +0.375 in the right and left eyes, respectively. Examination of the left eye was unremarkable. Dome-shaped macula has previously only been described in patients with high myopia. These findings support the hypothesis that myopic anisometropia, rather than absolute refractive status, is central to the development of dome-shaped macula and that this feature represents a protective mechanism aimed at reducing the effects of anisometropia. Copyright 2012, SLACK Incorporated.

  13. Geological and geotechnical aspects of the foundation pit of Kaiga atomic power plant reactor building 2, Kaiga, Uttara Kannada district, Karnataka

    International Nuclear Information System (INIS)

    Katti, Vinod J.; Shah, V.L.; Pande, A.K.

    2014-01-01

    In India Nuclear Power Plants are constructed as per the guidelines laid by IAEA and AERB. Before concrete is poured into reactor building pits, they are systematically mapped and Iithostructural maps are prepared for pit base and side walls. The constraints noticed are carefully attended with geotechnical solutions and remedies to make foundation safe for the entire period of reactor life. Similarly, pit of Kaiga Reactor Building II was systematically mapped for circular base and side walls. Geo-engineering solutions like scrapping out loose, foliated schistose patches, scooping out soft altered zones, filling with grouting, rock-bolting rock segments with major joints and fractures for stopping seepage points were suggested. (author)

  14. Ecosystem studies, endangered species survey - Gibson Dome and Elk Ridge study areas, Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report is published as a product of the National Waste Terminal Storage (NWTS) Program. The objective of this program is the development of terminal waste storage facilities in deep stable geologic formations for high-level nuclear wastes, including spent fuel elements from commercial power reactors and transuranic nuclear waste for which the federal government is responsible. This report is part of the location and site characterization phase and contains threatened and endangered species information for the Gibson Dome and Elk Ridge study areas of the Paradox Region. The threatened and endangered species information was obtained through site surveys designed and implemented by area experts. The site surveys were performed during the period late summer 1981 - spring 1982 in the Gibson Dome and Elk Ridge Study Areas. No threatened or endangered species were identified in either Lavender or Davis canyons. Additional studies at the borehole locations in Beef Basin did identify the nearest occurrence of a species proposed for endangered status (Astragalus monumentalis, a monument milkvetch, member of the legume family). The species was identified approximately 160 to 300 m (500 to 1000 ft) from a hydro testing drill site. Consequently, construction and operation activity should not cause any adverse impacts. This report will be used to satisfy Section 7 requirements of the Endangered Species Act (PL 93-205 as amended) and to allow the United States Fish and Wildlife Service to verify that no protected species are subject to disturbance as the result of project activities occurring in the Gibson Dome and Elk Ridge study areas

  15. Optimised intake stroke analysis for flat and dome head pistons ...

    African Journals Online (AJOL)

    Optimised intake stroke analysis for flat and dome head pistons. ... in understanding the performance characteristics optioned between flat head and dome head pistons in engine design. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  16. Monitoring actual temperatures in Susquehanna SES reactor buildings

    International Nuclear Information System (INIS)

    Derkacs, A.P.

    1991-01-01

    PP and L has been monitoring temperatures in the Susquehanna SES reactor building with digital temperature recorders since 1986. In early 1990, data from four representative areas was analyzed to determine the temperature in each area which would produce the same rate of degradation as the distribution of actual temperatures recorded over about 40 months. From these effective average temperatures, qualified life multipliers were determined for activation energies in the range of 0.5 to 1.5 and those multipliers were used to estimate new qualified lives and the number of replacements which might be saved during the life of the plant. The results indicate that pursuing a program of determining EQ qualified lives from actual temperatures, rather than maximum design basis temperatures, will provide a substantial payback in reduced EQ driven maintenance

  17. Underwater Calibration of Dome Port Pressure Housings

    Science.gov (United States)

    Nocerino, E.; Menna, F.; Fassi, F.; Remondino, F.

    2016-03-01

    Underwater photogrammetry using consumer grade photographic equipment can be feasible for different applications, e.g. archaeology, biology, industrial inspections, etc. The use of a camera underwater can be very different from its terrestrial use due to the optical phenomena involved. The presence of the water and camera pressure housing in front of the camera act as additional optical elements. Spherical dome ports are difficult to manufacture and consequently expensive but at the same time they are the most useful for underwater photogrammetry as they keep the main geometric characteristics of the lens unchanged. Nevertheless, the manufacturing and alignment of dome port pressure housing components can be the source of unexpected changes of radial and decentring distortion, source of systematic errors that can influence the final 3D measurements. The paper provides a brief introduction of underwater optical phenomena involved in underwater photography, then presents the main differences between flat and dome ports to finally discuss the effect of manufacturing on 3D measurements in two case studies.

  18. Dynamic containment of gaseous effluents in the auxiliary buildings and reinjection of liquid effluents from these buildings back into the reactor building for 900 MWe PWRs under accident condition

    International Nuclear Information System (INIS)

    Demoulin, F.; Collinet, J.; Nguyen, C.

    1987-04-01

    Examination of the lessons to be learned from the accident of the Three Mile Island nuclear power plant on 20 March 1979 led the French Safety Authorities and EDF (Electricite de France) to adopt a series of measures intended to improve the performance of the containment of French PWRs, especially in the event of accident. Among the measures adopted, two of them contribute to the upgrading of the containment of nuclear island buildings, by reducing radioactivity constraints inside these buildings and by limiting radioactive releases into the environment. These are: (1) dynamic containment of auxiliary buildings likely to be contaminated following an accident, (2) reinjection back into the reactor building of liquid effluents arising in the auxiliary buildings. In this paper we shall discuss, for each measure, the approach to the problem and describe the arrangements made to arrive at a satisfactory solution [fr

  19. Development of the plasma facing components for the dome-liner component of the ITER divertor

    International Nuclear Information System (INIS)

    Luconi, U.; Di Marco, M.; Federici, A.; Grattarola, M.; Gualco, G.; Larrea, J.M.; Merola, M.; Ozzano, C.; Pasquale, G.

    2005-01-01

    On the basis of the design and the specification of the dome-liner elaborated by EFDA, a manufacturing route based on high temperature brazing has been developed and proved by means of the fabrication and testing of several samples and mock-ups. The dome is protected with tungsten armour tiles joined onto heat sinks obtained from a bimetallic plate made of precipitation hardened copper-chromium-zirconium alloy and stainless steel realized by explosion bonding. The brazed joint between the tungsten tiles and the heat sink has been qualified by means of thermal fatigue tests on small-scale mock-ups in reactor relevant conditions. The properties of the explosion bonding joint between the front copper alloy plate to the rear steel backing has been assessed by means of an extensive metallurgical and mechanical test program according to the specification provided by EFDA. The dimensional stability during the fabrication route has been investigated by means of the realization of a relevant curved component that has been dimensionally tested after the completion of each step of the manufacturing route. The results of the experimental activity are presented and discussed in this paper

  20. Mobile means for the monitoring of atmospheric contamination in a reactor building

    International Nuclear Information System (INIS)

    Marques, S.; Lestang, M.

    2009-01-01

    After having evoked the context and challenges of contamination monitoring when exploiting nuclear reactors, the authors discuss the representativeness of the atmospheric contamination measurement as it depends on the different physicochemical forms of radionuclides present in the circuits. They indicate the different gaseous or aerosol radioactive elements which are monitored within EDF installations. They discuss the incorporation of monitoring means at the installation design level, briefly present the use of beacons inside and outside the reactor building. They describe how monitoring is organized on the basis of alert threshold adjustments: an investigation threshold and an evacuation threshold. They discuss the beacon (or sensor) selection and indicate recommendations for their implementation for optimization purposes. They indicate where these beacons are installed and evoke the experimentation of networked mobile beacons with data remote transmission

  1. Numerical analysis of pressure and porosity evolution in lava domes during periodic degassing conditions

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.; Pitman, E. B.

    2017-12-01

    The collapse or explosive breakup of growing and degassing lava domes presents a significant hazard due to the generation of dense, mobile pyroclastic flows as well as the wide dispersal of dense ballistic blocks. Lava dome stability is in large part governed by the balance of transport and storage of gas within the pore space. Because pore pressurization reduces the effective stress within a dome, the transient distribution of elevated gas pressure is critically important to understanding dome break up. We combine mathematical and numerical analyses to gain a better understanding of the temporal variation in gas flow and storage within the dome system. In doing so, we develop and analyze new governing equations describing nonlinear gas pressure diffusion in a deforming dome with an evolving porosity field. By relating porosity, permeability, and pressure, we show that the flux of gas through a dome is highly sensitive to the porosity distribution and viscosity of the lava, as well as the timescale and magnitude of the gas supply. The numerical results suggest that the diffusion of pressure and porosity variations play an integral role in the cyclic growth and destruction of small domes.The nearly continuous cycles of lava dome growth, pressurization, and failure that have characterized the last two decades of eruptive history at Volcán Popocatépetl, Mexico provide excellent natural data with which to compare new models of transient dome pressurization. At Popocatépetl, periodic pressure increases brought on by changes in gas supply into the base of the dome may play a role in its cyclic growth and destruction behavior. We compare our model of cyclic pressurization with lava dome survival data from Popocatépetl. We show that transient changes in pore pressure explain how small lava domes evolve to a state of criticality before explosion or collapse. Additionally, numerical analyses presented here suggest that short-term oscillations cannot arise within the dome

  2. DOMe: A deduplication optimization method for the NewSQL database backups.

    Directory of Open Access Journals (Sweden)

    Longxiang Wang

    Full Text Available Reducing duplicated data of database backups is an important application scenario for data deduplication technology. NewSQL is an emerging database system and is now being used more and more widely. NewSQL systems need to improve data reliability by periodically backing up in-memory data, resulting in a lot of duplicated data. The traditional deduplication method is not optimized for the NewSQL server system and cannot take full advantage of hardware resources to optimize deduplication performance. A recent research pointed out that the future NewSQL server will have thousands of CPU cores, large DRAM and huge NVRAM. Therefore, how to utilize these hardware resources to optimize the performance of data deduplication is an important issue. To solve this problem, we propose a deduplication optimization method (DOMe for NewSQL system backup. To take advantage of the large number of CPU cores in the NewSQL server to optimize deduplication performance, DOMe parallelizes the deduplication method based on the fork-join framework. The fingerprint index, which is the key data structure in the deduplication process, is implemented as pure in-memory hash table, which makes full use of the large DRAM in NewSQL system, eliminating the performance bottleneck problem of fingerprint index existing in traditional deduplication method. The H-store is used as a typical NewSQL database system to implement DOMe method. DOMe is experimentally analyzed by two representative backup data. The experimental results show that: 1 DOMe can reduce the duplicated NewSQL backup data. 2 DOMe significantly improves deduplication performance by parallelizing CDC algorithms. In the case of the theoretical speedup ratio of the server is 20.8, the speedup ratio of DOMe can achieve up to 18; 3 DOMe improved the deduplication throughput by 1.5 times through the pure in-memory index optimization method.

  3. Hyperthyroidism with dome-and-dart T wave: A case report

    Science.gov (United States)

    Lai, Ping; Yuan, Jing-ling; Xue, Jin-hua; Qiu, Yue-qun

    2017-01-01

    Abstract Rationale: Dome-and-dart T waves (or bifid T waves) are a rare phenomenon in the surface electrocardiogram. These wave forms are mainly observed in patients with congenital heart disease such as atrial septal defect and ventricular septal defect. And hyperthyroidism who presented with an electrocardiogram that had dome-and-dart T waves in a precordial lead is never been reported. Patient concerns: The patient presented with continuous tachycardia, palpitations, chest tightness, and headache for 4 days, and aggravated for 1 day. Diagnoses: Hyperthyroidism. Interventions: Methimazole. Outcomes: All symptoms were alleviated. Lessons: Dome-and-dart or bifid T waves have been reported in the conventional 12-lead electrocardiograms in some patients with congenital heart disease. The case illustrated here, to the best of our knowledge, dome-and-dart or bifid T waves may associate with hyperthyroidism patients. PMID:28178156

  4. Experimental study on joint construction method for aseismatic walls of reactor buildings, (1)

    International Nuclear Information System (INIS)

    Sugita, Kazunao; Mogami, Tatsuo; Ezaki, Tetsuro

    1987-01-01

    On the aseismatic walls of a reactor auxiliary building, many temporary openings are provided at the time of the construction for carrying equipment in later, due to the demand of shortening the construction period. Thus on the aseismatic walls, in most cases there are the joints due to the concrete placed later. As equipment tends to be unitized and become large, the quipment is placed close to the wall having an opening, consequently, the workability is poor, and the standardization of construction method is urgently demanded. The conventional method of closing temporary openings has the problems of safety and connecting reinforcing bars, therefore, the new construction method was proposed. In reactor buildings, the joints of walls are unavoidable, and since those are large scale structures, the joints are numerous. Therefore, at the joint parts, it abandoned and buried frames are used, it is advantageous in the time and cost of joint construction. In both cases, the mechanical properties were confirmed by the fundamental performance test partially modeling the joints and the verifying test modeling the whole walls. In this paper, the test of applying only shearing force to joint models is reported. (Kako, I.)

  5. Control technologies for quadruped walking robot to facilitate carrying operations in reactor buildings

    International Nuclear Information System (INIS)

    Suganuma, Naotaka; Uehara, Takuya; Nakamura, Norihito

    2014-01-01

    At the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc., which was seriously damaged by the Great East Japan Earthquake of March 11, 2011, it has been difficult for workers to approach the reactor buildings due to the hazardous surrounding environment. The need has therefore arsen for remote-controlled robots to facilitate inspection and restoration work on behalf of workers in such a high-level radiation environment. Toshiba has developed a quadruped walking robot that can carry various tools for decommissioning work. This robot is capable of maintaining its balance while walking on uneven surfaces, slopes, and stairs due to the adoption of control technologies to not only autonomously determine the leg trajectories and center of gravity, but also to correct the leg landing positions and posture with operator intervention according to the walking situation. It also offers high mobility and workability through a manipulation function that allows it to unload tools carried on its back storage area by using two of its legs like arms. This quadruped walking robot was applied to the investigation of suspected water leakage areas in the reactor building of Fukushima Daiichi Nuclear Power Station Unit 2 in December 2012. (author)

  6. Ultimate shearing strength of aseismatic walls with many small holes for reactor buildings

    International Nuclear Information System (INIS)

    Yoshizaki, Seiji; Ezaki, Tetsuro; Korenaga, Takeyoshi; Sotomura, Kentaro.

    1984-01-01

    The aseismatic walls for reactor buildings have complicated forms, and are characterized by large wall thickness and high reinforcement ratio as compared with ordinary aseismatic walls. The forms are mainly box, cylinder or irregular polygonal prism and their combination. The design of the walls with many small holes has been performed on the basis of the reinforced concrete structure calculation standard of the Architectural Institute of Japan, following the case with large opening. When there are many small holes, the arrangement of reinforcement for the openings becomes complex, and the construction is difficult. It is necessary to rationalize the design and to simplify the reinforcement work. Under the background like this, the experiment to examine the shearing property in bending of the aseismatic walls with many small holes for reactor buildings was carried out, and horizontal loading test was performed on 43 specimens. The method of calculating the ultimate shearing strength of a wall without opening was proposed, and the method of applying it to a wall with many small holes is shown. The experimental method and the results, the examination of the experimental results, and the ultimate shearing strength of the aseismatic walls are reported. (Kako, I.)

  7. Numerical and on-site experimental dynamic analysis of the Italian PEC fast reactor building

    International Nuclear Information System (INIS)

    Castoldi, A.; Muzzi, F.; Orsi, R.; Panzeri, P.; Pezzoli, P.; Ruggeri, G.; Martelli, A.; Masoni, P.; Brancati, V.

    1988-01-01

    On-site dynamic tests and three-dimensional numerical analysis have been performed by ISMES on behalf of ENEA on the building of the Italian PEC fast reactor test facility. These studies aimed at evaluating the safety margins in the PEC reactor seismic analysis and at providing data for the optimization of the PEC seismic monitoring system. The paper describes the on-site dynamic tests carried out using various excitation methods (two eccentric back-rotating-mass mechanical vibrator, blasting in bore-hole and hydraulic actuators at the building foundations). It highlights the purposes of the four tests campaigns performed at various construction stages and reports the main experimental results. In connection with the experimental tests, a detailed 3D finite element model was set up for fixed base analysis; from the results of the 3D model a simplified equivalent model of the structure was then derived for soil-structure interaction analysis. The mathematical model was validated and calibrated by using the results of the experimental dynamic tests. The main numerical results and the comparisons with the experimental data are presented. (author)

  8. Techniques for the Diagnosis of the Structural Behaviour of Historic Buildings. Analysis of the Dome of San Miguel de los Reyes in Valencia

    Directory of Open Access Journals (Sweden)

    Arturo Martínez Boquera

    2003-12-01

    Full Text Available A profound study of historic masonry with today’s knowledge and without jumping to conclusions or applying modern criteria to ancient heritage is the basis of a restoration project. The case of the dome of San Miguel de los Reyes in Valencia provides the authors with an excuse to explain their approach to the problem and describe their analysis and calculation procedures. The computerised mapping of the results developed by these authors affords an immediate view of the behaviour and defects of the dome, a necessary step before seeking a solution for its structural reinforcement.

  9. Evaluating links between deformation, topography and surface temperature at volcanic domes: Results from a multi-sensor study at Volcán de Colima, Mexico

    Science.gov (United States)

    Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.

    2017-12-01

    Dome building activity is common at many volcanoes and due to the gravitational instability, a dome represents one of the most hazardous volcanic phenomena. Shallow volcanic processes as well as rheological and structural changes of the dome affecting the fluid transport have been linked to transitions in eruptive activity. Also, hydrothermal alteration may affect the structural integrity of the dome, increasing the potential for collapse. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging due to difficult access and poor coverage. Here we present for the first time the near-vertical and near-horizontal surface deformation field of a quiescent summit dome and the relationships with degassing and topographic patterns. Our results are derived from high resolution satellite radar interferometry (InSAR) time series based on a year of TerraSAR-X SpotLight acquisitions and Structure from Motion (SfM) processing of overflight infrared data at Volcán de Colima, Mexico. The identified deformation is dominated by localized heterogeneous subsidence of the summit dome exceeding rates of 15 cm/yr, and strongly decreasing over the year 2012, up to the renewal of explosive and extrusive activity in early 2013. We tentatively attribute the deformation to the degassing, cooling and contraction of the dome and shallow conduit material. We also find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. The combined interpretation of the deformation and infrared data reveals a complex spatial relationship between the degassing pathways and the deformation. While we observe no deformation across the crater rim fumaroles, discontinuities in the deformation field are more commonly observed around the dome rim fumaroles and occasionally on the

  10. Continuous Monitoring of GAMMA Radiation Field in the Reactor RA Building

    International Nuclear Information System (INIS)

    Stalevski, T.

    2008-01-01

    This paper presents the system for continuos monitoring of gamma doze rate in the reactor RA building. Industrial (PC compatible) computer acquires analog signals from eight ionization chambers and eight analog signals from three BPH devices. Digital output interface is used for testing ionization chambers and BPH devices. Computer program for data analyzes and presentation is written in graphical programming language LabVIEW and enables monitoring of measured data in real time. Measured data can be monitored over local computer network, Internet and mobile devices using standard web browsers. (author)

  11. Effect of Pyramidal Dome Geometry on the Acoustical Characteristics in A Mosque

    Directory of Open Access Journals (Sweden)

    Dg. H. Kassim

    2014-12-01

    Full Text Available As an important symbol in Islam, a mosque is built with architectural grandeur. Among the characteristics is its high ceiling and it is usually constructed with a typical spherical dome shape. Some mosques, however, are influenced by the local culture and the dome can be of a different shape, such as pyramidal, as found in mosques in Malacca, Malaysia. This paper presents an assessment of the internal acoustical characteristics of a mosque having a pyramidal dome. The study is conducted by means of computer simulation using CATT indoor acoustic software. Reverberation time and clarity are taken to evaluate the intelligibility of speech. The effect of the angle and height of the dome on the acoustical parameters is discussed. It is found that a pyramidal dome with a steeper angle contributes to poor acoustic clarity.

  12. Draft environmental assessment: Vacherie Dome site, Louisiana. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Vacherie dome in Louisiana as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Vacherie dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations contained in this draft EA, the DOE has found that the Vacherie dome site is not disqualified under the guidelines. The site is contained in the Gulf Interior Region of the Gulf Coastal Plain, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites - the Cypress Creek dome site and the Richton dome site. Although the Vacherie dome site appears to be suitable for site characterization, the DOE has concluded that the Richton dome site is the preferred site in the Gulf Interior Region. On the basis of these findings, the DOE is proposing to nominate the Richton dome site rather than the Vacherie dome site as one of the five sites suitable for characterization

  13. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    Science.gov (United States)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  14. A history of semi-active laser dome and window materials

    Science.gov (United States)

    Sullivan, Roger M.

    2014-05-01

    Semi-Active Laser (SAL) guidance systems were developed starting in the mid-1960's and today form an important class of precision guided weapons. The laser wavelengths generally fall in the short wave infrared region of the spectrum. Relative to passive, image based, infrared seekers the optical demands placed on the domes or windows of SAL seekers is very modest, allowing the use of low cost, easily manufactured materials, such as polycarbonate. This paper will examine the transition of SAL window and dome science and technology from the laboratory to battlefield, with special emphasis on the story of polycarbonate domes.

  15. Dome-shaped PDC cutters drill harder rock effectively

    International Nuclear Information System (INIS)

    Moran, D.P.

    1992-01-01

    This paper reports that rock mechanics and sonic travel time log data indicate that bits with convex-shaped polycrystalline diamond compact (PDC) cutters can drill harder rock formations than comparable bits with flat PDC cutters. The Dome-shaped cutters have drilled carbonate formations with sonic travel times as small as 50 μsec/ft, compared to the standard cutoff of 75 μsec/ft for flat PCD cutters. Recent field data from slim hole wells drilled in the Permian basin have shown successful applications of the 3/8-in. Dome cutter in the Grayburg dolomite with its sonic travel times as low as 50-55 μsec/ft and compressive strengths significantly greater than the standard operating range for PDC bit applications. These field data indicate that the Dome cutters can successfully drill hard rock. The convex cutter shape as good impact resistance, cuttings removal, heat dissipation, and wear resistance

  16. Fuel transporting device in nuclear reactor

    International Nuclear Information System (INIS)

    Inoue, Tatsumi.

    1975-01-01

    Object: To obtain a support structure of an excellent quakeproof property for a fuel transporting device provided for the transportation of fuel between a reactor building and an auxiliary building in a pressure tube reactor or the like. Structure: The structure comprises an oblique transfer chute loosely penetrating the reactor building, reactor container and auxiliary building, a transfer chute support outer cylinder surrounding the transfer chute and having one end coupled to the transfer chute and other end coupled to the container, flexible seal members respectively provided on the reactor building side and on the auxiliary building side and surrounding the transfer chute and a slidable support supported on the side of the auxiliary building such that it can be in frictional contact with the outer periphery of the transfer chute. With this construction, the relative displacements of various parts caused by an earthquake or the like can be absorbed by the support outer cylinder, flexible seals and slidable support. (Ikeda, J.)

  17. The Development of M Cells in Peyer’s Patches Is Restricted to Specialized Dome-Associated Crypts

    Science.gov (United States)

    Gebert, Andreas; Fassbender, Susanne; Werner, Kerstin; Weissferdt, Annikka

    1999-01-01

    It is controversial whether the membranous (M) cells of the Peyer’s patches represent a separate cell line or develop from enterocytes under the influence of lymphocytes on the domes. To answer this question, the crypts that produce the dome epithelial cells were studied and the distribution of M cells over the domes was determined in mice. The Ulex europaeus agglutinin was used to detect M cells in mouse Peyer’s patches. Confocal microscopy with lectin-gold labeling on ultrathin sections, scanning electron microscopy, and laminin immuno-histochemistry were combined to characterize the cellular composition and the structure of the dome-associated crypts and the dome epithelium. In addition, the sites of lymphocyte invasion into the dome epithelium were studied after removal of the epithelium using scanning electron microscopy. The domes of Peyer’s patches were supplied with epithelial cells that derived from two types of crypt: specialized dome-associated crypts and ordinary crypts differing not only in shape, size, and cellular composition but also in the presence of M cell precursors. When epithelial cells derived from ordinary crypts entered the domes, they formed converging radial strips devoid of M cells. In contrast to the M cells, the sites where lymphocytes invaded the dome epithelium were not arranged in radial strips, but randomly distributed over the domes. M cell development is restricted to specialized dome-associated crypts. Only dome epithelial cells that derive from these specialized crypts differentiate into M cells. It is concluded that M cells represent a separate cell line that is induced in the dome-associated crypts by still unknown, probably diffusible lymphoid factors. PMID:10329609

  18. A Planetarium Inside Your Office: Virtual Reality in the Dome Production Pipeline

    Science.gov (United States)

    Summers, Frank

    2018-01-01

    Producing astronomy visualization sequences for a planetarium without ready access to a dome is a distorted geometric challenge. Fortunately, one can now use virtual reality (VR) to simulate a dome environment without ever leaving one's office chair. The VR dome experience has proven to be a more than suitable pre-visualization method that requires only modest amounts of processing beyond the standard production pipeline. It also provides a crucial testbed for identifying, testing, and fixing the visual constraints and artifacts that arise in a spherical presentation environment. Topics adreesed here will include rendering, geometric projection, movie encoding, software playback, and hardware setup for a virtual dome using VR headsets.

  19. Reactor building design of nuclear power plant ATUCHA II, Argentina

    International Nuclear Information System (INIS)

    Rufino, R.E.; Hermann, E.R.; Richter, E.

    1984-01-01

    It is presented the civil engineering project carried out by the joint venture Hochtief - Techint-Bignoli (HTB) for the reactor building at the Atucha II power plant (PHWR of 745 MWe) in Buenos Aires. All the other civil projects at Atucha II are also being carried out by HTB. This building has the same general characteristics of the PWR plants developed by KWU in Germany, known for the spherical steel containment 56m in diameter. Nevertheless, it differs from those principally in the equipment lay-out and the remarkable foundation depth. From the basic engineering provided by ENACE, the joint venture has had to face the challenge of designing a tridimensional structure of large size. This has necessitated using simplified models which had to be superimposed, since the use of only one spatial mode would be highly inadequate, lacking the flexibility necessary to absorb the numerous modifications that this type of project undergoes during construction. In addition, this procedure has eliminated resorting to numerous and costly computer processings. (Author) [pt

  20. Development of the armoring technique for ITER Divertor Dome

    Energy Technology Data Exchange (ETDEWEB)

    Litunovsky, Nikolay, E-mail: nlitunovsky@sintez.niiefa.spb.su [D.V. Efremov Reseasch Institute, 3, Doroga na Metallostroy, Saint Petersburg (Russian Federation); Alekseenko, Evgeny; Makhankov, Alexey; Mazul, Igor [D.V. Efremov Reseasch Institute, 3, Doroga na Metallostroy, Saint Petersburg (Russian Federation)

    2011-10-15

    This paper describes the current status of the technique for armoring of Plasma Facing Units (PFUs) of the ITER Divertor Dome with flat tungsten tiles planned for application at the procurement stage. Application of high-temperature vacuum brazing for armoring of High Heat Flux (HHF) plasma facing components was traditionally developed at the Efremov Institute and successfully tried out at the ITER R and D stage by manufacturing and HHF testing of a number of W- and Be-armored mock-ups . Nevertheless, the so-called 'fast brazing' technique successfully applied in the past was abandoned at the stage of manufacturing of the Dome Qualification Prototypes (Dome QPs), as it failed to retain the mechanical properties of CuCrZr heat sink of the substrate. Another problem was a substantially increased number of armoring tiles brazed onto one substrate. Severe ITER requirements for the joints quality have forced us to refuse from production of W/Cu joints by brazing in favor of casting. These modifications have allowed us to produce ITER Divertor Dome QPs with high-quality tungsten armor, which then passed successfully the HHF testing. Further preparation to the procurement stage is in progress.

  1. Jules Horowitz reactor (RJH): its design

    International Nuclear Information System (INIS)

    Dupuy, J.P.

    2002-01-01

    This article presents the design of the new irradiation facility (Jules Horowitz reactor) that is planned to be built on the Cadarache site of Cea. 2 principles have been followed. The first one is based on a physical separation between the systems and activities related to the reactor and the experiments from one hand and the other systems and means dedicated to the treatment of the experimental devices before and after irradiation on the other hand. This first principle implies to build 2 buildings: the reactor building and the nuclear auxiliaries building. Inside the reactor building activities from the reactor itself are separated from those dedicated to experimentation. In order to maximize the efficiency of such a reactor, an important number of simultaneous experiments is expected, which will generate an endless flux of incoming and out-going experiments and as a consequence an important handling work between the different work posts. The second principle aims at easing any handling work without breaking the rules of confinement. The different storing pools, the water pits that lead to the 5 hot cells and the reactor tank will communicate through a water-filled canal that will link the 2 buildings. (A.C.)

  2. Gas-cooled reactor for space power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors

  3. Predictions of Aerodynamic Heating on Tactical Missile Domes

    Science.gov (United States)

    1979-04-25

    A . Martellucci W. Daskin J. D. Cresswell J. B. Arnaiz L. A . Marshall J. Cassanto R. Hobbs C. Harris F. George P.O. Box 8555 Philadelphia, PA J9101... A LEVELs NSWC TR 79-21 i PREDICTIONS OF AERODYNAMIC HEATING ON TACTICAL MISSILE DOMES A wo BY T. F. ZIEN W. C. RAGSDALE RESEARCH TECHNOLOGY...DOMES SAUTHOR( a ) 8. CONTRACT OR GRANT NUMBER() T. F. ZiendW.C jRagsale 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

  4. Full Dome Development for Interactive Immersive Training Capabilities

    Science.gov (United States)

    2015-04-03

    called the the vDome Player. This application serves as a familiar user interface for direct media playback. Modeled after the widely used VLC ...charrette challenge to task. Below are my notes on where everyone is in planning thei r f inal proj ects . Please let me know (comments or emai l...space with a lot of sound and feeling. What is challenging ? The challenge is how to get depth of field in the dome. Trying to gently allure people into

  5. Jurassic domes in the North Sea - northern North Atlantic region

    Energy Technology Data Exchange (ETDEWEB)

    Surlyk, F. [Univ. of Copenhagen, Geological Inst., Copenhagen (Denmark)

    1996-12-31

    The stratigraphic and tectonic evolution of the Jurassic of East Greenland, the Norwegian Shelf and the North Sea is remarkably similar. A major Middle Jurassic unconformity occurs in all three areas. In the North Sea it is commonly termed the `Mid-Cimmerian Unconformity` and is characterized by progressive truncation of the underlying section towards a centre at the triple junction between the Central Graben, Viking Graben and Moray Firth. Strata above the unconformity show a progressive Late Aalenian-Early Kimmeridgian onlap in the same direction. These relations have been interpreted as caused by Early Jurassic uplift and of a major thermal dome in the central North Sea, followed by Medial and Late Jurassic rifting, erosion, deflation and transgression of the dome. The East Greenland unconformity shows progressive truncation of underlying strata from south to north, and Bajocian to Callovian onlap in the same direction. The same pattern seems to be developed on the conjugate Norwegian margin. This suggests the possibility that the three unconformities have similar causes for their development. It is proposed that major rift domes formed in the Central North Sea and in the Greenland-Norway seaway in Early Jurassic times. The domes were eroded and gradually deflated during Medial Jurassic times and were finally submerged by the Late Oxfordian-Kimmeridgian. They were associated with volcanism and rifting which was delayed with respect to dome initiation. Roughly contemperaneous domes were present west of Britain, north of the Porcupine Seabight, and in Scania, southern Sweden, as reflected by development of asymmetrical unconformities showing progressive truncation of underlying strata, onlap of overlying Jurassic strata, and associated intrusive and extrusive volcanism. The domes are related to impingement of the heads of transient mantle plumes at the base of the lithosphere. The associated unconformities are thus of non-eustatic nature. Domal uplift and

  6. Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum

    International Nuclear Information System (INIS)

    Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

    1980-01-01

    Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes

  7. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  8. The Strasbourg Large Refractor and Dome: Significant Improvements and Failed Attempts

    Science.gov (United States)

    Heck, Andre

    2009-01-01

    Founded by the German Empire in the late 19th century, Strasbourg Astronomical Observatory featured several novelties from the start. According to Mueller (1978), the separation of observing buildings from the study area and from the astronomers' residence was a revolution in observatory construction. The instruments were, as much as possible, isolated from the vibrations of the buildings themselves. "Gas flames" and water were used to reduce temperature effects. Thus the Large Dome (ca 11m diameter), housing the Large Refractor (ca 49cm, then the largest in Germany) and covered by zinc over wood, could be cooled down by water running from the top. Reports (including by the French who took over the observatory after World War I) are however somehow nonexistent on the effective usage and actual efficiency of such a system (which must have generated locally a significant amount of humidity). The paper will detail these technical attempts as well as the specificities of the instruments installed in that new observatory intended as a showcase of German astronomy.

  9. Draft environmental assessment: Richton Dome site, Mississippi. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy identified the Richton dome site as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations reported in this draft EA, the DOE has found that the Richton dome site is not disqualified under the guidelines. The site is in the Gulf Interior Region of the Gulf Coastal Plain. This setting contains two other potentially acceptable sites - the Cypress Creek dome site and the Vacherie dome site. Although these other two sites appear to be suitable for site characterization, the DOE has concluded that the Richton dome site is the preferred site in the Gulf Interior Region. Furthermore, the DOE finds that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Richton dome site as one of five sites suitable for characterization. Having compared the Richton dome site with the other four sites proposed for nomination, the DOE has determined that the Richton dome site is not one of the three preferred sites for recommendation to the President as candidates for characterization

  10. Forces and dynamics in epithelial domes of controlled size and shape

    Science.gov (United States)

    Latorre-Ibars, Ernest; Casares, Laura; Gomez-Gonzalez, Manuel; Uroz, Marina; Arroyo, Marino; Trepat, Xavier

    Mechanobiology of epithelia plays a central role in morphogenesis, wound healing, and tumor progression. Its current understanding relies on mechanical measurements on flat epithelial layers. However, most epithelia in vivo exhibit a curved 3D shape enclosing a pressurized lumen. Using soft micropatterned substrates we produce massive parallel arrays of epithelial domes with controlled size and basal shape. We measure epithelial traction, tension, and luminal pressure in epithelial domes. The local stress tensor on the freestanding epithelial membrane is then mapped by combining measured luminal pressure and local curvature. We show that tension and cell shape are highly anisotropic and vary along the meridional position of the domes. Finally, we establish constitutive relations between shape, tension, and pressure during perturbations of the contractile machinery, osmotic shocks, and spontaneous fluctuations of dome volume. Our findings contradict a description of the epithelium as a fluid capillary surface. Cells in the dome are unable to relax into a uniform and isotropic tensional state through sub- and supra-cellular rearrangements. Mapping epithelial shape, tension, and pressure will enable quantitative studies of mechanobiology in 3D epithelia of controlled size and shape.

  11. Reactor building with internal structure of which the movements are independent of those of the general raft and process for building these internal structures

    International Nuclear Information System (INIS)

    Hista, J.C.

    1982-01-01

    This reactor building includes a containment enclosure for the internal structures composed of a slab wedged on its periphery against the containment enclosure gusset and resting on the general raft by means of a peripheral bearing ring, a compressible layer being provided between the general raft and the slab [fr

  12. MROI Array telescopes: the relocatable enclosure domes

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  13. The 3D-FEM modeling of the LAES unit 1 reactor building for extreme external effects

    International Nuclear Information System (INIS)

    1999-01-01

    In order to study the extreme external effects, three dimensional model was applied to study the effects of aircraft crash and gas explosion on the reactor building of Leningrad-1 NPP which is modelled by finite element method. The crash loads taken into account were from Cessna civil airplane crash with impact velocity of 360 km/h and maximum impact force of 7 MN and the Phantom military airplane crash with impact velocity of 215 km/h and maximum impact force of 110 MN. The gas explosion load was assumed to affect the reactor building from one side parallel to one of the global coordinate axes of the model. The conclusion drawn from the obtained results is as follows: the intersections stiffen the structure considerably. In lower part, where many intersections exist, displacements were significantly smaller. Thus, the lower parts can resist the investigated loads such as high speed military aircraft crash loads much better than the upper part

  14. Study on reactor building structure using ultrahigh strength materials - Part 9: Summary of the study

    International Nuclear Information System (INIS)

    Tanaka, H.; Odajima, M.; Irino, K.; Hashiba, T.

    1993-01-01

    Considerations for longevity of nuclear facilities and ease of decommissioning are of great importance for future nuclear power plants. To this end, a concept of an optimal structural concept for nuclear reactor buildings has been studied: the main feature of this concept is to utilize large-sized, light weight prefabricated members with ultrahigh strength materials. The following two items have been selected to study the prospective structure: (1) Applicability of ultrahigh strength materials for reinforced concrete shear walls (2) Construction using large sized prefabricated members As the first step (1), material and structural tests using ultrahigh strength materials, and the subsequent analysis of those tests for reinforced concrete shear walls, has been conducted. The positive results of this study show a bright future for the use of ultrahigh strength materials for the reinforced concrete shear walls of nuclear reactor buildings. As the second step (2), tests on a mixed structure with precasted members have been conducted. Our results positively suggest the use of these materials and methods to improve prospective nuclear power plants. (author)

  15. Seismic analysis of the pile foundation of the reactor building of the NPP ANGRA 2

    International Nuclear Information System (INIS)

    Wolf, J.P.; Arx, G.A. von; Barros, F.C.P. de; Kakubo, M.

    1981-01-01

    A pile foundation subjected to dynamic loads interacts with the surrounding soil. Frequency-dependent stiffness and radiation damping must be properly taken into account in pile-soil-pile interaction. Assuming that the soil consists of horizontal layers of elastic material with hysteretic damping, the dynamic stiffness of a group of (even battered) piles can be determined, accounting rigorously for the cavities where the soil is subsequently replaced by the piles. By way of illustration, this substructure procedure, which works in the frequency domain, is applied to the final design of the pile foundation of the Reactor Building of Angra 2 in Brazil. Below the basemat, a strongly horizontally-layered compressive soil of 36 m thickness rests on bedrock. The reactor building is founded on 202 endbearing piles and 88 floating piles of 15 m length. Every pile is modelled. Along each pile, compatibility between the pile and the soil in all three directions is formulated in seven nodes. The basemat is assumed to be rigid. On the level of bedrock a broad-banded response spectrum specifies the excitation (outcropping). (orig./WL)

  16. Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois

    International Nuclear Information System (INIS)

    W. C. Adams

    2007-01-01

    Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory's Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007). Argonne National Laboratory-East (ANL-E) is owned by the U.S. Department of Energy (DOE) and is operated under a contract with the University of Chicago. Fundamental and applied research in the physical, biomedical, and environmental sciences are conducted at ANL-E and the laboratory serves as a major center of energy research and development. Building 315, which was completed in 1962, contained two cells, Cells 5 and 4, for holding Zero Power Reactor (ZPR)-6 and ZPR-9, respectively. These reactors were built to increase the knowledge and understanding of fast reactor technology. ZPR-6 was also referred to as the Fast Critical Facility and focused on fast reactor studies for civilian power production. ZPR-9 was used for nuclear rocket and fast reactor studies. In 1967, the reactors were converted for plutonium use. The reactors operated from the mid-1960's until 1982 when they were both shut down. Low levels of radioactivity were expected to be present due to the operating power levels of the ZPR's being restricted to well below 1,000 watts. To evaluate the presence of radiological contamination, DOE characterized the ZPRs in 2001. Currently, the Melt Attack and Coolability Experiments (MACE) and Melt Coolability and Concrete Interaction (MCCI) Experiments are being conducted in Cell 4 where the ZPR-9 is located (ANL 2002 and 2006). ANL has performed final

  17. Draft environmental assessment: Cypress Creek Dome site, Mississippi. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Cypress Creek dome site in Mississippi as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Cypress Creek dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations contained in this draft EA, the DOE has found that the Cypress Creek dome site is not disqualified under the guidelines. The site is contained in the Gulf Interior Region of the Gulf Coastal Plain, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites - the Richton dome site and the Vacherie dome site. Although the Cypress Creek dome site appears to be suitable for site characterization, the DOE has concluded that the Richton dome site is the preferred site in the Gulf Interior Region and is proposing to nominate the Richton dome site rather than the Cypress Creek dome site as one of the three sites suitable for characterization

  18. Parametric study of the Ignalina reactor building capability as barrier against accidental releases of radioactivity

    International Nuclear Information System (INIS)

    Blomquist, R.; Johansson, Kjell; Nilsson, Lars.

    1993-01-01

    The results of a parametric study are offered to the Ignalina plant management staff and to the Lithuanian and Swedish nuclear inspectorates as a basis for a decision whether there is mutual interest in a project for the purpose of strengthening the Ignalina reactor buildings inherent capabilities to provide a barrier against accidental releases of radioactivity. Practical measures to consider are: * establish natural convection of warm air from the steam drums to the tall stack of 150 m height. * reduce the resulting draught of air through the reactor hall floor between the fuel channel shield blocks into the steam drum compartments. * apply filtration to the stack air flow. 18 refs

  19. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    Science.gov (United States)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  20. Studies of the suitability of salt domes in east Texas basin for geologic isolation of nuclear wastes

    International Nuclear Information System (INIS)

    Kreitler, C.W.

    1979-01-01

    The suitability of salt domes in the east Texas basin (Tyler basin), Texas, for long-term isolation of nulear wastes is being evaluated. The major issues concern hydrogeologic and tectonic stability of the domes and potential natural resources in the basin. These issues are being approached by integration of dome-specific and regional hydrogeolgic, geologic, geomorphic, and remote-sensing investigations. Hydrogeologic studies are evaluating basinal hydrogeology and ground-water flow around the domes in order to determine the degree to which salt domes may be dissolving, their rates of solution, and the orientation of saline plumes in the fresh-water aquifers. Subsurface geologic studies are being conducted: (1) to determine the size and shape of specific salt domes, the geology of the strata immediately surrounding the domes, and the regional geology of the east Texas basin; (2) to understand the geologic history of dome growth and basin infilling; and (3) to evaluate potential natural resources. Geomorphic and surficial geology studies are determining whether there has been any dome growth or tectonic movement in the basin during the Quaternary. Remote-sensing studies are being conducted to determine: (1) if dome uplift has altered regional lineation patterns in Quaternary sediments; and (2) whether drainage density indicates Quaternary structural movement. On the basis of the screening criteria of Brunton et al (1978), Oakwood and Keechi domes have been chosen as possible candidate domes. Twenty-three domes have been eliminated because of insufficient size, too great a depth to salt, major hydrocarbon production, or previous use (such as liquid propane storage or salt mining or brining). Detailed geologic, hydrogeologic, and geomorphic investigations are now being conducted around Oakwood and Keechi salt domes

  1. Determining the coordinates of lamps in an illumination dome

    Science.gov (United States)

    MacDonald, Lindsay W.; Ahmadabadian, Ali H.; Robson, Stuart

    2015-05-01

    The UCL Dome consists of an acrylic hemisphere of nominal diameter 1030 mm, fitted with 64 flash lights, arranged in three tiers of 16, one tier of 12, and one tier of 4 lights at approximately equal intervals. A Nikon D200 digital camera is mounted on a rigid steel frame at the `north pole' of the dome pointing vertically downwards with its optical axis normal to the horizontal baseboard in the `equatorial' plane. It is used to capture sets of images in pixel register for visualisation and surface reconstruction. Three techniques were employed for the geometric calibration of flash light positions in the dome: (1) the shadow cast by a vertical pin onto graph paper; (2) multi-image photogrammetry with retro-reflective targets; and (3) multi-image photogrammetry using the flash lights themselves as targets. The precision of the coordinates obtained by the three techniques was analysed, and it was found that although photogrammetric methods could locate individual targets to an accuracy of 20 μm, the uncertainty of locating the centroids of the flash lights was approximately 1.5 mm. This result was considered satisfactory for the purposes of using the dome for photometric imaging, and in particular for the visualisation of object surfaces by the polynomial texture mapping (PTM) technique.

  2. Morphological and structural changes at the Merapi lava dome monitored using Unmanned Aerial Vehicles (UAVs)

    Science.gov (United States)

    Darmawan, H.; Walter, T. R.; Brotopuspito, K. S.; Subandriyo, S.; Nandaka, M. A.

    2017-12-01

    Six gas-driven explosions between 2012 and 2014 had changed the morphology and structures of the Merapi lava dome. The explosions mostly occurred during rainfall season and caused NW-SE elongated open fissures that dissected the lava dome. In this study, we conducted UAVs photogrammetry before and after the explosions to investigate the morphological and structural changes and to assess the quality of the UAV photogrammetry. The first UAV photogrammetry was conducted on 26 April 2012. After the explosions, we conducted Terrestrial Laser Scanning (TLS) survey on 18 September 2014 and repeated UAV photogrammetry on 6 October 2015. We applied Structure from Motion (SfM) algorithm to reconstruct 3D SfM point clouds and photomosaics of the 2012 and 2015 UAVs images. Topography changes has been analyzed by calculating height difference between the 2012 and 2015 SfM point clouds, while structural changes has been investigated by visual comparison between the 2012 and 2015 photo mosaics. Moreover, a quality assessment of the results of UAV photogrammetry has been done by comparing the 3D SfM point clouds to TLS dataset. Result shows that the 2012 and 2015 SfM point clouds have 0.19 and 0.57 m difference compared to the TLS point cloud. Furthermore, topography, and structural changes reveal that the 2012-14 explosions were controlled by pre-existing structures. The volume of the 2012-14 explosions is 26.400 ± 1320 m3 DRE. In addition, we find a structurally delineated unstable block at the southern front of the dome which potentially collapses in the future. We concluded that the 2012-14 explosions occurred due to interaction between magma intrusion and rain water and were facilitated by pre-existing structures. The unstable block potentially leads to a rock avalanche hazard. Furthermore, our drone photogrammetry results show very promising and therefore we recommend to use drone for topography mapping in lava dome building volcanoes.

  3. Key variables influencing patterns of lava dome growth and collapse

    Science.gov (United States)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  4. Petrography, mineralization and mineral explorations in the Zendan salt dome (Hara, Bandar Lengeh

    Directory of Open Access Journals (Sweden)

    Habib Biabangard

    2018-04-01

    Full Text Available Introduction The Zendan salt dome is located at 80 Km north of Bandar-Lengeh and 110 Km west of Bandar-Khamir cities in the Hormozgan province. Based on the structural geology of Iran, the Zendan salt dome is placed in the southeastern part of the Zagros zone (Stocklin, 1968. Important units in this area are Hormuz, Mishan, Aghajari and Bakhtiari formations with the Precambrian age (Alian and Bazamad, 2014. The Hormuz formation with the four members of H1, H2, H3, and H4 is the oldest formation (Ahmadzadeh Heravi et al., 1991. Basalt and diabase rocks are mostly rocks that are exposed in the Zendan salt dome. Magnetite and hematite iron mineralization happened in all the building rocks of salt dome, and is not a uniform mineralization. Iron mineralization contains hematite, spicularite, magnetite, goethite, and iron hydroxides. Magnetite-hematite-oligist layers (red soil are the most iron mineralization in the Zendan salt dome, which are usually broken and scattered with gypsum layers (mostly anhydrite, respectively. Another form of iron mineralization is a mixture of hematite and magnetite (about 10 to 15% in diabase rocks. Copper mineralization consists of pyrite and chalcopyrite minerals that are mostly in tuff and shale units. The presence of low immobile trace elements in the Zendan salt dome and type of alteration shows that maybe the origin of this iron is deposited from brine fluid. Therefore, this deposit can be classified into VMS deposits. Materials and methods We have taken 60 samples rocks from the Zendan salt dome, and then prepared 20 thin and polished sections. Petrographic studies were done and 9 samples were selected for analysis. These samples were sent to the Zarzma laboratory and the amount of FeO was determined by the wet chemical method and other amounts of oxides were determined by XRF. Six samples were analyzed for determining the major elements with the XRF method in the Binalood laboratory. Nine samples from vines

  5. Assessment of the seismic resistance of a ventilation stack on a reactor building

    International Nuclear Information System (INIS)

    Makovicka, Daniel; Makovicka, Daniel

    2005-01-01

    The paper analyzes the seismic resistance of a ventilation stack on a reactor building, including the possible reserves of increasing the resistance. Structures of this type are highly sensitive to seismic loads, as the tuning of the stack (the spectrum of its lowest natural frequencies) corresponds with the frequency spectrum of excitation due to seismic effects. The purpose of the paper is to present an example of an actual structure to show the character of the response of the structure, and the participation of the individual frequency components of the response in the overall stress and strain state of a structure of this type. The methodology for a numerical analysis of the structure is also given. The load of the stack proper is modified by the transfer characteristics of the building. In engineering practice, the system is usually divided into two subsystems: the building with the sub-base, and the stack proper. The level of justification for the application of this simplification depends on the distance of the natural frequencies of the stack from the natural frequencies of the building. Finally, the paper deals with possible errors in determining the actual seismic resistance of the stack structure

  6. Pre-HEAT: submillimeter site testing and astronomical spectra from Dome A, Antarctica

    Science.gov (United States)

    Kulesa, C. A.; Walker, C. K.; Schein, M.; Golish, D.; Tothill, N.; Siegel, P.; Weinreb, S.; Jones, G.; Bardin, J.; Jacobs, K.; Martin, C. L.; Storey, J.; Ashley, M.; Lawrence, J.; Luong-Van, D.; Everett, J.; Wang, L.; Feng, L.; Zhu, Z.; Yan, J.; Yang, J.; Zhang, X.-G.; Cui, X.; Yuan, X.; Hu, J.; Xu, Z.; Jiang, Z.; Yang, H.; Li, Y.; Sun, B.; Qin, W.; Shang, Z.

    2008-07-01

    Pre-HEAT is a 20 cm aperture submillimeter-wave telescope with a 660 GHz (450 micron) Schottky diode heterodyne receiver and digital FFT spectrometer for the Plateau Observatory (PLATO) developed by the University of New South Wales. In January 2008 it was deployed to Dome A, the summit of the Antarctic plateau, as part of a scientific traverse led by the Polar Research Institute of China and the Chinese Academy of Sciences. Dome A may be one of the best sites in the world for ground based Terahertz astronomy, based on the exceptionally cold, dry and stable conditions which prevail there. Pre-HEAT is measuring the 450 micron sky opacity at Dome A and mapping the Galactic Plane in the 13CO J=6-5 line, constituting the first submillimeter measurements from Dome A. It is field-testing many of the key technologies for its namesake -- a successor mission called HEAT: the High Elevation Antarctic Terahertz telescope. Exciting prospects for submillimeter astronomy from Dome A and the status of Pre-HEAT will be presented.

  7. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents

  8. Updating of a dynamic finite element model from the Hualien scale model reactor building

    International Nuclear Information System (INIS)

    Billet, L.; Moine, P.; Lebailly, P.

    1996-08-01

    The forces occurring at the soil-structure interface of a building have generally a large influence on the way the building reacts to an earthquake. One can be tempted to characterise these forces more accurately bu updating a model from the structure. However, this procedure requires an updating method suitable for dissipative models, since significant damping can be observed at the soil-structure interface of buildings. Such a method is presented here. It is based on the minimization of a mechanical energy built from the difference between Eigen data calculated bu the model and Eigen data issued from experimental tests on the real structure. An experimental validation of this method is then proposed on a model from the HUALIEN scale-model reactor building. This scale-model, built on the HUALIEN site of TAIWAN, is devoted to the study of soil-structure interaction. The updating concerned the soil impedances, modelled by a layer of springs and viscous dampers attached to the building foundation. A good agreement was found between the Eigen modes and dynamic responses calculated bu the updated model and the corresponding experimental data. (authors). 12 refs., 3 figs., 4 tabs

  9. Ship detection in Sentinel-1 imagery using the h-dome transformation

    CSIR Research Space (South Africa)

    Schwegmann, CP

    2015-07-01

    Full Text Available is then processed to detect cluster centroids which indicate the ships’ positions. The following sections detail this procedure. 3.1. H-dome transform The H-dome transform is a method for finding local maxima, often used in the medical field for finding sub-cellular...) and comparing it to Fig. 2 (d) we no- tice that the brightest section of the ship can be seen much more clearly in (d). This is due to the property of the H- dome transform to highlight structures not typically visible (such as sub-cellular structures in [8...

  10. Main results of the analysis of internal flooding in the reactor building of Kozloduy NPP Unit 6

    International Nuclear Information System (INIS)

    Demireva, E.; Goranov, S.; Horstmann, R.

    2004-01-01

    For modernization of Units 5 and 6 of Kozloduy NPP, a comprehensive analysis of internal flooding scenarios has been carried out for the reactor building outside the containment and for the turbine hall by FRAMATOME ANP and ENPRO Consult. The objective of the presentation is to provide information on the main results obtained in the flooding analysis of the reactor building (outside containment). The flooding analysis is being performed under application of the 'Methodology and boundary conditions'. Flooding calculations are provided for all of the rooms in the reactor building outside the containment in which the fluid systems, having the capacity for flooding, are mounted. The performed functional analysis shows whether the consequences of a postulated initial event are within the NPP design or could lead to situations which are not taken into account in the design. The proposals for overcoming of identified unacceptable situations and the possible strategy of room draining are also given. Several cases of leaks inside the sealed rooms in the restricted area lead to the situation that the rooms will get totally flooded. Even if this should be acceptable from the point of view of loss of system function, the water pressure effect on the structural elements, as walls and doors, does not allow such complete filling-up. The second relevant identified effect was spreading of humidity and high temperatures to adjacent rooms. Long-lasting effects of this type have to be avoided, in order to prevent potential common cause effects on safety system equipment (authors)

  11. Radiation observation at Dome Fuji Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Naohiko Hirasawa

    2008-06-01

    Full Text Available This paper reports radiation observations at Dome Fuji Station from February 1, 2003 to January 20, 2004, carried out by the 44th Japanese Antarctic Research Expedition team. The radiometers which measured the upward longwave radiation (LWu, the downward longwave (LWd and the downward shortwave (SWd were equipped with fans to avoid frosting on the surface of the radiometer dome by air circulation. The upward shortwave radiation (SWu measured by a radiometer without fan needs correction, which we leave as a problem for the future. In addition, as for LWd and LWu in the polar night, a typical radiational cooling case and a suppressed radiational cooling one are shown.

  12. Assessment of tectonic hazards to waste storage in interior-basin salt domes

    International Nuclear Information System (INIS)

    Kehle, R.

    1979-01-01

    Salt domes in the northern Gulf of Mexico may make ideal sites for storage of radioactive waste because the area is tectonically quiet. The stability of such salt domes and the tectonic activity are discussed

  13. Analysis of tiltmeter monitoring of Northern Louisiana salt domes

    International Nuclear Information System (INIS)

    Waldon, M.G.; Thoms, R.L.

    1983-01-01

    Data were recorded at several tiltmeter sites in Northern Louisiana in the vicinity of Vacherie and Rayburn's salt domes. The objective of this data recording and subsequent analysis was to determine, if possible, the present rate of dome vertical movement, or to attempt to establish an upper bound to movement if undetectably small. Biaxial tiltmeters utilized were calibrated to detect extremely small tilts about two principal axes. No statistically significant tilting was observed during this survey. 13 references

  14. Advanced imaging techniques III: a scalable and modular dome illumination system for scientific microphotography on a budget

    Science.gov (United States)

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs ...

  15. Pressurized water reactor with reactor pressure vessel

    International Nuclear Information System (INIS)

    Werres, L.

    1985-01-01

    The pressure vessel has a cylindrical jacket with a domed floor. A guide is arranged on the domed floor to even out the flow in the core. It consists of a cylindrical jacket, whose lower end has slots and fins. These fins are welded to the domed floor. (orig./PW)

  16. Pressurized water reactor with reactor pressure vessel

    International Nuclear Information System (INIS)

    Werres, L.

    1980-01-01

    The pressure vessel has a cylindrical jacket with a domed floor. A guide is arranged on the domed floor to even out the flow in the core. It consists of a cylindrical jacket, whose lower end has slots and fins. These fins are welded to the domed floor. (DG) [de

  17. 3-dimensional finite element modelling of reactor building internal structure for static analysis

    International Nuclear Information System (INIS)

    Joshi, M.H.; Reddy, V.J.; Kushwaha, H.S.; Reddy, G.R.; Karandikar, G.V.

    1991-01-01

    a) Thin shell element gives fairly accurate results when compared to 3-D Brick element for the type of structure and loading in Reactor Building. b) The maximum element size is fixed from model 3(c) i.e. 2.0 m. c) Openings with size smaller than 0.5 m can be neglected without affecting the results very much. d) For any such problem, the methodology described in this paper can be used to take rational decisions which will ensure reasonable accuracy. (author)

  18. Distributions of cranial pathologies provide evidence for head-butting in dome-headed dinosaurs (Pachycephalosauridae).

    Science.gov (United States)

    Peterson, Joseph E; Dischler, Collin; Longrich, Nicholas R

    2013-01-01

    Pachycephalosaurids are small, herbivorous dinosaurs with domed skulls formed by massive thickening of the cranial roof. The function of the dome has been a focus of debate: the dome has variously been interpreted as the product of sexual selection, as an adaptation for species recognition, or as a weapon employed in intraspecific combat, where it was used in butting matches as in extant ungulates. This last hypothesis is supported by the recent identification of cranial pathologies in pachycephalosaurids, which appear to represent infections resulting from trauma. However, the frequency and distribution of pathologies have not been studied in a systematic fashion. Here, we show that pachycephalosaurids are characterized by a remarkably high incidence of cranial injury, where 22% of specimens have lesions on the dome. Frequency of injury shows no significant difference between different genera, but flat-headed morphs (here interpreted as juveniles or females) lack lesions. Mapping of injuries onto a digitial pachycephalosaurid skull shows that although lesions are distributed across the dome, they cluster near the apex, which is consistent with the hypothesis that the dome functioned for intraspecific butting matches.

  19. Instability behavior of stiffened dome liners under construction condition

    International Nuclear Information System (INIS)

    Jefts, A.R.; Guha-Majumdar, S.; Wanchoo, M.K.

    1977-01-01

    The purpose of this paper is to present techniques related to stability analysis, design concepts and behavior of dome liners. Various stiffening systems are examined from economy, schedule and constructablity point of view. The various failure modes can be classified as either buckling due to local instability or to an overall instability of the shell. Local instability may occur due to buckling of liner panel between a pair of rings and stringers or torsional and lateral buckling of the stiffeners. Methods are developed for proportioning stiffening system to preclude local buckling. Overall stability is a function of concrete pour height and thickness, loading distribution, time elapse between successive placements, rate of concrete placement, arrangement of stiffeners and other external supports. A computer program based on system energy minimization is used to study the overall instability of stiffened domes. Modelling techniques, effect of temperature and lack of bond, and their influence on results are discussed. Results for a self-standing stiffened hemispherical dome are presented in the form of mode shapes and buckling loads. Based on the results, a pouring scheme is recommended for an economical stiffening system. Recommendations are made to select the stiffening system and predict the buckling loads for preliminary analysis and design of the dome liner. Existing methods and code provisions related to tolerance, design criteria etc. are examined and recommendations made from practical considerations

  20. Dome Structures Above Sills and Saucer-Shaped Sills: Insights From Experimental Modeling

    Science.gov (United States)

    Planke, S.; Galland, O.; Malthe-Sørenssen, A.

    2007-12-01

    Saucer-shaped magma and sand intrusions are common features in sedimentary basins. They result from fundamental processes for the emplacement of fluids in shallow sedimentary basins. Seismic data show that the overburden above saucer-shaped intrusions is usually deformed and exhibits a dome-like structure. The formation of such structures, and the associated deformation, are of primary importance in the evolution of petroleum systems. In this presentation, we report on experimental investigation of the deformation processes associated with the intrusion of saucer-shaped intrusions into sedimentary basins. The experimental setup consists of molten low-viscosity oil injected into fine-grained silica flour (see Galland et al., this session). It properly simulates the emplacement of saucer-shaped intrusions and the deformation of the country rock. During experiments, the surface of the model is digitalized through a structured light technique based on moiré projection principle. Such a tool provides topographic maps of the model and allows a periodic (every 1.5 s) monitoring of the model surface. When the model magma starts intruding, a symetrical dome rises above the inlet. As injection proceeds, the dome inflates and widens. Subsequently, the dome evolves to a plateau-like feature, with nearly flat surface and steep edges. The plateau keeps lifting up, but nearly stoppes widening. At the end of the experiments, the intruding liquid erupts at the edge of the plateau. The intrusion formed in the experiment is a typical saucer-shaped sill. The evolution of the deforming surface reflects the evolution of the intrusion. We infer that the first doming phase corresponds to the emplacement of a horizontal basal sill by open fracturing. The dome-to-plateau transition corresponds to a transition of the liquid emplacement mechanism from basal sill to inclined sheet. We suggest that the emplacement of the inclined sheets results from shear fracturing at the dome edge.

  1. RA Reactor

    International Nuclear Information System (INIS)

    1978-02-01

    In addition to basic characteristics of the RA reactor, organizational scheme and financial incentives, this document covers describes the state of the reactor components after 18 years of operation, problems concerned with obtaining the licence for operation with 80% fuel, problems of spent fuel storage in the storage pool of the reactor building and the need for renewal of reactor equipment, first of all instrumentation [sr

  2. Electrical structure beneath the Hangai Dome, Mongolia, from magnetotelluric data

    Science.gov (United States)

    Comeau, Matthew; Käufl, Johannes; Becken, Michael; Kuvshinov, Alexey; Demberel, Sodnomsambuu; Sukhbaatar, Usnikh; Batmagnai, Erdenechimeg; Tserendug, Shoovdor; Nasan, Ochir

    2017-04-01

    The Hangai Dome in west-central Mongolia is an unusual high-elevation intra-continental plateau located far from tectonic plate boundaries and characterized by dispersed, low-volume, basaltic volcanism. This region is an ideal natural laboratory for studying intra-continental orogenic and magmatic processes resulting from crust-mantle interactions. The processes responsible for developing the Hangai Dome remain unexplained, due in part to a lack of high resolution geophysical data over the area. Here we present newly acquired broadband (0.008 - 3,000 s) magnetotelluric (MT) data from a large-scale ( 200 x 450 km) and high resolution (site spacing > 5 km) survey across the Hangai Dome. A total of 125 sites were collected and include full MT sites and telluric-only sites where inter-station transfer functions were computed. The MT data are used to generate an electrical resistivity model of the crust and upper mantle below the Hangai Dome. The model shows that the lower crust ( 30 - 50 km; below the brittle-ductile transition zone) beneath the Hangai Dome contains anomalous discrete pockets of low-resistivity ( 30 ohm-m) material that indicate the presence of local accumulations of fluids and/or low-percent partial melts. These anomalous regions appear to be spatially associated with the surface expressions of past volcanism, hydrothermal activity, and an increase in heat flow. They also correlate with observed crustal low-density and low-velocity anomalies. However they are in contrast to some geochemical and petrological studies which show long-lived crustal melt storage is impossible below the Hangai due to limited crustal assimilation and crustal contamination, arguing for a single parent-source at mantle depths. The upper mantle ( 6%) at this location. The results are consistent with modern geochemical and geophysical data, which show a thin lithosphere below the Hangai region. Furthermore the results agree with geodynamic models that require a low-heat flux

  3. Sustainable Outreach: Lessons Learned from Space Update and Discovery Dome

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.; Law, C. C.

    2009-12-01

    A sustainable program lives on past its initial funding cycle, and develops a network of users that ensures continued life, either by fees, advertising revenue, or by making the program more successful in later sponsored grants. Teachers like free things, so having a sponsor for products such as lithographs or CD-Roms is key to wide distribution. In 1994 we developed “Space Update®”, under the NASA “Public Use of the Internet” program. It has new editions annually, with over 40,000 distributed so far (many purchased but most free at teacher and student workshops). In 1996 we created a special edition “Space Weather®”, which includes the space weather module from Space Update plus other resources. Initially developed with funding from the IMAGE mission, it is now sponsored by Cluster and MMS. A new edition is published annually and distributed in the “Sun-Earth Day” packet; total distribution now exceeds 180,000. “Earth Update” was created in 1999 under cooperative agreement “Museums Teaching Planet Earth”. It now has a total distribution of over 20,000. Both Earth Update and Space Update were developed to be museum kiosk software, and more than 15 museums have them on display. Over 4,000 users are active in our e-Teacher network and 577 in our museum educator network. Although these can certainly be considered successful because of their longevity and user base, we have had a far more dramatic sustainable program arise in the last six years… the “Discovery Dome®”. Invented at HMNS and developed under NASA Cooperative Agreement “Immersive Earth”, this dome was the first digital portable planetarium that also showed fulldome movies with an interactive interface (first shown to the public at the Dec 2003 AGU meeting). The Discovery Dome network (tinyurl.com/DiscDome) has spun those initial 6 NASA-funded domes into over 90 installations in 22 states and 23 countries. Creating high quality content is quite expensive and so needs

  4. Startup transient simulation for natural circulation boiling water reactors in PUMA facility

    International Nuclear Information System (INIS)

    Kuran, S.; Xu, Y.; Sun, X.; Cheng, L.; Yoon, H.J.; Revankar, S.T.; Ishii, M.; Wang, W.

    2006-01-01

    In view of the importance of instabilities that may occur at low-pressure and -flow conditions during the startup of natural circulation boiling water reactors, startup simulation experiments were performed in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. The simulations used pressure scaling and followed the startup procedure of a typical natural circulation boiling water reactor. Two simulation experiments were performed for the reactor dome pressures ranging from 55 kPa to 1 MPa, where the instabilities may occur. The experimental results show the signature of condensation-induced oscillations during the single-phase-to-two-phase natural circulation transition. The results also suggest that a rational startup procedure is needed to overcome the startup instabilities in natural circulation boiling water reactor designs

  5. Answers to questions about removing krypton from the Three Mile Island, Unit 2 reactor building. Public information report

    International Nuclear Information System (INIS)

    1980-05-01

    This document presents answers to frequently asked questions about the probable effects of controlled releases of the krypton presently contained within the reactor building of Three Mile Island, Unit 2. Also answered are questions about alternative means for removing the krypton

  6. A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building

    International Nuclear Information System (INIS)

    Travis, J.R.; Wilson, T.L.; Spore, J.W.; Lam, K.L.; Rao, D.V.

    1994-01-01

    Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement overpressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region. (author). 2 refs., 14 figs

  7. A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building

    International Nuclear Information System (INIS)

    Travis, J.R.; Wilson, T.L.; Spore, J.W.; Lam, K.L.; Rao, D.V.

    1994-01-01

    Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement over pressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region

  8. Measurement of air quality within storage domes in technical area 54, areas G and L

    International Nuclear Information System (INIS)

    Anderson, E.

    1994-01-01

    The concentrations of volatile organic compounds (VOCs) and tritium inside of storage domes at TA-54 were measured to assess worker exposure and support the Area G site characterization, including the Radioactive Air Emissions Management (RAEM) program. Samples were collected at 2-3 locations within Domes 48, 49, and 153 on up to six days during the summer of 1994. Samples were collected to evaluate three scenarios: (1) normal working activities with the domes open; (2) after domes were closed overnight; and (3) after domes were closed for three days. Eight-hour integrated samples were collected and analyzed in Radian's Austin laboratories. Tritium activities from 17.1 to 69,900 pCi/m 3 were measured. About two dozen individual VOCs were identified in each sample, but most of the concentration levels were very low (e.g.; 20%) than when the domes were closed only overnight. The data were used to generate estimated annual dome emission rates of 0.3 Ci/yr of tritium and less than 100 lbs/yr of VOCs. The measured VOC concentrations were collected during the warmest months of the year and therefore should represent worst-case air impacts

  9. Dismantling method for reactor pressure vessel and system therefor

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Enomoto, Kunio; Kurosawa, Koichi; Saito, Hideyo.

    1994-01-01

    Upon dismantling of a reactor pressure vessel, a containment building made of concretes is disposed underground and a spent pressure vessel is contained therein, and incore structures are contained in the spent pressure vessel. Further, a plasma-welder and a pressing machine are disposed to a pool for provisionally placing reactor equipments in the reactor building for devoluming the incore structures by welding and compression. An overhead-running crane and rails therefor are disposed on the roof and the outer side of the reactor building for transporting the pressure vessel from the reactor building to the containment building. They may be contained in the containment building after incorporation of the incore structures into the pressure vessel at the outside of the reactor building. For the devoluming treatment, a combination of cutting, welding, pressing and the like are optically conducted. A nuclear power plant can be installed by using a newly manufactured nuclear reactor, with no requirement for a new site and it is unnecessary to provide a new radioactive waste containing facility. (N.H.)

  10. Screening specifications for Gulf Coast salt domes

    International Nuclear Information System (INIS)

    Brunton, G.D.; Laughon, R.B.; McClain, W.C.

    1978-01-01

    A reconnaissance survey of the salt domes of Mississippi, Louisiana, and east Texas is being planned to identify study areas for potential sites for radioactive waste disposal. Preliminary screening specifications were derived for each of the geological evaluation criteria by application of the significant factors that will have an impact on the reconnaissance survey. The procedure for the derivation of each screening specification is discussed. The screening specifications are the official OWI values to be used for the first-cut acceptance for salt dome study areas along the Gulf Coast. The derivation of the screening specifications is illustrated by (1) a statement of the geological evaluation criterion, (2) a discussion of the pertinent factors affecting the criterion, and (3) the evaluation of the value of the specification

  11. An approach to build a knowledge base for reactor accident diagnostic expert system

    International Nuclear Information System (INIS)

    Yoshida, K.; Fujii, M.; Fujiki, K.; Yokobayashi, M.; Kohsaka, A.; Aoyagi, T.; Hirota, Y.

    1987-01-01

    In the development of a rule based expert system, one of the key issues is how to acquire knowledge and to build knowledge base (KB). On building the KB of DISKET, which is an expert system for nuclear reactor accident diagnosis developed in JAERI, several problems have been experienced as follows. To write rules is a time consuming task, and it is difficult to keep the objectivity and consistency of rules as the number of rules increase. Further, certainty factors (CFs) must be often determined according to engineering judgment, i.e., empirically or intuitively. A systematic approach was attempted to handle these difficulties and to build an objective KB efficiently. The approach described in this paper is based on the concept that a prototype KB, colloquially speaking an initial guess, should first be generated in a systematic way and then is to be modified and/or improved by human experts for practical use. Statistical methods, principally Factor Analysis, were used as the systematic way to build a prototype KB for the DISKET using a PWR plant simulator data. The source information is a number of data obtained from the simulation of transients, such as the status of components and annunciator etc., and major process parameters like pressures, temperatures and so on

  12. Vibration system identification of Paks and Kozloduy reactor buildings on the basis of the blast test results

    International Nuclear Information System (INIS)

    Varpasuo, P.

    1999-01-01

    System identification allows to build mathematical models of a dynamic system based on measured data. System identification is carried out by adjusting parameters within a given model until its output coincides as well as possible with the measured output. The aim of this study is to investigate and model the behavior of complex vibratory systems on the basis of measured excitation and response. The first part of the study describes the theory used in the analysis and the software tools used in the analysis. The second part of the study describes the investigation and modeling of the response of single degree of freedom oscillator excited by sinusoidal and blast excitation. In the third part of the study the system identification of the Kozloduy NPP unit 5 reactor building and Paks NPP unit 1 reactor building is studied and the models are estimated using the method of segmentation of excitation and response. System identification is carried out using MATLAB software by adjusting parameters within a given model until its output coincides as well as possible with the measured output. The types of models used for the were: l) ARX models; 2) ARMAX model; 3) Output-Error (OE) models; 4) Box-Jenkins (BJ) models; 5) State-space models. The model coefficients for different models were calculated using the least-squares and maximum likelihood estimation methods available in MATLAB system identification toolbox. Excitation was in both Paks and Kozloduy case the measured free-field excitation and responses were the vibration responses of the building on the foundation slab level and top of the building. By examining the established models the frequency characteristics of vibration systems were determined with 95 % accuracy and the amplitude response with 80 % accuracy. In case of the steady state response of sinusoidally excited single dof oscillator the modelling gave almost exact results. But in the case of the blast response of the reactor building the obtaining of the

  13. Development, characteristics and comparative structural analysis of tensegrity type cable domes

    Directory of Open Access Journals (Sweden)

    Nenadović Aleksandra

    2010-01-01

    Full Text Available Tensegrity type cable domes are three-dimensional structural configurations, prestressed inside the perimeter compression ring, in which the continuous tension throughout the roof structure is made by continuous tension cables and discontinuous compression struts. These kinds of structures can be formed like spatially triangulated networks or like networks nontriangulated in space. This paper examines some effects of network geometry on the behaviour and structural efficiency of tensegrity type cable domes. In this paper the roof cover is considered non-interactive with the supporting structure, unlike rigidly clad tensegrity type cable domes. Since the main bearing elements of tensegrity type cable domes are prestressed cables, they show non-linear load deformation and rely upon geometric stiffness. A geometrically non-linear analysis of non-triangulated and triangulated structures for different load conditions was conducted employing a computer program based on the perturbation theory. The incrementally-iterative procedure, with an approximation of the stiffness matrix by combining the elastic and geometric stiffness matrix, allows detection of structural instabilities.

  14. Surface activity and radiation field measurements of the TMI-2 reactor building gross decontamination experiment

    International Nuclear Information System (INIS)

    McIsaac, C.V.

    1983-10-01

    Surface samples were collected from concrete and metal surfaces within the Three Mile Island Unit 2 Reactor Building on December 15 and 17, 1981 and again on March 25 and 26, 1982. The Reactor Building was decontaminated by hydrolasing during the period between these dates. The collected samples were analyzed for radionuclide concentration at the Idaho National Engineering Laboratory. The sampling equipment and procedures, and the analysis methods and results are discussed. The measured mean surface concentrations of 137 Cs and 90 Sr on the 305-ft elevation floor before decontamination were, respectively, 3.6 +- 0.9 and 0.17 +- 0.04 μCi/cm 2 . Their mean concentrations on the 347-ft elevation floor were about the same. On both elevations, walls were found to be considerably less contaminated than floors. The fractions of the core inventories of 137 Cs, 90 Sr, and 129 I deposited on Reactor Building surfaces prior to decontamination were calculated using their mean concentrations on various types of surfaces. The calculated values for these three nuclides are 3.5 +- 0.4 E-4, 2.4 +- 0.8 E-5, and 5.7 +- 0.5 E-4, respectively. The decontamination operations reduced the 137 Cs surface activity on the 305- and 347-ft elevations by factors of 20 and 13, respectively. The 90 Sr surface activity reduction was the same for both floors, that being a factor of 30. On the whole, decontamination of vertical surfaces was not achieved. Beta and gamma exposure rates that were measured during surface sampling were examined to determine the degree to which they correlated with measured surface activities. The data were fit with power functions of the form y = ax/sup b/. As might be expected, the beta exposure rates showed the best correlation. Of the data sets fit with the power function, the set of December 1981 beta exposure exhibited the least scatter. The coefficient of determination for this set was calculated to be 0.915

  15. Distributions of cranial pathologies provide evidence for head-butting in dome-headed dinosaurs (Pachycephalosauridae.

    Directory of Open Access Journals (Sweden)

    Joseph E Peterson

    Full Text Available Pachycephalosaurids are small, herbivorous dinosaurs with domed skulls formed by massive thickening of the cranial roof. The function of the dome has been a focus of debate: the dome has variously been interpreted as the product of sexual selection, as an adaptation for species recognition, or as a weapon employed in intraspecific combat, where it was used in butting matches as in extant ungulates. This last hypothesis is supported by the recent identification of cranial pathologies in pachycephalosaurids, which appear to represent infections resulting from trauma. However, the frequency and distribution of pathologies have not been studied in a systematic fashion. Here, we show that pachycephalosaurids are characterized by a remarkably high incidence of cranial injury, where 22% of specimens have lesions on the dome. Frequency of injury shows no significant difference between different genera, but flat-headed morphs (here interpreted as juveniles or females lack lesions. Mapping of injuries onto a digitial pachycephalosaurid skull shows that although lesions are distributed across the dome, they cluster near the apex, which is consistent with the hypothesis that the dome functioned for intraspecific butting matches.

  16. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    Energy Technology Data Exchange (ETDEWEB)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon

    2009-03-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  17. Bilateral Dome-Shaped Macula with Serous Macular Detachment in a Child

    OpenAIRE

    Cebeci, Zafer; Kir, Nur

    2015-01-01

    Dome-shaped macula is a structural disorder and optical coherence tomography (OCT) helps us to confirm macular convexity. We describe the first case of bilateral dome-shaped macula in an 8-year-old boy with subretinal fluid. The patient was diagnosed using spectral-domain OCT and received indocyanine green angiography-guided half-fluence photodynamic therapy as treatment.

  18. Building on success. The foreign research reactor spent nuclear fuel acceptance program

    International Nuclear Information System (INIS)

    Huizenga, David G.; Mustin, Tracy P.; Saris, Elizabeth C.; Massey, Charles D.

    1998-01-01

    The second year of implementation of the research reactor spent nuclear fuel acceptance program was marked by significant challenges and achievements. In July 1998, the Department of Energy completed by significant challenges and achievements. In July 1998, the Department of Energy completed its first shipment of spent fuel from Asia via the Concord Naval Weapons Station in California to the Idaho National Engineering and Environmental (INEEL). This shipment, which consisted of three casks of spent nuclear fuel from two research reactors in the Republic of Korea, presented significant technical, legal, and political challenges in the United States and abroad. Lessons learned will be used in the planning and execution of our next significant milestone, a shipment of TRIGA spent fuel from research reactors in Europe to INEEL, scheduled for the summer of 1999. This shipment will include transit across the United States for over 2,000 miles. Other challenges and advances include: clarification of the fee policy to address changes in the economic status of countries during the life of the program; resolution of issues associated with cask certification and the specific types and conditions of spent fuel proposed for transport; revisions to standard contract language in order to more clearly address unique shipping situations; and priorization and scheduling of shipments to most effectively implement the program. As of this meeting, eight shipments, consisting of nearly 2,000 spent fuel assemblies from fifteen countries, have been successfully completed. With the continued cooperation of the international research reactor community, we are committed to building on this success in the remaining years of the program. (author)

  19. [Dome-shaped macula: appearance on ultrasound and optical coherence tomography].

    Science.gov (United States)

    Chéour, M; Ben Aleya, N; Brour, J; Falfoul, Y; Agrebi, S; Skhiri, M; Kraïem, A

    2013-10-01

    The purpose of our work is to demonstrate the role of optical coherence tomography and ocular ultrasound in the diagnosis of the dome-shaped macula in high myopia. We report the case of a patient with high myopia who presented with a decrease in visual acuity and metamorphopsia in the left eye. She underwent visual acuity measurement, biomicroscopic examination and measurement of axial length. B-mode ultrasound and optical coherence tomography showed a projection of the macula in the convexity of the myopic staphyloma confirming the diagnosis of dome-shaped macula. Dome-shaped macula is a recently discovered entity, which may be responsible for a decrease in visual acuity in patients with high myopic posterior staphyloma. Ultrasound and optical coherence tomography are very helpful in making the diagnosis. Copyright © 2013. Published by Elsevier Masson SAS.

  20. The intelligent customer: considerations around build-own-operate business and licensing models for small modular reactors in Canada

    International Nuclear Information System (INIS)

    Jones, K.

    2014-01-01

    An organization planning a proposal for a build-own-operate business model needs to address expanded licensee responsibilities under this model, associated regulatory impacts and how this affects their role as an 'intelligent customer'. This is particularly important for cases where builder-owner-operators plan to manufacture factory-fuelled designs and ship them to a site for installation and operation. The primary responsibility for safe conduct of licensed activities rests with the licensee. A build-own-operate model expands the scope of licensed activities to include design, manufacturing, transport, construction, and operation. The licensee must be able to demonstrate they are qualified to conduct all licensed activities including sufficient competent resources within the licensee's organization to oversee('Intelligent Customer') any work it commissions externally and the subsequent flow down through of the supply chain. This paper examines aspects that organizations need to assess the suitability of approaches that it may take to maintain in-house expertise for the control and oversight of licensed activities at all times. It considers the approach to identification of: core capabilities the licensee would need to understand its safety case under a build-own-operate model to manage licensed activities in accordance with requirements under the Nuclear Safety and Control Acta licensee's 'intelligent customer' capabilities in particular around understanding, specifying, overseeing and accepting work undertaken on its behalf by contractors. While this paper is focused on small modular reactors, being an intelligent customer applies to large commercial or research reactors equally; the size of reactor is immaterial.

  1. The intelligent customer: considerations around build-own-operate business and licensing models for small modular reactors in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K., E-mail: kenneth.jones@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2014-07-01

    An organization planning a proposal for a build-own-operate business model needs to address expanded licensee responsibilities under this model, associated regulatory impacts and how this affects their role as an 'intelligent customer'. This is particularly important for cases where builder-owner-operators plan to manufacture factory-fuelled designs and ship them to a site for installation and operation. The primary responsibility for safe conduct of licensed activities rests with the licensee. A build-own-operate model expands the scope of licensed activities to include design, manufacturing, transport, construction, and operation. The licensee must be able to demonstrate they are qualified to conduct all licensed activities including sufficient competent resources within the licensee's organization to oversee('Intelligent Customer') any work it commissions externally and the subsequent flow down through of the supply chain. This paper examines aspects that organizations need to assess the suitability of approaches that it may take to maintain in-house expertise for the control and oversight of licensed activities at all times. It considers the approach to identification of: core capabilities the licensee would need to understand its safety case under a build-own-operate model to manage licensed activities in accordance with requirements under the Nuclear Safety and Control Acta licensee's 'intelligent customer' capabilities in particular around understanding, specifying, overseeing and accepting work undertaken on its behalf by contractors. While this paper is focused on small modular reactors, being an intelligent customer applies to large commercial or research reactors equally; the size of reactor is immaterial.

  2. The PLATO Dome A site-testing observatory: Power generation and control systems

    Science.gov (United States)

    Lawrence, J. S.; Ashley, M. C. B.; Hengst, S.; Luong-van, D. M.; Storey, J. W. V.; Yang, H.; Zhou, X.; Zhu, Z.

    2009-06-01

    The atmospheric conditions above Dome A, a currently unmanned location at the highest point on the Antarctic plateau, are uniquely suited to astronomy. For certain types of astronomy Dome A is likely to be the best location on the planet, and this has motivated the development of the Plateau Observatory (PLATO). PLATO was deployed to Dome A in early 2008. It houses a suite of purpose-built site-testing instruments designed to quantify the benefits of Dome A site for astronomy, and science instruments designed to take advantage of the observing conditions. The PLATO power generation and control system is designed to provide continuous power and heat, and a high-reliability command and communications platform for these instruments. PLATO has run and collected data throughout the winter 2008 season completely unattended. Here we present a detailed description of the power generation, power control, thermal management, instrument interface, and communications systems for PLATO, and an overview of the system performance for 2008.

  3. consistencia en dome: un caso de estudio

    Directory of Open Access Journals (Sweden)

    DANIEL CABARCAS

    2006-01-01

    Full Text Available Las herramientas metaCASE ofrecen una funcionalidad similar a la de las herramientas CASE convencionales para notaciones gráficas arbitrarias, una vez estas notaciones le sean especificadas adecuadamente. La principal dificultad de dichas herramientas es la especificación de las diferentes reglas de consistencia, que deben tenerse en cuenta cuando se usa una notación. En este artículo se presenta la especificación de dos reglas de consistencia del diagrama de clases de UML en el metaCASE DOME, codificadas en el lenguaje de programación Alter. Adicionalmente, se hace un análisis comparativo entre las especificaciones de los aspectos estructurales y de las reglas de consistencia en DOME y en la especificación de UML provista por el OMG.

  4. Seismic response of a nonsymmetric nuclear reactor building with a flexible stepped foundation

    International Nuclear Information System (INIS)

    Okano, H.; Sakai, A.; Takita, H.; Fukunishi, S.; Nakatogawa, T.; Kabayama, K.

    1993-01-01

    The effect of the non symmetry of a nuclear reactor building on its seismic response was studied. The nonsymmetric natures we considered, Included the eccentricity of the superstructure and the non symmetry of the cross section of the foundation. A three-dimensional analysis which employed Green's function was applied to study the interaction between the soil and the non symmetrically sectioned foundation. The effect of a flexible foundation on its seismic response was also studied by applying the sub structuring method, which combines the finite element method and Green's function method. (author)

  5. Longitudinal Biases in the Seychelles Dome Simulated by 34 Ocean-Atmosphere Coupled General Circulation Models

    Science.gov (United States)

    Nagura, M.; Sasaki, W.; Tozuka, T.; Luo, J.; Behera, S. K.; Yamagata, T.

    2012-12-01

    The upwelling dome of the southern tropical Indian Ocean is examined by using simulated results from 34 ocean-atmosphere coupled general circulation models (CGCMs) including those from the phase five of the Coupled Model Intercomparison Project (CMIP5). Among the current set of the 34 CGCMs, 12 models erroneously produce the upwelling dome in the eastern half of the basin while the observed Seychelles Dome is located in the southwestern tropical Indian Ocean (Figure 1). The annual mean Ekman pumping velocity is almost zero in the southern off-equatorial region in these models. This is in contrast with the observations that show Ekman upwelling as the cause of the Seychelles Dome. In the models that produce the dome in the eastern basin, the easterly biases are prominent along the equator in boreal summer and fall that cause shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and result in a spurious upwelling dome there. In addition, these models tend to overestimate (underestimate) the magnitude of annual (semiannual) cycle of thermocline depth variability in the dome region, which is another consequence of the easterly wind biases in boreal summer-fall. Compared to the CMIP3 models (Yokoi et al. 2009), the CMIP5 models are even worse in simulating the dome longitudes and magnitudes of annual and semiannual cycles of thermocline depth variability in the dome region. Considering the increasing need to understand regional impacts of climate modes, these results may give serious caveats to interpretation of model results and help in further model developments.; Figure 1: The longitudes of the shallowest annual-mean D20 in 5°S-12°S. The open and filled circles are for the observations and the CGCMs, respectively.

  6. Repair of manufacturing defects in the armor of plasma facing units of the ITER Divertor Dome

    International Nuclear Information System (INIS)

    Litunovsky, Nikolay; Alekseenko, Evgeny; Kuznetsov, Vladimir; Lyanzberg, Dmitriy; Makhankov, Aleksey; Rulev, Roman

    2013-01-01

    Highlights: • Sporadic manufacturing defects in ITER Divertor Dome PFUs may be repaired. • We have developed a repair technique for ITER Divertor Dome PFUs. • Armor repair technique for ITER Divertor Dome PFUs is successfully tested. -- Abstract: The paper describes the repair procedure developed for removal of manufacturing defects occurring sporadically during armoring of plasma facing units (PFUs) of the ITER Divertor Dome. Availability of armor repair technique is prescribed by the procurement arrangement for the ITER Divertor Dome concluded in 2009 between the ITER Organization and the ITER Domestic Agency of Russia. The paper presents the detailed description of the procedure, data on its effect on the joints of the rest part of the armor and on the grain structure of the PFU heat sink. The results of thermocycling of large-scale Dome PFU mock-ups manufactured with demonstration of armor repair are also given

  7. Repair of manufacturing defects in the armor of plasma facing units of the ITER Divertor Dome

    Energy Technology Data Exchange (ETDEWEB)

    Litunovsky, Nikolay, E-mail: nlitunovsky@sintez.niiefa.spb.su; Alekseenko, Evgeny; Kuznetsov, Vladimir; Lyanzberg, Dmitriy; Makhankov, Aleksey; Rulev, Roman

    2013-10-15

    Highlights: • Sporadic manufacturing defects in ITER Divertor Dome PFUs may be repaired. • We have developed a repair technique for ITER Divertor Dome PFUs. • Armor repair technique for ITER Divertor Dome PFUs is successfully tested. -- Abstract: The paper describes the repair procedure developed for removal of manufacturing defects occurring sporadically during armoring of plasma facing units (PFUs) of the ITER Divertor Dome. Availability of armor repair technique is prescribed by the procurement arrangement for the ITER Divertor Dome concluded in 2009 between the ITER Organization and the ITER Domestic Agency of Russia. The paper presents the detailed description of the procedure, data on its effect on the joints of the rest part of the armor and on the grain structure of the PFU heat sink. The results of thermocycling of large-scale Dome PFU mock-ups manufactured with demonstration of armor repair are also given.

  8. DOME-SHAPED MACULA IN MYOPIC EYES: Twelve-Month Follow-up.

    Science.gov (United States)

    Lorenzo, Daniel; Arias, Luis; Choudhry, Netan; Millan, Eduard; Flores, Ignacio; Rubio, Marcos J; Cobos, Estefanía; García-Bru, Pere; Filloy, Alejandro; Caminal, Josep M

    2017-04-01

    To study the long-term clinical course of dome-shaped macula in myopic eyes and to evaluate treatment efficacy for subretinal fluid (SRF) as a related complication. A retrospective, single-center consecutive case series study was conducted. The authors analyzed myopic eyes with dome-shaped macula in patients who presented for evaluation of decreased vision. Dome-shaped macula was defined as a convexity of the retina-choroidal macular complex seen on spectral domain optical coherence tomography images. All patients were followed for at least 12 months (mean, 25 months). Fluorescein angiography and/or indocyanine green angiography were performed in cases with SRF to rule out choroidal neovascularization. A total of 56 dome-shaped macula eyes from 36 patients were included in the study (bilateral in 55% of patients). Mean patient age was 56.9 ± 13.1 years. The mean spherical equivalent was -9.1 ± 6.0 diopters; 53% of eyes were considered highly myopic (>-6 diopters) and 47% of eyes were mildly myopic. In most cases (37 eyes; 66.1%), the dome-shaped macula was detected on vertical spectral domain optical coherence tomography scan patterns. No significant changes (P ≥ 0.1) were observed in mean best-corrected visual acuity or mean central foveal thickness from baseline to final follow-up. Subretinal fluid was present in 29 eyes (51.8%) at baseline, with no differences in best-corrected visual acuity in eyes with and without SRF (P ≥ 0.05). Nineteen of the 29 SRF eyes were treated: 8 underwent low-fluence photodynamic therapy, whereas 7 received bevacizumab, and 4 ranibizumab. No significant differences were found between treated and untreated SRF eyes in best-corrected visual acuity improvement (P ≥ 0.1), or complete resolution of SRF (P ≥ 0.1). Likewise, photodynamic therapy did not yield any significant benefit versus untreated eyes in best-corrected visual acuity or improvement of SRF. Dome-shaped macula is a condition associated with myopic eyes that seems

  9. Location of a new ice core site at Talos Dome (East Antarctica

    Directory of Open Access Journals (Sweden)

    I. Tabacco

    2006-06-01

    Full Text Available In the frame of glaciology and palaeoclimate research, Talos Dome (72°48lS; 159°06lE, an ice dome on the East Antarctic plateau, represents the new selected site for a new deep ice core drilling. The increasing interest in this region is due to the fact that the ice accumulation is higher here than in other domes in East Antarctica. A new deep drilling in this site could give important information about the climate changes near the coast. Previous papers showed that the dome summit is situated above a sloped bedrock. A new position on a relatively flat bedrock 5-6 km far from here in the SE direction was defined as a possible new ice core site for an European (Italy, France, Swiss and United Kingdom drilling project named as TALDICE (TALos Dome Ice Core Project. This point, named as ID1 (159°11l00mE; 72°49l40mS, became the centre of the Radio Echo Sounding (RES flight plan during the 2003 Italian Antarctic expedition, with the aim of confirming the new drilling site choice. In this paper 2001 and 2003 RES data sets have been used to draw a better resolution of ice thickness, bottom morphology and internal layering of a restricted area around the dome. Based on the final results, point ID1 has been confirmed as the new coring site. Finally, the preliminary operations about the installation of the summer ice core camp (TALDICE at ID1 site carried out during the XX Italian Antarctic expedition (November 2004-December 2005 are briefly described.

  10. Computed versus measured response of HDR reactor building in large scale shaking tests

    International Nuclear Information System (INIS)

    Werkle, H.; Waas, G.

    1987-01-01

    The earthquake resistant design of NPP structures and their installations is commonly based on linear analysis methods. Nonlinear effects, which may occur during strong earthquakes, are approximately accounted for in the analysis by adjusting the structural damping values. Experimental investigations of nonlinear effects were performed with an extremely heavy shaker at the decommissioned HDR reactor building in West Germany. The tests were directed by KfK (Nuclear Research Center Karlsruhe, West Germany) and supported by several companies and institutes from West Germany, Switzerland and the USA. The objective was the dynamic repsonse behaviour of the structure, piping and components to strong earthquake-like shaking including nonlinear effects. This paper presents some results of safety analyses and measurements, which were performed prior and during the test series. It was intended to shake the building up to a level where only a marginal safety against global structural failure was left

  11. Experiments in connection with Salt Domes

    NARCIS (Netherlands)

    Escher, B.G.; Kuenen, Ph.H.

    1928-01-01

    The different theories concerning the origin of Salt Domes in Roumania, Germany, Texas, Louisiana, Colorado and Utah are discussed. In Roumania the salt occurs in cores of “Diapir” anticlines. The existance of hills of salt indicates, that the salt is still pushing upwards. In Germany the salt

  12. Is there 1.5-million-year-old ice near Dome C, Antarctica?

    Directory of Open Access Journals (Sweden)

    F. Parrenin

    2017-11-01

    Full Text Available Ice sheets provide exceptional archives of past changes in polar climate, regional environment and global atmospheric composition. The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC, reaching ∼ 800 000 years. Obtaining an older paleoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we use internal isochrones, identified from airborne radar coupled to ice-flow modelling to estimate the age of basal ice along transects in the Dome C area. Three glaciological properties are inferred from isochrones: surface accumulation rate, geothermal flux and the exponent of the Lliboutry velocity profile. We find that old ice (> 1.5 Myr, 1.5 million years likely exists in two regions: one ∼ 40 km south-west of Dome C along the ice divide to Vostok, close to a secondary dome that we name Little Dome C (LDC, and a second region named North Patch (NP located 10–30 km north-east of Dome C, in a region where the geothermal flux is apparently relatively low. Our work demonstrates the value of combining radar observations with ice flow modelling to accurately represent the true nature of ice flow, and understand the formation of ice-sheet architecture, in the centre of large ice sheets.

  13. RA Reactor

    International Nuclear Information System (INIS)

    1989-01-01

    This chapter includes the following: General description of the RA reactor, organization of work, responsibilities of leadership and operators team, regulations concerning operation and behaviour in the reactor building, regulations for performing experiments, regulations and instructions for inserting samples into experimental channels [sr

  14. Choroidal findings in dome-shaped macula in highly myopic eyes: a longitudinal study.

    Science.gov (United States)

    Viola, Francesco; Dell'Arti, Laura; Benatti, Eleonora; Invernizzi, Alessandro; Mapelli, Chiara; Ferrari, Fabio; Ratiglia, Roberto; Staurenghi, Giovanni; Barteselli, Giulio

    2015-01-01

    To describe choroidal findings in dome-shaped macula associated with high myopia using fluorescein angiography (FA), indocyanine green angiography (ICGA), and spectral-domain optical coherence tomography (SD OCT), and to elucidate the mechanism and natural course of serous retinal detachment (RD) associated with dome-shaped macula. Retrospective, observational case series. We reviewed longitudinal imaging results of 52 highly myopic eyes with dome-shaped macula. Changes on FA and ICGA were assessed. Retinal, choroidal, and scleral thicknesses and bulge height were measured on SD OCT. Serous RD was the most common abnormality associated with dome-shaped macula, detected by SD OCT in 44% of the cases with no associated choroidal neovascularization. Significant differences in the proportion of eyes with pinpoint leakage on FA (P macula was likely caused by choroidal vascular changes, similar to central serous chorioretinopathy, but specifically confined in the inward bulge of the staphyloma and secondary to excessive scleral thickening. Serous retinal detachment showed fluctuating changes over time, with alternating active and inactive stages. Angiographic findings in dome-shaped macula suggest the choroid as a target for possible treatment strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. 3-DIMENSIONAL Geometric Survey and Structural Modelling of the Dome of Pisa Cathedral

    Science.gov (United States)

    Aita, D.; Barsotti, R.; Bennati, S.; Caroti, G.; Piemonte, A.

    2017-02-01

    This paper aims to illustrate the preliminary results of a research project on the dome of Pisa Cathedral (Italy). The final objective of the present research is to achieve a deep understanding of the structural behaviour of the dome, through a detailed knowledge of its geometry and constituent materials, and by taking into account historical and architectural aspects as well. A reliable survey of the dome is the essential starting point for any further investigation and adequate structural modelling. Examination of the status quo on the surveys of the Cathedral dome shows that a detailed survey suitable for structural analysis is in fact lacking. For this reason, high-density and high-precision surveys have been planned, by considering that a different survey output is needed, according both to the type of structural model chosen and purposes to be achieved. Thus, both range-based (laser scanning) and image-based (3D Photogrammetry) survey methodologies have been used. This contribution introduces the first results concerning the shape of the dome derived from surveys. Furthermore, a comparison is made between such survey outputs and those available in the literature.

  16. Evaluation of radar imagery of the North Louisiana Salt Dome Area

    International Nuclear Information System (INIS)

    Dellwig, L.F.

    1977-01-01

    Radar (SLAR) is basically a reconnaissance tool. It has proved to be most effective in the identification of regional structures, trends or fracture patterns which might be expressed in such a way as to affect (1) the roughness of the target (soil, rock or vegetation), (2) its dielectric properties (chemical composition, moisture content), or (3) its topographic expression. Topographic expression of domes is only poorly to moderately identifiable. Significant associated fractures cannot be detected. Vegetative anomalies are associated with many known domes, and are suggestive of the existence of numerous others. The validity of such anomalies as indicators of domes has yet to be, but should be, determined by field investigations. In the light of the poor to near lack of topographic expression of the domes or associated faults it is obvious that identification of recent movement is not to be expected. Such conclusions apply only to this environment and do not in any way mean to degrade the quality of the imagery. They do, however, point out the importance of understanding energy-target interaction and target and terrain characteristics in the mission planning phase of any further investigations

  17. Identification and characterization of passive safety system and inherent safety feature building blocks for advanced light-water reactors

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1989-01-01

    Oak Ridge National Laboratory (ORNL) is investigating passive and inherent safety options for Advanced Light-Water Reactors (ALWRs). A major activity in 1989 includes identification and characterization of passive safety system and inherent safety feature building blocks, both existing and proposed, for ALWRs. Preliminary results of this work are reported herein. This activity is part of a larger effort by the US Department of Energy, reactor vendors, utilities, and others in the United States to develop improved LWRs. The Advanced Boiling Water Reactor (ABWR) program and the Advanced Pressurized Water Reactor (APWR) program have as goals improved, commercially available LWRs in the early 1990s. The Advanced Simplified Boiling Water Reactor (ASBWR) program and the AP-600 program are developing more advanced reactors with increased use of passive safety systems. It is planned that these reactors will become commercially available in the mid 1990s. The ORNL program is an exploratory research program for LWRs beyond the year 2000. Desired long-term goals for such reactors include: (1) use of only passive and inherent safety, (2) foolproof against operator errors, (3) malevolence resistance against internal sabotage and external assault and (4) walkaway safety. The acronym ''PRIME'' [Passive safety, Resilient operation, Inherent safety, Malevolence resistance, and Extended (walkaway) safety] is used to summarize these desired characteristics. Existing passive and inherent safety options are discussed in this document

  18. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; DeCarvalho Santos, S.H.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a NPP Reactor Building. The main results of this analysis are compared with the ones obtained by deterministic methods

  19. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a reactor building. The main results of this analysis are compared with the ones obtained by deterministic methods. (orig./HP)

  20. Prediction of prestressing losses for long term operation of nuclear reactor buildings

    Directory of Open Access Journals (Sweden)

    Thillard G.

    2011-04-01

    Full Text Available Prestressed concrete is used in nuclear reactor buildings to guarantee containment and structural integrity in case of an accident. Monitoring and operating experience over 40 years has shown that prestressing losses can be much greater than the design estimation based on the usual standard laws. A method was developed to determine the realistic residual prestress level in structures, in particular for those where no embedded instrumentation was installed, taking into account in situ measurement results rather than design characteristics. The results can enable the owner to justify extending the lifespan while guaranteeing adequate safety and to define and plan adequate maintenance actions.

  1. An application of LOTEM around salt dome near Houston, Texas

    Science.gov (United States)

    Paembonan, Andri Yadi; Arjwech, Rungroj; Davydycheva, Sofia; Smirnov, Maxim; Strack, Kurt M.

    2017-07-01

    A salt dome is an important large geologic structure for hydrocarbon exploration. It may seal a porous reservoir of rocks that form petroleum reservoirs. Several techniques such as seismic, gravity, and electromagnetic including magnetotelluric have successfully yielded salt dome interpretation. Seismic has difficulties seeing through the salt because the seismic energy gets trapped by the salt due to its high velocity. Gravity and electromagnetics are more ideal methods. Long Offset Transient Electromagnetic (LOTEM) and Focused Source Electromagnetic (FSEM) were tested over a salt dome near Houston, Texas. LOTEM data were recorded at several stations with varying offset, and the FSEM tests were also made at some receiver locations near a suspected salt overhang. The data were processed using KMS's processing software: First, for assurance, including calibration and header checking; then transmitter and receiver data are merged and microseismic data is separated; Finally, data analysis and processing follows. LOTEM processing leads to inversion or in the FSEM case 3D modeling. Various 3D models verify the sensitivity under the salt dome. In addition, the processing was conducted pre-stack, stack, and post-stack. After pre-stacking, the noise was reduced, but showed the ringing effect due to a low-pass filter. Stacking and post-stacking with applying recursive average could reduce the Gibbs effect and produce smooth data.

  2. An approach to build a knowledge base for reactor diagnostic system using statistical method

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Matsumoto, Kiyoshi; Kohsaka, Atsuo

    1988-01-01

    In the development of a rule-based expert system, one of the key issues is how to acquire knowledge and to build a knowledge base. When the knowledge base of DISKET was built, which is an expert system for nuclear reactor accident diagnosis developed in Japan Atomic Energy Research Institute, several problems have been experienced. To write rules is a time-consuming task, and it was difficult to keep the objectivity and consistency of rules as the number of rules increased. Certainty factors must be determined often according to engineering judgement, i.e. empirically or intuitively. A systematic approach was attempted to cope with these difficulties and to build efficiently an objective knowledge base. The approach described in this paper is based on the concept that a prototype knowledge base, colloquially speaking an initial guess, should first be generated in a systematic way, then it is modified or improved by human experts for practical use. Factor analysis was used as the systematic way. DISKET system, the procedure of building a knowledge base, and the verification of the approach are reported. (Kako, I.)

  3. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  4. Vibration-proof FBR type reactor

    International Nuclear Information System (INIS)

    Kawamura, Yutaka.

    1992-01-01

    In a reactor container in an FBR type reactor, an outer building and upper and lower portions of a reactor container are connected by a load transmission device made of a laminated material of rubber and steel plates. Each of the reactor container and the outer building is disposed on a lower raft disposed on a rock by way of a vibration-proof device made of a laminated material of rubber and steel plates. Vibration-proof elements for providing vertical eigen frequency of the vibration-proof system comprising the reactor building and the vibration-proof device within a range of 3Hz to 5Hz are used. That is, the peak of designed acceleration for response spectrum in the horizontal direction of the reactor structural portions is shifted to side of shorter period from the main frequency region of the reactor structure. Alternatively, rigidity of the vibration-proof elements is decreased to shift the peak to the side of long period from the main frequency region. Designed seismic force can be greatly reduced both horizontally and vertically, to reduce the wall thickness of the structural members, improve the plant economy and to ensure the safety against earthquakes. (N.H.)

  5. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    Science.gov (United States)

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  6. The fast breeder reactor

    International Nuclear Information System (INIS)

    Davis, D.A.; Baker, M.A.W.; Hall, R.S.

    1990-01-01

    Following submission of written evidence, the Energy Committee members asked questions of three witnesses from the Central Electricity Generating Board and Nuclear Electric (which will be the government owned company running nuclear power stations after privatisation). Both questions and answers are reported verbatim. The points raised include where the responsibility for the future fast reactor programme should lie, with government only or with private enterprise or both and the viability of fast breeder reactors in the future. The case for the fast reactor was stated as essentially strategic not economic. This raised the issue of nuclear cost which has both a construction and a decommissioning element. There was considerable discussion as to the cost of building a European Fast reactor and the cost of the electricity it would generate compared with PWR type reactors. The likely demand for fast reactors will not arrive for 20-30 years and the need to build a fast reactor now is questioned. (UK)

  7. Precocious development of lectin (Ulex europaeus agglutinin I) receptors in dome epithelium of gut-associated lymphoid tissues.

    Science.gov (United States)

    Roy, M J

    1987-06-01

    Dome epithelium (DE), the tissue covering lymphoid domes of gut-associated lymphoid tissues, was examined in both adult and neonatal rabbit appendix or sacculus rotundus to determine if dome epithelial cells matured earlier than epithelial cells covering adjacent villi. The localization of well-differentiated epithelial cells in rabbit gut-associated lymphoid tissues (GALT) was accomplished histochemically by use of molecular probes: fluorescein isothiocyanate or horseradish peroxidase conjugates of Ulex europaeus agglutinin I (UEA), a lectin specific for terminal L-fucose molecules on certain glycoconjugates. The villus epithelial cells of newborn and 2-, 5-, or 10-day-old rabbits did not bind UEA, but between the twelfth and fifteenth days of postnatal life, UEA receptors were expressed by well-differentiated villus epithelial cells. In contrast to villus epithelium, DE in appendix and sacculus rotundus of neonatal rabbits expressed UEA receptors two days after birth, a feature that distinguished the DE of neonatal GALT for the next two weeks. In adult rabbits, UEA receptors were associated with dome epithelial cells extending from the mouths of glandular crypts to the upper domes; in contrast to the domes, UEA receptors were only present on well-differentiated epithelial cells at the villus tips. Results suggested that in neonatal rabbits most dome epithelial cells developed UEA receptors shortly after birth, reflecting precocious development of DE as compared to villus epithelium. In adult rabbit dome epithelium UEA receptors appeared on dome epithelial cells as they left the glandular crypts, representing accelerated epithelial maturation.

  8. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future.

  9. The Senior Capstone, Dome or Spire?

    Science.gov (United States)

    Heinemann, Robert L.

    This paper examines a basic philosophical issue involved with the purpose of a senior capstone communication course required of all majors. The issue involves two opposites: closure, represented by the dome, and further exploration, represented by the spire. Both approaches have legitimate claims for a capstone course. There is definitely a need…

  10. Features of Bayou Choctaw SPR caverns and internal structure of the salt dome.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Darrell E.

    2007-07-01

    The intent of this study is to examine the internal structure of the Bayou Choctaw salt dome utilizing the information obtained from graphical representations of sonar survey data of the internal cavern surfaces. Many of the Bayou Choctaw caverns have been abandoned. Some existing caverns were purchased by the Strategic Petroleum Reserve (SPR) program and have rather convoluted histories and complex cavern geometries. In fact, these caverns are typically poorly documented and are not particularly constructive to this study. Only two Bayou Choctaw caverns, 101 and 102, which were constructed using well-controlled solutioning methods, are well documented. One of these was constructed by the SPR for their use while the other was constructed and traded for another existing cavern. Consequently, compared to the SPR caverns of the West Hackberry and Big Hill domes, it is more difficult to obtain a general impression of the stratigraphy of the dome. Indeed, caverns of Bayou Choctaw show features significantly different than those encountered in the other two SPR facilities. In the number of abandoned caverns, and some of those existing caverns purchased by the SPR, extremely irregular solutioning has occurred. The two SPR constructed caverns suggest that some sections of the caverns may have undergone very regular solutioning to form uniform cylindrical shapes. Although it is not usually productive to speculate, some suggestions that point to the behavior of the Bayou Choctaw dome are examined. Also the primary differences in the Bayou Choctaw dome and the other SPR domes are noted.

  11. Design Of a Fixed-Dome Ferrocement Biodigester Built Partiall y Underground

    OpenAIRE

    Marianela de la Caridad Ortiz Alvarez; Hugo Rafael Wainshtok Rivas; Henry Hernández Sotomayor

    2016-01-01

    The analysis, structural design and constructive sequence of a fixed-dome biodigester built partially underground and using ferrocement as construction material under normal work conditions is in this paper developed. The biodigester capacity is 24 m3 and it is composed by a semispherical dome (cover), cylindricalwalls (body) and a circular slab(bottom). The biodigester using ferrocement as construction materialis in agreement with the service guaranty requirements settled for the established...

  12. Industrial structure at research reactor suppliers

    International Nuclear Information System (INIS)

    Roegler, H.-J.; Bogusch, E.; Friebe, T.

    2001-01-01

    Due to the recent joining of the forces of Framatome S. A. from France and the Nuclear Division of Siemens AG Power Generation (KWU) from Germany to a Joint Venture named Framatome Advanced Nuclear Power S.A.S., the issue of the necessary and of the optimal industrial structure for nuclear projects as a research reactor is, was discussed internally often and intensively. That discussion took place also in the other technical fields such as Services for NPPs but also in the field of interest here, i. e. Research Reactors. In summarizing the statements of this presentation one can about state that: Research Reactors are easier to build than NPPs, but not standardised; Research Reactors need a wide spectrum of skills and experiences; to design and build Research Reactors needs an experienced team especially in terms of management and interfaces; Research Reactors need background from built reference plants more than from operating plants; Research Reactors need knowledge of suitable experienced subsuppliers. Two more essential conclusions as industry involved in constructing and upgrading research reactors are: Research Reactors by far are more than a suitable core that generates a high neutron flux; every institution that designs and builds a Research Reactor lacks quality or causes safety problems, damages the reputation of the entire community

  13. Method for temporary shielding of reactor vessel internals

    International Nuclear Information System (INIS)

    Grimm, N.P.; Sejvar, J.

    1991-01-01

    This patent describes a method for shielding stored internals for reactor vessel annealing. It comprises removing nuclear fuel from the reactor vessel containment building; removing and storing upper and lower core internals under water in a refueling canal storage area; assembling a support structure in the refueling canal between the reactor vessel and the stored internals; introducing vertical shielding tanks individually through a hatch in the containment building and positioning each into the support structure; introducing horizontal shielding tanks individually through a hatch in the containment building and positioning each above the stored internals and vertical tanks; draining water from the refueling canal to the level of a flange of the reactor vessel; placing an annealing apparatus in the reactor vessel; pumping the remaining water from the reactor vessel; and annealing the reactor vessel

  14. Electrical measuring device for a high temperature reactor

    International Nuclear Information System (INIS)

    Elter, C.; Handel, H.; Schoening, J.; Schmitt, H.

    1982-01-01

    The device for measuring the low or high neutron flux during start-up or at load is accommodated in an armoured guide tube projecting into the floor. A gas-tight capsule is formed as the measuring column with outer dome with a lid solidly connected by a flange to the armoured tube situated on the side wall of the concrete reactor vessel, together with the armoured guide tube. Two shielding shutters prevent the passage of radiation through the armoured tube. (DG) [de

  15. Airborne photogrammetry and geomorphological analysis of the 2001-2012 exogenous dome growth at Molodoy Shiveluch Volcano, Kamchatka

    Science.gov (United States)

    Shevchenko, A. V.; Dvigalo, V. N.; Svirid, I. Yu.

    2015-10-01

    In 2001, after a six-year pause in extrusive activity, lava dome growth resumed at Molodoy Shiveluch Volcano. The new period of dome growth (2001-present) has morphological features that were uncommon during the previous periods of the dome formation (1980-1981, 1993-1995): numerous lava lobes and crease structures. Thus, the current dome growth is mostly of an exogenous type with short periods of endogenous growth that occurred in 2003, 2005, and 2010. Geomorphological interpretation of stereo photo images has revealed elements of the dome that are hardly distinguishable in single photographs. We have made detailed descriptions of the dome morphology covering all the dates of the available images. By using photogrammetric processing of aerial photographs, we created Digital Terrain Models and topographic maps of the lava dome and defined its volumes for 2001 (0.19 km3), 2003 (0.47 km3), 2005 (0.48 km3), 2010 (0.54 km3), and 2012 (0.63 km3). We also defined other morphometric characteristics: absolute and relative heights, as well as the dimensions of the dome and its elements for the investigated period. Taking into account large partial failures of the dome in 2005 (>0.11 km3) and 2010 (0.28 km3), we suggest that the volume of the extruded material for the whole 1980-2012 period was no less than 1.02 km3. The average extrusion rate over the 2001-2012 period exceeded 225,000 m3/day. The transition from endogenous to exogenous dome growth was possibly caused by change in extruded material physical properties due to an increase of SiO2. On the basis of geomorphological analysis of the current lava dome features, we suggest the possible process of the exogenous dome formation at Molodoy Shiveluch. The crease structures detected at Molodoy Shiveluch were classified into three groups according to their shapes: radial, bilaterally symmetrical, and irregular. These crease structures are morphologically similar to those formed at Unzen Volcano during the 1990

  16. Hyperthyroidism with dome-and-dart T wave: A case report: A care-compliant article.

    Science.gov (United States)

    Lai, Ping; Yuan, Jing-Ling; Xue, Jin-Hua; Qiu, Yue-Qun

    2017-02-01

    Dome-and-dart T waves (or bifid T waves) are a rare phenomenon in the surface electrocardiogram. These wave forms are mainly observed in patients with congenital heart disease such as atrial septal defect and ventricular septal defect. And hyperthyroidism who presented with an electrocardiogram that had dome-and-dart T waves in a precordial lead is never been reported. The patient presented with continuous tachycardia, palpitations, chest tightness, and headache for 4 days, and aggravated for 1 day. Hyperthyroidism. Methimazole. All symptoms were alleviated. Dome-and-dart or bifid T waves have been reported in the conventional 12-lead electrocardiograms in some patients with congenital heart disease. The case illustrated here, to the best of our knowledge, dome-and-dart or bifid T waves may associate with hyperthyroidism patients.

  17. Robotic Manufacturing of 5.5 Meter Cryogenic Fuel Tank Dome Assemblies for the NASA Ares I Rocket

    Science.gov (United States)

    Jones, Ronald E.

    2012-01-01

    The Ares I rocket is the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's (NASA's) Constellation program. A series of full-scale Ares I development articles have been constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7-axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This presentation will focus on the friction stir welding of 5.5m diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome (LH2 MDA), the common bulkhead manufacturing development articles (CBMDA) and the thermal protection system demonstration dome (TPS Dome). The LH2 MDA was the first full-scale, flight-like Ares I hardware produced under the Constellation Program. It is a 5.5m diameter elliptical dome assembly consisting of eight gore panels, a y-ring stiffener and a manhole fitting. All components are made from aluminumlithium alloy 2195. Conventional and self-reacting friction stir welding was used on this article. An overview of the manufacturing processes will be discussed. The LH2 MDA is the first known fully friction stir welded dome ever produced. The completion of four Common Bulkhead Manufacturing Development Articles (CBMDA) and the TPS Dome will also be highlighted. Each CBMDA and the TPS Dome consists of a 5.5m diameter spun-formed dome friction stir welded to a y-ring stiffener. The domes and y-rings are made of aluminum 2014 and 2219 respectively. The TPS Dome has an additional aluminum alloy 2195 barrel section welded to the y-ring. Manufacturing solutions will be discussed including "fixtureless" welding with self reacting friction stir welding.

  18. On detonation dynamics in hydrogen-air-steam mixtures: Theory and application to Olkiluoto reactor building

    International Nuclear Information System (INIS)

    Silde, A.; Lindholm, I.

    2000-02-01

    This report consists of the literature study of detonation dynamics in hydrogen-air-steam mixtures, and the assessment of shock pressure loads in Olkiluoto 1 and 2 reactor building under detonation conditions using the computer program DETO developed during this work at VTT. The program uses a simple 1-D approach based on the strong explosion theory, and accounts for the effects of both the primary or incident shock and the first (oblique or normal) reflected shock from a wall structure. The code results are also assessed against a Balloon experiment performed at Germany, and the classical Chapman-Jouguet detonation theory. The whole work was carried out as a part of Nordic SOS-2.3 project, dealing with severe accident analysis. The initial conditions and gas distribution of the detonation calculations are based on previous severe accident analyses by MELCOR and FLUENT codes. According to DETO calculations, the maximum peak pressure in a structure of Olkiluoto reactor building room B60-80 after normal shock reflection was about 38.7 MPa if a total of 3.15 kg hydrogen was assumed to burned in a distance of 2.0 m from the wall structure. The corresponding pressure impulse was about 9.4 kPa-s. The results were sensitive to the distance used. Comparison of the results to classical C-J theory and the Balloon experiments suggested that DETO code represented a conservative estimation for the first pressure spike under the shock reflection from a wall in Olkiluoto reactor building. Complicated 3-D phenomena of shock wave reflections and focusing, nor the propagation of combustion front behind the shock wave under detonation conditions are not modeled in the DETO code. More detailed 3-D analyses with a specific detonation code are, therefore, recommended. In spite of the code simplifications, DETO was found to be a beneficial tool for simple first-order assessments of the structure pressure loads under the first reflection of detonation shock waves. The work on assessment

  19. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs

  20. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

  1. Crystal-rich lava dome extrusion during vesiculation: An experimental study

    Science.gov (United States)

    Pistone, Mattia; Whittington, Alan G.; Andrews, Benjamin J.; Cottrell, Elizabeth

    2017-11-01

    Lava dome-forming eruptions represent a common eruptive style and a major hazard at numerous active volcanoes worldwide. The extrusion mechanics of crystal-rich lava domes and the influence of volatiles on the transition from viscous to brittle behaviour during lava dome extrusion remain unclear. Understanding how gas exsolution and crystallinity control effusive versus explosive eruption behaviour is essential. Here, we present new experimental results on the rheology of synthesised, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacite samples, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (from glass transition temperature to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.63-0.64 MPa, and variable strain-rates ranging from 8.32·10- 8 to 3.58·10- 5 s- 1). The experiments reproduce certain aspects of lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution (i.e. nucleation and growth of gas-pressurised bubbles) and volume inflation, we find that the rheological lubrication of the system during deformation is strongly dictated by the initial crystallinity. At crystal contents < 60 vol%, gas bubbles form and coalesce during expansion and viscous deformation, favouring strain localisation and gas permeability within shear bands, which control the overall sample rheology. At crystallinities of 60 to 70 vol%, gas exsolution generates pressurisation (i.e. pore pressure increase) within the bubbles trapped in the solid crystal clusters, and embryonic formation of microscopic fractures through melt and crystals drives the system to a brittle behaviour. At higher crystallinity (80 vol%) vesiculation leads to large pressurisation, which then triggers extensive brittle fragmentation. Through macroscopic fractures, outgassing determines the rheological stalling of the

  2. Early Miocene rapid exhumation in southern Tibet: Insights from P-T-t-D-magmatism path of Yardoi dome

    Science.gov (United States)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Kai; Zhang, Jin-Jiang; Liu, Xiao-Chi

    2018-04-01

    Reconstructing the evolution of Gneiss domes within orogenic belts poses challenges because domes can form in a variety of geodynamic settings and by multiple doming mechanisms. For the North Himalayan gneiss domes (NHGD), it is debated whether they formed during shortening, extension or collapse of the plateau, and what is the spatial and temporal relationship of magmatism, metamorphism and deformation. This study investigates the Yardoi dome in southern Tibet using field mapping, petrography, phase equilibria modelling and new monazite ages. The resulting P-T-time-deformation-magmatism path for the first time reveals the spatial and temporal relationship of metamorphism, deformation and magmatism in the Yardoi dome: a) the dome mantle recorded prograde loading to kyanite-grade Barrovian metamorphic conditions of 650 ± 30 °C and 9 ± 1 kbar (M2) in the Early Miocene (18-17 Ma); b) the main top-to-the-north deformation fabric (D2) formed syn- to post-peak-metamorphism; c) the emplacement of leucorgranites related to doming is syn-metamorphism at 19-17 Ma. The link between the detachment shear zone in the Yardoi dome and the South Tibetan detachment system (STDS) is confirmed. By comparing with orogen-scale tectonic processes in the Himalaya, we suggest that north-south extension in a convergent geodynamic setting during Early Miocene accounts for formation of the Yardoi dome. In a wider tectonic context, the Early Miocene rapid exhumation of deep crustal rocks was contemporaneous with the rapid uplift of southern Tibet and the Himalayan orogen.

  3. A comparison of surgical exposures for posterolateral osteochondral lesions of the talar dome.

    Science.gov (United States)

    Mayne, Alistair I W; Lawton, Robert; Reidy, Michael J; Harrold, Fraser; Chami, George

    2018-04-01

    Perpendicular access to the posterolateral talar dome for the management of osteochondral defects is difficult. We examined exposure available from each of four surgical approaches. Four surgical approaches were performed on 9 Thiel-embalmed cadavers: anterolateral approach with arthrotomy; anterolateral approach with anterior talo-fibular ligament (ATFL) release; anterolateral approach with antero-lateral tibial osteotomy; and anterolateral approach with lateral malleolus osteotomy. The furthest distance posteriorly allowing perpendicular access with a 2mm k-wire was measured. An anterolateral approach with arthrotomy provided a mean exposure of the anterior third of the lateral talar dome. A lateral malleolus osteotomy provided superior exposure (81.5% vs 58.8%) compared to an anterolateral tibial osteotomy. Only the anterior half of the lateral border of the talar dome could be accessed with an anterolateral approach without osteotomy. A fibular osteotomy provided best exposure to the posterolateral aspect of the talar dome. Copyright © 2016 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  4. Enduring perceptions: Place naming and the perception of Louisiana’s salt dome islands

    Directory of Open Access Journals (Sweden)

    Philip Hayward

    2016-11-01

    Full Text Available Salt domes are geological features that occur when areas of salt deposits are pressured into layers above them, causing dome shaped distortions in horizontal strata. In some instances, the distortions protrude above flat areas of land or else appear underwater as seamounts. In the case of the five Louisiana salt dome hills considered in this article, their distinct elevation above the swampy bayous and flatlands surrounding them has led to their characterisation as islands by indigenous Atakapa-Ishak peoples and by subsequent Francophone and Anglophone settlers. The article considers the ways in which the five salt domes’ islandness has been perceived, enhanced and/or undermined by various local inhabitants and/or the commercial operations that have operated on them. Discussion of these aspects involves consideration of the manner in which the salt dome islands’ islandness is mutable and complex, particularly with regard to human impacts. This mutability is discussed with regard to both individual island placenames and the islands’ overall designations.

  5. The mythic structure in the black dome of the Haftpeikar: Study of Hero's journey in the first dome

    Directory of Open Access Journals (Sweden)

    Seyed Kazem Mousavi

    2016-12-01

    Full Text Available Abstract In this paper the Vogler Hero's journey is used for analyzing the mythic structures and hero's journey of the first dome of the Haftpeikar. Vogler Released his founds in the Writer's Journey book. This book that is really dependent on Campbell's Single Myth Theory is a practical guidance for script writing and review of that. The levels of the hero's journey in his book are include: The normal world, invitation to the story, reject the invitation, visit the mentor, passing the first gate, the exams, the allies, the enemies, qualifying to the deepest cave, trial, the reward, the road back, resurrection, return with the elixir.  In this paper, at first the properties of each level of the hero's journey theory are matching with the journey's levels in the black dome story. After that seven useful archetypes including hero, mentor, threshold guardian, herald, shape shifter, the shadow and trickster, are determined in the text.  Black dome has several journeys' cycles. Journey's that are seen in this dome are: (Bahram's journey: A part of the internal journey of Bahram in black dome. (The king's maid journey: Internal journey of the king's maid that wears black clothes after hearing the story. (King of black clothes' journey: The king's journey to the Madhooshan city for exploring the mystery of the black alien. (The reader's journey: This internal journey belongs to the readers of the first dome that learn their lessons through traveling to the character's world. (Nezami's journey: The Nezami's internal journey with composing the text. Checking the reader's journey and black dome's composer is out of this text. While the first and second journey just saying some parts, the black king has completer levels and for affecting on the other journeys is the most important story of the first dome. Therefore at first we check the black king story and we explain the other journeys.  The goal of this paper in addition to the usage of the vogler

  6. Visual aesthetics study: Gibson Dome area, Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1984-03-01

    The Visual Aesthetics study was performed as an initial assessment of concerns regarding impacts to visual resources that might be associated with the construction of a geologic nuclear waste repository and associated rail routes in the Gibson Dome location of southeastern Utah. Potential impacts to visual resources were evaluated by predicting visibility of the facility and railway routes using the US Forest Service (USFS) computer program, VIEWIT, and by applying the Bureau of Land Management (BLM) Visual Resource Management (VRM) methodology. Five proposed facility sites in the Gibson Dome area and three proposed railway routes were evaluated for visual impact. 10 references, 19 figures, 5 tables

  7. Data Quality Objective Summary Report for Phase II of the 105-F and DR Reactor Buildings

    International Nuclear Information System (INIS)

    Bauer, R.G.

    1998-01-01

    This data quality objective (DQO) process is to support planning and decision-making activities of Phase II decontamination and decommissioning (D and D) activities for the 105-F and 105-DR Reactor Buildings.The objective of this DQO is to determine the survey and characterization requirements for these rooms to provide the necessary information for worker safety, waste designation, recycle, reuse, and clean landfill disposal decisions during D and D

  8. Decontamination and radioactivity measurement on building surfaces related to dismantling of Japan power demonstration reactor (JPDR)

    International Nuclear Information System (INIS)

    Hatakeyama, Mutsuo; Tachibana, Mitsuo; Yanagihara, Satoshi

    1997-12-01

    In the final stage of dismantling activities for decommissioning a nuclear power plant, building structures have to be demolished to release the site for unrestricted use. Since building structures are generally made from massive reinforced concrete materials, it is not a rational way to treat all concrete materials arising from its demolition as radioactive waste. Segregation of radioactive parts from building structures is therefore indispensable. The rational procedures were studied for demolition of building structures by treating arising waste as non-radioactive materials, based on the concept established by Nuclear Safety Commission, then these were implemented in the following way by the JPDR dismantling demonstration project. Areas of the JPDR facilities are categorized into two groups : possibly contaminated areas, and possibly non-contaminated areas, based on the document of the reactor operation. Radioactivity on the building surfaces was then measured to confirm that the qualitative categorization is reasonable. After that, building surfaces were decontaminated in such a way that the contaminated layers were removed with enough margin to separate radioactive parts from non-radioactive building structures. Thought it might be possible to demolish the building structures by treating arising waste as non-radioactive materials, confirmation survey for radioactivity was conducted to show that there is no artificial radioactive nuclides produced by operation in the facility. This report describes the procedures studied on measurement of radioactivity and decontamination, and the results of its implementation in the JPDR dismantling demonstration project. (author)

  9. Artificial intelligence applications in fixed area monitor for TRIGA reactor building and service building

    International Nuclear Information System (INIS)

    Talpalariu, C.; Talpalariu, J.; Vaja, N.; Matei, C.

    2008-01-01

    This system is intended for the protection of personnel working in those areas of the Reactor Building and Service Building where high gamma radiation fields are expected. A detector, sensitive to gamma radiation, is installed in each of the areas to be monitored. The detector will send a signal, proportional to the radiation level in the area, to a corresponding electronic module (Alarm Unit), where the signal will be amplified and checked against alarm set points for possible alarming conditions. In case the field exceeds the alarm set values, the Alarm Unit will produce a signal that will trigger the field alarms (Horn and Beacon) located in the area where the condition occurred. Each Alarm Unit will send a numerical input to central computer command. he system is required to accomplish the following tasks: - Monitors the level of gamma radiation in those areas of the Station where high radiation fields are expected; - Provides a continuous and centralized display of the radiation level in each of the monitored areas. The display shall be in exposure rate units (R/h); - Provides a visual and audible alarm in each monitored areas; Allows the control room operator to check at any time the radiation levels and alarm conditions in each of the monitored areas; - Control room operator shall be alerted of any alarm conditions that occurs in the Station. A typical monitoring loop is composed of the following components: Detector Assembly type: CI-MA - 522 two channels, two ranges; Horn and Beacon Assembly; Remote Indicating Meter with Warning Lights; Central computer; common equipment for all 40 loops. (authors)

  10. Renewal of reactor cooling system of JMTR. Reactor building site

    International Nuclear Information System (INIS)

    Onoue, Ryuji; Kawamata, Takanori; Otsuka, Kaoru; Sekine, Katsunori; Koike, Sumio; Gorai, Shigeru; Nishiyama, Yutaka; Fukasaku, Akitomi

    2012-03-01

    The Japan Materials Testing Reactor (JMTR) is a light water moderated and cooled tank-type reactor, and its thermal power is 50 MW. The JMTR is categorized as high flux testing reactors in the world. The JMTR has been utilized for irradiation experiments of nuclear fuels and materials, as well as for radioisotope productions since the first criticality in March 1968 until August 2006. JAEA is decided to refurbish the JMTR as an important fundamental infrastructure to promote the nuclear research and development. And The JMTR refurbishment work is carried out for 4 years from 2007. Before refurbishment work, from August 2006 to March 2007, all concerned renewal facilities were selected from evaluation on their damage and wear in terms of aging. Facilities which replacement parts are no longer manufactured or not likely to be manufactured continuously in near future, are selected as renewal ones. Replace priority was decided with special attention to safety concerns. A monitoring of aging condition by the regular maintenance activity is an important factor in selection of continuous using after the restart. In this report, renewal of the cooling system within refurbishment facilities in the JMTR is summarized. (author)

  11. A modified model for estimation of daylight factor for skylight integrated with dome roof structure of mud-house in New Delhi (India)

    Energy Technology Data Exchange (ETDEWEB)

    Chel, Arvind; Tiwari, G.N.; Singh, H.N. [Centre for Energy Studies (CES), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India)

    2010-10-15

    The daylight factor model given by Charted Institute of Building Services Engineers (CIBSE) was modified in this paper to incorporate time variations with respect to zenith angle ({theta}{sub z}) and vertical height (h) of working surface above ground surface which was normalized with central height (H) of skylight dome. The modified model contains constant exponents which are determined using linear regression analysis based on hourly experimental data of inside and outside illuminance for each month of the year 2007-2008. The prediction of modified model is found in good agreement with experimental observed inside illuminance data on the basis of values of root mean square percentage error (e) and correlation coefficient (r). The annual average daylight factor values for big and small dome skylight rooms are determined as 2.3% and 4.4% respectively. The energy saving potential of skylight rooms for selected climatic locations in India is also presented in this paper. (author)

  12. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    In the earthquake response analysis for a rigid and massive structure as a nuclear reactor building, it is important to estimate the effect of soil-structure interaction (SSI) appropriately. In case of strong earthquakes, the nonlinearity, such as the wall-ground separation, the base mat uplift of sliding, makes the behavior of the soil-structure system complex. But, if the nuclear reactor building is embedded in a relatively soft ground with surface layer, the wall-ground separation plays the most important role in the response of soil-structure system. Because, it is expected that the base uplift and slide would be less significant due to the effect of the embedment, and the wall-ground friction is usually neglected in design. But, the nonlinearity of ground may have some effect on the wall-ground separation and the response of the structure. These problems have been studied by use of FEM. Others used joint elements between the ground and the structure which does not resist tensile force. Others studied the effect of wall-ground separation with non-tension springs. But the relationship between the ground condition and the effect of the separation has not been clarified yet. To clarify the effect the analyses by FE model and lumped mass model (sway-rocking model) are performed and compared. The key parameter is the ground profile, namely the stiffness of the side soil

  13. LA-ICP-MS and SIMS U-Pb and U-Th zircon geochronological data of Late Pleistocene lava domes of the Ciomadul Volcanic Dome Complex (Eastern Carpathians

    Directory of Open Access Journals (Sweden)

    Réka Lukács

    2018-06-01

    Full Text Available This article provides laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS and secondary ionization mass spectrometry (SIMS U-Pb and U-Th zircon dates for crystals separated from Late Pleistocene dacitic lava dome rocks of the Ciomadul Volcanic Dome Complex (Eastern Carpathians, Romania. The analyses were performed on unpolished zircon prism faces (termed rim analyses and on crystal interiors exposed through mechanical grinding an polishing (interior analyses. 206Pb/238U ages are corrected for Th-disequilibrium based on published and calculated distribution coefficients for U and Th using average whole-rock and individually analyzed zircon compositions. The data presented in this article were used for the Th-disequilibrium correction of (U-Th/He zircon geochronology data in the research article entitled “The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians: eruption chronology and magma type variation” (Molnár et al., 2018 [1].

  14. Reanalysis and evaluation of seismic response of reactor building

    International Nuclear Information System (INIS)

    Li Zhongcheng; Li Zhongxian

    2005-01-01

    For the Ling Ao phase-I (LA-I) Nuclear Power Plant (NPP), its' seismic analysis of nuclear island was in accordance with the approaches in RCC-G standard for the model M310 in France, in which the Simplified impedance method was employed for the consideration of SSI. Thanks to the rapid progress being made in upgrading the evaluation technology and the capability of data processing systems, methods and software tools for the SSI analysis have experienced significant development all over the world. Focused on the model of reactor building of the LA-I NPP, in this paper the more sophisticated 3D half-space continuum impedance method based on the Green functions is used to analyze the functions of the soil, and then the seismic responses of the coupled SSI system are calculated and compared with the corresponding design values. It demonstrates that the design method provides a set of conservatively safe results. The conclusions from the study are hopefully to provide some important references to the assessment of seismic safety margin for LA-I NPP. (authors)

  15. Robotics take heat out of reactor. [Windscale AGR decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Rufford, N

    1986-12-04

    The Windscale prototype reactor is being decommissioned and dismantled. The stages are outlined. The first phase began in 1985 and included construction of a waste packaging plant annexed to the steel dome. The boilers will be cut up and, once decontaminated, probably sold for scrap. The second phase involves dismantling the reactor itself. Much of this will be done by a semi-automatic robot which is being specially built and tested. The robot will have an extendable arm with a manipulator which will be equipped with bolt croppers, shears, a saw and oxypropane cutter. This robot will cut up the pressure vessel in sections ready for encasing in concrete. Lessons learnt from the dismantling will be used in future reactor designs and specifications (eg the need to use steels with fewer impurities, especially cobalt). Ultimate disposal of the concrete waste blocks is undecided. (U.K.).

  16. Percutaneous Ethanol Injection via an Artificially Induced Right Hydrothorax for Hepatocellular Carcinoma in the Hepatic Dome

    International Nuclear Information System (INIS)

    Kume, Akimichi; Nimura, Yuji; Kamiya, Junichi; Nagino, Masato; Kito, Yasushi

    2003-01-01

    To evaluate the efficacy of sonographically (US) guided percutaneous ethanol injection (PEI) via an artificially induced right hydrothorax (transthoracic PEI) to treat US-invisible hepatocellular carcinoma (HCC) in the hepatic dome. Five cirrhotic patients with US-invisible HCC in the hepatic dome, who were poor surgical candidates, underwent transthoracic PEI. An artificial right hydrothorax was created by instilling 500 ml saline, and absolute ethanol was injected transhydrothoracically into the hepatic dome lesion under local anesthesia. The success and complications were assessed radiologically. The patients were followed up serologically and radiologically for 12-44 (mean 28.4) months. Twenty-five hydrothoraces were induced. All hydrothoraces enabled US visualization of the entire hepatic dome. Eight of the nine small lesions were treated successfully by the treatment. Two of the three local recurrences were eradicated by repeat transthoracic PEI. One large lesion was treated by a combination of transthoracic and regular PEI. The only complication was one clinically insignificant pneumothorax. Induction of a right hydrothorax is feasible and safe. The hydrothorax enables US visualization of the entire hepatic dome and permits US-guided PEI for HCC in the hepatic dome that otherwise would not be possible

  17. Dynamic analysis of the reactor building for soft (Kozloduy) and hard (Temelin) soil conditions and different seismic loading

    International Nuclear Information System (INIS)

    Krutzik, N.

    1995-01-01

    Analyses were conducted for the reactor building to determine the dynamic responses of the coupled system, soil and structure and the forces in the characteristic structural members. This report summarizes the results of structural dynamic analyses derived for soft and hard soil conditions by the modal time history method using substructure models as well as (for soft soil conditions) in the frequency domain using complex (coupled) models of the soil and the structure. The mathematical model of the reactor building is represented as a lumped mass beam model. The capabilities of the soil were represented by means of global frequency independent springs and dampers (substructure models) or by an appropriate final element model. The results of the above-mentioned analysis presented in this report comprise in particular the maximum values of accelerations, displacements and internal forces as well as the acceleration response spectra for the relevant building regions. The time domain (modal time history) calculations were performed for real soil conditions which corresponds to the site Kozloduy (soft) and Temelin (hard). As seismic input data the corresponding free-field data here been used. The dynamic response obtained for the soft-soil conditions using both type of (substructure and complex) models were compared and demonstrated in one plot. Similar comparison were performed for the results obtained for soft and hard soil conditions

  18. Kaguyak dome field and its Holocene caldera, Alaska Peninsula

    Science.gov (United States)

    Fierstein, J.; Hildreth, W.

    2008-01-01

    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375??km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ?? 0.2??ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80??km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53-74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60??ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200??years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  19. Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi

    International Nuclear Information System (INIS)

    1989-04-01

    In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ''area characterization'' phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ''Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.''

  20. The thermo-mechanical behaviour of a salt dome with a heat-generating waste repository

    International Nuclear Information System (INIS)

    Janssen, L.G.J.; Prij, J.; Kevenaar, J.W.A.M.; Jong, C.J.T.; Klok, J.; Beemsterboer, C.

    1984-01-01

    This report reviews the analytical work on the disposal of radioactive waste in salt domes performed at ECN in the period 1 January 1980 to 31 December 1982. Chapter 4 in the main report covers the global temperature and deformation analyses of the salt dome and the surrounding rocks. The attached three topical reports cover self-contained parts of the study. The computer program TASTE developed to analyse, at acceptable cost and with, for engineering purposes, sufficient accuracies, the temperature rises in the salt dome due to the stored heat-generating waste is described in Annex 1. Annex 2 gives a description of the extended finite element program GOLIA. The program has been extended to make it suitable for the creep analysis of salt domes with repositories of heat-generating waste. The study on the closing and sealing of boreholes wit heat-generating waste is reported in Annex 3

  1. BENDING THE DOMING EFFECT IN STRUCTURE FROM MOTION RECONSTRUCTIONS THROUGH BUNDLE ADJUSTMENT

    Directory of Open Access Journals (Sweden)

    L. Magri

    2017-08-01

    Full Text Available Structure from Motion techniques provides low-cost and flexible methods that can be adopted in arial surveying to collect topographic data with accurate results. Nevertheless, the so-called “doming effect”, due to unfortunate acquisition conditions or unreliable modeling of radial distortion, has been recognized as a critical issue that disrupts the quality of the attained 3D reconstruction. In this paper we propose a novel method, that works effectively in the presence of a nearly flat soil, to tackle a posteriori the doming effect: an automatic ground detection method is used to capture the doming deformation flawing the reconstruction, which in turn is wrapped to the correct geometry by iteratively enforcing a planarity constraint through a Bundle Adjustment framework. Experiments on real word datasets demonstrate promising results.

  2. Coupling of impedance functions to nuclear reactor building for soil-structure interaction analysis

    International Nuclear Information System (INIS)

    Danisch, R.; Delinic, K.; Trbojevic, V.M.

    1991-01-01

    Finite element model of a nuclear reactor building is coupled to complex soil impedance functions and soil-structure-interaction analysis is carried out in frequency domain. In the second type of analysis applied in this paper, soil impedance functions are used to evaluate equivalent soil springs and dashpots of soil. These are coupled to the structure model in order to carry out the time marching analysis. Three types of soil profiles are considered: hard, medium and soft. Results of two analyzes are compared on the same structural model. Equivalent soil springs and dashpots are determined using new method based on the least square approximation. (author)

  3. Volcano dome dynamics at Mount St. Helens: Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    Science.gov (United States)

    Salzer, Jacqueline T.; Thelen, Weston A.; James, Mike R.; Walter, Thomas R.; Moran, Seth C.; Denlinger, Roger P.

    2016-01-01

    The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity- and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals.

  4. Earthquake response of nuclear reactor building deeply embedded in soil

    International Nuclear Information System (INIS)

    Masao, T.; Hirasawa, M.; Yamamoto, S.; Koori, Y.

    1977-01-01

    Regarding the earthquake response of nuclear reactor building embedded in soil, experimental and theoretical investigations has been performed on a model of height-3.75 meter, bottom cross section-5x5 meter, weight-173 ton made of conrete under the financial support of Japanese government (The Science and Technology Agency). The top of model was excited by an eccentric mass vibration that can generate maximum force of 3 tons. Earthpressures were measured at the bottom and side wall of model, and displacements were also measured at the top of model (6 components) and ground surface changed in the steps which were 0, 20, 47, 73, 100% (against the height of model). Using these experimental results and soil properties, dynamical characteristics were studied, including resonant frequency, radiation damping, vibrational mode, frequency response and earthpressure distribution around the model at varying embedment by lumped model, cyclindrical elastic wave model and FEM models (thin layer elements). (Auth.)

  5. Volcano-tectonic control of Merapi's lava dome splitting observed from high resolution TerraSAR-X data

    KAUST Repository

    Luehr, Birger-G.; Walter, Thomas R.; Subandriyo, Joko; Sri Brotopuspito, Kirbani; Vasyura-Bathke, Hannes; Suryanto, Wiwit; Aisyah, Naning; Darmawan, Herlan; Nikkhoo, Mehdi; Richter, Nicole; Jousset, Philippe; Dahm, Torsten

    2015-01-01

    Volcanism at active andesite-dacite volcanoes is often associated with the formation and collapse of circular shaped protrusions of extruded, highly viscous lava, the so-called domes, which are emplaced in the near summit region. Growing domes may experience stable and instable structural phases, with a gradual transition in between. Dome collapse and the break-off of instable blocks of viscous lava may lead to pyroclastic flows, one of the most lethal hazards at stratovolcanoes. At Merapi volcano, Indonesia, nearly 50 % of all eruptions are accompanied by these phenomena. After the climactic eruption in 2010 which left an amphitheater in the summit region, a new dome started growing. Three years later, the dome reached a height of approximately 100 m and diameters of 220 and 190 m with a plateau-like surface area of 40,000m2 approximately. On 18/11/2013, an explosion occurred without identified precursors, leaving a major fracture cutting the complete dome structure. Based on high resolution TerraSAR-X satellite radar imagery, we could identify this linear fracture, traceable over ~200m in the long axis, and up to 40m width. After geocoding of the radar amplitude imagery, the fractures azimuthal trend could be compared to other structural lineaments, indicative of a significant NNW-SSE structural direction that has formed on Merapi volcano in the past. This alignment is also visible in a seismic velocity tomographic imagery for the upper crust, down to 15 km depth. The Merapi dome fractured in a NW-SE direction, and is consistent with the alignment of regional tectonic structures and of anticipated directions of pyroclastic flows. The fracture may be part of a larger volcano-tectonic system and may affect the dynamics and the stability of the Merapi dome.

  6. Volcano-tectonic control of Merapi's lava dome splitting observed from high resolution TerraSAR-X data

    KAUST Repository

    Luehr, Birger-G.

    2015-04-01

    Volcanism at active andesite-dacite volcanoes is often associated with the formation and collapse of circular shaped protrusions of extruded, highly viscous lava, the so-called domes, which are emplaced in the near summit region. Growing domes may experience stable and instable structural phases, with a gradual transition in between. Dome collapse and the break-off of instable blocks of viscous lava may lead to pyroclastic flows, one of the most lethal hazards at stratovolcanoes. At Merapi volcano, Indonesia, nearly 50 % of all eruptions are accompanied by these phenomena. After the climactic eruption in 2010 which left an amphitheater in the summit region, a new dome started growing. Three years later, the dome reached a height of approximately 100 m and diameters of 220 and 190 m with a plateau-like surface area of 40,000m2 approximately. On 18/11/2013, an explosion occurred without identified precursors, leaving a major fracture cutting the complete dome structure. Based on high resolution TerraSAR-X satellite radar imagery, we could identify this linear fracture, traceable over ~200m in the long axis, and up to 40m width. After geocoding of the radar amplitude imagery, the fractures azimuthal trend could be compared to other structural lineaments, indicative of a significant NNW-SSE structural direction that has formed on Merapi volcano in the past. This alignment is also visible in a seismic velocity tomographic imagery for the upper crust, down to 15 km depth. The Merapi dome fractured in a NW-SE direction, and is consistent with the alignment of regional tectonic structures and of anticipated directions of pyroclastic flows. The fracture may be part of a larger volcano-tectonic system and may affect the dynamics and the stability of the Merapi dome.

  7. Seismic strengthening of overhead roads between reactor buildings of WWER-1000 MW type NPP

    International Nuclear Information System (INIS)

    Stoyanov, G.; Jordanov, M.

    2005-01-01

    This paper presents results obtained during the upgrading design of overhead roads (OHR) between WWER-1000 MW Reactor Units at Kozloduy NPP. In order to avoid the deficiencies of OHR seismic capacity different approaches were developed based on the site and structure specifics. Overhead roads are precasted RC structures. They consist of pedestrian gallery and pipeline RC box, connecting reactor buildings with auxiliary building. They are mounted at approximately 10 m above ground level. The overhead roads are evaluated at their as-is status and a seismic upgrading of the structure is designed. The analysis of the upgraded structure is performed for Review Level Earthquake (RLE). Soil-Structure Interaction (SSI) effects are taken into account through equivalent soil springs with frequency adjusted stiffnesses. The upgraded structure is checked for conformance with the specially developed technical design specification based on International, US and Bulgarian standards and codes, taking into account site specific conditions. The general approach is consistent with up-to-date practice for evaluation and upgrade of nuclear power plant facilities. The existing site conditions and Owner's requirements are taken into account during development of the upgrading. The proposed upgrading measures can be divided in two major categories global and local. Special attention is paid to improvement of the ductile behavior of the structure through new detailing and upgrading of existing connection. These measures are grouped in two final design concepts and after a comparative study one of them is chosen for implementation. For the upgraded structure response spectra are derived at locations where equipment is attached. (authors)

  8. Nuclear reactors. Introduction

    International Nuclear Information System (INIS)

    Boiron, P.

    1997-01-01

    This paper is an introduction to the 'nuclear reactors' volume of the Engineers Techniques collection. It gives a general presentation of the different articles of the volume which deal with: the physical basis (neutron physics and ionizing radiations-matter interactions, neutron moderation and diffusion), the basic concepts and functioning of nuclear reactors (possible fuel-moderator-coolant-structure combinations, research and materials testing reactors, reactors theory and neutron characteristics, neutron calculations for reactor cores, thermo-hydraulics, fluid-structure interactions and thermomechanical behaviour of fuels in PWRs and fast breeder reactors, thermal and mechanical effects on reactors structure), the industrial reactors (light water, pressurized water, boiling water, graphite moderated, fast breeder, high temperature and heavy water reactors), and the technology of PWRs (conceiving and building rules, nuclear parks and safety, reactor components and site selection). (J.S.)

  9. Nuclear reactor melt-retention structure to mitigate direct containment heating

    International Nuclear Information System (INIS)

    Tutu, N.K.; Ginsberg, T.; Klages, J.R.

    1991-01-01

    This patent describes a nuclear reactor melt-retention structure that functions to retain molten core material within a melt retention chamber to mitigate the extent of direct containment heating. The structure being adapted to be positioned within or adjacent to a pressurized or boiling water nuclear reactor containment building at a location such that at least a portion of the melt retention structure is lower than and to one side of the nuclear reactor pressure vessel, and such that the structure is adjacent to a gas escape channel means that communicates between the reactor cavity and the containment building of the reactor. It comprises a melt-retention chamber, wall means defining a passageway extending between the reactor cavity underneath the reactor pressure vessel and one side of the chamber, the passageway including vent means extending through an upper wall portion thereof. The vent means being in communication with the upper region of the reactor containment building, whereby gas and steam discharged from the reactor pressure vessel are vented through the passageway and vent means into the gas-escape channel means and the reactor containment building

  10. Report of the reactor Operators Service - Annex F

    International Nuclear Information System (INIS)

    Zivotic, Z.

    1992-01-01

    RA reactor operators service is organized in two groups: permanent staff (chief operator, chief shift operators and operators) and changeable group which is formed according to the particular operation needs for working in shifts. For continuous training of the existing operator staff the Service has prepared and published eleven booklets: Nuclear reactor; RA reactor primary coolant loop; System for purification of heavy water; reactor helium system; system for technical water; electric power system; control and operation; ventilation system in the reactor building; special sewage system; construction properties of the reactor core; reactor building and installations. During the reporting period there have been no accidents nor incidents that could affect the reactor personnel [sr

  11. Model test on interaction of reactor building and soil. Part 1

    International Nuclear Information System (INIS)

    Iguchi, M.; Akino, K.; Kiva, Y.

    1989-01-01

    Theoretical and experimental studies on the effects of dynamic interaction between structures and soil have been carried out in recent years. Most of the dynamic tests, however, have been conducted using comparatively small-scale models. In order to evaluate the effects of soil-structure interaction for rigid structure such as reactor building, a series of tests, including forced vibration test and earthquake observations, was carried out. Large-scale models constructed on an actual soil were used. These tests included forced vibration tests on individual foundations, on foundations with superstructures, on cross interaction through the soil between adjacent structures. Tests on the embedded effects of foundation, on artificial ground-shaking, on large amplitude excitation, and aging effects in soil properties were performed. This paper describes the results of forced vibration tests and analyses of cross interaction through the soil between adjacent structures

  12. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  13. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1986

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1986-01-01

    In order to enable future reliable operation of the RA reactor, according to new licensing regulations, three major tasks started in 1984 were fulfilled: building of the new emergency system, reconstruction of the existing ventilation system, and reconstruction of the power supply system. Simultaneously in 1985/1986 renewal of the instrumentation and reconstruction of the system for handling and storage of the spent fuel in the reactor building have started. Design projects for these tasks are almost finished and the reconstruction of both systems is expected to be finished until 1988 and mid 1989 respectively. RA reactor Safety report was finished according to the recommendations of the IAEA. Investments in 1986 were used for 8000 kg of heavy water, maintenance of reactor systems and supply of new components, reconstruction of reactor systems. This report includes 8 annexes concerning reactor operation, activities of services and financial issues [sr

  14. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of 3 m3 s-1) for magma with lower relative yield strengths (p = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 process, which has been observed at Mount St. Helens and other locations, largely reflects gravitational loading of dome with a viscous core, with retardation by yield strength and talus friction.

  15. Decommissioning of the High Flux Beam Reactor at Brookhaven Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-05-27

    The High Flux Beam Reactor at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on October 31, 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shutdown in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor’s spent fuel pool. The reactor remained shutdown for almost three years for safety and environmental reviews. In November 1999 the United States Department of Energy decided to permanently shutdown the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR cleanup conducted during 1999-2009 will be described in the paper.

  16. Reactors set for mini market

    International Nuclear Information System (INIS)

    Knox, Richard.

    1988-01-01

    Commercial nuclear power generation on a large-scale has an uncertain future. However, it is hoped that a small nuclear reactor could form the basis for providing heating, cooling or electricity in large buildings. Based on the Slowpoke research reactor, the Slowpoke energy system concept is simple. The concept and the way in which the small-scale reactor would work are discussed. The system consists of a stainless steel tank surrounded by reinforced concrete and let into the ground. The tank is full of light water which is heated to about 90 deg C by a central core of 2.4 percent enriched uranium fuel. The resulting natural circulation causes the water to pass through a heat exchanger. The water from the heat exchanger can be used for building or district heating, to operate air-conditioners or to generate small quantities of electricity. It is hoped to automate the operation of the reactor so that continuous supervision by a team of engineers would be unnecessary. A single operator on call in the building would be able to take control actions if the reactor's safety system failed. (UK)

  17. Dome-shaped macula associated with Best vitelliform macular dystrophy.

    Science.gov (United States)

    Battaglia Parodi, Maurizio; Zucchiatti, Ilaria; Fasce, Francesco; Cascavilla, Maria Lucia; Cicinelli, Maria Vittoria; Bandello, Francesco

    2015-01-01

    Dome-shaped macula (DSM) has been described recently as an inward convexity of the macula typical of myopic eyes detectable on spectral-domain optical coherence tomography (SD-OCT). The authors describe a case of monolateral DSM associated with Best vitelliform macular dystrophy (VMD). Case report. A 60-year-old man already diagnosed with VMD in vitelliruptive stage underwent SD-OCT that revealed the typical vitelliform material accumulation associated in the left eye with a convex elevation of the macula. No change was registered over a 1-year follow-up. This is the first report describing a monolateral DSM associated with VMD. Dome-shaped macula could be considered as a nonspecific scleral alteration, probably due to increased scleral thickness, which can accompany many retinal disorders.

  18. DOME-SHAPED MACULA WITH THICKENED CHOROID IN AN EMMETROPIC PATIENT.

    Science.gov (United States)

    Kedkovid, Napang; Afshar, Armin R; Damato, Bertil E; Stewart, Jay M

    2015-01-01

    To report a rare case of bilateral dome-shaped macula in an emmetropic patient. Clinical case report and literature review. A 42-year-old woman presented with a history of blurred vision in the right eye. Visual acuity was 20/30 in the right eye and 20/20 in the left eye. Intraocular pressure and anterior segment were unremarkable. Fundus examination revealed dull macular reflex and subretinal fluid nasal to the fovea in the right eye and a hyperpigmented area inferotemporal to the fovea in the left eye. Spectral domain optical coherence tomography showed subretinal fluid under the fovea in the right eye and elevation of the macula with increased choroidal thickness in both eyes. Fluorescein angiography revealed abnormal hyperfluorescence without any leakage in both eyes. B-scan ultrasound showed irregular globe contour with high internal reflectivity and dome-shaped lesions at the posterior pole in both eyes. Axial length was 24.6 mm in the right eye and 25.6 mm in the left eye. Although most commonly reported in myopic eyes, dome-shaped macula can occur in an emmetropic patient and can be associated with subretinal fluid.

  19. Effect of modeling of super-structure on the behaviour of reactor building raft

    International Nuclear Information System (INIS)

    Mondal, A.; Singh, A.K.; Roy, Raghupati; Verma, U.S.P.; Warudkar, A.S.

    2003-01-01

    The behaviour of the reactor building raft was studied when the stiffness of the super-structural elements is included in the analysis as compared to the results of conventional analysis ignoring the stiffness of the super-structural elements. The effect of the stiffness of the super-structures on the loss of contact of the raft under seismic environment was also investigated. In order to study the effect of horizontal springs on the behaviour of the raft particularly near the stressing gallery under seismic environment, a separate study has been carried out considering a 3D model consisting of solid elements supported on both horizontal and vertical springs. The model was analysed for all the forces applied at the top of the raft and the analysis results were compared with those of shell model. The following conclusions are drawn: (i) Idealisation of the reactor building raft using shell elements is adequate for estimating the design forces/moments on the raft. The design forces/moments obtained from FE model consisting of solid elements closely matches with those obtained from FE model with shell elements. Idealisation of the RB raft using shell elements will also reduce the problem size and the related computational efforts. (ii) The stiffness of the super-structure has significant effect on the behaviour of the raft. Consideration of the stiffness of the super structure reduces the design forces/moments significantly and hence, modelling of the stiffness of the super structure is necessary for economical design. (iii) Modelling of horizontal stiffness of the raft in terms of horizontal springs at the interface of the raft and the rock does not have significant effect on the behaviour of the raft and as such, is not required to be considered in the FE model. However, it is necessary to ensure adequate factor of safety against the overall stability of the raft

  20. Study on reactor building structure using ultrahigh strength materials - Part 6: Tests for joints of SC-frames and PCa-panels

    International Nuclear Information System (INIS)

    Uchiyama, T.; Ishimura, K.; Takahashi, T.; Kei, T.

    1993-01-01

    A mixed structure composed of reinforced concrete precast panels and frames of steel beams and concrete filled steel tube columns using ultrahigh strength materials was proposed for reactor buildings. The paper describes the structural characteristics of the high tension bolt joints between the panels and the frames. (author)

  1. Estimation of release of tritium from measurements of air concentrations in reactor building of PHWR

    International Nuclear Information System (INIS)

    Purohit, R.G.; Sarkar, P.K.

    2010-01-01

    In this paper an attempt has been made to estimate the releases from measured air concentrations of tritium at various locations in Reactor Building (RB). Design data of Kaiga Generating Station and sample measurements of tritium concentrations at various locations in RB and discharges for a period of fortnight were used. A comparison has also been made with actual measurements. It has been observed that there is good matching in estimated and actual measurements of tritium release on some days while on some days there is high difference

  2. MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2009-04-28

    The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

  3. A Case Study of the Vredefort Dome

    African Journals Online (AJOL)

    South Africa became a signatory to and ratified the World Heritage Convention, 1972 (WHC) in 1997. It thereby voluntarily agreed to identify and conserve world heritage areas of universal value for the benefit of mankind. This article presents a case study of the Vredefort Dome, one of South Africa\\'s World Heritage Sites ...

  4. Where is the Best Site on Earth? Domes A, B, C, and F, and Ridges A and B

    Science.gov (United States)

    Suanders, Will; Lawrence, Jon S.; Storey, John W. V.; Ashley, Michael C. B.; Kato, Seiji; Minnis, Patrick; Winker, David M.; Liu, Guiping; Kulesa, Craig

    2009-01-01

    The Antarctic plateau contains the best sites on earth for many forms of astronomy, but none of the existing bases were selected with astronomy as the primary motivation. In this paper, we try to systematically compare the merits of potential observatory sites. We include South Pole, Domes A, C and F, and also Ridge B (running NE from Dome A), and what we call Ridge A (running SW from Dome A). Our analysis combines satellite data, published results and atmospheric models, to compare the boundary layer, weather, free atmosphere, sky brightness, pecipitable water vapour, and surface temperature at each site. We find that all Antarctic sites are likely compromised for optical work by airglow and aurorae. Of the sites with existing bases, Dome A is the best overall; but we find that Ridge A offers an even better site. We also find that Dome F is a remarkably good site. Dome C is less good as a thermal infrared or terahertz site, but would be able to take advantage of a predicted OH hole over Antarctica during Spring.

  5. Enhanced depth imaging optical coherence tomography of the sclera in dome-shaped macula.

    Science.gov (United States)

    Imamura, Yutaka; Iida, Tomohiro; Maruko, Ichiro; Zweifel, Sandrine A; Spaide, Richard F

    2011-02-01

    To examine the posterior anatomic structure of eyes with dome-shaped macula using enhanced depth imaging spectral-domain optical coherence tomography (EDI-OCT). Retrospective observational case series. Patients with dome-shaped macula, a condition defined as convex elevation of the macula as compared with the surrounding staphylomatous region in a highly myopic eye, were identified through routine examinations using optical coherence tomography (OCT). EDI-OCT was used to examine their posterior anatomic changes. The scleral thickness was measured from the outer border of the choroid to the outer scleral border under the fovea and 3000 μm temporal to the fovea. The mean age of the 15 patients (23 eyes) was 59.3 (± 12.2) years, and the mean refractive error was -13.6 (± 5.0) diopters. The best-corrected visual acuity ranged from 20/15 to 20/800 (median: 20/30). Eight patients (53%) had dome-shaped macula bilaterally. The mean subfoveal scleral thickness in 23 eyes with dome-shaped macula was 570 (± 221) μm, and that in 25 eyes of 15 myopic patients with staphyloma but without dome-shaped macula was 281 (± 85) μm (P macula is the result of a relative localized thickness variation of the sclera under the macula in highly myopic patients, and it cannot be categorized into any of the known types of staphyloma. This finding suggests the ocular expansion in myopia may be more complex than previously thought. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Disposal of high-level waste from nuclear power plants in Denmark. Salt dome investigations. v.5

    International Nuclear Information System (INIS)

    1981-01-01

    The present report deals with safety evaluation as part of the investigations regarding a repository for high-level waste in a salt dome. It is volume 5 of five volumes that together constitute the final report on the Danish utilities' salt dome investigations. Two characteristics of the waste are of special importance for the safety evaluation: the encasing of the waste in steel casks with 15 cm thick walls affording protection against corrosion, protecting the surroundings against radiation, and protecting the glass cylinders from mechanical damage resulting from the pressure at the bottom of the disposal hole, and the modest generation of heat in the waste at the time of disposal resulting in a maximum temperature increase in the salt close to the waste of approx. 40 deg. C. These characteristics proved to considerably improve the safety margin with respect to unforeseen circumstances. The character of the salt dome and of the salt in the proposed disposal area offers in itself good protection against contact with the ground water outside the dome. The relatively large depth of 1200 and 2500 m of the salt surface also means that neither dome nor disposal facility will be appreciably influenced by glaciations or earthquakes. The chalk above the proposed disposal area is very tight and to retain radioactive matter effectively even in the precence of high concentrations of NaCL. The safety investigations included a number of natural processes and probable events such as the segregation of crystal water from overlooked salt minerals, faulty sealings of disposal holes, permeable fault zones in the chalk overlying the dome, the risk in connection with human penetration into the dome. These conditions will neither lead to the destruction of the waste casks or to the release of waste from the dome. Leaching of a cavern is the only situation which proved to result in a release of radioactive material to the biosphere, but the resulting doses was found to be small

  7. Assessment of fission product release from the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Generino, G.

    1984-07-01

    Fission product releases from the RCB associated with hypothetical core-melt accidents ABβ, S 2 CDβ and TLBβ in a PWR-900 MWe have been performed using French computer codes (in particular, the JERICHO Code for containment response analysis and AEROSOLS/B1 for aerosol behavior in the containment) related to thermalhydraulics and fission product behavior in the primary system and in the reactor containment building

  8. Corrosion investigation of material combinations in a mobile phone dome-key pad system

    DEFF Research Database (Denmark)

    Ambat, Rajan; Møller, Per

    2007-01-01

    to multiple corrosion problems. In this paper, the corrosion susceptibility of dome (Ag/AISI 202 steel) and key pad system (Au/Ni/Cu) is investigated with an aim to understand the corrosion performance of such multi-material combinations in chloride containing environment. Investigation includes...... microstructural studies, polarization measurements using microelectrochemical technique, salt spray testing, and corrosion morphology analysis. The immersion Au layer on pads showed pores, and rolled bonded silver layer on dome had cracks and kinks. The difference in electrochemical behaviour of the metallic...... layers together with imperfections in the top layer results in severe pitting due to galvanic coupling. However, corrosion performance of the pads was much worse than domes. The results are applicable to a broad spectrum of PCB parts where similar material combinations are employed, especially Au/Ni/Cu....

  9. Dual Innervation of Neonatal Merkel Cells in Mouse Touch Domes

    Science.gov (United States)

    Luo, Wenqin

    2014-01-01

    Merkel cell-neurite complexes are specialized mechanosensory end organs that mediate discriminative touch sensation. It is well established that type I slowly adapting (SAI) mechanoreceptors, which express neural filament heavy chain (NFH), innervate Merkel cells. It was previously shown that neurotrophic factor NT3 and its receptor TrkC play crucial roles in controlling touch dome Merkel cell innervation of NFH+ fibers. In addition, nerve fibers expressing another neurotrophic tyrosine receptor kinase (NTRK), Ret, innervate touch dome Merkel cells as well. However, the relationship between afferents responsive to NT3/TrkC signaling and those expressing Ret is unclear. It is also controversial if these Ret+ fibers belong to the early or late Ret+ DRG neurons, which are defined based on the co-expression and developmental dependence of TrkA. To address these questions, we genetically traced Ret+ and TrkC+ fibers and analyzed their developmental dependence on TrkA. We found that Merkel cells in neonatal mouse touch domes receive innervation of two types of fibers: one group is Ret+, while the other subset expresses TrkC and NFH. In addition, Ret+ fibers depend on TrkA for their survival and normal innervation whereas NFH+ Merkel cell innervating fibers are almost unaltered in TrkA mutant mice, supporting that Ret+ and NFH+/TrkC+ afferents are two distinct groups. Ret signaling, on the other hand, plays a minor role for the innervation of neonatal touch domes. In contrast, Merkel cells in the glabrous skin are mainly contacted by NFH+/TrkC+ afferents. Taken together, our results suggest that neonatal Merkel cells around hair follicles receive dual innervation while Merkel cells in the glabrous skin are mainly innervated by only SAI mechanoreceptors. In addition, our results suggest that neonatal Ret+ Merkel cell innervating fibers most likely belong to the late but not early Ret+ DRG neurons. PMID:24637732

  10. Design study of plant system for the fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Kuroda, Hideo; Yamada, Masao; Suzuki, Tatsushi; Honda, Tsutomu; Ohmura, Hiroshi; Itoh, Shinichi.

    1986-11-01

    This report describes design study results of the FER plant system. The purpose of this study is to have an image of the FER plant system as a whole by designing major auxiliary systems, reactor building and maintenance and radwaste desposal systems. The major auxiliary systems include tritium, cooling, evacuation and fueling systems. For these each systems, flowdiagrams are studied and designs of devices and pipings are conducted. In the reactor building design, layout of the above auxiliary systems in the building is studied with careful zoning concept by the radiation level. Structural integrity of the reactor building is also studied including seismic analysis. In the design of the maintenance and radwaste system flowdiagram of failed reactor components is developed and transfer vehicles and buildings are designed. Finally assuming JAERI Naka site as the reactor site layout of the whole FER plant system is developed. (author)

  11. Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2014-09-01

    Lava domes are structures that grow by the extrusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Repeated cycles of growth are punctuated by collapse, as the structure becomes oversized for the strength of the composite magma that rheologically stiffens and strengthens at its surface. Here we explore lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Results show that the shape and extent of the ductile core and the overall structure of the lava dome are strongly controlled by the infusion rate. The effects of extrusion rate on magma rheology are sensitive to material stiffness, which in turn is a function of volatile content and crystallinity. Material stiffness and material strength are key model parameters which govern magma rheology and subsequently the morphological character of the lava dome and in turn stability. Degassing induced crystallization causes material stiffening and enhances material strength reflected in non-Newtonian magma behavior. The increase in stiffness and strength of the injected magma causes a transition in the style of dome growth, from endogenous expansion of a ductile core, to stiffer and stronger intruding material capable of punching through the overlying material and resulting in the development of a spine or

  12. New radiometric ages on gneisses of the Oliverian domes in New Hampshire and Massachusetts

    International Nuclear Information System (INIS)

    Zartman, R.E.; Leo, G.W.

    1985-01-01

    Gneissic plutons of the Oliverian domes, mantled by Ammonoosuc Volcanics, are located along the axis of the Bronson Hill anticlinorium from New Hampshire to Connecticut. The contacts between the plutonic and volcanic rocks appear to be concordant on a regional scale, but gneiss intrudes the volcanics in several domes. Available radiometric and fossil evidence suggests that the Ammonoosuc Volcanics have a Middle Ordovician age but are somewhat older than the Oliverian gneisses. New U-Pb zircon data from Oliverian gneisses of six domes plot on a concordia diagram as an almost colinear array that yields an upper intercept age of about 444 m.y. The plotted data vary from nearly concordant to moderately discordant, the degree of discordance, correlating with 207 Pb/ 206 Pb ages that range from 459 to 415 m.y. The pattern of discordance does not relate to the uranium contents of the zircons nor to the geographic distribution of the domes. If 207 Pb/ 206 Pb ages are considered individually without an assumed consanguinity of the units, however, they do not find particular support in geologic relationships. Thus, they prefer the concordia intercept age of 444 +/- 8 m.y. for the suite as the best estimate for the time of crystallization of the Oliverian gneisses. Possibly, the Whitefield, Gneiss in the Jefferson dome represents a 10 to 15 m.y. older unit, although they are cautious about claiming such resolution with the present data

  13. Visualisation and Immersion Dome Experience for Inspired Participation

    Directory of Open Access Journals (Sweden)

    Anna P. Gawlikowska

    2018-03-01

    Full Text Available Public protests, which lead to increased administrative and permission procedures, are amongst the most important obstacles in development of wind energy projects. The community’s fears of visual and acoustic impacts of new power plants are commonly recognized as the weakest aspects of public acceptance. To address these issues Visualisation Dome has been designed to better communicate the economic, political, spatial, ecological and social benefits of wind power plants and the associated risks to local communities. The approach combines the experimental and simulation method. The integrated analysis software tool, which allows assessing the impacts of planed wind power plants underpins their 360-degree video and audio simulations. The Visualisation Dome demonstration resulted in 57% of the interviewed participants improving their opinion of wind power following the experience. Visualisation Dome’s novel approach for improving procedural justice of wind energy projects development forms innovative, interactive and streamlined processes, and enables constructive participation of audiences.

  14. Structure-based membrane dome mechanism for Piezo mechanosensitivity.

    Science.gov (United States)

    Guo, Yusong R; MacKinnon, Roderick

    2017-12-12

    Mechanosensitive ion channels convert external mechanical stimuli into electrochemical signals for critical processes including touch sensation, balance, and cardiovascular regulation. The best understood mechanosensitive channel, MscL, opens a wide pore, which accounts for mechanosensitive gating due to in-plane area expansion. Eukaryotic Piezo channels have a narrow pore and therefore must capture mechanical forces to control gating in another way. We present a cryo-EM structure of mouse Piezo1 in a closed conformation at 3.7Å-resolution. The channel is a triskelion with arms consisting of repeated arrays of 4-TM structural units surrounding a pore. Its shape deforms the membrane locally into a dome. We present a hypothesis in which the membrane deformation changes upon channel opening. Quantitatively, membrane tension will alter gating energetics in proportion to the change in projected area under the dome. This mechanism can account for highly sensitive mechanical gating in the setting of a narrow, cation-selective pore. © 2017, Guo et al.

  15. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development.

    Science.gov (United States)

    Xiao, Ying; Thoresen, Daniel T; Miao, Lingling; Williams, Jonathan S; Wang, Chaochen; Atit, Radhika P; Wong, Sunny Y; Brownell, Isaac

    2016-07-01

    The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance.

  16. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development.

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    2016-07-01

    Full Text Available The Sonic hedgehog (Shh signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance.

  17. Regulations for RA reactor operation

    International Nuclear Information System (INIS)

    1980-09-01

    Regulations for RA reactor operation are written in accordance with the legal regulations defined by the Law about radiation protection and related legal acts, as well as technical standards according to the IAEA recommendations. The contents of this book include: fundamental data about the reactor; legal regulations for reactor operation; organizational scheme for reactor operation; general and detailed instructions for operation, behaviour in the reactor building, performing experiments; operating rules for operation under steady state and accidental conditions [sr

  18. [Choroidal thickness assessment with SD-OCT in high myopia with dome-shaped macula].

    Science.gov (United States)

    Chebil, A; Ben Achour, B; Chaker, N; Jedidi, L; Mghaieth, F; El Matri, L

    2014-03-01

    To measure macular choroidal thickness (CT) using spectral-domain optical coherence tomography (SD-OCT) in highly myopic eyes with dome-shaped macula (DSM), and to investigate whether the choroid is thicker in these eyes compared to highly myopic eyes without MB. A cross-sectional study of 200 eyes was performed between January 2010 and June 2012. Twenty-four highly myopic eyes (12%) had a dome-shaped macula. All patients underwent a complete ophthalmological examination, SD-OCT (TOPCON 2000), and B-scan ultrasonography. OCT scans were analyzed in 7 sections, and subfoveal CT was measured manually between the Bruch's membrane and the internal aspect of the sclera. The 20 eyes with isolated dome-shaped macular were paired by age and axial length (AL) with 20 eyes without macular involvement. In the subgroup with isolated MB, the mean subfoveal CT was 101.86 μm (± 21.35 μm). A statistically significant negative correlation was found between CT and AL (r=-0.623, P=0.0001). The regression equation demonstrated a decrease of 8.3 μm per mm of AL. In the subgroup without MB, matched with the subgroup with MB by age (P=0.591), and AL (P=0.815), the mean subfoveal CT was 89.54 μm (± 20.12 μm). The comparison between the two subgroups found a statistically significant difference in subfoveal CT (Pmacula compared to highly myopic eyes without dome-shaped macula. These findings suggest that abnormalities of the choroid may play a role in the pathogenesis of dome-shaped macula. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Dose rate in the reactor room and environment during maintenance in fusion reactors

    International Nuclear Information System (INIS)

    Maki, Koichi; Satoh, Satoshi; Takatsu, Hideyuki; Seki, Yasushi

    1995-01-01

    According to the International Thermonuclear Experimental Reactor (ITER) conceptual design activity, after reactor shutdown, damaged segments are pulled up from the reactor and hung from the reactor room ceiling by a remote handling device. The dose rate in the reactor room and the environment is estimated for this situation, and the following results are obtained. First, the dose rate in the room is > 10 8 μSv/h. Since this dose rate is 10 7 times greater than the biological radiation shielding design limit of 25 μSv/h, workers cannot enter the room. Second, lenses and optical fiber composed of glass that is radiation resistant up to 10 6 Gy would be damaged after <100 h near the segment, and devices using semiconductors could not work after several hours or so in the aforementioned dose-rate conditions. Third, during suspension of one blanket segment from the ceiling, the dose rate in the site boundary can be reduced by one order by a 23-cm-thicker reactor building roof. To reduce dose rate in public exposure to a value that is less than one-tenth of the public exposure radiation shielding design limit of 100 μSv/yr, the distance of the site boundary from the reactor must be greater than 200 m for a reactor building with a 160-cm-thick concrete roof. 9 refs., 6 figs., 2 tabs

  20. TMI-2 [Three Mile Island Unit 2] reactor building dose reduction task force

    International Nuclear Information System (INIS)

    Daniels, R.S.

    1988-01-01

    In late October 1982, the director of Three Mile Island Unit 2 (TMI-2) created the dose reduction task force with the objective of identifying the principal radiological sources in the reactor building and recommending actions to minimize the dose to workers on labor-intensive projects. Members of the task force were drawn form various groups at TMI. Findings and recommendations were presented to the US Nuclear Regulatory Commission in a briefing on November 18, 1982. The task force developed a three-step approach toward dose reduction. Step 1 identified the radiological sources. Step 2 modeled the source and estimated its contribution to the general area dose rates. Step 3 recommended actions to achieve dose reductions consistent with general exposure rate goals

  1. Ice crystal precipitation at Dome C site (East Antarctica)

    Science.gov (United States)

    Santachiara, G.; Belosi, F.; Prodi, F.

    2016-01-01

    For the first time, falling ice crystals were collected on glass slides covered with a thin layer of 2% formvar in chloroform at the Dome Concordia site (Dome C), Antarctica. Samplings were performed in the framework of the 27th Italian Antarctica expedition of the Italian National Program for Research in Antarctica in the period 21 February-6 August 2012. Events of clear-sky precipitations and precipitations from clouds were considered and the replicas obtained were examined under Scanning Electron Microscope (SEM). Several shapes of ice crystals were identified, including ;diamond dust; (plates, pyramids, hollow and solid columns), and crystal aggregates varying in complexity. Single events often contained both small (10 μm to 50 μm) and large (hundreds of microns) crystals, suggesting that crystals can form simultaneously near the ground (height of a few hundred metres) and at higher layers (height of thousands of metres). Images of sampled crystal replicas showed that single bullets are not produced separately, but by the disintegration of combinations of bullets. Rimed ice crystals were absent in the Dome C samples, i.e. the only mode of crystal growth was water vapour diffusion. On considering the aerosol in the sampled crystals, we reached the conclusion that inertial impaction, interception and Brownian motion were insufficient to explain the scavenged aerosol. We therefore presume that phoretic forces play a role in scavenging during the crystal growth process.

  2. Fiber reinforced concrete as a material for nuclear reactor containment buildings

    International Nuclear Information System (INIS)

    Mallikarjuna; Banthia, N.; Mindess, S.

    1991-01-01

    The fiber reinforced concrete as a constructional material for nuclear reactor containment buildings calls for an examination of its individual characteristics and potentialities due to its inherent superiority over normal plain and reinforced concrete. In the present investigation, first, to study the static behavior of straight, hooked-end and crimped fibers, recently developed nonlinear three-dimensional interface (contact) element has been used in conjunction with the eight nodded hexahedron and two nodded bar elements for concrete and steel fiber respectively. Then impact tests were carried out on fiber reinforced concrete beams with an instrumented drop weight impact machine. Two different concrete mixes were tested: normal strength and high strength concrete specimens. Fibers in the concrete mix found to significantly increase the ductility and the impact resistance of the composite. Deformed fibers increase peak pull-out load and pull-out distance, and perform better in the steel fiber reinforced concrete (SFRC) structures. (author)

  3. Seismic response analysis of nuclear reactor buildings under consideration of soil-structure interaction with torsional behavior

    International Nuclear Information System (INIS)

    Mizuno, N.; Iida, T.; Tsushima, Y.; Araki, T.; Nojima, O.

    1977-01-01

    In this paper, the seismic response analysis is described in detail for estimating the soil-structure interaction effects with the torsional behavior. The analytical method is firstly shown for estimating the stiffness of reactor building by the bending-shear and torsion theory of the thin wall sections in regard to the behavior of structure. The three-dimensional behavior of structure can be obtained more briefly and simply by the proposed method. Secondly, the dynamical soil-foundation coefficient for estimating the dissipation of vibrational energy on the ground is derived by H. Tajimi's theory which is based on a solution of the propagation of seismic waves caused by point excitation on the surface of the elastic half-space medium. The above results give the vibrational impedances of the soil-foundation corresponding to the static soil coefficient, which is defined to the excitation force in the frequency domain. In order to analyze to the equivalues of reactor building, the authors thirdly attempt to approximate the dynamic soil-foundation coefficient as the frequency transfer function of displacement. The complex damping is used for more suitably estimating the elastic structural damping effects of structure. The regression analysis of many degrees of freedom is fourthly attempted for estimating the natural periods annd equivalent viscous damping ratios directly from the experimental results by the forced vibrational test performed in 1974. The analytical results are finally shown for simulating and comparing with the above-mentioned experimental results

  4. RB research reactor Safety Report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This RB reactor safety report is a revised and improved version of the Safety report written in 1962. It contains descriptions of: reactor building, reactor hall, control room, laboratories, reactor components, reactor control system, heavy water loop, neutron source, safety system, dosimetry system, alarm system, neutron converter, experimental channels. Safety aspects of the reactor operation include analyses of accident causes, errors during operation, measures for preventing uncontrolled activity changes, analysis of the maximum possible accident in case of different core configurations with natural uranium, slightly and highly enriched fuel; influence of possible seismic events

  5. Increased SRP reactor power

    International Nuclear Information System (INIS)

    MacAfee, I.M.

    1983-01-01

    Major changes in the current reactor hydraulic systems could be made to achieve a total of about 1500 MW increase of reactor power for P, K, and C reactors. The changes would be to install new, larger heat exchangers in the reactor buildings to increase heat transfer area about 24%, to increase H 2 O flow about 30% per reactor, to increase D 2 O flow 15 to 18% per reactor, and increase reactor blanket gas pressure from 5 psig to 10 psig. The increased reactor power is possible because of reduced inlet temperature of reactor coolant, increased heat removal capacity, and increased operating pressure (larger margin from boiling). The 23% reactor power increase, after adjustment for increased off-line time for reactor reloading, will provide a 15% increase of production from P, K, and C reactors. Restart of L Reactor would increase SRP production 33%

  6. Geohydrology of the northern Louisiana salt-dome basin pertinent to the storage of radioactive wastes; a progress report

    Science.gov (United States)

    Hosman, R.L.

    1978-01-01

    Salt domes in northern Louisiana are being considered as possible storage sites for nuclear wastes. The domes are in an area that received regional sedimentation through early Tertiary (Eocene) time with lesser amounts of Quaternary deposits. The Cretaceous-Tertiary accumulation is a few thousand feet thick; the major sands are regional aquifers that extend far beyond the boundaries of the salt-dome basin. Because of multiple aquifers, structural deformation, and variations in the hydraulic characteristics of cap rock, the ground-water hydrology around a salt dome may be highly complex. The Sparta Sand is the most productive and heavily used regional aquifer. It is either penetrated by or overlies most of the domes. A fluid entering the Sparta flow system would move toward one of the pumping centers, all at or near municipalities that pump from the Sparta. Movement could be toward surface drainage where local geologic and hydrologic conditions permit leakage to the surface or to a surficial aquifer. (Woodard-USGS)

  7. Thermal assessment of Shippingport pressurized water reactor blanket fuel assemblies within a multi-canister overpack within the canister storage building

    International Nuclear Information System (INIS)

    HEARD, F.J.

    1999-01-01

    A series of analyses were performed to assess the thermal performance characteristics of the Shippingport Pressurized Water Reactor Core 2 Blanket Fuel Assemblies as loaded within a Multi-Canister Overpack within the Canister Storage Building. A two-dimensional finite element was developed, with enough detail to model the individual fuel plates: including the fuel wafers, cladding, and flow channels

  8. Thermal assessment of Shippingport pressurized water reactor blanket fuel assemblies within a multi-canister overpack within the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    HEARD, F.J.

    1999-04-09

    A series of analyses were performed to assess the thermal performance characteristics of the Shippingport Pressurized Water Reactor Core 2 Blanket Fuel Assemblies as loaded within a Multi-Canister Overpack within the Canister Storage Building. A two-dimensional finite element was developed, with enough detail to model the individual fuel plates: including the fuel wafers, cladding, and flow channels.

  9. RA research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1985

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1985-01-01

    According to the plan, RA reactor was to be in operation in mid September 1985. But, since the building of the emergency cooling system, nor the reconstruction of the existing special ventilation system were not finished until the end of August reactor was not operated during 1985. During the previous four years reactor operation was limited by the temporary operating license issued by the Committee of Serbian ministry for health and social care, which was cancelled in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. This temporary license has limited the reactor power to 2 MW from 1981-1984. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. In order to enable future reliable operation of the RA reactor, according to new licensing regulations, during 1984, three major tasks have started: building of the new emergency system, reconstruction of the existing ventilation system, and renewal of the reactor instrumentation. IAEA has approved the amount of 1,300,000 US dollars for the renewal of the instrumentation [sr

  10. Emergency water supply facility for nuclear reactor

    International Nuclear Information System (INIS)

    Karasawa, Toru

    1998-01-01

    Water is stored previously in an equipment storage pit disposed on an operator floor of a reactor building instead of a condensate storage vessel. Upon occurrence of an emergency, water is supplied from the equipment storage pit by way of a sucking pipeline to a pump of a high pressure reactor core water injection circuit and a pump of a reactor-isolation cooling circuit to supply water to a reactor. The equipment storage pit is arranged in a building so that the depth thereof is determined to keep the required amount of water by storing water at a level lower than the lower end of a pool gate during normal operation. Water is also supplied from the equipment storage pit by way of a supply pipeline to a spent fuel storage pool on the operation floor of the reactor building. Namely, water is supplied to the spent fuel storage pool by a pump of a fuel pool cooling and cleaning circuit. This can eliminate a suppression pool cleaning circuit. (I.N.)

  11. Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.

    Science.gov (United States)

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2012-08-01

    The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper.

  12. Beryllium-10 in the Taylor Dome ice core: Applications to Antarctic glaciology and paleoclimatology

    Energy Technology Data Exchange (ETDEWEB)

    Steig, E.J.

    1996-12-31

    An ice core was drilled at Taylor dome, East Antarctica, reaching to bedrock at 554 meters. Oxygen-isotope measurements reveal climatic fluctuations through the last interglacial period. To facilitate comparison of the Taylor Dome paleoclimate record with geologic data and results from other deep ice cores, several glaciological issues need to be addressed. In particular, accumulation data are necessary as input for numerical ice-flow-models, for determining the flux of chemical constituents from measured concentrations, and for calculation of the offset in age between ice and trapped air in the core. The analysis of cosmogenic beryllium-10 provides a geochemical method for constraining the accumulation-rate history at Taylor Dome. High-resolution measurements were made in shallow firn cores and snow pits to determine the relationship among beryllium-10 concentrations, wet and dry deposition mechanisms, and snow-accumulation rates. Comparison between theoretical and measured variations in deposition over the last 75 years constrains the relationship between beryllium-10 deposition and global average production rates. The results indicate that variations in geomagnetically-modulated production-rate do not strongly influence beryllium-10 deposition at Taylor Dome. Although solar modulation of production rate is important for time scales of years to centuries, snow-accumulation rate is the dominant control on ice-core beryllium-10 concentrations for longer periods. Results show that the Taylor Dome core can be used to provide new constraints on regional climate over the last 130,000 years, complementing the terrestrial and marine geological record from the Dry Valley, Transantarctic Mountains and western Ross Sea.

  13. ASTEP: Towards the detection and characterization of exoplanets from Dome C

    Directory of Open Access Journals (Sweden)

    Rauer H.

    2011-02-01

    Full Text Available The ASTEP project (Antarctic Search for Transiting ExoPlanets, aims at testing the quality of the Dome C site in Antarctica for photometry in the visible, as well as detecting and characterizing transiting exoplanets. A dedicated telescope, ASTEP400, has been developped and installed at Concordia. The first campaign took place during the winter 2010, and the telescope functionned nominally during all the winter. A first analysis of the data leads to a precision of 189 and 205 ppm for WASP-19 and WASP-18 respectively, for continuous observations during 1 month. This shows that extremely high precision photometry is achievable from Dome C.

  14. AREVA's nuclear reactors portfolio

    International Nuclear Information System (INIS)

    Marincic, A.

    2009-01-01

    A reasonable assumption for the estimated new build market for the next 25 years is over 340 GWe net. The number of prospect countries is growing almost each day. To address this new build market, AREVA is developing a comprehensive portfolio of reactors intended to meet a wide range of power requirements and of technology choices. The EPR reactor is the flagship of the fleet. Intended for large power requirements, the four first EPRs are being built in Finland, France and China. Other countries and customers are in view, citing just two examples: the Usa where the U.S. EPR has been selected as the technology of choice by several U.S utilities; and the United Kingdom where the Generic Design Acceptance process of the EPR design submitted by AREVA and EDF is well under way, and where there is a strong will to have a plant on line in 2017. For medium power ranges, the AREVA portfolio includes a boiling water reactor and a pressurized water reactor which both offer all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation cost: -) KERENA (1250+ MWe), developed in collaboration with several European utilities, and in particular with Eon; -) ATMEA 1 (1100+ MWe), a 3-loop evolutionary PWR which is being developed by AREVA and Mitsubishi. AREVA is also preparing the future and is deeply involved into Gen IV concepts. It has developed the ANTARES modular HTR reactor (pre-conceptual design completed) and is building upon its vast Sodium Fast Reactor experience to take part into the development of the next prototype. (author)

  15. Annually-resolved temperature reconstructions of the past 2000 years from Dome-Fuji, East Antarctica

    Science.gov (United States)

    Motizuki, Yuko; Takahashi, Kazuya; Nakai, Yoichi; Motoyama, Hideaki

    2016-04-01

    We present annually-resolved temperature and SST reconstructions of the past 2000 years based on water (oxygen and deuterium) isotope measurement on a shallow ice core drilled in 2010 at Dome Fuji station, East Antarctica. These time series records will be an essential contribution to the PAGES 2k project from sparse data area in Antarctica. Dome Fuji station is located on a summit of Dronning Maud Land at an altitude of 3810 m a.s.l. (above sea level) (77o19'01'' S, 39o42'12'' E) in East Antarctica. The 10 m depth mean snow temperature at Dome Fuji is -57.3oC1). The inland area around Dome Fuji has been recognized to be especially unique: The snow and ice there contain much stratospheric information. The direct evidence for this comes from tritium contents originated from the nuclear bomb tests in the 1960s; the tritium fallout at the Dome Fuji site is outstandingly high among 16 snow pit samples widely collected over Antarctica2). To date the concerned Dome Fuji ice core, we applied volcanic signature matching to transfer the West Antarctic Ice Sheet (WAIS) Divide ice core chronology constructed by annual layer counting as used in the study by Sigl et al. (2014)3). In our presentation, we confine ourselves to discuss the oscillation periodicity that we observed in the oxygen isotope record in our data: The periods of approximately 10, 20, and 200 years were found. We will present the time series analyses for this in detail, and will discuss the origin of this periodicity. References: 1) Kameda, T., Motoyama, H., Fujita, S., and Takahashi, S.: "Past temporal and spatial variability of surface mass balance at Dome Fuji", East Antarctica, by the stake method from 1995 to 2006, J. Glaciol., 54, 107-116, 2008. 2) Fourre, E., Jean-Baptiste, P., Dapoigny, A., Baumier, D., Petit, J.-R., and Jouzel, J.: "Past and recent tritium levels in Arctic and Antarctic polar caps", Earth Planet. Sc. Lett., 245, 56-64, 2006. 3) Sigl, M., J. McConnell, M. Toohey, M. Curran, S. Das, R

  16. Distraction Osteogenesis Maxillary Expansion (DOME) for Adult Obstructive Sleep Apnea Patients with High Arched Palate.

    Science.gov (United States)

    Liu, Stanley Yung-Chuan; Guilleminault, Christian; Huon, Leh-Kiong; Yoon, Audrey

    2017-08-01

    A narrow maxilla with high arched palate characterizes a phenotype of obstructive sleep apnea (OSA) patients that is associated with increased nasal resistance and posterior tongue displacement. Current maxillary expansion techniques for adults are designed to correct dentofacial deformity. We describe distraction osteogenesis maxillary expansion (DOME) tailored to adult patients with OSA with narrow nasal floor and high arched palate without soft tissue redundancy. DOME is performed with placement of maxillary expanders secured by mini-implants along the midpalatal suture. This minimizes the maxillary osteotomies necessary to re-create sutural separation for reliable expansion at the nasal floor and palatal vault. We report the safety and efficacy profile of the first 20 patients at Stanford who underwent DOME.

  17. Fuel assembly transfer and storage system for nuclear reactors

    International Nuclear Information System (INIS)

    Allain, Albert; Thomas, Claude.

    1981-01-01

    Transfer and storage system on a site comprising several reactors and at least one building housing the installations common to all these reactors. The system includes: transfer and storage modules for the fuel assemblies comprising a containment capable of containing several assemblies carried on a transport vehicle, a set of tracks for the modules between the reactors and the common installations, handling facilities associated with each reactor for moving the irradiated assemblies from the reactor to a transfer module placed in loading position on a track serving the reactor and conversely to move the new assemblies from the transfer module to the reactor, and at least one handling facility located in the common installation building for loading the modules with new assemblies [fr

  18. Effluent releases at the TRIGA reactor facility

    Energy Technology Data Exchange (ETDEWEB)

    Whittemore, W L [General Atomic Co., San Diego, CA (United States)

    1974-07-01

    The principal effluent from the operating TRIGA reactors in our facility is argon-41. As monitored by a recording gas and particulate stack monitor, the values shown in the table, the Mark III operating 24 hours per day for very long periods produced the largest amount of radioactive argon. The quantity of 23.7 Ci A-41 when diluted by the normal reactor room ventilation system corresponded to 1.45 x 10{sup -6} {mu}Ci/cc. As diluted in the roof stack stream and the reactor building wake, the concentration immediately outside the reactor building was 25% MPC for an unrestricted area. The continued dilution of this effluent resulted in a concentration of a few percent MPC at the site boundary (unrestricted area) 350 meters from the reactor. (author)

  19. EPR by Areva. EPR the 1600+ MWe reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system.

  20. EPR by Areva. EPR the 1600+ MWe reactor

    International Nuclear Information System (INIS)

    2008-01-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system

  1. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  2. Safety of operations in the manufacture of driver fuel for the first charge of the Dragon Reactor and modifications to the safety document for the Dragon Fuel Element Production Building

    International Nuclear Information System (INIS)

    Beutler, H.; Cross, J.; Flamm, J.

    1965-01-01

    The manufacture of the zirconium containing 'driver' fuel and fuel elements for the First Charge of the Dragon Reactor Experiment has been completed without incident. This is a report on the safety of operations in the Dragon Fuel Element Production Building during an approximately six month period when the 'driver' fuel was manufactured and 25 elements containing this fuel were assembled and exported to the Reactor Building. The opportunity is taken to bring the Safety Document up-to-date and to report on any significant operational failures of equipment. (author)

  3. Nuclear Reactor RA Safety Report, Vol. 8, Auxiliary system

    International Nuclear Information System (INIS)

    1986-11-01

    This volume describes RA reactor auxiliary systems, as follows: special ventilation system, special drainage system, hot cells, systems for internal transport. Ventilation system is considered as part of the reactor safety and protection system. Its role is eliminate possible radioactive particles dispersion in the environment. Special drainage system includes pipes and reservoirs with the safety role, meaning absorption or storage of possible radioactive waste water from the reactor building. Hot cells existing in the RA reactor building are designed for production of sealed radioactive sources, including packaging and transport [sr

  4. Cable condition monitoring in a pressurized water reactor environment

    International Nuclear Information System (INIS)

    Al-Hussaini, T.J.

    1988-01-01

    Oconee Nuclear Station is the first nuclear plant designed, engineered and constructed by Duke Power Company. Even though the accelerated aging method was available to determine the life expectancy of the cable used in the reactor building, no natural aging data was available at that time. In order to be able to verify the condition of the reactor building cable over the life of the plant, an on-going cable monitoring plan was instituted. Various types of cable were selected to be monitored, and they were installed in cable life evaluation circuits in the reactor building. At five year intervals over the life of the plant, cable samples would be removed from these cable life evaluation circuits and tested to determine the effects of the reactor building environment on the integrity of the cable. A review of the cable life evaluation circuits and the results of the evaluation program to date is presented

  5. The thermal environment of the fiber glass dome for the new solar telescope at Big Bear Solar Observatory

    Science.gov (United States)

    Verdoni, A. P.; Denker, C.; Varsik, J. R.; Shumko, S.; Nenow, J.; Coulter, R.

    2007-09-01

    The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5° Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).

  6. Build your own Candu reactor

    International Nuclear Information System (INIS)

    Carruthers, J.

    1979-01-01

    The author discusses the marketing of Candu reactors, particularly the export trade. Future sales will probably be of the nuclear side of a station only, thus striking a compromise between licensing and 'turnkey' sales. It is suggested that AECL might have made more money in the past had it not given the right to manufacture Candu fuel away to Canadian industry. Future sales to certain potential customers may be limited by the requirement of strict safeguards, which will almost certainly never be relaxed. (N.D.H.)

  7. iB1350 no.1. A generation III.7 reactor after the Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    Sato, Takashi; Matsumoto, Keiji; Hosomi, Kenji; Kojima, Yoshihiro; Taguchi, Keisuke

    2017-01-01

    enclosed inside the CV building and protected against a large airplane crash. The iB1350 can survive a large airplane crash only by the CV building and the built-in passive safety systems therein. Basically, active safety systems and a full armored reactor building are not necessary to cope with a large airplane crash. The dome of the CV building consists of a single wall made of steel concrete composite. This single dome structure facilitates a short-term construction period and cost saving. The CV diameter is smaller than that of most PWR resulting in a smaller R/B. Each active safety division includes only one ECCS pump and one emergency power source. Therefore, a single failure of the emergency power source never causes multiple failures of ECCS pumps in a safety division. The iB1350 is based on the proven ABWR technology and ready for construction. No new technology is incorporated but the design concept and philosophy are initiative and innovative. (author)

  8. Darlington GS vacuum building - containment shell

    International Nuclear Information System (INIS)

    Huterer, J.; Ha, E.C.; Brown, D.G.; Cheng, P.C.

    1985-01-01

    The paper describes the consequences of new design requirements for the Darlington vacuum building on its structural configuration, analytical and reinforcing steel layout. Attention focuses on the ring girder where the juncture of dome and perimeter wall produces a complex post-tensioning layout, and attendant difficulties in design and construction. At the wall base, full fixity imposes large local stresses. Long-term, shrinkage and creep, and temperature effects become significant. A research program and in-house analytical procedure established time-dependent concrete behaviour and corresponding wall-sectional stresses. The outcome is examined in terms of reinforcement, temperature controls, and wall liner requirements. (orig.)

  9. Strippable coating used for the TMI-2 reactor building decontamination

    International Nuclear Information System (INIS)

    Adams, J.W.; Dougherty, D.R.; Barletta, R.E.

    1984-01-01

    Strippable coating material used in the TMI-2 reactor building decontamination has been tested for Sr, Cs, and Co leachability, for radiation stability, thermal stability, and for resistance to biodegradation. It was also immersion tested in water, a water solution saturated with toluene and xylene, toluene, xylene, and liquid scintillation counting (LSC) cocktail. Leach testing resulted in all of the Cs and Co activity and most of the Sr activity being released from the coating in just a few days. Immersion resulted in swelling of the coating in all of the liquids tested. Gamma irradiation and heating of the coating did not produce any apparent physical changes in the coating to 1 x 10 8 rad and 100 0 C; however, gas generation of H 2 , CO, CO 2 was observed in both cases. Biodegradation of the coating occurred readily in soils as indicated by monitoring CO 2 produced from microbial respiration. These test results indicate that strippable coating radwaste would have to be stabilized to meet the requirements for Class B waste outlined in 10 CFR Part 61 and the NRC Draft Technical Position on Waste Form

  10. Analysis of gamma ray intensity on the S/C vent pipes area in the unit 2 reactor building of the Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The robot is equipped with cameras, a dosimeter, and 2 DOF (degree of freedom) manipulation arms. It loads a small vehicle equipped with a camera that can access and inspect narrow areas. TEPCO is using the four-legged walking robot to inspect the suppression chamber (S/C) area of the unit 2 reactor building basement in the Fukushima Daiichi Nuclear Power Plant. The robot carried out 6 missions for about four months, from 11 December, 2012 to 15 March, 2013, where it examined an evidence of a leakage of radioactivity contaminated water in the S/C area of unit 2 reactor building. When a camera's signal processing unit, which is consist of ASIC and FPGA devices manufactured by a CMOS fabrication process, is exposed to a higher dose rate gamma ray, the speckle distribution in the camera image increase more. From the inspection videos, released by TEPCO, of the underground 8 vent pipes in the unit 2 reactor building, we analyzed the speckle distribution from the high dose-rate gamma rays. Based on the distribution of the speckle, we attempted to characterize the vent pipe with much radioactivity contaminated materials among the eight vent pipes connected to the PCV. The numbers of speckles viewed in the image of a CCD (or CMOS) camera are related to an intensity of the gamma ray energy emitted by a nuclear fission reaction from radioactivity materials. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. Therefore, calculating the speckles counts, we can determine the vent pipe with relatively most radioactivity-contaminated materials among the other vent pipes. From the comparison of speckles counts calculated in the inspection image of the vent pipe with the speckles counts extracted by gamma ray irradiation experiment of the same small vehicle camera model loaded with the four-legged walking robot, we can qualitatively estimate the gamma ray dose-rate in the S/C vent pipe area of the

  11. Study of reactor parameters of on critical systems, Phase I: Safety report for RB zero power reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1962-09-01

    In addition to the safety analysis for the zero power RB reactor, this report contains a general description of the reactor, reactor components, auxiliary equipment and the reactor building. Reactor Rb has been reconstructed during 1961-1962 and supplied with new safety-control system as well as with a complete dosimetry instrumentation. Since RB reactor was constructed without shielding special attention is devoted to safety and protection of the staff performing experiments. Due to changed circumstances in the Institute ( start-up of the RA 7 MW power reactor) the role of the RB reactor was redefined

  12. Manufacturing and testing in reactor relevant conditions of brazed plasma facing components of the ITER divertor

    International Nuclear Information System (INIS)

    Bisio, M.; Branca, V.; Marco, M. Di; Federici, A.; Grattarola, M.; Gualco, G.; Guarnone, P.; Luconi, U.; Merola, M.; Ozzano, C.; Pasquale, G.; Poggi, P.; Rizzo, S.; Varone, F.

    2005-01-01

    A fabrication route based on brazing technology has been developed for the realization of the high heat flux components for the ITER vertical target and Dome-Liner. The divertor vertical target is armoured with carbon fiber reinforced carbon and tungsten in the lower straight part and in the upper curved part, respectively. The armour material is joined to heat sinks made of precipitation hardened copper-chromium-zirconium alloy. The plasma facing units of the dome component are based on a tungsten flat tile design with hypervapotron cooling. An innovative brazing technique based on the addition of carbon fibers to the active brazing alloy, developed by Ansaldo Ricerche for applications in the field of the energy production, has been used for the carbon fiber composite to copper joint to reduce residual stresses. The tungsten-copper joint has been realized by direct casting. A proper brazing thermal cycle has been studied to guarantee the required mechanical properties of the precipitation hardened alloy after brazing. The fabrication route of plasma facing components for the ITER vertical target and dome based on the brazing technology has been proved by means of thermal fatigue tests performed on mock-ups in reactor relevant conditions

  13. Advances in Multi-Sensor Scanning and Visualization of Complex Plants: the Utmost Case of a Reactor Building

    Science.gov (United States)

    Hullo, J.-F.; Thibault, G.; Boucheny, C.

    2015-02-01

    In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".

  14. Possible evidence for contemporary doming of the Adirondack Mountains, New York, and suggested implications for regional tectonics and seismicity

    Science.gov (United States)

    Isachsen, Y.W.

    1975-01-01

    The Adirondack Mountain massif is a dissected elongate dome having a north-northeast axis about 190 km long, and an east-west dimension of about 140 km. The dome exposes a core of Proterozoic metamorphic rocks from which the Paleozoic cover rocks have been eroded, except in several north-northeast-trending graben. The minimum amplitude of the dome, based on a 'reconstruction' of the Proterozoic-Paleozoic unconformity is 1600 m. The Adirondack dome is an anomalous feature of the eastern edge of the North American craton. It differs from other uplifts in the Interior Lowlands of the craton not only in terms of the greater combined amplitude and area of its uplift, but in the present high elevation of its Mountains (up to 1600 m) which are unequalled on the craton except along the Rocky Mountain front and in the Torngat Mountains of northernmost Labrador. This prompted an interest in the possibility that the Adirondack dome has undergone neotectonic regeneration and may be undergoing domical uplift at the present time. Accordingly, leveling records were consulted at the National Geodetic Survey data base in Rockville, Maryland, and used to construct leveling profiles. The most informative of these extends north-south along the block-faulted eastern flank of the Adirondack dome, extending from Saratoga Springs to Rouses Point, a distance of 245 km. A comparison of the level lines for 1955 and 1973 demonstrates that arching has occurred. An uplift of 40 mm along the central portion of the line, and a corresponding subsidence of 50 mm at the northern end, has produced a net increase in the amplitude of arching of 90 mm in the 18-year interval. This differential uplift, particularly with subsidence at the northern end, argues for a tectonic rather than glacio-isostatic mechanism. Pending releveling across the center of the Adirondack dome, it is tempting to extrapolate the releveling profile and suggest that the Adirondacks as a whole may be undergoing contemporary doming

  15. SEMANTIC SEGMENTATION OF BUILDING ELEMENTS USING POINT CLOUD HASHING

    Directory of Open Access Journals (Sweden)

    M. Chizhova

    2018-05-01

    Full Text Available For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect into different building types and structural elements (dome, nave, transept etc., including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling.

  16. Transparent Yttria for IR Windows and Domes - Past and Present

    National Research Council Canada - National Science Library

    Hogan, Patrick; Stefanik, Todd; Willingham, Charles; Gentilman, Richard

    2004-01-01

    ...) atmospheric transmission band at both ambient and elevated temperatures. Current state-of-the-art yttria's thermomechanical properties are adequate for a number of IR window and dome applications, but only marginal for the most demanding missions...

  17. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    Science.gov (United States)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  18. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  19. Statistical analysis of the sustained lava dome emplacement and destruction processes at Popocatépetl volcano, Central México

    Science.gov (United States)

    Mendoza-Rosas, Ana Teresa; Gómez-Vázquez, Ángel; De la Cruz-Reyna, Servando

    2017-06-01

    Popocatépetl volcano reawakened in 1994 after nearly 70 years of quiescence. Between 1996 and 2015, a succession of at least 38 lava domes have been irregularly emplaced and destroyed, with each dome reaching particular volumes at specific emplacement rates. The complexity of this sequence is analyzed using statistical methods in an attempt to gain insight into the physics and dynamics of the lava dome emplacement and destruction process and to objectively assess the hazards related to that volcano. The time series of emplacements, dome residences, lava effusion lulls, and emplaced dome volumes and thicknesses are modeled using the simple exponential and Weibull distributions, the compound non-homogeneous generalized Pareto-Poisson process (NHPPP), and the mixture of exponentials distribution (MOED). The statistical analysis reveals that the sequence of dome emplacements is a non-stationary, self-regulating process most likely controlled by the balance between buoyancy-driven magma ascent and volatile exsolution crystallization. This balance has supported the sustained effusive activity for decades and may persist for an undetermined amount of time. However, the eruptive history of Popocatépetl includes major Plinian phases that may have resulted from a breach in that balance. Certain criteria to recognize such breaching conditions are inferred from this statistical analysis.

  20. Models test on dynamic structure-structure interaction of nuclear power plant buildings

    International Nuclear Information System (INIS)

    Kitada, Y.; Hirotani, T.

    1999-01-01

    A reactor building of an NPP (nuclear power plant) is generally constructed closely adjacent to a turbine building and other buildings such as the auxiliary building, and in increasing numbers of NPPs, multiple plants are being planned and constructed closely on a single site. In these situations, adjacent buildings are considered to influence each other through the soil during earthquakes and to exhibit dynamic behaviour different from that of separate buildings, because those buildings in NPP are generally heavy and massive. The dynamic interaction between buildings during earthquake through the soil is termed here as 'dynamic cross interaction (DCI)'. In order to comprehend DCI appropriately, forced vibration tests and earthquake observation are needed using closely constructed building models. Standing on this background, Nuclear Power Engineering Corporation (NUPEC) had planned the project to investigate the DCI effect in 1993 after the preceding SSI (soil-structure interaction) investigation project, 'model tests on embedment effect of reactor building'. The project consists of field and laboratory tests. The field test is being carried out using three different building construction conditions, e.g. a single reactor building to be used for the comparison purposes as for a reference, two same reactor buildings used to evaluate pure DCI effects, and two different buildings, reactor and turbine building models to evaluate DCI effects under the actual plant conditions. Forced vibration tests and earthquake observations are planned in the field test. The laboratory test is planned to evaluate basic characteristics of the DCI effects using simple soil model made of silicon rubber and structure models made of aluminum. In this test, forced vibration tests and shaking table tests are planned. The project was started in April 1994 and will be completed in March 2002. This paper describes an outline and the summary of the current status of this project. (orig.)

  1. Implications of thermophysical properties in geoscientific investigations for the disposal of nuclear waste in a salt dome

    International Nuclear Information System (INIS)

    Kopietz, J.

    1984-01-01

    Examples from laboratory and in-situ experiments on the thermomechanical behavior of rock salt are used to discuss the implications of thermophysical properties for disposal of nuclear waste in a salt dome. The implications of thermophysical properties are also illustrated by a brief review of geothermal investigations made within the scope of geological and hydrogeological exploration of the Gorleben salt dome in northern Germany. High-resolution temperature measurements performed in shallow and deep boreholes drilled for the exploration of the Gorleben salt dome, together with thermal conductivity measurements on representative core samples from these boreholes, are contributing to a determination of groundwater flow in the covering layers of the salt dome and to the identification of zones of impurity (eg carnallitite layers) within the salt structure. Data from these experiments are used for setting up numerical models for heat propagation around a prospective waste repository in the Gorleben salt dome. Long-term creep experiments on samples of rock salt at up to 400 deg C are used to derive constitutive relations on the creep behavior of salt. In-situ heating experiments are being conducted in the Asse salt mine to determine the effect of a heat source on the integrity of the surrounding salt rock. (author)

  2. Noble gas confinement for reactor fuel melting accidents

    International Nuclear Information System (INIS)

    Monson, P.R.

    1984-01-01

    In the unlikely event of a fuel melting accident, radioactive material would be released into the reactor room. This radioactive material would consist of particulate matter, iodine, tritium, and the noble gases krypton and xenon. In the case of reactors with containment domes the gases would be contained for subsequent cleanup. For reactors without contaiment the particulates and the iodine can be effectively removed with HEPA and carbon filters of current technology; however, noble gases cannot be easily removed and would be released to the atmosphere. In either case, it would be highly desirable to have a system that could be brought online to treat this contaminated air to minimize the population dose. A low temperature adsorption system has been developed at the Savannah River Laboratory to remove the airborne radioactive material from such a fuel melting accident. Over two dozen materials have been tested in extensive laboratory studies, and hydrogen mordenite and silver mordenite were found to be the most promising adsorbents. A full-scale conceptual design has also been developed. Results of the laboratory studies and the conceptual design are discussed along with plans for further development of this concept

  3. Noble gas confinement for reactor fuel melting accidents

    International Nuclear Information System (INIS)

    Monson, P.R.

    1985-01-01

    In the unlikely event of a fuel melting accident radioactive material would be released into the reactor room. This radioactive material would consist of particulate matter, iodine, tritium, and the noble gases krypton and xenon. In the case of reactors with containment domes, the gases would be contained for subsequent cleanup. For reactors without containment the particulates and the iodine can be effectively removed with HEPA and carbon filters of current technology; however, noble gases cannot be easily removed and would be released to the atmosphere. In either case, it would be highly desirable to have a system that could be brought online to treat this contaminated air to minimize the population dose. A low temperature adsorption system has been developed at the Savannah River Laboratory to remove the airborne radioactive material from such a fuel melting accident. Over two dozen materials have been tested in extensive laboratory studies, and hydrogen mordensite and silver mordenite were found to be the most promising absorbents. A full-scale conceptual design has also been developed. Results of the laboratory studies and the conceptual design will be discussed along with plans for further development of this concept

  4. ABWR1. A Generation III.7 reactor after the Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    Sato, Takashi; Matsumoto, Keiji; Kurosaki, Toshikazu; Taguchi, Keisuke

    2015-01-01

    iB1350 stands for an innovative, intelligent and inexpensive BWR 1350. It is the first Generation III.7 reactor after the Fukushima Daiichi accident. It has incorporated lessons learned from the Fukushima Daiichi accident and WENRA safety objectives. It has innovative safety to cope with devastating natural disasters including a giant earthquake, a large tsunami and a monster hurricane. The iB1350 can survive passively such devastation and a very prolonged SBO without any support from the outside of a site up to 7 days even preventing core melt. It, however, is based on the well-established proven ABWR design. The NSSS is exactly the same as that of the current ABWR. As for safety design it has a double cylinder RCCV (Mark W containment) and an in-depth hybrid safety system (IDHS). The Mark W containment has double FP confinement barriers and the in-containment filtered venting system (IFVS) that enable passively no emergency evacuation outside the immediate vicinity of the plant for a SA. It has a large volume to hold hydrogen, a core catcher, a passive flooding system and an innovative passive containment cooling system (iPCCS) establishing passively practical elimination of containment failure even in a long term. The IDHS consists of 4 division active safety systems for a DBA, 2 division active safety systems for a SA and built-in passive safety systems (BiPSS) consisting of an isolation condenser (IC) and the iPCCS for a SA. The IC/PCCS pools have enough capacity for 7 day grace period. The IC/PCCS heat exchangers, core and spent fuel pool are enclosed inside the CV building and protected against a large airplane crash. The iB1350 can survive a large airplane crash only by the CV building and the built-in passive safety systems therein. The dome of the CV building consists of a single wall made of steel and concrete composite. This single dome structure facilitates a short-term construction period and cost saving. The CV diameter is smaller than that of most

  5. ORNL fusion power demonstration study: arguments for a vacuum building in which to enclose a fusion reactor

    International Nuclear Information System (INIS)

    Werner, R.W.

    1976-12-01

    Fusion reactors as presently contemplated are excessively complicated, are virtually inaccessible for some repairs, and are subject to frequent loss of function. This dilemma arises in large part because the closed surface that separates the ''hard'' vacuum of the plasma zone from atmospheric pressure is located at the first wall or between blanket and shield. This closed surface is one containing hundreds to thousands of linear meters of welds or mechanical seals which are subject to radiation damage and cyclic fatigue. In situ repair is extremely difficult. This paper examines the arguments favoring the enclosing of the entire reactor in a vacuum building and thus changing the character of this closed surface from one requiring absolute vacuum integrity to one of high pumping impedance. Two differentially pumped vacuum zones are imagined, one clean zone for the plasma and one for the balance of the volume. Both would be at substantially the same pressure. Other advantages for the vacuum enclosure are also cited and discussed

  6. Design criteria of integrated reactors based on transients

    International Nuclear Information System (INIS)

    Zanocco, P.; Gimenez, M.; Delmastro, D.

    1999-01-01

    A new tendency in integrated reactors conceptual design is to include safety criteria through accident analysis. In this work, the effect of design parameters in a Loss of Heat Sink transient using design maps is analyzed. Particularly, geometry related parameters and reactivity coefficients are studied. Also the effect of primary relief/safety valve during the transient is evaluated. A design map for valve area vs. coolant density reactivity coefficient is obtained. A computer code (HUARPE) is developed in order to simulate these transients. Coolant, steam dome, pressure vessel structures and core models are implemented. This code is checked against TRAC with satisfactory results. (author)

  7. Window and dome technologies and materials; Proceedings of the Meeting, Orlando, FL, Mar. 27-29, 1989

    Science.gov (United States)

    Klocek, Paul

    1989-09-01

    Papers on window and dome technologies and methodologies are presented, covering the processing and application of window and dome materials such as polycrystalline MgAl2O4 spinel, yttria and lanthana-doped yttria, transparent aluminum oxynitride, sapphire materials, fluoride glass, zinc sulfide, and germanium materials. Other topics include high modulus layers as protective coatings for window materials, ultrahard coatings for IR materials, IR applications of GeC thin filems, CVD diamond for IR applications, amorphic diamond films grown with a laser-ion source, dome cooling, microwave shielding effectiveness of electrically conductive coated optical windows, and the window evaluation program for an airborne FLIR system. In addition, papers are presented on modeling optical properties of window materials, lattice symmetries and thermal expansion, rain damage protection for IR materials, optical window materials for hypersonic flow, the IR emission due to aerodynamic heating of missile domes, a ZnS window for the IR instrumentation system, hypersonic aerooptical effects, optical and semiconductor properties of lead telluride coatings, boron phosphide for coating IR transparencies, and the measurement of high out-of-band filter rejection characteristics.

  8. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  9. The Vredefort Dome World Heritage Site: Client satisfaction with ...

    African Journals Online (AJOL)

    Given the substantial growth of whitewater rafting in the Vredefort Dome World Heritage Site (VDWHS), it quickly grew into an unregulated adventure tourism commodity. With the area being a World Heritage Site, concerns have arisen about the impact it could have on the environment, service quality and public safety.

  10. Dome-shaped High Tibial Osteotomy: A Long-term Follow-up Study

    Directory of Open Access Journals (Sweden)

    Hongsen Chiang

    2006-01-01

    Conclusion: Dome-shaped HTO is a durable time-buying procedure for patients with unicompartmental medial gonarthrosis, and can avoid subsequent development of patella baja that may complicate further prosthetic arthroplasty.

  11. Forced vibration tests on the reactor building of a nuclear power station, 1

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Tsunoda, Tomohiko; Wakamatsu, Kunio; Kaneko, Masataka; Nakamura, Mitsuru; Kunoh, Toshio; Murahashi, Hisahiro

    1988-01-01

    Tsuruga Unit No.2 Nuclear Power Station of the Japan Atomic Power Company is the first PWR-type 4-loop plant constructed in Japan with a prestressed concrete containment vessel (PCCV). This report describes forced vibration tests carried out on the reactor building of this plant. The following were obtained as results: (1) The results of the forced vibration tests corresponded well on the whole with design values. (2) The vibration characteristics of the PCCV observed in the tests after prestressing are no different from the ones before prestressing. This shows that the vibration properties of the PCCV are practically independent of prestressing loads. (3) A seismic response analysis of the design basis earthquake was made on the design model reflecting the test results. The seismic safety of the plant was confirmed by this analysis. (author)

  12. Task 24: Dynamic analysis of Kozloduy NPP unit 5 structures: Reactor building

    International Nuclear Information System (INIS)

    Zola, M.

    1999-01-01

    This report refers to the activities of a sub-contract to the Project RER/9/046, awarded to ISMES by the International Atomic Energy Agency (IAEA) of Vienna, to compare the results obtained from the experimental activities performed under previous contract by ISMES with those coming from analytical studies performed in the framework of the Coordinated Research Programme (CRP) on 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants' by other Institutions, relevant to Kozloduy Unit 5 reactor building. After a brief introduction to the problem in Chapter 1, the identification of the comparison positions and reference directions is given in Chapter 3. A very quick description of the performed experimental tests is given in Chapter 4, whereas the characteristics of both experimental and analytical data are presented in Chapter 5. The data processing procedures are reported in Chapter 6 and some simple remarks are given in Chapter 7. (author)

  13. Enhancing load-following and/or spectral shift capability in single-sparger natural circulation boiling water reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1992-01-01

    This patent describes a method for obtaining load-following capability in a coiling water reactor (BWR) wherein housed within a reactor pressure vessel (RPV) is a nuclear core disposed within a shroud having a shroud head and which with the RPV defines an annulus region disposed beneath the nuclear core, an upper steam dome connected to a steam outlet in the RPV, a core upper plenum formed within the shroud head and disposed atop the nuclear core, a chimney mounted atop the shroud head and in fluid communication with the core upper plenum and with a steam separator having a skirt which is in fluid communication with the steam dome, the region outside of the chimney defining a downcomer region, there being a water level established therein under normal operation of the BWR, and the RPV containing a feedwater inlet. It comprises: disposing a single sparger connected to the feedwater inlet above the steam separator skirt bottom about the interior circumference of the RPV at an elevation at approximately the water level established during normal operation of the BWR; and adjusting the feedwater flow through the inlet and into the sparger to vary the water level to be above, at or below the elevational location of the sparger in response to load-following need

  14. Re-assessment of recent (2008–2013 surface mass balance over Dome Argus, Antarctica

    Directory of Open Access Journals (Sweden)

    Minghu Ding

    2016-04-01

    Full Text Available At Dome Argus, East Antarctica, the surface mass balance (SMB from 2008 to 2013 was evaluated using 49 stakes installed across a 30×30 km area. Spatial analysis showed that at least 12 and 20 stakes are needed to obtain reliable estimates of SMB at local scales (a few hundred square metres and regional scales (tens of square kilometres, respectively. The estimated annual mean SMB was 22.9±5.9 kg m−2 yr−1, including a net loss by sublimation of −2.22±0.02 kg m−2 yr−1 and a mass gain by deposition of 1.37±0.01 kg m−2 yr−1. Therefore, ca. 14.3% of precipitation was modified after deposition, which should be considered when interpreting snow or ice core records produced by future drilling projects. The surface snow density and SMB in the western portion of Dome Argus are higher than in other areas, and these differences are likely related to the katabatic wind, which is strengthened by topography in this sector. A new digital elevation model (DEM of Dome Argus was generated, confirming that both peaks of the dome can be considered as the summit of the East Antarctic Ice Sheet. Findings from this study should be valuable for validating SMB estimates obtained from regional climate models and DEMs established using remote-sensing data.

  15. Two- and three-dimensional topographic analysis of pathologically myopic eyes with dome-shaped macula and inferior staphyloma by spectral domain optical coherence tomography.

    Science.gov (United States)

    García-Ben, Antonio; Kamal-Salah, Radua; García-Basterra, Ignacio; Gonzalez Gómez, Ana; Morillo Sanchez, María José; García-Campos, Jose Manuel

    2017-05-01

    To investigate the posterior anatomical structure of pathologically myopic eyes with dome-shaped macula and inferior staphyloma using spectral domain optical coherence tomography (SD-OCT). Our database of 260 pathologically myopic eyes was analyzed retrospectively to identify patients with dome-shaped macula and inferior staphyloma. All patients underwent vertical and horizontal SD-OCT scans across the central fovea, with three-dimensional macular map reconstruction. Best-corrected visual acuity, axial length, and choroidal thickness measurements were recorded. The macular bulge height was also analyzed in eyes with dome-shaped macula. In the three-dimensional images, the symmetry and orientation of the main plane of the inward incurvation of the macula were examined. Twenty-eight (10.7%) of the 260 pathologically myopic eyes had dome-shaped macula of one of three different types: a round radially symmetrical dome (eight eyes, 28.5%), a horizontal axially symmetrical oval-shaped dome (15 eyes, 53.5%), or a vertical axially symmetrical oval-shaped dome (five eyes, 17.8%). The macular bulge height was significantly greater in horizontal oval-shaped dome eyes (p = 0.01, for each comparison). Inferior posterior staphylomas were observed in ten (3.8%) of the 260 pathologically myopic eyes with asymmetrical macular bends. Vertical and horizontal OCT sectional scanning in combination with three-dimensional macular map reconstruction provides important information for understanding the posterior anatomical structure of dome-shaped macula and inferior staphyloma in pathologically myopic eyes.

  16. One piece reactor removal

    International Nuclear Information System (INIS)

    Chia, Wei-Min; Wang, Song-Feng

    1993-01-01

    The strategy of Taiwan Research Reactor Renewal plan is to remove the old reactor block with One Piece Reactor Removal (OPRR) method for installing a new research reactor in original building. In this paper, the engineering design of each transportation works including the work method, the major equipments, the design policy and design criteria is described and discussed. In addition, to ensure the reactor block is safety transported for storage and to guarantee the integrity of reactor base mat is maintained for new reactor, operation safety is drawn special attention, particularly under seismic condition, to warrant safe operation of OPRR. ALARA principle and Below Regulatory Concern (BRC) practice were also incorporated in the planning to minimize the collective dose and the total amount of radioactive wastes. All these activities are introduced in this paper. (J.P.N.)

  17. Nuclear reactor PBMR and cogeneration

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.

    2013-10-01

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  18. Stationary low power reactor No. 1 (SL-1) accident site decontamination ampersand dismantlement project

    International Nuclear Information System (INIS)

    Perry, E.F.

    1995-01-01

    The Army Reactor Area (ARA) II was constructed in the late 1950s as a test site for the Stationary Lo