WorldWideScience

Sample records for reactor based epithermal

  1. Fission reactor based epithermal neutron irradiation facilities for routine clinical application in BNCT-Hatanaka memorial lecture

    International Nuclear Information System (INIS)

    Harling, Otto K.

    2009-01-01

    Based on experience gained in the recent clinical studies at MIT/Harvard, the desirable characteristics of epithermal neutron irradiation facilities for eventual routine clinical BNCT are suggested. A discussion of two approaches to using fission reactors for epithermal neutron BNCT is provided. This is followed by specific suggestions for the performance and features needed for high throughput clinical BNCT. An example of a current state-of-the-art, reactor based facility, suited for routine clinical use is discussed. Some comments are provided on the current status of reactor versus accelerator based epithermal neutron sources for BNCT. This paper concludes with a summary and a few personal observations on BNCT by the author.

  2. Design considerations for epithermal pulse reactors

    International Nuclear Information System (INIS)

    Ostensen, R.W.

    1978-01-01

    Simplified design criteria were developed for scoping analyses of epithermal pulse reactors for use in LMFBR safety testing. By using these criteria, materials and designs were investigated to determine performance limits of moderately sized reactor cores. Several designs are suggested for further study. These are a gas-cooled core fueled with a heterogeneous mixture of Fe-UO 2 cermet and BeO-UO 2 ceramic fuels, and a heavy-water-cooled core fueled with an Fe-UO 2 cermet

  3. Potentialities of the molten salt reactor concept for a sustainable nuclear power production based on thorium cycle in epithermal spectrum

    International Nuclear Information System (INIS)

    Nuttin, Alexis

    2002-01-01

    In the case of a significant nuclear contribution to world energy needs, the problem of present nuclear waste management pose the sustainability of the PWR fuel cycle back into question. Studies on storage and incineration of these wastes should therefore go hand in hand with studies on innovative systems dedicated to a durable nuclear energy production, as reliable, clean and safe as possible. We are here interested in the concept of molten salt reactor, whose fuel is liquid. This particularity allows an online pyrochemical reprocessing which gives the possibility to overcome some neutronic limits. In the late sixties, the MSBR (Molten Salt Breeder Reactor) project of a graphite-moderated fluoride molten salt reactor proved thus that breeding is attainable with thorium in a thermal spectrum, provided that the online reprocessing is appropriate. By means of simulation tools developed around the Monte Carlo code MCNP, we first re-evaluate the performance of a reference system, which is inspired by the MSBR project. The complete study of the pre-equilibrium transient of this 2,500 MWth reactor, started with 232 Th/ 233 U fuel, allows us to validate our reference choices. The obtained equilibrium shows an important reduction of inventories and induced radio-toxicities in comparison with the other possible fuel cycles. The online reprocessing is efficient enough to make the system breed, with a doubling time of about thirty years at equilibrium. From the reference system, we then test different options in terms of neutron economy, transmutation and control of reactivity. We find that the online reprocessing brings most of its flexibility to this system, which is particularly well adapted to power generation with thorium. The study of transition scenarios to this fuel cycle quantifies the limits of a possible deployment from the present French power stock, and finally shows that a rational management of the available plutonium would be necessary in any case. (author)

  4. Spherical Harmonics Treatment of Epithermal Neutron Spectra in Reactor lattices

    International Nuclear Information System (INIS)

    Matausek, M.V.

    1972-04-01

    A procedure has been developed to solve the slowing down transport equation for neutrons in a cylindrized reactor lattice cell. Treating the anisotropy of the epithermal neutron flux by the spherical harmonics formalism, which reduces the space-angle-lethargy-dependent transport equation to the matrix integrodifferential equation in space and lethargy, and replacing the lethargy transfer integrals by finite-difference forms, a set of matrix ordinary differential equations, with lethargy and space dependent coefficients, is obtained. In the resonance region this set takes a lower block triangular form and can be directly solved by forward block substitution; in the lethargy range, where the fast fission effects have to be considered, the iterative procedure is introduced. A simple and efficient approximation is then proposed, making possible the analytical solution for the spatial dependence of the spherical harmonics flux moments. The proposed procedure has been numerically examined and approved. Some typical results are presented and discussed. (author)

  5. The epithermal neutron-flux distribution in the reactor RA - Vinca

    International Nuclear Information System (INIS)

    Marinkov, V.; Bikit, I.; Martinc, R.; Veskovic, M.; Slivka, J.; Vaderna, S.

    1987-01-01

    The distribution of the epithermal neutron flux in the reactor RA - Vinca has been measured by means of Zr - activation detectors. In the channel VK-8 non-homogeneous flux distribution was observed (author) [sr

  6. Upgrades of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1994-12-31

    The first epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR) was installed in 1988 and produced a neutron beam that was satisfactory for the development of NCT with epithermal neutrons. This beam was used routinely until 1992 when the beam was upgraded by rearranging fuel elements in the reactor core to achieve a 50% increase in usable flux. Next, after computer modeling studies, it was proposed that the Al and Al{sub 2}O{sub 3} moderator material in the shutter that produced the epithermal neutrons could be rearranged to enhance the beam further. However, this modification was not started because a better option appeared, namely to use fission plates to move the source of fission neutrons closer to the moderator and the patient irradiation position to achieve more efficient moderation and production of epithermal neutrons. A fission plate converter (FPC) source has been designed recently and, to test the concept, implementation of this upgrade has started. The predicted beam parameters will be 12 x 10{sup 9} n{sub epi}/cm{sup 2}sec accompanying with doses from fast neutrons and gamma rays per epithermal neutron of 2.8 x 10{sup -11} and < 1 x 10{sup -11} cGycm{sup 2}/n, respectively, and a current-to-flux ratio of epithermal neutrons of 0.78. This conversion could be completed by late 1996.

  7. Epithermal neutron beam design for neutron capture therapy at the Power Burst Facility and the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Parsons, D.K.; Rushton, B.L.; Nigg, D.W.

    1990-01-01

    Nuclear design studies have been performed for two reactor-based epithermal neutron beams for cancer treatment by neutron capture therapy (NCT). An intermediate-intensity epithermal beam has been designed and implemented at the Brookhaven Medical Research Reactor (BMRR). Measurements show that the BMRR design predictions for the principal characteristics of this beam are accurate. A canine program for research into the biological effects of NCT is now under way at BMRR. The design for a high-intensity epithermal beam with minimal contamination from undesirable radiation components has been finalized for the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. This design will be implemented when it is determined that human NCT trials are advisable. The PBF beam will exhibit approximately an order of magnitude improvement in absolute epithermal flux intensity over that available in the BMRR, and its angular distribution and spectral characteristics will be more advantageous for NCT. The combined effects of beam intensity, angular distribution, spectrum, and contaminant level allow the desired tumor radiation dose to be delivered in much shorter times than are possible with the currently available BMRR beam, with a significant reduction (factor of 3 to 5) in collateral dose due to beam contaminants

  8. Epithermal beam development at the BMRR [Brookhaven Medical Research Reactor]: Dosimetric evaluation

    International Nuclear Information System (INIS)

    Saraf, S.K.; Fairchild, R.G.; Kalef-Ezra, J.; Laster, B.H.; Fiarman, S.; Ramsey, E.; Ioannina Univ.; Brookhaven National Lab., Upton, NY; State Univ. of New York, Stony Brook, NY

    1989-01-01

    The utilization of an epithermal neutron beam for neutron capture therapy (NCT) is desirable because of the increased tissue penetration relative to a thermal neutron beam. Over the past few years, modifications have been and continue to be made at the Brookhaven Medical Research Reactor (BMRR) by changing its filter components to produce an optimal epithermal beam. An optimal epithermal beam should contain a low fast neutron contamination and no thermal neutrons in the incident beam. Recently a new moderator for the epithermal beam has been installed at the epithermal port of the BMRR and has accomplished this task. This new moderator is a combination of alumina (Al 2 O 3 ) bricks and aluminum (Al) plates. A 0.51 mm thick cadmium (Cd) sheet has reduced the thermal neutron intensity drastically. Furthermore, an 11.5 cm thick bismuth (Bi) plate installed at the port surface has reduced the gamma dose component to negligible levels. Foil activation techniques have been employed by using bare gold and cadmium-covered gold foil to determine thermal as well as epithermal neutron fluence. Fast neutron fluence has been determined by indium foil counting. Fast neutron and gamma dose in soft tissue, free in air, is being determined by the paired ionization chamber technique, using tissue equivalent (TE) and graphite chambers. Thermoluminescent dosimeters (TLD-700) have also been used to determine the gamma dose independently. This paper describes the methods involved in the measurements of the above mentioned parameters. Formulations have been developed and the various corrections involved have been detailed. 12 refs

  9. Utilization of boron irradiation filters in reactor neutron activation via epithermal (n,γ) and fast neutron reactions

    International Nuclear Information System (INIS)

    Chisela, F.

    1986-01-01

    The technique of instrumental neutron activation analysis based on irradiation with reactor epithermal and fast neutrons has been described and evaluated. Important characteristics of boron neutron absorbers used to remove thermal neutrons from the reactor neutron spectrum have been examined and compared with those of cadmium. Three boron compound shields, have been designed and constructed at the BER II 5MW reactor for use in epithermal neutron activation analysis of biological materials. The major advantages offered by these filters in this application include the flexibility of varying the filter thickness, the low radioactivity induced in the filters during irradiation, ease of fabrication and the relatively low cost of the filter materials. The radiation heating due to the 10 B(n,α) 7 Li-reaction has been experimentally investigated for the filters used and the results obtained confirm the necessity for efficient cooling of these filters during irradiation. Three irradiation facilities have been characterized with respect to the neutron flux density and the flux spatial distribution. An experiment has been designed and carried out to compensate the flux inhomogeneity in two irradiation positions of the DBV facility caused by the reactor geometry. Several biological samples including well characterized reference materials have been analysed after epithermal activation and the results compared with those obtained with the classical thermal neutron activation method. Improved sensitivity of determination has been found for elements with high resonance integral to thermal neutron cross section ratios (RI/σ 0 ). The range of elements that can be determined instrumentally is extended and the time scale of analysis is considerably reduced. (orig.) [de

  10. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  11. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10 7 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF 3 composite and a stacked Al/Teflon design) at various incident electron energies

  12. Theoretical and experimental study of collectrons for epithermal neutron flux in reactors

    International Nuclear Information System (INIS)

    Agu, M.N.

    1986-01-01

    A theoretical study of nuclear reactions and electric charge displacements arising in sensitivity to thermal and epithermal neutrons in collectrons allowed a computer code conception. Collectrons in Rhodium, Silver, Cobalt, Hafnium, Erbium, Gadolinium and Holmium have been tested in different radiation fields given by neutron or gamma filters irradiated in different places of Melusine and Siloe reactors. Some emitters were covered with different steel, nickel or zircaloy thicknesses. Theoretical and experimental results are consistent; that validate the computer code and show possibilities and necessity of covering collectron emitters to reduce or cancel the gamma sensitivity and to improve response instantaneity. A selective measurement of epithermal neutron flux can by this way, made by associating two types of collectrons [fr

  13. Reactor beam calculations to determine optimum delivery of epithermal neutrons for treatment of brain tumors

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Nigg, D.W.; Capala, J.

    1997-01-01

    Studies were performed to assess theoretical tumor control probability (TCP) for brain-tumor treatment with boron neutron capture therapy (BNCT) using epithermal neutron sources from reactors. The existing epithermal-neutron beams at the Brookhaven Medical Research Reactor Facility (BMRR), the Petten High Flux Reactor Facility (HWR) and the Finnish Research Reactor 1 (FIR1) have been analyzed and characterized using common analytical and measurement methods allowing for this inter-comparison. Each of these three facilities is unique and each offers an advantage in some aspect of BNCT, but none of these existing facilities excel in all neutron-beam attributes as related to BNCT. A comparison is therefore also shown for a near-optimum reactor beam which does not currently exist but which would be feasible with existing technology. This hypothetical beam is designated BNCT-1 and has a spectrum similar to the FIR-1, the mono-directionality of the HFR and the intensity of the BMRR. A beam very similar to the BNCT-1 could perhaps be achieved with modification of the BMRR, HFR, or FIR, and could certainly be realized in a new facility with today's technology

  14. Measurement of thermal, epithermal and fast neutrons fluxes by the activation foil method at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Berretta, J.R.; Fratin, L.; Botelho, S.

    1990-01-01

    The thermal, epithermal and fast neutron fluxes have been determined experimentally by the activation foil method at position GI, located near the IEA-R1 reactor core. The reactions used were 197 Au (n,gamma) 198 Au, for thermal and epithermal neutrons and 27 Na (n,alpha) 24 Na, for fast neutrons. The activities were measured by the 4π(PC)β-γ coincidence method. (author)

  15. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  16. Installation and testing of an optimized epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Kalef-Ezra, J.; Saraf, S.K.; Fiarman, S.; Ramsey, E.; Wielopolski, L.; Laster, B.; Wheeler, F. (Brookhaven National Lab., Upton, NY (USA); Ioannina Univ. (Greece); Brookhaven National Lab., Upton, NY (USA); State Univ. of New York, Stony Brook, NY (USA). Health Science Center; Brookhaven National Lab., Upton, NY (USA); EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-01-01

    Various calculations indicate that an optimized epithermal neutron beam can be produced by moderating fission neutrons either with a combination of Al and D{sub 2}O, or with Al{sub 2}O{sub 3}. We have designed, installed and tested an Al{sub 2}O{sub 3} moderated epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). The epithermal neutron fluence rate of 1.8 {times} 10{sup 9} n/cm{sup 2}-sec produces a peak thermal neutron fluence rate of 1.9 to 2.8 {times} 10{sup 9} n/cm{sup 2}-sec in a tissue equivalent (TE) phantom head, depending on the configuration. Thus a single therapy treatment of 5 {times} 10{sup 12} n/cm{sup 2} can be delivered in 30--45 minutes. All irradiation times are given for a BMRR power of 3 MW, which is the highest power which can be delivered continuously. 18 refs., 8 figs., 4 tabs.

  17. Epithermal neutron flux characterization of the TRIGA Mark III reactor, Salazar, Mexico, for use in Internal Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Herrera Peraza, E.

    1996-01-01

    The non ideality of the epithermal neutron flux distribution at a reactor site parameter (made, using Chloramine-T method. Radiochemical purity and stability of the labelled product were determined by radiochromatography. The labelled Melagenine-II showed two radioactive fractions thermal-to-epithermal neutron ratio (f) were determined in the 3 typical irradiations positions of the TRIGA Mark III reactor of the National Nuclear Research Institute, Salazar, Mexico, using the Cd-ratio for multi monitor and bare bi-isotopic monitor methods respectively. This characterization is of use in the K o - method of neutron activation analysis, recently introduced at the Institute

  18. Power Burst Reactor Facility as an epithermal neutron source for brain cancer therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.

    1986-01-01

    The Power Burst Facility (PBF) reactor is considered for modification to provide an intense, clean source of intermediate-energy (epithermal) neutrons desirable for clinical studies of neutron capture therapy (NCT) for malignant tumors. The modifications include partial replacement of the reflector, installation of a neutron-moderating, shifting region, additional shielding, and penetration of the present concrete shield with a collimating (and optionally) filtering region. The studies have indicated that the reactor, after these modifications, will be safely operable at full power (28 MW) within the acceptable limits of the plant protection systems. The neutron beam exiting from the collimator port is predicted to be of sufficient intensity (approx.10 10 neutrons/cm 2 -s) to provide therapeutic doses in very short irradiation times. The beam would be relatively free of undesirable fast neutrons, thermal neutrons and gamma rays. The calculated neutron energy spectrum and associated gamma rays in the beam were provided as input in simulation studies that used a computer model of a patient with a brain tumor to determine predicted dose rates to the tumor and healthy tissue. The results of this conceptual study indicate an intense, clean beam of epithermal neutrons for NCT clinical trials is attainable in the PBF facility with properly engineered design modifications. 9 refs., 11 figs., 3 tabs

  19. Measurement of the epithermal neutron flux of the Argonauta reactor by the Sandwich method

    International Nuclear Information System (INIS)

    Nascimento, H.M.

    1973-01-01

    A common method of obtaining information about the neutron spectrum in the energy range of 1 eV to a few keV is by using resonance sandwich detectors. A sandwich detector is usually made up of three foils placed one on top of the other, each having the same thickness and being made of the same material which has a pronounced absorption resonance. To make an adequate evaluation, the sandwich method was compared with one using an isolated detector. The results obtained from approximate theoretical calculations were checked experimentally, using In, Au and Mn foils, in an isotropic 1/E flux in the Argonaut Reactor at I.E.N. As practical application of this method, the deviation from a 1/E spectrum of the epithermal neutron flux in the core and external graphite reflector of the Argonaut Reactor has been measured with the sandwich foils previously calibrated in a 1/E spectrum. (author)

  20. Characterisation of the epithermal neutron irradiation facility at the Portuguese research reactor using MCNP.

    Science.gov (United States)

    Beasley, D G; Fernandes, A C; Santos, J P; Ramos, A R; Marques, J G; King, A

    2015-05-01

    The radiation field at the epithermal beamline and irradiation chamber installed at the Portuguese Research Reactor (RPI) at the Campus Tecnológico e Nuclear of Instituto Superior Técnico was characterised in the context of Prompt Gamma Neutron Activation Analysis (PGNAA) applications. Radiographic films, activation foils and thermoluminescence dosimeters were used to measure the neutron fluence and photon dose rates in the irradiation chamber. A fixed-source MCNPX model of the beamline and chamber was developed and compared to measurements in the first step towards planning a new irradiation chamber. The high photon background from the reactor results in the saturation of the detector and the current facility configuration yields an intrinsic insensitivity to various elements of interest for PGNAA. These will be addressed in future developments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Adaptability of Brayton cycle conversion systems to fast, epithermal and thermal spectrum space nuclear reactors

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1988-01-01

    The two French Government Agencies C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique) are carrying out joint preliminary studies on space nuclear power systems for future ARIANE 5 launch vehicle applications. The Brayton cycle is the reference conversion system, whether the heat source is a liquid metal-cooled (NaK, Na or Li) reactor or a gas-cooled direct cycle concept. The search for an adequate utilization of this energy conversion means has prompted additional evaluations featuring the definition of satisfactory cycle conditions for these various kinds of reactor concepts. In addition to firstly studied fast and epithermal spectrum ones, thermal spectrum reactors can offer an opportunity of bringing out some distinctive features of the Brayton cycle, in particular for the temperature conditioning of the efficient metal hydrides (ZrH, Li/sub 7/H) moderators. One of the purposes of the paper is to confirm the potential of long lifetime ZrH moderated reactors associated with a gas cycle and to assess the thermodynamical consequences for both Nak(Na)-cooled or gas-cooled nuclear heat sources. This investigation is complemented by the definition of appropriate reactor arrangements which could be presented on a further occasion

  2. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities

    International Nuclear Information System (INIS)

    Mansy, M.S.; Bashter, I.I.; El-Mesiry, M.S.; Habib, N.; Adib, M.

    2015-01-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5–133 keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named “QMNB” was developed in the “MATLAB” programming language to perform the required calculations. - Highlights: • Quasi-monoenergetic neutron beams in energy range from (1.5–133) keV. • Interference between the resonance and potential scattering amplitudes. • Epithermal neutron beams used in BNCT

  3. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    International Nuclear Information System (INIS)

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 10 8 n/cm 2 · s. The fast neutron and gamma radiation KERMA factors are 10 x 10 -11 cGy·cm 2 /n epi and 20 x 10 -11 cGy·cm 2 /n epi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power

  4. SPLET - A program for calculating the space-lethargy distribution of epithermal neutrons in a reactor lattice cell

    International Nuclear Information System (INIS)

    Matausek, M.V.; Zmijatevic, I.

    1981-01-01

    A procedure to solve the space-single-lethargy dependent transport equation for epithermal neutrons in a cylindricised multi-region reactor lattice cell has been developed and proposed in the earlier papers. Here, the computational algorithm is comprised and the computing program SPLET, which calculates the space-lethargy distribution of the spherical harmonics neutron flux moments, as well as the related integral quantities as reaction rates and resonance integrals, is described. (author)

  5. Sensitivity of reactor integral parameters to #betta##betta# parameter of resolved resonances of fertile isotopes and to the α values, in thermal and epithermal spectra

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    A sensitivity analysis of reactor integral parameter to more 10% variation in the resolved resonance parameters #betta##betta# of the fertile isotope and the variations of more 10% in the α values (#betta# sub(#betta#)/#betta# sub(f)) of fissile isotopes of PWR fuel elements, is done. The analysis is made with thermal and epithermal spectra, those last generated in a fuel cell with low V sub(M)/V sub(F). The HAMMER system, the interface programs HELP and LITHE and the HAMMER computer codes, were used as a base for this study. (E.G.) [pt

  6. Measurement of thermal, epithermal and fast neutron flux in the IEA-R1 reactor by the foil activation method

    International Nuclear Information System (INIS)

    Koskinas, M.F.

    1979-01-01

    Experimental and theoretical details of the foil activation method applied to neutrons flux measurements at the IEA-R1 reactor are presented. The thermal - and epithermal - neutron flux were determined form activation measurements of gold, cobalt and manganese foils; and for the fast neutron flux determination, aluminum, iron and nickel foils were used. The measurements of the activity induced in the metal foils were performed using a Ge-Li gamma spectrometry system. In each energy range of the reactor neutron spectrum, the agreement among the experimental flux values obtained using the three kind of materials, indicates the consistency of the theoretical approach and of the nuclear parameters selected. (Author) [pt

  7. An epithermal neutron source for BNCT based on an ESQ-accelerator

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Phillips, T.L.; Reginato, L.L.; Wells, R.P.

    1997-07-01

    An accelerator-based BNCT facility is under development at the Lawrence Berkeley National Laboratory. Neutrons will be produced via the 7 Li(p,n) reaction at proton energies of about 2.5 MeV with subsequent moderation and filtering for shaping epithermal neutron beams for BNCT. Moderator, filter, and shielding assemblies have been modeled using MCNP. Head-phantom dose distributions have been calculated using the treatment planning software BNCT RTPE. The simulation studies have shown that a proton beam current of ∼ 20 mA is required to deliver high quality brain treatments in about 40 minutes. The results also indicate that significantly higher doses can be delivered to deep-seated tumors in comparison to the Brookhaven Medical Research Reactor beam. An electrostatic quadrupole (ESQ) accelerator is ideally suited to provide the high beam currents desired. A novel power supply utilizing the air-coupled transformer concept is under development. It will enable the ESQ-accelerator to deliver proton beam currents exceeding 50 mA. A lithium target has been designed which consists of a thin layer of lithium on an aluminum backing. Closely spaced, narrow coolant passages cut into the aluminum allow the removal of a 50kW heat-load by convective water cooling. The system under development is suitable for hospital installation and has the potential for providing neutron beams superior to reactor sources

  8. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2008-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  9. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2009-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  10. Comparison of different methods for activation analysis of geological and pedological samples: Reactor and epithermal neutron activation, relative and monostandard method

    International Nuclear Information System (INIS)

    Alian, A.; Sansoni, B.

    1980-04-01

    Using purely instrumental methods, a comparative study is presented on neutron activation analysis of rock and soil samples by whole reactor neutron spectrum and epithermal neutrons with both relative and monostandard procedures. The latter procedure used with epithermal neutron activation analysis of soil samples necessitated the use of the 'effective resonance integrals' which were determined experimentally. The incorporation of the #betta# factor, representing deviation of reactor epithermal neutron flux from 1/E law, is developed in the present work. The main criteria for the choice of one or more of the procedures studied for a given purpose are also indicated. Analysis of 15 trace elements, Ca and Fe in the standard Japanese granite JG-1 using monostandard epithermal neutron activation gave results in good agreement with the average literature values. (orig./RB) [de

  11. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  12. Errors of absolute methods of reactor neutron activation analysis caused by non-1/E epithermal neutron spectra

    International Nuclear Information System (INIS)

    Erdtmann, G.

    1993-08-01

    A sufficiently accurate characterization of the neutron flux and spectrum, i.e. the determination of the thermal flux, the flux ratio and the epithermal flux spectrum shape factor, α, is a prerequisite for all types of absolute and monostandard methods of reactor neutron activation analysis. A convenient method for these measurements is the bare triple monitor method. However, the results of this method, are very imprecise, because there are high error propagation factors form the counting errors of the monitor activities. Procedures are described to calculate the errors of the flux parameters, the α-dependent cross-section ratios, and of the analytical results from the errors of the activities of the monitor isotopes. They are included in FORTRAN programs which also allow a graphical representation of the results. A great number of examples were calculated for ten different irradiation facilities in four reactors and for 28 elements. Plots of the results are presented and discussed. (orig./HP) [de

  13. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate (ρ28) in Aagesta Power Reactor Fuel

    International Nuclear Information System (INIS)

    Bernander, G.

    1967-09-01

    The epithermal-to-thermal neutron capture rate ratio ρ 28 in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured ρ 28 values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of ρ and ICR as calculated with the BURNUP lattice parameter code are favourable

  14. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate in Aagesta Power Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G

    1967-09-15

    The epithermal-to-thermal neutron capture rate ratio {rho}{sub 28} in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured {rho}{sub 28} values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of {rho} and ICR as calculated with the BURNUP lattice parameter code are favourable.

  15. Epithermal neutron beam for BNCT research at the Washington State University TRIGA research reactor

    International Nuclear Information System (INIS)

    Nigg, D.W.; Venhuizen, J.R.; Wheeler, F.J.; Wemple, C.A.; Tripard, G.E.; Gavin, P.R.

    2000-01-01

    A new epithermal-neutron beam facility for BNCT (Boron Neutron Capture Therapy) research and boronated agent screening in animal models is in the final stages of construction at Washington State University (WSU). A key distinguishing feature of the design is the incorporation of a new, high-efficiency, neutron moderating and filtering material, Fluental, developed by the Technical Research Centre of Finland. An additional key feature is the provision for adjustable filter-moderator thickness to systematically explore the radiobiological consequences of increasing the fast-neutron contamination above the nominal value associated with the baseline system. (author)

  16. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  17. Single-crystal filters for attenuating epithermal neutrons and gamma rays in reactor beams

    DEFF Research Database (Denmark)

    Rustad, B.M.; Als-Nielsen, Jens Aage; Bahnsen, A.

    1965-01-01

    Cross section of representative samples of bismuth and quartz were measured at room and liquid nitrogen temperatures over neutron energy range of 0.0007 to 2.0 ev to obtain data for design of single-crystal 32-cm bismuth filters for attenuating fast neutrons and γ-rays in reactor beams; filters may...

  18. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    Science.gov (United States)

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Characterisation of the TAPIRO BNCT epithermal facility

    Energy Technology Data Exchange (ETDEWEB)

    Burn, K. W. [FIS-NUC, ENEA, Via Martiri di Montesole 4, Bologna (Italy); Colli, V. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy); Curzio, G.; D' Errico, F. [DIMNP, Univ. of Pisa, Via Diotisalvi 2, I-56126 Pisa (Italy); Gambarini, G. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy); Rosi, G. [FIS-ION, ENEA, Casaccia, Via Anguillarese 301, I-00060 Santa Maria di Galeria, Roma (Italy); Scolari, L. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy)

    2004-07-01

    A collimated epithermal beam for boron neutron capture therapy (BNCT) research has been designed and built at the TAPIRO fast research reactor. A complete experimental characterisation of the radiation field in the irradiation chamber has been performed, to verify agreement with IAEA requirements. Slow neutron fluxes have been measured by means of an activation technique and with thermoluminescent detectors (TLDs). The fast neutron dose has been determined with gel dosemeters, while the fast neutron spectrum has been acquired by means of a neutron spectrometer based on superheated drop detectors. The gamma-dose has been measured with gel dosemeters and TLDs. For an independent verification of the experimental results, fluxes, doses and neutron spectra have been calculated with Monte Carlo simulations using the codes MCNP4B and MCNPX 2.1.5 with the direct statistical approach (DSA). The results obtained confirm that the epithermal beams achievable at TAPIRO are of suitable quality for BNCT purposes. (authors)

  20. Elemental Mass Balance of the Hydrothermal Alteration Associated with the Baturappe Epithermal Silver-Base Metal Prospect, South Sulawesi, Indonesia

    OpenAIRE

    Nur, Irzal; Idrus, Arifudin; Pramumijoyo, Subagyo; Harijoko, Agung; Watanabe, Koichiro; Imai, Akira; Jaya, Asri; Irfan, Ulva Ria; Sufriadin

    2012-01-01

    Abstract The Baturappe prospect situated in southernmost part of Sulawesi island, Indonesia, is a hydrothermal mineralization district which is characterized by occurrences of epithermal silver-base metal mineralizations. The mineralizations hosted in basaltic-andesitic volcanic rocks of the late Middle-Miocene Baturappe Volcanics. This paper discusses a recent study of relationships between alteration mineralogy and whole-rock geochemistry, which focused on elemental mass balance calculat...

  1. Experimental demonstration of a compact epithermal neutron source based on a high power laser

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.

    2017-07-01

    Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.

  2. Improvements on the calculation of the epithermal disadvantage factor for thermal nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aboustta, Mohamed A.; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1997-12-01

    The disadvantage factor takes into account the neutron flux variation through the fuel cell. In the fuel the flux is depressed in relation to its level in the moderator region. In order to avoid detailed calculations for each different set of cell dimensions, which turns out necessary the development of problem-dependent neutron cross section libraries, a disadvantage factor based on a two-region equivalence theory was proposed for the EPRI-CELL code. However, it uses a rational approximation to the neutron escape probability to describe the neutron transport between cell regions. Such approximation allows the use of the equivalence principals but introduces a non negligible error which results in an underestimation of the cell neutron fluxes. A new proposed treatment, that will be presented in this work, remarkably improves the numerical calculation and reduces the error of the above mentioned method. (author). 4 refs., 2 figs.

  3. Improvements on the calculation of the epithermal disadvantage factor for thermal nuclear reactors

    International Nuclear Information System (INIS)

    Aboustta, Mohamed A.; Martinez, Aquilino S.

    1997-01-01

    The disadvantage factor takes into account the neutron flux variation through the fuel cell. In the fuel the flux is depressed in relation to its level in the moderator region. In order to avoid detailed calculations for each different set of cell dimensions, which turns out necessary the development of problem-dependent neutron cross section libraries, a disadvantage factor based on a two-region equivalence theory was proposed for the EPRI-CELL code. However, it uses a rational approximation to the neutron escape probability to describe the neutron transport between cell regions. Such approximation allows the use of the equivalence principals but introduces a non negligible error which results in an underestimation of the cell neutron fluxes. A new proposed treatment, that will be presented in this work, remarkably improves the numerical calculation and reduces the error of the above mentioned method. (author). 4 refs., 2 figs

  4. Design of filtered epithermal neutron beams for BNC

    International Nuclear Information System (INIS)

    Greenwood, R.C.

    1986-01-01

    The design principles of filters (installed in nuclear reactors) to provide epithermal neutron beams suitable for use in 10 B Neutron Capture Therapy (BNCT) are reviewed. The goal of such filters is to provide epithermal neutron beams within an energy range of 1 keV to 30 keV with fluxes in excess of 5 x 10 8 neutrons/cm 2 .s, and having acceptably low contaminant fast neutron (> 30 keV) and gamma components. Filters considered for this application include 238 U, Sc, Fe/Al and Al/S. It is shown that in order to achieve a goal epithermal neutron flux of > 5 x 10 8 neutrons/cm 2 .s, such filters must be located in radial beam channels which view essentially the complete reactor core. Based on considerations of estimated epithermal fluxes, cost and availability of materials, and transmitted neutron energy spectrum, it is suggested that a filter consisting of elements of Al, S, Ti and V might prove to be an optimum design for BNCT applications. 13 references, 3 figures, 8 tables

  5. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chadha, M.

    1997-01-01

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains

  6. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  7. Reactor AQUILON. The hardening of neutron spectrum in natural uranium rods, with a computation of epithermal fissions (1961); Pile AQUILON. Durcissement du spectre des neutrons dans les barreaux d'uranium et calcul des fissions epithermiques (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Durand -Smet, R; Lourme, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    - Microscopic flux measurements in reactor Aquilon have allowed to investigate the thermal and epithermal flux distribution in natural uranium rods, then to obtain the neutron spectrum variations in uranium, Wescott '{beta}' term of the average spectrum in the rod, and the ratio of epithermal to therma fissions. A new definition for the infinite multiplication factor is proposed in annex, which takes into account epithermal parameters. (authors) [French] - Un certain nombre de mesures effectuees dans la pile Aquilon ont permis d'etablir la distribution fine des flux thermique et epithermique dans les barreaux d'uranium, et d'en deduire les variations du spectre des neutrons dans l'uranium, le terme {beta} du spectre de Wescott moyen dans le barreau et le nombre de fissions epithermiques. En annexe, il est propose une definition nouvelle du coefficient de multiplication infini, qui fait intervenir les parametres epithermiques. (auteurs)

  8. Epithermal neutron flux in the experimental channels of the RA reactor; Fluks epitermalnih neutrona u eksperimentalnim kanalima reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Dobrosavljevic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Epithermal neutron flux was determined by measuring the cadmium ratio from activation analysis of gold and indium foils. Irradiation was done in experimental channels VK-5, VK-2, VK-7, VK-0, VK-HS next to the core, and next to the fuels elements. Activation of bare foils and foils covered by 0.8 and 1.0 mm thick cadmium foils was done simultaneously. Activity was measured by GM counter. Corrections were done for resonant neutrons self-absorption since the foils used were too thick concerning most important resonances of gold and indium. Final results were presented as spectrum factor r for their direct use in determining the effective neutron cross sections.

  9. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    International Nuclear Information System (INIS)

    Evans, J.F.; Blue, T.E.

    1996-01-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions open-quotes How much?close quotes and open-quotes What kind?close quotes of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient open-quotes scatterer,close quotes and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h -1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs

  10. Propagation of epithermal neutrons in the empty mesh of the EDF3 reactor. Application of Zeus IV

    International Nuclear Information System (INIS)

    Brisbois, Jacques; Sonnet, Alain; Rafalovitch, Armand

    1969-10-01

    The authors report the verification of the Zeus 4 Monte Carlo code by applying it to an actual example of neutron propagation in a large enclosure, the empty mesh of the EDF3 reactor, supplied through the box holes (for the passage of heat transfer fluid ducts). This enclosure is represented by 105 parallelepipedic meshes in which are placed 4 plane and square sources of same cross section as the holes, and emitting inwards in cos θ. Source intensity is determined by flow rate measurements during tests in the air, interpreted by a Zeus-based calculation and channel power measurements during a 387 MW level operation. The presence of ducts is taken into account by applying a global attenuation coefficient to the sources. Calculation and experiment results agree very well in view of geometry complexity [fr

  11. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    Science.gov (United States)

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  12. Directional epithermal neutron detector

    International Nuclear Information System (INIS)

    Givens, W.W.; Mills, W.R. Jr.

    1986-01-01

    A borehole tool for epithermal neutron die-away logging of subterranean formations surrounding a borehole is described which consists of: (a) a pulsed source of fast neutrons for irradiating the formations surrounding a borehole, (b) at least one neutron counter for counting epithermal neutrons returning to the borehole from the irradiated formations, (c) a neutron moderating material, (d) an outer thermal neutron shield providing a housing for the counter and the moderating material, (e) an inner thermal neutron shield dividing the housing so as to provide a first compartment bounded by the inner thermal neutron shield and a first portion of the outer thermal neutron shield and a second compartment bounded by the inner thermal neutron shield and a second portion of the outer thermal neutron shield, the counter being positioned within the first compartment and the moderating material being positioned within the second compartment, and (f) means for positioning the borehole tool against one side of the borehole wall and azimuthally orienting the borehole tool such that the first chamber is in juxtaposition with the borehole wall, the formation epithermal neutrons penetrating into the first chamber through the first portion of the outer thermal neutron shield are detected by the neutron counter for die-away measurement, thereby maximizing the directional sensitivty of the neutron counter to formation epithermal neutrons, the borehole fluid epithermal neutrons penetrating into the second chamber through the second chamber through the second portion of the outer thermal neutron shield are largely slowed down and lowered in energy by the moderating material and absorbed by the inner thermal neutron shield before penetrating into the first chamber, thereby minimizing the directional sensitivity of the neutron counter to borehole fluid epithermal neutrons

  13. Lithogeochemistry and fluid flow in the epithermal Veta Rublo base metal-silver deposit, Chonta Mine (Huancavelica, Perú)

    OpenAIRE

    Castroviejo Bolibar, Ricardo; Yparraguirre, José Andrés; Chacón, E.

    2007-01-01

    The Chonta Mine (75º00’30” W & 13º04’30”S, 4495 to 5000 m absl), owned by Compañía Minera Caudalosa, operates a polymetallic Zn-Pb-Cu-Ag vein system of the low sulphidation epithermal type, hosted by cenozoic volcanics of dacitic to andesitic composition (Domos de Lava Formation). Veta Rublo, one of the main veins of the system, is worked underground to nearly 300 m. It strikes 60-80º NE and dips 60-70º SE; its width varies between 0.30 and 2.20m, and it crops out along 1 km, but is continued...

  14. A prospect for the development of an epithermal neutron beam from the horizontal channel at the TRNC for brain tumors treatment based on the BNCT method

    International Nuclear Information System (INIS)

    Ben-Ghazail, Mustafa Ali

    2005-01-01

    In this work the epithermal neutron was development from horizontal channel VI at Tajoura research reactor which can be used for Boron Neutron Capture Therapy. The analysis of reactivity and control rod worth is performed by three dimensional continues energy MCNP-4C code with neutron cross section data from the ENDF/B-VI evaluation. The neutron beam which is developed for medical purpose is generated from the reactor core by means of U-235 fission. The neutrons leaking through the cavity of HC in Be-9 reflector is guided through a tube made of stainless steel to patient position. The HC has two wheels. The first wheel is small and is used as a gate. The second is large and have three positions one to close the gate, the second to open the gate while the third for loading collimator. The collimator consists of the moderators and filters to optimize the neutron beam which is installed in the loading position. The HC VI is extended to the room constructed to allow space for other horizontal channels users. materials are used to optimize the neutron beam which was selected depending on neutron beam properties related to core loading and control rod position. The results of the development study show that the required values for the neutron beam characteristic can be nearly reached. The different comparisons of the calculations performed using MCNP-4C code with the requirements values of characteristics neutron beam show that the result values of MCNP-4C code model are reliable. (author)

  15. Polarized Epithermal Neutron Studies of Magnetic Domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Yu. D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; Roberson, N.R.

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV< En<100eV), which process more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurements at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target

  16. Polarized epithermal neutron studies of magnetic domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Y.D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina; Roberson, N.R.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV n <100eV), which precess more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurement at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59 eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target. copyright 1997 American Institute of Physics

  17. Conversion ratio in epithermal PWR, in thorium and uranium cycle

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    Results obtained for the conversion ratio in PWR reactors with close lattices, operating in thorium and uranium cycles, are presented. The study of those reactors is done in an unitary fuel cell of the lattices with several ratios V sub(M)/V sub(F), considering only the equilibrium cycles and adopting a non-spatial depletion calculation model, aiming to simulate mass flux of reactor heavy elements in the reactor. The neutronic analysis and the cross sections generation are done with Hammer computer code, with one critical apreciation about the application of this code in epithermal systems and with modifications introduced in the library of basic data. (E.G.) [pt

  18. A preliminary investigation on the epithermal flux depression effect due to cadmium box in a multiplying medium

    International Nuclear Information System (INIS)

    Ahmad, A.

    1983-01-01

    Cadmium boxes are widely used as filter in Reactor Neutron Activation Analysis (RNAA) for the irradiation of samples in epithermal neutrons. By virtue of being an absorber the cadmium boxes produce epithermal flux depression in the medium surrounding them. A preliminary study of this effect was carried out (author)

  19. Epithermal neutron instrumentation at ISIS

    International Nuclear Information System (INIS)

    Gorini, G; Festa, G; Andreani, C

    2014-01-01

    The advent of pulsed neutron sources makes available high epithermal neutron fluxes (in the energy range between 500 meV and 100 eV). New dedicated instrumentation, such as Resonance Detectors, was developed at ISIS spallation neutron source in the last years to apply the specific properties of this kind of neutron beam to the study of condensed matter. New detection strategies like Filter Difference method and Foil Cycling Technique were also developed in parallel to the detector improvement at the VESUVIO beamline. Recently, epithermal neutron beams were also used at the INES beamline to study elemental and isotopic composition of materials, with special application to cultural heritage studies. In this paper we review a series of epithermal neutron instrumentation developed at ISIS, their evolution over time and main results obtained

  20. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.

    Science.gov (United States)

    Kotiluoto, P; Auterinen, I

    2004-11-01

    A successful boron neutron capture treatment (BNCT) of a patient with multiple liver metastases has been first given in Italy, by placing the removed organ into the thermal neutron column of the Triga research reactor of the University of Pavia. In Finland, FiR 1 Triga reactor with an epithermal neutron beam well suited for BNCT has been extensively used to irradiate patients with brain tumors such as glioblastoma and recently also head and neck tumors. In this work we have studied by MCNP Monte Carlo simulations, whether it would be beneficial to treat an isolated liver with epithermal neutrons instead of thermal ones. The results show, that the epithermal field penetrates deeper into the liver and creates a build-up distribution of the boron dose. Our results strongly encourage further studying of irradiation arrangement of an isolated liver with epithermal neutron fields.

  1. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  2. A new indicator mineral methodology based on a generic Bi-Pb-Te-S mineral inclusion signature in detrital gold from porphyry and low/intermediate sulfidation epithermal environments in Yukon Territory, Canada

    Science.gov (United States)

    Chapman, R. J.; Allan, M. M.; Mortensen, J. K.; Wrighton, T. M.; Grimshaw, M. R.

    2017-12-01

    Porphyry-epithermal and orogenic gold are two of the most important styles of gold-bearing mineralization within orogenic belts. Populations of detrital gold resulting from bulk erosion of such regions may exhibit a compositional continuum wherein Ag, Cu, and Hg in the gold alloy may vary across the full range exhibited by natural gold. This paper describes a new methodology whereby orogenic and porphyry-epithermal gold may be distinguished according to the mineralogy of microscopic inclusions observed within detrital gold particles. A total of 1459 gold grains from hypogene, eluvial, and placer environments around calc-alkaline porphyry deposits in Yukon (Nucleus-Revenue, Casino, Sonora Gulch, and Cyprus-Klaza) have been characterized in terms of their alloy compositions (Au, Ag, Cu, and Hg) and their inclusion mineralogy. Despite differences in the evolution of the different magmatic hydrothermal systems, the gold exhibits a clear Bi-Pb-Te-S mineralogy in the inclusion suite, a signature which is either extremely weak or (most commonly) absent in both Yukon orogenic gold and gold from orogenic settings worldwide. Generic systematic compositional changes in ore mineralogy previously identified across the porphyry-epithermal transition have been identified in the corresponding inclusion suites observed in samples from Yukon. However, the Bi-Te association repeatedly observed in gold from the porphyry mineralization persists into the epithermal environment. Ranges of P-T-X conditions are replicated in the geological environments which define generic styles of mineralization. These parameters influence both gold alloy composition and ore mineralogy, of which inclusion suites are a manifestation. Consequently, we propose that this methodology approach can underpin a widely applicable indicator methodology based on detrital gold.

  3. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    Science.gov (United States)

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  4. Determination of epithermal flux correction factor (α) for irradiation ...

    African Journals Online (AJOL)

    Due to resonance that occur in the epithermal energy region of a reactor, the flux spectra in that region deviates strongly from the ideal I/E law to a I/E1+α with alpha as the correction factor. The factor has to be determined if zirconium as monitor pairs to determine the correction factor for inner irradiation channel 5 and outer ...

  5. Mineralogy of the epithermal precious and base metal deposit Banská Hodruša at the Rozália Mine (Slovakia)

    Science.gov (United States)

    Kubač, Alexander; Chovan, Martin; Koděra, Peter; Kyle, J. Richard; Žitňan, Peter; Lexa, Jaroslav; Vojtko, Rastislav

    2018-03-01

    The Au-Ag-Pb-Zn-Cu epithermal deposit Banská Hodruša of intermediate-sulphidation type is located in the Middle Miocene Štiavnica stratovolcano on the inner side of the Carpathian arc in Slovakia. This deposit represents an unusual subhorizontal multi-stage vein system, related to processes of underground cauldron subsidence and exhumation of a subvolcanic granodiorite pluton. Veins are developed on a low-angle normal shear zone, possibly representing a detachment zone in andesitic wall rocks that formed during emplacement and exhumation of the granodiorite pluton. The deposit consists of two parts, separated by a thick sill of quartz-diorite porphyry. The eastern part is currently mined, and the western part has already been depleted. The Banská Hodruša mineralization was formed during four stages: (1) low-grade silicified breccia at subhorizontal structures at the base of the deposit; (2) stockwork of steep veins with rhodonite-rhodochrosite, quartz-sulphide-carbonate and quartz-gold assemblages; (3) thin quartz-gold veins with medium dip in tension cracks inside the shear zone and complementary detachment hosted quartz-base metals-gold veins; (4) Post-ore veins. Gold and electrum (920-730) occur as intergrowths with base metal sulphides or hosted in quartz and carbonates, accompanied by Au-Ag tellurides (hessite, petzite). Rare Te-polybasite and Cu-cervelleite result from re-equilibration of early Te-bearing minerals during cooling. Sulphide minerals include low Fe sphalerite ( 1.25 wt%), galena, chalcopyrite, and pyrite. The wall rock alteration is represented mostly by adularia, illite, chlorite, quartz, calcite and pyrite. Precipitation of gold, Au-Ag tellurides, Mn-bearing minerals and adularia resulted from boiling of fluids due to hydraulic fracturing, as well as opening of dilatational structures within the shear zone.

  6. Power Reactor Embrittlement Data Base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1990-01-01

    Regulatory and research evaluations of embrittlement predication models and of pressure vessel integrity can be greatly expedited by the use of a well-designed, computerized data base. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The Nuclear Regulatory Commission (NRC) has provided financial support, and the Electric Power Research Institute (EPRI) has provided technical assistance in the quality assurance (QA) of the data to establish an industry-wide data base that will be maintained and updated on a long-term basis. Successful applications of the data base to several of NRC's evaluations have received favorable response and support for its continuation. The future direction of the data base has been designed to include the test reactor and other types of data of interest to the regulators and the researchers. 1 ref

  7. Temperature imaging using epithermal neutrons

    International Nuclear Information System (INIS)

    Fowler, P.H.; Taylor, A.D.

    1987-08-01

    The paper concerns the temperature measurement of suitable targets, both remotely and non-invasively, using epithermal neutrons. The text was presented at the Neutron Resonance Radiography Workshop, Los Alamos, U.S.A., 1987. The technique is demonstrated for tantalum foils at different temperatures, using a pulsed beam of epithermal neutrons, at both Los Alamos and ISIS (United Kingdom). Results on the measured time-of-flight spectra and the tantalum resonances are presented. Beam properties and fluxes at ISIS are discussed. Features of the proposed detectors suitable for the temperature technique are outlined, along with the data analysis, the moving targets, the cyclic temperature variations and transients, and the usefulness of the technique. (U.K.)

  8. Epithermal interrogation of fissile waste

    International Nuclear Information System (INIS)

    Coop, K.L.; Hollas, C.L.

    1996-01-01

    Self-shielding of interrogating thermal neutrons in lumps of fissile material can be a major source of error in transuranic waste assay using the widely employed differential dieaway technique. We are developing a new instrument, the combined thermal/epithermal neutron (CTEN) interrogation instrument to detect the occurrence of self- shielding and mitigate its effects. Neutrons are moderated in the graphite walls of the CTEN instrument to provide an interrogating flux of epithermal and thermal neutrons. The induced prompt fission neutrons are detected in proportional counters. We report the results of measurements made with the CTEN instrument, using minimal and highly self-shielding plutonium and uranium sources in 55 gallon drums containing a variety of mock waste matrices. Fissile isotopes and waste forms for which the method is most applicable, and limitations associated with the hydrogen content of the waste package/matrix are described

  9. Power Reactor Embrittlement Data Base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1990-01-01

    Regulatory and research evaluations of embrittlement prediction models and of vessel integrity under load can be greatly expedited by the use of a well designed, computerized embrittlement data base. The Power Reactor Embrittlement Data Base (PR-EDB) is a comprehensive collection of data from surveillance reports and other published reports of commercial nuclear reactors. The uses of the data base require that as many different data as available are collected from as many sources as possible with complete references and that subsets of relevant data can be easily retrieved and processed. The objectives of this NRC-sponsored program are the following: (1) to compile and to verify the quality of the PR-EDB; (2) to provide user-friendly software to access and process the data; (3) to explore or confirm embrittlement prediction models; and (4) to interact with standards organizations to provide the technical bases for voluntary consensus standards that can be used in regulatory guides, standard review plans, and codes. To achieve these goals, the data base architecture was designed after much discussion and planning with prospective users, namely, material scientists and members of the research staff. The current compilation of the PR-EDB (Version 1) contains results from surveillance capsule reports of 78 reactors with 381 data points for 110 different irradiated base materials and 161 data points for 79 different welds. Results from heat-affected zone materials are also listed. The time and effort required to process and evaluate different types of data in the PR-EDB have been drastically reduced from previous data bases. The Electric Power Research Institute (EPRI), reactor vendors, and utilities are in the process of providing back-up quality assurance checks of PR-EDB and will be supplementing the data base with additional data and documentation

  10. Polarized epithermal neutron spectrometer at KENS

    International Nuclear Information System (INIS)

    Kohgi, M.

    1983-01-01

    A spectrometer employing a white, epithermal, polarized neutron beam is under construction at KENS. The neutron polarization is achieved by passage through a dynamically polarized proton filter (DPPF). The results of the test experiments show that the DPPF method is promising in obtaining polarized epithermal neutron beam. The basic design of the spectrometer is described

  11. Upgrade for the epithermal neutron beam at NRI Rez

    International Nuclear Information System (INIS)

    Marek, M.; Flibor, S.; Viererbl, L.; Burian, J.; Rejchrt, J.; Klupak, V.; Gambarini, G.; Vanossi, E.

    2006-01-01

    The epithermal neutron beam facility designed for pre-clinical neutron capture therapy research has been operated at LVR-15 reactor for more than ten years. The construction of the beam filter has been recently modified especially for the shielding quality of the beam shutter to be improved. The parameters of the upgraded beam were calculated with the MCNP code and a new source term for the NCTPLAN treatment planning software was evaluated. The calculated source term was consequently scaled according to the results of measurements in the free beam and in the 50x50x25 cm 3 water phantom. (author)

  12. Power reactor embrittlement data base

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1989-01-01

    Regulatory and research evaluations of embrittlement prediction models and of vessel integrity under load can be greatly expedited by the use of a well-designed, computerized embrittlement data base. The Power Reactor Embrittlement Data Base (PR-EDB) is a comprehensive collection of data from surveillance reports and other published reports of commercial nuclear reactors. The uses of the data base require that as many different data as available are collected from as many sources as possible with complete references and that subsets of relevant data can be easily retrieved and processed. The objectives of this NRC-sponsored program are the following: to compile and to verify the quality of the PR-EDB; to provide user-friendly software to access and process the data; to explore or confirm embrittlement prediction models; and to interact with standards organizations to provide the technical bases for voluntary consensus standards that can be used in regulatory guides, standard review plans, and codes. 9 figs

  13. Final design and construction issues of the TAPIRO epithermal column

    International Nuclear Information System (INIS)

    Burn, K.W.; Casalini, L.; Nava, E.; Tinti, R.; Martini, S.; Mondini, D.; Rosi, G.

    2006-01-01

    The construction of the epithermal column for clinical trials at the 5 kW fast reactor TAPIRO (ENEA, Casaccia, Italy) has been completed, the experimental bunker in the reactor hall has been designed and the beam characterisation will shortly be underway. As has been reviewed at the last two ICNCT conferences, the low power of the neuron source and the relatively distant patient position outside the reactor shield led to a column design with certain characteristics. One consequence is the employment of a collimator containing lead of high purity with the resultant problems of mechanical construction. Another is the substantial neutron leakage from the column outside the aperture into the experimental bunker. Furthermore the absence of a gamma shield has led to an electron dose to the skin. This is resolved with an electron shield of aluminium. Here the construction and final design issues are discussed and the state of the project is presented. (author)

  14. Experiences of reconstruction of the epithermal neutron beam at THOR

    International Nuclear Information System (INIS)

    Liu Hongming; Hsu Pinchieh; Liu Chaochin; Jiang Shianghuei; Liu Yenwan Hsueh; Kai Jijung

    2006-01-01

    Tsing Hua Open-pool Reactor (THOR) had completed the renovation for an epithermal neutron beam in August 2004. The major tasks for this renovation were moderator/filter design and assembling, and concrete cutting for a better beam quality and larger irradiation room. Besides moderator/filter design, the associated works involved radiation monitoring, structure analysis, and shielding design. The radiation monitoring was performed to predict the probable accumulated dose for the workers involved in this reconstruction project. Special shielding design and construction processes were adopted to lower the radiation level and the probable accumulated dose for the workers. Before concrete cutting, structure analysis based on SAP-2000 code was performed to assure the structure is safe from the earthquake in Taiwan. A wall saw was then used for concrete cutting to enlarge the space of the irradiation room. Moderator/filter components were assembled on a trolley outside the beam exit prior to installation, which can effectively reduce the duration of a worker staying inside the reconstruction area and thereby reduce the accumulated dose. The shielding for the irradiation room was designed based on MCNP simulation using a pre-calculated source plane at the beam exit. The thickness of the concrete (density=3 g/cm 3 ) of the walls and ceiling of the irradiation room were designed to be 100cm. On-going tasks include beam parameters measurement and in vitro/ in vivo study and calibration of treatment planning system, with the hope that the team can be ready for clinical trials in 2-3 years. (author)

  15. In vitro biological effectiveness of JRR-4 epithermal neutron beam. Experiment under free air beam and in water phantom. Cooperative research

    CERN Document Server

    Yamamoto, T; Horiguchi, Y; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Yamamoto, K

    2002-01-01

    The surviving curve and the biological effectiveness factor of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at Japan Research Reactor No.4. Surviving fraction of V79 Chinese hamster cell with or without sup 1 sup 0 B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam (TNB-2), which were used or planned to use for BNCT clinical trial. The cell killing effect of these neutron beams with or without the presence of sup 1 sup 0 B depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. The biological effectiveness factor values of the boron capture reaction for ENB, TNB-1 and TNB-2 were 3.99+-0.24, 3.04+-0.19 and 1.43+-0.08, respectively. The biological effectiveness factor values of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50+-0.32, 2.34+-0.30 and 2.17+-0.28 for EN...

  16. Reactors based on CANDU technology

    International Nuclear Information System (INIS)

    Bjegun, S.V.; Shirokov, S.V.

    2012-01-01

    The paper analyzes the use CANDU technology in world nuclear energy. Advantages and disadvantages in implementation of this technology are considered in terms of economic and technical aspects. Technological issues related to the use of CANDU reactors and nuclear safety issues are outlined. Risks from implementation of this reactor technology in nuclear energy of Ukraine are determined

  17. Advanced epithermal thorium reactor (AETR) physics; Physique d'un reacteur au thorium, a neutrons epithermiques, de type perfectionne (AETR); Fizika usovershenstvovannog o nadteplovogo torievogo reaktora; Fisica del reactor epitermico de tipo avanzado, alimentado con torio (AETR)

    Energy Technology Data Exchange (ETDEWEB)

    Campise, A. V. [Atomics International, Canoga Park, CA (United States)

    1962-03-15

    'etude de cet ensemble a mis en relief l'importance des donnees relatives aux sections efficaces et de l'interpretation theorique des resultats experimentaux pour l'etude d'un reacteur au thorium de type perfectionne. La precision des methodes analytiques employees a ete demontree lors de l'analyse des resultats experimentaux obtenus avec le ZPR-III. L'auteur compare trois configurations pour le transfert de chaleur, en utilisant le temps de doublement comme parametre d'optimisation. Les effets de la production de {sup 233}Pa et d'isotopes de l'uranium sur le bilan neutronique, les taux possibles de surgeneration et les caracteristiques de la combustion sont evalues en tenant compte de l'imprecision des sections efficaces nucleaires. (author) [Spanish] El autor estudia la concepcion del reactor AETR desde el punto de vista de la teoria actual de los parametros nucleares y del balance neutronico. En los sistemas moderados por grafito examina el efecto de la captura por resonancia en el torio para energias medias de absorcion del orden de 0,10 a 100 keV. Aplica formulas de resonancia angosta y de resonancia ancha para obtener la integral de resonancia efectiva en funcion de la temperatura, correspondiente a las barras de torio, y dicho parametro se expresa como secciones eficaces equivalentes de varios grupos. Se ha disenado y construido un conjunto critico para obtener datos nucleares indispensables en la gama de energias intermedias. En el diseno nuclear de dicho conjunto, se ha tenido particularmente en cuenta la importancia de los datos relativos a secciones eficaces y la interpretacion teorica de estos resultados experimentales, cosas ambas relacionadas con el diseno del reactor AETR. La precision de los metodos analiticos ha quedado demostrada por el estudio de los resultados experimentales obtenidos con el reactor ZPR-III. Se comparan tres sistemas de transmision de calor utilizando el tiempo de duplicacion como parametro optimo. Se estudia el efecto de la formacion

  18. Epithermal neutron beam interference with cardiac pacemakers

    International Nuclear Information System (INIS)

    Koivunoro, H.; Serén, T.; Hyvönen, H.; Kotiluoto, P.; Iivonen, P.; Auterinen, I.; Seppälä, T.; Kankaanranta, L.; Pakarinen, S.; Tenhunen, M.; Savolainen, S.

    2011-01-01

    In this paper, a phantom study was performed to evaluate the effect of an epithermal neutron beam irradiation on the cardiac pacemaker function. Severe malfunction occurred in the pacemakers after substantially lower dose from epithermal neutron irradiation than reported in the fast neutron or photon beams at the same dose rate level. In addition the pacemakers got activated, resulting in nuclides with half-lives from 25 min to 115 d. We suggest that BNCT should be administrated only after removal of the pacemaker from the vicinity of the tumor.

  19. Epithermal neutron beam interference with cardiac pacemakers

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H., E-mail: hanna.koivunoro@helsinki.fi [Department of Physics, P.O.B. 64, FI-00014 University of Helsinki (Finland)] [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland)] [Boneca Corporation, Finland, Filnland (Finland); Seren, T. [VTT Technical Research Centre of Finland (Finland); Hyvoenen, H. [Boneca Corporation, Finland, Filnland (Finland); Kotiluoto, P. [VTT Technical Research Centre of Finland (Finland); Iivonen, P. [St. Jude Medical (Finland); Auterinen, I. [VTT Technical Research Centre of Finland (Finland); Seppaelae, T.; Kankaanranta, L. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Pakarinen, S. [Department of Cardiology, Helsinki University Central Hospital (Finland); Tenhunen, M. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Savolainen, S. [HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital (Finland)

    2011-12-15

    In this paper, a phantom study was performed to evaluate the effect of an epithermal neutron beam irradiation on the cardiac pacemaker function. Severe malfunction occurred in the pacemakers after substantially lower dose from epithermal neutron irradiation than reported in the fast neutron or photon beams at the same dose rate level. In addition the pacemakers got activated, resulting in nuclides with half-lives from 25 min to 115 d. We suggest that BNCT should be administrated only after removal of the pacemaker from the vicinity of the tumor.

  20. Comparison between different flux traps assembled in the core of the nuclear reactor IPEN/MB-01 by measuring of the thermal and epithermal neutron fluxes using activation foils

    International Nuclear Information System (INIS)

    Mura, Luiz Ernesto Credidio; Bitelli, Ulysses d'Utra; Mura, Luis Felipe Liambos; Carluccio, Thiago; Andrade, Graciete Simoes de

    2011-01-01

    The production of radioisotopes is one of the most important applications of nuclear research reactors. This study investigated a method called Flux Trap, which is used to increase the yield of production of radioisotopes in nuclear reactors. The method consists in the rearrangement of the fuel rods to allow the increase of the thermal neutron flux in the irradiation region inside the reactor core, without changing the standard reactor power level. Various configurations were assembled with the objective of finding the configuration with the highest thermal neutron flux in the region of irradiation. The method of activation analysis was used to measure the thermal neutron flux and determine the most efficient reactor core configuration . It was found that there was an increase in the thermal neutron flux of 337% in the most efficient configuration, which demonstrates the effectiveness of the method. (author)

  1. Geochemical and modal data for igneous rocks associated with epithermal mineral deposits

    Science.gov (United States)

    du Bray, Edward A.

    2014-01-01

    The purposes of this report are to (1) present available geochemical and modal data for igneous rocks associated with epithermal mineral deposits and (2) to make those data widely and readily available for subsequent, more in-depth consideration and interpretation. Epithermal precious and base-metal deposits are commonly associated with subduction-related calc-alkaline to alkaline arc magmatism as well as back-arc continental rift magmatism. These deposits form in association with compositionally diverse extrusive and intrusive igneous rocks. Temperature and depth regimes prevailing during deposit formation are highly variable. The deposits form from hydrothermal fluids that range from acidic to near-neutral pH, and they occur in a variety of structural settings. The disparate temperature, pressure, fluid chemistry, and structural controls have resulted in deposits with wide ranging characteristics. Economic geologists have employed these characteristics to develop classification schemes for epithermal deposits and to constrain the important genetic processes responsible for their formation.

  2. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  3. Critical elements in Carlin, epithermal, and orogenic gold deposits

    Science.gov (United States)

    Goldfarb, Richard J.; Hofstra, Albert H.; Simmons, Stuart F.

    2016-01-01

    Carlin, epithermal, and orogenic gold deposits, today mined almost exclusively for their gold content, have similar suites of anomalous trace elements that reflect similar low-salinity ore fluids and thermal conditions of metal transport and deposition. Many of these trace elements are commonly referred to as critical or near-critical elements or metals and have been locally recovered, although typically in small amounts, by historic mining activities. These elements include As, Bi, Hg, In, Sb, Se, Te, Tl, and W. Most of these elements are now solely recovered as by-products from the milling of large-tonnage, base metal-rich ore deposits, such as porphyry and volcanogenic massive sulfide deposits.A combination of dominance of the world market by a single country for a single commodity and a growing demand for many of the critical to near-critical elements could lead to future recovery of such elements from select epithermal, orogenic, or Carlin-type gold deposits. Antimony continues to be recovered from some orogenic gold deposits and tellurium could potentially be a primary commodity from some such deposits. Tellurium and indium in sphalerite-rich ores have been recovered in the past and could be future commodities recovered from epithermal ores. Carlin-type gold deposits in Nevada are enriched in and may be a future source for As, Hg, Sb, and/or Tl. Some of the Devonian carbonaceous host rocks in the Carlin districts are sufficiently enriched in many trace elements, including Hg, Se, and V, such that they also could become resources. Thallium may be locally enriched to economic levels in Carlin-type deposits and it has been produced from Carlin-like deposits elsewhere in the world (e.g., Alsar, southern Macedonia; Lanmuchang, Guizhou province, China). Mercury continues to be recovered from shallow-level epithermal deposits, as well as a by-product of many Carlin-type deposits where refractory ore is roasted to oxidize carbon and pyrite, and mercury is then

  4. Reactors physics. Bases of nuclear physics

    International Nuclear Information System (INIS)

    Diop, Ch.M.

    2006-01-01

    The aim of nuclear reactor physics is to quantify the relevant macroscopic data for the characterization of the neutronic state of a reactor core and to evaluate the effects of radiations (neutrons and gamma radiations) on organic matter and on inorganic materials. This first article presents the bases of nuclear physics in the context of nuclear reactors: 1 - reactor physics and nuclear physics; 2 - atomic nucleus - basic definitions: nucleus constituents, dimensions and mass of the atomic nucleus, mass defect, binding energy and stability of the nucleus, strong interaction, nuclear momentums of nucleons and nucleus; 3 - nucleus stability and radioactivity: equation of evolution with time - radioactive decay law; alpha decay, stability limit of spontaneous fission, beta decay, electronic capture, gamma emission, internal conversion, radioactivity, two-body problem and notion of radioactive equilibrium. (J.S.)

  5. Epithermal neutron activation analysis of food

    International Nuclear Information System (INIS)

    Zikovsky, L.; Soliman, K.

    1999-01-01

    Food samples were irradiated with thermal and epithermal neutrons. The average ratios of thermal to epithermal activity were determined for 80 Br, 49 Ca, 38 Cl, 60m Co, 42 K, 27 Mg, 56 Mn, 24 Na, and 86m Rb. They were equal to 2.1, 26, 24, 6.6, 19, 16, 11, 23 and 1.9, respectively. Then, 57 food samples were analyzed by epithermal neutron activation analysis for Br and Rb. The concentrations (in ppm) of Br and Rb were in asparagus (2) 2.3, 11.5; beets (3) 0.5, 0.8; beef (3) 1.7, 3.6; cabbage (5) 0.5, 10.8; carrot (3) 0.2, 3.7; chicken (3) 0.6, 4.4; chocolate (7) 11.1, 18.7; egg (3) 0.9, 1.9; french bean (3) 0.3, 1.0; goose (2) 1.3, 9.3; lettuce (2) 0.9, 1.7; pork (1) 1.5, 4.4; potato (7) 1.0, 1.2; sausage (3) 4.8, 3.5; spinach (3) 3.6, 4.0; strawberry jam (3) 0.4, 1.4; tomato (1) 13.5, 14.6; turkey (3) 1.2, 4.9. respectively. The number of samples and analyzed is indicated in parentheses. (author)

  6. Epithermal neutron flux distribution and its impact on (n, γ) activation analysis result

    International Nuclear Information System (INIS)

    Jovanovich, S.; Pukotich, P.; Zejnilovich, R.; Corte, F. de; Moens, L.; Hoste, J.; Simonitis, A.

    1985-01-01

    The differences are discussed between the simplified model, introduced to derive the generally accepted ideal 1/E - law, and the conditions existing in an actual reactor. For absolute and comparator types of (n, γ) activation analysis (NAA), the semiempirical 1/Esup(1+α) form is a better approximation - necessary to introduce, but sufficient for practical purposes. Parameter α, being a measure of the epithermal nonideality, is a characteristics of the reactor site. The impact of this nonideality on NAA result is outlined, together with the method for appropriate correction

  7. Multiple microprocessor based nuclear reactor power monitor

    International Nuclear Information System (INIS)

    Lewis, P.S.; Ethridge, C.D.

    1979-01-01

    The reactor power monitor is a portable multiple-microprocessor controlled data acquisition device being built for the International Atomic Energy Association. Its function is to measure and record the hourly integrated operating thermal power level of a nuclear reactor for the purpose of detecting unannounced plutonium production. The monitor consists of a 3 He proportional neutron detector, a write-only cassette tape drive and control electronics based on two INTEL 8748 microprocessors. The reactor power monitor operates from house power supplied by the plant operator, but has eight hours of battery backup to cover power interruptions. Both the hourly power levels and any line power interruptions are recorded on tape and in memory. Intermediate dumps from the memory to a data terminal or strip chart recorder can be performed without interrupting data collection

  8. In vitro biological effectiveness of JRR-4 epithermal neutron beam. Experiment under free air beam and in water phantom. Cooperative research

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuya; Matsumura, Akira; Nose, Tadao; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Hori, Naohiko; Torii, Yoshiya; Horiguchi, Yoji

    2002-05-01

    The surviving curve and the biological effectiveness factor of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at Japan Research Reactor No.4. Surviving fraction of V79 Chinese hamster cell with or without 10 B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam (TNB-2), which were used or planned to use for BNCT clinical trial. The cell killing effect of these neutron beams with or without the presence of 10 B depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. The biological effectiveness factor values of the boron capture reaction for ENB, TNB-1 and TNB-2 were 3.99±0.24, 3.04±0.19 and 1.43±0.08, respectively. The biological effectiveness factor values of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50±0.32, 2.34±0.30 and 2.17±0.28 for ENB, TNB-1 and TNB-2, respectively. The biological effectiveness factor values of the neutron and photon components were 1.22±0.16, 1.23±0.16 and 1.21±0.16, respectively. The depth function of biological effectiveness factor in water phantom and the difference in biological effectiveness factor among boron compounds were also determined. The experimental determination of biological effectiveness factor outlined in this paper is applicable to the dose calculation for each dose component of the neutron beams and contribute to an accurate biological effectiveness factor as comparison with a neutron beam at a different facility employed in ongoing and planned BNCT clinical trials. (author)

  9. Small propulsion reactor design based on particle bed reactor concept

    International Nuclear Information System (INIS)

    Ludewig, H.; Lazareth, O.; Mughabghab, S.; Perkins, K.; Powell, J.R.

    1989-01-01

    In this paper Particle Bed Reactor (PBR) designs are discussed which use 233 U and /sup 242m/Am as fissile materials. A constant total power of 100MW is assumed for all reactors in this study. Three broad aspects of these reactors is discussed. First, possible reactor designs are developed, second physics calculations are outlined and discussed and third mass estimates of the various candidates reactors are made. It is concluded that reactors with a specific mass of 1 kg/MW can be envisioned of 233 U is used and approximately a quarter of this value can be achieved if /sup 242m/Am is used. If this power level is increased by increasing the power density lower specific mass values are achievable. The limit will be determined by uncertainties in the thermal-hydraulic analysis. 5 refs., 5 figs., 6 tabs

  10. Determination of Neutron Flux Parameter f and α and k0 Factor in Irradiation Facility of RSG GA Siwabessy reactor

    International Nuclear Information System (INIS)

    Amir Hamzah

    2004-01-01

    Determination of neutron flux thermal to epithermal ratio f and parameter α and k 0 factor has been done in irradiation facility of RSG G.A. Siwabessy reactor. Those parameters are needed to determine the concentration of an element in a sample using k 0 NAA method. Parameters f was measured using foil activation method and α parameter was obtained from power function fitting at epithermal neutron spectrum. Based on the fitting method the a parameter was determined of 0.0267,0.0255 and -0.0346 at system rabbit, IP2 and CIP irradiation position. The k 0 factor is depended on absolute gamma fraction. The neutron flux thermal to epithermal ratio f at all rabbit system is closed to 40. (author)

  11. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  12. Correlations between power and test reactor data bases

    International Nuclear Information System (INIS)

    Guthrie, G.L.; Simonen, E.P.

    1989-02-01

    Differences between power reactor and test reactor data bases have been evaluated. Charpy shift data has been assembled from specimens irradiated in both high-flux test reactors and low-flux power reactors. Preliminary tests for the existence of a bias between test and power reactor data bases indicate a possible bias between the weld data bases. The bias is nonconservative for power predictive purposes, using test reactor data. The lesser shift for test reactor data compared to power reactor data is interpreted primarily in terms of greater point defect recombination for test reactor fluxes compared to power reactor fluxes. The possibility of greater thermal aging effects during lower damage rates is also discussed. 15 refs., 5 figs., 2 tabs

  13. Characteristic analysis on moderating material for obtaining epithermal neutron beam

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Da; Zhang Ying

    2000-01-01

    The one dimension discrete coordinates transport code ANISN was used to calculate three-group constants of 11 elements which could be used to consist moderating epithermal neutron material of beam. Moderating character of simple substances, compounds and mixtures consisted of the optimized elements analyzed three kinds of moderating materials were optimized for epithermal neutron beam

  14. Project based learning for reactor engineering education

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Tsuji, Masashi; Shimazu, Yoichiro

    2009-01-01

    Trial in education of nuclear engineering in Hokkaido University has proved to be quite attractive for students. It is an education system called Project Based Learning (PBL), which is not based on education by lecture only but based mostly on practice of students in the classroom. The system was adopted four years ago. In the actual class, we separated the student into several groups of the size about 6 students. In the beginning of each class room time, a brief explanations of the related theory or technical bases. Then the students discuss in their own group how to precede their design calculations and do the required calculation and evaluation. The target reactor type of each group was selected by the group members for themselves at the beginning of the semester as the first step of the project. The reactor types range from a small in house type to that for a nuclear ship. At the end of the semester, each group presents the final design. The presentation experience gives students a kind of fresh sensation. Nowadays the evaluation results of the subject by the students rank in the highest in the faculty of engineering. Based on the considerations above, we designed the framework of our PBL for reactor engineering. In this paper, we will present some lessons learned in this PBL education system from the educational points of view. The PBL education program is supported by IAE/METI in Japan for Nuclear Engineering Education. (author)

  15. Utilization of epithermal neutrons for the determination of molybdenum in the presence of uranium

    International Nuclear Information System (INIS)

    Oliveira Melo, M.A.M. de.

    1984-05-01

    Activation analysis by means of selective activation with epithermal neutrons is proposed for the determination of molybdenum in samples when uranium is present. Instrumental activation analysis with epithermal neutrons is advantageous for the determination of elements with large resonance integral, as compared to its thermal neutron activation cross section. The main reason for using this method is the serious interference caused by 99 Mo produced by fission of 235 U. This effect is strongly reduced by using the epicadmium irradiation technique. The filter efficiency has been investigated by irradiation experiments with bare and cadmium-covered samples. A solvent extraction process for uranium, before irradiation, is proposed to reduce sample background. The determination of Mo in leach samples is proposed in order to support the analytical needs of Figueira and Pocos de Caldas Mineral Prospection Programme of Departamento de Tecnologia Mineral from CDTN/NUCLEBRAS (MG,Brazil). The introduction of activation analysis with epithermal neutrons as a routine analytical tool in CDTN is our main goal. This method represents one more opportunity for exploring the analytical facilities available at TRIGA MARK I IPR-R1 nuclear reactor. (Author) [pt

  16. A neutron amplifier: prospects for reactor-based waste transmutation

    International Nuclear Information System (INIS)

    Blanovsky, A.

    2004-01-01

    A design concept and characteristics for an epithermal breeder controlled by variable feedback and external neutron source intensity are presented. By replacing the control rods with neutron sources, we could maintain good power distribution and perform radioactive waste burning in high flux subcritical reactors (HFSR) that have primary system size, power density and cost comparable to a pressurized water reactor (PWR). Another approach for actinide transmutation is a molten salt subcritical reactor proposed by Russian scientists. To increase neutron source intensity the HFSR is divided into two zones: a booster and a blanket with solid and liquid fuels. A neutron gate (absorber and moderator) imposed between two zones permits fast neutrons from the booster to flow to the blanket. Neutrons moving in the reverse direction are moderated and absorbed in the absorber zone. In the HFSR, neptunium-plutonium fuel is circulated in the booster and blanket, and americium-curium in the absorber zone and outer reflector. Use of a liquid actinide fuel permits transport of the delayed-neutron emitters from the blanket to the booster, where they can provide additional neutrons (source-dominated mode) or all the necessary excitation without an external neutron source (self-amplifying mode). With a blanket neutron multiplication gain of 20 and a booster gain of 50, an external neutron source rate of at least 10 15 n/s (0.7 MW D-T or 2.5 MW electron beam power) is needed to control the HFSR that produces 300 MWt. Most of the power could be generated in the blanket that burns about 100 kg of actinides a year. The analysis takes into consideration a wide range of HFSR design aspects including the wave model of observed relativistic phenomena, plant seismic diagnostics, fission electric cells (FEC) with a multistage collector (anode) and layered cathode. (author)

  17. Epithermal neutron activation analysis for studying the environment

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Steinnes, E.

    1997-01-01

    Epithermal neutron activation analysis (ENAA) has certain advantages over the conventional instrumental analysis (INAA) in terms of improvement in precision and lowering of detection limits, reduction of high matrix activity and fission interferences if any. The current status and the applications of ENAA to environmental samples are reviewed. Experience in the use of ENAA in the monitoring of atmospheric depositions by means of moss-biomonitors at pulsed fast reactor IBR-2 in Dubna is summarized. INAA has shown to be useful for a number of sample types of interest in environmental studies, and should find more extensive use in this area. Analysis of airborne particulate matter is a case where ENAA should be particularly useful. A similar case where ENAA has shown strong performance is in the analysis of mosses used as biomonitors of atmospheric deposition, where 45 elements were determined. In this and other cases, however, induction-coupled plasma mass spectrometry is a very strong competitor, offering data for even more elements. A comparison of ENAA and ICP-MS for moss analysis is presented, and cases where ENAA is unique are discussed

  18. Uranium in coral skeletons determined by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Ohde, S.; Hossain, M.M.M.; Ozaki, H.; Masuzawa, T.

    2003-01-01

    A simple and non-destructive method has been proposed for the routine determination of uranium by epithermal neutron activation analysis in coral skeletons. Using a cadmium capsule, about 0.1-0.2 g samples were irradiated for 6 hours in the Triga Mark II Reactor. Measurements of γ-ray ( 239 Np via 239 U) were performed with each sample and standard after cooling for about three days. Compared with a non-destructive thermal NAA, the present method was found to improve the sensitivity because it reduced the intense Compton background induced by 24 Na. Uranium in coral standards was determined within 2% of analytical precision. The data obtained for the carbonate standards are mostly consistent with reported values. The present method could be usefully applied to determine uranium contents in fossil corals from the Funafuti Atoll in the Pacific. The distribution of uranium between seawater and coral skeletons is also discussed in order to understand the environmental media in which the coral grew. (author)

  19. Epithermal gold occurrences in the lakes district of the Main ...

    African Journals Online (AJOL)

    MER). Epithermal gold occurrences related to Quaternary volcanics are at present being closely studied for their precious metal potential. Low sulphidation (Adularia-sericite-type) occurrences have been found. Analyses of 579 core and cutting ...

  20. Determination of reactor parameters by single rod experiments

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Zdravkovic, Z; Ivkovic, M; Sotic, O [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1968-10-15

    The objective of this work was to determine experimentally fuel element parameters using an isolated fuel element of arbitrary construction and analyzing the accuracy of their results with the aim to apply them in analysis of reactor system. The approach is based on assumption of heterogeneous reactor theory, 'source-sink' theory. The obtained experimental results have shown the possibility of obtaining data for absorption or production properties of fuel element by analyzing the thermal and epithermal neutron density distributions around a single fuel rod placed in a sufficiently large thermal hole.

  1. A new position-sensitive detector for thermal and epithermal neutrons

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Ford, N.L.; Lindberg, B.; Sachot, R.

    1977-01-01

    A new two-dimensional position-sensitive neutron detector is described. It is based on (n,γ) neutron resonance capture in a foil with subsequent detection of internal conversion electrons with a high-density proportional chamber. Large-area detectors with a 1 mm spatial resolution are feasible. A detection efficiency of 50% is possible for thermal neutrons using gadolinium-157 foil and for epithermal neutrons using hafnium-177. (Auth.)

  2. Optimization in Activation Analysis by Means of Epithermal Neutrons. Determination of Molybdenum in Steel

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Jirlow, J

    1963-12-15

    Optimization in activation analysis by means of selective activation with epithermal neutrons is discussed. This method was applied to the determination of molybdenum in a steel alloy without recourse to radiochemical separations. The sensitivity for this determination is estimated to be 10 ppm. With the common form of activation by means of thermal neutrons, the sensitivity would be about one-tenth of this. The sensitivity estimations are based on evaluation of the photo peak ratios of Mo-99/Fe-59.

  3. Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.

    2016-10-01

    An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

  4. Preliminary Study of 20 MWth Experiment Power Reactor based on Pebble Bed Reactor

    Science.gov (United States)

    Irwanto, Dwi; Permana, Sidik; Pramuditya, Syeilendra

    2017-07-01

    In this study, preliminary design calculations for experimental small power reactor (20 MWt) based on Pebble Bed Reactor (PBR) are performed. PBR technology chosen due to its advantages in neutronic and safety aspects. Several important parameters, such as fissile enrichment, number of fuel passes, burnup and effective multiplication factor are taken into account in the calculation to find neutronic characteristics of the present reactor design.

  5. Standardization of thermal and epithermal INAA methods for simultaneous determination of U and Th in mixed oxide samples

    International Nuclear Information System (INIS)

    Acharya, R.; Pujari, P.K.; Chandra, Ruma

    2010-01-01

    Full text: Uranium and thorium are important fuel materials for nuclear power program. In recent years utilization of thoria based fuel has assumed significance due to higher energy requirements. Thorium based mixed oxide is the proposed fuel for Advanced Heavy Water Reactors (AHWR). In this respect, studies are carried out through preparation of natural U and Th mixed oxides by powder metallurgical route, wherein composition of U and Th is specific and requires strict control in terms their contents and homogeneity in the mixture. Stringent chemical quality control necessitates compositional characterization of the fuel material i.e. accurate and precise determination of U and Th. A suitable method which does not need any chemical dissolution and yields high precision results with minima sample handling is desirable. Instrumental neutron activation analysis (INAA) using reactor neutron is the technique of choice. In view of this, INAA methods namely thermal lNAA (TNAA) (utilizing whole reactor neutrons) and epithermal INAA (ENAA) (utilizing epicadmium neutrons) were standardized for the determination of U and Th in presence of each other in mixed oxide samples. In the present work pneumatic carrier facility (PCF) of Dhruva reactor and self-serve facility of CIRUS reactor were used for TNAA and ENAA respectively. Standards, synthetic samples and mixed oxide samples prepared in cellulose matrix, were irradiated for 1 minute at PCF of Dhruva reactor and for 1 hour at CIRUS reactor under cadmium cover (0.5 mm). Radioactive assay was carried out using 40% relative efficiency HPGe detector. Peak areas under the full energy peaks were evaluated by peak fit method using the PHAST software. Both activation and daughter products of U ( 239 U, 74.6 keV and 239 Np, 277 keV) and Th ( 233 Th, 86 keV and 233 Pa, 312 keV) were used for their concentration determination. The method was validated by analyzing synthetic mixed oxide samples (6-48%U-Th mixed oxide). The % deviations

  6. Epithermal neutron activation analysis in applied microbiology

    International Nuclear Information System (INIS)

    Marina Frontasyeva

    2012-01-01

    Some results from applying epithermal neutron activation analysis at FLNP JINR, Dubna, Russia, in medical biotechnology, environmental biotechnology and industrial biotechnology are reviewed. In the biomedical experiments biomass from the blue-green alga Spirulina platensis (S. platensis) has been used as a matrix for the development of pharmaceutical substances containing such essential trace elements as selenium, chromium and iodine. The feasibility of target-oriented introduction of these elements into S. platensis biocomplexes retaining its protein composition and natural beneficial properties was shown. The absorption of mercury on growth dynamics of S. platensis and other bacterial strains was observed. Detoxification of Cr and Hg by Arthrobacter globiformis 151B was demonstrated. Microbial synthesis of technologically important silver nanoparticles by the novel actinomycete strain Streptomyces glaucus 71 MD and blue-green alga S. platensis were characterized by a combined use of transmission electron microscopy, scanning electron microscopy and energy-dispersive analysis of X-rays. It was established that the tested actinomycete S. glaucus 71 MD produces silver nanoparticles extracellularly when acted upon by the silver nitrate solution, which offers a great advantage over an intracellular process of synthesis from the point of view of applications. The synthesis of silver nanoparticles by S. platensis proceeded differently under the short-term and long-term silver action. (author)

  7. Boron thermal/epithermal neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.

    1982-01-01

    The development of various particle beams for radiotherapy represents an attempt to improve dose distribution, and to provide high LET radiations which are less sensitive to ambient physical and radiobiological factors such as oxygen tension, cell cycle, and dose rate. In general, a compromise is necessary as effective RBE is reduced in order to spread the dose distribution over the anticipated tumor volume. The approach of delivering stable non-toxic isotopes to tumor, and then activating these atoms subsequently via an external radiation beam has mator advantages; problems associated with high uptake of these isotopes in competing cell pools are obviated, and the general tumor volume can be included in the treatment field of the activating beam. As long as the normal tissues supporting tumor show a low uptake of the isotope to be activated, and as long as the range of the reaction products is short, dose will be restricted to tumor, with a consequent high therapeutic ratio. Neutron Capture Therapy (NCT) is generally carried out by activating boron-10 with low energy neutrons. The range of the high LET, low OER particles from the 10 B(n, α) 7 Li reaction is approx. 10μ, or one cell diameter, a situation that is optimal for cell killing. Significant advantages may be gained by using the NCT procedure in conjunction with improved tissue penetration provided with epithermal or filtered beams, and new compounds showing physiological binding to tumor

  8. Measurements of neutron flux in the RA reactor; Merenje karakteristika neutronskog fluksa u reaktoru RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This report includes results of the following measurements performed at the RA reactor: thermal neutron flux in the experimental channels, epithermal and fast neutron flux, neutron flux in the biological shield, neutron flux distribution in the reactor cell.

  9. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  10. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    International Nuclear Information System (INIS)

    Baljinnyam, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.; Jugder, B.; Norov, N.

    2011-01-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  11. Physical parameters and biological effects of the LVR-15 epithermal neutron beam

    International Nuclear Information System (INIS)

    Burian, J.; Marek, M.; Rejchrt, J.; Viererbl, L.; Gambarini, G.; Mares, V.; Vanossi, E.; Judas, L.

    2006-01-01

    Monitoring of the physical and biological properties of the epithermal neutron beam constructed at the multipurpose LVR-15 nuclear reactor for NCT therapy of brain tumors showed that its physical and biological properties are stable in time and independent on an ad hoc reconfiguration of the reactor core before its therapeutic use. Physical parameters were monitored by measurement of the neutron spectrum, neutron profile, fast neutron kerma rate in tissue and photon absorbed dose, the gel dosimetry was used with the group of standard measurement methods. The RBE of the beam, as evaluated by 3 different biological models, including mouse intestine crypt regeneration assay, germinative zones of the immature rat brain and C6 glioma cells in culture, ranged from 1.70 to 1.99. (author)

  12. Method and apparatus for epithermal neutron porosity well logging

    International Nuclear Information System (INIS)

    Hertzog, R.C.; Loomis, W.A.; Wraight, P.

    1991-01-01

    This patent describes a method for investigating the porosity of a subsurface earth formation surrounding a borehole. It comprises repetitively irradiating the borehole and earth formation with discrete bursts of high energy neutrons from a neutron source, which neutrons interact with nuclei of the materials in the borehole and the formation to produce therein populations of epithermal neutrons; detecting the populations of epithermal neutrons at near and far locations in the borehole spaced apart longitudinally by different distances from the neutron source; generating count signals indicative of the magnitudes of the detected epithermal neutron populations at the respective near and far locations; detecting the decay of the epithermal neutron populations following the neutron bursts at least at one location in the borehole and generating signals representative thereof; deriving from the decay signals a signal indicative of the slowing down time of epithermal neutrons in the formation of the at least one location; and deriving from the near and far count signals and the slowing down time signal a measurement signal representative of the porosity of the formation surrounding the borehole inherently compensated for the effects of tool standoff on the responses of the logging tool

  13. ISAT promises fail-safe computer-based reactor protection

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    AEA Technology's ISAT system is a multiplexed microprocessor-based reactor protection system which has very extensive self-monitoring capabilities and is inherently fail safe. It provides a way of addressing software reliability problems that have tended to hamper widespread introduction of computer-based reactor protection. (author)

  14. Component failure data base of TRIGA reactors

    International Nuclear Information System (INIS)

    Djuricic, M.

    2004-10-01

    This compilation provides failure data such as first criticality, component type description (reactor component, population, cumulative calendar time, cumulative operating time, demands, failure mode, failures, failure rate, failure probability) and specific information on each type of component of TRIGA Mark-II reactors in Austria, Bangladesh, Germany, Finland, Indonesia, Italy, Indonesia, Slovenia and Romania. (nevyjel)

  15. The research of establishing reactor materials thermophysical properties data base

    International Nuclear Information System (INIS)

    Luo Danhui; Zhong Jianguo; Zhang Lili; Zhao Yongming

    1992-01-01

    In the process of nuclear reactor design and safety analysis, the reactor materials thermophysical properties parameters are very important as the main input data of reactor design and calculation. The goal of this work is to establish a practical, reliable data base of reactor materials thermophysical properties parameters with obvious function in reactor design, operation and safety analysis. At present phase, the focal point of this data base is to collect the materials thermophysical properties data based on the need of safety analysis in light water reactor and heavy water reactor. The materials to be chosen are as follows: Uranium, U-Al alloy, UO 2 , UO 2 -PuO 2 mixture, Zr-2, Zr-4, Zr-1% Ni alloy, Inconel-625, ZrO 2 (oxidic layer), boron carbide, cadmium in stainless steel, silver-indium-cadmium alloy, light water and heavy water, etc. The following thermophysical properties parameters are mainly included in the data base: thermal conductivity, thermal diffusivity, specific heat capacity, heat of melting, coefficient of thermal expansion, emittance, density, heat of vaporization, kinematic viscosity etc. The first phase of this work has been finished, which includes the method of establishing reactor materials thermophysical properties data base, the requirement of data collection, the requirement of establishing data base and the method of the data evaluation. This data base has been established and used on PC computer

  16. Epithermal neutron activation analysis using a boron carbide irradiation filter

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Brueckner, J.

    1980-01-01

    The use of boron carbide as a thermal neutron filter in epithermal neutron activation (ENAA) analysis has been investigated. As compared to the use of a cadmium filter, boron provides a greater reduction of activities from elements relatively abundant in terrestrial rocks and fossil fuels, such as Na, La, Sc and Fe. These elements have excitation functions which follow the 1/v law in the 1 to 10 eV lower epithermal region. This enhances the sensitivity of ENAA for elements such as U, Th, Ba and etc. which have strong resonances in the higher epithermal region above 10 eV. In addition, a boron carbide filter has the advantages over cadmium of acquiring a relatively low level of induced activity which poses minimal radiation safety problems, when used for ENAA. (author)

  17. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results.

  18. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results

  19. The resonant detector and its application to epithermal neutron spectroscopy

    International Nuclear Information System (INIS)

    Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.; Andreani, C.; D'Angelo, A.; Pietropaolo, A.; Senesi, R.; Imberti, S.; Bracco, A.; Previtali, E.; Pessina, G.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are being opened by the development of the resonant detector (RD) and its use on inverse geometry time of flight spectrometers at spallation sources. The RD was first proposed in the 1980s and was recently brought to a performance level exceeding conventional neutron-sensitive Li-glass scintillator detectors. It features a photon counter coupled to a neutron analyzer foil. Resonant neutron absorption in the foil results in the emission of prompt gamma rays that are detected in the photon counter. The dimensions of the RD set the spatial resolution that can be achieved, ranging from a fraction of a cm to several cm. It can thus be tailored to the construction of detector arrays of different geometry. The main results of the research on this kind of detector are reported leading to the present optimized RD design based on a combination of YAP scintillation photon counter and uranium or gold analyzer foils. This detector has already been selected for application in the upgrade of the VESUVIO spectrometer on ISIS. A special application is the Very Low Angle Detector (VLAD) bank, which will extend the kinematical region for neutron scattering to low momentum transfer ( -1 ) whilst still keeping energy transfer >1 eV, thus allowing new experimental studies in condensed matter systems. The first results of tests made with prototype VLAD detectors are presented, confirming the usefulness of the RD for measurements at scattering angles as low as 2-5 deg

  20. Determination of silver using cyclic epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Pun, T.H.; Landsberger, S.

    2012-01-01

    A fast pneumatic transfer facility was installed in Nuclear Engineering Teaching Laboratory (NETL) of the University of Texas at Austin for the purpose of cyclic thermal and epithermal neutron activation analysis. In this study efforts were focused on the evaluation of cyclic epithermal neutron activation analysis (CENAA). Various NIST and CANMET certified materials were analyzed by the system. Experiment results showed 110 Ag with its 25 s half-life as one of the isotopes favored by the system. Thus, the system was put into practical application in identifying silver in metallic ores. Comparison of sliver concentrations as determined by CENAA in CANMET certified reference materials gave very good results. (author)

  1. Thorium-based Molten Salt Reactor (TMSR) project in China

    International Nuclear Information System (INIS)

    Dai, Zhimin; Liu, Wei

    2013-01-01

    Making great efforts in development of nuclear energy is one of the long-term-plan in China's energy strategies. The advantages of Thorium-based nuclear energy are: rich resource in nature, less nuclear waste, low toxicity, nuclear non-proliferation and so on. Furthermore, China is a country with abundant thorium, thus it is necessary to develop the Thorium-based Molten Salt Reactor (TMSR) in China. Shanghai Institute of Applied Physics, Chinese Academy of Sciences (SINAP) had designed and constructed the first China's light-water reactor and developed a zero-power thorium-based molten salt reactor successfully in the early 1970s. The applied research project 'thorium molten salt reactor nuclear power system' by SINAP together with several other institutes had been accepted and granted by China government in 2011. The whole project has been divided into three stages: Firstly, built a 2 MW-zero-power high temperature solid molten salt reactor in 2015 and a 2 MW-zero-power high temperature liquid molten salt reactor in 2017. Secondly, in 2020 built a 10 MW high temperature liquid molten salt reactor. Thirdly, on the base of previous work, a 100 MW high temperature molten salt reactor should be achieving in 2030. After more than one years of efforts, a high quality scientific research team has been formed, which is able to design the molten salt reactor, the molten salt loop and related key equipment, the systems of molten salt preparation, purification and the radioactive gas removal. In the past one year, the initial physical design of high temperature molten salt reactor has been completed; the nuclear chemistry and radiation chemical laboratory has been built, a high temperature salt (HTS) loop and radioactive gas removal experiment device system have been successfully developed and constructed. Further, the preliminary study on reactor used carbon-carbon composite material has been investigated. (author)

  2. A personal computer based console monitor for a TRIGA reactor

    International Nuclear Information System (INIS)

    Rieke, Phillip E.; Hood, William E.; Razvi, Junaid

    1990-01-01

    Numerous improvements have been made to the Mark F facility to provide a minimum reactor down time, giving a high reactor availability. A program was undertaken to enhance the monitoring capabilities of the instrumentation and control system on this reactor. To that end, a personal computer based console monitoring system has been developed, installed in the control room and is operational to provide real-time monitoring and display of a variety of reactor operating parameters. This system is based on commercially available hardware and an applications software package developed internally at the GA facility. It has (a) assisted the operator in controlling reactor parameters to maintain the high degree of power stability required during extended runs with thermionic devices in-core, and (b) provided data trending and archiving capabilities on all monitored channels to allow a post-mortem analysis to be performed on any of the monitored parameters

  3. Compact power reactor

    International Nuclear Information System (INIS)

    Wetch, J.R.; Dieckamp, H.M.; Wilson, L.A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector

  4. Collimator optimization studies for the new MIT epithermal neutron beam

    International Nuclear Information System (INIS)

    Riley, K.J.; Ali, S.J.; Harling, O.K.

    2000-01-01

    A patient collimator has been designed for the epithermal neutron facility now being commissioned at MIT. Collimator performance both in and out of field was evaluated using the Monte Carlo code MCNP. A two piece design that can accommodate different circular field sizes will be manufactured using a composite lead, epoxy, boron and lithium mixture. (author)

  5. Mechanical design of epithermal neutron diagnostic for TFTR

    International Nuclear Information System (INIS)

    Groo, R.C.

    1981-01-01

    The mechanical design of the Epithermal Neutron Diagnostic for TFTR is described. This fission detector system measures the time resolution of the neutron flux for folding into the Neutron Activation system and also provides continuous, wide range coverage of all expected fusion reaction rates

  6. Measurement of epithermal neutrons by a coherent demodulation technique

    CERN Document Server

    Horiuchi, N; Takahashi, H; Kobayashi, H; Harasawa, S

    2000-01-01

    Epithermal neutrons have been measured using a neutron dosimeter via a coherent demodulation technique. This dosimeter consists of CsI(Tl)-photodiode scintillation detectors, four of which are coupled to neutron-gamma converting foils of various sizes. Neutron-gamma converting foils of In, Au and Co materials were used, each of which has a large capture cross section which peaks in the epithermal neutron energy region. The type of foil was selected according to the material properties that best correspond to the energy of the epithermal neutrons to be measured. In addition, the proposed technique was applied using Au-foils in order to measure the Cd ratio. The validity of the proposed technique was examined using an sup 2 sup 4 sup 1 Am-Be source placed in a testing stack of polyethylene blocks, and the results were compared with the theoretical values calculated by the Monte Carlo calculation. Finally, the dosimeter was applied for measuring epithermal neutrons and the Cd ratio in an experimental beam-tube o...

  7. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system

    Science.gov (United States)

    NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun

    2017-01-01

    This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308

  8. Virtual maintenance technology for reactor system based on PPR technology

    International Nuclear Information System (INIS)

    Wu Yaxiang; Ma Baiyong

    2009-01-01

    Based on the Product, Process and Resources (PPR) technology, the establishing technology of virtual maintenance environment for the reactor system and the process structure tree for virtual maintenance is studied, and the flow for the maintainability design and simulation for reactor system is put forward. Based on the subsection simulation of maintenance process and layered design of maintenance actions, the leveled structure of the reactor system virtual maintenance task is studied. The relation for the data of product, process and resource is described by Plan Evaluation and Review Technology (PERT) diagram to define the maintenance operation. (authors)

  9. Examination of Greek neolithic ceramic shards by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Ochsenkuehn, K.M.; Zouridakis, N.; Inst. of Physical Chemistry, Athens; Ochsenkuehn-Petropulu, M.

    1999-01-01

    At the reactor of the NCSR 'Demokritos' epithermal irradiation was used in connection with a loss-free counting technique to investigate rare Neolithic ceramic shards, about 4000 years old, from the Alepotrypa Cave of Diros, Greece. The application of an irradiation time of 30 minutes, the measurements of the samples after less then 24 hours and a counting time of 20 minutes in connection with a loss-free counting unit allowed the determination of 12 elements per sample. The comparison of these rare fine ceramic shards with those of primitive shape showed that both were produced from the same raw materials. Small differences could be explained by a raw material pretreatment. The Neolithic potters were obviously aware of separation techniques in order to obtain fine clay fractions to produce those rare ceramics. (author)

  10. Intraoperative boron neutron capture therapy for malignant gliomas. First clinical results of Tsukuba phase I/II trial using JAERI mixed thermal-epithermal beam

    International Nuclear Information System (INIS)

    Matsumura, A.; Yamamoto, T.; Shibata, Y.

    2000-01-01

    Since October 1999, a clinical trial of intraoperative boron neutron capture therapy (IOBNCT) is in progress at JRR-4 (Japan Research Reactor-4) in Japan Atomic Energy Research Institute (JAERI) using mixed thermal-epithermal beam (thermal neutron beam I: TNB-I). Compared to pure thermal beam (thermal neutron beam II: TNB-II), TNB-I has an improved neutron delivery into the deep region than TNB-II. The clinical protocol and the preliminary results will be discussed. (author)

  11. Design study of ship based nuclear power reactor

    International Nuclear Information System (INIS)

    Su'ud, Zaki; Fitriyani, Dian

    2002-01-01

    Preliminary design study of ship based nuclear power reactors has been performed. In this study the results of thermohydraulics analysis is presented especially related to behaviour of ship motion in the sea. The reactors are basically lead-bismuth cooled fast power reactors using nitride fuels to enhance neutronics and safety performance. Some design modification are performed for feasibility of operation under sea wave movement. The system use loop type with relatively large coolant pipe above reactor core. The reactors does not use IHX, so that the heat from primary coolant system directly transferred to water-steam loop through steam generator. The reactors are capable to be operated in difference power level during night and noon. The reactors however can also be used totally or partially to produce clean water through desalination of sea water. Due to the influence of sea wave movement the analysis have to be performed in three dimensional analysis. The computation time for this analysis is speeded up using Parallel Virtual Machine (PVM) Based multi processor system

  12. Conceptual design of 30 MeV magnet system used for BNCT epithermal neutron source

    International Nuclear Information System (INIS)

    Slamet Santosa; Taufik

    2015-01-01

    Conceptual design of 30 MeV Magnet System Used for BNCT Epithermal Neutron Source has been done based on methods of empirical model of basic equation, experiences of 13 MeV cyclotron magnet design and personal communications. In the field of health, cyclotron can be used as an epithermal neutron source for Boron Neutron Capture Therapy (BNCT). The development of cyclotron producing epithermal neutrons for BNCT has been performed at Kyoto University, of which it produces a proton beam current of 1.1 mA with energy of 30 MeV. With some experiences on 13 MeV cyclotron magnet design, to support BNCT research and development we performed the design studies of 30 MeV cyclotron magnet system, which is one of the main components of the cyclotron for deflecting proton beam into circular trajectory and serves as beam focusing. Results of this study are expected to define the parameters of particular cyclotron magnet. The scope of this study includes the study of the parameters component of the 30 MeV cyclotron and magnet initial parameters. The empirical method of basic equation model is then corroborated by a simulation using Superfish software. Based on the results, a 30 MeV cyclotron magnet for BNCT neutron source enables to be realized with the parameters of B 0 = 1.06 T, frequency RF = 64.733938 ≈ 65 MHz, the external radius of 0.73 m, the radius of the polar = 0.85 m, BH = 1.95 T and a gap hill of 4 cm. Because proton beam current that be needed for BNCT application is very large, then in the calculation it is chosen a great focusing axial νz = 0.630361 which can generate B V = 0.44 T. (author)

  13. Vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  14. Vanadium-base alloys for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  15. Utilizing horizontal reactors channels for neutron therapy

    International Nuclear Information System (INIS)

    Stankovsky, E.Yu.; Kurachenko, Yu.A.

    2000-01-01

    Two experimental heterogeneous reactors have been considered. The reactors may be applied in neutron capture therapy and in a conventional manner. The channel out of the core serves as the neutron source. At each of these facilities, both fast and epithermal neutron fluxes for BNCT research, human clinical trials, and characterized common computational techniques have been evaluated. (authors)

  16. Conceptual design of a clinical BNCT beam in an adjacent dry cell of the Jozef Stefan Institute TRIGA reactor

    NARCIS (Netherlands)

    Maucec, M

    The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation

  17. Conceptual design of a clinical BNCT beam in an adjacent dry cell of the Jozef Stefan Institute TRIGA reactor

    NARCIS (Netherlands)

    Maucec, M

    2000-01-01

    The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation

  18. Fusion--fission hybrid reactors based on the laser solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.; Quimby, D.C.

    1976-01-01

    Fusion-fission reactors, based on the laser solenoid concept, can be much smaller in scale than their pure fusion counterparts, with moderate first-wall loading and rapid breeding capabilities (1 to 3 tonnes/yr), and can be designed successfully on the basis of classical plasma transport properties and free-streaming end-loss. Preliminary design information is presented for such systems, including the first wall, pulse coil, blanket, superconductors, laser optics, and power supplies, accounting for the desired reactor performance and other physics and engineering constraints. Self-consistent point designs for first and second generation reactors are discussed which illustrate the reactor size, performance, component parameters, and the level of technological development required

  19. IAEA data base system for nuclear research reactors (RRDB)

    International Nuclear Information System (INIS)

    Lipscher, P.

    1986-01-01

    The IAEA Data Base System for Nuclear Research Reactors (RRDB) User's Guide is intended for the user who wishes to understand the concepts and operation of the RRDB system. The RRDB is a computerized system recording administrative, operational and technical data on all the nuclear research reactors currently operating, under construction, planned or shut down in IAEA Member States. The data is received by the IAEA from reactor centres on magnetic tapes or as responses to questionnaires. All the data on research, training, test and radioactive isotope production reactors and critical assemblies is stored on the RRDB system. A full set of RRDB programs (in NATURAL) are contained at the back of this Guide

  20. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  1. Evidence for rapid epithermal mineralization and coeval bimodal volcanism, Bruner Au-Ag property, NV USA

    Science.gov (United States)

    Baldwin, Dylan

    The character of Au-Ag mineralization and volcanic/hydrothermal relationships at the underexplored Miocene-age Bruner low-sulfidation epithermal Au-Ag deposit are elucidated using field and laboratory studies. Bruner is located in central Nevada within the Great Basin extensional province, near several major volcanic trends (Western Andesite, Northern Nevada Rift) associated with world-class Miocene-age epithermal Au-Ag provinces. Despite its proximity to several >1 Moz Au deposits, and newly discovered high-grade drill intercepts (to 117 ppm Au/1.5m), there is no published research on the deposit, the style of mineralization has not been systematically characterized, and vectors to mineralization remain elusive. By investigating the nature of mineralization and time-space relationships between volcanic/hydrothermal activity, the deposit has been integrated into a regional framework, and exploration targeting improved. Mineralization occurs within narrow quartz + adularia +/- pyrite veins that manifest as sheeted/stockwork zones, vein swarms, and rare 0.3-2 m wide veins hosted by two generations of Miocene high-K, high-silica rhyolite flow dome complexes overlying an andesite flow unit. The most prominent structural controls on veining are N­striking faults and syn-mineral basalt/rhyolite dikes. Productive veins have robust boiling indicators (high adularia content, bladed quartz after calcite, recrystallized colloform quartz bands), lack rhythmic banding, and contain only 1-2 stages; these veins overprint, or occur separately from another population of barren to weakly mineralized rhythmically banded quartz-only veins. Ore minerals consist of coarse Au0.5Ag 0.5 electrum, fine Au0.7Ag0.3 electrum, acanthite, uytenbogaardtite (Ag3AuS2) and minor embolite Ag(Br,Cl). Now deeply oxidized, veins typically contain Bruner appears to belong to a small subset of mid-Miocene epithermal deposits in Nevada with low base metal contents and low to no Se, related to calc

  2. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    Science.gov (United States)

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  3. Fundamental symmetry studies at Los Alamos using epithermal neutrons

    International Nuclear Information System (INIS)

    Bowman, C.D.; Bowman, J.D.; Yuan, V.W.

    1988-01-01

    Fundamental symmetry studies using intense polarized beams of epithermal neutrons are underway at the LANSCE facility of the Los Alamos National Laboratory. Three classes of symmetry experiments can be explored: parity violation, and time reversal invariance violation for both parity-violating and parity-conserved observables. The experimental apparatus is described and performance illustrated with examples of recent measurements. Possible improvements in the facilities and prospective experiments are discussed. 15 refs., 10 figs

  4. VLAD for epithermal neutron scattering experiments at large energy transfers

    International Nuclear Information System (INIS)

    Tardocchi, M; Gorini, G; Perelli-Cippo, E; Andreani, C; Imberti, S; Pietropaolo, A; Senesi, R; Rhodes, N R; Schooneveld, E M

    2006-01-01

    The Very Low Angle Detector (VLAD) bank will extend the kinematical region covered by today's epithermal neutron scattering experiments to low momentum transfer ( -1 ) together with large energy transfer 0 -4 0 . In this paper the design of VLAD is presented together with Montecarlo simulations of the detector performances. The results of tests made with prototype VLAD detectors are also presented, confirming the usefulness of the Resonance Detector for measurements at very low scattering angles

  5. Reactor - and accelerator-based filtered beams

    International Nuclear Information System (INIS)

    Mill, A.J.; Harvey, J.R.

    1980-01-01

    The neutrons produced in high flux nuclear reactors and in accelerator, induced fission and spallation reactions, represent the most intense sources of neutrons available for research. However, the neutrons from these sources are not monoenergetic, covering the broad range extending from 10 -3 eV up to 10 7 eV or so. In order to make quantitative measurements of the effects of neutrons and their dependence on neutron energy it is desirable to have mono-energetic neutron sources. The paper describes briefly methods of obtaining mono-energetic neutrons and different methods of filtration. This is followed by more detailed discussion of neutron window filters and a summary of the filtered beam facilities using this technique. The review concludes with a discussion of the main applications of filtered beams and their present and future importance

  6. Boron neutron capture therapy (BNCT). Recent aspect, a change from thermal neutron to epithermal neutron beam and a new protocol

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu

    1999-01-01

    Since 1968, One-hundred seventy three patients with glioblastoma (n=81), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumor (n=32) were treated by boron-neutron capture therapy (BNCT) using a combination of thermal neutron and BSH in 5 reactors (HTR n=13, JRR-3 n=1, MuITR n=98, KUR n=28, JRR-2 n=33). Out of 101 patients with glioma treated by BNCT under the recent protocol, 33 (10 glioblastoma, 14 anaplastic astrocytoma, 9 low grade astrocytoma) patients lived or have lived longer than 3 years. Nine of these 33 lived or have lived longer than 10 years. According to the retrospective analysis, the important factors related to the clinical results were tumor dose radiation dose and maximum radiation dose in thermal brain cortex. The result was not satisfied as it was expected. Then, we decided to introduce mixed beams which contain thermal neutron and epithermal neutron beams. KUR was reconstructed in 1996 and developed to be available to use mixed beams. Following the shutdown of the JRR-2, JRR-4 was renewed for medical use in 1998. Both reactors have capacity to yield thermal neutron beam, epithermal neutron beam and mixed beams. The development of the neutron source lead us to make a new protocol. (author)

  7. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    International Nuclear Information System (INIS)

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  8. Very high flux steady state reactor and accelerator based sources

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Simos, N.; Shapiro, S.; Hastings, J.

    2004-01-01

    With the number of steady state neutron sources in the US declining (including the demise of the Bnl HFBR) the remaining intense sources are now in Europe (i.e. reactors - ILL and FMR, accelerator - PSI). The intensity of the undisturbed thermal flux for sources currently in operation ranges from 10 14 n/cm 2 *s to 10 15 n/cm 2 *s. The proposed Advanced Neutron Source (ANS) was to be a high power reactor (about 350 MW) with a projected undisturbed thermal flux of 7*10 15 n/cm 2 *s but never materialized. The objective of the current study is to explore the requirements and implications of two source concepts with an undisturbed flux of 10 16 n/cm 2 *s. The first is a reactor based concept operating at high power density (10 MW/l - 15 MW/l) and a total power of 100 MW - 250 MW, depending on fissile enrichment. The second is an accelerator based concept relying on a 1 GeV - 1.5 GeV proton Linac with a total beam power of 40 MW and a liquid lead-bismuth eutectic target. In the reactor source study, the effects of fissile material enrichment, coolant temperature and pressure drop, and estimates of pressure vessel stress levels will be investigated. The fuel form for the reactor will be different from all other operating source reactors in that it is proposed to use an infiltrated graphitic structure, which has been developed for nuclear thermal propulsion reactor applications. In the accelerator based source the generation of spallation products and their activation levels, and the material damage sustained by the beam window will be investigated. (authors)

  9. Power reactor embrittlement data base (PR-EDB): Uses in evaluating radiation embrittlement of reactor vessels

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Wang, J.A.

    1992-01-01

    Investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current Codes, Standard Review Plans (SRPs), and Guides for license renewal can be greatly expedited by the use of a well-designed, computerized data base. Also, such a data is essential for the evaluation of embrittlement prediction models by researchers. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The current compilation contains data from 92 reactors and consists of 175 data points for weld materials (79 different welds) and 395 data points for base materials (110 different base materials). The different types of data that are implemented or planned for this data base are discussed. ''User-friendly'' utility programs have been written to investigate a list of problems using this data base. The utility programs are also used to add and upgrade data, retrieve and select specific data, manipulate data, display data to the screen or printer, and to fit and plot Charpy impact data. The results of several studies investigated are presented in this paper

  10. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  11. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  12. Radiobiology studies for the evaluation of epithermal neutron beams used for BNCT

    International Nuclear Information System (INIS)

    Green, S.; Jones, B.; Mill, A.J.

    2006-01-01

    This paper outlines our plans for a study to establish the radiobiological effectiveness of the various mixes of radiation components present in an epithermal neutron beam designed for BNCT and to incorporate these data into clinical protocols for the treatment of malignant glioma. This is a description of work which is funded and just now beginning in Birmingham so no results can be presented. Our project will involve a combination of experimental measurements carried out in Birmingham and in Boston and mathematical modelling carried out in Birmingham. Despite all the extant in-vitro and in-vivo work, there is no widely accepted method to determine biological effect by accounting for variations in beam component mix, dose rate and treatment fractionation for disparate from the various BNCT centres. The objectives of this study are: To develop a cell-based radiobiology protocol to provide essential data on safety and efficacy of beams for Boron Neutron Capture Therapy (BNCT) in advance of clinical trials. To exploit the facilities at Massachusetts Institute of Technology for variable dose-rate epithermal irradiations to validate the above protocol. To develop mathematical models of this radiobiological system that can be used to inform decisions on dose selection, fractionation schedules, BNCT use as supplementary boosts or for re-treatment of recurrent cancers. To provide fundamental data relevant to the understanding of the radiobiology of simultaneous mixed high-and low-LET radiations over a clinically relevant dose-range. (author)

  13. The Test Reactor Embrittlement Data Base (TR-EDB)

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.; Wang, J.A.

    1993-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is part of an ongoing program to collect test data from materials irradiations to aid in the research and evaluation of embrittlement prediction models that are used to assure the safety of pressure vessels in power reactors. This program is being funded by the US Nuclear Regulatory Commission (NRC) and has resulted in the publication of the Power Reactor Embrittlement Data Base (PR-EDB) whose second version is currently being released. The TR-EDB is a compatible collection of data from experiments in materials test reactors. These data contain information that is not obtainable from surveillance results, especially, about the effects of annealing after irradiation. Other information that is only available from test reactors is the influence of fluence rates and irradiation temperatures on radiation embrittlement. The first version of the TR-EDB will be released in fall of 1993 and contains published results from laboratories in many countries. Data collection will continue and further updates will be published

  14. Use of boron nitride for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements

    Science.gov (United States)

    Radulović, Vladimir; Trkov, Andrej; Jaćimović, Radojko; Gregoire, Gilles; Destouches, Christophe

    2016-12-01

    A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract.

  15. Materials data base for fusion reactors-I

    International Nuclear Information System (INIS)

    Iwata, S.; Nogami, A.; Ishino, S.; Mishima, Y.; Takao, Y.; Aruga, T.; Shiraishi, K.

    1982-01-01

    The materials data base is a set of experimental and/or calculated data being compiled to meet the broad needs for materials data by taking advantage of the data base management systems. In this paper the objective of such computerized data base is described and the characteristics of fusion reactor materials are discussed from the viewpoint of the data base development. The near-term emphasis of the development has been put on the irradiation data for 316 type stainless steels. Through the test of this small data base, it can be concluded that this approach is promising for materials data base management and for the establishment of the interface between fusion reactor designer and materials investigator. (orig.)

  16. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  17. Application of microprocessor based controller in the Breeder Reactor Program

    International Nuclear Information System (INIS)

    Messick, N.C.; Lukas, M.P.

    1985-01-01

    This paper treats Argonne National Laboratory's experience using microprocessor based controllers presently in use on several control loops within the EBR-II reactor facility as well as tests being performed by these controllers. Also included is a discussion of the expandability, modularity, range of capabilities and higher level functions possible using such equipment

  18. Unification of reactor elastomeric sealing based on material

    International Nuclear Information System (INIS)

    Sinha, N.K.; Raj, Baldev

    2012-01-01

    The unification of elastomeric sealing applications of Indian nuclear reactors based on a few qualified fluoroelastomer/perfluoroelastomer compounds and standardized approaches for finite element analysis (FEA) based design, manufacturing process and antifriction coatings is discussed. It is shown that the advance polymer architecture based Viton ® formulation developed for inflatable seals of 500 MWe Prototype Fast Breeder Reactor (PFBR) and its four basic variations can encompass other sealing applications of PFBR with minimum additional efforts on development and validation. Changing the blend ratio of Viton ® GBL 200S and 600S in inflatable seal formulation could extend its use to Pressurized Heavy Water Reactors (PHWRs). The higher operating temperature of Advanced Heavy Water Reactor (AHWR) seals expands the choice to perfluoroelastomers. FEA based on plane-strain/axisymmetric modeling (with Mooney–Rivlin as the basic constitutive model), seal manufacture by cold feed extrusion and injection molding as well as plasma Teflon-like coating belonging to two variations obtained from the development of inflatable seals provide the necessary standardization for unification. The gains in simplification of design, development and operation of seals along with the enhancements of safety and reliability are expected to be substantial.

  19. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2016-11-15

    Neutron and gamma flux and dose equivalent rate distribution are analysed in radial and shields of a typical PWR type reactor based on the Monte Carlo radiation transport computer code MCNP5. The ENDF/B-VI continuous energy cross-section library has been employed for the criticality and shielding analysis. The computed results are in good agreement with the reference results (maximum difference is less than 56 %). It implies that MCNP5 a good tool for accurate prediction of neutron and gamma flux and dose rates in radial shield around the core of PWR type reactors.

  20. Small reactor power systems for manned planetary surface bases

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  1. Kriging-based algorithm for nuclear reactor neutronic design optimization

    International Nuclear Information System (INIS)

    Kempf, Stephanie; Forget, Benoit; Hu, Lin-Wen

    2012-01-01

    Highlights: ► A Kriging-based algorithm was selected to guide research reactor optimization. ► We examined impacts of parameter values upon the algorithm. ► The best parameter values were incorporated into a set of best practices. ► Algorithm with best practices used to optimize thermal flux of concept. ► Final design produces thermal flux 30% higher than other 5 MW reactors. - Abstract: Kriging, a geospatial interpolation technique, has been used in the present work to drive a search-and-optimization algorithm which produces the optimum geometric parameters for a 5 MW research reactor design. The technique has been demonstrated to produce an optimal neutronic solution after a relatively small number of core calculations. It has additionally been successful in producing a design which significantly improves thermal neutron fluxes by 30% over existing reactors of the same power rating. Best practices for use of this algorithm in reactor design were identified and indicated the importance of selecting proper correlation functions.

  2. Small reactor power systems for manned planetary surface bases

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options

  3. Compton suppression method and epithermal NAA in the determination of nutrients and heavy metals in Nigerian food and beverages

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Y.A., E-mail: yaahmed1@gmail.co [Reactor Engineering Section, Centre for Energy Research and Training, Ahmadu Bello University, Zaria (Nigeria); Nuclear Engineering Teaching Laboratory, University of Texas at Austin, Austin, TX 78758 (United States); Landsberger, S.; O' Kelly, D.J.; Braisted, J. [Nuclear Engineering Teaching Laboratory, University of Texas at Austin, Austin, TX 78758 (United States); Gabdo, H. [Physics Department, Federal College of Education, Yola (Nigeria); Ewa, I.O.B.; Umar, I.M.; Funtua, I.I. [Reactor Engineering Section, Centre for Energy Research and Training, Ahmadu Bello University, Zaria (Nigeria)

    2010-10-15

    We used in this study Compton suppression method and epithermal neutron activation analysis to determine the concentration of nutrients and heavy metals in Nigerian food and beverages. The work was performed at the University of Texas TRIGA Reactor by short, medium, and long irradiation protocols, using thermal flux of 1.4x10{sup 12} n cm{sup -2} s{sup -1} and epithermal flux of 1.4x10{sup 11} n cm{sup -2} s{sup -1}. Application of Compton suppression method has reduced interferences from Compton scattered photons thereby allowing easy evaluation of Na, Cl, Ca, Cu, Mn, Mg, Co, Cr, Rb, Fe, and Se. The epithermal NAA method has enabled determination of Cd, As, Ba, Sr, Br, I, and V with little turn-around time. Quality Control and Quality Assurance of the method was tested by analyzing four Standard Reference Materials (non-fat powdered milk, apple leaves, citrus leaves, and peach leaves) obtained from National Institute for Standards and Technology. Our results show that sorghum, millet, and maize have high values of Zn, Mn, Fe, low values of Cd, As, and Se. Powdered milks, rice, beans, and soybeans were found to have moderate amounts of all the elements. Tobacco recorded high content of Cd, Mn, and As, whereas tea, tsobo leaves, Baobab leaves, and okro seed have more As values than others. However, biscuits, macaroni, spaghetti, and noodles show lower concentrations of all the elements. The distribution of these nutrients and heavy metals in these food and beverages shows the need to fortify biscuits and pastas with micro and macro-nutrients and reduce the use of tobacco, tea, tsobo leaves, Baobab leaves, and Okro seed to avoid intake of heavy elements.

  4. Compton suppression method and epithermal NAA in the determination of nutrients and heavy metals in Nigerian food and beverages.

    Science.gov (United States)

    Ahmed, Y A; Landsberger, S; O'Kelly, D J; Braisted, J; Gabdo, H; Ewa, I O B; Umar, I M; Funtua, I I

    2010-10-01

    We used in this study Compton suppression method and epithermal neutron activation analysis to determine the concentration of nutrients and heavy metals in Nigerian food and beverages. The work was performed at the University of Texas TRIGA Reactor by short, medium, and long irradiation protocols, using thermal flux of 1.4x10(12)n cm(-2)s(-1) and epithermal flux of 1.4x10(11)n cm(-2)s(-1). Application of Compton suppression method has reduced interferences from Compton scattered photons thereby allowing easy evaluation of Na, Cl, Ca, Cu, Mn, Mg, Co, Cr, Rb, Fe, and Se. The epithermal NAA method has enabled determination of Cd, As, Ba, Sr, Br, I, and V with little turn-around time. Quality Control and Quality Assurance of the method was tested by analyzing four Standard Reference Materials (non-fat powdered milk, apple leaves, citrus leaves, and peach leaves) obtained from National Institute for Standards and Technology. Our results show that sorghum, millet, and maize have high values of Zn, Mn, Fe, low values of Cd, As, and Se. Powdered milks, rice, beans, and soybeans were found to have moderate amounts of all the elements. Tobacco recorded high content of Cd, Mn, and As, whereas tea, tsobo leaves, Baobab leaves, and okro seed have more As values than others. However, biscuits, macaroni, spaghetti, and noodles show lower concentrations of all the elements. The distribution of these nutrients and heavy metals in these food and beverages shows the need to fortify biscuits and pastas with micro and macro-nutrients and reduce the use of tobacco, tea, tsobo leaves, Baobab leaves, and Okro seed to avoid intake of heavy elements. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Compton suppression method and epithermal NAA in the determination of nutrients and heavy metals in Nigerian food and beverages

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Landsberger, S.; O'Kelly, D.J.; Braisted, J.; Gabdo, H.; Ewa, I.O.B.; Umar, I.M.; Funtua, I.I.

    2010-01-01

    We used in this study Compton suppression method and epithermal neutron activation analysis to determine the concentration of nutrients and heavy metals in Nigerian food and beverages. The work was performed at the University of Texas TRIGA Reactor by short, medium, and long irradiation protocols, using thermal flux of 1.4x10 12 n cm -2 s -1 and epithermal flux of 1.4x10 11 n cm -2 s -1 . Application of Compton suppression method has reduced interferences from Compton scattered photons thereby allowing easy evaluation of Na, Cl, Ca, Cu, Mn, Mg, Co, Cr, Rb, Fe, and Se. The epithermal NAA method has enabled determination of Cd, As, Ba, Sr, Br, I, and V with little turn-around time. Quality Control and Quality Assurance of the method was tested by analyzing four Standard Reference Materials (non-fat powdered milk, apple leaves, citrus leaves, and peach leaves) obtained from National Institute for Standards and Technology. Our results show that sorghum, millet, and maize have high values of Zn, Mn, Fe, low values of Cd, As, and Se. Powdered milks, rice, beans, and soybeans were found to have moderate amounts of all the elements. Tobacco recorded high content of Cd, Mn, and As, whereas tea, tsobo leaves, Baobab leaves, and okro seed have more As values than others. However, biscuits, macaroni, spaghetti, and noodles show lower concentrations of all the elements. The distribution of these nutrients and heavy metals in these food and beverages shows the need to fortify biscuits and pastas with micro and macro-nutrients and reduce the use of tobacco, tea, tsobo leaves, Baobab leaves, and Okro seed to avoid intake of heavy elements.

  6. N13 - based reactor coolant pressure boundary leakage system

    International Nuclear Information System (INIS)

    Dissing, E.; Marbaeck, L.; Sandell, S.; Svansson, L.

    1980-05-01

    A system for the monitoring of leakage of coolant from the reactor coolant pressure boundary and auxiliary systems to the reactor containment, based on the detection of the N13 content in the atmosphere, has been tested. N13 is produced from the oxyegen of the reactor water via the recoil photon nuclear process H1 + 016 + He4. The generation of N13 is therefore independent of fuel element leakage and of the corrosion product content in the water. In the US AEC regulatory guide 1.45 has a leakage increase of 4 liter/ min been suggested as the response limit. The experiments carried out in Ringhals indicate, that with the accomplishment of minor improvements in the installation, a 4 liter/min leakage to the containment will give rise to a signal with a random error range of +- 0.25 liter/min, 99.7 % confidence level. (author)

  7. High power density reactors based on direct cooled particle beds

    International Nuclear Information System (INIS)

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  8. Measurements of neutron flux in the RA reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1961-12-01

    This report includes the following separate parts: Thermal neutron flux in the experimental channels od RA reactor; Epithermal neutron flux in the experimental channels od RA reactor; Fast neutron flux in the experimental channels od RA reactor; Thermal neutron flux in the thermal column and biological experimental channel; Neutronic measurements in the RA reactor cell; Temperature reactivity coefficient of the RA reactor; design of the device for measuring the activity of wire [sr

  9. Investigations on the comparator technique used in epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Bereznai, T.; Bodizs, D.; Keoemley, G.

    1977-01-01

    The possible extension of the comparator technique of reactor neutron activation analysis into the field of epithermal neutron activation has been investigated. Ruthenium was used for multi-isotopic comparator. Experiments show that conversion of the so-called reference k-factors - determined by irradiation with reactor neutrons - into ksup(epi)-factors usable at activation under cadmium filter, can be evaluated with fair accuracy. Sources and extent of errors and their contribution to the final error of analysis are discussed. For equal irradiation and counting times advantage of ENAA for several elements is obvious: the much lower background activity permitted the sample to be measured closer to the detector, under better geometry conditions, consequently, permitting several elements to be determined quantitatively. The number of elements determined and the sensitivity of the method are much dependent on the experimental conditions, especially on the composition of the sample, on the PHIsub(e) value, the irradiation time and the efficiency of the Ge(Li) detector. (T.G.)

  10. Design analysis and microprocessor based control of a nuclear reactor

    International Nuclear Information System (INIS)

    Sabbakh, N.J.

    1988-01-01

    The object of this thesis is to design and test a microprocessor based controller, to a simulated nuclear reactor system. The mathematical model that describes the dynamics of a typical nuclear reactor of one group of delayed neutrons approximations with temperature feedback was chosen. A digital computer program has been developed for the design and analysis of a simulated model based on the concept of state-variable feedback in order to meet a desired system response with maximum overshoot of 3.4% and setting time of 4 sec. The state variable feedback coefficients are designed for the continuous system, then an approximation is used to obtain in the state variable feedback vector for the discrete system. System control was implemented utilizing Direct Digital Control (DDC) of a nuclear reactor simulated model through a control algorithm that was performed by means of a microprocessor based system. The controller performance was satisfactorily tested by exciting the reactor system with a transient reactivity disturbance and by a step change in power demand. Direct digital control, when implemented on a microprocessor adds versatility, flexibility in system design with the added advantage of possible use of optimal control algorithms. 6 tabs.; 30 figs.; 46 refs.; 6 apps

  11. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  12. Framework for AI-based nuclear reactor design support system

    International Nuclear Information System (INIS)

    Furuta, Kazuo; Kondo, Shunsuke

    1992-01-01

    Nowadays many computer programs are being developed and used for the analytic tasks in nuclear reactor design, but experienced designers are still responsible for most of the synthetic tasks which are not amenable to algorithmic computer processes. Artificial intelligence (AI) is a promising technology to deal with these intractable tasks in design. In development of AI-based design support systems, it is desirable to choose a comprehensive framework based on the scientific theory of design. In this work a framework for AI-based design support systems for nuclear reactor design will be proposed based on an explorative abduction model of design. The fundamental architectures of this framework will be described especially on knowledge representation, context management and design planning. (author)

  13. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  14. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    International Nuclear Information System (INIS)

    Blanford, E.; Keldrauk, E.; Laufer, M.; Mieler, M.; Wei, J.; Stojadinovic, B.; Peterson, P.F.

    2010-01-01

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  15. Classification of research reactors and discussion of thinking of safety regulation based on the classification

    International Nuclear Information System (INIS)

    Song Chenxiu; Zhu Lixin

    2013-01-01

    Research reactors have different characteristics in the fields of reactor type, use, power level, design principle, operation model and safety performance, etc, and also have significant discrepancy in the aspect of nuclear safety regulation. This paper introduces classification of research reactors and discusses thinking of safety regulation based on the classification of research reactors. (authors)

  16. Design of reactor alarm instrument based on SOPC

    International Nuclear Information System (INIS)

    Li Meng; Lu Yi; Rong Ru

    2008-01-01

    The design of embedded alarm instrument in reactors based on Nios II CPU is introduced in this paper. This design uses the SOPC technology based on the Cyclone series FPGA as a digital bench, and connects the MPU and drivers and interface of times, RS232, sdram,and etc. into a FPGA chip. It is proved that the system achieves the design goals in primary experimentation. (authors)

  17. Fusion reactor passive safety and ignitor risk-based regulation

    International Nuclear Information System (INIS)

    Zucchetti, M.

    1995-01-01

    Passive design features are more reliable than operator action of successful operation of active safety systems. Passive safety has usually been adopted for fission. The achievement of an inventory-based passive safety is difficult if the fusion reactor uses neutronic reactions. Ignitor is a high-magnetic field tokamak designed to study the physics of ignited plasmas. The safety goal for Ignitor is classification as a mobility-based passively safe machine

  18. Fuzzy model-based control of a nuclear reactor

    International Nuclear Information System (INIS)

    Van Den Durpel, L.; Ruan, D.

    1994-01-01

    The fuzzy model-based control of a nuclear power reactor is an emerging research topic world-wide. SCK-CEN is dealing with this research in a preliminary stage, including two aspects, namely fuzzy control and fuzzy modelling. The aim is to combine both methodologies in contrast to conventional model-based PID control techniques, and to state advantages of including fuzzy parameters as safety and operator feedback. This paper summarizes the general scheme of this new research project

  19. Oklo reactors and implications for nuclear science

    OpenAIRE

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-01-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlie...

  20. Reactor noise diagnostics based on multivariate autoregressive modeling: Application to LOFT [Loss-of-Fluid-Test] reactor process noise

    International Nuclear Information System (INIS)

    Gloeckler, O.; Upadhyaya, B.R.

    1987-01-01

    Multivariate noise analysis of power reactor operating signals is useful for plant diagnostics, for isolating process and sensor anomalies, and for automated plant monitoring. In order to develop a reliable procedure, the previously established techniques for empirical modeling of fluctuation signals in power reactors have been improved. Application of the complete algorithm to operational data from the Loss-of-Fluid-Test (LOFT) Reactor showed that earlier conjectures (based on physical modeling) regarding the perturbation sources in a Pressurized Water Reactor (PWR) affecting coolant temperature and neutron power fluctuations can be systematically explained. This advanced methodology has important implication regarding plant diagnostics, and system or sensor anomaly isolation. 6 refs., 24 figs

  1. A PC-based high temperature gas reactor simulator for Indonesian conceptual HTR reactor basic training

    Science.gov (United States)

    Syarip; Po, L. C. C.

    2018-05-01

    In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.

  2. Fast and epithermal neutron radiography using neutron irradiator

    International Nuclear Information System (INIS)

    Oliveira, Karol A.M. de; Crispim, Verginia R.; Ferreira, Francisco J.O.

    2013-01-01

    The neutron radiography technique (NR) with neutrons in the energy range fast to epithermal is a powerful tool used in no-destructive inspection of bulky objects of diverse materials, including those rich in hydrogen, oxygen, nitrogen ad carbon. Thus, it can be used to identify, inclusions, voids and thickness differences in materials such as explosive artifacts and narcotics. Aiming at using NR with fast and epithermal neutrons, an Irradiator was constructed by: a 241 Am-Be source, with 5 Ci activity, a collimator with adjustable collimation rate, L/D; and a shield device composed by plates of borated paraffin and iron. The test specimens chosen were a Beam Purity Indicator (BPI) and an Indicator of Visual Resolution (IVR). The neutron radiography images obtained had a resolution of 444.4 μm and 363.6 μm respectively when registered in: 1) the sheet of the nuclear track solid detector, CR-39 type, through X (n,p) Y nuclear reaction; and 2) Kodak Industrex M radiographic film plate in close contact with a boron converter screen, both stored in a Kodak radiographic cassette. (author)

  3. OTUS - Reactor inventory management system based on ORIGEN2

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R; Toivonen, H; Lahtinen, J; Ilander, T

    1995-10-01

    ORIGEN2 is a computer code that calculates nuclide composition and other characteristics of nuclear fuel. The use of ORIGEN2 requires good knowledge in reactor physics. However, once the input has been defined for a particular reactor type, the calculations can be easily repeated for any burnup and decay time. This procedure produces large output files that are difficult to handle manually. A new computer code, known as OTUS, was designed to facilitate the postprocessing of the data. OTUS makes use of the inventory files precalculated with ORIGEN2 in a way that enables their versatile treatment for different safety analysis purposes. A data base is created containing a comprehensive set of ORIGEN2 calculations as a function of fuel burnup and decay time. OTUS is a reactor inventory management system for a microcomputer with Windows interface. Four major data operations are available: (1) Build data modifies ORIGEN2 output data into a suitable format, (2) View data enables flexible presentation of the data as such, (3) Different calculations, such as nuclide ratios and hot particle characteristics, can be performed for severe accident analyses, consequence analyses and research purposes, (4) Summary files contain both burnup dependent and decay time dependent inventory information related to the nuclide and the reactor specified. These files can be used for safeguards, radiation monitoring and safety assessment. (orig.) (22 refs., 29 figs.).

  4. Geochemistry and statistical analyses of porphyry system and epithermal veins at Hizehjan in northwestern Iran

    Directory of Open Access Journals (Sweden)

    Radmard Kaikhosrov

    2017-12-01

    Full Text Available Situated about 130 km northeast of Tabriz (northwest Iran, the Mazra’eh Shadi deposit is in the Arasbaran metallogenic belt (AAB. Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb, Pb (21100 ppm, Ag (9.43ppm, Cu (611ppm and Zn (333 ppm. Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra’eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra’eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb. In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.

  5. Distribution of 35 Elements in Peat Cores from Ombrotrophic Bogs Studied by Epithermal Neutron Activation Analysis

    CERN Document Server

    Frontasyeva, M V

    2004-01-01

    In ombrotrophic bogs the surface peat layer is supplied with chemical substances only from the atmosphere. Peat cores from these bogs therefore can be used to study temporal trends in atmospheric deposition of pollutants. In this work epithermal neutron activation analysis was applied for the first time to study the distribution of 35 elements in peat profiles from ombrotrophic bogs. The selected examples were from Finnmark county in northern Norway: one pristine site far from any local pollution source, and another strongly affected by long-term operation of Russian copper-nickel smelters located close to the border. The elements are classified with respect to their behavior in the uppermost 40 cm of the peat, and similarities and differences between the two profiles are discussed. As compared with other more commonly used analytical techniques based on acid decomposition of the sample ENAA has the advantage of providing the total concentrations of the elements.

  6. Reactor kinetics revisited: a coefficient based model (CBM)

    International Nuclear Information System (INIS)

    Ratemi, W.M.

    2011-01-01

    In this paper, a nuclear reactor kinetics model based on Guelph expansion coefficients calculation ( Coefficients Based Model, CBM), for n groups of delayed neutrons is developed. The accompanying characteristic equation is a polynomial form of the Inhour equation with the same coefficients of the CBM- kinetics model. Those coefficients depend on Universal abc- values which are dependent on the type of the fuel fueling a nuclear reactor. Furthermore, such coefficients are linearly dependent on the inserted reactivity. In this paper, the Universal abc- values have been presented symbolically, for the first time, as well as with their numerical values for U-235 fueled reactors for one, two, three, and six groups of delayed neutrons. Simulation studies for constant and variable reactivity insertions are made for the CBM kinetics model, and a comparison of results, with numerical solutions of classical kinetics models for one, two, three, and six groups of delayed neutrons are presented. The results show good agreements, especially for single step insertion of reactivity, with the advantage of the CBM- solution of not encountering the stiffness problem accompanying the numerical solutions of the classical kinetics model. (author)

  7. Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach

    Energy Technology Data Exchange (ETDEWEB)

    Zaidabadinejad, Majid; Ansarifar, Gholam Reza [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2017-11-15

    In nuclear reactor imbalance of axial power distribution induces xenon oscillations. These fluctuations must be maintained bounded within allowable limits. Otherwise, the nuclear power plant could become unstable. Therefore, bounded these oscillations is considered to be a restriction for the load following operation. Also, in order to design the nuclear reactor control systems, poisons concentrations, especially xenon must be accessible. But, physical measurement of these parameters is impossible. In this paper, for the first time, in order to estimate the axial xenon oscillations and ensures these oscillations are kept bounded within allowable limits during load-following operation, a robust observer based nonlinear control based on multipoint kinetics reactor model for pressurized-water nuclear reactors is presented. The reactor core is simulated based on the multi-point nuclear reactor model (neutronic and thermal-hydraulic). Simulation results are presented to demonstrate the effectiveness of the proposed observer based controller for the load-following operation.

  8. Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach

    International Nuclear Information System (INIS)

    Zaidabadinejad, Majid; Ansarifar, Gholam Reza

    2017-01-01

    In nuclear reactor imbalance of axial power distribution induces xenon oscillations. These fluctuations must be maintained bounded within allowable limits. Otherwise, the nuclear power plant could become unstable. Therefore, bounded these oscillations is considered to be a restriction for the load following operation. Also, in order to design the nuclear reactor control systems, poisons concentrations, especially xenon must be accessible. But, physical measurement of these parameters is impossible. In this paper, for the first time, in order to estimate the axial xenon oscillations and ensures these oscillations are kept bounded within allowable limits during load-following operation, a robust observer based nonlinear control based on multipoint kinetics reactor model for pressurized-water nuclear reactors is presented. The reactor core is simulated based on the multi-point nuclear reactor model (neutronic and thermal-hydraulic). Simulation results are presented to demonstrate the effectiveness of the proposed observer based controller for the load-following operation.

  9. Investigation of base isolation for fast breeder reactor building

    International Nuclear Information System (INIS)

    Morishita, M.; Kobatake, M.; Ohta, K.; Okada, Y.

    1989-01-01

    Achievement of great rationalization for seismic-resistant design of equipment system is necessary and indispensable from the viewpoints of economical and structural validity for a fast breeder reactor to be made practical. The method of reducing seismic loads on the building and equipment by application of base isolation may be an effective method, but in application to nuclear facilities, it will become necessary to examine the feasibility to actual design considering the severe seismic design requirements in Japan. With these considerations as the background, the authors carried out analytical studies from various viewpoints such as restoring force characteristics of base isolation device, influence of input earthquake motion, soil-structure interaction in base- isolated structure, etc. in case of providing base isolation system for a fast breeder reactor building. Based on these analytical studies, vibration tests on a base-isolated structure using a triaxial shaking table and simulation analyses of the tests were performed attempting to verify the effectiveness of the base isolation system and appropriateness of the analysis method. Results are presented

  10. Determination of the thermal and epithermal neutron sensitivities of an LBO chamber

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Satoru; Kotani, Kei; Kajimoto, Tsuyoshi; Tanaka, Kenichi [Hiroshima University, Quantum Energy Applications, Graduate School of Engineering, Higashi-Hiroshima (Japan); Sato, Hitoshi; Nakajima, Erika [Ibaraki Prefectural University of Health Science, Radiological Sciences, Ibaraki (Japan); Shimazaki, Takuto [Hiroshima University, Quantum Energy Applications, Graduate School of Engineering, Higashi-Hiroshima (Japan); Delta Kogyo Co., Ltd., Hiroshima (Japan); Suda, Mitsuru; Hamano, Tsuyoshi [National Institute of Radiological Sciences, Chiba-Shi, Chiba (Japan); Hoshi, Masaharu [Hiroshima University, Institute for Peace Science, Hiroshima (Japan)

    2017-08-15

    An LBO (Li{sub 2}B{sub 4}O{sub 7}) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the {sup 9}Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm{sup 2}, i.e., from the chamber response divided by neutron fluence (cm{sup -2}). The measured LBO chamber sensitivities were 2.23 x 10{sup -7} ± 0.34 x 10{sup -7} (pC cm{sup 2}) for thermal neutrons and 2.00 x 10{sup -5} ± 0.12 x 10{sup -5} (pC cm{sup 2}) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation. (orig.)

  11. Determination of uranium in tree bark samples by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Lima, Nicole Pereira de; Saiki, Mitiko

    2017-01-01

    In this study uranium (U) concentrations were determined in certified reference materials (CRMs) and in tree bark samples collected in 'Cidade Universitaria Armando de Salles Oliveira' (CUASO) USP, Sao Paulo, SP, Brazil). The barks were collected from different species namely Poincianella pluviosa and Tipuana tipu. These bark samples were cleaned, dried, grated and milled for the analyses by epithermal neutron activation analysis method (ENAA). This method consists on irradiating samples and U standard in IEAR1 nuclear reactor with thermal neutron flux of 1:9 x 10 12 n cm -2 s -1 during 40 to 60 seconds depending on the samples matrices. The samples and standard were measured by gamma ray spectroscopy. U was identified by the peak of 74.66 keV of 239 U with half life of 23.47 minutes. Concentration of U was calculated by comparative method. For analytical quality control of U results, certified reference materials were analysed. Results obtained for CRMs presented good precision and accuracy, with |Z score| <= 0.39. Uranium concentrations in tree barks varied from 83.1 to 627.6 ng g - 1 and the relative standard deviations of these results ranged from 1.8 to 10%. (author)

  12. Determination of uranium in tree bark samples by epithermal neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Nicole Pereira de; Saiki, Mitiko, E-mail: mitiko@ipen.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    In this study uranium (U) concentrations were determined in certified reference materials (CRMs) and in tree bark samples collected in 'Cidade Universitaria Armando de Salles Oliveira' (CUASO) USP, Sao Paulo, SP, Brazil). The barks were collected from different species namely Poincianella pluviosa and Tipuana tipu. These bark samples were cleaned, dried, grated and milled for the analyses by epithermal neutron activation analysis method (ENAA). This method consists on irradiating samples and U standard in IEAR1 nuclear reactor with thermal neutron flux of 1:9 x 10{sup 12} n cm{sup -2} s{sup -1} during 40 to 60 seconds depending on the samples matrices. The samples and standard were measured by gamma ray spectroscopy. U was identified by the peak of 74.66 keV of {sup 239}U with half life of 23.47 minutes. Concentration of U was calculated by comparative method. For analytical quality control of U results, certified reference materials were analysed. Results obtained for CRMs presented good precision and accuracy, with |Z score| <= 0.39. Uranium concentrations in tree barks varied from 83.1 to 627.6 ng g{sup -} {sup 1} and the relative standard deviations of these results ranged from 1.8 to 10%. (author)

  13. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  14. Internal-standard method for the determination of uranium, thorium, lanthanum and europium in carbonaceous shale and monazite by epithermal neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuenn-Gang; Tsai, Hui-Tuh; Wu, Shaw-Chii [Institute of Nuclear Energy Research, Lung-Tan (Taiwan, Republic of China)

    1981-10-03

    An internal-standard method was applied for the determination of uranium, thorium, lanthanum and europium is carbonaceous shale samples and monazite sand by epithermal neutron activation analysis using gold as an internal standard element. The samples were irradiated in a zero-power reactor at the Institute of Nuclear Energy Research and measured with a high-resolution Ge(Li) detector. The detection limit is 0.1 ppm for uranium and europium, 1 ppm for thorium, 5 ppm for lanthanum, and the realative error of all elements is within +-2.6%.

  15. Photocatalytic hydrogen production under direct solar light in a CPC based solar reactor: Reactor design and preliminary results

    International Nuclear Information System (INIS)

    Jing Dengwei; Liu Huan; Zhang Xianghui; Zhao Liang; Guo Liejin

    2009-01-01

    In despite of so many types of solar reactors designed for solar detoxification purposes, few attempts have been made for photocatalytic hydrogen production, which in our option, is one of the most promising approaches for solar to chemical energy conversion. Addressing both the similarity and dissimilarity for these two processes and by fully considering the special requirements for the latter reaction, a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar reactor has been designed for the first time. The design and optimization of this CPC based solar reactor has been discussed in detail. Preliminary results demonstrated that efficient photocatalytic hydrogen production under direct solar light can be accomplished by coupling tubular reactors with CPC concentrators. It is anticipated that this first demonstration of concentrator-based solar photocatalytic hydrogen production would draw attention for further studies in this promising direction.

  16. Boron Neutron Capture Therapy at European research reactors - Status and perspectives

    International Nuclear Information System (INIS)

    Moss, R.L.

    2004-01-01

    Over the last decade. there has been a significant revival in the development of Boron Neutron Capture Therapy (BNCT) as a treatment modality for curing cancerous tumours, especially glioblastoma multiforme and subcutaneous malignant melanoma. In 1987 a European Collaboration on BNCT was formed, with the prime task to identify suitable research reactors in Europe where BNCT could be applied. Due to reasons discussed in this paper, the HFR Petten was chosen as the test-bed for demonstrating BNCT. Currently, the European Collaboration is approaching the start of clinical trials, using epithermal neutrons and borocaptate sodium (BSH) as the 10 B delivery agent. The treatment is planned to start in the first half of 1996. The paper here presents an overview on the principle of BNCT, the requirements imposed on a research reactor in order to be considered for BNCT, and the perspectives for other European materials testing reactors. A brief summary on the current status of the work at Petten is given, including: the design, construction and characterisation of the epithermal neutron beam: performance and results of the healthy tissue tolerance study; the development of a treatment planning programme based on the Monte Carlo code MCNP; the design of an irradiation room; and on the clinical trials themselves. (author)

  17. Epithermal neutron activation analysis of Spirulina platensis biomass, of the C-phycocianin and of DNA extracted from it

    International Nuclear Information System (INIS)

    Mosulishvili, L.M.; Belokobyl'skij, A.I.; Kirkesali, E.I.; Khizanishvili, A.I.; Frontas'eva, M.V.; Pomyakushina, E.V.

    2002-01-01

    The epithermal neutron activation analysis (ENAA) was used for study of the biomass of Spirulina platensis. The background levels of concentration of 27 macro-, micro- and trace elements ranging from 10 -3 up to 10 4 ppm were determined. It was found that the biomass of Spirulina does not contain toxic elements above the tolerance levels and can be utilized as a matrix of pharmaceuticals based on it. The concentrations of basic elements in C-phycocianin and DNA extracted from Spirulina platensis were determined by ENAA. A comparison of the element content of a whole Spirulina biomass with that of a refined C-phycocianin preparation was made

  18. Epithermal Neutron Activation Analysis of Spirulina platensis Biomass, of the C-Phycocianin and of DNA Extracted from It

    CERN Document Server

    Mosulishvili, L M; Belokobylsky, A I; Kirkesali, E I; Khizanishvili, A I; Pomyakushina, E V

    2002-01-01

    The epithermal neutron activation analysis (ENAA) was used for study of the biomass of Spirulina platensis. The background levels of concentration 27 macro-, micro- and trace elements ranging from 10^{-3} up to 10^{4} ppm were determined. It was found that the biomass of spirulina does not contain toxic elements above the tolerance levels and can be utilized as a matrix of pharmaceuticals based on it. The concentrations of basic elements in C-phycocianin and DNA extracted from Spirulina platensis were determined by ENAA. A comparison of the element content of a whole spirulina biomass with that of a refined C-phycocianin preparation was made.

  19. Laser-Based Maintenance and Repair Technologies for Reactor Components

    International Nuclear Information System (INIS)

    Masaki Yoda; Naruhiko Mukai; Makoto Ochiai; Masataka Tamura; Satoshi Okada; Katsuhiko Sato; Motohiko Kimura; Yuji Sano; Noboru Saito; Seishi Shima; Tetsuo Yamamoto

    2004-01-01

    Toshiba has developed various laser-based maintenance and repair technologies and applied them to existing nuclear power plants. Laser-based technology is considered to be the best tool for remote processing in nuclear power plants, and particularly so for the maintenance and repair of reactor core components. Accessibility could be drastically improved by a simple handling system owing to the absence of reactive force against laser irradiation and the flexible optical fiber. For the preventive maintenance, laser peening (LP) technology was developed and applied to reactor components in operating BWR plants. LP is a novel process to improve residual stress from tensile to compressive on material surface layer by irradiating focused high-power laser pulses in water. We have developed a fiber-delivered LP system as a preventive maintenance measure against stress corrosion cracking (SCC). Laser ultrasonic testing (LUT) has a great potential to be applied to the remote inspection of reactor components. Laser-induced surface acoustic wave (SAW) inspection system was developed using a compact probe with a multi-mode optical fiber and an interferometer. The developed system successfully detected a micro slit of 0.5 mm depth on weld metal and heat-affected zone (HAZ). An artificial SCC was also detected by the system. We are developing a new LP system combined with LUT to treat the inner surface of bottom-mounted instruments (BMI) of PWR plants. Underwater laser seal welding (LSW) technology was also developed to apply surface crack. LSW is expected to isolate the crack tip from corrosive water environment and to stop the propagation of the crack. Rapid heating and cooling of the process minimize the heat effect, which extends the applicability to neutron-irradiated material. This paper describes recent advances in the development and application of such laser-based technologies. (authors)

  20. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  1. Spent fuel data base: commercial light water reactors

    International Nuclear Information System (INIS)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel

  2. MHTGR: New production reactor summary of experience base

    International Nuclear Information System (INIS)

    1988-03-01

    Worldwide interest in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) stems from the capability of the system to retain the advanced fuel and thermal performance while providing unparalleled levels of safety. The small power level of the MHTGR and its passive systems give it a margin of safety not attained by other concepts being developed for power generation. This report covers the experience base for the key nuclear system, components, and processes related to the MHTGR-NPR. 9 refs., 39 figs., 9 tabs

  3. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  4. Reactor-Based Plutonium Disposition: Opportunities, Options, and Issues

    International Nuclear Information System (INIS)

    Greene, S.R.

    1999-01-01

    The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U. S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s, with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s--1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium--and favorable fuel performance was observed--the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modern fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway

  5. A simulator-based nuclear reactor emergency response training exercise.

    Science.gov (United States)

    Waller, Edward; Bereznai, George; Shaw, John; Chaput, Joseph; Lafortune, Jean-Francois

    Training offsite emergency response personnel basic awareness of onsite control room operations during nuclear power plant emergency conditions was the primary objective of a week-long workshop conducted on a CANDU® virtual nuclear reactor simulator available at the University of Ontario Institute of Technology, Oshawa, Canada. The workshop was designed to examine both normal and abnormal reactor operating conditions, and to observe the conditions in the control room that may have impact on the subsequent offsite emergency response. The workshop was attended by participants from a number of countries encompassing diverse job functions related to nuclear emergency response. Objectives of the workshop were to provide opportunities for participants to act in the roles of control room personnel under different reactor operating scenarios, providing a unique experience for participants to interact with the simulator in real-time, and providing increased awareness of control room operations during accident conditions. The ability to "pause" the simulator during exercises allowed the instructors to evaluate and critique the performance of participants, and to provide context with respect to potential offsite emergency actions. Feedback from the participants highlighted (i) advantages of observing and participating "hands-on" with operational exercises, (ii) their general unfamiliarity with control room operational procedures and arrangements prior to the workshop, (iii) awareness of the vast quantity of detailed control room procedures for both normal and transient conditions, and (iv) appreciation of the increased workload for the operators in the control room during a transient from normal operations. Based upon participant feedback, it was determined that the objectives of the training had been met, and that future workshops should be conducted.

  6. Reactor-based plutonium disposition: Opportunities, options, and issues

    International Nuclear Information System (INIS)

    Greene, S.

    2000-01-01

    The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U.S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s-1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium - and favorable fuel performance was observed - the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modem fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway. (author)

  7. BN800: The advanced sodium cooled fast reactor plant based on close fuel cycle

    International Nuclear Information System (INIS)

    Wu Xingman

    2011-01-01

    As one of the advanced countries with actually fastest reactor technology, Russia has always taken a leading role in the forefront of the development of fast reactor technology. After successful operation of BN600 fast reactor nuclear power station with a capacity of six hundred thousand kilowatts of electric power for nearly 30 years, and after a few decades of several design optimization improved and completed on its basis, it is finally decided to build Unit 4 of Beloyarsk nuclear power station (BN800 fast reactor power station). The BN800 fast reactor nuclear power station is considered to be the project of the world's most advanced fast reactor nuclear power being put into implementation. The fast reactor technology in China has been developed for decades. With the Chinese pilot fast reactor to be put into operation soon, the Chinese model fast reactor power station has been put on the agenda. Meanwhile, the closed fuel cycle development strategy with fast reactor as key aspect has given rise to the concern of experts and decision-making level in relevant areas. Based on the experiences accumulated in many years in dealing the Sino-Russian cooperation in fast reactor technology, with reference to the latest Russian published and authoritative literatures regarding BN800 fast reactor nuclear power station, the author compiled this article into a comprehensive introduction for reference by leaders and experts dealing in the related fields of nuclear fuel cycle strategy and fast reactor technology development researches, etc. (authors)

  8. IDAS-RR: an incident data base system for research reactors

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Kohsaka, Atsuo; Kaminaga, Masanori; Murayama, Youji; Ohnishi, Nobuaki; Maniwa, Masaki.

    1990-03-01

    An Incident Data Base System for Research Reactors, IDAS-RR, has been developed. IDAS-RR has information about abnormal incidents (failures, transients, accidents, etc.) of research reactors in the world. Data reference, input, editing and other functions of IDAS-RR are menu driven. The routine processing and data base management functions are performed by the system software and hardware. PC-9801 equipment was selected as the hardware because of its portability and popularity. IDAS-RR provides effective reference information for the following activities. 1) Analysis of abnormal incident of research reactors, 2) Detail analysis of research reactor behavior in the abnormal incident for building the knowledge base of the reactor emergency diagnostic system for research reactor, 3) Planning counter-measure for emergency situation in the research reactor. This report is a user's manual of IDAS-RR. (author)

  9. Research on perturbation based Monte Carlo reactor criticality search

    International Nuclear Information System (INIS)

    Li Zeguang; Wang Kan; Li Yangliu; Deng Jingkang

    2013-01-01

    Criticality search is a very important aspect in reactor physics analysis. Due to the advantages of Monte Carlo method and the development of computer technologies, Monte Carlo criticality search is becoming more and more necessary and feasible. Traditional Monte Carlo criticality search method is suffered from large amount of individual criticality runs and uncertainty and fluctuation of Monte Carlo results. A new Monte Carlo criticality search method based on perturbation calculation is put forward in this paper to overcome the disadvantages of traditional method. By using only one criticality run to get initial k_e_f_f and differential coefficients of concerned parameter, the polynomial estimator of k_e_f_f changing function is solved to get the critical value of concerned parameter. The feasibility of this method was tested. The results show that the accuracy and efficiency of perturbation based criticality search method are quite inspiring and the method overcomes the disadvantages of traditional one. (authors)

  10. Space nuclear reactor system diagnosis: Knowledge-based approach

    International Nuclear Information System (INIS)

    Ting, Y.T.D.

    1990-01-01

    SP-100 space nuclear reactor system development is a joint effort by the Department of Energy, the Department of Defense and the National Aeronautics and Space Administration. The system is designed to operate in isolation for many years, and is possibly subject to little or no remote maintenance. This dissertation proposes a knowledge based diagnostic system which, in principle, can diagnose the faults which can either cause reactor shutdown or lead to another serious problem. This framework in general can be applied to the fully specified system if detailed design information becomes available. The set of faults considered herein is identified based on heuristic knowledge about the system operation. The suitable approach to diagnostic problem solving is proposed after investigating the most prevalent methodologies in Artificial Intelligence as well as the causal analysis of the system. Deep causal knowledge modeling based on digraph, fault-tree or logic flowgraph methodology would present a need for some knowledge representation to handle the time dependent system behavior. A proposed qualitative temporal knowledge modeling methodology, using rules with specified time delay among the process variables, has been proposed and is used to develop the diagnostic sufficient rule set. The rule set has been modified by using a time zone approach to have a robust system design. The sufficient rule set is transformed to a sufficient and necessary one by searching the whole knowledge base. Qualitative data analysis is proposed in analyzing the measured data if in a real time situation. An expert system shell - Intelligence Compiler is used to develop the prototype system. Frames are used for the process variables. Forward chaining rules are used in monitoring and backward chaining rules are used in diagnosis

  11. Tungsten-based composite materials for fusion reactor shields

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1985-01-01

    Composite tungsten-based materials were recently proposed for the heavy constituent of compact fusion reactor shields. These composite materials will enable the incorporation of tungsten - the most efficient nonfissionable inelastic scattering (as well as good neutron absorbing and very good photon attenuating) material - in the shield in a relatively cheap way and without introducing voids (so as to enable minimizing the shield thickness). It is proposed that these goals be achieved by bonding tungsten powder, which is significantly cheaper than high-density tungsten, with a material having the following properties: good shielding ability and relatively low cost and ease of fabrication. The purpose of this work is to study the effectiveness of the composite materials as a function of their composition, and to estimate the economic benefit that might be gained by the use of these materials. Two materials are being considered for the binder: copper, second to tungsten in its shielding ability, and iron (or stainless steel), the common fusion reactor shield heavy constituent

  12. IBM-PC-based reactor neutronics analysis package

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wessol, D.E.; Grimesey, R.A.; Parsons, D.K.; Wheeler, F.J.; Yoon, W.Y.; Lake, J.A.

    1985-01-01

    Technical advances over the past few years have led to a situation where a wide range of complex scientific computations can now be done on properly configured microcomputers such as the IBM-PC (personal computer). For a number of reasons, including security, economy, and user convenience, the development of a comprehensive system of reactor neutronics codes suitable for operation on the IBM-PC has been undertaken at the Idaho National Engineering Laboratory (INEL). It is anticipated that a PC-based code system could also have wide applicability in the nuclear engineering education community since conversion of software generated by national laboratories and others to college and university mainframe hardware has historically been a time-consuming process that has sometimes met with only limited success. This paper discusses the philosophy behind the INEL reactor neutronics PC code system and describes those parts of the system that are currently complete, those that are now under development, and those that are still in the planning stage

  13. Method and apparatus for epithermal neutron decay logging

    International Nuclear Information System (INIS)

    Nelligan, W.B.

    1998-01-01

    The nature of hydrogenous fluids filling the pore spaces in formations surrounding a well bore are determined by irradiating the formations with bursts of high energy neutrons and using the ratio of time-dependent parameters related to the decay of epithermal neutron populations above two different energy levels to provide values indicative of the kind of fluid present, independent of porosity. The measurement above the higher of these energy levels, appr. 0.4eV, indicates the existence of hydrogenous fluid, water and hydrocarbons in the formations. The lower threshold measurement, above appr. 0.15eV, is indicative of the structure of the molecule in which the hydrogen molecule is bound and of the porosity. A pulsed neutron generator in a sonde irradiates the formations with 14meV neutrons and a pair of detectors, one shielded by cadmium, to establish the 0.4eV threshold energy level and the other, shielded by gadolinium, to establish the 0.15eV threshold energy level. Time related parameters of the count rate information, e.g. the decay constants, provided by each detector are derived. The ratio of the respective parameters is used to identify the type of fluid in the information, independent of porosity. The method and apparatus can determine water saturation, i.e. percentage of water in the formation fluid and can identify specific types of hydrocarbons under 100% hydrocarbon saturation conditions. 8 figs

  14. GENERIC, COMPONENT FAILURE DATA BASE FOR LIGHT WATER AND LIQUID SODIUM REACTOR PRAs

    Energy Technology Data Exchange (ETDEWEB)

    S. A. Eide; S. V. Chmielewski; T. D. Swantz

    1990-02-01

    A comprehensive generic component failure data base has been developed for light water and liquid sodium reactor probabilistic risk assessments (PRAs) . The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) and the Centralized Reliability Data Organization (CREDO) data bases were used to generate component failure rates . Using this approach, most of the failure rates are based on actual plant data rather than existing estimates .

  15. Micro processor based research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Hyde, W.K.

    1987-01-01

    The system consists of a Control System Computer (CSC) incorporated into a Reactor Control Console (RCC) and a Data Acquisition and Control Unit (DAC) adjacent to the reactor. The CSC has a high resolution color graphics CRT monitor which provides real-time graphic simulation of the reactor and a number of bar graphs displaying strategic parameters of the reactor system. In addition, abnormal or dangerous conditions are displayed. The CSC is equipped with two printers eliminating manual logging of reactor data. The reactor display and pulse mode display may also be printed. Historical data is saved in the system's large capacity memory and may be replayed and/or printed. Because of the CSC's inherent high speed math capability, raw reactor data will be quickly converted and displayed in real-time. Data can be presented in meaningful engineering units. The DAC provides a high speed data acquisition and control capability adjacent to the reactor. It continuously collects data from the reactor system, concentrates the data into a database and transmits it to the CSC when requested. Data transmission is over one of two data trunks to the CSC. The secondary trunk is used if the primary trunk fails. The data trunks drastically reduce the wiring requirements between the reactor and the Control Console. During steady-state operation of the reactor, operator commands to adjust the rod positions is transmitted from the CSC to the DAC which re-issues the commands to the drive mechanisms. In the automatic mode, the DAC will control the position of the rods via a PID algorithm. The system is independently monitored by two or more safety computers. Their function is to monitor the power level, the rate of change of power and fuel temperature of the reactor and to independently shut the reactor down in the event of a potentially dangerous (scram) condition. (author)

  16. ESR-dosimetry in thermal and epithermal neutron fields for application in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias

    2016-01-22

    Dosimetry is essential for every form of radiotherapy. In Boron Neutron Capture Therapy (BNCT) mixed neutron and gamma fields have to be considered. Dose is deposited in different neutron interactions with elements in the penetrated tissue and by gamma particles, which are always part of a neutron field. The therapeutic dose in BNCT is deposited by densely ionising particles, originating from the fragmentation of the isotope boron-10 after capture of a thermal neutron. Despite being investigated for decades, dosimetry in neutron beams or fields for BNCT remains complex, due to the variety in type and energy of the secondary particles. Today usually ionisation chambers combined with metal foils are used. The applied techniques require extensive effort and are time consuming, while the resulting uncertainties remain high. Consequently, the investigation of more effective techniques or alternative dosimeters is an important field of research. In this work the possibilities of ESR-dosimeters in those fields have been investigated. Certain materials, such as alanine, generate stable radicals upon irradiation. Using Electron Spin Resonance (ESR) spectrometry the amount of radicals, which is proportional to absorbed dose, can be quantified. Different ESR detector materials have been irradiated in the thermal neutron field of the research reactor TRIGA research reactor in Mainz, Germany, with five setups, generating different secondary particle spectra. Further irradiations have been conducted in two epithermal neutron beams. The detector response, however, strongly depends on the dose depositing particle type and energy. It is hence necessary to accompany measurements by computational modelling and simulation. In this work the Monte Carlo code FLUKA was used to calculate absorbed doses and dose components. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using amorphous track models. For the simulation, detailed models of

  17. Advanced propulsion engine assessment based on a cermet reactor

    Science.gov (United States)

    Parsley, Randy C.

    1993-01-01

    A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.

  18. An Open Source-based Approach to the Development of Research Reactor Simulator

    International Nuclear Information System (INIS)

    Joo, Sung Moon; Suh, Yong Suk; Park, Cheol Park

    2016-01-01

    In reactor design, operator training, safety analysis, or research using a reactor, it is essential to simulate time dependent reactor behaviors such as neutron population, fluid flow, and heat transfer. Furthermore, in order to use the simulator to train and educate operators, a mockup of the reactor user interface is required. There are commercial software tools available for reactor simulator development. However, it is costly to use those commercial software tools. Especially for research reactors, it is difficult to justify the high cost as regulations on research reactor simulators are not as strict as those for commercial Nuclear Power Plants(NPPs). An open source-based simulator for a research reactor is configured as a distributed control system based on EPICS framework. To demonstrate the use of the simulation framework proposed in this work, we consider a toy example. This example approximates a 1-second impulse reactivity insertion in a reactor, which represents the instantaneous removal and reinsertion of a control rod. The change in reactivity results in a slightly delayed change in power and corresponding increases in temperatures throughout the system. We proposed an approach for developing research reactor simulator using open source software tools, and showed preliminary results. The results demonstrate that the approach presented in this work can provide economical and viable way of developing research reactor simulators

  19. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2011-10-15

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  20. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    International Nuclear Information System (INIS)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon

    2011-01-01

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  1. Development of the Very Low Angle Detector (VLAD) for detection of epithermal neutrons at low momentum transfers

    International Nuclear Information System (INIS)

    Tardocchi, M.; Andreani, C.; Cremonesi, O.; Gorini, G.; Perelli-Cippo, E.; Pietropaolo, A.; Rhodes, N.; Schooneveld, E.; Senesi, R.

    2006-01-01

    New perspectives for epithermal neutron spectroscopy are opened up by the recent development of new instrumentation for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank which will be installed as an upgrade of the VESUVIO neutron spectrometer, at the ISIS pulsed neutron source. VLAD is developed for detecting epithermal neutrons in the 1-100 eV energy range at very low scattering angles (l deg. - 5 deg.). VLAD will extend the kinematical region covered by today's neutron scattering experiments to the region of low wave vector transfers ( -1 ) and high energy transfers (>1 eV). Accessing such kinematical region will allow new experimental studies in condensed matter systems. The neutron detection is based on Resonance Detectors (RD), which consist of the combination of a resonance foil used as neutron-to-gamma converter and a photon detector. The results obtained with a prototype VLAD detector confirm the potential of this kind of experiments at scattering angles as low as 2 deg. - 5 deg. GEANT4 simulations are used to address issues, such as detector cross talk, which arise with the construction of compact RD arrays

  2. Comparison of Cadmium-Zinc-Telluride semiconductor and Yttrium-Aluminum-Perovskite scintillator as photon detectors for epithermal neutron spectroscopy

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Gorini, G.; Imberti, S.; Perelli-Cippo, E.; Senesi, R.; Rhodes, N.; Schooneveld, E.M.

    2006-01-01

    The range of applications of epithermal neutron scattering experiments has been recently extended by the development of the Resonance Detector. In a Resonance Detector, resonant neutron absorption in an analyzer foil results in prompt emission of X- and γ-rays which are detected by a photon counter. Several combinations of analyzer foils and photon detectors have been studied and tested over the years and best results have been obtained with the combination of a natural uranium and (i) Cadmium-Zinc-Telluride (CZT) semiconductor (ii) Yttrium-Aluminum-Perovskite (YAP) scintillators. Here we compare the performance of the CZT semiconductor and YAP scintillator as Resonance Detector units. Two Resonance Detector prototypes made of natural uranium foil viewed by CZT and YAP were tested on the VESUVIO spectrometer at the ISIS spallation neutron source. The results show that both YAP and CZT can be used to detect epithermal neutrons in the energy range from 1 up to 66 eV. It was found that the signal-to-background ratio of the measurement can significantly be improved by raising the lower level discrimination threshold on the γ energy to about 600 keV. The advantages/disadvantages of the choice of a Resonance Detector based on YAP or CZT are discussed together with some potential applications

  3. Data base formation for important components of reactor TRIGA MARK II

    International Nuclear Information System (INIS)

    Jordan, R.; Mavko, B.; Kozuh, M.

    1992-01-01

    The paper represents specific data base formation for reactor TRIGA MARK II in Podgorica. Reactor operation data from year 1985 to 1990 were collected. Two groups of collected data were formed. The first group includes components data and the second group covers data of reactor scrams. Time related and demand related models were used for data evaluation. Parameters were estimated by classical method. Similar data bases are useful everywhere where components unavailabilities may have severe drawback. (author) [sl

  4. Fuel qualification issues and strategies for reactor-based surplus plutonium disposition

    International Nuclear Information System (INIS)

    Cowell, B.S.; Copeland, G.L.; Moses, D.L.

    1997-08-01

    The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs)

  5. Model Based Cyber Security Analysis for Research Reactor Protection System

    International Nuclear Information System (INIS)

    Sho, Jinsoo; Rahman, Khalil Ur; Heo, Gyunyoung; Son, Hanseong

    2013-01-01

    The study on the qualitative risk due to cyber-attacks into research reactors was performed using bayesian Network (BN). This was motivated to solve the issues of cyber security raised due to digitalization of instrumentation and control (I and C) system. As a demonstrative example, we chose the reactor protection system (RPS) of research reactors. Two scenarios of cyber-attacks on RPS were analyzed to develop mitigation measures against vulnerabilities. The one is the 'insertion of reactor trip' and the other is the 'scram halt'. The six mitigation measures are developed for five vulnerability for these scenarios by getting the risk information from BN

  6. Evaluation of nuclear reactor based activation analysis techniques

    International Nuclear Information System (INIS)

    Obrusnik, I.; Kucera, J.

    1977-09-01

    A survey is presented of the basic types of activation analysis applied in environmental control. Reactor neutron activation analysis is described (including the reactor as a neutron source, sample activation in the reactor, methodology of neutron activation analysis, sample transport into the reactor and sample packaging after irradiation, instrumental activation analysis with radiochemical separation, data measurement and evaluation, sampling and sample preparation). Sources of environmental contamination with trace elements, sampling and sample analysis by neutron activation are described. The analysis is described of soils, waters and biological materials. Methods are shown of evaluating neutron activation analysis results and of their interpretation for purposes of environmental control. (J.B.)

  7. Development Plan and R and D Status of China Lead-based Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yican; Bai, Yunqing; Song, Yong; Li, Yazhou; Team, FDS [Institute of Nuclear Energy Safety Technology, Beijing (Switzerland)

    2013-07-01

    Chinese Academy of Sciences (CAS) launched an engineering project to develop ADS system and lead-based reactors named China LEAd-based Reactor (CLEAR) series. The Institute of Nuclear Energy Safety Technology (INEST) will be responsible for the CLEAR design and R and D. In this project, CAS plans to develop the lead-based reactors through 3 phases which are 10MWth lead based research reactor (CLEAR-I), 100MWth lead-based experimental reactor (CLEAR-II), 1000MWth lead-based demonstration reactor (CLEAR-III). As a pre-testing facility, a lead-based zero-power reactor (CLEAR-0) is required to be built before CLEAR-I construction and operation. The new conceptual design of lead-based reactors, including hydrogen production, tritium production for fusion energy and thorium utilization, is also on-going. Lead-lithium cooled fusion reactor blanket design and lead-lithium experimental loops have been developed more than 10 years. CLEAR series reactor conceptual design has been finished and detailed engineering design for CLEAR-I is underway. The R and D activities for CLEAR reactor including design and safety software, key components, structural materials, lead-based experimental loops and neutronics experimental platform are developing. Series of liquid lead-based experimental loops named DRAGON (Lead-Lithium) and KYLIN (Lead-Bismuth) have already been built or on constructing to performed experiments investigating the structure material corrosion issues and the thermal-hydraulic properties of lead-based coolant. The Highly Intensified D-T Neutron Generator HINEG for neutron experiment and software validation will be constructed. Series advanced reactor design software and nuclear library have been developed for lead-alloy cooled reactor, including CAD based Multi-Functional 4D Neutronics Simulation System (Visual Bus), Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM), Super Monte Carlo Simulation Program (SuperMC), Nuclear Radiation

  8. Development Plan and R and D Status of China Lead-based Reactor

    International Nuclear Information System (INIS)

    Wu, Yican; Bai, Yunqing; Song, Yong; Li, Yazhou; Team, FDS

    2013-01-01

    Chinese Academy of Sciences (CAS) launched an engineering project to develop ADS system and lead-based reactors named China LEAd-based Reactor (CLEAR) series. The Institute of Nuclear Energy Safety Technology (INEST) will be responsible for the CLEAR design and R and D. In this project, CAS plans to develop the lead-based reactors through 3 phases which are 10MWth lead based research reactor (CLEAR-I), 100MWth lead-based experimental reactor (CLEAR-II), 1000MWth lead-based demonstration reactor (CLEAR-III). As a pre-testing facility, a lead-based zero-power reactor (CLEAR-0) is required to be built before CLEAR-I construction and operation. The new conceptual design of lead-based reactors, including hydrogen production, tritium production for fusion energy and thorium utilization, is also on-going. Lead-lithium cooled fusion reactor blanket design and lead-lithium experimental loops have been developed more than 10 years. CLEAR series reactor conceptual design has been finished and detailed engineering design for CLEAR-I is underway. The R and D activities for CLEAR reactor including design and safety software, key components, structural materials, lead-based experimental loops and neutronics experimental platform are developing. Series of liquid lead-based experimental loops named DRAGON (Lead-Lithium) and KYLIN (Lead-Bismuth) have already been built or on constructing to performed experiments investigating the structure material corrosion issues and the thermal-hydraulic properties of lead-based coolant. The Highly Intensified D-T Neutron Generator HINEG for neutron experiment and software validation will be constructed. Series advanced reactor design software and nuclear library have been developed for lead-alloy cooled reactor, including CAD based Multi-Functional 4D Neutronics Simulation System (Visual Bus), Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM), Super Monte Carlo Simulation Program (SuperMC), Nuclear Radiation

  9. Comparison of the transient behavior of lead-based advanced critical and sub-critical reactors

    International Nuclear Information System (INIS)

    Wang Gang; Gu Zhixing; Wang Zhen; Jin Ming; Bai Yunqing

    2014-01-01

    A lead-based reactor developed by FDS Team is proposed in 2011 and designed to be 10 MW. It is a pool type reactor and the primary coolant is driven by natural circulation. The reactor has two operation modes, which are a lead-based critical fast reactor mode and a lead-based sub-critical reactor mode. The conceptual designs of the two modes are both completed by 2013. In this paper, four transient accidents were simulated for both the critical and sub-critical reactors above by NTC-2D code, which is developed by FDS Team for advanced reactor safety analysis. The four accidents were protected and unprotected loss of heat sink accidents (PLOHS and ULOHS), protected and unprotected transient overpower accidents (PTOP and UTOP). The simulation results of the two reactors were compared and analyzed. The results showed that during PLOHS and PTOP accidents for both the two modes, all the key parameters (core power, fuel, cladding and coolant temperatures in the hottest channel) decreased to very small values after the reactor scrammed, which meant the reactors under the two modes were both safe. For ULOHS, the fuel, cladding and coolant temperatures of the sub-critical reactor increased bigger than those of the critical one. For UTOP, the parameters above of the critical fast reactor were much bigger than those of the sub-critical one. The analysis results showed different safety advantages of the lead-based critical fast and sub-critical reactors during different transient accidents. (author)

  10. International centres of excellence based on research reactors

    International Nuclear Information System (INIS)

    Alldred, K.; Tozser, S.M.; Adelfang, P.

    2013-01-01

    A number of high flux research reactors were, or will be constructed. Each of these high flux facilities has the potential to be an important regional or International Centre of Excellence based on Research Reactors (ICERR) and scientific hub for research and materials investigations. Some are so organized currently, but for many there is a strongly national focus and scope for a significant expansion of their international role. There are manifold benefits of an expanded international role both for the ICERR's themselves and for the institutes that affiliate with them. These benefits include increased utilization and financial stability, increased international prestige, and enhanced scientific resources and capabilities. There are significant hurdles to obtaining the benefits from an expanded international role. For example, to achieve its full potential an ICERR must accommodate scientists from other nations, and include the plans and aspirations of the international community in the ICERR governance. The ICERR must also fully meet the national responsibilities for safety and security. Balancing these potentially conflicting requirements and finding a path through the organisational and legal issues is a significant challenge for any institute. The existing ICERR's therefore provide important case studies and examples of best practice that could inform the actions of other potential ICERR's. This paper describes an IAEA initiative to encourage and support the formation of new ICERR's, strengthen existing ones, and increase training resources available to Member States. The initiative will seek to share best practice and facilitate meetings and technical exchanges between the existing and potential ICERRs, and between the potential ICERR's and potential subscribing or affiliating institutes. (orig.)

  11. International Centers of Excellence based on Research Reactors

    International Nuclear Information System (INIS)

    Alldred, K.; Tozser, S. M.; Adelfang, P.

    2012-01-01

    A number of high flux research reactors were, or will be constructed. Each of these high flux facilities has the potential to be an important regional or International Centre of Excellence based on Research Reactors (ICERR) and scientific hub for research and materials investigations. Some are so organized currently, but for many there is a strongly national focus and scope for a significant expansion of their international role. There are manifold benefits of an expanded international role both for the ICERR's themselves and for the institutes that affiliate with them. These benefits include increased utilization and financial stability, increased international prestige, and enhanced scientific resources and capabilities. There are significant hurdles to obtaining the benefits from an expanded international role. For example, to achieve its full potential an ICERR must accommodate scientists from other nations, and include the plans and aspirations of the international community in the ICERR governance. The ICERR must also fully meet the national responsibilities for safety and security. Balancing these potentially conflicting requirements and finding a path through the organisational and legal issues is a significant challenge for any institute. The existing ICERR's therefore provide important case studies and examples of best practice that could inform the actions of other potential ICERR's. This paper describes an IAEA initiative to encourage and support the formation of new ICERR's, strengthen existing ones, and increase training resources available to Member States. The initiative will seek to share best practice and facilitate meetings and technical exchanges between the existing and potential ICERRs, and between the potential ICERR's and potential subscribing or affiliating institutes. (authors)

  12. Application of reactors for testing neutron-induced upsets in commercial SRAMs

    International Nuclear Information System (INIS)

    Griffin, P.J.; Luera, T.F.; Sexton, F.W.; Cooper, P.J.; Karr, S.G.; Hash, G.L.; Fuller, E.

    1997-01-01

    Reactor neutron environments can be used to test/screen the sensitivity of unhardened commercial SRAMs to low-LET neutron-induced upset. Tests indicate both thermal/epithermal (< 1 keV) and fast neutrons can cause upsets in unhardened parts. Measured upset rates in reactor environments can be used to model the upset rate for arbitrary neutron spectra

  13. Highly corrosion resistant zirconium based alloy for reactor structural material

    International Nuclear Information System (INIS)

    Ito, Yoichi.

    1996-01-01

    The alloy of the present invention is a zirconium based alloy comprising tin (Sn), chromium (Cr), nickel (Ni) and iron (Fe) in zirconium (Zr). The amount of silicon (Si) as an impurity is not more than 60ppm. It is preferred that Sn is from 0.9 to 1.5wt%, that of Cr is from 0.05 to 0.15wt%, and (Fe + Ni) is from 0.17 to 0.5wt%. If not less than 0.12wt% of Fe is added, resistance against nodular corrosion is improved. The upper limit of Fe is preferably 0.40wt% from a view point of uniform suppression for the corrosion. The nodular corrosion can be suppressed by reducing the amount of Si-rich deposition product in the zirconium based alloy. Accordingly, a highly corrosion resistant zirconium based alloy improved for the corrosion resistance of zircaloy-2 and usable for a fuel cladding tube of a BWR type reactor can be obtained. (I.N.)

  14. Compact-toroid fusion reactor based on the field-reversed theta pinch: reactor scaling and optimization for CTOR

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CT) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conduction shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  15. Epithermal neutron beam adoption for lung and pancreatic cancer treatment by boron neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Fukushima, Yuji

    2001-01-01

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreatic cancers using an epithermal neutron beam. The Monte Carlo Neutron Photon (MCNP) calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5 x 10 8 ncm -2 s -1 . The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT using an epithermal neutron beam could be applied for both lung and pancreatic cancer treatment. (author)

  16. Earth formation pulsed neutron porosity logging system utilizing epithermal neutron and inelastic scattering gamma ray detectors

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector and an inelastic scattering gamma ray detector is moved through a borehole. The detection of inelastic gamma rays provides a measure of the fast neutron population in the vicinity of the detector. repetitive bursts of neutrons irradiate the earth formation and, during the busts, inelastic gamma rays representative of the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. the fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  17. TRANSHEX, 2-D Thermal Neutron Flux Distribution from Epithermal Flux in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Patrakka, E.

    1994-01-01

    1 - Description of program or function: TRANSHEX is a multigroup integral transport program that determines the thermal scalar flux distribution arising from a known epithermal flux in two- dimensional hexagonal geometry. 2 - Method of solution: The program solves the isotropic collision probability equations for a region-averaged scalar flux by an iterative method. Either a successive over-relaxation or an inner-outer iteration technique is applied. Flat flux collision probabilities between trigonal space regions with white boundary condition are utilized. The effect of epithermal flux is taken into consideration as a slowing-down source that is calculated for a given spatial distribution and 1/E energy dependence of the epithermal flux

  18. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  19. Core damage frequency (reactor design) perspectives based on IPE results

    International Nuclear Information System (INIS)

    Camp, A.L.; Dingman, S.E.; Forester, J.A.

    1996-01-01

    This paper provides perspectives gained from reviewing 75 Individual Plant Examination (IPE) submittals covering 108 nuclear power plant units. Variability both within and among reactor types is examined to provide perspectives regarding plant-specific design and operational features, and C, modeling assumptions that play a significant role in the estimates of core damage frequencies in the IPEs. Human actions found to be important in boiling water reactors (BWRs) and in pressurized water reactors (PWRs) are presented and the events most frequently found important are discussed

  20. Development of PC-based FFT system for reactor dynamic analysis

    International Nuclear Information System (INIS)

    Ansari, S.; Baig, A.R.

    1993-03-01

    A personal computer based fast fourier transform (FFT) analyzer has been developed for frequency spectrum analysis of signals from nuclear reactor. The system can perform window smoothing, computation of auto- and cross-power spectral density, coherence and auto and cross-correlation functions. The feature of 16 analogue signals acquisition with high precision and high sampling frequency makes the analyzer suitable for malfunction diagnosis of nuclear reactors using reactor noise analysis. The development work for the fourier analyzer was undertaken as a part of IAEA research contract no. 5925/RB. The applications of the FFT analyzer are described in reactor transfer function measurements and nuclear instrumentation channels frequency response testing. (author)

  1. Knowledge-Based operation planning system for boiling water reactors

    International Nuclear Information System (INIS)

    Tatsuya Iwamoto; Shungo Sakurai; Hitoshi Uematsu; Makoto Tsuiki

    1987-01-01

    A knowledge-Based Boiling Water Reactor operation planning system was developed to support core operators or core management engineers in making core operation plans, by automatically generating suboptimum core operation procedures. The procedures are obtained by searching a branching tree of the possible core status (nodes) and the elementary operations to change the core status (branches). A path that ends at the target node, and contains only operationally feasible nodes can be a candidate of the solution. The core eigenvalue, the power distribution and the thermal limit parameters at key points are calculated by running a three-dimensional (3-D) BWR core physics simulator to examine the feasibility of the nodes and the performance of candidates. To obtain a practically acceptable solution within a reasonable time rather than making a time-consuming effort to get the optimum one, the Depth-First-Search method, together with the heuristic branch-bounding, was used to search the branching tree. The system was applied to actual operation plannings with real plant data, and gave satisfactory results. It can be concluded that the system can be applied to generate core operation procedures as a substitute for core management experts

  2. Computer based core monitoring system for an operating CANDU reactor

    International Nuclear Information System (INIS)

    Yoon, Moon Young; Kwon, O Hwan; Kim, Kyung Hwa; Yeom, Choong Sub

    2004-01-01

    The research was performed to develop a CANDU-6 Core Monitoring System(CCMS) that enables operators to have efficient core management by monitoring core power distribution, burnup distribution, and the other important core variables and managing the past core history for Wolsong nuclear power plant unit 1. The CCMS uses Reactor Fueling Simulation Program(RFSP, developed by AECL) for continuous core calculation by integrating the algorithm and assumptions validated and uses the information taken from Digital Control Computer(DCC) for the purpose of producing basic input data. The CCMS has two modules; CCMS server program and CCMS client program. The CCMS server program performs automatic and continuous core calculation and manages overall output controlled by DataBase Management System. The CCMS client program enables users to monitor current and past core status in the predefined GUI(Graphic-User Interface) environment. For the purpose of verifying the effectiveness of CCMS, we compared field-test data with the data used for Wolsong unit 1 operation. In the verification the mean percent differences of both cases were the same(0.008%), which showed that the CCMS could monitor core behaviors well

  3. Model Based Cyber Security Analysis for Research Reactor Protection System

    Energy Technology Data Exchange (ETDEWEB)

    Sho, Jinsoo; Rahman, Khalil Ur; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Son, Hanseong [Joongbu Univ., Geumsan (Korea, Republic of)

    2013-07-01

    The study on the qualitative risk due to cyber-attacks into research reactors was performed using bayesian Network (BN). This was motivated to solve the issues of cyber security raised due to digitalization of instrumentation and control (I and C) system. As a demonstrative example, we chose the reactor protection system (RPS) of research reactors. Two scenarios of cyber-attacks on RPS were analyzed to develop mitigation measures against vulnerabilities. The one is the 'insertion of reactor trip' and the other is the 'scram halt'. The six mitigation measures are developed for five vulnerability for these scenarios by getting the risk information from BN.

  4. A new position-sensitive transmission detector for epithermal neutron imaging

    International Nuclear Information System (INIS)

    Schooneveld, E M; Kockelmann, W; Rhodes, N; Tardocchi, M; Gorini, G; Perelli Cippo, E; Nakamura, T; Postma, H; Schillebeeckx, P

    2009-01-01

    A new neutron resonant transmission (NRT) detector for epithermal neutron imaging has been designed and built for the ANCIENT CHARM project, which is developing a set of complementary neutron imaging methods for analysis of cultural heritage objects. One of the techniques being exploited is NRT with the aim of performing bulk elemental analysis. The 16-pixel prototype NRT detector consists of independent crystals of 2 x 2 mm pixel size, which allow for 2D position-sensitive transmission measurements with epithermal neutrons. First results obtained at the ISIS pulsed spallation neutron source are presented. (fast track communication)

  5. Determination of silicon in biological and botanical reference materials by epithermal INAA and Compton suppression

    International Nuclear Information System (INIS)

    Landsberger, S.; Peshev, S.; Becker, D.A.

    1994-01-01

    Silicon determination in sixteen botanical and biological standard reference materials is described using the 29 Si(n, p) 29 Al reaction through instrumental epithermal neutron activation analysis and Compton suppression gamma-ray spectroscopy. By simultaneous utilization of both cadmium and boron epithermal filters along with anticoincidence gamma-counting, detection limits as low as 12 ppm were obtained for certain matrices, much lower than previously reported values for this type of analysis. The method is applicable to many botanical and biological matrices and is attractive with its interference free, purely instrumental nature, compared with methods using the 28 Si(n, p) 28 Al reaction or chemical separation techniques. ((orig.))

  6. System Requirements Analysis for a Computer-based Procedure in a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaek Wan; Jang, Gwi Sook; Seo, Sang Moon; Shin, Sung Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    This can address many of the routine problems related to human error in the use of conventional, hard-copy operating procedures. An operating supporting system is also required in a research reactor. A well-made CBP can address the staffing issues of a research reactor and reduce the human errors by minimizing the operator's routine tasks. A CBP for a research reactor has not been proposed yet. Also, CBPs developed for nuclear power plants have powerful and various technical functions to cover complicated plant operation situations. However, many of the functions may not be required for a research reactor. Thus, it is not reasonable to apply the CBP to a research reactor directly. Also, customizing of the CBP is not cost-effective. Therefore, a compact CBP should be developed for a research reactor. This paper introduces high level requirements derived by the system requirements analysis activity as the first stage of system implementation. Operation support tools are under consideration for application to research reactors. In particular, as a full digitalization of the main control room, application of a computer-based procedure system has been required as a part of man-machine interface system because it makes an impact on the operating staffing and human errors of a research reactor. To establish computer-based system requirements for a research reactor, this paper addressed international standards and previous practices on nuclear plants.

  7. Use of boron nitride for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Radulović, Vladimir, E-mail: vladimir.radulovic@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Trkov, Andrej [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); IAEA, Vienna International Centre, PO Box 100, A-1400 Vienna (Austria); Jaćimović, Radojko [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Gregoire, Gilles; Destouches, Christophe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St. Paul-Lez-Durance (France)

    2016-12-21

    A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract. - Graphical abstract: Neutron spectra inside the JSI TRIGA Mark II PT irradiation position, obtained with a Monte Carlo calculation: blue: unperturbed, green inside a BN container, of wall thickness 4 mm, 13 mm in diameter and 14 mm in height.

  8. Use of boron nitride for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements

    International Nuclear Information System (INIS)

    Radulović, Vladimir; Trkov, Andrej; Jaćimović, Radojko; Gregoire, Gilles; Destouches, Christophe

    2016-01-01

    A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract. - Graphical abstract: Neutron spectra inside the JSI TRIGA Mark II PT irradiation position, obtained with a Monte Carlo calculation: blue: unperturbed, green inside a BN container, of wall thickness 4 mm, 13 mm in diameter and 14 mm in height.

  9. Nuclear reactor power control system based on flexibility model

    International Nuclear Information System (INIS)

    Li Gang; Zhao Fuyu; Li Chong; Tai Yun

    2011-01-01

    Design the nuclear reactor power control system in this paper to cater to a nonlinear nuclear reactor. First, calculate linear power models at five power levels of the reactor as five local models and design controllers of the local models as local controllers. Every local controller consists of an optimal controller contrived by the toolbox of Optimal Controller Designer (OCD) and a proportion-integration-differentiation (PID) controller devised via Genetic Algorithm (GA) to set parameters of the PID controller. According to the local models and controllers, apply the principle of flexibility model developed in the paper to obtain the flexibility model and the flexibility controller at every power level. Second, the flexibility model and the flexibility controller at a level structure the power control system of this level. The set of the whole power control systems corresponding to global power levels is to approximately carry out the power control of the reactor. Finally, the nuclear reactor power control system is simulated. The simulation result shows that the idea of flexibility model is feasible and the nuclear reactor power control system is effective. (author)

  10. Lead-based Fast Reactor Development Plan and R&D Status in China

    International Nuclear Information System (INIS)

    Wu Yican

    2013-01-01

    • Lead-based fast reactors have good potential for waste transmutation, fuel breeding and energy production, which has been selected by CAS as the advanced reactor development emphasis with the support of ADS program and MFE program. Sharing of technologies R&D is possible among GIF/ADS/Fusion. • The concepts and test strategy of series China lead-based fast reactors (CLEAR) have been developed. The preliminary engineering design and safety analysis of CLEAR-I are underway. • Technology R&D on CLEAR with series lead alloy loops and accelerator-based neutron generator have been constructed or under construction. • CLEAR series reactor design and construction have big challenges, widely international cooperation on reactor design and technology R&D is welcome

  11. Geology and hydrothermal alteration at the Madh adh Dhahab epithermal precious-metal deposit, Kingdom of Saudi Arabia

    Science.gov (United States)

    Doebrich, J.L.; LeAnderson, J.P.

    1984-01-01

    Mahd adh Dhahab is a late Precambrian epithermal gold-silver-base metal deposit located in the west-central part of the Arabian Shield. North-trending quartz veins containing base and precious metals cut an east-striking, north-dipping homoclinal sequence of volcanic, volcaniclastic, and epiclastic rocks of intermediate to felsic composition. Ore was localized where the veins cut competent, coarse-grained, fragmental units directly below incompetent and impermeable tuff units. The proximity of an epizonal rhyolite porphyry stock to these contacts also was important in localizing ore. Ore minerals include native gold and silver, gold-silver tellurides, chalcopyrite, sphalerite, and minor galena, and five stages of mineralization have been identified.

  12. Application of semiconductor MOSFET and pin diode dosimeters to epithermal neutron beam dose distribution measurements in phantoms

    International Nuclear Information System (INIS)

    Carolan, M.G.; Wallace, S.A.; Allen, B.J.; Rosenfeld, A.B.; Mathur, J.N.

    1996-01-01

    For any clinical application of Boron Neutron Capture Therapy (BNCT) fast and accurate dose calculations will be required for treatment planning. Such calculations are also necessary for the planning and interpretation of results from pre-clinical and clinical trials where the speed of calculation is not so critical. A dose calculation system based on the MCNP Monte Carlo Neutron transport code has been developed by Wallace. This system takes image data from CT scans and constructs a voxel based geometrical model for input into MCNP. To validate the calculations, a number of phantoms were constructed and exposed in the HB11 epithermal neutron beam at the HFR of the CEC Joint Research Centre in Petten. The doses recorded by arrays of PIN diode neutron dosimeters and MOSFET gamma dosimeters in these phantoms were compared with the calculated results from the MCNP dose planning system. Initial results have been reported elsewhere. Poster 197. (author)

  13. Characterization of the TRIGA Mark III reactor for k0-neutron activation analysis

    International Nuclear Information System (INIS)

    Diaz R, O.; Herrera P, E.; Lopez R, M.C.

    1997-01-01

    The non-ideality of the epithermal neutron flux distribution in a a reactor site parameter (α), the thermal-to-epithermal neutron ratio (f), the irradiation channel neutron temperature (T n ) and the k 0 -factors for more than 20 isotopes were determined in the 3 typical irradiation positions of the TRIGA Mark III reactor of the National Nuclear Research Institute, Salazar, Mexico, using different experimental methods with conventional and non-conventional monitors. This characterization is used in the k 0 -method of NAA, recently introduced at the Institute. (author). 21 refs., 3 figs., 5 tabs

  14. Historical civilian nuclear accident based Nuclear Reactor Condition Analyzer

    Science.gov (United States)

    McCoy, Kaylyn Marie

    There are significant challenges to successfully monitoring multiple processes within a nuclear reactor facility. The evidence for this observation can be seen in the historical civilian nuclear incidents that have occurred with similar initiating conditions and sequences of events. Because there is a current lack within the nuclear industry, with regards to the monitoring of internal sensors across multiple processes for patterns of failure, this study has developed a program that is directed at accomplishing that charge through an innovation that monitors these systems simultaneously. The inclusion of digital sensor technology within the nuclear industry has appreciably increased computer systems' capabilities to manipulate sensor signals, thus making the satisfaction of these monitoring challenges possible. One such manipulation to signal data has been explored in this study. The Nuclear Reactor Condition Analyzer (NRCA) program that has been developed for this research, with the assistance of the Nuclear Regulatory Commission's Graduate Fellowship, utilizes one-norm distance and kernel weighting equations to normalize all nuclear reactor parameters under the program's analysis. This normalization allows the program to set more consistent parameter value thresholds for a more simplified approach to analyzing the condition of the nuclear reactor under its scrutiny. The product of this research provides a means for the nuclear industry to implement a safety and monitoring program that can oversee the system parameters of a nuclear power reactor facility, like that of a nuclear power plant.

  15. Gold grade of epithermal gold ore at Lamuntet, Brang Rea, West Sumbawa District, West Nusa Tenggara Province, Indonesia

    Science.gov (United States)

    Ernawati, Rika; Idrus, Arifudin; TBMP, Himawan

    2017-06-01

    Lamuntet is one of gold ore mining area carried out by the Artisanal Small scale Gold Mining (ASGM) located in West Sumbawa, Indonesia. Most of the miners at this area are not the local miners but also those from other regions. Mineralization of this area is strong identified as low sulfidation epithermal system. There are two blocks of this mining location, namely, Ngelampar block with an area of 0.164 km2 and Song block with an area of 0.067 km2. This study was focused on Ngelampar block. The characteristic of epithermal system is the existence of quartz vein with comb, vuggy, and sugary texture. The aim of this research was to analyze the gold grade and other metals, such as Cu, Ag, Pb, As, Zn, and Hg. The research methods included literature study from previous researches, field work, laboratory work, and interpretation. The literature study was performed on previous researches with similar study area. The field work comprised of direct observation and sampling. Fieldwork was done for a week to obtain gold ore/vein. Sixteen samples were analyzed to obtain the grade of ore/metal. The Hg laboratory analysis was then performed on the six samples with the highest gold grade. Laboratory works were conducted at Intertek Jakarta by using Fire Assay (FA) for gold grade and Atomic Absorption Spectrophotometry (AAS) for Cu, Ag, Pb, As, Zn, and Hg. Results of the analysis showed the range of Au was grade (0.1 ppm - 27.8 ppm), Cu was 26 ppm -1740 ppm, Pb was 101 ppm- >4000 ppm, Zn of 73 ppm- >10,000 ppm, Ag of 3 ppm -185 ppm, As was 150 ppm-6530 ppm, and Hg of 0.08 ppm - 1.89 ppm. L1 and L15 had high grade for all values (Au, Ag, Zn, Cu, As, and Hg). Gold mineralization was formed as electrum because of Ag content is higher than 20%. Associated minerals of the samples in the study area were galena, sphalerite, arsenopyrite, and chalcopyrite which showed the characteristic of rich base metal of Pb, Zn, and Cu at LS epithermal.

  16. Epithermal neutron activation analysis of blue-green algae Spirulina Platensis as a matrix for selenium-containing pharmaceuticals

    International Nuclear Information System (INIS)

    Mosulishvili, L.M.; Kirkesali, E.I.; Belokobyl'skij, A.I.; Khizanishvili, A.I.; Frontas'eva, M.V.; Gundorina, S.F.; Oprea, C.D.

    2000-01-01

    To evaluate the potentiality of the blue-green algae Spirulina Platensis as a matrix for the production of Se-containing pharmaceuticals, the background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p)-reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina Platensis biomass were determined by means of epithermal neutron activation analysis. The possibility of the purpose-oriented incorporation of Se into Spirulina Platensis biomass was demonstrated. The polynomial dependence of the Se accumulation on nutritional medium loading was revealed. The employed analytical technique allows one to reliably control the amount of toxic elements in algae Spirulina Platensis. Based on this study, a conclusion of the possibility to use Spirulina Platensis as a matrix for the production of Se-containing pharmaceuticals was drawn

  17. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    International Nuclear Information System (INIS)

    Tang, Chong-Jian; He, Rui; Zheng, Ping; Chai, Li-Yuan; Min, Xiao-Bo

    2013-01-01

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor

  18. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chong-Jian, E-mail: chjtangzju@yahoo.com.cn [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China); He, Rui; Zheng, Ping [Department of Environmental Engineering, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Chai, Li-Yuan; Min, Xiao-Bo [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor.

  19. Procedure and code for calculating black control rods taking into account epithermal absorption, code CAS-1

    International Nuclear Information System (INIS)

    Martinc, R.; Trivunac, N.; Zivkovic, Z.

    1964-12-01

    This report describes the computer code CAS-1, calculation method and procedure applied for calculating the black control rods taking into account the epithermal neutron absorption. Results obtained for supercell method applied for regular lattice reflected in the multiplication medium is part of this report in addition to the computer code manual

  20. Determination flux in the Reactor JEN-1

    International Nuclear Information System (INIS)

    Manas Diaz, L.; Montes Ponce de leon, J.

    1960-01-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 μ gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs

  1. The dynamic pressure measurements of the nuclear reactor coolant for condition-based maintenance of the reactor

    International Nuclear Information System (INIS)

    Es-Saheb, M.H.H.

    1990-01-01

    The condition-based maintenance of the nuclear reactor, by monitoring and measuring the instantaneous dynamic pressure distribution of the coolant (water) impact on the solid surfaces of the reactor during operation is presented. The behaviour of water domes (jets) produced by underwater explosions of small changes of P.E.T.N. at various depths in two different size cylindrical containers, which simulate the nuclear reactor, is investigated. Water surface domes (jets) from the underwater explosions are photographed. Depending on the depth of the charge, curved and flat top jets of up to 455 mm diameter and impact speeds of up to 70 m/sec. are observed. The instabilities in the dome surfaces are observed and the instantaneous profiles are analysed. It is found that, in all cases tested, the maximum pressure takes place at the center of the jet and could reach up to 3.0 times the on-dimensional impact pressure value. The use of their measurements, as online monitoring for condition-based maintenance and design-out maintenance is discussed. 18 refs

  2. A preliminary analysis of the reactor-based plutonium disposition alternative deployment schedules

    International Nuclear Information System (INIS)

    Zurn, R.M.

    1997-09-01

    This paper discusses the preliminary analysis of the implementation schedules of the reactor-based plutonium disposition alternatives. These schedule analyses are a part of a larger process to examine the nine decision criteria used to determine the most appropriate method of disposing of U.S. surplus weapons plutonium. The preliminary analysis indicates that the mission durations for the reactor-based alternatives range from eleven years to eighteen years and the initial mission fuel assemblies containing surplus weapons-usable plutonium could be loaded into the reactors between nine and fourteen years after the Record of Decision

  3. A conceptual fusion reactor based on the high-plasma-density Z-pinch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Carlson, G.; Hoffman, M.; Werner, R.

    1977-01-01

    Conceptual DT and DD fusion reactors are discussed based on magnetic confinement with the high-plasma-density Z-pinch. The reactor concepts have no ''first wall'', the fusion neutrons and plasma energy being absorbed directly into a surrounding lithium vortex blanket. Efficient systems with low re-circulated power are projected, based on a flow-through pinch cycle for which overall Q values can approach 10. The conceptual reactors are characterized by simplicity, small minimum size (100MW(e)) and by the potential for minimal radioactivity hazards. (author)

  4. Development strategy and conceptual design of China Lead-based Research Reactor

    International Nuclear Information System (INIS)

    Wu, Yican; Bai, Yunqing; Song, Yong; Huang, Qunying; Zhao, Zhumin; Hu, Liqin

    2016-01-01

    Highlights: • China LEAd-based Reactor (CLEAR) proposed by Institute of Nuclear Energy Safety Technology (INEST) is selected as the ADS reference reactor. • The Chinese ADS development program consists of three stages, and during the first stage, a 10 MW th lead-based research reactor named CLEAR-I will be built with subcritical and critical dual-mode operation capability for validation of ADS transmutation system and lead cooled fast reactor technology. • Major design principles of CLEAR-I are oriented at technology feasibility, safety reliability, experiment flexibility and technology continuity. Followed by the development strategy and design principles, CLEAR-I design options and conceptual design scenarios are presented. - Abstract: Chinese Academy of Sciences (CAS) launched an engineering project to develop an Accelerator Driven System (ADS) for nuclear waste transmutation since 2011, and China LEAd-based Reactor (CLEAR) proposed by Institute of Nuclear Energy Safety Technology (INEST) is selected as the ADS reference reactor. In this paper, the development strategy and conceptual design of China Lead-based Research Reactor are proposed. The Chinese ADS development program consists of three stages, and during the first stage, a 10 MW th lead-based research reactor named CLEAR-I will be built with subcritical and critical dual-mode operation capability for validation of ADS transmutation system and lead cooled fast reactor technology. Major design principles of CLEAR-I are oriented at technology feasibility, safety reliability, experiment flexibility and technology continuity. Followed by the development strategy and design principles, CLEAR-I design options and conceptual design scenarios are presented.

  5. A Personal Computer-Based Simulator for Nuclear-Heating Reactors

    International Nuclear Information System (INIS)

    Liu Jie; Zhang Zuoyi; Lu Dongsen; Shi Zhengang; Chen Xiaoming; Dong Yujie

    2000-01-01

    A personal computer (PC)-based simulator for nuclear-heating reactors (NHRs), PC-NHR, has been developed to provide an educational tool for understanding the design and operational characteristics of an NHR system. A general description of the reactor system as well as the technical basis for the design and operation of the heating reactor is provided. The basic models and equations for the NHR simulation are then given, which include models of the reactor core, the reactor coolant system, the containment, and the control system. The graphical user interface is described in detail to provide a manual for the user to operate the simulator properly. Steady state and several transients have been simulated. The results of PC-NHR are in good agreement with design data and the results of RETRAN-02. The real-time capability is also confirmed

  6. IER-297 CED-2: Final Design for Thermal/Epithermal eXperiments with Jemima Plates with Polyethylene and Hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Percher, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zywiec, W. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-11

    This report presents the final design (CED-2) for IER-297, and focuses on 15 critical configurations using highly enriched uranium (HEU) Jemima plates moderated by polyethylene with and without hafnium diluent. The goal of the U.S. Nuclear Criticality Safety Program’s Thermal/Epithermal eXperiments (TEX) is to design and conduct new critical experiments to address high priority nuclear data needs from the nuclear criticality safety and nuclear data communities, with special emphasis on intermediate energy (0.625 eV – 100 keV) assemblies that can be easily modified to include various high priority diluent materials. The TEX (IER 184) CED-1 Report [1], completed in 2012, demonstrated the feasibility of meeting the TEX goals with two existing NCSP fissile assets, plutonium Zero Power Physics Reactor (ZPPR) plates and highly enriched uranium (HEU) Jemima plates. The first set of TEX experiments will focus on using the plutonium ZPPR plates with polyethylene moderator and tantalum diluents.

  7. Development of new instrumentation for epithermal neutron scattering at very low angles

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Gorini, G.; Perelli-Cippo, E.; Rhodes, N.J.; Schooneveld, E.M.; Senesi, R.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are opened up by the recent developments of Resonance Detectors (RD) for inverse geometry time-of-flight spectrometers at pulsed neutron sources. The RD is based on the combination of an analyser foil used as neutron-to-gamma converter and a suitable photon detector. Here, we report on the state of the RD which is based on a YAP scintillator viewing a natural uranium analyser foil. The response of the YAP detector to the radiative capture γ emission from the uranium analyser foil has been characterized with a bi-parametric measurement of a reference Pb sample, which allowed simultaneous measurements of both neutron time-of-flight and γ pulse height (energy) spectra. The analysis of the γ pulse height and neutron time-of-flight spectra permitted to identify the signal and background components. These measurements showed that a significant improvement in the signal-to-background ratio can be achieved by setting a lower level discrimination on the photon energy at about 600keV. The first application of RD is the Very Low Angle Detector Bank (VLAD) which is planned to be installed in the next three years as an upgrade of the VESUVIO spectrometer, at the ISIS pulsed neutron source. VLAD will extend the (q,ω) kinematical to low wave vector transfers (q10A-1) coupled to high-energy transfers (-bar ω>1eV), which is still unexplored by neutron scattering experiments. The first measurements obtained on an ice sample with a VLAD prototype consisting of four RD units are presented here

  8. Development of new instrumentation for epithermal neutron scattering at very low angles

    Energy Technology Data Exchange (ETDEWEB)

    Tardocchi, M. [INFM, UdR Milano-Bicocca and Dipartimento di Fisica ' G.Occhialini' , Universita degli Studi di Milano-Bicocca, Pizza Della Scienza 3, Milan 20126 (Italy)]. E-mail: marco.tardocchi@mib.infn.it; Pietropaolo, A. [Dipartimento di Fisica, Universita degli Studi di Roma Tor Vergata and INFM, UdR Roma Tor Vergata, Rome (Italy); Andreani, C. [Dipartimento di Fisica, Universita degli Studi di Roma Tor Vergata and INFM, UdR Roma Tor Vergata, Rome (Italy); Gorini, G. [INFM, UdR Milano-Bicocca and Dipartimento di Fisica ' G.Occhialini' , Universita degli Studi di Milano-Bicocca, Pizza Della Scienza 3, Milan 20126 (Italy); Perelli-Cippo, E. [INFM, UdR Milano-Bicocca and Dipartimento di Fisica ' G.Occhialini' , Universita degli Studi di Milano-Bicocca, Pizza Della Scienza 3, Milan 20126 (Italy); Rhodes, N.J. [Isis Facility, Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom); Schooneveld, E.M. [Isis Facility, Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom); Senesi, R. [Dipartimento di Fisica, Universita degli Studi di Roma Tor Vergata and INFM, UdR Roma Tor Vergata, Rome (Italy)

    2004-12-11

    New perspectives for epithermal neutron spectroscopy are opened up by the recent developments of Resonance Detectors (RD) for inverse geometry time-of-flight spectrometers at pulsed neutron sources. The RD is based on the combination of an analyser foil used as neutron-to-gamma converter and a suitable photon detector. Here, we report on the state of the RD which is based on a YAP scintillator viewing a natural uranium analyser foil. The response of the YAP detector to the radiative capture {gamma} emission from the uranium analyser foil has been characterized with a bi-parametric measurement of a reference Pb sample, which allowed simultaneous measurements of both neutron time-of-flight and {gamma} pulse height (energy) spectra. The analysis of the {gamma} pulse height and neutron time-of-flight spectra permitted to identify the signal and background components. These measurements showed that a significant improvement in the signal-to-background ratio can be achieved by setting a lower level discrimination on the photon energy at about 600keV. The first application of RD is the Very Low Angle Detector Bank (VLAD) which is planned to be installed in the next three years as an upgrade of the VESUVIO spectrometer, at the ISIS pulsed neutron source. VLAD will extend the (q,{omega}) kinematical to low wave vector transfers (q10A-1) coupled to high-energy transfers (-bar {omega}>1eV), which is still unexplored by neutron scattering experiments. The first measurements obtained on an ice sample with a VLAD prototype consisting of four RD units are presented here.

  9. Dynamics analysis of a boiling water reactor based on multivariable autoregressive modeling

    International Nuclear Information System (INIS)

    Oguma, Ritsuo; Matsubara, Kunihiko

    1980-01-01

    The establishment of the highly reliable mathematical model for the dynamic characteristics of a reactor is indispensable for the achievement of safe operation in reactor plants. The authors have tried to model the dynamic characteristics of a reactor based on the identification technique, taking the JPDR (Japan Power Demonstration Reactor) as the object, as one of the technical studies for diagnosing BWR anomaly, and employed the multivariable autoregressive modeling (MAR method) as one of the useful methods for forwarding the analysis. In this paper, the outline of the system analysis by MAR modeling is explained, and the identification experiments and their analysis results performed in the phase 4 of the power increase test of the JPDR are described. The authors evaluated the results of identification based on only reactor noises, making reference to the results of identification in the case of exciting the system by applying artificial irregular disturbance, in order to clarify the extent in which the modeling is possible by reactor noises only. However, some difficulties were encountered. The largest problem is the one concerning the separation and identification of the noise sources exciting the variables from the dynamic characteristics among the variables. If the effective technique can be obtained to this problem, the approach by the identification technique based on the probability model might be a powerful tool in the field of reactor noise analysis and the development of diagnosis technics. (Wakatsuki, Y.)

  10. A CONCEPTUAL DESIGN OF NEUTRON COLLIMATOR IN THE THERMAL COLUMN OF KARTINI RESEARCH REACTOR FOR IN VITRO AND IN VIVO TEST OF BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Nina Fauziah

    2015-03-01

    Full Text Available Studies were carried out to design a collimator which results in epithermal neutron beam for IN VITRO and IN VIVO of Boron Neutron Capture Therapy (BNCT at the Kartini research reactor by means of Monte Carlo N-Particle (MCNP codes. Reactor within 100 kW of thermal power was used as the neutron source. The design criteria were based on recommendation from the International Atomic Energy Agency (IAEA. All materials used were varied in size, according to the value of mean free path for each material. MCNP simulations indicated that by using 5 cm thick of Ni as collimator wall, 60 cm thick of Al as moderator, 15 cm thick of 60Ni as filter, 2 cm thick of Bi as γ-ray shielding, 3 cm thick of 6Li2CO3-polyethylene as beam delimiter, with 1 to 5 cm varied aperture size, epithermal neutron beam with maximum flux of 7.65 x 108 n.cm-2.s-1 could be produced. The beam has minimum fast neutron and γ-ray components of, respectively, 1.76 x 10-13 Gy.cm2.n-1 and 1.32 x 10-13 Gy.cm2.n-1, minimum thermal neutron per epithermal neutron ratio of 0.008, and maximum directionality of 0.73. It did not fully pass the IAEA’s criteria, since the epithermal neutron flux was below the recommended value, 1.0 x 109 n.cm-2.s-1. Nonetheless, it was still usable with epithermal neutron flux exceeding 5.0 x 108 n.cm-2.s-1. When it was assumed that the graphite inside the thermal column was not discharged but only the part which was going to be replaced by the collimator, the performance of the collimator became better within the positive effect from the surrounding graphite that the beam resulted passed all criteria with epithermal neutron flux up to 1.68 x 109 n.cm-2.s-1. Keywords: design, collimator, epithermal neutron beam, BNCT, MCNP, criteria   Telah dilakukan penelitian tentang desain kolimator yang menghasilkan radiasi netron epitermal untuk uji in vitro dan in vivo pada Boron Neutron Capture Therapy (BNCT di Reaktor Riset Kartini dengan menggunakan program Monte

  11. Different Activation Techniques for the Study of Epithermal Spectra, Applied to Heavy Water Lattices of Varying Fuel-To-Moderator Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, E K

    1966-06-15

    Spectral indices at the cell boundary have been studied as functions of lattice pitch in the reference core of the Swedish R0 reactor. Epithermal indices were determined by activation of In{sup 115}, employing three different techniques: the two-foil, the cadmium ratio and the sandwich foil methods. The latter of these has the advantage of being independent of assumptions about foil cross sections or spectral functions, and it gives a spectrum index that lends itself readily to comparisons with theoretical multigroup calculations. Alternatively the results can be expressed in terms of the Westcott parameters r and T{sub n} when this is justified by the spectral conditions. The agreement between the three methods investigated is generally good. Good agreement is also found with multigroup collision.

  12. Accelerator Based Neutron Beams for Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2003-01-01

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  13. Evaluation of Weights of Evidence to Predict Epithermal-Gold Deposits in the Great Basin of the Western United States

    International Nuclear Information System (INIS)

    Raines, Gary L.

    1999-01-01

    The weights-of-evidence method provides a simple approach to the integration of diverse geologic information. The application addressed is to construct a model that predicts the locations of epithermal-gold mineral deposits in the Great Basin of the western United States. Weights of evidence is a data-driven method requiring known deposits and occurrences that are used as training sites in the evaluated area. Four hundred and fifteen known hot spring gold-silver, Comstock vein, hot spring mercury, epithermal manganese, and volcanogenic uranium deposits and occurrences in Nevada were used to define an area of 327.4 km 2 as training sites to develop the model. The model consists of nine weighted-map patterns that are combined to produce a favorability map predicting the distribution of epithermal-gold deposits. Using a measure of the association of training sites with predictor features (or patterns), the patterns can be ranked from best to worst predictors. Based on proximity analysis, the strongest predictor is the area within 8 km of volcanic rocks younger than 43 Ma. Being close to volcanic rocks is not highly weighted, but being far from volcanic rocks causes a strong negative weight. These weights suggest that proximity to volcanic rocks define where deposits do not occur. The second best pattern is the area within 1 km of hydrothermally altered areas. The next best pattern is the area within 1 km of known placer-gold sites. The proximity analysis for gold placers weights this pattern as useful when close to known placer sites, but unimportant where placers do not exist. The remaining patterns are significantly weaker predictors. In order of decreasing correlation, they are: proximity to volcanic vents, proximity to east-west to northwest faults, elevated airborne radiometric uranium, proximity to northwest to west and north-northwest linear features, elevated aeromagnetics, and anomalous geochemistry. This ordering of the patterns is a function of the quality

  14. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  15. Improved Dose Targeting for a Clinical Epithermal Neutron Capture Beam Using Optional 6Li Filtration

    International Nuclear Information System (INIS)

    Binns, Peter J.; Riley, Kent J.; Ostrovsky, Yakov; Gao Wei; Albritton, J. Raymond; Kiger, W.S.; Harling, Otto K.

    2007-01-01

    Purpose: The aim of this study was to construct a 6 Li filter and to improve penetration of thermal neutrons produced by the fission converter-based epithermal neutron beam (FCB) for brain irradiation during boron neutron capture therapy (BNCT). Methods and Materials: Design of the 6 Li filter was evaluated using Monte Carlo simulations of the existing beam line and radiation transport through an ellipsoidal water phantom. Changes in beam performance were determined using three figures of merit: (1) advantage depth (AD), the depth at which the total biologically weighted dose to tumor equals the maximum weighted dose to normal tissue; (2) advantage ratio (AR), the ratio of the integral tumor dose to that of normal tissue averaged from the surface to the AD; and (3) advantage depth dose rate (ADDR), the therapeutic dose rate at the AD. Dosimetry performed with the new filter installed provided calibration data for treatment planning. Past treatment plans were recalculated to illustrate the clinical potential of the filter. Results: The 8-mm-thick Li filter is more effective for smaller field sizes, increasing the AD from 9.3 to 9.9 cm, leaving the AR unchanged at 5.7 but decreasing the ADDR from 114 to 55 cGy min -1 for the 12 cm diameter aperture. Using the filter increases the minimum deliverable dose to deep seated tumors by up to 9% for the same maximum dose to normal tissue. Conclusions: Optional 6 Li filtration provides an incremental improvement in clinical beam performance of the FCB that could help to establish a therapeutic window in the future treatment of deep-seated tumors

  16. Nondestructive analysis of RA reactor fuel burnup, Program for burnup calculation base on relative yield of {sup 106}Ru, {sup 134}Cs and {sup 137}Cs in the irradiated fuel; Nedestruktivno odredjivanje izgaranja goriva reaktora RA, Program za izracunavanje izgaranja na osnovu relativne zastupljenosti {sup 106}Ru, {sup 134}Cs i {sup 137}Cs u ozracenom gorivu

    Energy Technology Data Exchange (ETDEWEB)

    Bulovic, V F [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1971-07-01

    Burnup of low enriched metal uranium fuel of the RA reactor is described by two chain reactions. Energy balance and material changes in the fuel are described by systems of differential equations. Numerical integration of these equations is base on the the reactor operation data. Neutron flux and percent of Uranium-235 or more frequently yield of epithermal neutrons in the neutron flux, is determined by iteration from the measured contents of {sup 106}Ru, {sup 134}Cs and {sup 137}Cs in the irradiated fuel. The computer program was written in FORTRAN-IV. Burnup is calculated by using the measured activities of fission products. Burnup results are absolute values. Sagorevanje maloobogacenog uranskog metalnog goriva reaktora RA je opisano dvema lancanim reakcijama. Energetski bilans i materijalne promene u gorivu su opisane sistemima diferencijalnih jednacina. Numericka integracija jednacina se vrsi na osnovu podataka u dinamici rada reaktora. Fluks reaktorskih neutrona i procenat urana-235 ili ucesce epitermalnih neutrona u fluksu, odredjuje se iterativno na osnovu izmerenog sadrzaja {sup 106}Ru, {sup 134}Cs i {sup 137}Cs u ozracenom gorivu. Program je napisan u FORTRAN-u IV u jednom bloku, bez podprograma. Izracunavanje izgaranja je zasnovano na izmerenim kolicnicima aktivnosti fisionih produkata. Rezultati izgaranja imaju apsolutni karakter (author)

  17. Econometric modelling of certain nuclear power systems based on thermal and fast breeder reactors

    International Nuclear Information System (INIS)

    Pavelescu, M.; Pioaru, C.; Ursu, I.

    1988-01-01

    Certain known economic analysis models for a LMFBR fast breeder and CANDU thermal solitary reactors are presented, based on the concepts of discounting and levelization. These models are subsequently utilized as a basis for establishing an original model for the econometric analysis of certain thermal reactor systems or/and fast breeder reactors. Case studies are subsequently conducted with the systems: 1-CANDU, 2-LMFBR, 3-CANDU + LMFBR which enables us to draw certain interesting conclusions for a long range nuclear power policy. (author)

  18. Measurement of fatigue crack growth rate of reactor structural material in air based on DCPD method

    International Nuclear Information System (INIS)

    Du Donghai; Chen Kai; Yu Lun; Zhang Lefu; Shi Xiuqiang; Xu Xuelian

    2014-01-01

    The principles and details of direct current potential drop (DCPD) in monitoring the crack growth of reactor structural materials was introduced in this paper. Based on this method, the fatigue crack growth rate (CGR) of typical structural materials in nuclear power systems was measured. The effects of applied load, load ratio and loading frequency on the fatigue crack growth rate of reactor structural materials were discussed. The result shows that the fatigue crack growth rate of reactor structural materials depends on the hardness of materials, and the harder the material is, the higher the rate of crack growth is. (authors)

  19. K-capture by Al-Si based Additives in an Entrained Flow Reactor

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    A water slurry, consisting of KCl and Al-Si based additives (kaolin and coal fly ash) was fed into an entrained flow reactor (EFR) to study the K-capturing reaction of the additives at suspension-fired conditions. Solid products collected from the reactor were analysed with respect to total...... of KCl to K-aluminosilicate decreased. When reaction temperature increased from 1100 °C to 1450 °C, the conversion of KCl does not change significantly, which differs from the trend observed in fixed-bed reactor....

  20. A two-stage ethanol-based biodiesel production in a packed bed reactor

    DEFF Research Database (Denmark)

    Xu, Yuan; Nordblad, Mathias; Woodley, John

    2012-01-01

    were conducted in a simulated series of reactors by repeatedly passing the reaction mixture through a single reactor, with separation of the by-product glycerol and water between passes in the first and second stages, respectively. The second stage brought the major components of biodiesel to ‘in......-spec’ levels according to the European biodiesel specifications for methanol-based biodiesel. The highest overall productivity achieved in the first stage was 2.52 kg FAEE(kg catalyst)−1 h−1 at a superficial velocity of 7.6 cm min−1, close to the efficiency of a stirred tank reactor under similar conditions...

  1. Development of sputter ion pump based SG leak detection system for Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Babu, B.; Sureshkumar, K.V.; Srinivasan, G.

    2013-01-01

    Highlights: ► Development and commissioning of SG leak detection system for FBTR. ► Development of Robust method of using sputter ion pump based system. ► Modifications for improving reliability and availability. ► On line injection of hydrogen in sodium during reactor operation. ► Triplication of the SG leak detection system. - Abstract: The Fast Breeder Test Reactor (FBTR) is a 40 MWt, loop type sodium cooled fast reactor built at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam as a fore-runner to the second stage of Indian nuclear power programme. The reactor design is based on the French reactor Rapsodie with several modifications which include the provision of a steam-water circuit and turbo-generator. FBTR uses sodium as the coolant in the main heat transport medium to transfer heat from the reactor core to the feed water in the tertiary loop for producing superheated steam, which drives the turbo-generator. Sodium and water flow in shell and tube side respectively, separated by thin-walls of the ferritic steel tubes of the once-through steam generator (SG). Material defects in these tubes can lead to leakage of water into sodium, resulting in sodium water reactions leading to undesirable consequences. Early detection of water or steam leaks into sodium in the steam generator units of liquid metal fast breeder reactors (LMFBR) is an important requirement from safety and economic considerations. The SG leak in FBTR is detected by Sputter Ion Pump (SIP) based Steam Generator Leak Detection (SGLD) system and Thermal Conductivity Detector (TCD) based Hydrogen in Argon Detection (HAD) system. Many modifications were carried out in the SGLD system for the reactor operation to improve the reliability and availability. This paper details the development and the acquired experience of SIP based SGLD system instrumentation for real time hydrogen detection in sodium for FBTR.

  2. Calibration of RB reactor power

    International Nuclear Information System (INIS)

    Sotic, O.; Markovic, H.; Ninkovic, M.; Strugar, P.; Dimitrijevic, Z.; Takac, S.; Stefanovic, D.; Kocic, A.; Vranic, S.

    1976-09-01

    The first and only calibration of RB reactor power was done in 1962, and the obtained calibration ratio was used irrespective of the lattice pitch and core configuration. Since the RB reactor is being prepared for operation at higher power levels it was indispensable to reexamine the calibration ratio, estimate its dependence on the lattice pitch, critical level of heavy water and thickness of the side reflector. It was necessary to verify the reliability of control and dosimetry instruments, and establish neutron and gamma dose dependence on reactor power. Two series of experiments were done in June 1976. First series was devoted to tests of control and dosimetry instrumentation and measurements of radiation in the RB reactor building dependent on reactor power. Second series covered measurement of thermal and epithermal neuron fluxes in the reactor core and calculation of reactor power. Four different reactor cores were chosen for these experiments. Reactor pitches were 8, 8√2, and 16 cm with 40, 52 and 82 fuel channels containing 2% enriched fuel. Obtained results and analysis of these results are presented in this document with conclusions related to reactor safe operation

  3. Method of power self-regulation of CFBR-II reactor based on DSP

    International Nuclear Information System (INIS)

    Bai Zhongxiong; Zhou Wenxiang

    2007-01-01

    To the control system of Power Self-regulation of CFBR-II Reactor, a new digital control scheme based on DSP has been brought forward. The TMS320F2812 DSP chip is adopted as the core controller to realize Power self-regulation of CFBR-II Reactor. In this paper, the successful program of DSP control system is introduced in both hardware and software technology in detail. (authors)

  4. Implementation of the k{sub 0} technique using multi-detectors on diverse irradiation facilities of TRIGA Reactor; Implementacion de la tecnica k{sub 0} usando multidetectores en diferentes instalaciones de irradiacion del Reactor TRIGA

    Energy Technology Data Exchange (ETDEWEB)

    Caldera C, M. de G.

    2013-07-01

    The k{sub 0} method with the technique of neutron activation analysis allows obtaining important characteristics parameters that describe a nuclear reactor. Among these parameters are the form factor of epithermal neutron flux, α and the ratio of thermal neutron flux with respect to the epithermal neutron flux, f. These parameters were obtained by irradiation of two different monitors, one of Au-Zr and the other of Au-Mo-Cr, where the last one was made and implemented for the first time. Both monitors were irradiated in different positions in the TRIGA Mark III Reactor at the National Institute of Nuclear Research. (Author)

  5. Advances in Reactor Physics, Mathematics and Computation. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume one, are divided into 6 sessions bearing on: - session 1: Advances in computational methods including utilization of parallel processing and vectorization (7 conferences) - session 2: Fast, epithermal, reactor physics, calculation, versus measurements (9 conferences) - session 3: New fast and thermal reactor designs (9 conferences) - session 4: Thermal radiation and charged particles transport (7 conferences) - session 5: Super computers (7 conferences) - session 6: Thermal reactor design, validation and operating experience (8 conferences).

  6. Development of a central PC-based system for reactor signal monitoring and analysis

    International Nuclear Information System (INIS)

    Karim, A.; Ansari, S.A.; Rauf Baig, A.

    1998-01-01

    A personal computer based system was developed for on-line monitoring, signal processing and display of important reactor parameters of the Pakistan Research Reactor-1. The system was designed for assistance to both reactor operator and users. It performs three main functions. The first is the centralized radiation monitoring in and around the reactor building. The computer acquires signals from radiation monitoring channels and continuously displays them on distributed monitors. Trend monitoring and alarm generation is also done. In case of any abnormal condition the radiation level data is automatically stored in computer memory for detailed off-line analysis. In the second part the computer does the performance testing of nuclear instrumentation channels by signal statistical analysis, and generates alarm in case the channel standard deviation error exceeds the permissible error. Mean values of important nuclear signals are also displayed on distributed monitors as a part of reactor safety parameters display system. The third function is on-line computation of reactor physics parameters of the core which are important from operational and safety points-of-view. The signals from radiation protection system and nuclear instrumentation channels in the reactor were interfaced with the computer for this purpose. The development work was done under an IAEA research contract as a part of coordinated research programme. (author)

  7. Implementation of the k0 technique using multi-detectors on diverse irradiation facilities of TRIGA Reactor

    International Nuclear Information System (INIS)

    Caldera C, M. de G.

    2013-01-01

    The k 0 method with the technique of neutron activation analysis allows obtaining important characteristics parameters that describe a nuclear reactor. Among these parameters are the form factor of epithermal neutron flux, α and the ratio of thermal neutron flux with respect to the epithermal neutron flux, f. These parameters were obtained by irradiation of two different monitors, one of Au-Zr and the other of Au-Mo-Cr, where the last one was made and implemented for the first time. Both monitors were irradiated in different positions in the TRIGA Mark III Reactor at the National Institute of Nuclear Research. (Author)

  8. Low in reactor creep Zr-base alloy tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Holt, R.A.

    1984-01-01

    This invention relates to zirconium alloy tubes especially for use in nuclear power reactors. More particularly it relates to quaternary 3.5 percent Sn, 1 percent Mo, 1 percent Nb, balance Zr alloy tubes which have been extruded, cold worked and heat treated to lower their dislocation density. In one embodiment the alloys are cold worked less than 5 percent and stress relieved to produce a low dislocation density and in another embodiment the alloys are cold worked up to about 50 percent and annealed to produce a very low dislocation density and also small equiaxed β grains

  9. Design criteria of integrated reactors based on transients

    International Nuclear Information System (INIS)

    Zanocco, P.; Gimenez, M.; Delmastro, D.

    1999-01-01

    A new tendency in integrated reactors conceptual design is to include safety criteria through accident analysis. In this work, the effect of design parameters in a Loss of Heat Sink transient using design maps is analyzed. Particularly, geometry related parameters and reactivity coefficients are studied. Also the effect of primary relief/safety valve during the transient is evaluated. A design map for valve area vs. coolant density reactivity coefficient is obtained. A computer code (HUARPE) is developed in order to simulate these transients. Coolant, steam dome, pressure vessel structures and core models are implemented. This code is checked against TRAC with satisfactory results. (author)

  10. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation.

    Science.gov (United States)

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-03

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N 2 O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N 2 O model, which incorporated two N 2 O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH 2 OH) oxidation). The two-pathway model was used to describe N 2 O production from a granule-based partial nitritation (PN) reactor and provide insights into the N 2 O distribution inside granules. The model was evaluated by comparing simulation results with N 2 O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N 2 O dynamics and provided useful information about the shift of N 2 O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N 2 O production. The results further revealed a linear relationship between N 2 O production and ammonia oxidation rate (AOR) (R 2  = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N 2 O production by causing a change in AOR.

  11. A conceptual design of neutron tumor therapy reactor facility with a YAYOI based fast neutron source reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki; An, Shigehiro.

    1983-01-01

    Fast neutron is known as one of useful radiations for radiation therapy of tumors. Boron neutron capture therapy (BNCT) of tumors which makes use of 10 B(n, α) 7 Li reaction of 10 B compounds selectively attached to tumor cells with thermal and intermediate neutrons is another way of neutron based radiation therapy which is, above all, attractive enough to kill tumor cells selectively sparing normal tissue. In Japan, BNCT has already been applied and leaned to be effective. After more than a decade operational experiences and the specific experiments designed for therapeutical purposes, in this paper, a conceptual design of a special neutron therapy reactor facility based on YAYOI - fast neutron source reactor of Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo - modified to provide an upward beam of fast and intermediate neutrons is presented. Emphasis is placed on the in-house nature of facility and on the coordinating capability of biological and physical researches as well as maintenances of the facility. (author)

  12. Power conversion systems based on Brayton cycles for fusion reactors

    International Nuclear Information System (INIS)

    Linares, J.I.; Herranz, L.E.; Moratilla, B.Y.; Serrano, I.P.

    2011-01-01

    This paper investigates Brayton power cycles for fusion reactors. Two working fluids have been explored: helium in classical configurations and CO 2 in recompression layouts (Feher cycle). Typical recuperator arrangements in both cycles have been strongly constrained by low temperature of some of the energy thermal sources from the reactor. This limitation has been overcome in two ways: with a combined architecture and with dual cycles. Combined architecture couples the Brayton cycle with a Rankine one capable of taking advantage of the thermal energy content of the working fluid after exiting the turbine stage (iso-butane and steam fitted best the conditions of the He and CO 2 cycles, respectively). Dual cycles set a specific Rankine cycle to exploit the lowest quality thermal energy source, allowing usual recuperator arrangements in the Brayton cycle. The results of the analyses indicate that dual cycles could reach thermal efficiencies around 42.8% when using helium, whereas thermal performance might be even better (46.7%), if a combined CO 2 -H 2 O cycle was set.

  13. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR.

  14. Failsafe design criteria for computer based reactor protection systems

    International Nuclear Information System (INIS)

    Keats, A.B.

    1980-01-01

    The design criteria proposed are an extrapolation of the failsafe mode of operation used in the UK in hardwired reactor protection systems. This is achieved by making the operational condition of the reactor dependent upon an energetic state of the protection system components. An important objective of the proposed design criteria is to eliminate, or at least to minimize, the need for a failure-mode-and-effect-analysis (FMEA) of the computer software. This demands some well defined but simple constraints upon the way in which data are stored in the computers, but the objective is achieved almost entirely by hardware properties of the system. The first of these is the systematic use of hardwired test inputs which cause transient excursions into the tripped state in a uniquely ordered but easily recognizable sequence. The second is the use of hardwired pattern recognition logic which generates a dynamic healthy stimulus for the shutdown actuators only in response to the unique sequence formed by the hardwired input signal pattern. It therefore detects abnormal states of any of the system inputs, software errors, wiring errors and hardware failures. This hardwired logic is conceptually simple, failsafe, and is amenable to simple FMEA. (U.K.)

  15. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    International Nuclear Information System (INIS)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung

    2014-01-01

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR

  16. Research on acceleration method of reactor physics based on FPGA platforms

    International Nuclear Information System (INIS)

    Li, C.; Yu, G.; Wang, K.

    2013-01-01

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

  17. A simulator-independent optimization tool based on genetic algorithm applied to nuclear reactor design

    International Nuclear Information System (INIS)

    Abreu Pereira, Claudio Marcio Nascimento do; Schirru, Roberto; Martinez, Aquilino Senra

    1999-01-01

    Here is presented an engineering optimization tool based on a genetic algorithm, implemented according to the method proposed in recent work that has demonstrated the feasibility of the use of this technique in nuclear reactor core designs. The tool is simulator-independent in the sense that it can be customized to use most of the simulators which have the input parameters read from formatted text files and the outputs also written from a text file. As the nuclear reactor simulators generally use such kind of interface, the proposed tool plays an important role in nuclear reactor designs. Research reactors may often use non-conventional design approaches, causing different situations that may lead the nuclear engineer to face new optimization problems. In this case, a good optimization technique, together with its customizing facility and a friendly man-machine interface could be very interesting. Here, the tool is described and some advantages are outlined. (author)

  18. Driver options and burn cycle selection based on power reactor considerations

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1983-01-01

    Reactor implications for noninductive current drive are presented based on a number of studies. First, the lower hybrid driver for the STARFIRE reactor is discussed and the disadvantages of this driver are reviewed. Next, the results of an extensive search for a better current driver are presented. A large number of alternatives were compared in a common context, the DEMO reactor, in order to examine their suitability on a standard basis. Finally, the methodology of a study, currently in progress, is described. The goals of this last study are to compare tokamak reactor designs optimized for operation under different burn cycles, in order to assess the actual benefits and costs of pulsed versus steady-state operation. (author)

  19. Driver options and burn-cycle selection based on power-reactor considerations

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1983-04-01

    Reactor implications for noninductive current drive are presented based on a number of studies. First, the lower hybrid driver for the STARFIRE reactor is discussed and the disadvantages of this driver are reviewed. Next, the results of an extensive search for a better current driver are presented. A large number of alternatives were compared in a common context, the DEMO reactor, in order to examine their suitability on a standard basis. Finally, the methodology of a study, currently in progress, is described. The goals of this last study are to compare tokamak reactor designs optimized for operation under different burn cycles, in order to assess the actual benefits and costs of pulsed versus steady-state operation

  20. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    International Nuclear Information System (INIS)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations

  1. Knowledge base expert system control of spatial xenon oscillations in pressurized water reactors

    International Nuclear Information System (INIS)

    Alten, S.

    1992-01-01

    Nuclear reactor operators are required to pay special attention to spatial xenon oscillations during the load-follow operation of pressurized water reactors. They are expected to observe the axial offset of the core, and to estimate the correct time and amount of necessary control action based on heuristic rules given in axial xenon oscillations are knowledge intensive, and heuristic in nature. An expert system, ACES (Axial offset Control using Expert Systems) is developed to implement a heuristic constant axial offset control procedure to aid reactor operators in increasing the plant reliability by reducing the human error component of the failure probability. ACES is written in a production system language, OPS5, based on the forward chaining algorithm. It samples reactor data with a certain time interval in terms of measurable parameters, such as the power, period, and the axial offset of the core. It then processes the core status utilizing a set of equations which are used in a back of the envelope calculations by domain experts. Heuristic rules of ACES identify the control variable to be used among the full and part length control rods and boron concentration, while a knowledge base is used to determine the amount of control. ACES is designed as a set of generic rules to avoid reducing the system into a set of patterns. Instead ACES evaluates the system, determines the necessary corrective actions in terms of reactivity insertion, and provides this reactivity insertion using the control variables. The amount of control action is determined using a knowledge base which consists of the differential rod worth curves, and the boron reactivity worth of a given reactor. Having the reactor dependent parameters in its knowledge base, ACES is applicable to an arbitrary reactor for axial offset control purposes

  2. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    International Nuclear Information System (INIS)

    Kany, A.M.I.; El-Gohary, M.I.; Kamal, S.M.

    1994-01-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barriers of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure. (Author)

  3. Development of resonant detectors for epithermal neutron spectroscopy at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Senesi, R.; Andreani, C.; Gorini, G.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are opened by the development of new detectors for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank planned to be delivered, within the next 4 years, within the eVERDI project, on the neutron spectrometer VESUVIO, at the ISIS pulsed neutron source (UK). VLAD will extend the (q,ω) kinematical region for neutron scattering to low wavefactor transfer (q -1 ) still keeping energy transfer >1 eV, thus allowing the investigations of new experimental studies in condensed matter systems. The technique being developed for detection of epithermal neutrons, within this low q and high-energy transfer region, is the Resonance Detection Technique. In this work, the state of the detector development will be presented with special focus on the results obtained with some prototype detectors, namely YAP scintillators and cadmium-zinc-telluride semiconductors

  4. Advances on detectors for low-angle scattering of epithermal neutrons

    International Nuclear Information System (INIS)

    Perelli Cippo, E; Gorini, G; Tardocchi, M; Andreani, C; Pietropaolo, A; Senesi, R; Rhodes, N J; Schoonveld, E M

    2008-01-01

    The Very Low Angle Detector (VLAD) installed at the ISIS spallation neutron source is a novel instrument for epithermal neutron scattering with a range of applications in solid state physics. VLAD extends the kinematical space of the VESUVIO spectrometer to low momentum transfers at neutron energies above 1 eV. Measurements at scattering angles as low as 1° have been made with limitations due to the achievable signal/background ratio. (technical design note)

  5. Epithermal and Thermal Spectrum Indices in Heavy Water Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, E K; Jonsson, A

    1967-05-15

    Spectral indices have been measured by foil activation technique in a number of different D{sub 2}O-moderated lattices in the Swedish zero power reactor R0 and the pressurized exponential assembly TZ. In most cases the fuel was in the form of single rods, distributed uniformly in the lattice. Parameters in these cases were lattice pitch and fuel composition. A 31-rod cluster lattice was also investigated, with the moderator temperature varying up to 210 deg C. On the basis of these measurements, as well as measurements on cluster lattices, reported by other investigators, it has been possible to derive simple correlations for the spectral indices, which seem to be of fairly general validity for D{sub 2}O lattices. The experimental results have also been compared to calculations with the multigroup collision probability program FLEF.

  6. Epithermal and Thermal Spectrum Indices in Heavy Water Lattices

    International Nuclear Information System (INIS)

    Sokolowski, E.K.; Jonsson, A.

    1967-05-01

    Spectral indices have been measured by foil activation technique in a number of different D 2 O-moderated lattices in the Swedish zero power reactor R0 and the pressurized exponential assembly TZ. In most cases the fuel was in the form of single rods, distributed uniformly in the lattice. Parameters in these cases were lattice pitch and fuel composition. A 31-rod cluster lattice was also investigated, with the moderator temperature varying up to 210 deg C. On the basis of these measurements, as well as measurements on cluster lattices, reported by other investigators, it has been possible to derive simple correlations for the spectral indices, which seem to be of fairly general validity for D 2 O lattices. The experimental results have also been compared to calculations with the multigroup collision probability program FLEF

  7. Model based design of biochemical micro-reactors

    Directory of Open Access Journals (Sweden)

    Tobias eElbinger

    2016-02-01

    Full Text Available Mathematical modelling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation and optimization of metabolic processes in biochemical micro-reactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first micro-reactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments multi-enzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions.The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multi-enzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the micro-reactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns which differ for different experimental arrangements. Furthermore, the total output

  8. Geology of epithermal silver-gold bulk-mining targets, bodie district, Mono County, California

    Science.gov (United States)

    Hollister, V.F.; Silberman, M.L.

    1995-01-01

    The Bodie mining district in Mono County, California, is zoned with a core polymetallic-quartz vein system and silver- and gold-bearing quartz-adularia veins north and south of the core. The veins formed as a result of repeated normal faulting during doming shortly after extrusion of felsic flows and tuffs, and the magmatic-hydrothermal event seems to span at least 2 Ma. Epithermal mineralization accompanied repeated movement of the normal faults, resulting in vein development in the planes of the faults. The veins occur in a very large area of argillic alteration. Individual mineralized structures commonly formed new fracture planes during separate fault movements, with resulting broad zones of veinlets growing in the walls of the major vein-faults. The veinlet swarms have been found to constitute a target estimated at 75,000,000 tons, averaging 0.037 ounce gold per ton. The target is amenable to bulkmining exploitation. The epithermal mineralogy is simple, with electrum being the most important precious metal mineral. The host veins are typical low-sulfide banded epithermal quartz and adularia structures that filled voids created by the faulting. Historical data show that beneficiation of the simple vein mineralogy is very efficient. ?? 1995 Oxford University Press.

  9. Magnetic, radiometric and gravity signatures of localities of epithermal gold deposits in Fiji

    International Nuclear Information System (INIS)

    Gunn, Peter J.; Mackey, Tim; Meixner, Tony J.

    1998-01-01

    Fiji contains several epithermal gold deposits and by studying the geophysical responses in the vicinity of these deposits it is possible to identify a set of geophysical characteristics which indicate localities where such deposits may be located. Epithermal gold deposits are formed above intrusive stocks resulting from subduction processes. The source intrusions for the deposits are normally covered by lavas and pyroclastic rocks and the irregular magnetic effects of these units obscure the magnetic effects of the intrusions. In Fiji however the source intrusions can be recognized as causing gravity highs and magnetic highs in upward continued magnetic data in which the magnetic effects of volcanic rocks are suppressed. Vents associated with the intrusions can be recognized as magnetic lows which sometimes contain a central high. Some vents and calderas can be recognized in digital elevation data. Increased potassium concentrations ca be interpreted to indicate potassium alteration associated with mineralizing processes. Fractures that may localize epithermal deposits can be recognized in the magnetic data and enhancements of the data such as produced by derivative operations. (author)

  10. Instrumentation for PSD based neutron diffractometers at Dhruva reactor

    International Nuclear Information System (INIS)

    Pande, S.S.; Borkar, S.P.; Prafulla, S.; Srivastava, V.D.; Behare, A.; Mukhopadhyay, P.K.; Ghodgaonkar, M.D.; Kataria, S.K.

    2004-01-01

    Linear position sensitive detectors (PSDs) are widely used to configure neutron diffractometers and other instruments. Necessary front-end electronics and a data acquisition system is developed to cater to such instruments built around the Dhruva research reactor in BARC. These include three diffractometers with multiple PSDs and four with single PSD. The front-end electronics consists of high voltage units, preamplifiers, shaping amplifiers, ratio ADCs (RDC). The data acquisition system consists of an interface card and software. Commercially available hardware like temperature controller or stepper motor controller connected over GPIB or RS232 are also integrated in the data acquisition system. The data acquisition is automated so that it can continue unattended for control parameter like temperature, thus enabling optimum utilization of available beam time. The instrumentation is scalable and can be easily configured for various instrumental requirements. The front-end electronics and the data acquisition system are described here. (author)

  11. Instrumentation for PSD-based neutron diffractometers at Dhruva reactor

    Science.gov (United States)

    Pande, S. S.; Borkar, S. P.; Prafulla, S.; Srivastava, V. D.; Behare, A.; Mukhopadhyay, P. K.; Ghodgaonkar, M. D.; Kataria, S. K.

    2004-08-01

    Linear position sensitive detectors (PSDs) are widely used to configure neutron diffractometers and other instruments. Necessary front-end electronics and a data acquisition system [1] is developed to cater to such instruments built around the Dhruva research reactor in BARC. These include three diffractometers with multiple PSDs and four with single PSD. The front-end electronics consists of high voltage units, preamplifiers [2], shaping amplifiers, ratio ADCs (RDC) [3]. The data acquisition system consists of an interface card and software. Commercially available hardware like temperature controller or stepper motor controller connected over GPIB or RS232 are also integrated in the data acquisition system. The data acquisition is automated so that it can continue unattended for control parameter like temperature, thus enabling optimum utilization of available beam time. The instrumentation is scalable and can be easily configured for various instrumental requirements. The front-end electronics and the data acquisition system are described here.

  12. Development of a central PC-based system for reactor signal monitoring and analysis

    International Nuclear Information System (INIS)

    Karim, A.; Ansari, S.A.; Baig, A.R.

    1996-05-01

    A personal computer based system was developed for on-line monitoring, signal processing and display of important parameters of the Pakistan Reactor-1. The system was designed for assistance to both reactor operator and users. It performs three main functions. The first is the centralized radiation monitoring in and around the reactor building. The computer acquires signals from radiation monitoring channels and continuously displays them on distributed monitors. Trend monitoring and alarm generation is also done. In case of any abnormal condition the radiation level data is automatically stored in computer memory for detailed off-line analysis. In the second part the computer does the performance testing of nuclear instrumentation channels by signal statistical analysis and generates alarm in case the channel standard deviation error exceeds the permissible error. Mean values of important nuclear signals are also displayed on distributed monitors as a part of reactor safety parameters display system. The third function is on-line computation of reactor physics parameters of the core which are important from operational and safety point-of-view. The signals from radiation protection system and nuclear instrumentation channels in the reactor were interfaced with the computer for this purpose. The development work was done under an IAEA research contract as a part of coordinated research programme. (author) 12 figs

  13. NRC data base for power reactor surveillance programs and for irradiation experiments results

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.

    1991-01-01

    The radiation damage of pressure vessel materials in nuclear reactors depends on many different factors, primarily fluence, fluence spectrum, fluence rate, irradiation temperature, and chemistry. These factors and, possibly, others such as heat treatment and type of flux used in weldments must be considered to reliably predict the pressure vessel embrittlement and to assure the safe operation of the reactor. Based on embrittlement predictions, decisions must be made concerning operating parameters, low-leakage fuel management, possible life extension, and the need for annealing of the pressure vessel. Large numbers of data obtained from surveillance capsules and test reactor experiments are needed, comprising many different materials and different irradiation conditions, to develop generally applicable damage prediction models that can be used for industry standards and regulatory guides. The US Nuclear Regulatory Agency has, therefore, sponsored a project to construct an Embrittlement Data Base (EDB) for a comprehensive collection of data concerning changes in material properties of pressure vessel steels due to neutron irradiation. A first version containing data from surveillance capsules of commercial power reactors, the Power Reactor Embrittlement Data Base (PR-EDB) Version 1, has been completed and is available to authorized users from the Radiation Shielding Information Center at the Oak Ridge National Laboratory. This document provides a discussion of the features of the current database. 1 fig

  14. Tests of Neutron Spectrum Calculations with the Help of Foil Measurements in a D{sub 2}O and in an H{sub 2}O-Moderated Reactor and in Reactor Shields of Concrete an Iron

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, R; Aalto, E

    1964-09-15

    Foil measurements covering the fast, epithermal and thermal neutron energy regions have been made in the centre of the Swedish D{sub 2}O-moderated reactor R1, in the pool reactor R2-0, and in different positions in reactor shields of iron, magnetite concrete and ordinary concrete. Neutron spectra have also been calculated for most of these positions, often with the help of a numerical integration of the Boltzmann equation. The measurements and the calculated spectra are presented.

  15. Graphic-object information system {open_quotes}research base for reactor materials science{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Markina, N.V.; Lebedeva, E.E.; Arkhangel`skii, N.V.; Semenov, S.B.; Moiseev, A.L.

    1994-11-01

    An information system developed for reactor materials research is described. The information system incorporates an expert system, MATREKS, and a heirarchial data base. The data base contains information from 20 Russian research reactors. The information system structure, data base structure, search methods, system output modes, and technical facilities and software required are briefly discussed. 6 refs., 2 figs.

  16. Neutronic calculations of AFPR-100 reactor based on Spherical Cermet Fuel particles

    International Nuclear Information System (INIS)

    Benchrif, A.; Chetaine, A.; Amsil, H.

    2013-01-01

    Highlights: • AFPR-100 reactor considered as a small nuclear reactor without on-site refueling originally based on TRISO micro-fuel element. • The AFPR-100 reactor was re-designed using the new Spherical Cermet fuel element. • The adoption of the Cermet fuel instead of TRISO fuel reduces the core lifetime operation by 3.1 equivalent full power years. • We discussed the new micro-fuel element candidate for small and medium sized reactors. - Abstract: The Atoms For Peace Reactor (AFPR-100), as a 100 MW(e) without the need of on-site refueling, was originally based on UO2 TRISO fuel coated particles embedded in a carbon matrix directly cooled by light water. AFPR-100 is considered as a small nuclear reactor without open-vessel refueling which is proposed by Pacific Northwest National Laboratory (PNNL). An account of significant irradiation swelling in the silicon carbide fission product barrier coating layer of TRISO fuel element, a Spherical Cermet Fuel element has been proposed. Indeed, the new fuel concept, which was developed by PNNL, consists of changing the pyro-carbon and ceramic coatings that are incompatible with low temperature by Zirconium. The latter was chosen to avoid any potential Wigner energy effect issues in the TRISO fuel element. Actually, the purpose of this study is to assess the goal of AFPR-100 concept using the Cermet fuel; undeniably, the fuel core lifetime prediction may be extended for reasonably long period without on-site refueling. In fact, we investigated some neutronic parameters of reactor core by the calculation code SRAC95. The results suggest that the core fuel lifetime beyond 12 equivalent full power years (EFPYs) is possible. Hence, the adoption of Cermet fuel concept shows a core lifetime decrease of about 3.1 EFPY

  17. PR-EDB: Power Reactor Embrittlement Data Base, version 1: Program description

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.; Taylor, B.J.

    1990-06-01

    Data concerning radiation embrittlement of pressure vessel steels in commercial power reactors have been collected form available surveillance reports. The purpose of this NRC-sponsored program is to provide the technical bases for voluntary consensus standards, regulatory guides, standard review plans, and codes. The data can also be used for the exploration and verification of embrittlement prediction models. The data files are given in dBASE 3 Plus format and can be accessed with any personal computer using the DOS operating system. Menu-driven software is provided for easy access to the data including curve fitting and plotting facilities. This software has drastically reduced the time and effort for data processing and evaluation compared to previous data bases. The current compilation of the Power Reactor Embrittlement Data base (PR-EDB, version 1) contains results from surveillance capsule reports of 78 reactors with 381 data points from 110 different irradiated base materials (plates and forgings) and 161 data points from 79 different welds. Results from heat-affected-zone materials are also listed. Electric Power Research Institute (EPRI), reactor vendors, and utilities are in the process of providing back-up quality assurance checks of the PR-EDB and will be supplementing the data base with additional data and documentation. 2 figs., 28 tabs

  18. A constraint-based approach to intelligent support of nuclear reactor design

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    1993-01-01

    Constraint is a powerful representation to formulate and solve problems in design; a constraint-based approach to intelligent support of nuclear reactor design is proposed. We first discuss the features of the approach, and then present the architecture of a nuclear reactor design support system under development. In this design support system, the knowledge base contains constraints useful to structure the design space as object class definitions, and several types of constraint resolvers are provided as design support subsystems. The adopted method of constraint resolution are explained in detail. The usefulness of the approach is demonstrated using two design problems: Design window search and multiobjective optimization in nuclear reactor design. (orig./HP)

  19. Examination of the bases for proposed innovations in reactor safety technology

    International Nuclear Information System (INIS)

    Moses, D.L.

    1986-01-01

    This paper employs the criteria for evaluations from the Nuclear Power Option Viability Study to examine the bases for proposed innovations in light water reactor safety technology. These bases for innovation fall into four broad categories as follows: (1) virtually exclusive reliance on passive safety features to preclude core damage in all situations, (2) design simplification using some passive safety features to reduce the frequency of core damage to less than about 10 -6 per reactor-year, (3) passive containment to preclude releases from any accident, and (4) designing to limit licensing attention to one or at least a few systems. Of these, only the first two, and perhaps only the second, hold significant promise for providing for the viability of advanced light water reactors

  20. Nuclear reactors project optimization based on neural network and genetic algorithm

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Schirru, Roberto; Martinez, Aquilino S.

    1997-01-01

    This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs

  1. Factors relevant to the decommissioning of land-based nuclear reactor plants

    International Nuclear Information System (INIS)

    1980-01-01

    This document applies to all classes of land-based nuclear fission reactors, including those reactors used for the production of electricity or heat, for testing, for research, and for the production of radionuclides. The document covers the technical and administrative aspects related to the conduct of decommissioning, and to the associated radiation protection of man and his environment both during and after decommissioning. The document is intended to provide assistance to those responsible for planning or implementing the decommissioning of a land-based nuclear reactor. The user of this report is further encouraged to review past experience gained with nuclear facilities and the published technical data cited in the section entitled Bibliography

  2. Telescope-based cavity for negative ion beam neutralization in future fusion reactors.

    Science.gov (United States)

    Fiorucci, Donatella; Hreibi, Ali; Chaibi, Walid

    2018-03-01

    In future fusion reactors, heating system efficiency is of the utmost importance. Photo-neutralization substantially increases the neutral beam injector (NBI) efficiency with respect to the foreseen system in the International Thermonuclear Experimental Reactor (ITER) based on a gaseous target. In this paper, we propose a telescope-based configuration to be used in the NBI photo-neutralizer cavity of the demonstration power plant (DEMO) project. This configuration greatly reduces the total length of the cavity, which likely solves overcrowding issues in a fusion reactor environment. Brought to a tabletop experiment, this cavity configuration is tested: a 4 mm beam width is obtained within a ≃1.5  m length cavity. The equivalent cavity g factor is measured to be 0.038(3), thus confirming the cavity stability.

  3. Real-time simulation of response to load variation for a ship reactor based on point-reactor double regions and lumped parameter model

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiao; Zhang De [Department of Nuclear Energy Science and Engineering, Naval University of Engineering, Wuhan 430033 (China); Chen Wenzhen, E-mail: Cwz2@21cn.com [Department of Nuclear Energy Science and Engineering, Naval University of Engineering, Wuhan 430033 (China); Chen Zhiyun [Department of Nuclear Energy Science and Engineering, Naval University of Engineering, Wuhan 430033 (China)

    2011-05-15

    Research highlights: > We calculate the variation of main parameters of the reactor core by the Simulink. > The Simulink calculation software (SCS) can deal well with the stiff problem. > The high calculation precision is reached with less time, and the results can be easily displayed. > The quick calculation of ship reactor transient can be achieved by this method. - Abstract: Based on the point-reactor double regions and lumped parameter model, while the nuclear power plant second loop load is increased or decreased quickly, the Simulink calculation software (SCS) is adopted to calculate the variation of main physical and thermal-hydraulic parameters of the reactor core. The calculation results are compared with those of three-dimensional simulation program. It is indicated that the SCS can deal well with the stiff problem of the point-reactor kinetics equations and the coupled problem of neutronics and thermal-hydraulics. The high calculation precision can be reached with less time, and the quick calculation of parameters of response to load disturbance for the ship reactor can be achieved. The clear image of the calculation results can also be displayed quickly by the SCS, which is very significant and important to guarantee the reactor safety operation.

  4. Simulation of the automatic depressurization system (Ads) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    Ramirez G, C.; Chavez M, C.

    2012-10-01

    The automatic depressurization system (Ads) of the boiling water reactor (BWR) like part of the emergency cooling systems is designed to liberate the vapor pressure of the reactor vessel, as well as the main vapor lines. At the present time in the Engineering Faculty, UNAM personnel works in the simulation of the Laguna Verde reactor based on the nuclear code RELAP/SCADAP and in the incorporation to the same of the emergency cooling systems. The simulation of the emergency cooling systems began with the inclusion of two hydrodynamic volumes, one source and another drain, and the incorporation of the initiation logic for each emergency system. In this work is defined and designed a simplified model of Ads of the reactor, considering a detail level based on the main elements that compose it. As tool to implement the proposed model, the RELAP code was used. The simulated main functions of Ads are centered in the quick depressurization of the reactor by means of the vapor discharge through the relief/safety valves to the suppression pool, and, in the event of break of the main vapor line, the reduction of the vessel pressure operates for that the cooling systems of the core to low pressure (Lpcs and Lpci) they can begin their operation. (Author)

  5. Conceptual Design of a Clinical BNCT Beam in an Adjacent Dry Cell of the Jozef Stefan Institute TRIGA Reactor

    International Nuclear Information System (INIS)

    Maucec, Marko

    2000-01-01

    The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation point, the efficiency of a fission plate with almost 1.5 kg of 20% enriched uranium and 2.3 kW of thermal power is investigated. With the same purpose in mind, the TRIGA reactor core setup is optimized, and standard fresh fuel elements are concentrated partly in the outermost ring of the core. Further, a detailed parametric study of the materials and dimensions for all the relevant parts of the irradiation facility is carried out. Some of the standard epithermal neutron filter/moderator materials, as well as 'pressed-only' low-density Al 2 O 3 and AlF 3 , are considered. The proposed version of the BNCT facility, with PbF 2 as the epithermal neutron filter/moderator, provides an epithermal neutron flux of ∼1.1 x 10 9 n/cm 2 .s, thus enabling patient irradiation times of nfast /φ epi -13 Gy.cm 2 /n and [overdot]D γ /φ epi -13 Gy.cm 2 /n), the in-air performances of the proposed beam are comparable to all existing epithermal BNCT facilities. The design presents an equally efficient alternative to the BNCT beams in TRIGA reactor thermal columns that are more commonly applied. The cavity of the dry cell, a former JSI TRIGA reactor spent-fuel storage facility, adjacent to the thermalizing column, could rather easily be rearranged into a suitable patient treatment room, which would substantially decrease the overall developmental costs

  6. The Shah-Ali-Beiglou Zn-Pb-Cu (-Ag Deposit, Iran: An Example of Intermediate Sulfidation Epithermal Type Mineralization

    Directory of Open Access Journals (Sweden)

    Khadijeh Mikaeili

    2018-04-01

    Full Text Available The Shah-Ali-Beiglou epithermal base metal-silver deposit is located in the Tarom-Hashjin metallogenic province (THMP in northwestern Iran. This deposit is hosted by quartz monzonite dikes of Oligocene age and surrounded by andesite to trachyandesite volcanic and volcaniclastic rocks of Eocene age. The subvolcanic rocks in the study area vary in composition from quartz-monzonite to monzonite and have metaluminous, calc-alkaline to shoshonitic affinity. These rocks have I-type geochemical characteristic and are related to post-collisional tectonic setting. The mineralization occurs as NE-SW and E-W-trending brecciated veins controlled by strike-slip and normal faults, which are associated to the Late Oligocene compressional regime. The mineral paragenesis of the vein mineralization is subdivided into pre-ore stage, ore stage, post-ore stage, and supergene stage. Pre-ore stage is dominated by quartz, sericite, and subhedral to anhedral pyrite as disseminated form. Ore-stage is represented by quartz, sphalerite (from 0.1 mol % to 4 mol % FeS, galena, chalcopyrite, tetrahedrite-tennantite, minor seligmannite and enargite, as vein-veinlet, cement and clast breccias. Post-ore stage is defined by deposition of quartz and carbonate along with minor barite, and supergene stage is characterized by bornite, chalcocite, covellite, hematite, goethite, and jarosite. The ore mineralization is associated with the silicic alteration. The styles of alteration are silicic, carbonate, sericitic, chloritic, and propylitic. Fluid inclusions in sphalerite have a wide range of salinities between 0.35 wt % and 21.4 wt % NaCl equivalent and homogenization temperatures range from 123 to 320 °C. The isotopic values of sulfides vary from 2.8‰ to 6.7‰ suggesting a magmatic source for the sulfur. In the present study, based on geological setting, alteration style of the host and wall rocks, main textures, mineral assemblages, composition of ore minerals, and structural

  7. Studies on the liquid fluoride thorium reactor: Comparative neutronics analysis of MCNP6 code with SRAC95 reactor analysis code based on FUJI-U3-(0)

    Energy Technology Data Exchange (ETDEWEB)

    Jaradat, S.Q., E-mail: sqjxv3@mst.edu; Alajo, A.B., E-mail: alajoa@mst.edu

    2017-04-01

    Highlights: • The verification for FUJI-U3-(0)—a molten salt reactor—was performed. • The MCNP6 was used to study the reactor physics characteristics for FUJI-U3 type. • The results from the MCNP6 were comparable with the ones obtained from literature. - Abstract: The verification for FUJI-U3-(0)—a molten salt reactor—was performed. The reactor used LiF-BeF2-ThF4-UF4 as the mixed liquid fuel salt, and the core was graphite moderated. The MCNP6 code was used to study the reactor physics characteristics for the FUJI-U3-(0) reactor. Results for reactor physics characteristic of the FUJI-U3-(0) exist in literature, which were used as reference. The reference results were obtained using SRAC95 (a reactor analysis code) coupled with ORIGEN2 (a depletion code). Some modifications were made in the reconstruction of the FUJI-U3-(0) reactor in MCNP due to unavailability of more detailed description of the reactor core. The assumptions resulted in two representative models of the reactor. The results from the MCNP6 models were compared with the reference results obtained from literature. The results were comparable with each other, but with some notable differences. The differences are because of the approximations that were done on the SRAC95 model of the FUJI-U3 to simplify the simulation. Based on the results, it is concluded that MCNP6 code predicts well the overall simulation of neutronics analysis to the previous simulation works using SRAC95 code.

  8. HERESY, 2-D Few-Group Static Eigenvalues Calculation for Thermal Reactor

    International Nuclear Information System (INIS)

    Finch, D.R.

    1965-01-01

    1 - Description of problem or function: HERESY3 solves the two- dimensional, few-group, static reactor eigenvalue problem using the heterogeneous (source-sink or Feinburg-Galanin) formalism. The solution yields the reactor k-effective and absorption reaction rates for each rod normalized to the most absorptive rod in the thermal level. Epithermal fissions are allowed at each resonance level, and lattice-averaged values of thermal utilization, resonance escape probability, thermal and resonance eta values, and the fast fission factor are calculated. Kernels in the calculation are based on age-diffusion theory. Both finite reactor lattices and infinitely repeating reactor super-cells may be calculated. Rod parameters may be calculated by several internal options, and a direct interface is provided to a HAMMER system (NESC Abstract 277) lattice library tape to obtain cell parameters. Criticality searches are provided on thermal utilization, thermal eta, and axial leakage buckling. 2 - Method of solution: Direct power iteration on matrix form of the heterogeneous critical equation is used. 3 - Restrictions on the complexity of the problem: Maxima of - 50 flux/geometry symmetry positions; 20 physically different assemblies; 9 resonance levels; 5000 rod coordinate positions

  9. Gas phase photocatalytic water splitting in silicon based µ-reactors

    DEFF Research Database (Denmark)

    Dionigi, Fabio; Vesborg, Peter Christian Kjærgaard

    is discussed in the beginning of this thesis followed by an introduction to the basics of photocatalysis. The experimental setup used in this study and the silicon based μ-reactor technology is described afterwards. Almost the entire work presented in the thesis has been done loading the catalysts in these μ...

  10. Nuclear reactor power as applied to a space-based radar mission

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  11. A fuzzy-logic based diagnosis and control of a reactor performing complete autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist

    2013-01-01

    Diagnosis and control modules based on fuzzy set theory were tested for novel bioreactor monitoring and control. Two independent modules were used jointly to carry out first the diagnosis of the state of the system and then use transfer this information to control the reactor. The separation in d...... autotrophic nitrogen removal process. The whole module is evaluated by dynamic simulation....

  12. Development of field programmable gate array-based reactor trip functions using systems engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Cheon; Ahmed, Ibrahim [Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-08-15

    Design engineering process for field programmable gate array (FPGA)-based reactor trip functions are developed in this work. The process discussed in this work is based on the systems engineering approach. The overall design process is effectively implemented by combining with design and implementation processes. It transforms its overall development process from traditional V-model to Y-model. This approach gives the benefit of concurrent engineering of design work with software implementation. As a result, it reduces development time and effort. The design engineering process consisted of five activities, which are performed and discussed: needs/systems analysis; requirement analysis; functional analysis; design synthesis; and design verification and validation. Those activities are used to develop FPGA-based reactor bistable trip functions that trigger reactor trip when the process input value exceeds the setpoint. To implement design synthesis effectively, a model-based design technique is implied. The finite-state machine with data path structural modeling technique together with very high speed integrated circuit hardware description language and the Aldec Active-HDL tool are used to design, model, and verify the reactor bistable trip functions for nuclear power plants.

  13. Designing research of fast neutron radiation field based on the reactor

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Zhang Xiaomin

    2009-01-01

    Based on the Tsinghua University experimental nuclear reactor neutron source, this research designed moderate theory technical scheme, and the thickness of materials in the scheme were selected by means of Monte Carlo simulating method. An fast neutron radiation field was gained. (authors)

  14. SACRD: a data base for fast reactor safety computer codes, general description

    International Nuclear Information System (INIS)

    Greene, N.M.; Forsberg, V.M.; Raiford, G.B.; Arwood, J.W.; Simpson, D.B.; Flanagan, G.F.

    1979-01-01

    SACRD is a data base of material properties and other handbook data needed in computer codes used for fast reactor safety studies. Data are available in the thermodynamics, heat transfer, fluid mechanics, structural mechanics, aerosol transport, meteorology, neutronics, and dosimetry areas. Tabular, graphical and parameterized data are provided in many cases. A general description of the SACRD system is presented in the report

  15. A data base for reactor physics experiments at KUCA, 1

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Hayashi, Masatoshi; Fujine, Shigenori; Wakamatsu, Susumu.

    1986-01-01

    A data base of the experiment done at the Critical Assembly of Kyoto University(KUCA) was constructed both on personal computers and a main frame. A retrieval data base based on each experiment serve as the key data base. The critical experiment data, geometries of the core configuration or fuel elements, and the various numeric data are referred after the results of the retrieval. The personal computer program for this data base is made using BASIC language and the whole system consist of the retrieval data base and the graphic data. The construction of the critical experiment data is now in progress. The data base system can be supplied to the KUCA users with floppy disks. A universal information retrieval system, FAIRS is prepared at the Data Processing Center Kyoto University. By using this system, the retrieval data base of the experiment was constructed. The image information such as core configuration and fuel elements are stored by using ELF system which can be linked to the FAIRS. The data base on FAIRS can be referred from each university through an online network. However, ELF is a closed service within Kyoto University at present. (author)

  16. Application study of EPICS-based redundant method for reactor control system

    International Nuclear Information System (INIS)

    Zhang Ning; Han Lifeng; Chen Yongzhong; Guo Bing; Yin Congcong

    2013-01-01

    In the reactor control system prototype development of TMSR (Thorium Molten Salt Reactor system, CAS) project, EPICS (Experimental Physics and Industrial Control System) is adopted as Instrument and Control software platform. For the aim of IOC (Input/Output Controller) redundancy and data synchronization of the system, the EPICS-based RMT (Redundancy Monitor Task ) software package and its data-synchronization component CCE (Continuous Control Executive) were introduced. By the development of related IOC driver, redundant switch-over control of server IOC was implemented. The method of redundancy implementation using RMT in server and redundancy performance test for power control system are discussed in this paper. (authors)

  17. Study on concept of web-based reactor piping design data platform

    International Nuclear Information System (INIS)

    Wang Yu; Zhou Yu; Dong Jianling; Meng Yang

    2005-01-01

    For solving the piping design problems such as design data deficiency, designer communication inconvenience and design project inconsistence, Reactor Piping Design Database Platform, which is the main part of the Integrated Nuclear Project Research Platform, is proposed by analyzing the nuclear piping designs in detail. The functions and system structures of the platform are described in the paper for the sake of the realization of the Reactor Piping Design Database Platform. The platform is constituted by web-based management interface, AutoPlant selected as CAD software, and relation database management system (DBMS). (authors)

  18. Design of a heterogeneous subcritical nuclear reactor with molten salts based on thorium; Diseno de un reactor nuclear subcritico heterogeneo con sales fundidas a base de torio

    Energy Technology Data Exchange (ETDEWEB)

    Medina C, D.; Hernandez A, P.; Letechipia de L, C.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Sajo B, L., E-mail: dmedina_c@hotmail.com [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of)

    2015-09-15

    This paper presents the design of a heterogeneous subcritical nuclear reactor with molten salts based on thorium, with graphite moderator and a {sup 252}Cf source, whose dose levels at the periphery allows its use in teaching and research activities. The design was realized by the Monte Carlo method, where the geometry, dimensions and the fuel was varied in order to obtain the best design. The result was a cubic reactor of 110 cm of side, with graphite moderator and reflector. In the central part having 9 ducts of 3 cm in diameter, eight of them are 110 cm long, which were placed on the Y axis; the separation between each duct is 10 cm. The central duct has 60 cm in length and this contains the {sup 252}Cf source, also there are two irradiation channels and the other six contain a molten salt ({sup 7}LiF - BeF{sub 2} - ThF{sub 4} - UF{sub 4}) as fuel. For the design the k{sub eff} was calculated, neutron spectra and ambient dose equivalent. In the first instance the above was calculated for a virgin fuel, was called case 1; then a percentage of {sup 233}U was used and the percentage of Th was decreased and was called case 2. This with the purpose of comparing two different fuels operating within the reactor. For the two irradiation ducts three positions are used: center, back and front, in each duct in order to have different flows. (Author)

  19. Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor

    Science.gov (United States)

    Abedi-Varaki, Mehdi

    2017-08-01

    Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.

  20. Seismic Margin Assessment for Research Reactor using Fragility based Fault Tree Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung; Oh, Jinho; Lee, Jong-Min; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The research reactor has been often subjected to external hazards during the design lifetime. Especially, a seismic event can be one of significant threats to the failure of structure system of the research reactor. This failure is possibly extended to the direct core damage of the reactor. For this purpose, the fault tree for structural system failure leading to the core damage under an earthquake accident is developed. The failure probabilities of basic events are evaluated as fragility curves of log-normal distributions. Finally, the plant-level seismic margin is investigated by the fault tree analysis combining with fragility data and the critical path is identified. The plant-level probabilistic seismic margin assessment using the fragility based fault tree analysis was performed for quantifying the safety of research reactor to a seismic hazard. For this, the fault tree for structural system failure leading to the core damage of the reactor under a seismic accident was developed. The failure probabilities of basic events were evaluated as fragility curves of log-normal distributions.

  1. Safety concept of high-temperature reactors based on the experience with AVR and THTR

    International Nuclear Information System (INIS)

    Wachholz, Winfried; Kroeger, Wolfgang

    1990-01-01

    In the Federal Republic of Germany a reactor is considered safe if verification has been furnished that the requirements contained in paragraph 7 of the Federal German Atomic Energy Act are met for this reactor: demonstration of sufficient precautions against damage required according to the actual state of the art, and especially compliance with the dose rate limits for normal operation and accidental conditions. These requirements result in a deterministic multi-stage safety concept with specified requirements for the engineered safety systems. In recent years, proposals for enhanced safety of nuclear power reactors or a radical change in safety philosophy have been made. This is characterised by 'inherently safe', 'super safe' and similar slogans. A quantitative definition of these requirements has not yet been established, but it is clear as a common objective that the event of beyond design basis accidents evacuation, relocation, and large scale contamination of ground should not occur. As a consequence of the Chernobyl accident the safety of all the NPPs in Germany has been reviewed. This analysis was completed for the THTR reactor in 1988. The same has been done for AVR reactor. The final evaluation of the HTR specific safety features have been fully confirmed. The HTR concepts under development are based on this experience. The HTR-Modul unit is currently being designed

  2. Automatic start-up system of nuclear reactor based on sequence control technology

    International Nuclear Information System (INIS)

    Zhang Yao; Zhang Dafa; Peng Huaqing

    2009-01-01

    A conceptive design of an automatic start-up system based on the sequence control for the nuclear reactors is given in this paper, so as to solve the problems during the start-up process, such as the long operation time, low automatic control level and high accident rate. The start-up process and its requirements are analyzed in detail at first. Then,the principle, the architecture, the key technologies of the automatic start-up system of nuclear reactors are designed and discussed. With the designed system, the automatic start-up of the nuclear reactor can be realized,the work load of the operator can be reduced,and the safety and efficiency of the nuclear power plant during its start-up can be improved. (authors)

  3. Compact-Toroid fusion reactor based on the field-reversed theta pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-03-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CTOR) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  4. The IAEA collaborating centre for neutron activation based methodologies of research reactors

    International Nuclear Information System (INIS)

    Bode, P.

    2010-01-01

    The Reactor Institute Delft of the Delft University of Technology houses the Netherlands' only academic nuclear research reactor, with associated instrumentation and laboratories, for scientific education and research with ionizing radiation. The Institute's swimming pool type research reactor reached first criticality in 1963 and is currently operated at 2MW thermal powers on a 100 h/week basis. The reactor is equipped with neutron mirror guides serving ultra modern neutron beam physics instruments and with a very bright positron facility. Fully automated gamma-ray spectrometry systems are used by the laboratory for neutron activation analysis, providing large scale services under an ISO/IEC 17025:2005 compliant management system, being (since 1993) the first accredited laboratory of its kind in the world. Already for several years, this laboratory is sustainable by rendering these services to both the public and the private sector. The prime user of the Institute's fac ilities is the scientific Research Department of Radiation, Radionuclide and Reactors of the Faculty of Applied Sciences, housed inside the building. All reactor facilities are also made available for use by or for services to, external clients (industry, government, private sector, other (international research institutes and universities). The Reactor Institute Delft was inaugurated in May 2009 as a new lAEA Collaborating Centre for Neutron Activation Based Methodologies of Research Reactors. The collaboration involves education, research and development in (I) Production of reactor-produced, no-carrier added radioisotopes of high specific activity via neutron activation; (II) Neutron activation analysis with emphasis on automation as well as analysis of large samples, and radiotracer techniques and as a cross-cutting activity, (IIl) Quality assurance and management in research and application of research reactor based techniques and in research reactor operations. This c ollaboration will

  5. Thorium-Based Fuels Preliminary Lattice Cell Studies for Candu Reactors

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Rizoiu, A.C.

    2009-01-01

    The choice of nuclear power as a major contributor to the future global energy needs must take into account acceptable risks of nuclear weapon proliferation, in addition to economic competitiveness, acceptable safety standards, and acceptable waste disposal options. Candu reactors offer a proven technology, safe and reliable reactor technology, with an interesting evolutionary potential for proliferation resistance, their versatility for various fuel cycles creating premises for a better utilization of global fuel resources. Candu reactors impressive degree of fuel cycle flexibility is a consequence of its channel design, excellent neutron economy, on-power refueling, and simple fuel bundle. These features facilitate the introduction and exploitation of various fuel cycles in Candu reactors in an evolutionary fashion. The main reasons for our interest in Thorium-based fuel cycles have been, globally, to extend the energy obtainable from natural Uranium and, locally, to provide a greater degree of energy self-reliance. Applying the once through Thorium (OTT) cycle in existing and advanced Candu reactors might be seen as an evaluative concept for the sustainable development both from the economic and waste management points of view. Two Candu fuel bundles project will be used for the proposed analysis, namely the Candu standard fuel bundle with 37 fuel elements and the CANFLEX fuel bundle with 43 fuel elements. Using the Canadian proposed scheme - loading mixed ThO 2 -SEU CANFLEX bundles in Candu 6 reactors - simulated at lattice cell level led to promising conclusions on operation at higher fuel burnups, reduction of the fissile content to the end of the cycle, minor actinide content reduction in the spent fuel, reduction of the spent fuel radiotoxicity, presence of radionuclides emitting strong gamma radiation for proliferation resistance benefit. The calculations were performed using the lattice codes WIMS and Dragon (together with the corresponding nuclear data

  6. The analysis of the initiating events in thorium-based molten salt reactor

    International Nuclear Information System (INIS)

    Zuo Jiaxu; Song Wei; Jing Jianping; Zhang Chunming

    2014-01-01

    The initiation events analysis and evaluation were the beginning of nuclear safety analysis and probabilistic safety analysis, and it was the key points of the nuclear safety analysis. Currently, the initiation events analysis method and experiences both focused on water reactor, but no methods and theories for thorium-based molten salt reactor (TMSR). With TMSR's research and development in China, the initiation events analysis and evaluation was increasingly important. The research could be developed from the PWR analysis theories and methods. Based on the TMSR's design, the theories and methods of its initiation events analysis could be researched and developed. The initiation events lists and analysis methods of the two or three generation PWR, high-temperature gascooled reactor and sodium-cooled fast reactor were summarized. Based on the TMSR's design, its initiation events would be discussed and developed by the logical analysis. The analysis of TMSR's initiation events was preliminary studied and described. The research was important to clarify the events analysis rules, and useful to TMSR's designs and nuclear safety analysis. (authors)

  7. Evaluation of the breed/burn fast reactor concept

    International Nuclear Information System (INIS)

    Atefi, B.; Driscoll, M.J.; Lanning, D.D.

    1979-12-01

    A core design concept and fuel management strategy, designated breed/burn, has been evaluated for heterogeneous fast breeder reactors. In this concept internal blanket assemblies after fissile material is bred in over several incore cycles, are shuffled into a moderated radial blanket and/or central island. The most promising materials combination identified used thorium in the internal blankets (due to the superior performance of epithermal Th-U233 systems) and zirconium hydride (ZrH 16 ) as the moderator

  8. A new model for anaerobic processes of up-flow anaerobic sludge blanket reactors based on cellular automata

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2002-01-01

    characteristics and lead to different reactor behaviour. A dynamic mathematical model has been developed for the anaerobic digestion of a glucose based synthetic wastewater in UASB reactors. Cellular automata (CA) theory has been applied to simulate the granule development process. The model takes...... into consideration that granule diameter and granule microbial composition are functions of the reactor operational parameters and is capable of predicting the UASB performance and the layer structure of the granules....

  9. Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain

    International Nuclear Information System (INIS)

    Seppaelae, Tiina; Auterinen, Iiro; Aschan, Carita; Seren, Tom; Benczik, Judit; Snellman, Marjatta; Huiskamp, Rene; Ramadan, Usama Abo; Kankaanranta, Leena; Joensuu, Heikki; Savolainen, Sauli

    2002-01-01

    Boron neutron capture therapy (BNCT) is an experimental type of radiotherapy, presently being used to treat glioblastoma and melanoma. To improve patient safety and to determine the radiobiological characteristics of the epithermal neutron beam of Finnish BNCT facility (FiR 1) dose-response studies were carried on the brain of dogs before starting the clinical trials. A dose planning procedure was developed and uncertainties of the epithermal neutron-induced doses were estimated. The accuracy of the method of computing physical doses was assessed by comparing with in vivo dosimetry. Individual radiation dose plans were computed using magnetic resonance images of the heads of 15 Beagle dogs and the computational model of the FiR 1 epithermal neutron beam. For in vivo dosimetry, the thermal neutron fluences were measured using Mn activation foils and the gamma-ray doses with MCP-7s type thermoluminescent detectors placed both on the skin surface of the head and in the oral cavity. The degree of uncertainty of the reference doses at the thermal neutron maximum was estimated using a dose-planning program. The estimated uncertainty (±1 standard deviation) in the total physical reference dose was ±8.9%. The calculated and the measured dose values agreed within the uncertainties at the point of beam entry. The conclusion is that the dose delivery to the tissue can be verified in a practical and reliable fashion by placing an activation dosimeter and a TL detector at the beam entry point on the skin surface with homogeneous tissues below. However, the point doses cannot be calculated correctly in the inhomogeneous area near air cavities of the head model with this type of dose-planning program. This calls for attention in dose planning in human clinical trials in the corresponding areas

  10. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgmaven@gmail.com [1050 Harriet St., Palo Alto, CA 94301 (United States); King, Michael J. [Rapiscan Laboratories Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time (“E–T” correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple “one-group” models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E–T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  11. Determination flux in the Reactor JEN-1; Medida de flujos de neutrones en el nucleo del Reactor JEN-1

    Energy Technology Data Exchange (ETDEWEB)

    Manas Diaz, L; Montes Ponce de leon, J.

    1960-07-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 {mu} gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs.

  12. The determination of self-powered neutron detector sensitivity on thermal and epithermal neutron flux densities

    International Nuclear Information System (INIS)

    Erben, O.

    1980-01-01

    The coefficients of thermal and epithermal neutron flux density depression and self-shielding for the SPN detectors with vanadium, rhodium, silver and cobalt emitters are presented, (for cobalt SPN detectors the functions describing the absorbtion of neutrons along the emitter cross-section are also shown). Using these coefficients and previously published beta particle escape efficiencies, sensitivities are determined for the principal types of detectors produced by Les Cables de Lyon and SODERN companies. The experiments and their results verifying the validity of the theoretical work are described. (author)

  13. Characterization of the γ background in epithermal neutron scattering measurements at pulsed neutron sources

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Tardocchi, M.; Schooneveld, E.M.; Senesi, R.

    2006-01-01

    This paper reports the characterization of the different components of the γ background in epithermal neutron scattering experiments at pulsed neutron sources. The measurements were performed on the VESUVIO spectrometer at ISIS spallation neutron source. These measurements, carried out with a high purity germanium detector, aim to provide detailed information for the investigation of the effect of the γ energy discrimination on the signal-to-background ratio. It is shown that the γ background is produced by different sources that can be identified with their relative time structure and relative weight

  14. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosunen, A

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?){sup water} {sub air}, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in {sup 60}Co gamma beams. In photon beam dosimetry (S I ?){sup water} {sub air} can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation

  15. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    International Nuclear Information System (INIS)

    Kosunen, A.

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?) water air , in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in 60 Co gamma beams. In photon beam dosimetry (S I ?) water air can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation). To improve the accuracy

  16. Determination of selenium in Ni + Co concentrates applying epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Capote Rodriguez, G.; Perez Sayaz, G.; Hernandez Rivero, A.; Moreno Bermudez, J.; Ribeiro Guevara, S.; Arribere, M.A.; Molina Insfran, J.

    1996-01-01

    Concentration of Se in Ni + Co concentrates obtained in nickel industry has to be determined as that is a quality control requirement for its commercialization. At present, analysis of Se, specially at a minor and trace levels is relatively complicated and destructive procedures are frequently required. In this work determination of Se by epithermal neutron activation analysis (ENAA) in 17 samples of nickel industry was investigated. Application of ENAA allowed nondestructive determination of Se concentration down to ppm level in spite of presence of high Co, Fe, Ni, and Cr contents in the samples

  17. Barrier-based micro/milli channels reactor

    NARCIS (Netherlands)

    Al-Rawashdeh, M.I.M.

    2013-01-01

    Gas-liquid processing in microreactors remains mostly restricted to the laboratory scale dueto the complexity and expenditure needed for an adequate numbering-up with a uniform flowdistribution. The barrier-based distributor is a multiphase flow distributor which assures flowuniformity and prevents

  18. Nuclear thermal propulsion engine based on particle bed reactor using light water steam as a propellant

    Science.gov (United States)

    Powell, James R.; Ludewig, Hans; Maise, George

    1993-01-01

    In this paper the possibility of configuring a water cooled Nuclear Thermal Propulsion (NTP) rocket, based on a Particle Bed Reactor (PBR) is investigated. This rocket will be used to operate on water obtained from near earth objects. The conclusions reached in this paper indicate that it is possible to configure a PBR based NTP rocket to operate on water and meet the mission requirements envisioned for it. No insurmountable technology issues have been identified.

  19. Nuclear thermal propulsion engine based on particle bed reactor using light water steam as a propellant

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Maise, G.

    1993-01-01

    In this paper the possibility of configuring a water cooled Nuclear Thermal Propulsion (NTP) rocket, based on a Particle Bed Reactor (PBR) is investigated. This rocket will be used to operate on water obtained from near earth objects. The conclusions reached in this paper indicate that it is possible to configure a PBR based NTP rocket to operate on water and meet the mission requirements envisioned for it. No insurmountable technology issues have been identified

  20. 40Ar/39Ar ages of adularia from the Golden Cross, Neavesville, and Komata epithermal deposits, Hauraki Goldfield, New Zealand

    International Nuclear Information System (INIS)

    Mauk, J.L.; Hall, C.M.

    2004-01-01

    New 40 Ar/ 39 Ar ages of adularia from three epithermal vein deposits in the Hauraki Goldfield constrain when these deposits formed. Adularia from veins at Neavesville has 40 Ar/ 39 Ar plateau and isochron ages of 6.89 ± 0.02 and 6.86 ± 0.02 Ma, respectively, similar to the 40 Ar/ 39 Ar plateau and isochron ages of adularia from veins at Golden Cross of 6.96 ± 0.04 and 6.93 ± 0.03 Ma, respectively. In contrast, Komata mineralisation formed at 5.99 ± 0.02 to 6.07 ± 0.03 Ma, based on the 40 Ar/ 39 Ar isochron and plateau ages of the adularia in these veins, similar to the previously reported 6.0 Ma age of mineralisation at Waihi/Favona. These preliminary data suggest that mineralisation in the Hauraki Goldfields occurred episodically. (author). 19 refs., 3 figs., 1 tab

  1. New Monte Carlo-based method to evaluate fission fraction uncertainties for the reactor antineutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.B., E-mail: maxb@ncepu.edu.cn; Qiu, R.M.; Chen, Y.X.

    2017-02-15

    Uncertainties regarding fission fractions are essential in understanding antineutrino flux predictions in reactor antineutrino experiments. A new Monte Carlo-based method to evaluate the covariance coefficients between isotopes is proposed. The covariance coefficients are found to vary with reactor burnup and may change from positive to negative because of balance effects in fissioning. For example, between {sup 235}U and {sup 239}Pu, the covariance coefficient changes from 0.15 to −0.13. Using the equation relating fission fraction and atomic density, consistent uncertainties in the fission fraction and covariance matrix were obtained. The antineutrino flux uncertainty is 0.55%, which does not vary with reactor burnup. The new value is about 8.3% smaller. - Highlights: • The covariance coefficients between isotopes vs reactor burnup may change its sign because of two opposite effects. • The relation between fission fraction uncertainty and atomic density are first studied. • A new MC-based method of evaluating the covariance coefficients between isotopes was proposed.

  2. A case study for INPRO methodology based on Indian advanced heavy water reactor

    International Nuclear Information System (INIS)

    Anantharaman, K.; Saha, D.; Sinha, R.K.

    2004-01-01

    Under Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) a methodology (INPRO methodology) has been developed which can be used to evaluate a given energy system or a component of such a system on a national and/or global basis. The INPRO study can be used for assessing the potential of the innovative reactor in terms of economics, sustainability and environment, safety, waste management, proliferation resistance and cross cutting issues. India, a participant in INPRO program, is engaged in a case study applying INPRO methodology based on Advanced Heavy Water Reactor (AHWR). AHWR is a 300 MWe, boiling light water cooled, heavy water moderated and vertical pressure tube type reactor. Thorium utilization is very essential for Indian nuclear power program considering the indigenous resource availability. The AHWR is designed to produce most of its power from thorium, aided by a small input of plutonium-based fuel. The features of AHWR are described in the paper. The case study covers the fuel cycle, to be followed in the near future, for AHWR. The paper deals with initial observations of the case study with regard to fuel cycle issues. (authors)

  3. PR-EDB: Power Reactor Embrittlement Data Base, Version 2. Revision 2, Program description

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.; Taylor, B.J. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    Investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current codes Standard Review Plans (SRP`s) and Guides for license renewal can be greatly expedited by the use of a well-designed computerized data base. Also, such a data base is essential for the validation of embrittlement prediction models by researchers. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The current version of the PR-EDB contains the Charpy test data that were irradiated in 252 capsules of 96 reactors and consists of 207 data points for heat-affected-zone (HAZ) materials (98 different HAZ), 227 data points for weld materials (105 different welds), 524 data points for base materials (136 different base materials), including 297 plate data points (85 different plates), 119 forging data points (31) different forging), and 108 correlation monitor materials data points (3 different plates). The data files are given in dBASE format and can be accessed with any computer using the DOS operating system. ``User-friendly`` utility programs are used to retrieve and select specific data, manipulate data, display data to the screen or printer, and to fit and plot Charpy impact data. The results of several studies investigated are presented in Appendix D.

  4. Construction of elements data base of JRR-3, 4 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Akira; Iwata, Yoshihiro [Akita Univ. (Japan); Sawahata, Hiroyuki

    1998-01-01

    Two kinds of the basic data base were constructed. One of them contains stable isotope information (atomic number, mass number, atomic weight and isotope ratio) and other consists of radionuclide information (atomic number, mass number, half-life, {gamma}-ray average energy, {beta}-ray average energy and {beta}+ray release rate). We tried to add the spectrum data determined by experiments, but many kinds of radionuclide in the sample could not separated. (S.Y.)

  5. Monte-Carlo Modeling of Parameters of a Subcritical Cascade Reactor Based on MSBR and LMFBR Technologies

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polanski, A; Sosnin, A N; Khudaverdyan, A H

    2001-01-01

    Parameters of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k_{eff}=0.94-0.98), is apable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10^{14} cm^{12}\\cdot s^_{-1}, in the fast booster zone is 5.12\\cdot10^{15} cm^{12}\\cdot s{-1} at k_{eff}=0.98 and proton beam current I=2.1 mA.

  6. Monte-Carlo modeling of parameters of a subcritical cascade reactor based on MSBR and LMFBR technologies

    International Nuclear Information System (INIS)

    Bznuni, S.A.; Zhamkochyan, V.M.; Khudaverdyan, A.G.; Barashenkov, V.S.; Sosnin, A.N.; Polanski, A.

    2001-01-01

    Parameters are investigated of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k eff = 0.94 - 0.98), is capable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10 14 cm 12 · s -1 , in the fast booster zone is 5.12 · 10 15 cm 12 · s -1 at k eff = 0.98 and proton beam current I = 2.1 mA. (author)

  7. A study on conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production reactor based on spherical torus (ST), which is an intermediate application of fusion energy, is presented. Different from traditional Tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST are used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can do within vacuum vessel in order to produce certain amount of excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR is presented. Based on systematical analysis, design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (authors)

  8. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    International Nuclear Information System (INIS)

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-01-01

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper

  9. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-06-01

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper.

  10. Drop-in capsule testing of plutonium-based fuels in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Chang, G.S.; Ryskamp, J.M.; Terry, W.K.; Ambrosek, R.G.; Palmer, A.J.; Roesener, R.A.

    1996-09-01

    The most attractive way to dispose of weapons-grade plutonium (WGPu) is to use it as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PuO[sub 2]) mixed with urania (UO[sub 2]). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. The proposed weapons-grade MOX fuel is unusual, even relative to ongoing foreign experience with reactor-grade MOX power reactor fuel. Some demonstration of the in- reactor thermal, mechanical, and fission gas release behavior of the prototype fuel will most likely be required in a limited number of test reactor irradiations. The application to license operation with MOX fuel must be amply supported by experimental data. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) is capable of playing a key role in the irradiation, development, and licensing of these new fuel types. The ATR is a 250- MW (thermal) LWR designed to study the effects of intense radiation on reactor fuels and materials. For 25 years, the primary role of the ATR has been to serve in experimental investigations for the development of advanced nuclear fuels. Both large- and small-volume test positions in the ATR could be used for MOX fuel irradiation. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. Furthermore, these data can be obtained more quickly by using ATR instead of testing in a commercial LWR. Our previous work in this area has demonstrated that it is technically feasible to perform MOX fuel testing in the ATR. This report documents our analyses of sealed drop-in capsules containing plutonium-based test specimens placed in various ATR positions

  11. Determination of 30 elements in coal and fly ash by thermal and epithermal neutron-activation analysis

    International Nuclear Information System (INIS)

    Rowe, J.J.; Steinnes, E.

    1977-01-01

    Thirty elements are determined in coal and fly ash by instrumental neutron-activation analysis using both thermal and epithermal irradiation. Gamma-ray spectra were recorded 7 and 20 days after the irradiations. The procedure is applicable to the routine analysis of coals and fly ash. Epithermal irradiation was found preferable for the determination of Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, Cs, Ba, Sm, Tb, Hf, Ta, W, Th and U, whereas thermal irradiation was best for Sc, Cr, Fe, Co, La, Ce, Nd, Eu, Yb and Lu. Results for SRM 1632 (coal) and SRM 1633 (fly ash) agree with those of other investigators. (author)

  12. Qualitative dose response of the normal canine head to epithermal neutron irradiation with and without boron capture

    International Nuclear Information System (INIS)

    DeHaan, C.E.; Gavin, P.R.; Kraft, S.L.; Wheeler, F.J.; Atkinson, C.A.

    1992-01-01

    Boron Neutron Capture Therapy is being re-evaluated for the treatment of intracranial tumors. Prior to human clinical trials, determination of normal tissue tolerance is critical. Dogs were chosen as a large animal model for the following reasons. Dogs can be evaluated with advanced imaging, diagnostic and therapeutic modalities. Dogs are amenable to detailed neurologic examination and subtle behavioral changes are easily detected. Specifically, Labrador retrievers were chosen for their large body and head size. The dogs received varying doses of epithermal neutron irradiation and boron neutron capture irradiation using an epithermal neutron source. The dogs were closely monitored for up to one year post irradiation

  13. Global radioxenon emission inventory based on nuclear power reactor reports.

    Science.gov (United States)

    Kalinowski, Martin B; Tuma, Matthias P

    2009-01-01

    Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.

  14. Conceptual fusion reactor designs based on the laser heat solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-01-01

    The feasibility of the laser heated solenoid (LHS) as an approach to fusion and fusion-fission commercial power generation has been examined. The LHS concept is based on magnetic confinement of a long slender plasma column which is partly heated by the axially directed beam from a powerful long wavelength laser. As a pure fusion concept, the LHS configurations studied so far are characterized by fairly difficult engineering constraints, particularly on the magnet, a large laser, and a marginally acceptable system energy balance. As a fusion-fission system, however, the LHS is capable of a very attractive energy balance, has much more relaxed engineering constraints, requires a relatively modest laser, and as such holds great potential as a power generator and fissile fuel breeding scheme

  15. A boiling-water reactor concept for low radiation exposure based on operating experience

    International Nuclear Information System (INIS)

    Koine, Y.; Uchida, S.; Izumiya, M.; Miki, M.

    1983-01-01

    A review of boiling-water reactor (BWR) operating experience indicates the significant role of water chemistry in determining the radiation dose rate contributing to occupational exposure. The major contributor among the radioactive species involved is identified as 60 Co, produced by neutron activation of 59 Co originating from structural materials. Iron crud, a fine solid form of corrosion product in the reactor water, is also shown to enhance the radiation dose rate. A theoretical study, supported by the operating experience and an extensive confirmatory test, led to the computerized analytical model called DR CRUD which is capable of predicting long-term radiation dose buildup. It accounts for the mechanism of radiation buildup through corrosion products such as irons, cobalts and other radioactive elements; their generation, transport, activation, interaction and deposition in the reactor coolant system are simulated. A scoping analysis, using this model as a tool, establishes the base line of the BWR concept for low occupational exposure. The base line consists of a set of target values for an annual exposure of 200 man.rem in an 1100 MW(e) BWR unit. They are the parameters that will be built into the design such as iron and cobalt inputs to the reactor water, and the capability of the reactor and the condensate purification system. Applicable means of technology are identified to meet the targets, ranging from improved water chemistry to the purification technique, optimized material selection and the recommended operational procedure. Extensive test programmes provide specifications of these means for use in BWRs. Combinations of their application are reviewed to define the concept of reduced exposure. Analytical study verifies the effectiveness of the proposed BWR concept in achieving a low radiation dose rate; occupational exposure is reduced to 200 man.rem/a. (author)

  16. Dalhousie SLOWPOKE-2 reactor: A nuclear analytical chemistry facility

    International Nuclear Information System (INIS)

    Chatt, A.; Holzbecher, J.

    1990-01-01

    SLOWPOKE is an acronym for Safe Low POwer Kritical Experiment. The SOWPOKE-2 is a compact, inherently safe, swimming-pool-type reactor designed by the Atomic Energy of Canada Limited for neutron activation analysis (NAA) and isotope production. The Dalhousie University SLOWPOKE-2 reactor (DUSR) has been operating since 1976; a large beryllium reflector was added in 1986 to extend its lifetime by another 8 to 10 yr. The DUSR is generally operated at half-power with a maximum thermal flux of 1.1 x 10 12 n/cm 2 ·s in the inner pneumatic sites and that of 5.4 x 10 11 n/cm 2 ·s in the outer sites. Despite this comparatively low flux, SLOWPOKE-2 reactors have many beneficial features that are continuously being exploited at the DUSR facility for developing nuclear analytical methods for fundamental as well as applied studies. Although NAA is a well-established analytical technique, much of the activation analysis being performed in most facilities has been limited to methods using fairly long-lived nuclides. The approach at the DUSR facility has been to utilize the highly homogeneous, stable, and reproducible neutron flux to develop NAA methods based on short-lived nuclides. SLOWPOKE reactors have a fairly high epithermal neutron flux, which is being advantageously used for determining several trace elements in complex matrices. Radiochemical NAA (RNAA) methods using coprecipitation, distillation, and ion-exchange separations have been used for the determination of very low levels of several elements in biological materials

  17. Human Factors Engineering (HFE) insights for advanced reactors based upon operating experience

    International Nuclear Information System (INIS)

    Higgins, J.; Nasta, K.

    1997-01-01

    The NRC Human Factors Engineering Program Review Model (HFE PRM, NUREG-0711) was developed to support a design process review for advanced reactor design certification under 10CFR52. The HFE PRM defines ten fundamental elements of a human factors engineering program. An Operating Experience Review (OER) is one of these elements. The main purpose of an OER is to identify potential safety issues from operating plant experience and ensure that they are addressed in a new design. Broad-based experience reviews have typically been performed in the past by reactor designers. For the HFE PRM the intent is to have a more focussed OER that concentrates on HFE issues or experience that would be relevant to the human-system interface (HSI) design process for new advanced reactors. This document provides a detailed list of HFE-relevant operating experience pertinent to the HSI design process for advanced nuclear power plants. This document is intended to be used by NRC reviewers as part of the HFE PRM review process in determining the completeness of an OER performed by an applicant for advanced reactor design certification. 49 refs

  18. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  19. INR Recent Contributions to Thorium-Based Fuel Using in CANDU Reactors

    International Nuclear Information System (INIS)

    Prodea, I.; Mărgeanu, C. A.; Rizoiu, A.; Olteanu, G.

    2014-01-01

    The paper summarizes INR Pitesti contributions and latest developments to the Thorium-based fuel (TF) using in present CANDU nuclear reactors. Earlier studies performed in INR Pitesti revealed the CANDU design potential to use Recovered Uranium (RU) and Slightly Enriched Uranium (SEU) as alternative fuels in PHWRs. In this paper, we performed both lattice and CANDU core calculations using TF, revealing the main neutron physics parameters of interest: k-infinity, coolant void reactivity (CVR), channel and bundle power distributions over a CANDU 6 reactor core similar to that of Cernavoda, Unit 1. We modelled the so called Once Through Thorium (OTT) fuel cycle, using the 3D finite-differences DIREN code, developed in INR. The INR flexible SEU-43 bundle design was the candidate for TF carrying. Preliminary analysis regarding TF burning in CANDU reactors has been performed using the finite differences 3D code DIREN. TFs showed safety features improvement regarding lower CVRs in the case of fresh fuel use. Improvements added to the INR ELESIMTORIU- 1 computer code give the possibility to fairly simulate irradiation experiments in INR TRIGA research reactor. Efforts are still needed in order to get better accuracy and agreement of simulations to the experimental results. (author)

  20. Method and apparatus for dual-spaced fast/epithermal neutron porosity measurements

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.

    1986-01-01

    A method is described for determining the porosity of earth formations in the vicinity of a well borehole, comprising: (a) irradiating the earth formations in the vicinity of the well borehole with a continuous chemical type source of fast neutrons, (b) detecting the fast neutron population at a first shorter spaced distance from the neutron source in the borehole and generating signals representative thereof, (c) detecting the epithermal neutron population at a second space distance from the neutron source in the borehole and generating signals representative thereof, the second spaced distance being greater than the first spaced distance from the neutron source, (d) forming a ratio of the signals representing the fast and epithermal neutron populations to derive a measurement signal functionally related to the porosity of the earth formations in the vicinity of the borehole, and (e) calibrating the measurement signal according to a predetermined functional relationship to derive a porosity signal quantitatively representative of the porosity of the earth formations in the vicinity of the borehole

  1. Observation of distorted Maxwell-Boltzmann distribution of epithermal ions in LHD

    Science.gov (United States)

    Ida, K.; Kobayashi, T.; Yoshinuma, M.; Akiyama, T.; Tokuzawa, T.; Tsuchiya, H.; Itoh, K.; LHD Experiment Group

    2017-12-01

    A distorted Maxwell-Boltzmann distribution of epithermal ions is observed associated with the collapse of energetic ions triggered by the tongue shaped deformation. The tongue shaped deformation is characterized by the plasma displacement localized in the toroidal, poloidal, and radial directions at the non-rational magnetic flux surface in toroidal plasma. Moment analysis of the ion velocity distribution measured with charge exchange spectroscopy is studied in order to investigate the impact of tongue event on ion distribution. A clear non-zero skewness (3rd moment) and kurtosis (4th moment -3) of ion velocity distribution in the epithermal region (within three times of thermal velocity) is observed after the tongue event. This observation indicates the clear evidence of the distortion of ion velocity distribution from Maxwell-Boltzmann distribution. This distortion from Maxwell-Boltzmann distribution is observed in one-third of plasma minor radius region near the plasma edge and disappears in the ion-ion collision time scale.

  2. An in-situ check of the epithermal neutron log calibration

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1993-01-01

    The epithermal neutron log is used to measure the water content of the formation. The large hole epithermal neutron sonde (ENS) utilized at the Nevada Test Site (NTS) has been calibrated in the Hydrogen Content Test Facility (HCTF). These calibrations are used to correct the measured neutron count rate for the effects of tool stand-off and density. For some time, the suspicion has existed that the water contents that are calculated from the ENS data are too large. Hole U2gj represented a unique opportunity to check the validity of the ENS calibration under realistic logging conditions; a portion of the hole had been cemented and redrilled and then logged. The cements have a known water content and can be used as an in-situ calibration check. The author found that the water contents from the log data after processing with the existing calibrations are consistent with these known cement water contents. In addition, the study indicates that the raw neutron data might be more appropriately smoothed by using a median smoother rather than the currently utilized mean smoother

  3. An in-situ check of the epithermal neutron log calibration

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1993-09-01

    The epithermal neutron log is used to measure the water content of the formation. The large hole epithermal neutron sonde (ENS) that we utilize at the Nevada Test Site (NTS) has been calibrated in the Hydrogen Content Test Facility (HCTF). These calibrations are used to correct the measured neutron count rate for the effects of tool stand-off and density. For sometime, the suspicion has existed that the water contents that are calculated from the ENS data are too large. Hole U2gj represented a unique opportunity to check the validity of the ENS calibration under realistic logging conditions; a portion of the hole had been cemented and re drilled and then logged. The cements have a known water content and can be used as an in situ calibration check. I found that the water contents from the log data after processing with the existing calibrations are consistent with these known cement water contents. In addition, the study indicates that the raw neutron data might be more appropriately smoothed by using a median smoother rather than the currently utilized mean smoother

  4. The Chahnaly low sulfidation epithermal gold deposit, western Makran volcanic arc, southeastern Iran

    Science.gov (United States)

    Sholeh, Ali; Rastad, Ebrahim; Huston, David L.; Gemmell, J. Bruce; Taylor, Ryan D.

    2016-01-01

    The Chahnaly low-sulfidation epithermal Au deposit and nearby Au prospects are located northwest of the intermittently active Bazman stratovolcano on the western end of the Makran volcanic arc, which formed as the result of subduction of the remnant Neo-Tethyan oceanic crust beneath the Lut block. The arc hosts the Siah Jangal epithermal and Kharestan porphyry prospects, near Taftan volcano, as well as the Saindak Cu-Au porphyry deposit and world-class Reko Diq Cu-Au porphyry deposit, near Koh-i-Sultan volcano to the east-northeast in Pakistan. The host rocks for the Chahnaly deposit include early Miocene andesite and andesitic volcaniclastic rocks that are intruded by younger dacitic domes. Unaltered late Miocene dacitic ignimbrites overlie these rocks. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology data yield ages between 21.8 and 9.9 Ma for the acidic-intermediate regional volcanism. The most recent volcanic activity of the Bazman stratovolcano involved extrusion of an olivine basalt during Pliocene to Quaternary times. Interpretation of geochemical data indicate that the volcanic rocks are synsubduction and calc-alkaline to subalkaline. The lack of a significant negative Eu anomaly, a listric-shaped rare earth element pattern, and moderate La/Yb ratios of host suites indicate a high water content of the source magma.

  5. Oxygen isotope zonation at the Golden Cross low-sulfidation epithermal gold deposit, New Zealand

    International Nuclear Information System (INIS)

    Mauk, J.L.; Simpson, M.P.

    2001-01-01

    Forty-one whole rock samples from the Gold Cross low-sulfidation epithermal Au-Ag deposit have δ 18 O values that range from 4.4 to 9.3 per mil, with an average value of 7.0 per mil. Unaltered and weakly altered rocks have δ 18 O values greater than 8 per mil, and the orebody is surrounded by samples that are depleted in 18 O. A strongly silicified sample adjacent to the Empire Vein System has a δ 18 O value of 9.0 per mil, similar to previously reported analyses of vein quartz (7.0 to 11.7 per mil, average 9.4 per mil). This suggests that, in detail, Golden Cross may have a zone of 18 O-enriched wall rocks in the core of the deposit, adjacent to the main underground veins. Although some workers have suggested that stable isotope geochemistry may provide useful information for epithermal mineral deposit exploration, at Golden Cross this is not the case. Alteration minerals, major elements and trace elements all define larger, less ambiguous halos than the zone of 18 O-depleted wall rocks. (author). 21 refs., 3 figs., 1 tab

  6. Data bases for rapid response to power reactor problems

    International Nuclear Information System (INIS)

    Maskewitz, B.F.

    1980-01-01

    The urgency of the TMI-2 incident demanded prompt answers to an imperious situation. In responding to these challenging circumstances, both government and industry recognized deficiencies in both availability of essential retrievable data and calculational capabilities designed to respond immediately to actual abnormal events. Each responded by initiating new programs to provide a remedy for the deficiencies and to generally improve all safety measures in the nuclear power industry. Many data bases and information centers offer generic data and other technology resources which are generally useful in support of nuclear safety programs. A few centers can offer rapid access to calculational methods and associated data and more will make an effort to do so. As a beneficial spin-off from the lessons learned from TMI-2, more technical effort and financial resources will be devoted to the prevention of accidents, and to improvement of safety measures in the immediate future and for long term R and D programs by both government and the nuclear power industry

  7. Release of hydrogen isotopes from carbon based fusion reactor materials

    International Nuclear Information System (INIS)

    Vainonen-Ahlgren, E.

    2000-01-01

    The purpose of this study is to understand the annealing behavior of hydrogen isotopes in carbon based materials. Also, the density of the material and structural changes after thermal treatment and ion irradiation are examined. The study of hydrogen diffusion in diamondlike carbon films revealed an activation energy of 2.0 eV, while the deuterium diffusion, due to better measuring sensitivity, is found to be concentration dependent with the effective diffusion coefficient becoming smaller with decreasing deuterium concentration. To explain the experimentally observed profiles, a model according to which atomic deuterium diffuses and deuterium in clusters is immobile is developed. The concentration of immobile D was assumed to be an analytical function of the total D concentration. To describe the annealing behavior of D incorporated in diamondlike carbon films during the deposition process, a model taking into account diffusion of free D and thermal detrapping and trapping of D was developed. The difference in the analysis explains the disagreement of activation energy (1.5 ± 0.2 eV) with the value of 2,9± 0.1 eV obtained for D implanted samples earlier. The same model was applied to describe the experimental profiles in Si doped diamondlike carbon films. Si affects the retention of D in diamondlike carbon films. The amount of D depends on Si content in the co-deposited but not implanted samples. Besides, Si incorporation into carbon coating decreases to some extent the graphitization of the films and leads to formation of a structure which is stable under thermal treatment and ion irradiation. Hydrogen migration in the hydrogen and methane co-deposited films was also studied. In samples produced in methane atmosphere and annealed at different temperatures, the hydrogen concentration level decreases in the bulk, with more pronounced release at the surface region. In the case of coatings deposited by a methane ion beam, the H level also decreases with increasing

  8. Conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production fusion reactor based on spherical torus, which is intermediate application of fusion energy, was presented in this paper. Differing from the traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and maximize tritium breeding ratio with arrangement of tritium production blankets within vacuum vessel as possible in order to produce 1 kg excess tritium except need of self-sufficient plasma core with 40% or more corresponding plant availability. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented, providing the backgrounds and reference for next detailed conceptual design

  9. Research on reactor power controller based on artificial immune P and PID cascade control technology

    International Nuclear Information System (INIS)

    Cheng Shouyu; Peng Minjun; Liu Xinkai

    2014-01-01

    The Reactor Power control system usually adopts the traditional PID controller, the traditional PID controller can meet the operating requirements, but the control effect is not very good. In order to improve this condition, the paper proposes an immune P and PID cascade controller which based the immune mechanism of B-cell co-operating with T-cell, the nuclear power controller based on artificial immune is less reported. In order to verify and validate the control strategy, the designed controller debugs with the full-scope real-time simulation system of nuclear power plants. The simulation results shows that the immune controller can effectively improve the dynamic operating characteristics of the reactor system, and the immune controller is superior to the traditional PID controller in control performance. (authors)

  10. Emotional learning based intelligent controller for a PWR nuclear reactor core during load following operation

    International Nuclear Information System (INIS)

    Khorramabadi, Sima Seidi; Boroushaki, Mehrdad; Lucas, Caro

    2008-01-01

    The design and evaluation of a novel approach to reactor core power control based on emotional learning is described. The controller includes a neuro-fuzzy system with power error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critic's stress is reduced. Simulation results show that the controller has good convergence and performance robustness characteristics over a wide range of operational parameters

  11. Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor

    OpenAIRE

    A. Jayachitra; R. Vinodha

    2014-01-01

    Genetic algorithm (GA) based PID (proportional integral derivative) controller has been proposed for tuning optimized PID parameters in a continuous stirred tank reactor (CSTR) process using a weighted combination of objective functions, namely, integral square error (ISE), integral absolute error (IAE), and integrated time absolute error (ITAE). Optimization of PID controller parameters is the key goal in chemical and biochemical industries. PID controllers have narrowed down the operating r...

  12. AFRRI's conversion to a microprocessor-based reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Moore, Mark L.; Hodgdon, Kenneth M.

    1986-01-01

    The Armed Forces Radiobiology Research Institute (AFRRI) is procuring a state-of- the-art microprocessor-based instrumentation and control system to operate AFRRI's 1 MW (steady-state), 3000 MW (pulse) TRIGA Mark-F reactor. This system will replace the current control console while improving or maintaining the existing operational capabilities and safety characteristics. The new unit will have a 15-year design life using state-of-the-art components

  13. The epithermal critical experiments; Experiences critiques avec des neutrons epitliermiques; Nadteplovye kriticheskie ehksperimenty; Experimentos criticos con neutrones epitermicos

    Energy Technology Data Exchange (ETDEWEB)

    Morewitz, H A; Carpenter, S O [Atomics International, Canoga Park, CA (United States)

    1962-03-15

    The epithermal critical experiments. The present phase of the advanced-epithermal-thorium-reactor programme consists of integral-reactor-physic s experiments designed to provide neutron-cross-section information in the 10-MeV to 1-keV range. A series of nine, multi-region, slow-fast, pseudospherica l critical assemblies of the honey- comb, split-table type are being studied. So far, three assemblies have' been run. The outer driver-decouple r region drives an interior U{sup 233}-Th fuelled spherical test region whose neutron-flux spectrum is successively degraded by increasing the graphite moderator to fuel ratio. A square-wave oscillator experiment defines the central reactivity worths of forty small samples of different materials to 10{sup -8} {Delta}k for each assembly. Additionally, intercalibrated artificial neutron sources are oscillated to determine the various central neutron importance functions. The spectra are obtained by fission-counter measurements with calibrated foils of different thresholds and by a Li{sup 6}-solid-state- counter sandwich spectrometer. A digital computer routine will be used to compile all measurements into a self-consistent library of spectrum averaged cross-sections. (author) [French] La phase actuelle du programme de reacteur au thorium a neutrons epithermiques comprend des experiences integrales de physique des reacteurs pour obtenir des renseignements sur les sections efficaces neutroniques pour la gamme d'energie comprise entre 1 keV et 10 MeV. Les auteurs etudient une serie de neuf ensembles critiques pseudospheriques, a plusieurs regions, a couplage neutrons lents et neutrons rapides du type a alveoles et a coeur divise. A ce jour, trois de ces ensembles ont ete mis en service. La region exterieure, mettant en service ou hors service, commande une zone d'essai interieure de forme spherique ou le combustible est constitue de {sup 233}U-Th, dont le spectre du flux de neutrons est degrade progressivement par augmentation du

  14. Reactor safety

    International Nuclear Information System (INIS)

    Butz, H.P.; Heuser, F.W.; May, H.

    1985-01-01

    The paper comprises an introduction into nuclear physics bases, the safety concept generally speaking, safety devices of pwr type reactors, accident analysis, external influences, probabilistic safety assessment and risk studies. It further describes operational experience, licensing procedures under the Atomic Energy Law, research in reactor safety and the nuclear fuel cycle. (DG) [de

  15. A prospective study of power cycles based on the expected sodium fast reactor parameters

    International Nuclear Information System (INIS)

    Herranz, L. E.; Linares, J. I.; Moratilla, B. Y.; Perez, G. D.

    2010-01-01

    One of the main issues that has not been solved yet in the frame of Sodium Fast Reactors (SFR) is to choose the most appropriate power conversion system. This paper explores the performance of different power cycles, from traditional to innovative layouts trying to find the optimized solution. Based on the expected reactor parameters (i.e., inlet and outlet coolant temperatures, 395 deg.C and 545 deg.C, respectively), a subcritical Rankine similar to those of fossil power plant cycles has been proposed as a reference layout. Then, alternative layouts based on innovative Rankine and Brayton cycles have been investigated. Two Rankine supercritical layouts have been modeled and analyzed: one of them, adopted from the Supercritical Water Reactor of GIV (one reheater, nine pre-heaters and one moisture separator) and the other similar to some fossil plants (two reheaters, nine pre-heaters with no moisture separator). Simple Brayton cycle configurations based on Helium has been also studied. Several layouts have been modeled to study the effects of: inter-cooling between compression stages, absence of an intermediate loop and coupling of an organic Rankine cycle (ORC). (authors)

  16. Development of a risk-based inservice inspection program for a liquid metal reactor

    International Nuclear Information System (INIS)

    King, R.W.; Buschman, H.W.

    1996-01-01

    The emerging application of risk-based assessment technology to the operation and maintenance of nuclear power plants holds considerable promise for improving efficiency and reducing operating costs. EBR-II is liquid-metal-cooled fast reactor which operated for thirty years before shutting down in September 1994 due to program termination. Prior to the shutdown of EBR-II, an in-service inspection (ISI) program was developed that exploited certain advantages of the liquid-metal reactor design, e.g., demonstrated passive response to plant upset events, low pressure primary coolant and compatibility of the coolant and reactor materials. Many of the systems cannot be inspected due to inaccessibility of the components. However, application of a risk-based approach provided the basis for reducing or eliminating inspections in some areas that would otherwise be required. Development and implementation of the risk-based ISI program was interrupted by the DOE-mandated shutdown of EBR-II, so the potential benefits of this approach in terms of reduced O and M costs have yet to be realized. Through the development of this program, however it is clear that there is potential for substantial cost-savings while improving the risk-profile of the facility through this approach

  17. Action plan for the task: Physical measurements at the RA reactor related to VISA-2 project, '0' program, Reactor start-up and measurement of basic parameters of the new core; Plan rada po zadatku: Fizicka merenja na reaktoru RA u vezi projekta VISA-2, '0' program, Pustanje u rad reaktora RA i merenje osnovnih parametara novog jezgra

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, H; Raisic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1962-07-01

    This report consists of two parts. Part one describes the RA reactor start-up, measurements of thermal neutron flux distribution, measurements of epithermal flux, fast neutron flux distribution, absolute values of both thermal and fast neutron fluxes, calibration of regulating rods, and measurements of neutron flux inside the fuel elements. All the mentioned measurements were done at low power level. Part two includes description of the reactor power increase up to nominal value of 6.5 MW, and measurements of thermal neutron flux distribution under xenon poisoning conditions, measurements of epithermal neutrons, absolute values of both thermal and fast neutron fluxes, and measurements of thermal and epithermal neutron fluxes at the exit of the horizontal experimental channel HK-d.

  18. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.

    Science.gov (United States)

    Shangguan, Lulu; Zhang, Lingyi; Xiong, Zhichao; Ren, Jun; Zhang, Runsheng; Gao, Fangyuan; Zhang, Weibing

    2015-04-03

    The bottom-up strategy of proteomic profiling study based on mass spectrometer (MS) has drawn high attention. However, conventional solution-based digestion could not satisfy the demands of highly efficient and complete high throughput proteolysis of complex samples. We proposed a novel bi-enzymatic reactor by immobilizing two different enzymes (trypsin/chymotrypsin) onto a mixed support of hybrid organic-inorganic monolith with SBA-15 nanoparticles embedded. Typsin and chymotrypsin were crossly immobilized onto the mixed support by covalent bonding onto the monolith with glutaraldehyde as bridge reagent and chelation via copper ion onto the nanoparticles, respectively. Compared with single enzymatic reactors, the bi-enzymatic reactor improved the overall functional analysis of membrane proteins of rat liver by doubling the number of identified peptides (from 1184/1010 with trypsin/chymotrypsin enzymatic reactors to 2891 with bi-enzymatic reactor), which led to more proteins identified with deep coverage (from 452/336 to 620); the efficiency of the bi-enzymatic reactor is also better than that of solution-based tandem digestion, greatly shorting the digestion time from 24h to 50s. Moreover, more transmembrane proteins were identified by bi-enzymatic reactor (106) compared with solution-based tandem digestion (95) with the same two enzymes and enzymatic reactors with single enzyme immobilized (75 with trypsin and 66 with chymotrypsin). The proteolytic characteristics of the bi-enzymatic reactors were evaluated by applying them to digestion of rat liver proteins. The reactors showed good digestion capability for proteins with different hydrophobicity and molecular weight. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Analysis of the equalizing holes resistance in fuel assembly spike for lead-based reactor

    International Nuclear Information System (INIS)

    Zhang, Guangyu; Jin, Ming; Wang, Jianye; Song, Yong

    2017-01-01

    Highlights: • A RELAP5 model for a 10 MWth lead-based reactor was built to study the hydrodynamic characteristics between the equalizing holes in the fuel assembly spike. • Different fuel assembly total blockage scenarios and different resistances for different fuel assemblies were examined. • The inherent safety characteristics of the lead-based reactor was improved by optimizing the configuration of equalizing holes in the fuel assembly spike. - Abstract: To avoid the damage of the fuel rod cladding when a fuel assembly (FA) is totally blocked, a special configuration of the fuel assembly spike was designed with some equalizing holes in the center region which can let the coolant to flow during the totally blockage scenarios of FA. To study the hydrodynamic characteristics between the equalizing holes and an appropriate resistance, a RELAP5 model was developed for a 10 MWth lead-based reactor which used lead-bismuth as coolant. Several FA total blockage and partial core blockage scenarios were selected. The simulation results indicated that when all the FA spike equalizing holes had the same hydraulic resistance, only a narrow range of suitable equalizing holes resistances could be chosen when a FA was blocked. However, in the two or more FA blockage scenarios, there were no appropriate resistances to meet the requirement. In addition, with different FA spike equalizing holes with different resistances, a large range of suitable equalizing hole resistances could be chosen. Especially a series of suitable resistances were selected when the small power FA resistance was 1/2, 1/4, 1/8 of the large one. Under these circumstances, one, two or three FA blockages would not damage the core. These demonstrated that selecting a series of suitable hydraulic resistances for the equalizing holes could improve the safety characteristics of the reactor effectively.

  20. 8-group relative delayed neutron yields for epithermal neutron induced fission of 235U and 239Pu

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G

    2002-01-01

    An 8-group representation of relative delayed neutron yields was obtained for epithermal neutron induced fission of 235 U and 239 Pu. These data were compared with ENDF/B-VI data in terms of the average half- life of the delayed neutron precursors and on the basis of the dependence of reactivity on the asymptotic period. (author)

  1. Fractal reactor: An alternative nuclear fusion system based on nature's geometry

    International Nuclear Information System (INIS)

    Siler, T. L.

    2007-01-01

    The author presents his concept of the Fractal Reactor, which explores the possibility of building a plasma fusion power reactor based on the real geometry of nature [fractals], rather than the virtual geometry that Euclid postulated around 330 BC; nearly every architect of our plasma fusion devices has been influenced by his three-dimensional geometry. The idealized points, lines, planes, and spheres of this classical geometry continue to be used to represent the natural world and to describe the properties of all geometrical objects, even though they neither accurately nor fully convey nature's structures and processes. The Fractal Reactor concept contrasts the current containment mechanisms of both magnetic and inertial containment systems for confining and heating plasmas. All of these systems are based on Euclidean geometry and use geometrical designs that, ultimately, are inconsistent with the Non-Euclidean geometry and irregular, fractal forms of nature (3). The author explores his premise that a controlled, thermonuclear fusion energy system might be more effective if it more closely embodies the physics of a star

  2. A CAMAC based real-time noise analysis system for nuclear reactors

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1987-01-01

    A CAMAC based real-time noise analysis system was designed for the TRIGA MARK II nuclear reactor at the Institute for Nuclear Energy, Istanbul. The input analog signals obtained from the radiation detectors are introduced to the system through CAMAC interface. The signals coverted into digital form are processed by a PDP-11 computer. The fast data processing based on auto/cross power spectral density computations is carried out by means of assembly written FFT algorithms in real-time and the spectra obtained are displayed on a CAMAC driven display system as an additional monitoring device. The system has the advantage of being software programmable and controlled by a CAMAC system so that it is operated under porgram control for reactor surveillance, anomaly detection and diagnosis. The system can also be used for the identification of nonstationary operational characteristics of the reactor in long term by comparing the noise power spectra with the corresponding reference noise patterns prepared in advance. (orig.)

  3. Data base formation for important components of reactor TRIGA MARK II

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, R; Mavko, B; Kozuh, M [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    The paper represents specific data base formation for reactor TRIGA MARK II in Podgorica. Reactor operation data from year 1985 to 1990 were collected. Two groups of collected data were formed. The first group includes components data and the second group covers data of reactor scrams. Time related and demand related models were used for data evaluation. Parameters were estimated by classical method. Similar data bases are useful everywhere where components unavailabilities may have severe drawback. (author) [Slovenian] V referatu smo prikazali raziskavo, v okviru katere smo za raziskovalni reaktor TRIGA MARK II v Podgorici izoblikovali specificno bazo podatkov. Zbrali smo podatke obratovanja reaktorja od leta 1985 do 1990. Rezultate raziskave dogodkov smo razdelili v dve glavni skupini. V prvo spadajo obratovalni podatki o komponentah, v drugo skupino pa spadajo zagoni oz. zaustavitve reaktorja. Podatke smo ovrednotili z modelom v casovnem prostoru in z modelom na zahtevo. Parametre modelov smo dolocili s klasicno metodo. Opisane baze podatkov so uporabne povsod, kjer so lahko posledice nezanesljivega delovanja sistemov velike. [author].

  4. Telescoped porphyry-style and epithermal veins and alteration at the central Maratoto valley prospect, Hauraki Goldfield, New Zealand

    International Nuclear Information System (INIS)

    Simpson, M.P.; Mauk, J.L.; Kendrick, R.G.

    2004-01-01

    At the central Maratoto valley prospect, southern Coromandel Peninsula, New Zealand, andesite flows and dacite breccias host rare porphyry-style quartz veins that are telescoped by widespread epithermal veins and alteration. Early porphyry-style quartz veins, which lack selvages of porphyry-style alteration, host hypersaline fluid inclusions that contain several translucent daughter crystals, including halite and sylvite. Overprinting epithermal veins and alteration are divided into two stages. Main-stage epithermal alteration and veins are characterised by the successive deposition of pyrite, quartz, and ankerite-dolomite veinlets coupled with intense alteration of the wall rock to quartz, illite, interlayer illite-smectite (≤ 10% smectite), chlorite, pyrite, ankerite, and dolomite. Late-stage epithermal veins and alteration are characterised by the formation of calcite and siderite veinlets, coupled with overprinting of the wall rocks by both these minerals. Multiphase fluid inclusions in a porphyry-style quartz vein formed at temperatures >400 degrees C and trapped hypersaline magmatic fluid. Lower temperature secondary liquid-rich inclusions in the porphyry-style quartz vein homogenise between 283 and 329 degrees C and trapped a dilute fluid with 18 O (VSMOW) values of 13.5-18.1 permille, whereas late-stage epithermal calcite has δ 18 O (VSMOW) values of 3.1-5.1 permille. Calculated isotopic compositions for the fluid in equilibrium with ankerite-dolomite and calcite at 260 degrees C, averages 6 and -3 permille, respectively. The enriched value for main-stage ankerite-dolomite suggests formation from waters that underwent significant water-rock exchange, whereas isotopically lighter water that formed late-stage calcite underwent little water-rock interaction. We propose a three-stage model to explain telescoped veins and alteration styles at the central Maratoto valley prospect area. Porphyry-style quartz veins were the first to form from hot hypersaline

  5. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.

    Science.gov (United States)

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-10-08

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.

  6. Preliminary studi on neutronic aspect of a conceptual design of the Kartini reactor base ADS facility

    International Nuclear Information System (INIS)

    Tegas Sutondo

    2012-01-01

    A preliminary study on neutronic aspect of a conceptual design of ADS facility with the basis of Kartini Reaktor, has been performed. The study was intended to see the feasibility from neutronic point of view of Kartini reactor, to be used as a small scale of NPP’s waste transmutation experimental facility. A SRAC code was used as the basis of calculations. The results indicate that the presence of minor actinides (MA) will give a positive reactivity, which tends to increase with the increase of MA concentrations. Based on the defined criteria of subcriticality and by considering the core power distributions and the level of reactivity contribution of MA element, it is concluded that Kartini reactor is potential enough to be used as an ADS experimental facility, mainly for MA concentration between 30 to 50 % of the assumed mixture of C-MA matrix. (author)

  7. Risk-based management system development for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Davis, M.L.; Eide, S.A.

    1990-01-01

    A Risk-Based Management System (RBMS) is being developed to facilitate the use of the Advanced Test Reactor (ATR) probabilistic risk assessment to support ATR operation. Most ATR RBMS questions can best be answered using the System Analysis and Risk Assessment System (SARA) developed at the Idaho National Engineering Laboratory. However, some applications may require employment of the other four codes used to develop and report the PRA. These four codes include the Integrated Reliability and Risk Analysis System (IRRAS), SETS, ETA-II, and the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). The ATR RBMS will evolve over three years, and will include the results of the Level 3 and external events analysis

  8. Computer-based regulating control system for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Johnson, M.R.

    1983-01-01

    This paper describes a new control system which has recently been designed and installed at the Advanced Test Reactor at INEL, replacing an older system that had been in service for some 17 years. Based on modern digital technology, the new system provides improved capability, reliability, and an enhanced man/machine interface that includes comprehensive failure and error messages and voice synthesis. In addition to control functions, and transparent to the operator, the system performs continual on-line checks to sense subsystem failures and takes appropriate automatic action. In the maintenance mode, service technicians can carry on a dialog with the controller to quickly identify faulty components. The operational capabilities of the new system are summarized, and reactor operator training, experience, and acceptance of the system are discussed

  9. Conceptual design of a fission-based integrated test facility for fusion reactor components

    International Nuclear Information System (INIS)

    Watts, K.D.; Deis, G.A.; Hsu, P.Y.S.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.

    1982-01-01

    The testing of fusion materials and components in fission reactors will become increasingly important because of lack of fusion engineering test devices in the immediate future and the increasing long-term demand for fusion testing when a fusion reactor test station becomes available. This paper presents the conceptual design of a fission-based Integrated Test Facility (ITF) developed by EG and G Idaho. This facility can accommodate entire first wall/blanket (FW/B) test modules such as those proposed for INTOR and can also accommodate smaller cylindrical modules similar to those designed by Oak Ridge National laboratory (ORNL) and Westinghouse. In addition, the facility can be used to test bulk breeder blanket materials, materials for tritium permeation, and components for performance in a nuclear environment. The ITF provides a cyclic neutron/gamma flux as well as the numerous module and experiment support functions required for truly integrated tests

  10. Low temperature catalytic combustion of propane over Pt-based catalyst with inverse opal microstructure in microchannel reactor

    NARCIS (Netherlands)

    Guan, G.; Zapf, R.; Kolb, G.A.; Men, Y.; Hessel, V.; Löwe, H.; Ye, J.; Zentel, R.

    2007-01-01

    novel Pt-based catalyst with highly regular, periodic inverse opal microstructure was fabricated in a microchannel reactor, and catalytic testing revealed excellent conversion and stable activity for propane combustion at low temperatures

  11. Hybrid reactor based on combined cavitation and ozonation: from concept to practical reality.

    Science.gov (United States)

    Gogate, P R; Mededovic-Thagard, S; McGuire, D; Chapas, G; Blackmon, J; Cathey, R

    2014-03-01

    The present work gives an in depth discussion related to the development of a hybrid advanced oxidation reactor, which can be effectively used for the treatment of various types of water. The reactor is based on the principle of intensifying degradation/disinfection using a combination of hydrodynamic cavitation, acoustic cavitation, ozone injection and electrochemical oxidation/precipitation. Theoretical studies have been presented to highlight the uniform distribution of the cavitational activity and enhanced generation of hydroxyl radicals in the cavitation zone, as well as higher turbulence in the main reactor zone. The combination of these different oxidation technologies have been shown to result in enhanced water treatment ability, which can be attributed to the enhanced generation of hydroxyl radicals, enhanced contact of ozone and contaminants, and the elimination of mass transfer resistances during electrochemical oxidation/precipitation. Compared to the use of individual approaches, the hybrid reactor is expected to intensify the treatment process by 5-20 times, depending on the application in question, which can be confirmed based on the literature illustrations. Also, the use of Ozonix® has been successfully proven while processing recycled fluids at commercial sites on over 750 oil and natural gas wells during hydraulic operations around the United States. The superiority of the hybrid process over conventional chemical treatments in terms of bacteria and scale reduction as well as increased water flowability and better chemical compatibility, which is a key requirement for oil and gas applications, has been established. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Comparison of fuel cycles characteristics for nuclear energy systems based on WWER-TOI and BN-1200 reactors

    International Nuclear Information System (INIS)

    Kagramanyan, V.S.; Kalashnikov, A.G.; Kapranova, Eh.N.; Puzakov, A.Yu.

    2014-01-01

    Authors determine the characteristics of the fuel cycle (FC) based on stationary nuclear power system based on WWER-TOI and BN-1200 reactors with fuel of different composition. Characteristics of reactor systems with partial or complete spent nuclear fuel reprocessing and recycling of plutonium are compared to those of the reference system consisting only of WWER-TOI with uranium oxide fuel, operating in an open FC [ru

  13. Coast-down model based on rated parameters of reactor coolant pump

    International Nuclear Information System (INIS)

    Jiang Maohua; Zou Zhichao; Wang Pengfei; Ruan Xiaodong

    2014-01-01

    For a sudden loss of power in reactor coolant pump (RCP), a calculation model of rotor speed and flow characteristics based on rated parameters was studied. The derived model was verified by comparing with the power-off experimental data of 100D RCP. The results indicate that it can be used in preliminary design calculation and verification analysis. Then a design criterion of RCP was described based on the calculation model. The moment of inertia in AP1000 RCP was verified by this criterion. (authors)

  14. Status of SACRD: a data base for fast reactor safety computer codes

    International Nuclear Information System (INIS)

    Greene, N.M.; Flanagan, G.F.; Alter, H.

    1982-01-01

    In 1975 work was initiated to provide a central computerized data collection of evaluated data for use in fast reactor safety computer codes. This data base is called SACRD and is intended to encompass handbook and other nonproblem-dependent data related to LMFBR's, especially at extreme conditions where little or no experimental data are available. Version 1 of the data base was released in the latter part of 1978 and remained the standard version until Version 81, which was released in October 1981

  15. The hybrid reactor project based on the straight field line mirror concept

    International Nuclear Information System (INIS)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestål, A.; Källne, J.; Anglart, H.

    2012-01-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with “semi-poor” plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Q r = P fis /P fus >>1. The upper bound on Q r is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Q r ≈150, corresponding to a neutron multiplicity of k eff =0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement T e ≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as

  16. The hybrid reactor project based on the straight field line mirror concept

    Science.gov (United States)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.

    2012-06-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on

  17. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Todosow, M.; Raitses, G.; Galperin, A.

    2009-01-01

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  18. The IAEA data base ageing of reactor pressure vessel steels and welds

    International Nuclear Information System (INIS)

    Gillemot, F.; Ianko, L.; Davies, L.M.

    1995-01-01

    This paper describes one aspect of the International Atomic Energy Agency (IAEA) data base, that is to do with the ageing of reactor pressure vessel (RPV) steels and welds. It describes the background and the need for and the benefits deriving from such an international data base encompassing a greater number of sources than currently incorporated in existing international and national data bases. The paper describes the organization of this data base and the controls necessary for data acquisition and control. The current state of progress is described. Membership of and participation in this project is given and data access is also described. The technical features of the data base are described in terms of the structure of the data base and the hardware and software. New features are proposed such as the inclusion of measured curve data and metallographic data. Technical aspects of data evaluation are also included. (author). 1 ref., 6 figs

  19. An Early Permian epithermal gold system in the Tulasu Basin in North Xinjiang, NW China: Constraints from in situ oxygen-sulfur isotopes and geochronology

    Science.gov (United States)

    Dong, Leilei; Wan, Bo; Deng, Chen; Cai, Keda; Xiao, Wenjiao

    2018-03-01

    The Axi and Jingxi-Yelmand gold deposits, being the largest gold deposits in the Chinese North Tianshan, NW China, are located ca. l0 km apart in the Tulasu Basin, and are hosted by the Late Devonian - Early Carboniferous Dahalajunshan Formation. In situ LA-ICP-MS titanium analyses on quartz from the Axi and Jingxi-Yelmand deposits are broadly identical. Accordingly, the calculated ore-forming temperatures by Ti-in-quartz thermometer give average temperatures of 279 °C and 294 °C, respectively. Results of in situ SIMS analyses of oxygen and sulfur isotopes on quartz and pyrite from these two deposits are similar. Temperature-corrected fluids of the Axi deposit have δ18O values of 2.6-8.1‰ and δ34S values of 0.8-2.4‰, whereas the fluids of the Jingxi-Yelmand deposit have δ18O of 6.4-8.9‰ and δ34S of -0.4 to 4.0‰. The oxygen and sulfur isotopes from the two deposits indicate a magmatic origin. LA-ICP-MS zircon U-Pb ages of Aqialehe Formation sandstone provided a lower limit for the mineralization timing of the Axi deposit (288 Ma). In situ SIMS U-Pb analyses on entrapped zircon (297 Ma) and newly recognized 284.5 Ma columnar rhyolite implies that the Jingxi-Yelmand deposit formed in the Early Permian. Based on the magmatic affinity of the ore fluids, similar age and ore-formation temperatures, we propose that the Axi and Jingxi-Yelmand deposits comprise an epithermal gold system, which was driven by the same Permian magma in the Tulasu Basin. The ore geological features together with our new results indicate that the Axi and Jingxi-Yelmand deposits are intermediate and high sulfidation type epithermal deposits, respectively.

  20. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Simos, N.

    2011-01-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  1. A spin-transport system for a longitudinally polarized epithermal neutron beam

    International Nuclear Information System (INIS)

    Crawford, B.E.; Bowman, J.D.; Penttilae, S.I.; Roberson, N.R.

    2001-01-01

    The TRIPLE (Time Reversal and Parity at Low Energies) collaboration uses a polarized epithermal neutron beam and a capture γ-ray detector to study parity violation in neutron-nucleus reactions. In order to preserve the spin polarization of the neutrons as they travel the 60-m path to the target, the beam pipes are wrapped with wire to produce a solenoidal magnetic field of about 10 G along the beam direction. The flanges and bellows between sections of the beam pipe cause gaps in the windings which in turn produce radial fields that can depolarize the neutron spins. A computer code has been developed that numerically evaluates the effect of these gaps on the polarization. A measurement of the neutron depolarization for neutrons in the actual spin-transport system agrees with a calculation of the neutron depolarization for the TRIPLE system. Features that will aid in designing similar spin-transport systems are discussed

  2. Combination of epithermal and inelastic neutron scattering methods to locate coal and oil-shale zones

    International Nuclear Information System (INIS)

    Schultz, W.E.

    1976-01-01

    A pulsed neutron generator of the deuterium-tritium reaction type irradiates earth formations in the vicinity of a borehole with 14 MeV neutrons. Gamma rays produced by the inelastic scattering of the fast neutrons are observed in four energy regions of the gamma ray energy spectrum corresponding to the inelastic scattering of neutrons by carbon, oxygen, silicon, and calcium. The carbon/oxygen, calcium/silicon, and carbon plus oxygen gamma rays are found and combined with a separately derived hydrogen index log to determine the quality of coal-bearing formations or oil-shale regions. The hydrogen index curve is found preferably by a dual-spaced detector epithermal neutron porosity logging technique or from a conventional thermal neutron gamma ray log

  3. Study on iodine levels in thyroids of iodine-supplemented rats by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Wang Xuefei; Zhang Fang; Xu Qing; Liu Nianqing; Chai Zhifang; Zhao Xueqin; Zuo Aijun

    2003-01-01

    The second generation female Wistar rats that have been treated with iodine-deficient food, after their delivery, are divided into three groups i.e. excessive-iodine (EI), adequate-iodine (AI) and iodine-deficient (ID) according to the KIO 3 concentration in the drinking water (3.0, 0.4, 0 mg/L). In addition, the normal rats with low iodine food and 0.4 mg/L KIO 3 water are used as the control group (C). The iodine content in thyroid and the serum thyroid hormone levels of the third generation rats are measured by means of epithermal neutron activation analysis (ENAA), and the method of enzyme-linked immunosorbent assay (ELISA), respectively. The results indicate that the total thyroxine (TT 4 ) and the free thyroxine (FT 4 ) of the EI, compared with those of the controls, are significantly decreased (p 3 ) evidently increased (p 4 , FT 4 and goiter

  4. Bromine and iodine in Chinese medical herbs determined via epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Chien-Yi Chen; Yuan-Yaw Wei; Sheng-Pin ChangLai; Lung-Kwang Pan

    2003-01-01

    Nineteen natural herbs and two prescriptions prepared from mixed herbs were analyzed via epithermal neutron activation analysis (ENAA) to evaluate their bromine and iodine concentration. Traditional medical doctors prescribed the samples presented in this work to most Taiwanese children for strengthening their immune systems. Empirical results indicated a wide diversity of bromine in the samples. Yet, the iodine concentration was only around one to tenth or twentieth of the bromine. The maximum daily intake (MDI) for various medical herbs was also widely diversified from one to tenfold on the basis of various criteria. The minimum detectable concentration (MDC) of bromine and iodine found was 0.42±0.14 ppm and 0.067±0.016 ppm, respectively. Compared to that from conventional thermal neutron activation analysis (NAA) for a similar evaluation, the extremely low MDC obtained here was attributed to the large amount of thermal neutron absorption during sample irradiation. (author)

  5. Study on the determination of uranium by activation analysis with epithermal neutrons

    International Nuclear Information System (INIS)

    Atalla, L.T.

    1977-01-01

    A method is described that is applied to the determination of uranium in different types of materials, either by an entirely instrumental method or with the chemical separation of uranium-239, when the presence of interferences does not allow the instrumental analysis. The advantages and disadvantages in the use of epithermal neutrons in the activation of samples for a more selective activation of uranium-238 also presented. The instrumental method is tested through standart materials, accepted internationally. The possibility of uranium extraction with di-etil-hexilphosphoric acid is also presented and the choice of the former technique is justified. The sensitibility of the method is discussed as well as precision and accuracy through results obtained in the analysis of the standards and the calibration curve of uranium [pt

  6. Elimination of eight interfering radioisotopes in the determination of uranium by activation analysis with epithermic neutrons

    International Nuclear Information System (INIS)

    Requejo, C.S.

    1977-01-01

    The total or parcial elimination interfering radioisotopes in activation analysis of uranium by epithermic neutrons, has been made. It was possible to determine uranium, after chemical separation, from samples of organic and mineral matrixes, which had mercury, selenium, bromine, antimony, gold, barium, molybden and tungsten. Mineral samples were analysed giving results between 0.2 to 5.0 ppm of uranium. The same mineral were ground in agate mortar and in tungsten carbide mill. In the first sample is has been found 0.2277 +- -+ 0.0474 ppm U. The second which had tungsten, at level of 150 ppm, after radiochemical separation, it has been found 0.2465+- -+0.0326 ppm U. These results are considered statistically the same [pt

  7. Manual for the Epithermal Neutron Multiplicity Detector (ENMC) for Measurement of Impure MOX and Plutonium Samples

    International Nuclear Information System (INIS)

    Menlove, H. O.; Rael, C. D.; Kroncke, K. E.; DeAguero, K. J.

    2004-01-01

    We have designed a high-efficiency neutron detector for passive neutron coincidence and multiplicity counting of dirty scrap and bulk samples of plutonium. The counter will be used for the measurement of impure plutonium samples at the JNC MOX fabrication facility in Japan. The counter can also be used to create working standards from bulk process MOX. The detector uses advanced design "3He tubes to increase the efficiency and to shorten the neutron die-away time. The efficiency is 64% and the die-away time is 19.1 ?s. The Epithermal Neutron Multiplicity Counter (ENMC) is designed for high-precision measurements of bulk plutonium samples with diameters of less than 200 mm. The average neutron energy from the sample can be measured using the ratio of the inner ring of He-3 tubes to the outer ring. This report describes the hardware, performance, and calibration for the ENMC.

  8. Photon detectors for epithermal neutron scattering at high-ω and low-q

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Senesi, R.; Tardocchi, M.; Andreani, C.; Gorini, G.

    2004-01-01

    Inelastic epithermal neutron scattering at high energy (ℎω≥1 eV) and low wave vector (q≤10 A -1 ) transfers is the unique technique for the investigation of high-energy excitations in a variety of systems, ranging from magnetic materials to semiconductors. The key issue in order to make these measurements feasible on inverse geometry spectrometers, is to develop suitable detection systems for neutrons in the energy range 1-100 eV. The Resonance Detector Spectrometer configuration has to be considered as the most promising approach for electron Volt neutron spectroscopy. This configuration will be employed in the new low angle detector bank, VLAD, planned for VESUVIO spectrometer operating at ISIS source

  9. Effective dose evaluation for BNCT treatment in the epithermal neutron beam at THOR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.N. [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)] [Division of Health Physics, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Huang, C.K. [Institute of Nuclear Engineering and Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Tsai, W.C. [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Liu, Y.H. [Nuclear Science and Technol. Develop. Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Jiang, S.H., E-mail: shjiang@mx.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)] [Institute of Nuclear Engineering and Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)

    2011-12-15

    This paper aims to evaluate the effective dose as well as equivalent doses of several organs of an adult hermaphrodite mathematical phantom according to the definition of ICRP Publication 60 for BNCT treatments of brain tumors in the epithermal neutron beam at THOR. The MCNP5 Monte Carlo code was used for the calculation of the average absorbed dose of each organ. The effective doses for a typical brain tumor treatment with a tumor treatment dose of 20 Gy-eq were evaluated to be 0.59 and 0.35 Sv for the LLAT and TOP irradiation geometries, respectively. In addition to the stochastic effect, it was found that it is also likely to produce deterministic effects, such as cataracts and depression of haematopoiesis.

  10. Determination of trace cadmium and other elements in bone by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Dowlati, R.; Jervis, R.E.

    1991-01-01

    Epithermal neutron activation analysis (ENAA) was applied to measure quantitatively Cd and other elements in bone samples from control and Cd-fed rats. This method was found to be non-destructive to the bone samples, with no sign of 'radiolytic charring' and was sensitive enough to detect and quantify Cd in bone samples at normal levels for mammals (viz. 0.5-1.0μg/g) and higher. Two different thermal neutron shield materials were utilized, namely cadmium and boron. The boron shield resulted in a 27% improvement in the detection limit of Cd in bone. The accuracy of ENAA for Cd was assessed by intercomparison with electrothermal atomic absorption spectrophotometry (ETAAS), and the results were in fair agreement (±23%) with those from ENAA. (author) 24 refs.; 5 tabs

  11. Measurement of trace cadmium and elements in bone by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Dowlati, R.; Jervis, R.E.

    1991-01-01

    Epithermal neutron activation analysis (ENAA) was applied to measure quantitatively Cd and other elements in bone samples from control and Cd-fed rats. This method was found to be non-destructive to the bone samples, with no sign of 'radiolytic charring' and was sensitive enough to detect and quantify Cd in bone samples at normal levels for mammals (viz. 0.5-1.0 μg/g) and higher. Two different thermal neutron shield materials were utilized, namely cadmium and boron. The boron shield resulted in a 27% improvement in the detection limit of Cd in bone. The accuracy of ENAA for Cd was assessed by intercomparison with electrothermal atomic absorption spectrophotometry (ETAAS), and the results in fair agreement (±23%) with those from ENAA

  12. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost

  13. Design of a heterogeneous subcritical nuclear reactor with molten salts based on thorium

    International Nuclear Information System (INIS)

    Medina C, D.; Hernandez A, P.; Letechipia de L, C.; Vega C, H. R.; Sajo B, L.

    2015-09-01

    This paper presents the design of a heterogeneous subcritical nuclear reactor with molten salts based on thorium, with graphite moderator and a 252 Cf source, whose dose levels at the periphery allows its use in teaching and research activities. The design was realized by the Monte Carlo method, where the geometry, dimensions and the fuel was varied in order to obtain the best design. The result was a cubic reactor of 110 cm of side, with graphite moderator and reflector. In the central part having 9 ducts of 3 cm in diameter, eight of them are 110 cm long, which were placed on the Y axis; the separation between each duct is 10 cm. The central duct has 60 cm in length and this contains the 252 Cf source, also there are two irradiation channels and the other six contain a molten salt ( 7 LiF - BeF 2 - ThF 4 - UF 4 ) as fuel. For the design the k eff was calculated, neutron spectra and ambient dose equivalent. In the first instance the above was calculated for a virgin fuel, was called case 1; then a percentage of 233 U was used and the percentage of Th was decreased and was called case 2. This with the purpose of comparing two different fuels operating within the reactor. For the two irradiation ducts three positions are used: center, back and front, in each duct in order to have different flows. (Author)

  14. Computer based systems for fast reactor core temperature monitoring and protection

    International Nuclear Information System (INIS)

    Wall, D.N.

    1991-01-01

    Self testing fail safe trip systems and guardlines have been developed using dynamic logic as a basis for temperature monitoring and temperature protection in the UK. The guardline and trip system have been tested in passive operation on a number of reactors and a pulse coded logic guardline is currently in use on the DIDO test reactor. Acoustic boiling noise and ultrasonic systems have been developed in the UK as diverse alternatives to using thermocouples for temperature monitoring and measurement. These systems have the advantage that they make remote monitoring possible but they rely on complex signal processing to achieve their output. The means of incorporating such systems within the self testing trip system architecture are explored and it is apparent that such systems, particularly that based on ultrasonics has great potential for development. There remain a number of problems requiring detailed investigation in particular the verification of the signal processing electronics and trip software. It is considered that these problems while difficult are far from insurmountable and this work should result in the production of protection and monitoring systems suitable for deployment on the fast reactor. 6 figs

  15. A 3D transport-based core analysis code for research reactors with unstructured geometry

    International Nuclear Information System (INIS)

    Zhang, Tengfei; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi; Li, Yunzhao

    2013-01-01

    Highlights: • A core analysis code package based on 3D neutron transport calculation in complex geometry is developed. • The fine considerations on flux mapping, control rod effects and isotope depletion are modeled. • The code is proved to be with high accuracy and capable of handling flexible operational cases for research reactors. - Abstract: As an effort to enhance the accuracy in simulating the operations of research reactors, a 3D transport core analysis code system named REFT was developed. HELIOS is employed due to the flexibility of describing complex geometry. A 3D triangular nodal S N method transport solver, DNTR, endows the package the capability of modeling cores with unstructured geometry assemblies. A series of dedicated methods were introduced to meet the requirements of research reactor simulations. Afterwards, to make it more user friendly, a graphical user interface was also developed for REFT. In order to validate the developed code system, the calculated results were compared with the experimental results. Both the numerical and experimental results are in close agreement with each other, with the relative errors of k eff being less than 0.5%. Results for depletion calculations were also verified by comparing them with the experimental data and acceptable consistency was observed in results

  16. Optimization of a Pd-based membrane reactor for hydrogen production from methane steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Assis, A.J.; Hori, C.E.; Silva, L.C.; Murata, V.V. [Universidade Federal de Uberlandia (UFU), MG (Brazil). School of Chemical Engineering]. E-mail: adilsonjassis@gmail.com

    2008-07-01

    In this work, it is proposed a phenomenological model in steady state to describe the performance of a membrane reactor for hydrogen production through methane steam reform as well as it is performed an optimization of operating conditions. The model is composed by a set of ordinary differential equations from mass, energy and momentum balances and constitutive relations. They were used two different intrinsic kinetic expressions from literature. The results predicted by the model were validated using experimental data. They were investigated the effect of five important process parameters, inlet reactor pressure (PR0), methane feed flow rate (FCH40), sweep gas flow rate (FI), external reactor temperature (TW) and steam to methane feed flow ratio (M), both on methane conversion (XCH{sub 4} ) and hydrogen recovery (YH{sub 2}). The best operating conditions were obtained through simple parametric optimization and by a method based on gradient, which uses the computer code DIRCOL in FORTRAN. It is shown that high methane conversion (96%) as well as hydrogen recovery (91%) can be obtained, using the optimized conditions. (author)

  17. Treatment planning figures of merit in thermal and epithermal boron capture therapy of brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, S.A.; Mathur, J.N. (Wollongong Univ., NSW (Australia)); Allen, B.J. (Ansto PMB 1 Menai, NSW (Australia). Biomedicine and Health)

    1994-05-01

    The boron neutron capture therapy (BNCT) figures of merit of advantage depth, therapeutic depth, modified advantage depth and maximum therapeutic depth have been studied as functions of [sup 10]B tumour to blood ratios and absolute levels. These relationships were examined using the Monte Carlo neutron photon transport code, MCNP, with an ideal 18.4 cm diameter neutron beam incident laterally upon an ellipsoidal neutron photon brain-equivalent model. Mono-energetic beams of 0.025 eV (thermal) and 35 eV (epithermal) were simulated. Increasing the tumour to blood [sup 10]B ratio predictably increases all figures of merit. [sup 10]B concentration was also shown to have a strong bearing on the figures of merit when low levels were present in the system. This is the result of a non-[sup 10]B dependent background dose. At higher levels however, the concentration of [sup 10]B has a diminishing influence. For boron sulphydryl (BSH), little advantage is gained by extending the blood [sup 10]B level beyond 30 ppm, whilst for D, L,-p-boronophenylalanine (BPA) this limit is 10 ppm. Applying the epithermal beam under identical conditions, the therapeutic depth reaches the brain mid-line with a tumour to blood [sup 10]B ratio of only 5.7 for BPA. For BSH, the maximum therapeutic depth reaches the brain mid-line with a tumour to blood ratio of only 1.9 with 30 ppm in the blood. Human data for these compounds are very close to these requirements. (author).

  18. Neutron spectra calculation and doses in a subcritical nuclear reactor based on thorium

    International Nuclear Information System (INIS)

    Medina C, D.; Hernandez A, P. L.; Hernandez D, V. M.; Vega C, H. R.; Sajo B, L.

    2015-10-01

    This paper describes a heterogeneous subcritical nuclear reactor with molten salts based on thorium, with graphite moderator and a source of 252 Cf, whose dose levels in the periphery allows its use in teaching and research activities. The design was done by the Monte Carlo method with the code MCNP5 where the geometry, dimensions and fuel was varied in order to obtain the best design. The result is a cubic reactor of 110 cm side with graphite moderator and reflector. In the central part they have 9 ducts that were placed in the direction of axis Y. The central duct contains the source of 252 Cf, of 8 other ducts, are two irradiation ducts and the other six contain a molten salt ( 7 LiF - BeF 2 - ThF 4 - UF 4 ) as fuel. For design the k eff , neutron spectra and ambient dose equivalent was calculated. In the first instance the above calculation for a virgin fuel was called case 1, then a percentage of 233 U was used and the percentage of Th was decreased and was called case 2. This with the purpose to compare two different fuels working inside the reactor. In the case 1 a value was obtained for the k eff of 0.13 and case 2 of 0.28, maintaining the subcriticality in both cases. In the dose levels the higher value is in case 2 in the axis Y with a value of 3.31 e-3 ±1.6% p Sv/Q this value is reported in for one. With this we can calculate the exposure time of personnel working in the reactor. (Author)

  19. Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code.

    Science.gov (United States)

    Khattab, K; Sulieman, I

    2009-04-01

    The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.

  20. The Stypsi-Megala Therma porphyry-epithermal mineralization, Lesvos Island, Greece: new mineralogical and geochemical data

    Science.gov (United States)

    Periferakis, Argyrios; Voudouris, Panagiotis; Melfos, Vasilios; Mavrogonatos, Constantinos; Alfieris, Dimitrios

    2017-04-01

    Lesvos Island is located at the NE part of the Aegean Sea and mostly comprises post-collisional Miocene volcanic rocks of shoshonitic to calc-alkaline geochemical affinities. In the northern part of the Island, the Stypsi Cu-Mo±Au porphyry prospect, part of the Stypsi caldera, is hosted within hydrothermally altered intrusives and volcanics [1]. Porphyry-style mineralization is developed in a microgranite porphyry that has intruded basaltic trachyandesitic lavas. Propylitic alteration occurs distal to the mineralization, whereas sodic-calcic alteration related to quartz-actinolite veinlets, and a phyllic overprint associated with a dense stockwork of banded black quartz±carbonate veinlets, characterizes the core of the system. Alunite-kaolinite advanced argillic alteration occurs at higher topographic levels and represents a barren lithocap to the porphyry mineralization. Intermediate-sulfidation (IS) milky quartz-carbonate veins overprint the porphyry mineralization along a NNE-trending fault that extends further northwards to Megala Therma, where it hosts IS base metal-rich Ag-Au mineralization [2]. New mineralogical data from the Megala Therma deposit suggest Ag-famatinite, Te-polybasite and Ag-tetrahedrite as the main carriers of Ag in the mineralization. Porphyry-style ores at Stypsi consist of magnetite postdated by pyrite and then by chalcopyrite, molybdenite, sphalerite, galena and bismuthinite within the black quartz stockworks or disseminated in the wallrock [1]. The dark coloration of quartz in the veinlets is due to abundant vapor-rich fluid inclusions. Quartz is granular and fine-grained and locally elongated perpendicular to the vein walls. Botryoidal textures are continuous through quartz grains, suggesting quartz recrystallization from a silica gel, a feature already described by [3] from banded quartz veinlets in porphyry Au deposits at Maricunga, Chile. Bulk ore analyses from porphyry-style mineralization at Stypsi displayed similar geochemical

  1. Design issues on using FPGA-based I and C systems in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Marcos S.; Carvalho, Paulo Victor R. de; Santos, Isaac Jose A.L. dos; Lacerda, Fabio de, E-mail: msantana@ien.gov.br, E-mail: paulov@ien.gov.br, E-mail: luquetti@ien.gov.br, E-mail: acerda@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Engenharia Nuclear

    2015-07-01

    The FPGA (field programmable gate array) is widely used in various fields of industry. FPGAs can be used to perform functions that are safety critical and require high reliability, like in automobiles, aircraft control and assistance and mission-critical applications in the aerospace industry. With these merits, FPGAs are receiving increased attention worldwide for application in nuclear plant instrumentation and control (I and C) systems, mainly for Reactor Protection System (RPS). Reasons for this include the fact that conventional analog electronics technologies are become obsolete. I and C systems of new Reactors have been designed to adopt the digital equipment such as PLC (Programmable Logic Controller) and DCS (Distributed Control System). But microprocessors-based systems may not be simply qualified because of its complex characteristics. For example, microprocessor cores execute one instruction at a time, and an operating system is needed to manage the execution of programs. In turn, FPGAs can run without an operating system and the design architecture is inherently parallel. In this paper we aim to assess these and other advantages, and the limitations, on FPGA-based solutions, considering the design guidelines and regulations on the use of FPGAs in Nuclear Plant I and C Systems. We will also examine some circuit design techniques in FPGA to help mitigate failures and provide redundancy. The objective is to show how FPGA-based systems can provide cost-effective options for I and C systems in modernization projects and to the RMB (Brazilian Multipurpose Reactor), ensuring safe and reliable operation, meeting licensing requirements, such as separation, redundancy and diversity. (author)

  2. Thermal-hydraulics verification of a coarse-mesh OpenFOAM-based solver for a Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bonet López, M.

    2015-07-01

    Recently, in the Institute Swiss Paul Scherrer Institut, is has developed a platform Multiphysics, based in OpenFOAM, that is capable of performing an analysis multidimensional of a reactor nuclear. One of the main objectives of this project is to verify the part of the code responsible for the Thermo-hydraulic analysis of the reactor. To carry out simulations this part of the code uses the approximation of thick mesh based on the equations of a porous medium. Therefore, the other objective is demonstrate that this method is applicable to the analysis of a reactor nuclear fast of sodium, focusing is in his capacity of predict the transfer of heat between a subset and the space vacuum between subsets of the core of the reactor. (Author)

  3. Interim report on construction of data base for atomic energy science documents (concerning Kyoto University Reactor)

    International Nuclear Information System (INIS)

    Takeuchi, Takayuki

    1984-01-01

    The Kyoto University Research Reactor Institute was established in 1963 as a research institute for all universities in Japan utilizing the facilities in common. The construction of a document data base has been undertaken in commemoration of the 20th anniversary of the institute. The data base concerns the research works performed at the institute and also the publications and reports on the research made by the personnel belonging to the institute. Input data are gathered from concerned researchers. In this interim report, the structure and contents of this data base are shortly described. One of the features of this data base is that it handles data with both Japanese and English at the same time. (Aoki, K.)

  4. 3-D seismic response of a base-isolated fast reactor

    International Nuclear Information System (INIS)

    Kitamura, S.; Morishita, M.; Iwata, K.

    1992-01-01

    This paper describes a 3-D response analysis methodology development and its application to a base-isolated fast breeder reactor (FBR) plant. At first, studies on application of a base-isolation system to an FBR plant were performed to identify a range of appropriate characteristics of the system. A response analysis method was developed based on mathematical models for the restoring force characteristics of several types of the systems. A series of shaking table tests using a small scale model was carried out to verify the analysis method. A good agreement was seen between the test and analysis results in terms of the horizontal and vertical responses. Parametric studies were then made to assess the effects of various factors which might be influential to the seismic response of the system. Moreover, the method was applied to evaluate three-dimensional response of the base-isolated FBR. (author)

  5. Physical models and primary design of reactor based slow positron source at CMRR

    Science.gov (United States)

    Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin

    2018-07-01

    Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109

  6. Nuclear reactor power as applied to a space-based radar mission

    Science.gov (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project.

  7. Energy-analysis of the total nuclear energy cycle based on light water reactors

    International Nuclear Information System (INIS)

    Kistemaker, J.

    1975-01-01

    The energy economy of the total nuclear energy cycle is investigated. Attention is paid to the importance of fossil fuel saving by using nuclear energy. The energy analysis is based on the construction and operation of power plants with an electric output of 1000MWe. Light water moderated reactors with a 2.7 - 3.2% enriched uranium core are considered. Additionally, the whole fuel cycle including ore winning and refining, enrichment and fuel element manufacturing and reprocessing has been taken into account. Neither radioactive waste storage problems nor safety problems related to the nuclear energy cycle and safeguarding have been dealt with, as exhaustive treatments can be found elswhere

  8. First test of Lorentz violation with a reactor-based antineutrino experiment

    International Nuclear Information System (INIS)

    Abe, Y.; Ishitsuka, M.; Konno, T.; Kuze, M.; Aberle, C.; Buck, C.; Hartmann, F.X.; Haser, J.; Kaether, F.; Lindner, M.; Reinhold, B.; Schwetz, T.; Wagner, S.; Watanabe, H.; Anjos, J.C. dos; Gama, R.; Lima, H.P.-Jr.; Pepe, I.M.; Bergevin, M.; Felde, J.; Maesano, C.N.; Bernstein, A.; Bowden, N.S.; Dazeley, S.; Erickson, A.; Keefer, G.; Bezerra, T.J.C.; Furuta, H.; Suekane, F.; Bezrukhov, L.; Lubsandorzhiev, B.K.; Yanovitch, E.; Blucher, E.; Conover, E.; Crum, K.; Strait, M.; Worcester, M.; Busenitz, J.; Goon, J.TM.; Habib, S.; Ostrovskiy, I.; Reichenbacher, J.; Stancu, I.; Sun, Y.; Cabrera, A.; Franco, D.; Kryn, D.; Obolensky, M.; Roncin, R.; Tonazzo, A.; Caden, E.; Damon, E.; Lane, C.E.; Maricic, J.; Miletic, T.; Milincic, R.; Perasso, S.; Smith, E.; Camilleri, L.; Carr, R.; Franke, A.J.; Shaevitz, M.H.; Toups, M.; Cerrada, M.; Crespo-Anadon, J.I.; Gil-Botella, I.; Lopez-Castano, J.M.; Novella, P.; Palomares, C.; Santorelli, R.; Chang, P.J.; Horton-Smith, G.A.; McKee, D.; Shrestha, D.; Chimenti, P.; Classen, T.; Collin, A.P.; Cucoanes, A.; Durand, V.; Fechner, M.; Fischer, V.; Hayakawa, T.; Lasserre, T.; Letourneau, A.; Lhuillier, D.; Mention, G.; Mueller, Th.A.; Perrin, P.; Sida, J.L.; Sinev, V.; Veyssiere, C.

    2012-01-01

    We present a search for Lorentz violation with 8249 candidate electron antineutrino events taken by the Double Chooz experiment in 227.9 live days of running. This analysis, featuring a search for a sidereal time dependence of the events, is the first test of Lorentz invariance using a reactor-based antineutrino source. No sidereal variation is present in the data and the disappearance results are consistent with sidereal time independent oscillations. Under the Standard-Model Extension, we set the first limits on 14 Lorentz violating coefficients associated with transitions between electron and tau flavor, and set two competitive limits associated with transitions between electron and muon flavor. (authors)

  9. Users manual data base MATSURV. Reactor pressure vessel material surveillance data management system

    International Nuclear Information System (INIS)

    Kenworthy, L.D.; Tether, C.D.

    1980-02-01

    This Users Guide to the data management system MATSURV has been prepared to assist the user in all facets of the task of processing data related to reactor pressure vessel materials surveillance; preparation of raw data for input, input of data, modification of existing data, retrieval and display of data, and the creation of data reports. MATSURV is structured upon the System 2000 data base management system which is maintained on the IBM 370/168 computer at National Institutes of Health. An overview of System 2000 is provided

  10. Nuclear propulsion systems for orbit transfer based on the particle bed reactor

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Horn, F.L.

    1987-01-01

    The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ΔV missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined

  11. Core physics design calculation of mini-type fast reactor based on Monte Carlo method

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2007-01-01

    An accurate physics calculation model has been set up for the mini-type sodium-cooled fast reactor (MFR) based on MCNP-4C code, then a detailed calculation of its critical physics characteristics, neutron flux distribution, power distribution and reactivity control has been carried out. The results indicate that the basic physics characteristics of MFR can satisfy the requirement and objectives of the core design. The power density and neutron flux distribution are symmetrical and reasonable. The control system is able to make a reliable reactivity balance efficiently and meets the request for long-playing operation. (authors)

  12. Neutron Spectrum Parameters In Inner Irradiation Channel Of The Nigeria Research Reactor-1 (NIRR-1) For Use In Absolute And KO-NAA Methods

    International Nuclear Information System (INIS)

    Jonah, S.A; Balogun, G.I; Mayaki, M.C.

    2004-01-01

    In Nigeria, the first Nuclear Reactor achieved critically on February 03, 2004 at about 11:35 GMT and has been commissioned or training and research. It is a Miniature Neutron Source Reactor (MNSR), code-named Nigeria Research Reactor-1 (NIRR-1). NIRR-1 has a tan-in-pool structural configuration and a nominal thermal power rating of 30 Kw. With a built-in clean old core excess reactivity of 3.77 mk determined during the on-site zero and critically experimental, the reactor can operate for a n.cm-2 .s-1 in the inner irradiation channels). Under these conditions, the reactor can operate with the same fuel loading for over ten years with a burn-up of <1%. A detailed description of operating characteristics for NIRR-1, measured during the on-site zero-power and criticality experiments has been given elsewhere. In order to extend its utilization to include absolute and ko-NAA methods, the neutron spectrum parameters in the irradiation channels: power and critically experiments has been given elsewhere. In order to extend it's the irradiation channels: thermal-to-epithermal flux ration, F; and epithermal flux shape factor, a in both the inner and outer irradiation channels must be determined experimentally. In this work, we have developed and experimental procedure for monitoring the neutron spectrum parameters in an inner irradiation channel based on irradiation and gamma-ray counting of detector foils via (n,y), (n,p) and (n,a) dosimetry reactions. Results obtained indicate that a thermal neutron flux of (5.14+-0.02) x 1011 n/c m2.s determined by foil activation method in the inner irradiation channel, B2, at a power level of 15.5 kw corresponds to the flux indicators on the control console and the micro-computer control system respectively. Other parameters of the neutron spectrum determined for inner irradiation channel B2, are: a -0.0502+0.003; 18.92+-0.14; F = 3.87=0.23. The method was validated through the comparison of our result with published neutron spectrum

  13. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1998-01-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by 10 B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark experiments

  14. Exergy-based sustainability analysis of a low power, high frequency piezo-based ultrasound reactor for rapid biodiesel production

    International Nuclear Information System (INIS)

    Aghbashlo, Mortaza; Tabatabaei, Meisam; Hosseinpour, Soleiman; Khounani, Zahra; Hosseini, Seyed Sina

    2017-01-01

    Highlights: • Piezoultrasonic-assisted biodiesel production was exergetically analyzed. • Alcohol content, sonication time, and temperature affected exergetic parameters. • 6:1 methanol/oil, 10 min sonication, and 60 °C temperature were the best conditions. • The exergetic sustainability index at the favorable conditions was found to be 11. - Abstract: In this work a thermodynamic model was developed to attain enhanced process comprehension of waste cooking oil (WCO) transesterification process in a low power, high frequency piezo-based ultrasound reactor. The reactor performance was assessed using the exergy concept to distinguish the effects of various operational variables, i.e., methanol to oil molar ratio (4:1–8:1), ultrasonic irradiation time (6–10 min), and temperature (40–60 °C) on the efficiency and sustainability factors. The exergetic efficiency of the developed reactor was found to be ranging from 98% to 99% and from 9% to 91% using the universal and functional definitions, respectively. The maximum functional exergetic efficiency as a decision making parameter, was found at 91% for methanol to oil molar ratio of 6:1, ultrasonic irradiation time of 10 min, and temperature of 60 °C. The exergetic sustainability index of the transesterification process at the selected conditions was determined at about 11. Under these conditions, the reactor efficiently converted triglycerides to methyl esters with an acceptable conversion efficiency of 97%, satisfying the ASTM standard. Overall, the outcomes of the current survey manifested that exergy analysis can be a preferred basis for decision making on the efficiency and sustainability of various biodiesel synthesizing systems.

  15. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst

    NARCIS (Netherlands)

    Basile, A.; Parmaliana, A.; Tosti, S.; Iulianelli, A.; Gallucci, F.; Espro, C.; Spooren, J.

    2008-01-01

    The methanol steam reforming (MSR) reaction was studied by using both a dense Pd-Ag membrane reactor (MR) and a fixed bed reactor (FBR). Both the FBR and the MR were packed with a new catalyst based on CuOAl2O3ZnOMgO, having an upper temperature limit of around 350 °C. A constant sweep gas flow rate

  16. Development and evaluation of a novel low power, high frequency piezoelectric-based ultrasonic reactor for intensifying the transesterification reaction

    Directory of Open Access Journals (Sweden)

    Mortaza Aghbashlo

    2016-12-01

    Full Text Available In this study, a novel low power, high frequency piezoelectric-based ultrasonic reactor was developed and evaluated for intensifying the transesterification process. The reactor was equipped with an automatic temperature control system, a heating element, a precise temperature sensor, and a piezoelectric-based ultrasonic module. The conversion efficiency and specific energy consumption of the reactor were examined under different operational conditions, i.e., reactor temperature (40‒60 °C, ultrasonication time (6‒10 min, and alcohol/oil molar ratio (4:1‒8:1. Transesterification of waste cooking oil (WCO was performed in the presence of a base-catalyst (potassium hydroxide using methanol. According to the obtained results, alcohol/oil molar ratio of 6:1, ultrasonication time of 10 min, and reactor temperature of 60 °C were found as the best operational conditions. Under these conditions, the reactor converted WCO to biodiesel with a conversion efficiency of 97.12%, meeting the ASTM standard satisfactorily, while the lowest specific energy consumption of 378 kJ/kg was also recorded. It should be noted that the highest conversion efficiency of 99.3 %, achieved at reactor temperature of 60 °C, ultrasonication time of 10 min, and alcohol/oil molar ratio of 8:1, was not favorable as the associated specific energy consumption was higher at 395 kJ/kg. Overall, the low power, high frequency piezoelectric-based ultrasonic module could be regarded as an efficient and reliable technology for intensifying the transesterification process in terms of energy consumption, conversion efficiency, and processing time, in comparison with high power, low frequency ultrasonic system reported previously. Finally, this technology could also be considered for designing, developing, and retrofitting chemical reactors being employed for non-biofuel applications as well.

  17. Performance of plastic- and sponge-based trickling filters treating effluents from an UASB reactor.

    Science.gov (United States)

    Almeida, P G S; Marcus, A K; Rittmann, B E; Chernicharo, C A L

    2013-01-01

    The paper compares the performance of two trickling filters (TFs) filled with plastic- or sponge-based packing media treating the effluent from an upflow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated with an organic loading rate (OLR) of 1.2 kgCOD m(-3) d(-1), and the OLR applied to the TFs was 0.30-0.65 kgCOD m(-3) d(-1) (COD: chemical oxygen demand). The sponge-based packing medium (Rotosponge) gave substantially better performance for ammonia, total-N, and organic matter removal. The superior TF-Rotosponge performance for NH(4)(+)-N removal (80-95%) can be attributed to its longer biomass and hydraulic retention times (SRT and HRT), as well as enhancements in oxygen mass transfer by dispersion and advection inside the sponges. Nitrogen removals were significant (15 mgN L(-1)) in TF-Rotosponge when the OLRs were close to 0.75 kgCOD m(-3) d(-1), due to denitrification that was related to solids hydrolysis in the sponge interstices. For biochemical oxygen demand removal, higher HRT and SRT were especially important because the UASB removed most of the readily biodegradable organic matter. The new configuration of the sponge-based packing medium called Rotosponge can enhance the feasibility of scaling-up the UASB/TF treatment, including when retrofitting is necessary.

  18. Laser-based sensor for a coolant leak detection in a nuclear reactor

    Science.gov (United States)

    Kim, T.-S.; Park, H.; Ko, K.; Lim, G.; Cha, Y.-H.; Han, J.; Jeong, D.-Y.

    2010-08-01

    Currently, the nuclear industry needs strongly a reliable detection system to continuously monitor a coolant leak during a normal operation of reactors for the ensurance of nuclear safety. In this work, we propose a new device for the coolant leak detection based on tunable diode laser spectroscopy (TDLS) by using a compact diode laser. For the feasibility experiment, we established an experimental setup consisted of a near-IR diode laser with a wavelength of about 1392 nm, a home-made multi-pass cell and a sample injection system. The feasibility test was performed for the detection of the heavy water (D2O) leaks which can happen in a pressurized heavy water reactor (PWHR). As a result, the device based on the TDLS is shown to be operated successfully in detecting a HDO molecule, which is generated from the leaked heavy water by an isotope exchange reaction between D2O and H2O. Additionally, it is suggested that the performance of the new device, such as sensitivity and stability, can be improved by adapting a cavity enhanced absorption spectroscopy and a compact DFB diode laser. We presume that this laser-based leak detector has several advantages over the conventional techniques currently employed in the nuclear power plant, such as radiation monitoring, humidity monitoring and FT-IR spectroscopy.

  19. Multiprocessor based data acquisition system for radiation monitoring in nuclear reactors

    International Nuclear Information System (INIS)

    Pansare, M.G.; Narsaiah, A.; Anantha Krishnan, T.S.

    1989-01-01

    Expensive minicomputers are required for building powerful Data Acquisition Systems (DAS) capable of scanning and processing large number of signals in a real-time environment. However by using the inexpensive microprocessors in multiprocessor configuration it is possible to build DASs that are as powerful as minicomputer based systems at much lesser cost. This paper describes such a multiprocessor based DAS designed for acquiring data from various radiation monitoring instruments of a nuclear reactor. The system is built by using MULTIBUS standard boards based on intel 8086, 16 bit microprocessor, with local and shared memory. The system monitors upto 128 analog input channels, 64 digital input channels and actuates upto 128 digital output contacts. The system continuously checks for the alarm condition of the input channels and displays the alarm status on an ALARM CRT. Facility has been provided for the transfer of data to a central computer. At any instant of time, the information regarding different channels being monitored is available from the local console as well as through five remote terminals located at various places in the reactor building. (author)

  20. Intelligent uranium fission converter for neutron production on the periphery of the nuclear reactor core (MARIA reactor in Swierk - Poland)

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Wielgosz, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    The multipurpose, high flux research reactor MARIA in Otwock - Swierk is an open-pool type, water and beryllium moderated and graphite reflected. There are two not occupied experimental H1 and H2 horizontal channels with complex of empty rooms beside them. Making use of these two channels is not in conflict with other research or commercial employing channels. They can work simultaneously, moreover commercial channels covers the cost of reactor working. Such conditions give beneficial possibility of creating epithermal neutron stand for researches in various field at the horizontal channel H2 of MARIA reactor (co-organization of research at H1 channel is additionally planned). At the front of experimental channels the neutron flux is strongly thermalized - neutrons with energies above 0.625 eV constitute only ∼2% of the total flux. This thermalized neutron flux will be used to achieve high flux of epithermal neutrons at the level of 2x10{sup 9} n cm{sup -2}s{sup -1} by uranium neutron converter (fast neutron production - conversion of reactor core thermal neutrons to fast neutrons - and then filtering, moderating and finally cutting of unwanted gamma radiation). The intelligent converter will be placed in the reactor pool, near the front of the H2 channel. It will replace one graphite block at the periphery of MARIA graphite reflector. The converter will consist of 20 fuel elements - low enriched uranium plates. A fuel plate will be a part which will measure 110 mm wide by 380 mm long and will consist of a thin layer of uranium sealed between two aluminium plates. These plates, once assembled, form the fuel element used in converter. The plates will be positioned vertically. There are several important requirements which should be taken into account at the converter design stage: -maximum efficiency of the converter for neutrons conversion, -cooling of the converter need to be integrated with the cooling circuit of the reactor pool and if needed equipped with

  1. A Neural-Network-Based Nonlinear Adaptive State-Observer for Pressurized Water Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-10-01

    Full Text Available Although there have been some severe nuclear accidents such as Three Mile Island (USA, Chernobyl (Ukraine and Fukushima (Japan, nuclear fission energy is still a source of clean energy that can substitute for fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR is the most widely used nuclear fission reactor, its safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs. Compared with the classical power-level controllers, the advanced power-level regulators could strengthen both the closed-loop stability and control performance by feeding back the internal state-variables. However, not all of the internal state variables of a PWR can be obtained directly by measurements. To implement advanced PWR power-level control law, it is necessary to develop a state-observer to reconstruct the unmeasurable state-variables. Since a PWR is naturally a complex nonlinear system with parameters varying with power-level, fuel burnup, xenon isotope production, control rod worth and etc., it is meaningful to design a nonlinear observer for the PWR with adaptability to system uncertainties. Due to this and the strong learning capability of the multi-layer perceptron (MLP neural network, an MLP-based nonlinear adaptive observer is given for PWRs. Based upon Lyapunov stability theory, it is proved theoretically that this newly-built observer can provide bounded and convergent state-observation. This observer is then applied to the state-observation of a special PWR, i.e., the nuclear heating reactor (NHR, and numerical simulation results not only verify its feasibility but also give the relationship between the observation performance and observer parameters.

  2. Analytical investigations at the IBR-2 reactor in Dubna

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Pavlov, S.S.

    2000-01-01

    Experience in applying activation analysis with epithermal neutrons to environmental studies at the IBR-2 pulsed fast reactor in Dubna is reviewed. The principal units of the pneumatic system REGATA are described as well as the main present-day parameters of the irradiation channels. Examples from two challenging areas: analysis of airborne particulate matter and analysis of the biomonitors of atmospheric deposition, where the feasibility of ENAA related to non-nuclear multi-element techniques has been shown, are given. ENAA is presently being used in several projects carried out at FLNP JINR that involve the analysis of aerosol filters. For these studies, instrumental neutron activation analysis cannot feasibly be replaced by any non-nuclear analytical technique at the present state of art due to the fact that the total mass of the aerosol collected on filter samples is often rather small. This favours direct instrumental techniques rather than those depending on dissolving the sample prior to analysis. The dominant part of air pollution studies at FLNP JINR is based on the use of the moss biomonitoring technique resulting in a final product-maps of the atmospheric deposition of heavy metals, rare-earths, actinides (U and Th), etc., constructed by the GIS (geographical information system) technology

  3. Study on the technical feasibility of Fission-Track dating at two irradiation positions of the RA-6 research reactor

    International Nuclear Information System (INIS)

    Dorval, Eric

    2005-01-01

    The method of Fission-Track dating is based upon the detection of the damage caused by fission fragments from the Uranium contained in geological samples.In order to determine the age of a sample, both the amount of spontaneous fissions occurred and the Uranium concentration must be known.The latter requires the irradiation of the samples inside a reactor with a well-thermalized flux, so that fissions are induced over 235 U targets only. Therefore, the Uranium concentration may be determined.The main inconvenient presented by the irradiation sites at the RA-6 MTR-type reactor is that neutron flux is not completely thermal there, which means that fissions due to epithermal and fast neutrons will not be negligible.In the same way, tracks due to fissions of 238 U and 232 Th will be detected. In order to know the corrections that must be applied to those measurements performed in this reactor, it is necessary to characterize fast flux.Because of it, this laboratory's gamma spectrometry equipment had to be calibrated. After that, several activation detectors were irradiated and results were analyzed. Finally, it was determined that it is feasible to Fission-Track date at the I6 position. However, limitations associated to this method were analyzed for the values of flux measured in the different sites

  4. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  5. Specifications for adjusted cross section and covariance libraries based upon CSEWG fast reactor and dosimetry benchmarks

    International Nuclear Information System (INIS)

    Weisbin, C.R.; Marable, J.H.; Collins, P.J.; Cowan, C.L.; Peelle, R.W.; Salvatores, M.

    1979-06-01

    The present work proposes a specific plan of cross section library adjustment for fast reactor core physics analysis using information from fast reactor and dosimetry integral experiments and from differential data evaluations. This detailed exposition of the proposed approach is intended mainly to elicit review and criticism from scientists and engineers in the research, development, and design fields. This major attempt to develop useful adjusted libraries is based on the established benchmark integral data, accurate and well documented analysis techniques, sensitivities, and quantified uncertainties for nuclear data, integral experiment measurements, and calculational methodology. The adjustments to be obtained using these specifications are intended to produce an overall improvement in the least-squares sense in the quality of the data libraries, so that calculations of other similar systems using the adjusted data base with any credible method will produce results without much data-related bias. The adjustments obtained should provide specific recommendations to the data evaluation program to be weighed in the light of newer measurements, and also a vehicle for observing how the evaluation process is converging. This report specifies the calculational methodology to be used, the integral experiments to be employed initially, and the methods and integral experiment biases and uncertainties to be used. The sources of sensitivity coefficients, as well as the cross sections to be adjusted, are detailed. The formulae for sensitivity coefficients for fission spectral parameters are developed. A mathematical formulation of the least-square adjustment problem is given including biases and uncertainties in methods

  6. Design of an additional heat sink based on natural circulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Frischengruber, Kurt; Solanilla, Roberto; Fernandez, Ricardo; Blumenkrantz, Arnaldo; Castano, Jorge

    1989-01-01

    Residual heat removal through the steam generators in Nuclear Power Plant with pressurized water reactors (PWR) or pressurized heavy water reactors (PHWR in pressured vessel or pressured tube types) requires the maintenance of the steam generator inventory and the availability of and appropriate heat sink, which are based on the operability of the steam generators feedwater system. This paper describes the conceptual design of an assured heat removal system which includes only passive elements and is based on natural circulation. The system can supplement the original systems of the plant. The new system includes a condenser/boiler heat exchanger to condense the steam produced in the steam generator, transferring the heat to the water of an open pool at atmospheric pressure. The condensed steam flows back to the steam generators by natural circulation effects. The performance of an Atucha type PHWR nuclear power station with and without the proposed system is calculated in an emergency power case for the first 5000 seconds after the incident. The analysis shows that the proposed system offers the possibility to cool-down the plant to a low energy state during several hours and avoids the repeated actuation of the primary and secondary system safety valves. (Author) [es

  7. Design and implementation of STD32-BUS based reactor protection trip unit on FPGA imbaby

    International Nuclear Information System (INIS)

    Mahmoud, I.; Elnokity, O.A.; Refai, M.K.

    2007-01-01

    This paper presents a way to design and implement the Trip Unit of a Reactor Protection System (RPS) using a Field Programmable Gate Arrays (FPGA). Instead of the traditional embedded Microprocessor based interface design method, a proposed tailor made FPGA based circuit is built to substitute the Trip Unit (TL1) existing in Egypt's 2' ' Research reactor ETRR-2. The existing embedded system is built around the STD32 field Computer Bus which used in industrial and process control applications. It is modular, rugged, reliable, and easy-to-use and is able to support a large mix of I/O cards and to easily change its configuration in the future. Therefore, the state machine of this bus is extracted from its timing diagrams and implemented in VHDL to interface the designed TU circuit. The proposed designed circuit implemented using ALTERA EPF10K10LC84-3 chip replaces the Single Board Computer which have the embedded SAY program of the TU providing the same integrated HAV and SAV functions implemented in FPGA Chip housed in an printed circuit board, which uses the same shape and specifications of STD32 boards. H/W implementation of both TU and STD32 Bus in VHDL addresses the issues of safety and reusability

  8. The use of gas based energy conversion cycles for sodium fast reactors

    International Nuclear Information System (INIS)

    Saez, M.; Haubensack, D.; Alpy, N.; Gerber, A.; Daid, F.

    2008-01-01

    In the frame of Sodium Fast Reactors, CEA, AREVA and EDF are involved in a substantial effort providing both significant expertise and original work in order to investigate the interest to use a gas based energy conversion cycle as an alternative to the classical steam cycle. These gas cycles consist in different versions of the Brayton cycle, various types of gas being considered (helium, nitrogen, argon, separately or mixed, sub or supercritical carbon dioxide) as well as various cycle arrangements (indirect, indirect / combined cycles). The interest of such cycles is analysed in details by thermodynamic calculations and cycle optimisations. The objective of this paper is to provide a comparison between gas based energy conversion cycles from the viewpoint of the overall plant efficiency. Key factors affecting the Brayton cycle efficiency include the turbine inlet temperature, compressors and turbine efficiencies, recuperator effectiveness and cycle pressure losses. A nitrogen Brayton cycle at high pressure (between 100 and 180 bar) could appear as a potential near-term solution of classical gas power conversion system for maximizing the plant efficiency. At long-term, supercritical carbon dioxide Brayton cycle appears very promising for Sodium Fast Reactors, with a potential of high efficiency using even at a core outlet temperature of 545 deg. C. (authors)

  9. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo [Korea Advanced Institute of Science and Tehcnology, Daejeon (Korea, Republic of)

    2006-03-15

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis.

  10. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    International Nuclear Information System (INIS)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo

    2006-03-01

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis

  11. Neutron flux parameters for k{sub 0}-NAA method at the Malaysian nuclear agency research reactor after core reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Sarmani, S. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Masood, Z. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia)

    2011-02-15

    The Malaysian Nuclear Agency (MNA) research reactor, commissioned in 1982, is a TRIGA Mark II swimming pool type reactor. When the core configuration changed in June 2009, it became essential to re-determine such neutron flux parameters as thermal to epithermal neutron flux ratio (f), epithermal neutron flux shape factor ({alpha}), thermal neutron flux ({phi}{sub th}) and epithermal neutron flux ({phi}{sub epi}) in the irradiation positions of MNA research reactor in order to guarantee accuracy in the application of k{sub 0}-neutron activation analysis (k{sub 0}-NAA).The f and {alpha} were determined using the bare bi-isotopic monitor and bare triple monitor methods, respectively; Au and Zr monitors were utilized in present study. The results for four irradiation positions are presented and discussed in the present work. The calculated values of f and {alpha} ranged from 33.49 to 47.33 and -0.07 to -0.14, respectively. The {phi}{sub th} and the {phi}{sub epi} were measured as 2.03 x 10{sup 12} (cm{sup -2} s{sup -1}) and 6.05 x 10{sup 10} (cm{sup -2} s{sup -1}) respectively. These results were compared to those of previous studies at this reactor as well as to those of reactors in other countries. The results indicate a good conformity with other findings.

  12. Measurements at the RA Reactor related to the VISA-2 project - Part 1, Start-up of the RA reactor and measurement of new RA reactor core parameters

    International Nuclear Information System (INIS)

    Markovic, H.

    1962-07-01

    The objective of the measurements was determining the neutron flux in the RA reactor core. Since the number of fuel channels is increased from 56 to 68 within the VISA-2 project, it was necessary to attain criticality of the RA reactor and measure the neutron flux properties. The 'program of RA reactor start-up' has been prepared separately and it is included in this report. Measurements were divided in two phases. First phase was measuring of the neutron flux after the criticality was achieved but at zero power. During phase two measurements were repeated at several power levels, at equilibrium xenon poisoning. This report includes experimental data of flux distributions and absolute values of the thermal and fast neutron flux in the RA reactor experimental channels and values of cadmium ratio for determining the neutron epithermal flux. Data related to calibration of regulatory rods for cold un poisoned core are included [sr

  13. A new small modular high-temperature gas-cooled reactor plant concept based on proven technology

    International Nuclear Information System (INIS)

    McDonald, C.F.; Goodjohn, A.J.

    1982-01-01

    Based on the established and proven high-temperature gas-cooled reactor (HTGR) technologies from the Peach Bottom 1 and Fort St. Vrain utility-operated units, a new small modular HTGR reactor is currently being evaluated. The basic nuclear reactor heat source, with a prismatic core, is being designed so that the decay heat can be removed by passive means (i.e., natural circulation). Although this concept is still in the preconceptual design stage, emphasis is being placed on establishing an inherently safe or benign concept which, when engineered, will have acceptable capital cost and power generation economics. The proposed new HTGR concept has a variety of applications, including electrical power generation, cogeneration, and high-temperature process heat. This paper discusses the simplest application, i.e., a steam Rankine cycle electrical power generating version. The gas-cooled modular reactor concepts presented are based on a graphite moderated prismatic core of low-power density (i.e., 4.1 W/cm 3 ) with a thermal rating of 250 MW(t). With the potential for inherently safe characteristics, a new small reactor could be sited close to industrial and urban areas to provide electrical power and thermal heating needs (i.e., district and space heating). Incorporating a multiplicity of small modular units to provide a larger power output is also discussed. The potential for a small, inherently safe HTGR reactor concept is highlighted

  14. An estimation of reactor thermal power uncertainty using UFM-based feedwater flow rate in nuclear power plants

    International Nuclear Information System (INIS)

    Byung Ryul Jung; Ho Cheol Jang; Byung Jin Lee; Se Jin Baik; Woo Hyun Jang

    2005-01-01

    Most of Pressurized Water Reactors (PWRs) utilize the venturi meters (VMs) to measure the feedwater (FW) flow rate to the steam generator in the calorimetric measurement, which is used in the reactor thermal power (RTP) estimation. However, measurement drifts have been experienced due to some anomalies on the venturi meter (generally called the venturi meter fouling). The VM's fouling tends to increase the measured pressure drop across the meter, which results in indication of increased feedwater flow rate. Finally, the reactor thermal power is overestimated and the actual reactor power is to be reduced to remain within the regulatory limits. To overcome this VM's fouling problem, the Ultrasonic Flow Meter (UFM) has recently been gaining attention in the measurement of the feedwater flow rate. This paper presents the applicability of a UFM based feedwater flow rate in the estimation of reactor thermal power uncertainty. The FW and RTP uncertainties are compared in terms of sensitivities between the VM- and UFM-based feedwater flow rates. Data from typical Optimized Power Reactor 1000 (OPR1000) plants are used to estimate the uncertainty. (authors)

  15. Depth-dose evaluation for lung and pancreas cancer treatment by BNCT using an epithermal neutron beam

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Fukushima, Yuji

    2000-01-01

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreas cancers using an epithermal neutron beam. The MCNP calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5x10 8 ncm -2 s -1 . The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT could be applied for both lung and pancreas cancer treatment. (author)

  16. Experimental determination of nuclear reaction rates in 238U and 235U along of the radius of fuel pellets of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Mura, Luis Felipe Liambos

    2015-01-01

    This research presents and consolidates an alternative methodology for determining nuclear reaction rates along the radial direction of the fuel pellets which does not require high neutron flux. This technique is based on irradiating a thin UO 2 disk inserted into a removable fuel rod at the IPEN/MB-01 reactor core. Several gamma spectrometry are performed after irradiation using a HPGe detector. Six lead collimators with different diameters are sequentially alternated during this process, thus, the nuclear radioactive capture which occurs in 238 U and the fissions which occur in both 235 U and 238 U are measured according to six different radial regions of the fuel disk. Geometric efficiency corrections due to the introduction of collimators in HPGe detection system are determined by MCNP-5 code. The fission rate measurements are performed using the 99 Mo. This radionuclide was studied and proved ideal for these measurements because it is formed in linear behavior in the reactor core, have a high yield fission and emits low-energy photons. Measurements were performed irradiating UO 2 disks (with 4.3% enrichment) in the central position of the IPEN/MB-01 core at 100 watts power level during one hour. Some measurements were performed using a cadmium glove wrapped in the fuel rod to determine the nuclear reaction rates in the epithermal energy range. The experimental results obtained are compared with nuclear reaction rate calculations by means of MCNP-5 with ENDF/B-VII.0 data library showing discrepancies of up to 9% in 238 U capture rates and 14% for U fission rates for epithermal energies. Uncertainties regarding the nuclear capture rates have maximum values of 4.5% and the fission rates has maximum values of 11.3%. (author)

  17. Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber

    International Nuclear Information System (INIS)

    Ogawa, Y; Goto, T; Okano, K; Asaoka, Y; Hiwatari, R; Someya, Y

    2008-01-01

    The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G∼100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 ∼ 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive

  18. Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y [High Temperature Plasma Center, University of Tokyo, Chiba (Japan); Goto, T; Okano, K [Graduate School of Frontier Sciences, University of Tokyo, Chiba (Japan); Asaoka, Y; Hiwatari, R [Central Research Institute for Electric Power Industry, Komae, Tokyo (Japan); Someya, Y [Graduate School of Engineering, Musashi Institute of Technology, Tokyo (Japan)], E-mail: ogawa@ppl.k.u-tokyo.ac.jp

    2008-05-15

    The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G{approx}100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 {approx} 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive.

  19. Preparation of a criticality benchmark based on experiments performed at the RA-6 reactor

    International Nuclear Information System (INIS)

    Bazzana, S.; Blaumann, H; Marquez Damian, J.I

    2009-01-01

    The operation and fuel management of a reactor uses neutronic modeling to predict its behavior in operational and accidental conditions. This modeling uses computational tools and nuclear data that must be contrasted against benchmark experiments to ensure its accuracy. These benchmarks have to be simple enough to be possible to model with the desired computer code and have quantified and bound uncertainties. The start-up of the RA-6 reactor, final stage of the conversion and renewal project, allowed us to obtain experimental results with fresh fuel. In this condition the material composition of the fuel elements is precisely known, which contributes to a more precise modeling of the critical condition. These experimental results are useful to evaluate the precision of the models used to design the core, based on U 3 Si 2 and cadmium wires as burnable poisons, for which no data was previously available. The analysis of this information can be used to validate models for the analysis of similar configurations, which is necessary to follow the operational history of the reactor and perform fuel management. The analysis of the results and the generation of the model were done following the methodology established by International Criticality Safety Benchmark Evaluation Project, which gathers and analyzes experimental data for critical systems. The results were very satisfactory resulting on a value for the multiplication factor of the model of 1.0000 ± 0.0044, and a calculated value of 0.9980 ± 0.0001 using MCNP 5 and ENDF/B-VI. The utilization of as-built dimensions and compositions, and the sensitivity analysis allowed us to review the design calculations and analyze their precision, accuracy and error compensation. [es

  20. Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber

    Science.gov (United States)

    Ogawa, Y.; Goto, T.; Okano, K.; Asaoka, Y.; Hiwatari, R.; Someya, Y.

    2008-05-01

    The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G~100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 ~ 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive.

  1. High thermal efficiency, radiation-based advanced fusion reactors. Final report

    International Nuclear Information System (INIS)

    Taussig, R.T.

    1977-04-01

    A new energy conversion scheme is explored in this study which has the potential of achieving thermal cycle efficiencies high enough (e.g., 60 to 70 percent) to make advanced fuel fusion reactors attractive net power producers. In this scheme, a radiation boiler admits a large fraction of the x-ray energy from the fusion plasma through a low-Z first wall into a high-Z working fluid where the energy is absorbed at temperatures of 2000 0 K to 3000 0 K. The hot working fluid expands in an energy exchanger against a cooler, light gas, transferring most of the work of expansion from one gas to the other. By operating the radiation/boiler/energy exchanger as a combined cycle, full advantage of the high temperatures can be taken to achieve high thermal efficiency. The existence of a mature combined cycle technology from the development of space power plants gives the advanced fuel fusion reactor application a firm engineering base from which it can grow rapidly, if need be. What is more important, the energy exchanger essentially removes the peak temperature limitations previously set by heat engine inlet conditions, so that much higher combined cycle efficiencies can be reached. This scheme is applied to the case of an advanced fuel proton-boron 11 fusion reactor using a single reheat topping and bottoming cycle. A wide variety of possible working fluid combinations are considered and particular cycle calculations for the thermal efficiency are presented. The operation of the radiation boiler and energy exchanger are both described. Material compatibility, x-ray absorption, thermal hydraulics, structural integrity, and other technical features of these components are analyzed to make a preliminary assessment of the feasibility of this concept

  2. Staffing requirements for future small and medium reactors based on projections in the Russian Federation

    International Nuclear Information System (INIS)

    Antonovsky, G.M.; Kodochigov, N.G.; Kurachenkov, A.V.; Novikov, V.V.

    2001-01-01

    Experimental Design Bureau of Mechanical Engineering (OKBM) specializes in the development of small and medium power reactors having different purposes. They include reactor plants for NPHPP, nuclear district heating power plants and propulsion plants. Small and medium power plants have simpler processes of electricity and heat production, less systems, simpler control algorithms and considerably enhanced inherent safety properties. These plants are mainly equipped with passive safety systems. These properties are especially characteristic for reactor plants of nuclear district heating power plants and HTG reactor plants. The designs of small and medium power plants actually provide a high degree of control automation which considerably reduces workload on the personnel in both normal and abnormal operation conditions. All this allows the reduction in personnel for small and medium power reactors if compared to high capacity reactor plants. But due to objective reasons the specific number of personnel (man/MW) for average and especially small capacity reactors considerably exceeds the value for high capacity reactor plants. At the same time one can propose a set of organization - technical measures allowing the increase in this value in future. Safety requirements imposed for small and average capacity reactors are the same or more strict than those for high capacity reactors. That's why the requirements to the training of personnel for such reactor plants are not allowed to be lowered if compared to the requirements imposed to the personnel of high capacity reactors. (author)

  3. Hubungan Kondisi Geologi terhadap Alterasi dan Mineralisasi Endapan Epithermal Daerah Sualan, Kecamatan Talegong, Kabupaten Garut, Provinsi Jawa Barat

    OpenAIRE

    Kumala Sari, Paramitha Eka

    2013-01-01

    In exploration process of epithermal deposit, it is important to understand alteration and mineralization. The presence of alteration and mineralization zones help development of ore mineral exploration. Hydrothermal alteration is change of the chemistry, physics, mineralogy and origin textures of rocks as it interacts with the hydrothermal fluid. Alteration and mineralization zones has characteristics and certain minerals in each area.The research purposes are to determine the geological ...

  4. Calculations of neutron source at the KYIV research reactor for the boron neutron capture therapy aims

    International Nuclear Information System (INIS)

    Gritzay, O.; Kalchenko, O.; Klimova, N.; Razbudey, V.; Sanzhur, A.

    2006-01-01

    Calculation results of an epithermal neutron source which can be created at the Kyiv Research Reactor (KRR) by means of placing of specially selected moderators, filters, collimators, and shielding into the 10-th horizontal experimental tube (so-called thermal column) are presented. The general Monte-Carlo radiation transport code MCNP4C [1], the Oak Ridge isotope generation code ORIGEN2 [2] and the NJOY99 [3] nuclear data processing system have been used for these calculations

  5. Risk based definition of TS requirements for NPPs with WWER-1000 type reactor

    International Nuclear Information System (INIS)

    Morozov, V.; Tokmachev, G.

    2000-01-01

    The main regulations in safety related maintenance for NPPs in Russia are defined as a part of Technical Specifications (TSs). It includes limiting conditions for operation (surveillance requirements, allowed outage time, et.). In Russian practice the two levels of TSs are presented: general TSs that have been established as a master documents for similar designed NPPs and plant specific based on operation practice of each NPP unit. This paper presents a brief review of submissions to TS changes for NPPs with WWER type reactor were issued by AEP PSA team since 1988 year. Besides it provides an approach allows to estimate the complex affect on plant risk for both Limiting Conditions of Operation (LCO) and Surveillance Test Intervals (STI) based on relevant probabilistic tool (Minimal Cut Sets method and Marcov Chains methods). (author)

  6. Consultancy on 'IAEA initiative to establish a fast reactor knowledge base'. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    At the outset of the meeting, Member States interest in establishing Fast Reactor Knowledge Base was acknowledged by the participants. While the broader objective of the initiative was to develop a Knowledge Base into which the existing Knowledge Preservation Systems will fit, the specific objectives of the meeting were: Make recommendations on FRKP methodology and guidance, Review the proposed structure of the Agency's FRKP Initiative, Make recommendations on the role of the Agency and the Member States implementing the Agency's FRKP Initiative, Develop an approach for the implementation of the structure of the Agency's RFKP Initiative. The meeting concluded covering many aspects of the initiative namely systematic method of data capturing, structuring and functions of FRKP System etc. and placed a strong emphasis on the continues role of IAEA's support and coordination in the data retrieval and knowledge preservation efforts

  7. Guideline for Bayesian Net based Software Fault Estimation Method for Reactor Protection System

    International Nuclear Information System (INIS)

    Eom, Heung Seop; Park, Gee Yong; Jang, Seung Cheol

    2011-01-01

    The purpose of this paper is to provide a preliminary guideline for the estimation of software faults in a safety-critical software, for example, reactor protection system's software. As the fault estimation method is based on Bayesian Net which intensively uses subjective probability and informal data, it is necessary to define formal procedure of the method to minimize the variability of the results. The guideline describes assumptions, limitations and uncertainties, and the product of the fault estimation method. The procedure for conducting a software fault-estimation method is then outlined, highlighting the major tasks involved. The contents of the guideline are based on our own experience and a review of research guidelines developed for a PSA

  8. A symptom based decision tree approach to boiling water reactor emergency operating procedures

    International Nuclear Information System (INIS)

    Knobel, R.C.

    1984-01-01

    This paper describes a Decision Tree approach to development of BWR Emergency Operating Procedures for use by operators during emergencies. This approach utilizes the symptom based Emergency Procedure Guidelines approved for implementation by the USNRC. Included in the paper is a discussion of the relative merits of the event based Emergency Operating Procedures currently in use at USBWR plants. The body of the paper is devoted to a discussion of the Decision Tree Approach to Emergency Operating Procedures soon to be implemented at two United States Boiling Water Reactor plants, why this approach solves many of the problems with procedures indentified in the post accident reviews of Three Mile Island procedures, and why only now is this approach both desirable and feasible. The paper discusses how nuclear plant simulators were involved in the development of the Emergency Operating Procedure decision trees, and in the verification and validation of these procedures. (orig./HP)

  9. Guidelines for design and development of computer/microprocessor based systems in research and power reactors

    International Nuclear Information System (INIS)

    Dhodapkar, S.D.; Chandra, A.K.

    1993-01-01

    Computer systems are being used in Indian research reactors and nuclear power plants in the areas of data acquisition, process monitoring and control, alarm annunciation and safety. The design and evaluation of these systems requires a special approach particularly due to the unique nature of the software which is an essential constituent of these systems. It was decided to evolve guidelines for designing and review of computer/microprocessor based systems for use in nuclear power plants in India. The present document tries to address various issues and presents guidelines which are as comprehensive as possible and cover all issues relating to the design and development of computer based systems. These guidelines are expected to be useful to the specifiers, designers and reviewers of such systems. (author). 6 refs., 1 fig

  10. A microprocessor based monitoring system for a small nuclear reactor facility

    International Nuclear Information System (INIS)

    Miller, G.E.; DeKeyser, C.F.

    1980-01-01

    An inexpensive microprocessor based system has been designed and constructed for our 250 kilowatt TRIGA reactor facility. The system, which is beginning operational testing, can monitor on a continuous basis the status of up to 54 devices and maintain a record of events. These devices include fixed radiation monitors, pool water level trips, security alarms and an access control unit. In the latter case, the unit permits selection of different levels of access permission based on the time of day. The system can alert security and other personnel in the event of abnormalities. Because of the inclusion of this in the security system, special reliability and failure mode operation. The unit must also be simple to install, program and operate. (author)

  11. Application of enzyme leach soil analysis for epithermal gold exploration in the Andes of Ecuador

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.M.; Gunn, A.G. [British Geological Survey, Nottingham (United Kingdom)

    2002-07-01

    Enzyme Leach (EL) soil surveys were undertaken over known epithermal Au mineralisation at El Mozo and Llano Largo, Azuay, Ecuador to assess the utility of the technique for identifying such deposits in the Ecuadorian Andes. The results indicate the development of both apical- and oxidation-type EL anomalies over auriferous structures at the two sites, the former systematically incorporating Au, and the latter Cl and Br. The spectrum of elements responsive to mineralisation at El Mozo (Cl, Br, I, La, Ce, Nd, Cu, Pb, Au, As, Sb, Ag, Zr, Sr) was found to be considerably greater than at Llano Largo (Cl, Br, Au, As, Sb, Ag, Zn), probably reflecting the contrasting high- and low-sulphidation assemblages of the two prospects. Ratios of EL versus aqua-regia extractable trace element concentrations ranged from 1: < 100 for Mn to 1: >400 for chalcophile elements such as Pb, Sb, As, Bi and Ag. Strong correlations between the concentrations of several analytes (including Mn, Sr, Cu, Co, As) extracted by the two procedures indicate, however, that EL datasets are extensively influenced by bulk matrix composition. Spatial variations of EL extractable Mn were found to exert no major influence on apical or oxidation suite anomaly patterns at El Mozo. However, Mn-normalisation of halogen data for Llano Largo elucidated otherwise obscure oxidation features, potentially related to Au mineralisation. Ratios between elements subject to apical enrichment and those of the oxidation suite (e.g. Cl/Au and Bi/Br) were found to highlight known Au targets with improved clarity. The formation mechanism of the recorded Au anomalies is uncertain, but may involve physical enrichment of Au in the soil during pedogenesis with subsequent in-situ formation of (EL soluble) Au halide complexes. The strength of such apical features is, in part, probably a function of the minimal depths to mineralisation which characterise El Mozo and Llano Largo. Oxidation halos formed by volatile non-metallic elements

  12. Development of Monte Carlo-based pebble bed reactor fuel management code

    International Nuclear Information System (INIS)

    Setiadipura, Topan; Obara, Toru

    2014-01-01

    Highlights: • A new Monte Carlo-based fuel management code for OTTO cycle pebble bed reactor was developed. • The double-heterogeneity was modeled using statistical method in MVP-BURN code. • The code can perform analysis of equilibrium and non-equilibrium phase. • Code-to-code comparisons for Once-Through-Then-Out case were investigated. • Ability of the code to accommodate the void cavity was confirmed. - Abstract: A fuel management code for pebble bed reactors (PBRs) based on the Monte Carlo method has been developed in this study. The code, named Monte Carlo burnup analysis code for PBR (MCPBR), enables a simulation of the Once-Through-Then-Out (OTTO) cycle of a PBR from the running-in phase to the equilibrium condition. In MCPBR, a burnup calculation based on a continuous-energy Monte Carlo code, MVP-BURN, is coupled with an additional utility code to be able to simulate the OTTO cycle of PBR. MCPBR has several advantages in modeling PBRs, namely its Monte Carlo neutron transport modeling, its capability of explicitly modeling the double heterogeneity of the PBR core, and its ability to model different axial fuel speeds in the PBR core. Analysis at the equilibrium condition of the simplified PBR was used as the validation test of MCPBR. The calculation results of the code were compared with the results of diffusion-based fuel management PBR codes, namely the VSOP and PEBBED codes. Using JENDL-4.0 nuclide library, MCPBR gave a 4.15% and 3.32% lower k eff value compared to VSOP and PEBBED, respectively. While using JENDL-3.3, MCPBR gave a 2.22% and 3.11% higher k eff value compared to VSOP and PEBBED, respectively. The ability of MCPBR to analyze neutron transport in the top void of the PBR core and its effects was also confirmed

  13. The water desalination complex based on ABV-type reactor plant

    International Nuclear Information System (INIS)

    Panov, Yu.K.; Fadeev, Yu.P.; Vorobiev, V.M.; Baranaev, Yu.D.

    1997-01-01

    A floating nuclear desalination complex with two barges, one for ABV type reactor plant, with twin reactor 2 x 6 MW(e), and one for reverse osmosis desalination plant, was described. The principal specifications of the ABV type reactor plant and desalination barge were given. The ABV type reactor has a traditional two-circuit layout using an integral type reactor vessel with all mode natural convection of primary coolant. The desalted water cost was estimated to be around US $0.86 per cubic meter. R and D work has been performed and preparations for commercial production are under way. (author)

  14. An approach to build a knowledge base for reactor diagnostic system using statistical method

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Matsumoto, Kiyoshi; Kohsaka, Atsuo

    1988-01-01

    In the development of a rule-based expert system, one of the key issues is how to acquire knowledge and to build a knowledge base. When the knowledge base of DISKET was built, which is an expert system for nuclear reactor accident diagnosis developed in Japan Atomic Energy Research Institute, several problems have been experienced. To write rules is a time-consuming task, and it was difficult to keep the objectivity and consistency of rules as the number of rules increased. Certainty factors must be determined often according to engineering judgement, i.e. empirically or intuitively. A systematic approach was attempted to cope with these difficulties and to build efficiently an objective knowledge base. The approach described in this paper is based on the concept that a prototype knowledge base, colloquially speaking an initial guess, should first be generated in a systematic way, then it is modified or improved by human experts for practical use. Factor analysis was used as the systematic way. DISKET system, the procedure of building a knowledge base, and the verification of the approach are reported. (Kako, I.)

  15. Component Degradation Susceptibilities As The Bases For Modeling Reactor Aging Risk

    International Nuclear Information System (INIS)

    Unwin, Stephen D.; Lowry, Peter P.; Toyooka, Michael Y.

    2010-01-01

    The extension of nuclear power plant operating licenses beyond 60 years in the United States will be necessary if we are to meet national energy needs while addressing the issues of carbon and climate. Characterizing the operating risks associated with aging reactors is problematic because the principal tool for risk-informed decision-making, Probabilistic Risk Assessment (PRA), is not ideally-suited to addressing aging systems. The components most likely to drive risk in an aging reactor - the passives - receive limited treatment in PRA, and furthermore, standard PRA methods are based on the assumption of stationary failure rates: a condition unlikely to be met in an aging system. A critical barrier to modeling passives aging on the wide scale required for a PRA is that there is seldom sufficient field data to populate parametric failure models, and nor is there the availability of practical physics models to predict out-year component reliability. The methodology described here circumvents some of these data and modeling needs by using materials degradation metrics, integrated with conventional PRA models, to produce risk importance measures for specific aging mechanisms and component types. We suggest that these measures have multiple applications, from the risk-screening of components to the prioritization of materials research.

  16. Nuclear reactor power for a space-based radar. SP-100 project

    Science.gov (United States)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  17. Life cycle costs for the domestic reactor-based plutonium disposition option

    International Nuclear Information System (INIS)

    Williams, K.A.

    1999-01-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission

  18. New finite element-based modeling of reactor core support plate failure

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter; Lovasz, Liviusz [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH, Garching (Germany). Forschungszentrum; Babcsany, Boglarka [Budapest Univ. of Technology and Economics, Budapest (Hungary). Inst. of Nuclear Techniques; Hajas, Tamas

    2017-12-15

    ATHLET-CD is the severe accident module of the code system AC{sup 2} that is designed to simulate the core degradation phenomena including fission product release and transport in the reactor circuit, as well as the late phase processes in the lower plenum. In case of a severe accident degradation of the reactor core occurs, the fuel assemblies start to melt. The evolution of such processes is usually accompanied with the failure of the core support plate and relocation of the molten core to the lower plenum. Currently, the criterion for the failure of the support plate applied by ATHLET-CD is a user-defined signal which can be a specific time or process variable like mass, temperature, etc. A new method, based on FEM approach, was developed that could lead in the future to a more realistic criterion for the failure of the core support plate. This paper presents the basic idea and theory of this new method as well as preliminary verification calculations and an outlook on the planned future development.

  19. Toroidal fusion reactor design based on the reversed-field pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.

    1978-07-01

    The toroidal reversed-field pinch (RFP) achieves gross equilibrium and stability with a combination of high shear and wall stabilization, rather than the imposition of tokamak-like q-constraints. Consequently, confinement is provided primarily by poloidal magnetic fields, poloidal betas as large as approximately 0.58 are obtainable, the high ohmic-heating (toroidal) current densities promise a sole means of heating a D-T plasma to ignition, and the plasma aspect ratio is not limited by stability/equilibrium constraints. A reactor-like plasma model has been developed in order to quantify and to assess the general features of a power system based upon RFP confinement. An ''operating point'' has been generated on the basis of this plasma model and a relatively detailed engineering energy balance. These results are used to generate a conceptual engineering model of the reversed-field pinch reactor (RFPR) which includes a general description of a 750 MWe power plant and the preliminary consideration of vacuum/fueling, first wall, blanket, magnet coils, iron core, and the energy storage/transfer system

  20. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.