WorldWideScience

Sample records for reactor analysis methodology

  1. Methodology for reactor core physics analysis - part 2

    International Nuclear Information System (INIS)

    Ponzoni Filho, P.; Fernandes, V.B.; Lima Bezerra, J. de; Santos, T.I.C.

    1992-12-01

    The computer codes used for reactor core physics analysis are described. The modifications introduced in the public codes and the technical basis for the codes developed by the FURNAS utility are justified. An evaluation of the impact of these modifications on the parameter involved in qualifying the methodology is included. (F.E.). 5 ref, 7 figs, 5 tabs

  2. A powerful methodology for reactor vessel pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Boucau, J.; Mager, T.

    1994-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). More specifically, the review of the old WWER-type of reactors (WWER 440/230) has indicated a sensitive behaviour to neutron embrittlement. This led already to some remedial actions including safety injection water preheating or vessel annealing. Such measures are usually taken based on the analysis of a selected number of conservative PTS events. Consideration of all postulated cooldown events would draw attention to the impact of operator action and control system effects on reactor vessel PTS. Westinghouse has developed a methodology which couples event sequence analysis with probabilistic fracture mechanics analyses, to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. Once the event sequences of concern are identified, detailed deterministic thermal-hydraulic and structural evaluations can be performed to determine the conditions required to minimize the extension of postulated flaws or enhance flaw arrest in the reactor vessel. The results of these analyses can then be used to better define further modifications in vessel and plant system design and to operating procedures. The purpose of the present paper will be to describe this methodology and to show its benefits for decision making. (author). 1 ref., 3 figs

  3. Taipower's transient analysis methodology for pressurized water reactors

    International Nuclear Information System (INIS)

    Huang, Pinghue

    1998-01-01

    The methodology presented in this paper is a part of the 'Taipower's Reload Design and Transient Analysis Methodologies for Light Water Reactors' developed by the Taiwan Power Company (TPC) and the Institute of Nuclear Energy Research. This methodology utilizes four computer codes developed or sponsored by Electric Power Research institute: system transient analysis code RETRAN-02, core thermal-hydraulic analysis code COBRAIIIC, three-dimensional spatial kinetics code ARROTTA, and fuel rod evaluation code FREY. Each of the computer codes was extensively validated. Analysis methods and modeling techniques were conservatively established for each application using a systematic evaluation with the assistance of sensitivity studies. The qualification results and analysis methods were documented in detail in TPC topical reports. The topical reports for COBRAIIIC, ARROTTA. and FREY have been reviewed and approved by the Atomic Energy Council (ABC). TPC 's in-house transient methodology have been successfully applied to provide valuable support for many operational issues and plant improvements for TPC's Maanshan Units I and 2. Major applications include the removal of the resistance temperature detector bypass system, the relaxation of the hot-full-power moderator temperature coefficient design criteria imposed by the ROCAEC due to a concern on Anticipated Transient Without Scram, the reduction of boron injection tank concentration and the elimination of the heat tracing, and the reduction of' reactor coolant system flow. (author)

  4. SAFETY ANALYSIS METHODOLOGY FOR AGED CANDU® 6 NUCLEAR REACTORS

    Directory of Open Access Journals (Sweden)

    WOLFGANG HARTMANN

    2013-10-01

    Full Text Available This paper deals with the Safety Analysis for CANDU® 6 nuclear reactors as affected by main Heat Transport System (HTS aging. Operational and aging related changes of the HTS throughout its lifetime may lead to restrictions in certain safety system settings and hence some restriction in performance under certain conditions. A step in confirming safe reactor operation is the tracking of relevant data and their corresponding interpretation by the use of appropriate thermalhydraulic analytic models. Safety analyses ranging from the assessment of safety limits associated with the prevention of intermittent fuel sheath dryout for a slow Loss of Regulation (LOR analysis and fission gas release after a fuel failure are summarized. Specifically for fission gas release, the thermalhydraulic analysis for a fresh core and an 11 Effective Full Power Years (EFPY aged core was summarized, leading to the most severe stagnation break sizes for the inlet feeder break and the channel failure time. Associated coolant conditions provide the input data for fuel analyses. Based on the thermalhydraulic data, the fission product inventory under normal operating conditions may be calculated for both fresh and aged cores, and the fission gas release may be evaluated during the transient. This analysis plays a major role in determining possible radiation doses to the public after postulated accidents have occurred.

  5. A fast reactor transient analysis methodology for personal computers

    International Nuclear Information System (INIS)

    Ott, K.O.

    1993-01-01

    A simplified model for a liquid-metal-cooled reactor (LMR) transient analysis, in which point kinetics as well as lumped descriptions of the heat transfer equations in all components are applied, is converted from a differential into an integral formulation. All 30 differential balance equations are implicitly solved in terms of convolution integrals. The prompt jump approximation is applied as the strong negative feedback effectively keeps the net reactivity well below prompt critical. After implicit finite differencing of the convolution integrals, the kinetics equation assumes a new form, i.e., the quadratic dynamics equation. In this integral formulation, the initial value problem of typical LMR transients can be solved with large item steps (initially 1 s, later up to 256 s). This then makes transient problems amenable to a treatment on personal computer. The resulting mathematical model forms the basis for the GW-BASIC program LMR transient calculation (LTC) program. The LTC program has also been converted to QuickBASIC. The running time for a 10-h transient overpower transient is then ∼40 to 10 s, depending on the hardware version (286, 386, or 486 with math coprocessors)

  6. The development of a safety analysis methodology for the optimized power reactor 1000

    International Nuclear Information System (INIS)

    Hwang-Yong, Jun; Yo-Han, Kim

    2005-01-01

    Korea Electric Power Research Institute (KEPRI) has been developing inhouse safety analysis methodology based on the delicate codes available to KEPRI to overcome the problems arising from currently used vendor oriented methodologies. For the Loss of Coolant Accident (LOCA) analysis, the KREM (KEPRI Realistic Evaluation Methodology) has been developed based on the RELAP-5 code. The methodology was approved for the Westinghouse 3-loop plants by the Korean regulatory organization and the project to extent the methodology to the Optimized Power Reactor 1000 (OPR1000) has been ongoing since 2001. Also, for the Non-LOCA analysis, the KNAP (Korea Non-LOCA Analysis Package) has been developed using the UNICORN-TM code system. To demonstrate the feasibility of these codes systems and methodologies, some typical cases of the design basis accidents mentioned in the final safety analysis report (FSAR) were analyzed. (author)

  7. Methodology for reactor core physics analysis - part 2; Metodologia de analise fisica do nucleo - etapa 2

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni Filho, P; Fernandes, V B; Lima Bezerra, J de; Santos, T I.C.

    1992-12-01

    The computer codes used for reactor core physics analysis are described. The modifications introduced in the public codes and the technical basis for the codes developed by the FURNAS utility are justified. An evaluation of the impact of these modifications on the parameter involved in qualifying the methodology is included. (F.E.). 5 ref, 7 figs, 5 tabs.

  8. A faster reactor transient analysis methodology for PCs

    International Nuclear Information System (INIS)

    Ott, K.O.

    1991-10-01

    The simplified ANL model for LMR transient analysis, in which point kinetics as well as lumped descriptions of the heat transfer equations in all components are applied, is converted from a differential into an integral formulation. All differential balance equations are implicitly solved in terms of convolution integrals. The prompt jump approximation is applied as the strong negative feedback effectively keeps the net reactivity well below prompt critical. After implicit finite differencing of the convolution integrals, the kinetics equation assumes the form of a quadratic equation, the ''quadratic dynamics equation.'' This model forms the basis for GW-BASIC program, LTC, for LMR Transient Calculation program, which can effectively be run on a PC. The GW-BASIC version of the LTC program is described in detail in Volume 2 of this report

  9. Best-estimate methodology for analysis of anticipated transients without scram in pressurized water reactors

    International Nuclear Information System (INIS)

    Rebollo, L.

    1993-01-01

    Union Fenosa, a utility company in Spain, has performed research on pressurized water reactor (PWR) safety with respect to the development of a best-estimate methodology for the analysis of anticipated transients without scram (ATWS), i.e., those anticipated transients for which failure of the reactor protection system is postulated. A scientific and technical approach is adopted with respect to the ATWS phenomenon as it affects a PWR, specifically the Zorita nuclear power plant, a single-loop Westinghouse-designed PWR in Spain. In this respect, an ATWS sequence analysis methodology based on published codes that is generically applicable to any PWR is proposed, which covers all the anticipated phenomena and defines the applicable acceptance criteria. The areas contemplated are cell neutron analysis, core thermal hydraulics, and plant dynamics, which are developed, qualified, and plant dynamics, which are developed, qualified, and validated by comparison with reference calculations and measurements obtained from integral or separate-effects tests

  10. Core melt progression and consequence analysis methodology development in support of the Savannah River Reactor PSA

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Sharp, D.A.; Amos, C.N.; Wagner, K.C.; Bradley, D.R.

    1992-01-01

    A three-level Probabilistic Safety Assessment (PSA) of production reactor operation has been underway since 1985 at the US Department of Energy's Savannah River Site (SRS). The goals of this analysis are to: Analyze existing margins of safety provided by the heavy-water reactor (HWR) design challenged by postulated severe accidents; Compare measures of risk to the general public and onsite workers to guideline values, as well as to those posed by commercial reactor operation; and Develop the methodology and database necessary to prioritize improvements to engineering safety systems and components, operator training, and engineering projects that contribute significantly to improving plant safety. PSA technical staff from the Westinghouse Savannah River Company (WSRC) and Science Applications International Corporation (SAIC) have performed the assessment despite two obstacles: A variable baseline plant configuration and power level; and a lack of technically applicable code methodology to model the SRS reactor conditions. This paper discusses the detailed effort necessary to modify the requisite codes before accident analysis insights for the risk assessment were obtained

  11. Analysis of kyoto university reactor physics critical experiments using NCNSRC calculation methodology

    International Nuclear Information System (INIS)

    Amin, E.; Hathout, A.M.; Shouman, S.

    1997-01-01

    The kyoto university reactor physics experiments on the university critical assembly is used to benchmark validate the NCNSRC calculations methodology. This methodology has two lines, diffusion and Monte Carlo. The diffusion line includes the codes WIMSD4 for cell calculations and the two dimensional diffusion code DIXY2 for core calculations. The transport line uses the MULTIKENO-Code vax Version. Analysis is performed for the criticality, and the temperature coefficients of reactivity (TCR) for the light water moderated and reflected cores, of the different cores utilized in the experiments. The results of both Eigen value and TCR approximately reproduced the experimental and theoretical Kyoto results. However, some conclusions are drawn about the adequacy of the standard wimsd4 library. This paper is an extension of the NCNSRC efforts to assess and validate computer tools and methods for both Et-R R-1 and Et-MMpr-2 research reactors. 7 figs., 1 tab

  12. Methodology for thermal-hydraulics analysis of pool type MTR fuel research reactors

    International Nuclear Information System (INIS)

    Umbehaun, Pedro Ernesto

    2000-01-01

    This work presents a methodology developed for thermal-hydraulic analysis of pool type MTR fuel research reactors. For this methodology a computational program, FLOW, and a model, MTRCR-IEAR1 were developed. FLOW calculates the cooling flow distribution in the fuel elements, control elements, irradiators, and through the channels formed among the fuel elements and among the irradiators and reflectors. This computer program was validated against experimental data for the IEA-R1 research reactor core at IPEN-CNEN/SP. MTRCR-IEAR1 is a model based on the commercial program Engineering Equation Solver (EES). Besides the thermal-hydraulic analyses of the core in steady state accomplished by traditional computational programs like COBRA-3C/RERTR and PARET, this model allows to analyze parallel channels with different cooling flow and/or geometry. Uncertainty factors of the variables from neutronic and thermalhydraulic calculation and also from the fabrication of the fuel element are introduced in the model. For steady state analyses MTRCR-IEAR1 showed good agreement with the results of COBRA-3C/RERTR and PARET. The developed methodology was used for the calculation of the cooling flow distribution and the thermal-hydraulic analysis of a typical configuration of the IEA-R1 research reactor core. (author)

  13. Reactor analysis support package (RASP). Volume 7. PWR set-point methodology. Final report

    International Nuclear Information System (INIS)

    Temple, S.M.; Robbins, T.R.

    1986-09-01

    This report provides an overview of the basis and methodology requirements for determining Pressurized Water Reactor (PWR) technical specifications related setpoints and focuses on development of the methodology for a reload core. Additionally, the report documents the implementation and typical methods of analysis used by PWR vendors during the 1970's to develop Protection System Trip Limits (or Limiting Safety System Settings) and Limiting Conditions for Operation. The descriptions of the typical setpoint methodologies are provided for Nuclear Steam Supply Systems as designed and supplied by Babcock and Wilcox, Combustion Engineering, and Westinghouse. The description of the methods of analysis includes the discussion of the computer codes used in the setpoint methodology. Next, the report addresses the treatment of calculational and measurement uncertainties based on the extent to which such information was available for each of the three types of PWR. Finally, the major features of the setpoint methodologies are compared, and the principal effects of each particular methodology on plant operation are summarized for each of the three types of PWR

  14. Development of a methodology of analysis of instabilities in BWR reactors; Desarrollo de una metodologia de analisis de inestabilidades en reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fenoll, M.; Abarca, A.; Barrachina, T.; Miro, R.; Verdu, G.

    2012-07-01

    This paper presents a methodology of analysis of the reactors instabilities of BWR type. This methodology covers of modal analysis of the point operation techniques of signal analysis and simulation of transients, through 3D Coupled RELAP5/PARCSv2.7 code.

  15. Work Domain Analysis Methodology for Development of Operational Concepts for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This report describes a methodology to conduct a Work Domain Analysis in preparation for the development of operational concepts for new plants. This method has been adapted from the classical method described in the literature in order to better deal with the uncertainty and incomplete information typical of first-of-a-kind designs. The report outlines the strategy for undertaking a Work Domain Analysis of a new nuclear power plant and the methods to be used in the development of the various phases of the analysis. Basic principles are described to the extent necessary to explain why and how the classical method was adapted to make it suitable as a tool for the preparation of operational concepts for a new nuclear power plant. Practical examples are provided of the systematic application of the method and the various presentation formats in the operational analysis of advanced reactors.

  16. Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor

    Science.gov (United States)

    Mkhabela, Peter Tshepo

    The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis

  17. A non-linear reduced order methodology applicable to boiling water reactor stability analysis

    International Nuclear Information System (INIS)

    Prill, Dennis Paul

    2013-01-01

    Thermal-hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers of boiling water reactor (BWR) stability behavior. High-power low-flow conditions in connection with unfavorable power distributions can lead the BWR system into unstable regions where power oscillations can be triggered. This important threat to operational safety requires careful analysis for proper understanding. Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs), saving computational cost and improving the physical understanding. Presently within reactor dynamics, no general and automatic prediction of high-dimensional ROMs based on detailed BWR models are available. In this thesis a systematic self-contained model order reduction (MOR) technique is derived which is applicable for several classes of dynamical problems, and in particular to BWRs of any degree of details. Expert knowledge can be given by operational, experimental or numerical transient data and is transfered into an optimal basis function representation. The methodology is mostly automated and provides the framework for the reduction of various different systems of any level of complexity. Only little effort is necessary to attain a reduced version within this self-written code which is based on coupling of sophisticated commercial software. The methodology reduces a complex system in a grid-free manner to a small system able to capture even non-linear dynamics. It is based on an optimal choice of basis functions given by the so-called proper orthogonal decomposition (POD). Required steps to achieve reliable and numerical stable ROM are given by a distinct calibration road-map. In validation and verification steps, a wide spectrum of representative test examples is systematically studied regarding a later BWR application. The first example is non-linear and has a dispersive character

  18. Test reactor risk assessment methodology

    International Nuclear Information System (INIS)

    Jennings, R.H.; Rawlins, J.K.; Stewart, M.E.

    1976-04-01

    A methodology has been developed for the identification of accident initiating events and the fault modeling of systems, including common mode identification, as these methods are applied in overall test reactor risk assessment. The methods are exemplified by a determination of risks to a loss of primary coolant flow in the Engineering Test Reactor

  19. Development of safety analysis methodology for moderator system failure of CANDU-6 reactor by thermal-hydraulics/physics coupling

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Jin, Dong Sik; Chang, Soon Heung

    2013-01-01

    Highlights: • Developed new safety analysis methodology of moderator system failures for CANDU-6. • The new methodology used the TH-physics coupling concept. • Thermalhydraulic code is CATHENA, physics code is RFSP-IST. • Moderator system failure ends to the subcriticality through self-shutdown. -- Abstract: The new safety analysis methodology for the CANDU-6 nuclear power plant (NPP) moderator system failure has been developed by using the coupling technology with the thermalhydraulic code, CATHENA and reactor core physics code, RFSP-IST. This sophisticated methodology can replace the legacy methodology using the MODSTBOIL and SMOKIN-G2 in the field of the thermalhydraulics and reactor physics, respectively. The CATHENA thermalhydraulic model of the moderator system can simulate the thermalhydraulic behaviors of all the moderator systems such as the calandria tank, head tank, moderator circulating circuit and cover gas circulating circuit and can also predict the thermalhydraulic property of the moderator such as moderator density, temperature and water level in the calandria tank as the moderator system failures go on. And these calculated moderator thermalhydraulic properties are provided to the 3-dimensional neutron kinetics solution module – CERBRRS of RFSP-IST as inputs, which can predict the change of the reactor power and provide the calculated reactor power to the CATHENA. These coupling calculations are performed at every 2 s time steps, which are equivalent to the slow control of CANDU-6 reactor regulating systems (RRS). The safety analysis results using this coupling methodology reveal that the reactor operation enters into the self-shutdown mode without any engineering safety system and/or human interventions for the postulated moderator system failures of the loss of heat sink and moderator inventory, respectively

  20. Comparative economic analysis of the Integral Molten Salt Reactor and an advanced PWR using the G4-ECONS methodology

    International Nuclear Information System (INIS)

    Samalova, Ludmila; Chvala, Ondrej; Maldonado, G. Ivan

    2017-01-01

    The assessment of economic viability of a new reactor concept is crucial particularly during the early stages of its concept development. The G4-ECONS methodology provides a standardized top-down estimate of electricity cost and parametric sensitivities, not specifically targeted toward an accurate prediction of the final cost when deployed, but rather seeking an approximation of cost variations relative to other systems. This study presents an analysis of the Integral Molten Salt Reactor (IMSR) concept in comparison with a consistent analysis of an advanced PWR reactor (represented by AP1000). Estimation of levelized unit electricity costs, as well as sensitivity analyses to the discount rate and uranium or SWU prices, are presented using this methodology.

  1. Level II Probabilistic Safety Analysis Methodology for the Application to GEN-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Park, S. Y.; Kim, T. W.; Han, S. H.; Jeong, H. Y.

    2010-03-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing liquid metal reactor (LMR) design technologies under a National Nuclear R and D Program. Nevertheless, there is no experience of the probabilistic safety assessment (PSA) domestically for a fast reactor with the metal fuel. Therefore, the objective of this study is to establish the methodologies of risk assessment for the reference design of GEN-IV sodium fast reactor (SFR). An applicability of the PSA methodology of U. S. NRC and PRISM plant to the domestic GEN-IV SFR has been studied. The study contains a plant damage state analysis, a containment event tree analysis, and a source-term release category binning process

  2. The Application of Best Estimate and Uncertainty Analysis Methodology to Large LOCA Power Pulse in a CANDU 6 Reactor

    International Nuclear Information System (INIS)

    Abdul-Razzak, A.; Zhang, J.; Sills, H.E.; Flatt, L.; Jenkins, D.; Wallace, D.J.; Popov, N.

    2002-01-01

    The paper describes briefly a best estimate plus uncertainty analysis (BE+UA) methodology and presents its proto-typing application to the power pulse phase of a limiting large Loss-of-Coolant Accident (LOCA) for a CANDU 6 reactor fuelled with CANFLEX R fuel. The methodology is consistent with and builds on world practice. The analysis is divided into two phases to focus on the dominant parameters for each phase and to allow for the consideration of all identified highly ranked parameters in the statistical analysis and response surface fits for margin parameters. The objective of this analysis is to quantify improvements in predicted safety margins under best estimate conditions. (authors)

  3. Probabilistic Analysis of Passive Safety System Reliability in Advanced Small Modular Reactors: Methodologies and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Bucknor, Matthew; Brunett, Acacia; Grelle, Austin

    2015-06-28

    Many advanced small modular reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize with a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper describes the most promising options: mechanistic techniques, which share qualities with conventional probabilistic methods, and simulation-based techniques, which explicitly account for time-dependent processes. The primary intention of this paper is to describe the strengths and weaknesses of each methodology and highlight the lessons learned while applying the two techniques while providing high-level results. This includes the global benefits and deficiencies of the methods and practical problems encountered during the implementation of each technique.

  4. Development of the GO-FLOW reliability analysis methodology for nuclear reactor system

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Kobayashi, Michiyuki

    1994-01-01

    Probabilistic Safety Assessment (PSA) is important in the safety analysis of technological systems and processes, such as, nuclear plants, chemical and petroleum facilities, aerospace systems. Event trees and fault trees are the basic analytical tools that have been most frequently used for PSAs. Several system analysis methods can be used in addition to, or in support of, the event- and fault-tree analysis. The need for more advanced methods of system reliability analysis has grown with the increased complexity of engineered systems. The Ship Research Institute has been developing a new reliability analysis methodology, GO-FLOW, which is a success-oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. The research has been supported by the special research fund for Nuclear Technology, Science and Technology Agency, from 1989 to 1994. This paper describes the concept of the Probabilistic Safety Assessment (PSA), an overview of various system analysis techniques, an overview of the GO-FLOW methodology, the GO-FLOW analysis support system, procedure of treating a phased mission problem, a function of common cause failure analysis, a function of uncertainty analysis, a function of common cause failure analysis with uncertainty, and printing out system of the results of GO-FLOW analysis in the form of figure or table. Above functions are explained by analyzing sample systems, such as PWR AFWS, BWR ECCS. In the appendices, the structure of the GO-FLOW analysis programs and the meaning of the main variables defined in the GO-FLOW programs are described. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis, and has a wide range of applications. With the development of the total system of the GO-FLOW, this methodology has became a powerful tool in a living PSA. (author) 54 refs

  5. User's manual and analysis methodology of probabilistic fracture mechanics analysis code PASCAL Ver.2 for reactor pressure vessel (Contract research)

    International Nuclear Information System (INIS)

    Osakabe, Kazuya; Onizawa, Kunio; Shibata, Katsuyuki; Kato, Daisuke

    2006-09-01

    As a part of the aging structural integrity research for LWR components, the probabilistic fracture mechanics (PFM) analysis code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed in JAEA. This code evaluates the conditional probabilities of crack initiation and fracture of a reactor pressure vessel (RPV) under transient conditions such as pressurized thermal shock (PTS). The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the recent development in the fracture mechanics and computer performance. PASCAL Ver.1 has functions of optimized sampling in the stratified Monte Carlo simulation, elastic-plastic fracture criterion of the R6 method, crack growth analysis models for a semi-elliptical crack, recovery of fracture toughness due to thermal annealing and so on. Since then, under the contract between the Ministry of Economy, Trading and Industry of Japan and JAEA, we have continued to develop and introduce new functions into PASCAL Ver.2 such as the evaluation method for an embedded crack, K I database for a semi-elliptical crack considering stress discontinuity at the base/cladding interface, PTS transient database, and others. A generalized analysis method is proposed on the basis of the development of PASCAL Ver.2 and results of sensitivity analyses. Graphical user interface (GUI) including a generalized method as default values has been also developed for PASCAL Ver.2. This report provides the user's manual and theoretical background of PASCAL Ver.2. (author)

  6. Automated spectral zones selection methodology for diffusion theory data preparation for pebble bed reactor analysis

    Science.gov (United States)

    Mphahlele, Ramatsemela

    A methodology is developed for the determination of the optimum spectral zones in Pebble Bed Reactors (PBR). In this work a spectral zone is defined as a zone made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. In other words the spectral zones are the regions over which the few-group diffusion parameters are generated. The identification of spectral boundaries is treated as an optimization problem. It is solved by systematically and simultaneously repositioning all zone boundaries to achieve the global minimum error between the reference transport solution (MCNP) and the diffusion code solution (NEM). The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates error in each zone. An iterative determination of group-dependent bucklings is incorporated into the methodology to properly account for spectral effects of neighboring zones. A preferred energy group structure has also been chosen. This optimization approach with the reference transport solution has proved to be accurate and consistent, however the computational effort required to complete the optimization process is significant. Thus a more practical methodology is also developed for the determination of the spectral zones in PBRs. The reactor physics characteristics of the spectral zones have been studied to understand the nature of the spectral zone boundaries. The practical tool involves the use of spectral indices based on few-group diffusion theory whole core calculations. With this methodology, there is no need to first have a reference transport solution. It is shown that the diffusion-theory coarse group fluxes and the effective multiplication factor computed using zones based on the practical index agrees within a narrow tolerance with those of the reference approach. Therefore the "practical" index

  7. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2016-02-15

    Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.

  8. Development of methodology for the analysis of fuel behavior in light water reactor in design basis accidents

    International Nuclear Information System (INIS)

    Salatov, A. A.; Goncharov, A. A.; Eremenko, A. S.; Kuznetsov, V. I.; Bolnov, V. A.; Gusev, A. S.; Dolgov, A. B.; Ugryumov, A. V.

    2013-01-01

    The report attempts to analyze the current experience of the safety fuel for light-water reactors (LWRs) under design-basis accident conditions in terms of its compliance with international requirements for licensing nuclear power plants. The components of fuel behavior analysis methodology in design basis accidents in LWRs were considered, such as classification of design basis accidents, phenomenology of fuel behavior in design basis accidents, system of fuel safety criteria and their experimental support, applicability of used computer codes and input data for computational analysis of the fuel behavior in accidents, way of accounting for the uncertainty of calculation models and the input data. A brief history of the development of probabilistic safety analysis methodology for nuclear power plants abroad is considered. The examples of a conservative approach to safety analysis of VVER fuel and probabilistic approach to safety analysis of fuel TVS-K are performed. Actual problems in development of the methodology of analyzing the behavior of VVER fuel at the design basis accident conditions consist, according to the authors opinion, in following: 1) Development of a common methodology for analyzing the behavior of VVER fuel in the design basis accidents, implementing a realistic approach to the analysis of uncertainty - in the future it is necessary for the licensing of operating VVER fuel abroad; 2) Experimental and analytical support to the methodology: experimental studies to identify and study the characteristics of the key uncertainties of computational models of fuel and the cladding, development of computational models of key events in codes, validation code on the basis of integral experiments

  9. Final Report, Nuclear Energy Research Initiative (NERI) Project: An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model

    International Nuclear Information System (INIS)

    Anistratov, Dmitriy Y.; Adams, Marvin L.; Palmer, Todd S.; Smith, Kord S.; Clarno, Kevin; Hikaru Hiruta; Razvan Nes

    2003-01-01

    OAK (B204) Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model'' The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations

  10. Development of a coupled containment-reactor coolant system methodology for the analysis of IRIS small break LOCA

    International Nuclear Information System (INIS)

    Manfredini, Antonio; Oriolo, Francesco; Paci, Sandro; Oriani, Luca

    2003-01-01

    The main purpose of the present work is to identify the most relevant physical phenomena for the IRIS (International Reactor Innovative and Secure) containment system and the development of an integrated methodology for the simultaneous safety analysis of both the reactor and containment with available computer codes. Specific objectives are: (a) to assess the limitations of the lumped parameter codes on predictions of complex situations; (b) to identify alternatives to classical containment analysis techniques. The characteristic features of an integral reactor like IRIS present a much greater challenge to code developers than conventional, loop type PWRs. In particular, the integral primary system and the containment are strongly coupled during postulated accident conditions and thus an integrated simulation of both systems is required to obtain a reliable phenomenological representation. The comparison of the results obtained in the application of two containment codes (GOTHIC and integrated FUMO) on 'ad hoc' IRIS related benchmarks will also be described. These preliminary calculations were used to test the IRIS containment concept and cooling strategies, at the same time highlighting the most relevant issues that require a more refined investigation. Finally, this activity allowed to perform more refined calculations, in progress at the moment, aimed at showing that the IRIS safety systems and containment design solutions perform their intended functions. (author)

  11. Preliminary seismic analysis of an innovative near term reactor: Methodology and application

    International Nuclear Information System (INIS)

    Lo Frano, R.; Pugliese, G.; Forasassi, G.

    2010-01-01

    Nuclear power plant (NPP) design is strictly dependent on seismic hazard and safety aspects concerned with the external events of the site. Earthquake resistant structures design requires realistic and accurate physical and theoretical models to describe the response of the nuclear power plants (NPPs) that depend on both the ground motion characteristics and the dynamic properties of the structures themselves. In order to improve the design of new NPPs and, at the same time, to retrofit existing ones the dynamic behaviour of structures subjected to critical seismic excitations that may occur during their expected service life must be evaluated. The aim of this work is to select new effective methods to assess NPPs vulnerability by properly capturing the effects of a safe shutdown earthquake (SSE) event on nuclear structures, like the near term deployment IRIS reactor, and to evaluate the seismic resistance capability of as-built structures systems and components. To attain the purpose a validated deterministic methodology based on an accurate finite element modelling coupled to substructure and time history approaches was employed for studying the overall dynamic behaviour of the NPP relevant components. Moreover the set up three-dimensional model was also validated to evaluate the performance and reliability of the adopted FEM code (mesh refinements and type element influence). This detailed numerical assessment, involving the most widely used finite element numerical codes (MSC.Marc and Ansys, allowed to solve, perform and simulate as accurately as possible the dynamic behaviour of structures which may withstand a lot of more or less complicate structural problems. To evaluate the accuracy and the reliability as well as to determine the related error of the set-up procedure, the obtained seismic analyses results in term of accelerations, propagated from the ground to the auxiliary building systems and components, and displacements were compared highlighting a

  12. Sargent-IV Project. Development of new methodologies for safety analysis of Generation IV reactors; Proyecto SARGEB-IV. Desarrollo de nuevas metodologias de analisis de seguridad para reactores de Generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Queral, C.; Gallego, E.; Jimenez, G.

    2013-07-01

    The main result of this paper is the proposal for the addition of new ingredients in the safety analysis methodologies for Generation-IV reactors that integrates the features of probabilistic safety analysis within deterministic. This ensures a higher degree of integration between the classical deterministic and probabilistic methodologies.

  13. Progress and challenges in the development and qualification of multi-level multi-physics coupled methodologies for reactor analysis

    International Nuclear Information System (INIS)

    Ivanov, K.; Avramova, M.

    2007-01-01

    Current trends in nuclear power generation and regulation as well as the design of next generation reactor concepts along with the continuing computer technology progress stimulate the development, qualification and application of multi-physics multi-scale coupled code systems. The efforts have been focused on extending the analysis capabilities by coupling models, which simulate different phenomena or system components, as well as on refining the scale and level of detail of the coupling. This paper reviews the progress made in this area and outlines the remaining challenges. The discussion is illustrated with examples based on neutronics/thermohydraulics coupling in the reactor core modeling. In both fields recent advances and developments are towards more physics-based high-fidelity simulations, which require implementation of improved and flexible coupling methodologies. First, the progresses in coupling of different physics codes along with the advances in multi-level techniques for coupled code simulations are discussed. Second, the issues related to the consistent qualification of coupled multi-physics and multi-scale code systems for design and safety evaluation are presented. The increased importance of uncertainty and sensitivity analysis are discussed along with approaches to propagate the uncertainty quantification between the codes. The incoming OECD LWR Uncertainty Analysis in Modeling (UAM) benchmark is the first international activity to address this issue and it is described in the paper. Finally, the remaining challenges with multi-physics coupling are outlined. (authors)

  14. Progress and challenges in the development and qualification of multi-level multi-physics coupled methodologies for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, K.; Avramova, M. [Pennsylvania State Univ., University Park, PA (United States)

    2007-07-01

    Current trends in nuclear power generation and regulation as well as the design of next generation reactor concepts along with the continuing computer technology progress stimulate the development, qualification and application of multi-physics multi-scale coupled code systems. The efforts have been focused on extending the analysis capabilities by coupling models, which simulate different phenomena or system components, as well as on refining the scale and level of detail of the coupling. This paper reviews the progress made in this area and outlines the remaining challenges. The discussion is illustrated with examples based on neutronics/thermohydraulics coupling in the reactor core modeling. In both fields recent advances and developments are towards more physics-based high-fidelity simulations, which require implementation of improved and flexible coupling methodologies. First, the progresses in coupling of different physics codes along with the advances in multi-level techniques for coupled code simulations are discussed. Second, the issues related to the consistent qualification of coupled multi-physics and multi-scale code systems for design and safety evaluation are presented. The increased importance of uncertainty and sensitivity analysis are discussed along with approaches to propagate the uncertainty quantification between the codes. The incoming OECD LWR Uncertainty Analysis in Modeling (UAM) benchmark is the first international activity to address this issue and it is described in the paper. Finally, the remaining challenges with multi-physics coupling are outlined. (authors)

  15. Application of FORSS sensitivity and uncertainty methodology to fast reactor benchmark analysis

    Energy Technology Data Exchange (ETDEWEB)

    Weisbin, C.R.; Marable, J.H.; Lucius, J.L.; Oblow, E.M.; Mynatt, F.R.; Peelle, R.W.; Perey, F.G.

    1976-12-01

    FORSS is a code system used to study relationships between nuclear reaction cross sections, integral experiments, reactor performance parameter predictions, and associated uncertainties. This paper presents the theory and code description as well as the first results of applying FORSS to fast reactor benchmarks. Specifically, for various assemblies and reactor performance parameters, the nuclear data sensitivities were computed by nuclide, reaction type, and energy. Comprehensive libraries of energy-dependent coefficients have been developed in a computer retrievable format and released for distribution by RSIC and NNCSC. Uncertainties induced by nuclear data were quantified using preliminary, energy-dependent relative covariance matrices evaluated with ENDF/B-IV expectation values and processed for /sup 238/U(n,f), /sup 238/U(n,..gamma..), /sup 239/Pu(n,f), and /sup 239/Pu(..nu..). Nuclear data accuracy requirements to meet specified performance criteria at minimum experimental cost were determined.

  16. Application of FORSS sensitivity and uncertainty methodology to fast reactor benchmark analysis

    International Nuclear Information System (INIS)

    Weisbin, C.R.; Marable, J.H.; Lucius, J.L.; Oblow, E.M.; Mynatt, F.R.; Peelle, R.W.; Perey, F.G.

    1976-12-01

    FORSS is a code system used to study relationships between nuclear reaction cross sections, integral experiments, reactor performance parameter predictions, and associated uncertainties. This paper presents the theory and code description as well as the first results of applying FORSS to fast reactor benchmarks. Specifically, for various assemblies and reactor performance parameters, the nuclear data sensitivities were computed by nuclide, reaction type, and energy. Comprehensive libraries of energy-dependent coefficients have been developed in a computer retrievable format and released for distribution by RSIC and NNCSC. Uncertainties induced by nuclear data were quantified using preliminary, energy-dependent relative covariance matrices evaluated with ENDF/B-IV expectation values and processed for 238 U(n,f), 238 U(n,γ), 239 Pu(n,f), and 239 Pu(ν). Nuclear data accuracy requirements to meet specified performance criteria at minimum experimental cost were determined

  17. Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, D.; Brunett, A.; Passerini, S.; Grelle, A.; Bucknor, M.

    2017-06-26

    Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. The mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.

  18. Analysis of offsite dose calculation methodology for a nuclear power reactor

    International Nuclear Information System (INIS)

    Moser, D.M.

    1995-01-01

    This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected

  19. Methodology for time-dependent reliability analysis of accident sequences and complex reactor systems

    International Nuclear Information System (INIS)

    Paula, H.M.

    1984-01-01

    The work presented here is of direct use in probabilistic risk assessment (PRA) and is of value to utilities as well as the Nuclear Regulatory Commission (NRC). Specifically, this report presents a methodology and a computer program to calculate the expected number of occurrences for each accident sequence in an event tree. The methodology evaluates the time-dependent (instantaneous) and the average behavior of the accident sequence. The methodology accounts for standby safety system and component failures that occur (a) before they are demanded, (b) upon demand, and (c) during the mission (system operation). With respect to failures that occur during the mission, this methodology is unique in the sense that it models components that can be repaired during the mission. The expected number of system failures during the mission provides an upper bound for the probability of a system failure to run - the mission unreliability. The basic event modeling includes components that are continuously monitored, periodically tested, and those that are not tested or are otherwise nonrepairable. The computer program ASA allows practical applications of the method developed. This work represents a required extension of the presently available methodology and allows a more realistic PRA of nuclear power plants

  20. A study on the pressurized water reactor (PWR) containment response analysis methodologies for postulated severe accident

    International Nuclear Information System (INIS)

    Ahn, Kwang Il

    1992-02-01

    The present study contains two major parts: one is the treatment of uncertainties involved in the current APET and the other is the importance analysis of the APET uncertainty inputs. A clear disadvantage of the expert opinion polling process approach for uncertainty analysis of the current probabilistic risk assessment (PRA) is that the sufficient robustness in the final results may not be attained against the ambiguity of the information upon which the experts base their judgement or the judgmental uncertainty arising under various imprecise and incomplete information. For the treatment of such type of uncertainty, a new approach based on fuzzy set theory is proposed. Then its potential use to the uncertainty analysis of the current PRA is proved through an analysis of accident progression event tree (APET). As a product, a formal procedure with computational algorithms suitable for application of the fuzzy set theory to the APET analysis is provided. Comparing with the uncertainty analysis results obtained by the statistical approach currently used in PRA, the present approach has several major advantages: Firstly, it greatly enhances the robustness in the final results of APET uncertainty analysis by modeling the judgmental uncertainty that arises in the probabilistic quantification of APET top events. Secondly, the modeling of APET uncertainty analysis is far more convenient because of the nonprobabilistic features of fuzzy probabilities used for uncertainty quantification of the APET top events. Thirdly, the APET model can easily be operated by means of a well defined formal propagation logic of fuzzy set theory without going through a tedious sampling procedure. Finally, the fuzzy outcomes provide at least as much information as the existing methods based on the statistical approach. Thus, the present approach can be used as a valuable alternative approach to uncertainty analysis used in the current PRA. Two importance measures for the importance analysis of

  1. Workshop on the use of PRA methodology for the analysis of reactor events and operational data: Proceedings

    International Nuclear Information System (INIS)

    Rasmuson, D.M.

    1992-06-01

    A workshop entitled ''The Use of PRA Methodology for the Analysis of Reactor Events and Operational Data'' was held on January 29--30, 1992 in Annapolis, Maryland. Over 50 participants from the NRC, its contractors, and others participated in the meetings. During the first day, presentations were made by invited speakers to discuss issues in relevant topics. On the second day, discussion groups were held to focus on three areas: risk significance of operational events, industry risk profile and generic concerns, and risk monitoring and risk-based performance indicators. Important considerations identified from the workshop are the following: Improve the Accident Sequence Precursor models and data. Improve the SCSS and NPRDS (e.g., by adding detailed performance information on selected components, by improving narratives on failure causes). Develop risk-based performance indicators. Use risk insights to help focus trending and performance analyses of components, systems, initiators, and sequences. Improve the statistical quality of trending and performance analyses. Flag implications of special conditions (e.g., external events, containment performance) during data studies. Trend common cause and human performance using appropriate models to obtain a better understanding of the impact and causes of failure. Develop a method for producing an industry risk profile

  2. A DOE-STD-3009 hazard and accident analysis methodology for non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    MAHN, JEFFREY A.; WALKER, SHARON ANN

    2000-01-01

    This paper demonstrates the use of appropriate consequence evaluation criteria in conjunction with generic likelihood of occurrence data to produce consistent hazard analysis results for nonreactor nuclear facility Safety Analysis Reports (SAR). An additional objective is to demonstrate the use of generic likelihood of occurrence data as a means for deriving defendable accident sequence frequencies, thereby enabling the screening of potentially incredible events ( -6 per year) from the design basis accident envelope. Generic likelihood of occurrence data has been used successfully in performing SAR hazard and accident analyses for two nonreactor nuclear facilities at Sandia National Laboratories. DOE-STD-3009-94 addresses and even encourages use of a qualitative binning technique for deriving and ranking nonreactor nuclear facility risks. However, qualitative techniques invariably lead to reviewer requests for more details associated with consequence or likelihood of occurrence bin assignments in the test of the SAR. Hazard analysis data displayed in simple worksheet format generally elicits questions about not only the assumptions behind the data, but also the quantitative bases for the assumptions themselves (engineering judgment may not be considered sufficient by some reviewers). This is especially true where the criteria for qualitative binning of likelihood of occurrence involves numerical ranges. Oftentimes reviewers want to see calculations or at least a discussion of event frequencies or failure probabilities to support likelihood of occurrence bin assignments. This may become a significant point of contention for events that have been binned as incredible. This paper will show how the use of readily available generic data can avoid many of the reviewer questions that will inevitably arise from strictly qualitative analyses, while not significantly increasing the overall burden on the analyst

  3. Introducing an ILS methodology into research reactors

    International Nuclear Information System (INIS)

    Lorenzo, N. de; Borsani, R.C.

    2003-01-01

    Integrated Logistics Support (ILS) is the managerial organisation that co-ordinates the activities of many disciplines to develop the supporting resources (training, staffing, designing aids, equipment removal routes, etc) required by technologically complex systems. The application of an ILS methodology in defence projects is described in several places, but it is infrequently illustrated for other areas; therefore the present paper deals with applying this approach to research reactors under design or already in operation. Although better results are obtained when applied since the very beginning of a project, it can be applied successfully in facilities already in operation to improve their capability in a cost-effective way. In applying this methodology, the key objectives shall be previously identified in order to tailor the whole approach. Generally in high power multipurpose reactors, obtaining maximum profit at the lowest possible cost without reducing the safety levels are key issues, while in others the goal is to minimise drawbacks like spurious shutdowns, low quality experimental results or even to reduce staff dose to ALARA values. These items need to be quantified for establishing a system status base line in order to trace the process evolution. Thereafter, specific logistics analyses should be performed in the different areas composing the system. RAMS (Reliability, Availability, Maintainability and Supportability), Manning, Training Needs, Supplying Needs are some examples of these special logistic assessments. The following paragraphs summarise the different areas, encompassed by this ILS methodology. Plant design is influenced focussing the designers? attention on the objectives already identified. Careful design reviews are performed only in an early design stage, being useless a later application. In this paper is presented a methodology including appropriate tools for ensuring the designers abide to ILS issues and key objectives through the

  4. Pressurized water reactor fuel rod design methodology

    International Nuclear Information System (INIS)

    Silva, A.T.; Esteves, A.M.

    1988-08-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  5. Genusa Bepu methodologies for the safety analysis of BWRs; Metodologias Bepu de Genusa para el analisis de seguridad de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, M.; Garcia, J.; Goodson, C.; Ibarra, L.

    2016-08-01

    This article describes the BEPU methodologies developed by General Electric-Hitachi (GEH) for the evaluation of the BWR reactor safety analysis based on the TRACG best-estimate code. These methodologies are applicable to a wide range of events, operational transients (AOO), anticipated transients without scram (ATWS), loss of coolant accidents (LOCA) and instability events; to different BWR types operating commercially. General Electric (GE( designs and other vendors, including Generation III+ESBWR; to the new operation strategies, and to all types of BWR fuel. Their application achieves, among other benefits, a better understanding of the overall plant response and an improvement in margins to the operating limits; thus, the increase of flexibility in reactor operation and reduction in generation costs. (Author)

  6. LOFT uncertainty-analysis methodology

    International Nuclear Information System (INIS)

    Lassahn, G.D.

    1983-01-01

    The methodology used for uncertainty analyses of measurements in the Loss-of-Fluid Test (LOFT) nuclear-reactor-safety research program is described and compared with other methodologies established for performing uncertainty analyses

  7. LOFT uncertainty-analysis methodology

    International Nuclear Information System (INIS)

    Lassahn, G.D.

    1983-01-01

    The methodology used for uncertainty analyses of measurements in the Loss-of-Fluid Test (LOFT) nuclear reactor safety research program is described and compared with other methodologies established for performing uncertainty analyses

  8. Preliminary safety analysis methodology for the SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Chung, Y. J.; Kim, H. C.; Sim, S. K.; Lee, W. J.; Chung, B. D.; Song, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This technical report was prepared for a preliminary safety analysis methodology of the 330MWt SMART (System-integrated Modular Advanced ReacTor) which has been developed by Korea Atomic Energy Research Institute (KAERI) and funded by the Ministry of Science and Technology (MOST) since July 1996. This preliminary safety analysis methodology has been used to identify an envelope for the safety of the SMART conceptual design. As the SMART design evolves, further validated final safety analysis methodology will be developed. Current licensing safety analysis methodology of the Westinghouse and KSNPP PWRs operating and under development in Korea as well as the Russian licensing safety analysis methodology for the integral reactors have been reviewed and compared to develop the preliminary SMART safety analysis methodology. SMART design characteristics and safety systems have been reviewed against licensing practices of the PWRs operating or KNGR (Korean Next Generation Reactor) under construction in Korea. Detailed safety analysis methodology has been developed for the potential SMART limiting events of main steam line break, main feedwater pipe break, loss of reactor coolant flow, CEA withdrawal, primary to secondary pipe break and the small break loss of coolant accident. SMART preliminary safety analysis methodology will be further developed and validated in parallel with the safety analysis codes as the SMART design further evolves. Validated safety analysis methodology will be submitted to MOST as a Topical Report for a review of the SMART licensing safety analysis methodology. Thus, it is recommended for the nuclear regulatory authority to establish regulatory guides and criteria for the integral reactor. 22 refs., 18 figs., 16 tabs. (Author)

  9. Application of the GIF PR and PP methodology to a commercial fast reactor system for a preliminary analysis of PR scenarios

    International Nuclear Information System (INIS)

    Rossi, Fabiana

    2015-01-01

    The Generation IV International Forum (GIF) Proliferation Resistance and Physical Protection (PR and PP) Working Group has developed a methodology for the PR and PP evaluation of the next generation Nuclear Energy Systems (NESs). Following the methodology proposed by the working group, applicable to assessing the proliferation resistance of an NES and its individual elements, the main objective of this work is to apply the methodology to show an example of how its results could be used by designers to improve the PR of the system. In this study, the reactor site of a hypothetical and commercial sodium‑cooled fast neutron nuclear reactor system (SFR) was used as the target NES for the application of the methodology. The design of this SFR is based on the layout of the Japanese Sodium Fast Reactor (JSFR) with a safeguards design based on the safeguards approach of the Japanese prototype fast breeder reactor Monju. The methodology is applied to all the PR scenarios described in the methodology: diversion, misuse and breakout. The methodology was first applied to the SFR to check if this system meets the target of PR as described in the GIF goal; secondly, a comparison between the SFR and a light water reactor (LWR) with an open fuel cycle was performed to evaluate if and how it would be possible to improve the PR and PP of the SFR. The LWR layout is based on the European Pressurized Water Reactor. The comparison was implemented according to the following example development target: achieving proliferation resistance to material diversion similar or superior to domestic and international advanced LWR. Three main actions were performed: implement the evaluation methodology based on its assumptions; characterize the PR and PP for the nuclear energy system applying the methodology to the SFR; and identify recommendations for system designers through comparing the SFR with the LWR.

  10. Methodology of shielding calculation for nuclear reactors

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Mendonca, A.G.; Otto, A.C.; Yamaguchi, Mitsuo

    1982-01-01

    A methodology of calculation that coupling a serie of computer codes in a net that make the possibility to calculate the radiation, neutron and gamma transport, is described, for deep penetration problems, typical of nuclear reactor shielding. This net of calculation begining with the generation of constant multigroups, for neutrons and gamma, by the AMPX system, coupled to ENDF/B-IV data library, the transport calculation of these radiations by ANISN, DOT 3.5 and Morse computer codes, up to the calculation of absorbed doses and/or equivalents buy SPACETRAN code. As examples of the calculation method, results from benchmark n 0 6 of Shielding Benchmark Problems - ORNL - RSIC - 25, namely Neutron and Secondary Gamma Ray fluence transmitted through a Slab of Borated Polyethylene, are presented. (Author) [pt

  11. Risk-assessment methodology for fast breeder reactors

    International Nuclear Information System (INIS)

    Ott, K.O.

    1976-04-01

    The methods applied or proposed for risk assessment of nuclear reactors are reviewed, particularly with respect to their applicability for risk assessment of future commercial fast breeder reactors. All methods are based on the calculation of accident consequences for relatively few accident scenarios. The role and general impact of uncertainties in fast-reactor accident analysis are discussed. The discussion shows the need for improvement of the methodology. A generalized and improved risk-assessment methodology is outlined and proposed (accident-spectra-progression approach). The generalization consists primarily of an explicit treatment of uncertainties throughout the accident progression. The results of this method are obtained in form of consequence distributions. The width and shape of the distributions depend in part on the superposition of the uncertainties. The first moment of the consequence distribution gives an improved prediction of the ''average'' consequence. The higher-consequence moments can be used for consideration of risk aversion. The assessment of the risk of one or a certain number of nuclear reactors can only provide an ''isolated'' risk assessment. The general problem of safety risk assessment and its relation to public acceptance of certain modes of power production is a much broader problem area, which is also discussed

  12. Regional Shelter Analysis Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Michael B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dennison, Deborah [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, Jave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walker, Hoyt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Miller, Paul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-01

    The fallout from a nuclear explosion has the potential to injure or kill 100,000 or more people through exposure to external gamma (fallout) radiation. Existing buildings can reduce radiation exposure by placing material between fallout particles and exposed people. Lawrence Livermore National Laboratory was tasked with developing an operationally feasible methodology that could improve fallout casualty estimates. The methodology, called a Regional Shelter Analysis, combines the fallout protection that existing buildings provide civilian populations with the distribution of people in various locations. The Regional Shelter Analysis method allows the consideration of (a) multiple building types and locations within buildings, (b) country specific estimates, (c) population posture (e.g., unwarned vs. minimally warned), and (d) the time of day (e.g., night vs. day). The protection estimates can be combined with fallout predictions (or measurements) to (a) provide a more accurate assessment of exposure and injury and (b) evaluate the effectiveness of various casualty mitigation strategies. This report describes the Regional Shelter Analysis methodology, highlights key operational aspects (including demonstrating that the methodology is compatible with current tools), illustrates how to implement the methodology, and provides suggestions for future work.

  13. Automated scoping methodology for liquid metal natural circulation small reactor

    International Nuclear Information System (INIS)

    Son, Hyung M.; Suh, Kune Y.

    2014-01-01

    Highlights: • Automated scoping methodology for natural circulation small modular reactor is developed. • In-house code is developed to carry out system analysis and core geometry generation during scoping. • Adjustment relations are obtained to correct the critical core geometry out of diffusion theory. • Optimized design specification is found using objective function value. • Convex hull volume is utilized to quantify the impact of different constraints on the scope range. - Abstract: A novel scoping method is proposed that can automatically generate design variable range of the natural circulation driven liquid metal cooled small reactor. From performance requirements based upon Generation IV system roadmap, appropriate structure materials are selected and engineering constraints are compiled based upon literature. Utilizing ASME codes and standards, appropriate geometric sizing criteria on constituting components are developed to ensure integrity of the system during its lifetime. In-house one dimensional thermo-hydraulic system analysis code is developed based upon momentum integral model and finite element methods to deal with non-uniform descritization of temperature nodes for convection and thermal diffusion equation of liquid metal coolant. In order to quickly generate critical core dimensions out of given unit cell information, an adjustment relation that relates the critical geometry estimated from one-group diffusion and that from MCNP code is constructed and utilized throughout the process. For the selected unit cell dimension ranges, burnup calculations are carried out to check the cores can generate energy over the reactor lifetime. Utilizing random method, sizing criteria, and in-house analysis codes, an automated scoping methodology is developed. The methodology is applied to nitride fueled integral type lead cooled natural circulation reactor concept to generate design scopes which satisfies given constraints. Three dimensional convex

  14. Prometheus Reactor I and C Software Development Methodology, for Action

    International Nuclear Information System (INIS)

    T. Hamilton

    2005-01-01

    The purpose of this letter is to submit the Reactor Instrumentation and Control (I and C) software life cycle, development methodology, and programming language selections and rationale for project Prometheus to NR for approval. This letter also provides the draft Reactor I and C Software Development Process Manual and Reactor Module Software Development Plan to NR for information

  15. Prometheus Reactor I&C Software Development Methodology, for Action

    Energy Technology Data Exchange (ETDEWEB)

    T. Hamilton

    2005-07-30

    The purpose of this letter is to submit the Reactor Instrumentation and Control (I&C) software life cycle, development methodology, and programming language selections and rationale for project Prometheus to NR for approval. This letter also provides the draft Reactor I&C Software Development Process Manual and Reactor Module Software Development Plan to NR for information.

  16. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  17. Safety analysis methodology for OPR 1000

    International Nuclear Information System (INIS)

    Hwang-Yong, Jun

    2005-01-01

    Full text: Korea Electric Power Research Institute (KEPRI) has been developing inhouse safety analysis methodology based on the delicate codes available to KEPRI to overcome the problems arising from currently used vendor oriented methodologies. For the Loss of Coolant Accident (LOCA) analysis, the KREM (KEPRI Realistic Evaluation Methodology) has been developed based on the RELAP-5 code. The methodology was approved for the Westinghouse 3-loop plants by the Korean regulatory organization and the project to extent the methodology to the Optimized Power Reactor 1000 (OPR1000) has been ongoing since 2001. Also, for the Non-LOCA analysis, the KNAP (Korea Non-LOCA Analysis Package) has been developed using the UNICORN-TM code system. To demonstrate the feasibility of these codes systems and methodologies, some typical cases of the design basis accidents mentioned in the final safety analysis report (FSAR) were analyzed. (author)

  18. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    2000-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  19. SMART performance analysis methodology

    International Nuclear Information System (INIS)

    Lim, H. S.; Kim, H. C.; Lee, D. J.

    2001-04-01

    To ensure the required and desired operation over the plant lifetime, the performance analysis for the SMART NSSS design is done by means of the specified analysis methodologies for the performance related design basis events(PRDBE). The PRDBE is an occurrence(event) that shall be accommodated in the design of the plant and whose consequence would be no more severe than normal service effects of the plant equipment. The performance analysis methodology which systematizes the methods and procedures to analyze the PRDBEs is as follows. Based on the operation mode suitable to the characteristics of the SMART NSSS, the corresponding PRDBEs and allowable range of process parameters for these events are deduced. With the developed control logic for each operation mode, the system thermalhydraulics are analyzed for the chosen PRDBEs using the system analysis code. Particularly, because of different system characteristics of SMART from the existing commercial nuclear power plants, the operation mode, PRDBEs, control logic, and analysis code should be consistent with the SMART design. This report presents the categories of the PRDBEs chosen based on each operation mode and the transition among these and the acceptance criteria for each PRDBE. It also includes the analysis methods and procedures for each PRDBE and the concept of the control logic for each operation mode. Therefore this report in which the overall details for SMART performance analysis are specified based on the current SMART design, would be utilized as a guide for the detailed performance analysis

  20. Taipower's reload safety evaluation methodology for pressurized water reactors

    International Nuclear Information System (INIS)

    Huang, Ping-Hue; Yang, Y.S.

    1996-01-01

    For Westinghouse pressurized water reactors (PWRs) such as Taiwan Power Company's (TPC's) Maanshan Units 1 and 2, each of the safety analysis is performed with conservative reload related parameters such that reanalysis is not expected for all subsequent cycles. For each reload cycle design, it is required to perform a reload safety evaluation (RSE) to confirm the validity of the existing safety analysis for fuel cycle changes. The TPC's reload safety evaluation methodology for PWRs is based on 'Core Design and Safety Analysis Package' developed by the TPC and the Institute of Nuclear Energy Research (INER), and is an important portion of the 'Taipower's Reload Design and Transient Analysis Methodologies for Light Water Reactors'. The Core Management System (CMS) developed by Studsvik of America, the one-dimensional code AXINER developed by TPC, National Tsinghua University and INER, and a modified version of the well-known subchannel core thermal-hydraulic code COBRAIIIC are the major computer codes utilized. Each of the computer models is extensively validated by comparing with measured data and/or vendor's calculational results. Moreover, parallel calculations have been performed for two Maanshan reload cycles to validate the RSE methods. The TPC's in-house RSE tools have been applied to resolve many important plant operational issues and plant improvements, as well as to verify the vendor's fuel and core design data. (author)

  1. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    Science.gov (United States)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  2. Massive computation methodology for reactor operation (MACRO)

    International Nuclear Information System (INIS)

    Gustavsson, Cecilia; Pomp, Stephan; Sjoestrand, Henrik; Wallin, Gustav; Oesterlund, Michael; Koning, Arjan; Rochman, Dimitri; Bejmer, Klaes-Hakan; Henriksson, Hans

    2010-01-01

    Today, nuclear data libraries do not handle uncertainties from nuclear data in a consistent manner and the reactor codes do not request uncertainties in nuclear data input. Thus, the output from these codes have unknown uncertainties. The plan is to use a method proposed by Koning and Rochman to investigate the propagation of nuclear data uncertainties into reactor physics codes and macroscopic parameters. A project (acronym MACRO) has started at Uppsala University in collaboration with A. Koning and with financial support from Vattenfall AB and the Swedish Research Council within the GENIUS (Generation IV research in universities of Sweden) project. In the proposed method the uncertainties in nuclear model parameters will be derived from theoretical considerations and comparisons of nuclear model results with experimental cross-section data. Given the probability distribution in the model parameters a large set of random, complete ENDF-formatted nuclear data libraries will be created using the TALYS code. The generated nuclear data libraries will then be used in neutron transport codes to obtain macroscopic reactor parameters. For this, models of reactor systems with proper geometry and elements will be used. This will be done for all data libraries and the variation of the final results will be regarded as a systematic uncertainty in the investigated reactor parameter. The understanding of these systematic uncertainties is especially important for the design and intercomparison of new reactor concepts, i.e., Generation IV, and optimization applications for current generation reactors is envisaged. (authors)

  3. Massive computation methodology for reactor operation (MACRO)

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Cecilia; Pomp, Stephan; Sjoestrand, Henrik; Wallin, Gustav; Oesterlund, Michael [Division of applied nuclear physics, Department of physics and astronomy, Uppsala University, Laegerhyddsvaegen 1, 751 20 Uppsala (Sweden); Koning, Arjan; Rochman, Dimitri [Nuclear Research and consultancy Group (NRG) Westerduinweg 3, Petten (Netherlands); Bejmer, Klaes-Hakan [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, Vaellingby (Sweden); Henriksson, Hans [Vattenfall Research and Development AB, Jaemtlandsgatan 99, Vaellingby (Sweden)

    2010-07-01

    Today, nuclear data libraries do not handle uncertainties from nuclear data in a consistent manner and the reactor codes do not request uncertainties in nuclear data input. Thus, the output from these codes have unknown uncertainties. The plan is to use a method proposed by Koning and Rochman to investigate the propagation of nuclear data uncertainties into reactor physics codes and macroscopic parameters. A project (acronym MACRO) has started at Uppsala University in collaboration with A. Koning and with financial support from Vattenfall AB and the Swedish Research Council within the GENIUS (Generation IV research in universities of Sweden) project. In the proposed method the uncertainties in nuclear model parameters will be derived from theoretical considerations and comparisons of nuclear model results with experimental cross-section data. Given the probability distribution in the model parameters a large set of random, complete ENDF-formatted nuclear data libraries will be created using the TALYS code. The generated nuclear data libraries will then be used in neutron transport codes to obtain macroscopic reactor parameters. For this, models of reactor systems with proper geometry and elements will be used. This will be done for all data libraries and the variation of the final results will be regarded as a systematic uncertainty in the investigated reactor parameter. The understanding of these systematic uncertainties is especially important for the design and intercomparison of new reactor concepts, i.e., Generation IV, and optimization applications for current generation reactors is envisaged. (authors)

  4. Developments in reactor materials science methodology

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Ivanov, V.B.

    1987-01-01

    Problems related to organization of investigations into reactor materials science are considered. Currently the efficiency and reliability of nuclear power units are largely determined by the fact, how correctly and quickly conclusions concerning the parameters of designs and materials worked out for a long time in reactor cores, are made. To increase information value of materials science investigations it is necessary to create a uniform system, providing for solving methodical, technical and organizational problems. Peculiarities of the current state of reactor material science are analysed and recommendations on constructing an optimal scheme of investigations and data flow interconnection are given

  5. Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation

    Directory of Open Access Journals (Sweden)

    Claudio Passalía

    2017-06-01

    Full Text Available An integral reactor design methodology was developed to address the optimal design of photocatalytic wall reactors to be used in air pollution control. For a target pollutant to be eliminated from an air stream, the proposed methodology is initiated with a mechanistic derived reaction rate. The determination of intrinsic kinetic parameters is associated with the use of a simple geometry laboratory scale reactor, operation under kinetic control and a uniform incident radiation flux, which allows computing the local superficial rate of photon absorption. Thus, a simple model can describe the mass balance and a solution may be obtained. The kinetic parameters may be estimated by the combination of the mathematical model and the experimental results. The validated intrinsic kinetics obtained may be directly used in the scaling-up of any reactor configuration and size. The bench scale reactor may require the use of complex computational software to obtain the fields of velocity, radiation absorption and species concentration. The complete methodology was successfully applied to the elimination of airborne formaldehyde. The kinetic parameters were determined in a flat plate reactor, whilst a bench scale corrugated wall reactor was used to illustrate the scaling-up methodology. In addition, an optimal folding angle of the corrugated reactor was found using computational fluid dynamics tools.

  6. Methodology for estimating sodium aerosol concentrations during breeder reactor fires

    International Nuclear Information System (INIS)

    Fields, D.E.; Miller, C.W.

    1985-01-01

    We have devised and applied a methodology for estimating the concentration of aerosols released at building surfaces and monitored at other building surface points. We have used this methodology to make calculations that suggest, for one air-cooled breeder reactor design, cooling will not be compromised by severe liquid-metal fires

  7. MAPLE research reactor safety uncertainty assessment methodology

    International Nuclear Information System (INIS)

    Sills, H.E.; Duffey, R.B.; Andres, T.H.

    1999-01-01

    The MAPLE (multipurpose Applied Physics Lattice Experiment) reactor is a low pressure, low temperature, open-tank-in pool type research reactor that operates at a power level of 5 to 35 MW. MAPLE is designed for ease of operation, maintenance, and to meet today's most demanding requirements for safety and licensing. The emphasis is on the use of passive safety systems and environmentally qualified components. Key safety features include two independent and diverse shutdown systems, two parallel and independent cooling loops, fail safe operation, and a building design that incorporates the concepts of primary containment supported by secondary confinement

  8. Analysis of Russian transition scenarios to innovative nuclear energy system based on thermal and fast reactors with closed nuclear fuel cycle using INPRO methodology

    International Nuclear Information System (INIS)

    Kagramanyan, V.S.; Poplavskaya, E.V.; Korobeynikov, V.V.; Kalashnikov, A.G.; Moseev, A.L.; Korobitsyn, V.E.; Andreeva-Andrievskaya, L.N.

    2011-01-01

    This paper presents the results of the analysis of modeling of Russian nuclear energy (NE) scenarios on the basis of thermal and fast reactors with closed nuclear fuel cycle (NFC). Modeling has been carried out with use of CYCLE code (SSC RF IPPE's tool) designed for analysis of Nuclear Energy System (NES) with closed NFC taking into account plutonium and minor actinides (MA) isotopic composition change during multi-recycling of fuel in fast reactors. When considering fast reactor introduction scenarios, one of important questions is to define optimal time for their introduction and related NFC's facilities. Analysis of the results obtained has been fulfilled using the key INPRO indicators for sustainable energy development. It was shown that a delay in fast reactor introduction led to serious ecological, social and finally economic risks for providing energy security and sustainable development of Russia in long-term prospects and loss of knowledge and experience in mastering innovative technologies of fast reactors and related nuclear fuel cycle. (author)

  9. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  10. Cost analysis methodology of spent fuel storage

    International Nuclear Information System (INIS)

    1994-01-01

    The report deals with the cost analysis of interim spent fuel storage; however, it is not intended either to give a detailed cost analysis or to compare the costs of the different options. This report provides a methodology for calculating the costs of different options for interim storage of the spent fuel produced in the reactor cores. Different technical features and storage options (dry and wet, away from reactor and at reactor) are considered and the factors affecting all options defined. The major cost categories are analysed. Then the net present value of each option is calculated and the levelized cost determined. Finally, a sensitivity analysis is conducted taking into account the uncertainty in the different cost estimates. Examples of current storage practices in some countries are included in the Appendices, with description of the most relevant technical and economic aspects. 16 figs, 14 tabs

  11. A Pebble Bed Reactor cross section methodology

    International Nuclear Information System (INIS)

    Hudson, Nathanael H.; Ougouag, Abderrafi M.; Rahnema, Farzad; Gougar, Hans

    2009-01-01

    A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.

  12. Reactor operational transient analysis

    International Nuclear Information System (INIS)

    Shin, W.K.; Chae, S.K.; Han, K.I.; Yang, K.S.; Chung, H. D.; Kim, H.G.; Moon, H.J.; Ryu, Y.H.

    1983-01-01

    To build up efficient capability of safety review and inspection for the nuclear power plants, four area of studies have performed as follows: 1) In order to search the most optimized operating method during load follow operating schemes, automatic control and normal control, are compared each other under the CAOC condition. The analysis performed by DDID code has shown that the reactor has to be controlled by the operator manually during load follow operation. 2) Through the sensitivity analysis by COBRA code, the operating parameters, such as coolant pressure, flow rate, inlet temperature, and power distribution are shown to be important to the determination of DNBR. Expecially, inlet temperature of primary coolant system is appeared as the most senstive parameter on DNBR. 3) FRAPCON code is adapted to study the sensitivity of several operational parameters on the mechanical properties of reactor fuel rod. 4) The calculations procedure which is required to be obtained the neutron fluence at the reactor vessel and the spectrum at the surveillance capsule is established. The results of computation are conpared with those of FSAR and SWRI report and proved its applicability to reactor surveillance program. (Author)

  13. Methodology of fuel rod design for pressurized light water reactors

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  14. A gamma heating calculation methodology for research reactor application

    International Nuclear Information System (INIS)

    Lee, Y.K.; David, J.C.; Carcreff, H.

    2001-01-01

    Gamma heating is an important issue in research reactor operation and fuel safety. Heat deposition in irradiation targets and temperature distribution in irradiation facility should be determined so as to obtain the optimal irradiation conditions. This paper presents a recently developed gamma heating calculation methodology and its application on the research reactors. Based on the TRIPOLI-4 Monte Carlo code under the continuous-energy option, this new calculation methodology was validated against calorimetric measurements realized within a large ex-core irradiation facility of the 70 MWth OSIRIS materials testing reactor (MTR). The contributions from prompt fission neutrons, prompt fission γ-rays, capture γ-rays and inelastic γ-rays to heat deposition were evaluated by a coupled (n, γ) transport calculation. The fission product decay γ-rays were also considered but the activation γ-rays were neglected in this study. (author)

  15. Research reactor job analysis - A project description

    International Nuclear Information System (INIS)

    Yoder, John; Bessler, Nancy J.

    1988-01-01

    Addressing the need of the improved training in nuclear industry, nuclear utilities established training program guidelines based on Performance-Based Training (PBT) concepts. The comparison of commercial nuclear power facilities with research and test reactors owned by the U.S. Department of Energy (DOE), made in an independent review of personnel selection, training, and qualification requirements for DOE-owned reactors pointed out that the complexity of the most critical tasks in research reactors is less than that in power reactors. The U.S. Department of Energy (DOE) started a project by commissioning Oak Ridge Associated Universities (ORAU) to conduct a job analysis survey of representative research reactor facilities. The output of the project consists of two publications: Volume 1 - Research Reactor Job Analysis: Overview, which contains an Introduction, Project Description, Project Methodology,, and. An Overview of Performance-Based Training (PBT); and Volume 2 - Research Reactor Job Analysis: Implementation, which contains Guidelines for Application of Preliminary Task Lists and Preliminary Task Lists for Reactor Operators and Supervisory Reactor Operators

  16. Methodology for substantiation of the fast reactor fuel element serviceability

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Maershin, A.A.

    1988-01-01

    Methodological aspects of fast reactor fuel element serviceability substantiation are presented. The choice of the experimental program and strategies of its realization to solve the problem set in short time, taking into account available experimental means, are substantiated. Factors determining fuel element serviceability depending on parameters and operational conditions are considered. The methodological approach recommending separate studing of the factors, which points to the possibility of data acquisition, required for the development of calculational models and substantiation of fuel element serviceability in pilot and experimental reactors, is described. It is shown that the special-purpose data are more useful for the substantiation of fuel element serviceability and analytical method development than unsubstantial and expensive complex tests of fuel elements and fuel assemblies, which should be conducted only at final stages for the improvement of the structure on the whole

  17. Trace Chemical Analysis Methodology

    Science.gov (United States)

    1980-04-01

    147 65 Modified DR/2 spectrophotometer face ........... ... 150 66 Colorimetric oil analysis field test kit ......... .. 152 67 Pictorial step...Assisted Pattern Recognitio Perhaps the most promising application of pattern recogntiontechniques for this research effort is the elucidation ".f the...large compartment on the spectrophotomer face . The screwdriver is used to adjust the zero adjust and light ad- just knobs, and the stainless steel

  18. Fire safety analysis: methodology

    International Nuclear Information System (INIS)

    Kazarians, M.

    1998-01-01

    From a review of the fires that have occurred in nuclear power plants and the results of fire risk studies that have been completed over the last 17 years, we can conclude that internal fires in nuclear power plants can be an important contributor to plant risk. Methods and data are available to quantify the fire risk. These methods and data have been subjected to a series of reviews and detailed scrutiny and have been applied to a large number of plants. There is no doubt that we do not know everything about fire and its impact on a nuclear power plants. However, this lack of knowledge or uncertainty can be quantified and can be used in the decision making process. In other words, the methods entail uncertainties and limitations that are not insurmountable and there is little or no basis for the results of a fire risk analysis fail to support a decision process

  19. Methodology for the integral comparison of nuclear reactors: selecting a reactor for Mexico

    International Nuclear Information System (INIS)

    Reyes R, R.; Martin del Campo M, C.

    2006-01-01

    In this work it was built a methodology to compare nuclear reactors of third generation that can be contemplated for future electric planning in Mexico. This methodology understands the selection of the reactors to evaluate eliminating the reactors that still are not sufficiently mature at this time of the study. A general description of each reactor together with their main ones characteristic is made. It was carried out a study for to select the group of parameters that can serve as evaluation indicators, which are the characteristics of the reactors with specific values for each considered technology, and it was elaborated an evaluation matrix indicators including the reactors in the columns and those indicators in the lines. Since that none reactor is the best in all the indicators were necessary to use a methodology for multi criteria taking decisions that we are presented. It was used the 'Fuzzy Logic' technique, the which is based in those denominated diffuse groups and in a system of diffuse inference based on heuristic rules in the way 'If Then consequence> ', where the linguistic values of the condition and of the consequence is defined by diffuse groups, it is as well as the rules always they transform a diffuse group into another. Later on they combine all the diffuse outputs to create a single output and an inverse transformation is made that it transfers the output from the diffuse domain to the real one. They were carried out two studies one with the entirety of the indicators and another in which the indicators were classified in three approaches: the first one refers to indicators related with the planning of the plants inside the context of the general electric sector, the second approach includes indicators related with the characteristics of the fuel and the third it considers indicators related with the acting of the plant in safety and environmental impact. This second study allowed us to know the qualities of each reactor in each one of the

  20. METHODOLOGICAL ELEMENTS OF SITUATIONAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tetyana KOVALCHUK

    2016-07-01

    Full Text Available The article deals with the investigation of theoretical and methodological principles of situational analysis. The necessity of situational analysis is proved in modern conditions. The notion “situational analysis” is determined. We have concluded that situational analysis is a continuous system study which purpose is to identify dangerous situation signs, to evaluate comprehensively such signs influenced by a system of objective and subjective factors, to search for motivated targeted actions used to eliminate adverse effects of the exposure of the system to the situation now and in the future and to develop the managerial actions needed to bring the system back to norm. It is developed a methodological approach to the situational analysis, its goal is substantiated, proved the expediency of diagnostic, evaluative and searching functions in the process of situational analysis. The basic methodological elements of the situational analysis are grounded. The substantiation of the principal methodological elements of system analysis will enable the analyst to develop adaptive methods able to take into account the peculiar features of a unique object which is a situation that has emerged in a complex system, to diagnose such situation and subject it to system and in-depth analysis, to identify risks opportunities, to make timely management decisions as required by a particular period.

  1. Evaluation of nuclear reactor based activation analysis techniques

    International Nuclear Information System (INIS)

    Obrusnik, I.; Kucera, J.

    1977-09-01

    A survey is presented of the basic types of activation analysis applied in environmental control. Reactor neutron activation analysis is described (including the reactor as a neutron source, sample activation in the reactor, methodology of neutron activation analysis, sample transport into the reactor and sample packaging after irradiation, instrumental activation analysis with radiochemical separation, data measurement and evaluation, sampling and sample preparation). Sources of environmental contamination with trace elements, sampling and sample analysis by neutron activation are described. The analysis is described of soils, waters and biological materials. Methods are shown of evaluating neutron activation analysis results and of their interpretation for purposes of environmental control. (J.B.)

  2. Quantifying reactor safety margins: Application of CSAU [Code Scalability, Applicability and Uncertainty] methodology to LBLOCA: Part 3, Assessment and ranging of parameters for the uncertainty analysis of LBLOCA codes

    International Nuclear Information System (INIS)

    Wulff, W.; Boyack, B.E.; Duffey, R.B.

    1988-01-01

    Comparisons of results from TRAC-PF1/MOD1 code calculations with measurements from Separate Effects Tests, and published experimental data for modeling parameters have been used to determine the uncertainty ranges of code input and modeling parameters which dominate the uncertainty in predicting the Peak Clad Temperature for a postulated Large Break Loss of Coolant Accident (LBLOCA) in a four-loop Westinghouse Pressurized Water Reactor. The uncertainty ranges are used for a detailed statistical analysis to calculate the probability distribution function for the TRAC code-predicted Peak Clad Temperature, as is described in an attendant paper. Measurements from Separate Effects Tests and Integral Effects Tests have been compared with results from corresponding TRAC-PF1/MOD1 code calculations to determine globally the total uncertainty in predicting the Peak Clad Temperature for LBLOCAs. This determination is in support of the detailed statistical analysis mentioned above. The analyses presented here account for uncertainties in input parameters, in modeling and scaling, in computing and in measurements. The analyses are an important part of the work needed to implement the Code Scalability, Applicability and Uncertainty (CSAU) methodology. CSAU is needed to determine the suitability of a computer code for reactor safety analyses and the uncertainty in computer predictions. The results presented here are used to estimate the safety margin of a particular nuclear reactor power plant for a postulated accident. 25 refs., 10 figs., 11 tabs

  3. On fire risk/methodology for the next generation of reactors and nuclear facilities

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Alesso, H.P.; Altenbach, T.J.

    1992-01-01

    Methodologies for including fire in probabilistic risk assessments (PRAs) have been evolving during the last ten years. Many of these studies show that fire risk constitutes a significant percentage of external events, as well as the total core damage frequency. This paper summarizes the methodologies used in the fire risk analysis of the next generation of reactors and existing DOE nuclear facilities. Methodologies used in other industries, as well as existing nuclear power plants, are also discussed. Results of fire risk studies for various nuclear plants and facilities are shown and compared

  4. Analysis of nuclear reactor pressure vessel flanges

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de; Augusto, O.B.

    1985-01-01

    This work proposes a methodology for the structural analysis of high diameter nuclear reactor pressure vessel flanges. In the analysis the vessel is divided into shell-of-revolution elements, the flanges are represented by rigid rings, and the bolts are treated as beams. The flexibility method is used for solving the problem, and the results are compared with results obtained by the finite element method. (Author) [pt

  5. Methodology on the sparger development for Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Hwang, Y.D.; Kang, H.S.; Cho, B.H.; Park, J.K

    1999-06-01

    In case of an accident, the safety depressurization system of Korean Next Generation Reactor (KNGR) efficiently depressurize the reactor pressure by directly discharge steam of high pressure and temperature from the pressurizer into the in-containment refuelling water storage tank (IRWST) through spargers. This report was generated for the purpose of developing the sparger of KNGR. This report presents the methodology on application of ABB-Atom. Many thermal hydraulic parameters affecting the maximum bubble could pressure were obtained and the maximum bubble cloud pressure transient curve so called forcing function of KNGR was suggested and design inputs for IRWST (bubble cloud radius vs. time, bubble cloud velocity vs. time, bubble cloudacceleration vs. time, etc.) were generated by the analytic using Rayleigh-Plesset equation. (author). 17 refs., 6 tabs., 27 figs.

  6. Methodology on the sparger development for Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Hwang, Y.D.; Kang, H.S.; Cho, B.H.; Park, J.K.

    1999-06-01

    In case of an accident, the safety depressurization system of Korean Next Generation Reactor (KNGR) efficiently depressurize the reactor pressure by directly discharge steam of high pressure and temperature from the pressurizer into the in-containment refuelling water storage tank (IRWST) through spargers. This report was generated for the purpose of developing the sparger of KNGR. This report presents the methodology on application of ABB-Atom. Many thermal hydraulic parameters affecting the maximum bubble could pressure were obtained and the maximum bubble cloud pressure transient curve so called forcing function of KNGR was suggested and design inputs for IRWST (bubble cloud radius vs. time, bubble cloud velocity vs. time, bubble cloud acceleration vs. time, etc.) were generated by the analytic using Rayleigh-Plesset equation. (author). 17 refs., 6 tabs., 27 figs

  7. Implementation and training methodology of subcritical reactors neutronic calculations triggered by external neutron source and applications

    International Nuclear Information System (INIS)

    Carluccio, Thiago

    2011-01-01

    This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k eff and k src , and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)

  8. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  9. Nuclear data covariances and sensitivity analysis, validation of a methodology based on the perturbation theory; application to an innovative concept: the molten thorium salt fueled reactor

    International Nuclear Information System (INIS)

    Bidaud, A.

    2005-10-01

    Neutron transport simulation of nuclear reactors is based on the knowledge of the neutron-nucleus interaction (cross-sections, fission neutron yields and spectra...) for the dozens of nuclei present in the core over a very large energy range (fractions of eV to several MeV). To obtain the goal of the sustainable development of nuclear power, future reactors must have new and more strict constraints to their design: optimization of ore materials will necessitate breeding (generation of fissile material from fertile material), and waste management will require transmutation. Innovative reactors that could achieve such objectives - generation IV or ADS (accelerator driven system) - are loaded with new fuels (thorium, heavy actinides) and function with neutron spectra for which nuclear data do not benefit from 50 years of industrial experience, and thus present particular challenges. After validation on an experimental reactor using an international benchmark, we take classical reactor physics tools along with available nuclear data uncertainties to calculate the sensitivities and uncertainties of the criticality and temperature coefficient of a thorium molten salt reactor. In addition, a study based on the important reaction rates for the calculation of cycle's equilibrium allows us to estimate the efficiency of different reprocessing strategies and the contribution of these reaction rates on the uncertainty of the breeding and then on the uncertainty of the size of the reprocessing plant. Finally, we use this work to propose an improvement of the high priority experimental request list. (author)

  10. Scenario aggregation and analysis via Mean-Shift Methodology

    International Nuclear Information System (INIS)

    Mandelli, D.; Yilmaz, A.; Metzroth, K.; Aldemir, T.; Denning, R.

    2010-01-01

    A new generation of dynamic methodologies is being developed for nuclear reactor probabilistic risk assessment (PRA) which explicitly account for the time element in modeling the probabilistic system evolution and use numerical simulation tools to account for possible dependencies between failure events. The dynamic event tree (DET) approach is one of these methodologies. One challenge with dynamic PRA methodologies is the large amount of data they produce which may be difficult to analyze without appropriate software tools. The concept of 'data mining' is well known in the computer science community and several methodologies have been developed in order to extract useful information from a dataset with a large number of records. Using the dataset generated by the DET analysis of the reactor vessel auxiliary cooling system (RVACS) of an ABR-1000 for an aircraft crash recovery scenario and the Mean-Shift Methodology for data mining, it is shown how clusters of transients with common characteristics can be identified and classified. (authors)

  11. Neutronic analysis of the ford nuclear reactor leu core

    International Nuclear Information System (INIS)

    Raza, S.S.; Hayat, T.

    1989-08-01

    Neutronic analysis of the ford nuclear reactor low enriched uranium core has been carried out to gain confidence in the com puting methodology being used for Pakistan Research Reactor-1 core conversion calculations. The computed value of the effective multiplication factor (Keff) is found to be in good agreement with that quoted by others. (author). 6 figs

  12. Development of a simplified methodology for the isotopic determination of fuel spent in Light Water Reactors

    International Nuclear Information System (INIS)

    Hernandez N, H.; Francois L, J.L.

    2005-01-01

    The present work presents a simplified methodology to quantify the isotopic content of the spent fuel of light water reactors; their application is it specific to the Laguna Verde Nucleo electric Central by means of a balance cycle of 18 months. The methodology is divided in two parts: the first one consists on the development of a model of a simplified cell, for the isotopic quantification of the irradiated fuel. With this model the burnt one is simulated 48,000 MWD/TU of the fuel in the core of the reactor, taking like base one fuel assemble type 10x10 and using a two-dimensional simulator for a fuel cell of a light water reactor (CPM-3). The second part of the methodology is based on the creation from an isotopic decay model through an algorithm in C++ (decay) to evaluate the amount, by decay of the radionuclides, after having been irradiated the fuel until the time in which the reprocessing is made. Finally the method used for the quantification of the kilograms of uranium and obtained plutonium of a normalized quantity (1000 kg) of fuel irradiated in a reactor is presented. These results will allow later on to make analysis of the final disposition of the irradiated fuel. (Author)

  13. Spectral zone selection methodology for pebble bed reactors

    International Nuclear Information System (INIS)

    Mphahlele, Ramatsemela; Ougouag, Abderrafi M.; Ivanov, Kostadin N.; Gougar, Hans D.

    2011-01-01

    A methodology is developed for determining boundaries of spectral zones for pebble bed reactors. A spectral zone is defined as a region made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. The spectral zones are selected in such a manner that the difference (error) between the reference transport solution and the diffusion code solution takes a minimum value. This is achieved by choosing spectral zones through optimally minimizing this error. The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates errors in each zone. The selection of these spectral zones is such that the core calculation results based on diffusion theory are within an acceptable tolerance as compared to a proper transport reference solution. Through this work, a consistent approach for identifying spectral zones that yield more accurate diffusion results is introduced.

  14. Estimating the potential impacts of a nuclear reactor accident: methodology and case studies

    International Nuclear Information System (INIS)

    Cartwright, J.V.; Beemiller, R.M.; Trott, E.A. Jr.; Younger, J.M.

    1982-04-01

    This monograph describes an industrial impact model that can be used to estimate the regional industry-specific impacts of disasters. Special attention is given to the impacts of possible nuclear reactor accidents. The monograph also presents three applications of the model. The impacts estimated in the case studies are based on (1) general information and reactor-specific data, supplied by the US Nuclear Regulatory Commission (NRC), (2) regional economic models derived from the Regional Input-Output Modeling System (RIMS II) developed at the Bureau of Economic Analysis (BEA), and (3) additional methodology developed especially for taking into account the unique characteristics of a nuclear reactor accident with respect to regional industrial activity

  15. Reactor surveillance by noise analysis

    International Nuclear Information System (INIS)

    Ciftcioglu, Ozer

    1988-01-01

    A real-time noise analysis system is designed for the TRIGA reactor at Istanbul Technical University. By means of the noise techniques, reactor surveillance is performed together with failure diagnosis. The fast data processing is carried out by FFT in real-time so that malfunction or non-stationary operation of the reactor in long term can be identified by comparing the noise power spectra with the corresponding reference patterns while the decision making procedure is accomplished by the method of hypothesis testing. The system being computer based safety instrumentation involves CAMAC in conjunction with the RT-11 (PDP-11) single user dedicated environment. (author)

  16. Methodologies for optimizing ROP detector layout for CANDU (registered) reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kastanya, Doddy, E-mail: kastanyd@aecl.c [Reactor Core Physics Branch, Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, ON, L5K 1B2 (Canada); Caxaj, Victor [Reactor Core Physics Branch, Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, ON, L5K 1B2 (Canada)

    2011-01-15

    The regional overpower protection (ROP) systems protect CANDU (registered) reactors against overpower in the fuel that would reduce the safety margin-to-dryout. Both a localized power peaking within the core (for example, as a result of certain reactivity device configuration) or a general increase in the core power level during a slow-loss-of-regulation (SLOR) event could cause overpower in the fuel. This overpower could lead to fuel sheath dryout. In the CANDU (registered) 600 MW (CANDU 6) design, there are two ROP systems in the core, one for each fast-acting shutdown systems. Each ROP system includes a number of fast-responding, self-powered flux detectors suitably distributed throughout the core within vertical and horizontal assemblies. Traditionally, the placement of these detectors was done using a method called the detector layout optimization (DLO). A new methodology for designing the detector layout for the ROP system has been developed recently. The new method, called the DETPLASA algorithm, utilizes the simulated annealing (SA) technique to optimize the placement of the detectors in the core. Both methodologies will be discussed in detail in this paper. Numerical examples are employed to better illustrate how each method works. Results from some sensitivity studies on three SA parameters are also presented.

  17. Methodology for flood risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Wagner, D.P.; Casada, M.L.; Fussell, J.B.

    1984-01-01

    The methodology for flood risk analysis described here addresses the effects of a flood on nuclear power plant safety systems. Combining the results of this method with the probability of a flood allows the effects of flooding to be included in a probabilistic risk assessment. The five-step methodology includes accident sequence screening to focus the detailed analysis efforts on the accident sequences that are significantly affected by a flood event. The quantitative results include the flood's contribution to system failure probability, accident sequence occurrence frequency and consequence category occurrence frequency. The analysis can be added to existing risk assessments without a significant loss in efficiency. The results of two example applications show the usefulness of the methodology. Both examples rely on the Reactor Safety Study for the required risk assessment inputs and present changes in the Reactor Safety Study results as a function of flood probability

  18. Systemization of Design and Analysis Technology for Advanced Reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Lee, J.; Zee, S. K.

    2009-01-01

    The present study is performed to establish the base for the license application of the original technology by systemization and enhancement of the technology that is indispensable for the design and analysis of the advanced reactors including integral reactors. Technical reports and topical reports are prepared for this purpose on some important design/analysis methodology; design and analysis computer programs, structural integrity evaluation of main components and structures, digital I and C systems and man-machine interface design. PPS design concept is complemented reflecting typical safety analysis results. And test plans and requirements are developed for the verification of the advanced reactor technology. Moreover, studies are performed to draw up plans to apply to current or advanced power reactors the original technologies or base technologies such as patents, computer programs, test results, design concepts of the systems and components of the advanced reactors. Finally, pending issues are studied of the advanced reactors to improve the economics and technology realization

  19. Methodology of Credit Analysis Development

    Directory of Open Access Journals (Sweden)

    Slađana Neogradi

    2017-12-01

    Full Text Available The subject of research presented in this paper refers to the definition of methodology for the development of credit analysis in companies and its application in lending operations in the Republic of Serbia. With the developing credit market, there is a growing need for a well-developed risk and loss prevention system. In the introduction the process of bank analysis of the loan applicant is presented in order to minimize and manage the credit risk. By examining the subject matter, the process of processing the credit application is described, the procedure of analyzing the financial statements in order to get an insight into the borrower's creditworthiness. In the second part of the paper, the theoretical and methodological framework is presented applied in the concrete company. In the third part, models are presented which banks should use to protect against exposure to risks, i.e. their goal is to reduce losses on loan operations in our country, as well as to adjust to market conditions in an optimal way.

  20. Methodology of Supervision by Analysis of Thermal Flux for Thermal Conduction of a Batch Chemical Reactor Equipped with a Monofluid Heating/Cooling System

    Directory of Open Access Journals (Sweden)

    Ghania Henini

    2012-01-01

    Full Text Available We present the thermal behavior of a batch reactor to jacket equipped with a monofluid heating/cooling system. Heating and cooling are provided respectively by an electrical resistance and two plate heat exchangers. The control of the temperature of the reaction is based on the supervision system. This strategy of management of the thermal devices is based on the usage of the thermal flux as manipulated variable. The modulation of the monofluid temperature by acting on the heating power or on the opening degrees of an air-to-open valve that delivers the monofluid to heat exchanger. The study shows that the application of this method for the conduct of the pilot reactor gives good results in simulation and that taking into account the dynamics of the various apparatuses greatly improves ride quality of conduct. In addition thermal control of an exothermic reaction (mononitration shows that the consideration of heat generated in the model representation improve the results by elimination any overshooting of the set-point temperature.

  1. Analysis of scenarios of the inclusion of fast reactors in the nuclear power of Russia in the context of sustainable development with the use of the INPRO methodology

    International Nuclear Information System (INIS)

    Usanov, V.I.; Kagramanyan, V.S.; Kalashnikov, A.G.; Korobeinikov, V.V.; Korobitsyn, V.E.; Moseyev, A.L.; Poplavskaya, E.V.

    2013-01-01

    Conclusions: • The two-component NES of VVER and BN reactors can meet some critical challenges of the present nuclear industry and provide a substantial contribution to enhancing sustainability of a national NP: – basically to solve up to 2050 the problem of the VVER SNF accumulation by using Pu from VVER in MOX fuel for BN reactors; – to ensure management of Pu from VVER to reduce it by 2070 to operational reserve and thus to enhance the NES proliferation resistance; – to save natural U and SWU and thus to facilitate U supply and enrichment capacities for planed deployment of VVERs in Russia and abroad. • Implementation of these opportunities might be a substance of the first phase of the NFC closure • While some INPRO indicators have shown remarkable advantages of the NES with BNs comparing to the present system, some issues in economics and NFC technologies have not got convincing answers. • These challenges along with a crucial safety issues are addressed in the Federal target programmes on transition to a CNFC with advanced FRs which are currently run in Russia

  2. Stakeholder analysis methodologies resource book

    Energy Technology Data Exchange (ETDEWEB)

    Babiuch, W.M.; Farhar, B.C.

    1994-03-01

    Stakeholder analysis allows analysts to identify how parties might be affected by government projects. This process involves identifying the likely impacts of a proposed action and stakeholder groups affected by that action. Additionally, the process involves assessing how these groups might be affected and suggesting measures to mitigate any adverse effects. Evidence suggests that the efficiency and effectiveness of government actions can be increased and adverse social impacts mitigated when officials understand how a proposed action might affect stakeholders. This report discusses how to conduct useful stakeholder analyses for government officials making decisions on energy-efficiency and renewable-energy technologies and their commercialization. It discusses methodological issues that may affect the validity and reliability of findings, including sampling, generalizability, validity, ``uncooperative`` stakeholder groups, using social indicators, and the effect of government regulations. The Appendix contains resource directories and a list of specialists in stakeholder analysis and involvement.

  3. Systems analysis of the CANDU 3 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wolfgong, J.R.; Linn, M.A.; Wright, A.L.; Olszewski, M.; Fontana, M.H. [Oak Ridge National Lab., TN (United States)

    1993-07-01

    This report presents the results of a systems failure analysis study of the CANDU 3 reactor design; the study was performed for the US Nuclear Regulatory Commission. As part of the study a review of the CANDU 3 design documentation was performed, a plant assessment methodology was developed, representative plant initiating events were identified for detailed analysis, and a plant assessment was performed. The results of the plant assessment included classification of the CANDU 3 event sequences that were analyzed, determination of CANDU 3 systems that are ``significant to safety,`` and identification of key operator actions for the analyzed events.

  4. Evaluation of the OSCAR-4/MCNP calculation methodology for radioisotope production in the SAFARI-1 reactor

    International Nuclear Information System (INIS)

    Karriem, Z.; Zamonsky, O.M.

    2014-01-01

    The South African Nuclear Energy Corporation SOC Ltd (Necsa) is a state owned nuclear facility which owns and operates SAFARI-1, a 20 MW material testing reactor. SAFARI-1 is a multi-purpose reactor and is used for the production of radioisotopes through in-core sample irradiation. The Radiation and Reactor Theory (RRT) Section of Necsa supports SAFARI-1 operations with nuclear engineering analyses which include core-reload design, core-follow and radiation transport analyses. The primary computer codes that are used for the analyses are the OSCAR-4 nodal diffusion core simulator and the Monte Carlo transport code MCNP. RRT has developed a calculation methodology based on OSCAR-4 and MCNP to simulate the diverse in-core irradiation conditions in SAFARI-1, for the purpose of radioisotope production. In this paper we present the OSCAR-4/MCNP calculation methodology and the software tools that were developed for rapid and reliable construction of MCNP analysis models. The paper will present the application and accuracy of the methodology for the production of yttrium-90 ( 90 Y) and will include comparisons between calculation results and experimental measurements. The paper will also present sensitivity analyses that were performed to determine the effects of control rod bank position, representation of core depletion state and sample loading configuration, on the calculated 90 Y sample activity. (author)

  5. Probablistic risk assessment methodology application to Indian pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Babar, A.K.; Grover, R.B.; Mehra, V.K.; Gangwal, D.K.; Chakraborty, G.

    1987-01-01

    Probabilistic risk assessment in the context of nuclear power plants is associated with models that predict the offsite radiological releases resulting from reactor accidents. Level 1 PRA deals with the identification of accident sequences relevant to the design of a system and also with their quantitative estimation. It is characterised by event tree, fault tree analysis. The initiating events applicable to pressurised heavy water reactors have been considered and the dominating initiating events essential for detailed studies are identified in this paper. Reliability analysis and the associated problems encountered during the case studies are mentioned briefly. It is imperative to validate the failure data used for analysis. Bayesian technique has been employed for the same and a brief account is included herein. A few important observations, e.g. effects of the presence of moderator, made during the application of probabilistic risk assessment methodology are also discussed. (author)

  6. Fully integrated analysis of reactor kinetics, thermalhydraulics and the reactor control system in the MAPLE-X10 research reactor

    International Nuclear Information System (INIS)

    Shim, S.Y.; Carlson, P.A.; Baxter, D.K.

    1992-01-01

    A prototype research reactor, designated MAPLE-X10 (Multipurpose Applied Physics Lattice Experimental - X 10MW), is currently being built at AECL's Chalk River Laboratories. The CATHENA (Canadian Algorithm for Thermalhydraulic Network Analysis) two-fluid code was used in the safety analysis of the reactor to determine the adequacy of core cooling during postulated reactivity and loss-of-forced-flow transients. The system responses to a postulated transient are predicted including the feedback between reactor kinetics, thermalhydrauilcs and the reactor control systems. This paper describes the MAPLE-X10 reactor and the modelling methodology used. Sample simulations of postulated loss-of-heat-sink and loss-of-regulation transients are presented. (author)

  7. The development on the methodology of the initiating event frequencies for liquid metal reactor KALIMER

    International Nuclear Information System (INIS)

    Jeong, K. S.; Yang, Z. A.; Ah, Y. B.; Jang, W. P.; Jeong, H. Y.; Ha, K. S.; Han, D. H.

    2002-01-01

    In this paper, the PSA methodology of PRISM,Light Water Reactor, Pressurized Heavy Water Reactor are analyzed and the methodology of Initiating Events for KALIMER are suggested. Also,the reliability assessment of assumptions for Pipes Corrosion Frequency is set up. The reliability assessment of Passive Safety System, one of Main Safety System of KALIMER, are discussed and analyzed

  8. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  9. A quantitative methodology for reactor vessel pressurized thermal shock decision making

    International Nuclear Information System (INIS)

    Ackerson, D.S.; Balkey, K.R.; Meyer, T.A.; Ofstun, R.P.; Rupprecht, S.D.; Sharp, D.R.

    1983-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). Previous reactor vessel integrity concerns have led to changes in vessel and plant system design and to operating procedures, and increased attention to the PTS issue is causing consideration of further modifications. Events such as excess feedwater, loss of normal feedwater, and steam generator tube rupture have led to significant primary system cooldowns. Each of these cooldown transients occurred concurrently with a relatively high primary system pressure. Considerations of these and other postulated cooldown events has drawn attention to the impact of operator action and control system effects on reactor vessel PTS. A methodology, which couples event sequence analysis with probabilistic fracture mechanics analyses, was developed to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. (orig./RW)

  10. Methodology development for statistical evaluation of reactor safety analyses

    International Nuclear Information System (INIS)

    Mazumdar, M.; Marshall, J.A.; Chay, S.C.; Gay, R.

    1976-07-01

    In February 1975, Westinghouse Electric Corporation, under contract to Electric Power Research Institute, started a one-year program to develop methodology for statistical evaluation of nuclear-safety-related engineering analyses. The objectives of the program were to develop an understanding of the relative efficiencies of various computational methods which can be used to compute probability distributions of output variables due to input parameter uncertainties in analyses of design basis events for nuclear reactors and to develop methods for obtaining reasonably accurate estimates of these probability distributions at an economically feasible level. A series of tasks was set up to accomplish these objectives. Two of the tasks were to investigate the relative efficiencies and accuracies of various Monte Carlo and analytical techniques for obtaining such estimates for a simple thermal-hydraulic problem whose output variable of interest is given in a closed-form relationship of the input variables and to repeat the above study on a thermal-hydraulic problem in which the relationship between the predicted variable and the inputs is described by a short-running computer program. The purpose of the report presented is to document the results of the investigations completed under these tasks, giving the rationale for choices of techniques and problems, and to present interim conclusions

  11. IRT-type research reactor physical calculation methodology

    International Nuclear Information System (INIS)

    Carrera, W.; Castaneda, S.; Garcia, F.; Garcia, L.; Reyes, O.

    1990-01-01

    In the present paper an established physical calculation procedure for the research reactor of the Nuclear Research Center (CIN) is described. The results obtained by the method are compared with the ones reported during the physical start up of a reactor with similar characteristics to the CIN reactor. 11 refs

  12. Analysis of fuel rod behaviour within a rod bundle of a pressurized water reactor under the conditions of a loss of coolant accident (LOCA) using probabilistic methodology

    International Nuclear Information System (INIS)

    Sengpiel, W.

    1980-12-01

    The assessment of fuel rod behaviour under PWR LOCA conditions aims at the evaluation of the peak cladding temperatures and the (final) maximum circumferential cladding strains. Moreover, the estimation of the amount of possible coolant channel blockages within a rod bundle is of special interest, as large coplanar clad strains of adjacent rods may result in strong local reductions of coolant channel areas. Coolant channel blockages of large radial extent may impair the long-term coolability of the corresponding rods. A model has been developed to describe these accident consequences using probabilistic methodology. This model is applied to study the behaviour of fuel rods under accident conditions following the double-ended pipe rupture between collant pump and pressure vessel in the primary system of a 1300 MW(el)-PWR. Specifically a rod bundle is considered consisting of 236 fuel rods, that is subjected to severe thermal and mechanical loading. The results obtained indicate that plastic clad deformations with circumferential clad strains of more than 30% cannot be excluded for hot rods of the reference bundle. However, coplanar coolant channel blockages of significant extent seem to be probable within that bundle only under certain boundary conditions which are assumed to be pessimistic. (orig./RW) [de

  13. A new methodology based on the two-region model and microscopic noise analysis techniques for absolute measurements of betaeff, Λ and betaeff/Λ of the IPEN-MB-01 reactor

    International Nuclear Information System (INIS)

    Kuramoto, Renato Yoichi Ribeiro

    2007-01-01

    A new method for absolute measurement of the effective delayed neutron fraction, beta eff based on microscopic noise experiments and the Two-Region Model was developed at the IPEN/MB-01 Research Reactor facility. In contrast with other techniques like the Modified Bennett Method, Nelson-Number Method and 252 Cf-Source Method, the main advantage of this new methodology is to obtain the effective delayed neutron parameters in a purely experimental way, eliminating all parameters that are difficult to measure or calculate. In this way, Rossi-a and Feynman-a experiments for validation of this method were performed at the IPEN/MB-01 facility, and adopting the present approach, beta eff was measured with a 0.67% uncertainty. In addition, the prompt neutron generation time, A, and other parameters were also obtained in an absolute experimental way. In general, the final results agree well with values from frequency analysis experiments. The theory-experiment comparison reveals that JENDL-3.3 shows deviation for beta eff lower than 1% which meets the desired accuracy for the theoretical determination of this parameter. This work supports the reduction of the 235 U thermal yield as proposed by Okajima and Sakurai. (author)

  14. Methodology of nuclear reactor monitoring and diagnostics using information dimension

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki; Hayashi, Koji; Shinohara, Yoshikuni

    1993-01-01

    Reactor noise analysis method based on information dimension is applied to the monitoring and diagnosing of power oscillation. The method focuses on the utilization of the slope of the correlation integral (SOCI) which determines the information dimension of attractors. For practical application, the information dimension is expected to be the same as the fractal dimension of attractors; it can be used to classify different asymptotic regimes of nonlinear dynamical systems. We examined a real power oscillation using SOCI and the results implied that the oscillation was just a noisy limit cycle, although it is not possible to assert that there is no chaotic character in the oscillation because large oscillatory time-series data sets are not available. In addition, the application of SOCI to the real-time monitoring of power oscillation is proposed and examined. (author)

  15. Further developments of multiphysics and multiscale methodologies for coupled nuclear reactor simulations

    International Nuclear Information System (INIS)

    Gomez Torres, Armando Miguel

    2011-01-01

    This doctoral thesis describes the methodological development of coupled neutron-kinetics/thermal-hydraulics codes for the design and safety analysis of reactor systems taking into account the feedback mechanisms on the fuel rod level, according to different approaches. A central part of this thesis is the development and validation of a high fidelity simulation tool, DYNSUB, which results from the ''two-way-coupling'' of DYN3D-SP3 and SUBCHANFLOW. It allows the determination of local safety parameters through a detailed description of the core behavior under stationary and transient conditions at fuel rod level.

  16. To the analysis of reactor noise in boiling water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1972-01-01

    The paper contains some basic thoughts on the problem of neutron flux oscillations in power reactors. The advantages of self-powered detectors and their function are explained. In addition, noise measurements of the boiling water reactors at Lingen and Holden are described, and the possibilities of an employment of vanadium detectors for the analysis of reactor noise are discussed. The final pages of the paper contain a complete list of the author's publications in the field of reactor noise analysis. (RW/AK) [de

  17. Reliability assessment of Passive Containment Cooling System of an Advanced Reactor using APSRA methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh, E-mail: mukeshd@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chakravarty, Aranyak [School of Nuclear Studies and Application, Jadavpur University, Kolkata 700032 (India); Nayak, A.K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Prasad, Hari; Gopika, V. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-10-15

    Highlights: • The paper deals with the reliability assessment of Passive Containment Cooling System of Advanced Heavy Water Reactor. • Assessment of Passive System ReliAbility (APSRA) methodology is used for reliability assessment. • Performance assessment of the PCCS is initially performed during a postulated design basis LOCA. • The parameters affecting the system performance are then identified and considered for further analysis. • The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. - Abstract: Passive Systems are increasingly playing a prominent role in the advanced nuclear reactor systems and are being utilised in normal operations as well as safety systems of the reactors following an accident. The Passive Containment Cooling System (PCCS) is one of the several passive safety features in an Advanced Reactor (AHWR). In this paper, the APSRA methodology has been employed for reliability evaluation of the PCCS of AHWR. Performance assessment of the PCCS is initially performed during a postulated design basis LOCA using the best-estimate code RELAP5/Mod 3.2. The parameters affecting the system performance are then identified and considered for further analysis. Based on some pre-determined failure criterion, the failure surface for the system is predicted using the best-estimate code taking into account the deviations of the identified parameters from their nominal states as well as the model uncertainties inherent to the best estimate code. Root diagnosis is then carried out to determine the various failure causes, which occurs mainly due to malfunctioning of mechanical components. The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. The reliability of the PCCS is then evaluated from the probability of availability of these components.

  18. Reliability assessment of Passive Containment Cooling System of an Advanced Reactor using APSRA methodology

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Chakravarty, Aranyak; Nayak, A.K.; Prasad, Hari; Gopika, V.

    2014-01-01

    Highlights: • The paper deals with the reliability assessment of Passive Containment Cooling System of Advanced Heavy Water Reactor. • Assessment of Passive System ReliAbility (APSRA) methodology is used for reliability assessment. • Performance assessment of the PCCS is initially performed during a postulated design basis LOCA. • The parameters affecting the system performance are then identified and considered for further analysis. • The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. - Abstract: Passive Systems are increasingly playing a prominent role in the advanced nuclear reactor systems and are being utilised in normal operations as well as safety systems of the reactors following an accident. The Passive Containment Cooling System (PCCS) is one of the several passive safety features in an Advanced Reactor (AHWR). In this paper, the APSRA methodology has been employed for reliability evaluation of the PCCS of AHWR. Performance assessment of the PCCS is initially performed during a postulated design basis LOCA using the best-estimate code RELAP5/Mod 3.2. The parameters affecting the system performance are then identified and considered for further analysis. Based on some pre-determined failure criterion, the failure surface for the system is predicted using the best-estimate code taking into account the deviations of the identified parameters from their nominal states as well as the model uncertainties inherent to the best estimate code. Root diagnosis is then carried out to determine the various failure causes, which occurs mainly due to malfunctioning of mechanical components. The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. The reliability of the PCCS is then evaluated from the probability of availability of these components

  19. Safety methodology implementation in the conceptual design phase of a fusion reactor

    International Nuclear Information System (INIS)

    Rodriguez-Rodrigo, L.; Elbez-Uzan, J.

    2007-01-01

    The licensing of ITER in France represents the first process for licensing a fusion facility in the framework of an experimental device with a total Tritium inventory of 3 kg. The main ITER parameters are far from those expected in the future demonstration reactors where the fusion power will be at least 5 times higher and the additional heating power could also reach up to 5 times the one foreseen in ITER. Main safety requirements for these reactors are based, among other conditions, on their inherent features as low amount of fuel, very low impurity content of structural materials, minimum waste repository, no active systems for safe shut-down, and no need for evacuation of population after the most severe accident. The design of such reactors is at the stage of conceptual studies and is mainly dealing with plasma performances, tritium breeding, blanket/divertor designs and solution of engineering issues, as well as bounding accidents or classification of waste. The methodological approach for integrating safety analysis as a tool for optimizing the design of the overall fusion installation for future reactors in the conceptual design phase is sketched, including the machine itself and the different auxiliary nuclear buildings. (author)

  20. The IAEA collaborating centre for neutron activation based methodologies of research reactors

    International Nuclear Information System (INIS)

    Bode, P.

    2010-01-01

    The Reactor Institute Delft of the Delft University of Technology houses the Netherlands' only academic nuclear research reactor, with associated instrumentation and laboratories, for scientific education and research with ionizing radiation. The Institute's swimming pool type research reactor reached first criticality in 1963 and is currently operated at 2MW thermal powers on a 100 h/week basis. The reactor is equipped with neutron mirror guides serving ultra modern neutron beam physics instruments and with a very bright positron facility. Fully automated gamma-ray spectrometry systems are used by the laboratory for neutron activation analysis, providing large scale services under an ISO/IEC 17025:2005 compliant management system, being (since 1993) the first accredited laboratory of its kind in the world. Already for several years, this laboratory is sustainable by rendering these services to both the public and the private sector. The prime user of the Institute's fac ilities is the scientific Research Department of Radiation, Radionuclide and Reactors of the Faculty of Applied Sciences, housed inside the building. All reactor facilities are also made available for use by or for services to, external clients (industry, government, private sector, other (international research institutes and universities). The Reactor Institute Delft was inaugurated in May 2009 as a new lAEA Collaborating Centre for Neutron Activation Based Methodologies of Research Reactors. The collaboration involves education, research and development in (I) Production of reactor-produced, no-carrier added radioisotopes of high specific activity via neutron activation; (II) Neutron activation analysis with emphasis on automation as well as analysis of large samples, and radiotracer techniques and as a cross-cutting activity, (IIl) Quality assurance and management in research and application of research reactor based techniques and in research reactor operations. This c ollaboration will

  1. Causal Meta-Analysis : Methodology and Applications

    NARCIS (Netherlands)

    Bax, L.J.

    2009-01-01

    Meta-analysis is a statistical method to summarize research data from multiple studies in a quantitative manner. This dissertation addresses a number of methodological topics in causal meta-analysis and reports the development and validation of meta-analysis software. In the first (methodological)

  2. Methodology Development for SiC Sensor Signal Modelling in the Nuclear Reactor Radiation Environments

    International Nuclear Information System (INIS)

    Cetnar, J.; Krolikowski, I.P.

    2013-06-01

    This paper deals with SiC detector simulation methodology for signal formation by neutrons and induced secondary radiation as well as its inverse interpretation. The primary goal is to achieve the SiC capability of simultaneous spectroscopic measurements of neutrons and gamma-rays for which an appropriate methodology of the detector signal modelling and its interpretation must be adopted. The process of detector simulation is divided into two basically separate but actually interconnected sections. The first one is the forward simulation of detector signal formation in the field of the primary neutron and secondary radiations, whereas the second one is the inverse problem of finding a representation of the primary radiation, based on the measured detector signals. The applied methodology under development is based on the Monte Carlo description of radiation transport and analysis of the reactor physics. The methodology of SiC detector signal interpretation will be based on the existing experience in neutron metrology developed in the past for various neutron and gamma-ray detection systems. Since the novel sensors based on SiC are characterised by a new structure, yet to be finally designed, the methodology for particle spectroscopic fluence measurement must be developed while giving a productive feed back to the designing process of SiC sensor, in order to arrive at the best possible design. (authors)

  3. Assessment methodology applicable to safe decommissioning of Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    Baniu, O.; Vladescu, G.; Vidican, D.; Penescu, M.

    2002-01-01

    The paper contains the results of research activity performed by CITON specialists regarding the assessment methodology intended to be applied to safe decommissioning of the research reactors, developed taking into account specific conditions of the Romanian VVR-S Research Reactor. The Romanian VVR-S Research Reactor is an old reactor (1957) and its Decommissioning Plan is under study. The main topics of paper are as follows: Safety approach of nuclear facilities decommissioning. Applicable safety principles; Main steps of the proposed assessment methodology; Generic content of Decommissioning Plan. Main decommissioning activities. Discussion about the proposed Decommissioning Plan for Romanian Research Reactor; Safety risks which may occur during decommissioning activities. Normal decommissioning operations. Fault conditions. Internal and external hazards; Typical development of a scenario. Features, Events and Processes List. Exposure pathways. Calculation methodology. (author)

  4. Identification of nuclear reactor characteristics by the reactor noise analysis

    International Nuclear Information System (INIS)

    Yashima, Hideyuki

    1980-01-01

    Reactor noise analysis method was applied to TRIGA II Research Reactor (Atomic Research Laboratory, Musashi Institute of Technology) and computed power spectral density (PSD) from the CIC current record. PSD has provided many valuable informations regarding to the reactor kinetics, including the effect of control rods vibration. Another information of neutron physics parameters were obtained and this result was compared with the parameter which was formerly measured by the Feynman-α experiment. Through these experiments we could find overall frequency characteristics of TRIGA II Reactor. (author)

  5. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  6. Advanced Test Reactor probabilistic risk assessment methodology and results summary

    International Nuclear Information System (INIS)

    Eide, S.A.; Atkinson, S.A.; Thatcher, T.A.

    1992-01-01

    The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 report documents a comprehensive and state-of-the-art study to establish and reduce the risk associated with operation of the ATR, expressed as a mean frequency of fuel damage. The ATR Level 1 PRA effort is unique and outstanding because of its consistent and state-of-the-art treatment of all facets of the risk study, its comprehensive and cost-effective risk reduction effort while the risk baseline was being established, and its thorough and comprehensive documentation. The PRA includes many improvements to the state-of-the-art, including the following: establishment of a comprehensive generic data base for component failures, treatment of initiating event frequencies given significant plant improvements in recent years, performance of efficient identification and screening of fire and flood events using code-assisted vital area analysis, identification and treatment of significant seismic-fire-flood-wind interactions, and modeling of large loss-of-coolant accidents (LOCAs) and experiment loop ruptures leading to direct damage of the ATR core. 18 refs

  7. Methodology for the integral comparison of nuclear reactors: selecting a reactor for Mexico; Metodologia para la comparacion integral de reactores nucleares: seleccion de un reactor para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Reyes R, R.; Martin del Campo M, C. [UNAM, Facultad de Ingenieria, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: ricarera@yahoo.com.mx

    2006-07-01

    In this work it was built a methodology to compare nuclear reactors of third generation that can be contemplated for future electric planning in Mexico. This methodology understands the selection of the reactors to evaluate eliminating the reactors that still are not sufficiently mature at this time of the study. A general description of each reactor together with their main ones characteristic is made. It was carried out a study for to select the group of parameters that can serve as evaluation indicators, which are the characteristics of the reactors with specific values for each considered technology, and it was elaborated an evaluation matrix indicators including the reactors in the columns and those indicators in the lines. Since that none reactor is the best in all the indicators were necessary to use a methodology for multi criteria taking decisions that we are presented. It was used the 'Fuzzy Logic' technique, the which is based in those denominated diffuse groups and in a system of diffuse inference based on heuristic rules in the way 'If Then consequence> ', where the linguistic values of the condition and of the consequence is defined by diffuse groups, it is as well as the rules always they transform a diffuse group into another. Later on they combine all the diffuse outputs to create a single output and an inverse transformation is made that it transfers the output from the diffuse domain to the real one. They were carried out two studies one with the entirety of the indicators and another in which the indicators were classified in three approaches: the first one refers to indicators related with the planning of the plants inside the context of the general electric sector, the second approach includes indicators related with the characteristics of the fuel and the third it considers indicators related with the acting of the plant in safety and environmental impact. This second study allowed us to know the qualities of

  8. Accident analysis in research reactors

    International Nuclear Information System (INIS)

    Adorni, M.; Bousbia-salah, A.; D'Auria, F.; Hamidouche, T.

    2007-01-01

    With the sustained development in computer technology, the possibilities of code capabilities have been enlarged substantially. Consequently, advanced safety evaluations and design optimizations that were not possible few years ago can now be performed. The challenge today is to revisit the safety features of the existing nuclear plants and particularly research reactors in order to verify that the safety requirements are still met and - when necessary - to introduce some amendments not only to meet the new requirements but also to introduce new equipment from recent development of new technologies. The purpose of the present paper is to provide an overview of the accident analysis technology applied to the research reactor, with emphasis given to the capabilities of computational tools. (author)

  9. The analysis of RWAP(Rod Withdrawal at Power) using the KEPRI methodology

    International Nuclear Information System (INIS)

    Yang, C. K.; Kim, Y. H.

    2001-01-01

    KEPRI developed new methodology which was based on RASP(Reactor Analysis Support Package). In this paper, The analysis of RWAP(Rod Withdrawal at Power) accident which can result in reactivity and power distribution anomaly was performed using the KEPRI methodology. The calculation describes RWAP transient and documents the analysis, including the computer code modeling assumptions and input parameters used in the analysis. To validity for the new methodology, the result of calculation was compared with FSAR. As compared with FSAR, result of the calculation using the KEPRI Methodology is similar to FSAR's. And result of the sensitivity of postulated parameters were similar to the existing methodology

  10. Methodology for Validating Building Energy Analysis Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  11. Application of Decomposition Methodology to Solve Integrated Process Design and Controller Design Problems for Reactor-Separator-Recycle System

    DEFF Research Database (Denmark)

    Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan; Gani, Rafiqul

    2010-01-01

    This paper presents the integrated process design and controller design (IPDC) for a reactor-separator-recycle (RSR) system and evaluates a decomposition methodology to solve the IPDC problem. Accordingly, the IPDC problem is solved by decomposing it into four hierarchical stages: (i) pre...... the design of a RSR system involving consecutive reactions, A B -> C and shown to provide effective solutions that satisfy design, control and cost criteria. The advantage of the proposed methodology is that it is systematic, makes use of thermodynamic-process knowledge and provides valuable insights......-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection and verification. The methodology makes use of thermodynamic-process insights and the reverse design approach to arrive at the final process-controller design decisions. The developed methodology is illustrated through...

  12. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G., E-mail: espinosa@fisica.unam.mx; Golzarri, J. I. [Instituto de Física, Universidad Nacional Autónoma de México Circuito de la Investigación Científica, Ciudad Universitaria. México, DF (Mexico); Raya-Arredondo, R.; Cruz-Galindo, S. [Instituto Nacional de Investigaciones Nucleares (Mexico); Sajo-Bohus, L. [Universidad Simón Bolivar, Laboratorio de Física Nuclear, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plastic detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.

  13. Development of a methodology for simulation of gas cooled reactors with purpose of transmutation

    International Nuclear Information System (INIS)

    Silva, Clarysson Alberto da

    2009-01-01

    This work proposes a methodology of MHR (Modular Helium Reactor) simulation using the WIMSD-5B (Winfrith Improved Multi/group Scheme) nuclear code which is validated by MCNPX 2.6.0 (Monte Carlo N-Particle transport eXtend) nuclear code. The goal is verify the capability of WIMSD-5B to simulate a reactor type GT-MHR (Gas Turbine Modular Helium Reactor), considering all the fuel recharges possibilities. Also is evaluated the possibility of WIMSD-5B to represent adequately the fuel evolution during the fuel recharge. Initially was verified the WIMSD-5B capability to simulate the recharge specificities of this model by analysis of neutronic parameters and isotopic composition during the burnup. After the model was simulated using both WIMSD-5B and MCNPX 2.6.0 codes and the results of k eff , neutronic flux and isotopic composition were compared. The results show that the deterministic WIMSD-5B code can be applied to a qualitative evaluation, representing adequately the core behavior during the fuel recharges being possible in a short period of time to inquire about the burned core that, once optimized, can be quantitatively evaluated by a code type MCNPX 2.6.0. (author)

  14. Control of operational transients in power reactors - Methodology

    International Nuclear Information System (INIS)

    Vukovic, D.

    1983-01-01

    By introducing the nuclear power stations in the electric power system, questions of their possibilities to satisfy system's demand arise. Control of operational transients (temperature and Xe 135 ) in power reactors by determining the optimal control rod strategy is given. Ti optimize the Xe 135 transients, the Pantryagin theorem of optimal processes is applied. For solving three dimensional, two-group diffusion equations the heterogeneous Feinberg-Galanin method with axial flux harmonics is adopted. An application of this formalism to three-dimensional, finite cylindrical pressurised water reactor radially reflected is presented. (author)

  15. Analysis of reactor noise; Analiza reaktorskih sumova

    Energy Technology Data Exchange (ETDEWEB)

    Velickovic, Lj [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1967-11-15

    This paper describes the theoretical model for interpretation of experimental results, experimental method for study of reactor noise at the RB reactor, numerical treatment of experimental results by correlation technique for analysis of reactor noise. A computer code was written to obtain autocorrelation function and spectral density function. Experimental results obtained by oscillator technique, pulse technique, and autocorrelation method are presented and discussed.

  16. Probabilistic methodology for turbine missile risk analysis

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.; Frank, R.A.

    1984-01-01

    A methodology has been developed for estimation of the probabilities of turbine-generated missile damage to nuclear power plant structures and systems. Mathematical models of the missile generation, transport, and impact events have been developed and sequenced to form an integrated turbine missile simulation methodology. Probabilistic Monte Carlo techniques are used to estimate the plant impact and damage probabilities. The methodology has been coded in the TURMIS computer code to facilitate numerical analysis and plant-specific turbine missile probability assessments. Sensitivity analyses have been performed on both the individual models and the integrated methodology, and probabilities have been estimated for a hypothetical nuclear power plant case study. (orig.)

  17. Applications of a surveillance and diagnostics methodology using neutron noise from a pressurized-water reactor

    International Nuclear Information System (INIS)

    Wood, R.T.; Miller, L.F.; Perez, R.B.

    1992-01-01

    Two applications of a noise diagnostic methodology were performed with ex-core neutron detector data from a pressurized-water reactor (PWR). A feedback dynamics model of the neutron power spectral denisty was derived from a low-order whole-plant physical model made stochastic with the Langevin technique. From a functional fit to plant data, the response of the dynamic system to changes in important physical parameters was evaluated by a direct sensitivity analysis. In addition, changes in monitored spectra were related to changes in physical parameters, and detection thresholds using common surveillance discriminants were determined. A resonance model was developed from perturbation theory to give the ex-core neutron detector response for small in-core mechanical motions in terms of a pole-strength factor, a resonance asymmetry (or skewness) factor, a vibration damping factor, and a frequency of vibration. The mechanical motion paramters for several resonances were determined by a functional fit of the model to plant data taken at various times during a fuel cycle and were tracked to determined trends that indicated vibrational changes of reactor internals. In addition, the resonance model gave the ability to separate the resonant components of the power spectral density after the parameters had been identified. As a result, the behavior of several vibration peaks was monitored over a fuel cycle. The noise diagnostic methodology illustrated by these applications can be used in monitoring the condition of the reactor system. Early detection of degraded mechanical components or undesirable operating conditions by using such surveillance and diagnostic techniques would enhance plant safety. 15 refs., 6 figs., 1 tab

  18. A development of containment performance analysis methodology using GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. C.; Yoon, J. I. [Future and Challenge Company, Seoul (Korea, Republic of); Byun, C. S.; Lee, J. Y. [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, J. Y. [Seoul National University, Seoul (Korea, Republic of)

    2003-10-01

    In a circumstance that well-established containment pressure/temperature analysis code, CONTEMPT-LT treats the reactor containment as a single volume, this study introduces, as an alternative, the GOTHIC code for an usage on multi-compartmental containment performance analysis. With a developed GOTHIC methodology, its applicability is verified for containment performance analysis for Korean Nuclear Unit 1. The GOTHIC model for this plant is simply composed of 3 compartments including the reactor containment and RWST. In addition, the containment spray system and containment recirculation system are simulated. As a result of GOTHIC calculation, under the same assumptions and conditions as those in CONTEMPT-LT, the GOTHIC prediction shows a very good result; pressure and temperature transients including their peaks are nearly the same. It can be concluded that the GOTHIC could provide reasonable containment pressure and temperature responses if considering the inherent conservatism in CONTEMPT-LT code.

  19. A development of containment performance analysis methodology using GOTHIC code

    International Nuclear Information System (INIS)

    Lee, B. C.; Yoon, J. I.; Byun, C. S.; Lee, J. Y.; Lee, J. Y.

    2003-01-01

    In a circumstance that well-established containment pressure/temperature analysis code, CONTEMPT-LT treats the reactor containment as a single volume, this study introduces, as an alternative, the GOTHIC code for an usage on multi-compartmental containment performance analysis. With a developed GOTHIC methodology, its applicability is verified for containment performance analysis for Korean Nuclear Unit 1. The GOTHIC model for this plant is simply composed of 3 compartments including the reactor containment and RWST. In addition, the containment spray system and containment recirculation system are simulated. As a result of GOTHIC calculation, under the same assumptions and conditions as those in CONTEMPT-LT, the GOTHIC prediction shows a very good result; pressure and temperature transients including their peaks are nearly the same. It can be concluded that the GOTHIC could provide reasonable containment pressure and temperature responses if considering the inherent conservatism in CONTEMPT-LT code

  20. Compliance strategy for statistically based neutron overpower protection safety analysis methodology

    International Nuclear Information System (INIS)

    Holliday, E.; Phan, B.; Nainer, O.

    2009-01-01

    The methodology employed in the safety analysis of the slow Loss of Regulation (LOR) event in the OPG and Bruce Power CANDU reactors, referred to as Neutron Overpower Protection (NOP) analysis, is a statistically based methodology. Further enhancement to this methodology includes the use of Extreme Value Statistics (EVS) for the explicit treatment of aleatory and epistemic uncertainties, and probabilistic weighting of the initial core states. A key aspect of this enhanced NOP methodology is to demonstrate adherence, or compliance, with the analysis basis. This paper outlines a compliance strategy capable of accounting for the statistical nature of the enhanced NOP methodology. (author)

  1. Subchannel analysis in nuclear reactors

    International Nuclear Information System (INIS)

    Ninokata, H.; Aritomi, M.

    1992-01-01

    This book contains 10 informative papers, presented at the International Seminar on Subchannel Analysis 1992 (ISSCA '92), organized by the Institute of Applied Energy, in collaboration with Atomic Energy Society of Japan, Tokyo Electric Power Company, Kansai Electric Power Company, Nuclear Power Engineering Corporation and the Japan Atomic Energy Research Institute, and held at the TIS-Green Forum, Tokyo, Japan, 30 October 1992. The seminar ISSCA '92 was intended to review the current state-of-the-arts of the method being applied to advanced nuclear reactors including Advanced BWRs, Advanced PWRs and LMRs, and to identify the problems to be solved, improvements to be made, and the needs of R and Ds that were required from the new fuel bundles design. The critical review was to focus on the performances of currently available subchannel analysis codes with regard to heat transfer and fluid flows in various types of nuclear reactor bundles under both steady-state and transient operating conditions, CHF, boiling transition (BT) or dryout behaviors and post BT. The behaviors of physical modeling and numerical methods in these extreme conditions were discussed and the methods critically evaluated in comparison with experiments. (author) (J.P.N.)

  2. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Kozawa, Y.; Namba, C.

    1987-03-01

    Fusion systems which are under development as future energy systems have reached a stage that the break even is expected to be realized in the near future. It is desirable to demonstrate that fusion systems are well acceptable to the societal environment. There are three crucial viewpoints to measure the acceptability, that is, technological feasibility, economy and safety. These three points have close interrelation. The safety problem is more important since three large scale tokamaks, JET, TFTR and JT-60, start experiment, and tritium will be introduced into some of them as the fusion fuel. It is desirable to establish a methodology to resolve the safety-related issues in harmony with the technological evolution. The promising fusion system toward reactors is not yet settled. This study has the objective to develop and adequate methodology which promotes the safety design of general fusion systems and to present a basis for proposing the R and D themes and establishing the data base. A framework of the methodology, the understanding and modeling of fusion systems, the principle of ensuring safety, the safety analysis based on the function and the application of the methodology are discussed. As the result of this study, the methodology for the safety analysis and evaluation of fusion systems was developed. New idea and approach were presented in the course of the methodology development. (Kako, I.)

  3. A cost-effective methodology to internalize nuclear safety in nuclear reactor conceptual design

    International Nuclear Information System (INIS)

    Gimenez, M.; Grinblat, P.; Schlamp, M.

    2003-01-01

    A new methodology to perform nuclear reactor design, balancing safety and economics at the conceptual engineering stage, is presented in this work. The goal of this integral methodology is to take into account safety aspects in an optimization design process where the design variables are balanced in order to obtain a better figure of merit related with reactor economic performance. Design parameter effects on characteristic or critical safety variables, chosen from reactor behavior during accidents (safety performance indicators), are synthesized on Design Maps. These maps allow one to compare the safety indicator with limits, which are determined by design criteria or regulations, and to transfer these restrictions to the design parameters. In this way, reactor dynamic response and other safety aspects are integrated in a global optimization process, by means of additional rules to the neutronic, thermal-hydraulic, and mechanical calculations. An application of the methodology, implemented in Integrated Reactor Evaluation Program 3 (IREP3) code, to optimize safety systems of CAREM prototype is presented. It consists in balancing the designs of the Emergency Injection System (EIS), the Residual Heat Removal System (RHRS), the primary circuit water inventory and the containment height, to cope with loss of coolant and loss of heat sink (LOHS) accidental sequences, taking into account cost and reactor performance. This methodology turns out to be promising to internalize cost-efficiently safety issues. It also allows one to evaluate the incremental costs of implementing higher safety levels

  4. A cost effective waste management methodology for power reactor waste streams

    International Nuclear Information System (INIS)

    Granus, M.W.; Campbell, A.D.

    1984-01-01

    This paper describes a computer based methodology for the selection of the processing methods (solidification/dewatering) for various power reactor radwaste streams. The purpose of this methodology is to best select the method that provides the most cost effective solution to waste management. This method takes into account the overall cost of processing, transportation and disposal. The selection matrix on which the methodology is based is made up of over ten thousand combinations of liner, cask, process, and disposal options from which the waste manager can choose. The measurement device for cost effective waste management is the concurrent evaluation of total dollars spent. The common denominator is dollars per cubic foot of the input waste stream. Dollars per curie of the input waste stream provides for proper checks and balances. The result of this analysis can then be used to assess the total waste management cost. To this end, the methodology can then be employed to predict a given number of events (processes, transportation, and disposals) and project the annual cost of waste management. For the purposes of this paper, the authors provide examples of the application of the methodology on a typical BWR at 2, 4 and 6 years. The examples are provided in 1984 dollars. Process selection is influenced by a number of factors which must be independently evaluated for each waste stream. Final processing cost is effected by the particular process efficiency and a variety of regulatory constraints. The interface between process selection and cask selection/transportation driven by the goal of placing the greatest amount of pre-processed waste in the package and remaining within the bounds of weight, volume, regulatory, and cask availability limitations. Disposal is the cost of burial and can be affected by disposal, but availability of burial space, and the location of the disposal site in relation to the generator

  5. A methodology of neutronic-thermodynamics simulation for fast reactor

    International Nuclear Information System (INIS)

    Waintraub, M.

    1986-01-01

    Aiming at a general optimization of the project, controlled fuel depletion and management, this paper develop a neutronic thermodynamics simulator, SIRZ, which besides being sufficiently precise, is also economic. That results in a 75% reduction in CPU time, for a startup calculation, when compared with the same calculation at the CITATION code. The simulation system by perturbation calculations, applied to fast reactors, which produce errors smaller than 1% in all components of the reference state given by the CITATION code was tested. (author)

  6. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-10-15

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored.

  7. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Manimaran, M.; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-01-01

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored

  8. Reliability Centered Maintenance (RCM) Methodology and Application to the Shutdown Cooling System for APR-1400 Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Faragalla, Mohamed M.; Emmanuel, Efenji; Alhammadi, Ibrahim; Awwal, Arigi M.; Lee, Yong Kwan [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Shutdown Cooling System (SCS) is a safety-related system that is used in conjunction with the Main Steam and Main or Auxiliary Feedwater Systems to reduce the temperature of the Reactor Coolant System (RCS) in post shutdown periods from the hot shutdown operating temperature to the refueling temperature. In this paper RCM methodology is applied to (SCS). RCM analysis is performed based on evaluation of Failure Modes Effects and Criticality Analysis (FME and CA) on the component, system and plant. The Logic Tree Analysis (LTA) is used to determine the optimum maintenance tasks. The main objectives of RCM is the safety, preserve the System function, the cost-effective maintenance of the plant components and increase the reliability and availability value. The RCM methodology is useful for improving the equipment reliability by strengthening the management of equipment condition, and leads to a significant decrease in the number of periodical maintenance, extended maintenance cycle, longer useful life of equipment, and decrease in overall maintenance cost. It also focuses on the safety of the system by assigning criticality index to the various components and further selecting maintenance activities based on the risk of failure involved. Therefore, it can be said that RCM introduces a maintenance plan designed for maximum safety in an economical manner and making the system more reliable. For the SCP, increasing the number of condition monitoring tasks will improve the availability of the SCP. It is recommended to reduce the number of periodic maintenance activities.

  9. Validating analysis methodologies used in burnup credit criticality calculations

    International Nuclear Information System (INIS)

    Brady, M.C.; Napolitano, D.G.

    1992-01-01

    The concept of allowing reactivity credit for the depleted (or burned) state of pressurized water reactor fuel in the licensing of spent fuel facilities introduces a new challenge to members of the nuclear criticality community. The primary difference in this analysis approach is the technical ability to calculate spent fuel compositions (or inventories) and to predict their effect on the system multiplication factor. Isotopic prediction codes are used routinely for in-core physics calculations and the prediction of radiation source terms for both thermal and shielding analyses, but represent an innovation for criticality specialists. This paper discusses two methodologies currently being developed to specifically evaluate isotopic composition and reactivity for the burnup credit concept. A comprehensive approach to benchmarking and validating the methods is also presented. This approach involves the analysis of commercial reactor critical data, fuel storage critical experiments, chemical assay isotopic data, and numerical benchmark calculations

  10. Alternative methodology for irradiation reactor experimental shielding calculation

    International Nuclear Information System (INIS)

    Vellozo, Sergio de Oliveira; Vital, Helio de Carvalho

    1996-01-01

    Due to a change in the project of the Experimental Irradiation Reactor, its shielding design had to be recalculated according to an alternative simplified analytical approach, since the standard transport calculations were temporarily unavailable. In the calculation of the new width for the shielding made up of steel and high-density concrete layers, the following radiation components were considered: fast neutrons and primary gammas (produced by fission and beta decay), from the core; and secondary gammas, produced by thermal neutron capture in the shielding. (author)

  11. Disposal criticality analysis methodology's principal isotope burnup credit

    International Nuclear Information System (INIS)

    Doering, T.W.; Thomas, D.A.

    2001-01-01

    This paper presents the burnup credit aspects of the United States Department of Energy Yucca Mountain Project's methodology for performing criticality analyses for commercial light-water-reactor fuel. The disposal burnup credit methodology uses a 'principal isotope' model, which takes credit for the reduced reactivity associated with the build-up of the primary principal actinides and fission products in irradiated fuel. Burnup credit is important to the disposal criticality analysis methodology and to the design of commercial fuel waste packages. The burnup credit methodology developed for disposal of irradiated commercial nuclear fuel can also be applied to storage and transportation of irradiated commercial nuclear fuel. For all applications a series of loading curves are developed using a best estimate methodology and depending on the application, an additional administrative safety margin may be applied. The burnup credit methodology better represents the 'true' reactivity of the irradiated fuel configuration, and hence the real safety margin, than do evaluations using the 'fresh fuel' assumption. (author)

  12. Disposal Criticality Analysis Methodology Topical Report

    International Nuclear Information System (INIS)

    Horton, D.G.

    1998-01-01

    The fundamental objective of this topical report is to present the planned risk-informed disposal criticality analysis methodology to the NRC to seek acceptance that the principles of the methodology and the planned approach to validating the methodology are sound. The design parameters and environmental assumptions within which the waste forms will reside are currently not fully established and will vary with the detailed waste package design, engineered barrier design, repository design, and repository layout. Therefore, it is not practical to present the full validation of the methodology in this report, though a limited validation over a parameter range potentially applicable to the repository is presented for approval. If the NRC accepts the methodology as described in this section, the methodology will be fully validated for repository design applications to which it will be applied in the License Application and its references. For certain fuel types (e.g., intact naval fuel), a ny processes, criteria, codes or methods different from the ones presented in this report will be described in separate addenda. These addenda will employ the principles of the methodology described in this report as a foundation. Departures from the specifics of the methodology presented in this report will be described in the addenda

  13. Disposal Criticality Analysis Methodology Topical Report

    International Nuclear Information System (INIS)

    D.G. Horton

    1998-01-01

    The fundamental objective of this topical report is to present the planned risk-informed disposal criticality analysis methodology to the NRC to seek acceptance that the principles of the methodology and the planned approach to validating the methodology are sound. The design parameters and environmental assumptions within which the waste forms will reside are currently not fully established and will vary with the detailed waste package design, engineered barrier design, repository design, and repository layout. Therefore, it is not practical to present the full validation of the methodology in this report, though a limited validation over a parameter range potentially applicable to the repository is presented for approval. If the NRC accepts the methodology as described in this section, the methodology will be fully validated for repository design applications to which it will be applied in the License Application and its references. For certain fuel types (e.g., intact naval fuel), any processes, criteria, codes or methods different from the ones presented in this report will be described in separate addenda. These addenda will employ the principles of the methodology described in this report as a foundation. Departures from the specifics of the methodology presented in this report will be described in the addenda

  14. Exploring Participatory Methodologies in Organizational Discourse Analysis

    DEFF Research Database (Denmark)

    Plotnikof, Mie

    2014-01-01

    Recent debates in the field of organizational discourse analysis stress contrasts in approaches as single-level vs. multi-level, critical vs. participatory, discursive vs. material methods. They raise methodological issues of combining such to embrace multimodality in order to enable new contribu......Recent debates in the field of organizational discourse analysis stress contrasts in approaches as single-level vs. multi-level, critical vs. participatory, discursive vs. material methods. They raise methodological issues of combining such to embrace multimodality in order to enable new...... contributions. As regards conceptual efforts are made but further exploration of methodological combinations and their practical implications are called for. This paper argues 1) to combine methodologies by approaching this as scholarly subjectification processes, and 2) to perform combinations in both...

  15. Comparative analysis of proliferation resistance assessment methodologies

    International Nuclear Information System (INIS)

    Takaki, Naoyuki; Kikuchi, Masahiro; Inoue, Naoko; Osabe, Takeshi

    2005-01-01

    Comparative analysis of the methodologies was performed based on the discussions in the international workshop on 'Assessment Methodology of Proliferation Resistance for Future Nuclear Energy Systems' held in Tokyo, on March 2005. Through the workshop and succeeding considerations, it is clarified that the proliferation resistance assessment methodologies are affected by the broader nuclear options being pursued and also by the political situations of the state. Even the definition of proliferation resistance, despite the commonality of fundamental issues, derives from perceived threat and implementation circumstances inherent to the larger programs. Deep recognitions of the 'difference' among communities would help us to make further essential and progressed discussion with harmonization. (author)

  16. Malware Analysis Sandbox Testing Methodology

    Directory of Open Access Journals (Sweden)

    Zoltan Balazs

    2016-01-01

    Full Text Available Manual processing of malware samples became impossible years ago. Sandboxes are used to automate the analysis of malware samples to gather information about the dynamic behaviour of the malware, both at AV companies and at enterprises. Some malware samples use known techniques to detect when it runs in a sandbox, but most of these sandbox detection techniques can be easily detected and thus flagged as malicious. I invented new approaches to detect these sandboxes. I developed a tool, which can collect a lot of interesting information from these sandboxes to create statistics how the current technologies work. After analysing these results I will demonstrate tricks to detect sandboxes. These tricks can’t be easily flagged as malicious. Some sandboxes don’t not interact with the Internet in order to block data extraction, but with some DNS-fu the information can be extracted from these appliances as well.

  17. Sampling methodology and PCB analysis

    International Nuclear Information System (INIS)

    Dominelli, N.

    1995-01-01

    As a class of compounds PCBs are extremely stable and resist chemical and biological decomposition. Diluted solutions exposed to a range of environmental conditions will undergo some preferential degradation and the resulting mixture may differ considerably from the original PCB used as insulating fluid in electrical equipment. The structure of mixtures of PCBs (synthetic compounds prepared by direct chlorination of biphenyl with chlorine gas) is extremely complex and presents a formidable analytical problem, further complicated by the presence of PCBs as contaminants in oils to soils to water. This paper provides some guidance into sampling and analytical procedures; it also points out various potential problems encountered during these processes. The guidelines provided deal with sample collection, storage and handling, sample stability, laboratory analysis (usually gas chromatography), determination of PCB concentration, calculation of total PCB content, and quality assurance. 1 fig

  18. Nondestructive assay methodologies in nuclear forensics analysis

    International Nuclear Information System (INIS)

    Tomar, B.S.

    2016-01-01

    In the present chapter, the nondestructive assay (NDA) methodologies used for analysis of nuclear materials as a part of nuclear forensic investigation have been described. These NDA methodologies are based on (i) measurement of passive gamma and neutrons emitted by the radioisotopes present in the nuclear materials, (ii) measurement of gamma rays and neutrons emitted after the active interrogation of the nuclear materials with a source of X-rays, gamma rays or neutrons

  19. Update of Part 61 impacts analysis methodology

    International Nuclear Information System (INIS)

    Oztunali, O.I.; Roles, G.W.

    1986-01-01

    The US Nuclear Regulatory Commission is expanding the impacts analysis methodology used during the development of the 10 CFR Part 61 rule to allow improved consideration of costs and impacts of disposal of waste that exceeds Class C concentrations. The project includes updating the computer codes that comprise the methodology, reviewing and updating data assumptions on waste streams and disposal technologies, and calculation of costs for small as well as large disposal facilities. This paper outlines work done to date on this project

  20. Update of Part 61 impacts analysis methodology

    International Nuclear Information System (INIS)

    Oztunali, O.I.; Roles, G.W.; US Nuclear Regulatory Commission, Washington, DC 20555)

    1985-01-01

    The US Nuclear Regulatory Commission is expanding the impacts analysis methodology used during the development of the 10 CFR Part 61 regulation to allow improved consideration of costs and impacts of disposal of waste that exceeds Class C concentrations. The project includes updating the computer codes that comprise the methodology, reviewing and updating data assumptions on waste streams and disposal technologies, and calculation of costs for small as well as large disposal facilities. This paper outlines work done to date on this project

  1. Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations

    Directory of Open Access Journals (Sweden)

    Giuseppe Palmiotti

    2012-01-01

    Full Text Available The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.

  2. Safety analysis of reactor's cooling system

    International Nuclear Information System (INIS)

    1999-01-01

    Results of the analysis of reactor's RBMK-1500 coolant system during normal operation mode, hydrodynamic testing and in the case of earthquake are presented. Analysis was performed using RELAP5 code. Calculations showed the most vulnerable place in the reactor's coolant system. It was found that in the case of earthquake the horizontal support system of drum separator could be damaged

  3. Constructive Analysis : A Study in Epistemological Methodology

    DEFF Research Database (Denmark)

    Ahlström, Kristoffer

    , and develops a framework for a kind of analysis that is more in keeping with recent psychological research on categorization. Finally, it is shown that this kind of analysis can be applied to the concept of justification in a manner that furthers the epistemological goal of providing intellectual guidance.......The present study is concerned the viability of the primary method in contemporary philosophy, i.e., conceptual analysis. Starting out by tracing the roots of this methodology to Platonic philosophy, the study questions whether such a methodology makes sense when divorced from Platonic philosophy...

  4. Development and methodology of level 1 probability safety assessment at PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Maskin, Mazleha; Tom, Phongsakorn Prak; Lanyau, Tonny Anak; Saad, Mohamad Fauzi; Ismail, Ahmad Razali; Abu, Mohamad Puad Haji; Brayon, Fedrick Charlie Matthew; Mohamed, Faizal

    2014-01-01

    As a consequence of the accident at the Fukushima Dai-ichi Nuclear Power Plant in Japan, the safety aspects of the one and only research reactor (31 years old) in Malaysia need be reviewed. Based on this decision, Malaysian Nuclear Agency in collaboration with Atomic Energy Licensing Board and Universiti Kebangsaan Malaysia develop a Level-1 Probability Safety Assessment on this research reactor. This work is aimed to evaluate the potential risks of incidents in RTP and at the same time to identify internal and external hazard that may cause any extreme initiating events. This report documents the methodology in developing a Level 1 PSA performed for the RTP as a complementary approach to deterministic safety analysis both in neutronics and thermal hydraulics. This Level-1 PSA work has been performed according to the procedures suggested in relevant IAEA publications and at the same time numbers of procedures has been developed as part of an Integrated Management System programme implemented in Nuclear Malaysia

  5. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    Science.gov (United States)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  6. Development and methodology of level 1 probability safety assessment at PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mazleha Maskin; Phongsakorn, P.T.; Tonny, A.L.; Fedrick, C.M.B.; Faizal Mohamed; Mohamad Fauzi Saad; Ahmad Razali Ismail; Mohamad Puad Haji Abu

    2013-01-01

    Full-text: As a consequence of the accident at the Fukushima Dai-ichi Nuclear Power Plant in Japan, the safety aspects of the one and only research reactor (31 years old) in Malaysia need be reviewed. Based on this decision, Malaysian Nuclear Agency in collaboration with Atomic Energy Licensing Board and Universiti Kebangsaan Malaysia develop a Level-1 Probability Safety Assessment on this research reactor. This work is aimed to evaluate the potential risks of incidents in RTP and at the same time to identify internal and external hazard that may cause any extreme initiating events. This report documents the methodology in developing a Level 1 PSA performed for the RTP as a complementary approach to deterministic safety analysis both in neutronics and thermal hydraulics. This Level-1 PSA work has been performed according to the procedures suggested in relevant IAEA publications and at the same time numbers of procedures has been developed as part of an Integrated Management System programme implemented in Nuclear Malaysia. (author)

  7. Incorporation of advanced accident analysis methodology into safety analysis reports

    International Nuclear Information System (INIS)

    2003-05-01

    as structural analysis codes and computational fluid dynamics codes (CFD) are applied. The initial code development took place in the sixties and seventies and resulted in a set of quite conservative codes for the reactor dynamics, thermal-hydraulics and containment analysis. The most important limitations of these codes came from insufficient knowledge of the physical phenomena and of the limited computer memory and speed. Very significant advances have been made in the development of the code systems during the last twenty years in all of the above areas. If the data for the physical models of the code are sufficiently well established and allow quite a realistic analysis, these newer versions are called advanced codes. The assumptions used in the deterministic safety analysis vary from very pessimistic to realistic assumptions. In the accident analysis terminology, it is customary to call the pessimistic assumptions 'conservative' and the realistic assumptions 'best estimate'. The assumptions can refer to the selection of physical models, the introduction of these models into the code, and the initial and boundary conditions including the performance and failures of the equipment and human action. The advanced methodology in the present report means application of advanced codes (or best estimate codes), which sometimes represent a combination of various advanced codes for separate stages of the analysis, and in some cases in combination with experiments. The Safety Analysis Reports are required to be available before and during the operation of the plant in most countries. The contents, scope and stages of the SAR vary among the countries. The guide applied in the USA, i.e. the Regulatory Guide 1.70 is representative for the way in which the SARs are made in many countries. During the design phase, a preliminary safety analysis report (PSAR) is requested in many countries and the final safety analysis report (FSAR) is required for the operating licence. There is

  8. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  9. Simplified methodology for Angra 1 containment analysis

    International Nuclear Information System (INIS)

    Neves Conti, T. das; Souza, A.L. de; Sabundjian, G.

    1991-08-01

    A simplified methodology of analysis was developed to simulate a Large Break Loss of Coolant Accident in the Angra 1 Nuclear Power Station. Using the RELAP5/MOD1, RELAP4/MOD5 and CONTEMPT-LT Codes, the time variation of pressure and temperature in the containment was analysed. The obtained data was compared with the Angra 1 Final Safety Analysis Report, and too those calculated by a Detailed Model. The results obtained by this new methodology such as the small computational time of simulation, were satisfactory when getting the preliminary evaluation of the Angra 1 global parameters. (author)

  10. Assessment of current structural design methodology for high-temperature reactors based on failure tests

    International Nuclear Information System (INIS)

    Corum, J.M.; Sartory, W.K.

    1985-01-01

    A mature design methodology, consisting of inelastic analysis methods, provided in Department of Energy guidelines, and failure criteria, contained in ASME Code Case N-47, exists in the United States for high-temperature reactor components. The objective of this paper is to assess the adequacy of this overall methodology by comparing predicted inelastic deformations and lifetimes with observed results from structural failure tests and from an actual service failure. Comparisons are presented for three types of structural situations: (1) nozzle-to-spherical shell specimens, where stresses at structural discontinuities lead to cracking, (2) welded structures, where metallurgical discontinuities play a key role in failures, and (3) thermal shock loadings of cylinders and pipes, where thermal discontinuities can lead to failure. The comparison between predicted and measured inelastic responses are generally reasonalbly good; quantities are sometimes overpredicted somewhat, and, sometimes underpredicted. However, even seemingly small discrepancies can have a significant effect on structural life, and lifetimes are not always as closely predicted. For a few cases, the lifetimes are substantially overpredicted, which raises questions regarding the adequacy of existing design margins

  11. A probabilistic methodology for the design of radiological confinement of tokamak reactors

    International Nuclear Information System (INIS)

    Golinescu, Ruxandra P.; Morosan, Florinel; Kazimi, Mujid S.

    1997-01-01

    A methodology using probabilistic risk assessment techniques is proposed for evaluating the design of multiple confinement barriers for a fusion plant within the context of a limited allowable risk. The methodology was applied to the reference design of the International Thermonuclear Experimental Reactor (ITER). Accident sequence models were developed to determine the probability of radioactive releases from each confinement barrier. The current ITER design requirements, that set environmental radioactive release limits for individual event sequences grouped in categories by frequency, is extended to derive a limit on the plant overall risk. This avoids detailed accounting for event uncertainties in both frequency and consequence. Thus, an analytical form for a limit line is derived as a complementary cumulative frequency of permissible radioactive releases to the environment. The line can be derived using risk aversion of the designer's own choice. By comparing the releases from each confinement barrier against this limit line, a decision can be made about the number of barriers required to comply with the design requirements. A decision model using multi-attribute utility function theory was constructed to help the designer in choosing the type of the tokamak building while considering preferences for attributes such as construction cost, project completion time, technical feasibility and public attitude. Sensitivity analysis on some of the relevant parameters in the model was performed

  12. Nuclear reactor conceptual design: methodology for cost-effective internalisation of nuclear safety

    International Nuclear Information System (INIS)

    Gimenez, M.; Grinblat, P.; Schlamp, M.

    2002-01-01

    A novel and promising methodology to perform nuclear reactor design is presented in this work. It achieves to balance efficiently safety and economics at the conceptual engineering stage. The key to this integral approach is to take into account safety aspects in a design optimisation process where the design variables are balanced in order to obtain a better figure of merit related with reactor economic performance. Design parameter effects on characteristic or critical safety variables, chosen from reactor behaviour during accidents and from its probabilistic safety assessment -safety performance indicators-, are synthesised on Safety Design Maps. These maps allow one to compare these indicators with limit values, which are determined by design criteria or regulations, and to transfer these restrictions to the design parameters. In this way, reactor dynamic response and other safety aspects are integrated in a global optimisation process, by means of additional rules to the neutronic, thermal-hydraulic and mechanical calculations. This methodology turns out to be promising to balance and optimise reactor and safety system design in an early engineering stage, in order to internalise cost-efficiently safety issues. It also allows one to evaluate the incremental costs of implementing higher safety levels. Furthermore, through this methodology, a simplified design can be obtained, compared to the resultant complexity when these concepts are introduced in a later engineering stage. (author)

  13. Application of the HGPT methodology of reactor operation problems with a nodal mixed method

    International Nuclear Information System (INIS)

    Baudron, A.M.; Bruna, G.B.; Gandini, A.; Lautard, J.J.; Monti, S.; Pizzigati, G.

    1998-01-01

    The heuristically based generalized perturbation theory (HGPT), to first and higher order, applied to the neutron field of a reactor system, is discussed in relation to quasistatic problems. This methodology is of particular interest in reactor operation. In this application it may allow an on-line appraisal of the main physical responses of the reactor system when subject to alterations relevant to normal system exploitation, e.g. control rod movement, and/or soluble boron concentration changes to be introduced, for instance, for compensating power level variations following electrical network demands. In this paper, after describing the main features of the theory, its implementation into the diffusion, 3D mixed dual nodal code MINOS of the SAPHYR system is presented. The results from a small scale investigation performed on a simplified PWR system corroborate the validity of the methodology proposed

  14. Accident analysis for PRC-II reactor

    International Nuclear Information System (INIS)

    Wei Yongren; Tang Gang; Wu Qing; Lu Yili; Liu Zhifeng

    1997-12-01

    The computer codes, calculation models, transient results, sensitivity research, design improvement, and safety evaluation used in accident analysis for PRC-II Reactor (The Second Pulsed Reactor in China) are introduced. PRC-II Reactor is built in big populous city, so the public pay close attention to reactor safety. Consequently, Some hypothetical accidents are analyzed. They include an uncontrolled control rod withdrawal at rated power, a pulse rod ejection at rated power, and loss of coolant accident. Calculation model which completely depict the principle and process for each accident is established and the relevant analysis code is developed. This work also includes comprehensive computing and analyzing transients for each accident of PRC-II Reactor; the influences in the reactor safety of all kind of sensitive parameters; evaluating the function of engineered safety feature. The measures to alleviate the consequence of accident are suggested and taken in the construction design of PRC-II Reactor. The properties of reactor safety are comprehensively evaluated. A new advanced calculation model (True Core Uncovered Model) of LOCA of PRC-II Reactor and the relevant code (MCRLOCA) are first put forward

  15. Reactor accident analysis and evaluation

    International Nuclear Information System (INIS)

    Chang, J.W.

    1983-01-01

    Reactor Management Division of Korea Advanced Energy Research Institute has, so far, adopted, modified and developed quite a number of large programs for nuclear core analysis. During the course of this work, it was found necessary to employ some standard subroutines for handling data, input procedures, core memory management and search files. Many programs share lots of common subroutines and/or functions with other programs. Above all, some of them are in lack of transmittal. During the installation of big codes for CYBER computer, it has drawn our keen attention that many elementary subroutines are heavily machine-dependent and that their conversion is extremely difficult. After having collected and modified the subroutines to fit in different codes, it was finally named KINEP (KAERI Improved Nuclear Environmental Package). KINEP has been proved to be convenient even for smaller programs for general purpose. The KINEP includes about one hundred subroutines to facilitate data handling, operator communications, storage allocation, decimal input, file maintence and scratch I/O. (Author)

  16. A methodology for modeling photocatalytic reactors for indoor pollution control using previously estimated kinetic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Passalia, Claudio; Alfano, Orlando M. [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina); Brandi, Rodolfo J., E-mail: rbrandi@santafe-conicet.gov.ar [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Indoor pollution control via photocatalytic reactors. Black-Right-Pointing-Pointer Scaling-up methodology based on previously determined mechanistic kinetics. Black-Right-Pointing-Pointer Radiation interchange model between catalytic walls using configuration factors. Black-Right-Pointing-Pointer Modeling and experimental validation of a complex geometry photocatalytic reactor. - Abstract: A methodology for modeling photocatalytic reactors for their application in indoor air pollution control is carried out. The methodology implies, firstly, the determination of intrinsic reaction kinetics for the removal of formaldehyde. This is achieved by means of a simple geometry, continuous reactor operating under kinetic control regime and steady state. The kinetic parameters were estimated from experimental data by means of a nonlinear optimization algorithm. The second step was the application of the obtained kinetic parameters to a very different photoreactor configuration. In this case, the reactor is a corrugated wall type using nanosize TiO{sub 2} as catalyst irradiated by UV lamps that provided a spatially uniform radiation field. The radiative transfer within the reactor was modeled through a superficial emission model for the lamps, the ray tracing method and the computation of view factors. The velocity and concentration fields were evaluated by means of a commercial CFD tool (Fluent 12) where the radiation model was introduced externally. The results of the model were compared experimentally in a corrugated wall, bench scale reactor constructed in the laboratory. The overall pollutant conversion showed good agreement between model predictions and experiments, with a root mean square error less than 4%.

  17. New systematic methodology for incorporating dynamic heat transfer modelling in multi-phase biochemical reactors.

    Science.gov (United States)

    Fernández-Arévalo, T; Lizarralde, I; Grau, P; Ayesa, E

    2014-09-01

    This paper presents a new modelling methodology for dynamically predicting the heat produced or consumed in the transformations of any biological reactor using Hess's law. Starting from a complete description of model components stoichiometry and formation enthalpies, the proposed modelling methodology has integrated successfully the simultaneous calculation of both the conventional mass balances and the enthalpy change of reaction in an expandable multi-phase matrix structure, which facilitates a detailed prediction of the main heat fluxes in the biochemical reactors. The methodology has been implemented in a plant-wide modelling methodology in order to facilitate the dynamic description of mass and heat throughout the plant. After validation with literature data, as illustrative examples of the capability of the methodology, two case studies have been described. In the first one, a predenitrification-nitrification dynamic process has been analysed, with the aim of demonstrating the easy integration of the methodology in any system. In the second case study, the simulation of a thermal model for an ATAD has shown the potential of the proposed methodology for analysing the effect of ventilation and influent characterization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Additional methodology development for statistical evaluation of reactor safety analyses

    International Nuclear Information System (INIS)

    Marshall, J.A.; Shore, R.W.; Chay, S.C.; Mazumdar, M.

    1977-03-01

    The project described is motivated by the desire for methods to quantify uncertainties and to identify conservatisms in nuclear power plant safety analysis. The report examines statistical methods useful for assessing the probability distribution of output response from complex nuclear computer codes, considers sensitivity analysis and several other topics, and also sets the path for using the developed methods for realistic assessment of the design basis accident

  19. Economic analysis of EBT reactor

    International Nuclear Information System (INIS)

    Woo, J.T.; Uckan, N.A.; Lidsky, L.M.

    1977-01-01

    In order to establish the economic potential of the Elmo Bumpy Torus (EBT) reactor, two independent system-costing models have been developed. Both models predict capital costs of approximately $400/kW(th). These relatively low costs reflect the simplicity of the EBTR design. In particular, the modular nature of the individual blanket-shield segments, the low costs ''accelerator style'' containment building, high beta, and steady-state operation lead to relatively low reactor costs. A detailed cost breakdown for subsystems is analyzed. High cost and high uncertainty subsystems are identified to direct further emphasis into those areas. The calculated capital costs for the EBT reactor are compared with those costs quoted for tokamak reactors

  20. Safety case methodology for decommissioning of research reactors. Assessment of the long term impact of a flooding scenario

    International Nuclear Information System (INIS)

    Vladescu, G.; Banciu, O.

    1999-01-01

    The paper contains the assessment methodology of a Safety Case fuel decommissioning of research reactors, taking into account the international approach principles. The paper also includes the assessment of a flooding scenario for a decommissioned research reactor (stage 1 of decommissioning). The scenario presents the flooding of reactor basement, radionuclide migration through environment and long term radiological impact for public. (authors)

  1. Reactor Start-up and Control Methodologies: Consideration of the Space Radiation Environment

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2004-01-01

    potential control methodology for reactor startup procedures in the event of source fluctuations

  2. An Evaluation Methodology for Protocol Analysis Systems

    Science.gov (United States)

    2007-03-01

    Main Memory Requirement NS: Needham-Schroeder NSL: Needham-Schroeder-Lowe OCaml : Objective Caml POSIX: Portable Operating System...methodology is needed. A. PROTOCOL ANALYSIS FIELD As with any field, there is a specialized language used within the protocol analysis community. Figure...ProVerif requires that Objective Caml ( OCaml ) be installed on the system, OCaml version 3.09.3 was installed. C. WINDOWS CONFIGURATION OS

  3. Analysis of dynamic stability and safety of reactor system by reactor simulator

    International Nuclear Information System (INIS)

    Raisic, N.

    1963-11-01

    In order to enable qualitative analysis of dynamic properties of reactors RA and RB, mathematical models of these reactors were formulated and adapted for solution on analog computer. This report contains basic assessments for creating the model and complete equations for each reactor. Model was used to analyse three possible accidents at the RA reactor and possible hypothetical accidents at the RB reactor

  4. Supplement to the Disposal Criticality Analysis Methodology

    International Nuclear Information System (INIS)

    Thomas, D.A.

    1999-01-01

    The methodology for evaluating criticality potential for high-level radioactive waste and spent nuclear fuel after the repository is sealed and permanently closed is described in the Disposal Criticality Analysis Methodology Topical Report (DOE 1998b). The topical report provides a process for validating various models that are contained in the methodology and states that validation will be performed to support License Application. The Supplement to the Disposal Criticality Analysis Methodology provides a summary of data and analyses that will be used for validating these models and will be included in the model validation reports. The supplement also summarizes the process that will be followed in developing the model validation reports. These reports will satisfy commitments made in the topical report, and thus support the use of the methodology for Site Recommendation and License Application. It is concluded that this report meets the objective of presenting additional information along with references that support the methodology presented in the topical report and can be used both in validation reports and in answering request for additional information received from the Nuclear Regulatory Commission concerning the topical report. The data and analyses summarized in this report and presented in the references are not sufficient to complete a validation report. However, this information will provide a basis for several of the validation reports. Data from several references in this report have been identified with TBV-1349. Release of the TBV governing this data is required prior to its use in quality affecting activities and for use in analyses affecting procurement, construction, or fabrication. Subsequent to the initiation of TBV-1349, DOE issued a concurrence letter (Mellington 1999) approving the request to identify information taken from the references specified in Section 1.4 as accepted data

  5. A case study for INPRO methodology based on Indian advanced heavy water reactor

    International Nuclear Information System (INIS)

    Anantharaman, K.; Saha, D.; Sinha, R.K.

    2004-01-01

    Under Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) a methodology (INPRO methodology) has been developed which can be used to evaluate a given energy system or a component of such a system on a national and/or global basis. The INPRO study can be used for assessing the potential of the innovative reactor in terms of economics, sustainability and environment, safety, waste management, proliferation resistance and cross cutting issues. India, a participant in INPRO program, is engaged in a case study applying INPRO methodology based on Advanced Heavy Water Reactor (AHWR). AHWR is a 300 MWe, boiling light water cooled, heavy water moderated and vertical pressure tube type reactor. Thorium utilization is very essential for Indian nuclear power program considering the indigenous resource availability. The AHWR is designed to produce most of its power from thorium, aided by a small input of plutonium-based fuel. The features of AHWR are described in the paper. The case study covers the fuel cycle, to be followed in the near future, for AHWR. The paper deals with initial observations of the case study with regard to fuel cycle issues. (authors)

  6. Methodology to classify accident sequences of an Individual Plant Examination according to the severe releases for BWR type reactors

    International Nuclear Information System (INIS)

    Sandoval V, S.

    2001-01-01

    The Light Water Reactor (LWR) operation regulations require to every operating plant to perform of an Individual Plant Examination study (Ipe). One of the main purposes of an Ipe is t o gain a more quantitative understanding of the overall probabilities of core damage and fission product releases . Probabilistic Safety Analysis (PSA) methodologies and Severe Accident Analysis are used to perform Ipe studies. PSA methodologies are used to identify and analyse the set of event sequences that might originate the fission product release from a nuclear power plant; these methodologies are combinatorial in nature and generate thousands of sequences. Among other uses within an Ipe, severe accident simulations are used to determine the characteristics of the fission product release for the identified sequences and in this way, the releases can be understood and characterized. A vast amount of resources is required to simulate and analyse every Ipe sequence. This effort is unnecessary if similar sequences are grouped. The grouping scheme must achieve an efficient trade off between problem reduction and accuracy. The methodology presented in this work enables an accurate characterization and analysis of the Ipe fission product releases by using a reduced problem. The methodology encourages the use of specific plant simulations. (Author)

  7. Economic analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Owen, P.S.; Parker, M.B.; Omberg, R.P.

    1979-05-01

    The report presents several methods for estimating the power costs of nuclear reactors. When based on a consistent set of economic assumptions, total power costs may be useful in comparing reactor alternatives. The principal items contributing to the total power costs of a nuclear power plant are: (1) capital costs, (2) fuel cycle costs, (3) operation and maintenance costs, and (4) income taxes and fixed charges. There is a large variation in capital costs and fuel expenses among different reactor types. For example, the standard once-through LWR has relatively low capital costs; however, the fuel costs may be very high if U 3 O 8 is expensive. In contrast, the FBR has relatively high capital costs but low fuel expenses. Thus, the distribution of expenses varies significantly between these two reactors. In order to compare power costs, expenses and revenues associated with each reactor may be spread over the lifetime of the plant. A single annual cost, often called a levelized cost, may be obtained by the methods described. Levelized power costs may then be used as a basis for economic comparisons. The paper discusses each of the power cost components. An exact expression for total levelized power costs is derived. Approximate techniques of estimating power costs will be presented

  8. Thermohydraulic analysis of pressurized water reactors

    International Nuclear Information System (INIS)

    Veloso, M.A.

    1980-01-01

    The computer program PANTERA is applied in the thermo-hydraulic analysis of Pressurized Water Reactor Cores (PWR). It is a version of COBRA-IIIC in which a new thermal conduction model for fuel rods was introduced. The results calculated by this program are compared with experimental data obtained from bundles of fuel rods, simulating reactor conditions. The validity of the new thermal model is checked too. The PANTERA code, through a simplified procedure of calculation, is used in the thermo-hydraulic analysis of Indian Point, Unit 2, reactor core, in stationary conditions. The results are discussed and compared with design data. (Autor) [pt

  9. A calculation methodology applied for fuel management in PWR type reactors using first order perturbation theory

    International Nuclear Information System (INIS)

    Rossini, M.R.

    1992-01-01

    An attempt has been made to obtain a strategy coherent with the available instruments and that could be implemented with future developments. A calculation methodology was developed for fuel reload in PWR reactors, which evolves cell calculation with the HAMMER-TECHNION code and neutronics calculation with the CITATION code.The management strategy adopted consists of fuel element position changing at the beginning of each reactor cycle in order to decrease the radial peak factor. The bi-dimensional, two group First Order perturbation theory was used for the mathematical modeling. (L.C.J.A.)

  10. Light Water Reactor Sustainability Program: Digital Technology Business Case Methodology Guide

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lawrie, Sean [ScottMadden, Inc., Raleigh, NC (United States); Hart, Adam [ScottMadden, Inc., Raleigh, NC (United States); Vlahoplus, Chris [ScottMadden, Inc., Raleigh, NC (United States)

    2014-09-01

    The Department of Energy’s (DOE’s) Light Water Reactor Sustainability Program aims to develop and deploy technologies that will make the existing U.S. nuclear fleet more efficient and competitive. The program has developed a standard methodology for determining the impact of new technologies in order to assist nuclear power plant (NPP) operators in building sound business cases. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway is part of the DOE’s Light Water Reactor Sustainability (LWRS) Program. It conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and environmental security. The II&C Pathway is conducting a series of pilot projects that enable the development and deployment of new II&C technologies in existing nuclear plants. Through the LWRS program, individual utilities and plants are able to participate in these projects or otherwise leverage the results of projects conducted at demonstration plants. Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on

  11. Nuclear methodology development for clinical analysis

    International Nuclear Information System (INIS)

    Oliveira, Laura Cristina de

    2003-01-01

    In the present work the viability of using the neutron activation analysis to perform urine and blood clinical analysis was checked. The aim of this study is to investigate the biological behavior of animals that has been fed with chow doped by natural uranium for a long period. Aiming at time and cost reduction, the absolute method was applied to determine element concentration on biological samples. The quantitative results of urine sediment using NAA were compared with the conventional clinical analysis and the results were compatible. This methodology was also used on bone and body organs such as liver and muscles to help the interpretation of possible anomalies. (author)

  12. Activation analysis with small mobile reactors

    International Nuclear Information System (INIS)

    Chung, C.

    1990-01-01

    A small nuclear reactor (a low-power reactor without heat removal devices) usually has thermal power output under 100 W and an average in-core thermal neutron flux below 10 9 n/cm 2 s. Conventional activation analysis is restricted to determination of specific elements with large neutron capture cross sections in sizable samples. In-vivo prompt gamma activation analysis (IVPGAA) can be used for diagnosis of elemental composition of the human body, particularly the essential elements Ca, Cl, N, and P in the whole body, and toxic Cd and Hg in contaminated organs. In this chapter, activation analysis using an external neutron beam from the Tsing Hua Mobile Educational Reactor (THMER) for in vivo activation is described. Characteristics of the mobile reactor, in-vivo medical diagnosis, and radiation safety are emphasized. 17 refs, 12 figs, 3 tabs

  13. A methodology for strain-based fatigue reliability analysis

    International Nuclear Information System (INIS)

    Zhao, Y.X.

    2000-01-01

    A significant scatter of the cyclic stress-strain (CSS) responses should be noted for a nuclear reactor material, 1Cr18Ni9Ti pipe-weld metal. Existence of the scatter implies that a random cyclic strain applied history will be introduced under any of the loading modes even a deterministic loading history. A non-conservative evaluation might be given in the practice without considering the scatter. A methodology for strain-based fatigue reliability analysis, which has taken into account the scatter, is developed. The responses are approximately modeled by probability-based CSS curves of Ramberg-Osgood relation. The strain-life data are modeled, similarly, by probability-based strain-life curves of Coffin-Manson law. The reliability assessment is constructed by considering interference of the random fatigue strain applied and capacity histories. Probability density functions of the applied and capacity histories are analytically given. The methodology could be conveniently extrapolated to the case of deterministic CSS relation as the existent methods did. Non-conservative evaluation of the deterministic CSS relation and availability of present methodology have been indicated by an analysis of the material test results

  14. Evaluation Methodology for Void Swelling Susceptibility of APR1400 Reactor Vessel Internals for U.S. NRC Design Certification

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Hyeong Do; Lee, Do Hwan [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The APR1400 RVI (Reactor Vessel Internals) operates in harsh conditions, such as long term exposure to neutron irradiation, high temperatures, reactor coolant environment, and other operating loads. Therefore, even though the RVI components are mainly made of austenitic stainless steel which is well known to have good mechanical and corrosion-resistive properties, these operating conditions. The aging is characterized by a chromium depletion along grain boundaries of austenitic stainless steel, a decrease in ductility and fracture toughness of the steel, an increase in yield and ultimate strength of the steel, and a potential volume change due to void formation in the steel. For these reasons, under certain conditions of stress, temperature, and level of irradiation, the void swelling which is one of the challenging degradation mechanisms affecting the integrity of the RVI may appear at specific locations of the RVI, especially due to high neutron fluence and high temperature under localized gamma heating and low velocity of coolant flow. To assess the effects of operating neutron fluences, temperatures and stresses on the material properties changes and the susceptibility to the void swelling, the evaluation methodology of the APR1400 RVI components for U.S. NRC Design Certification was suggested in this paper. The approach to the evaluation is summarized as follows: 1. RVI component list of the APR1400 is collected. 2. Initial screening to determine the evaluation scope is completed using the design values of fluences. 3. Functionality assessments (radiation transport analysis, CFD analysis, structural analysis) are sequentially performed. 4. Susceptibility to the void swelling is identified through ANSYS/USERMAT module. KHNP believes that the proposed methodology which is based on the EPRI works for operating reactors is the best way to evaluate the void swelling for new reactors such as the APR1400.

  15. Calculation methodology of the thermal margin in the CAREM 25 reactor

    International Nuclear Information System (INIS)

    Mazufri, Claudio M.

    1995-01-01

    According to the nuclear reactors characteristics, can be found different methodologies to appraise the thermal margin available in the core. In the particular case of the CAREM (25 MWe) reactor, where the core is cooled by low mass flux and there are zones with positive steam quality, such evaluation is critical. Due to these characteristics, it was necessary to develop one proper methodology. In the present work, the different steps of that development are described: the election of figures of merit for measure the thermal margin, the hypothesis to use, the election of the critical heat flux prediction model, model qualification and the specification of the core wide procedure. In each step assume criteria are discussed. (author). 9 refs, 1 tab, 1 fig

  16. Methodology for the Integration of Safety in the Optimization of the Advanced Reactors Design

    International Nuclear Information System (INIS)

    Grinblat, P.; Schlamp, M.; Brasnarof, D.; Gimenez, M.

    2003-01-01

    In this work a new methodology has been developed and implemented for taking into account the safety levels of the reactor in a design optimization process, by using Design Maps.They represent a new technique for comparing critical variables in case an accidental sequenced happened, with limit values set by the design criteria.So a good balance is achieved, without allowing the economic performance search to cause a too risky reactor, and guaranteeing the competitiveness of it in spite of the safety costs.Up to the moment, there is no design tool able to accomplish this task in an integrated way.A computational tool based on this methodology has been implemented.These tool specially programmed routines allow carrying out the mentioned tasks

  17. Application of fault tree methodology to modeling of the AP1000 plant digital reactor protection system

    International Nuclear Information System (INIS)

    Teolis, D.S.; Zarewczynski, S.A.; Detar, H.L.

    2012-01-01

    The reactor trip system (RTS) and engineered safety features actuation system (ESFAS) in nuclear power plants utilizes instrumentation and control (IC) to provide automatic protection against unsafe and improper reactor operation during steady-state and transient power operations. During normal operating conditions, various plant parameters are continuously monitored to assure that the plant is operating in a safe state. In response to deviations of these parameters from pre-determined set points, the protection system will initiate actions required to maintain the reactor in a safe state. These actions may include shutting down the reactor by opening the reactor trip breakers and actuation of safety equipment based on the situation. The RTS and ESFAS are represented in probabilistic risk assessments (PRAs) to reflect the impact of their contribution to core damage frequency (CDF). The reactor protection systems (RPS) in existing nuclear power plants are generally analog based and there is general consensus within the PRA community on fault tree modeling of these systems. In new plants, such as AP1000 plant, the RPS is based on digital technology. Digital systems are more complex combinations of hardware components and software. This combination of complex hardware and software can result in the presence of faults and failure modes unique to a digital RPS. The United States Nuclear Regulatory Commission (NRC) is currently performing research on the development of probabilistic models for digital systems for inclusion in PRAs; however, no consensus methodology exists at this time. Westinghouse is currently updating the AP1000 plant PRA to support initial operation of plants currently under construction in the United States. The digital RPS is modeled using fault tree methodology similar to that used for analog based systems. This paper presents high level descriptions of a typical analog based RPS and of the AP1000 plant digital RPS. Application of current fault

  18. Design of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodology

    KAUST Repository

    Zhao, Zhenlong

    2014-04-01

    Chemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet, and depleted air and product streams at exit. The rotary wheel consists of a large number of micro-channels with oxygen carriers (OC) coated on the inner surface of the channel walls. In the CC application, the OC oxidizes the fuel while the channel is in the fuel zone to generate undiluted CO2, and is regenerated while the channel is in the air zone. In this two-part series, the effect of the reactor design parameters is evaluated and its performance with different OCs is compared. In Part 1, the design objectives and criteria are specified and the key parameters controlling the reactor performance are identified. The fundamental effects of the OC characteristics, the design parameters, and the operating conditions are studied. The design procedures are presented on the basis of the relative importance of each parameter, enabling a systematic methodology of selecting the design parameters and the operating conditions with different OCs. Part 2 presents the application of the methodology to the designs with the three commonly used OCs, i.e., nickel, copper, and iron, and compares the simulated performances of the designs. © 2013 Elsevier Ltd. All rights reserved.

  19. Finite element application to global reactor analysis

    International Nuclear Information System (INIS)

    Schmidt, F.A.R.

    1981-01-01

    The Finite Element Method is described as a Coarse Mesh Method with general basis and trial functions. Various consequences concerning programming and application of Finite Element Methods in reactor physics are drawn. One of the conclusions is that the Finite Element Method is a valuable tool in solving global reactor analysis problems. However, problems which can be described by rectangular boxes still can be solved with special coarse mesh programs more efficiently. (orig.) [de

  20. Theoretical and methodological approaches in discourse analysis.

    Science.gov (United States)

    Stevenson, Chris

    2004-01-01

    Discourse analysis (DA) embodies two main approaches: Foucauldian DA and radical social constructionist DA. Both are underpinned by social constructionism to a lesser or greater extent. Social constructionism has contested areas in relation to power, embodiment, and materialism, although Foucauldian DA does focus on the issue of power Embodiment and materialism may be especially relevant for researchers of nursing where the physical body is prominent. However, the contested nature of social constructionism allows a fusion of theoretical and methodological approaches tailored to a specific research interest. In this paper, Chris Stevenson suggests a framework for working out and declaring the DA approach to be taken in relation to a research area, as well as to aid anticipating methodological critique. Method, validity, reliability and scholarship are discussed from within a discourse analytic frame of reference.

  1. Theoretical and methodological approaches in discourse analysis.

    Science.gov (United States)

    Stevenson, Chris

    2004-10-01

    Discourse analysis (DA) embodies two main approaches: Foucauldian DA and radical social constructionist DA. Both are underpinned by social constructionism to a lesser or greater extent. Social constructionism has contested areas in relation to power, embodiment, and materialism, although Foucauldian DA does focus on the issue of power. Embodiment and materialism may be especially relevant for researchers of nursing where the physical body is prominent. However, the contested nature of social constructionism allows a fusion of theoretical and methodological approaches tailored to a specific research interest. In this paper, Chris Stevenson suggests a frame- work for working out and declaring the DA approach to be taken in relation to a research area, as well as to aid anticipating methodological critique. Method, validity, reliability and scholarship are discussed from within a discourse analytic frame of reference.

  2. Methodology of the On-Iine FoIIow Simulation of Pebble-bed High-temperature Reactors

    International Nuclear Information System (INIS)

    Xia Bing; Li Fu; Wei Chunlin; Zheng Yanhua; Chen Fubing; Zhang Jian; Guo Jiong

    2014-01-01

    The on-line fuel management is an essential feature of the pebble-bed high-temperature reactors (PB-HTRs), which is strongly coupled with the normal operation of the reactor. For the purpose of on-line analysis of the continuous shuffling scheme of numerous fuel pebbles, the follow simulation upon the real operation is necessary for the PB-HTRs. In this work, the on-line follow simulation methodology of the PB-HTRs’ operation is described, featured by the parallel treatments of both neutronics analysis and fuel cycling simulation. During the simulation, the operation history of the reactor is divided into a series of burn-up cycles according to the behavior of operation data, in which the steady-state neutron transport equations are solved and the diffusion theory is utilized to determine the physical features of the reactor core. The burn-up equations of heavy metals, fission products and neutron poisons including B-10, decoupled from the pebble flow term, are solved to analyze the burn-up process within a single burn-up cycle. The effect of pebble flow is simulated separately through a discrete fuel shuffling pattern confined by curved pebble flow channels, and the effect of multiple pass of the fuel is represented by logical batches within each spatial region of the core. The on-line thermal-hydraulics feedback is implemented for each bur-up cycle by using the real thermal-hydraulics data of the core operation. The treatment of control rods and absorber balls is carried out by utilizing a coupled neutron transport-diffusion calculation along with discontinuity factors. The physical models mentioned above are established mainly by using a revised version of the V.S.O.P program system. The real operation data of HTR-10 is utilized to verify the methodology presented in this work, which gives good agreement between simulation results and operation data. (author)

  3. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-01-01

    Full Text Available The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13 with favorable heating value (44,768 kJ/kg. ©2010 BCREC UNDIP. All rights reserved(Received: 10th July 2010, Revised: 18th September 2010, Accepted: 19th September 2010[How to Cite: I. Istadi, S. Suherman, L. Buchori. (2010. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 103-111. doi:10.9767/bcrec.5.2.797.103-111][DOI: http://dx.doi.org/10.9767/bcrec.5.2.797.103-111 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/797

  4. Accidental safety analysis methodology development in decommission of the nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. H.; Hwang, J. H.; Jae, M. S.; Seong, J. H.; Shin, S. H.; Cheong, S. J.; Pae, J. H.; Ang, G. R.; Lee, J. U. [Seoul National Univ., Seoul (Korea, Republic of)

    2002-03-15

    Decontamination and Decommissioning (D and D) of a nuclear reactor cost about 20% of construction expense and production of nuclear wastes during decommissioning makes environmental issues. Decommissioning of a nuclear reactor in Korea is in a just beginning stage, lacking clear standards and regulations for decommissioning. This work accident safety analysis in decommissioning of the nuclear facility can be a solid ground for the standards and regulations. For source term analysis for Kori-1 reactor vessel, MCNP/ORIGEN calculation methodology was applied. The activity of each important nuclide in the vessel was estimated at a time after 2008, the year Kori-1 plant is supposed to be decommissioned. And a methodology for risk analysis assessment in decommissioning was developed.

  5. Progress of electromagnetic analysis for fusion reactors

    International Nuclear Information System (INIS)

    Takagi, T.; Ruatto, P.; Boccaccini, L.V.

    1998-01-01

    This paper describes the recent progress of electromagnetic analysis research for fusion reactors including methods, codes, verification tests and some applications. Due to the necessity of the research effort for the structural design of large tokamak devices since the 1970's with the help of the introduction of new numerical methods and the advancement of computer technologies, three-dimensional analysis methods have become as practical as shell approximation methods. The electromagnetic analysis is now applied to the structural design of new fusion reactors. Some more modeling and verification tests are necessary when the codes are applied to new materials with nonlinear material properties. (orig.)

  6. Operational reactor physics analysis codes (ORPAC)

    International Nuclear Information System (INIS)

    Kumar, Jainendra; Singh, K.P.; Singh, Kanchhi

    2007-07-01

    For efficient, smooth and safe operation of a nuclear research reactor, many reactor physics evaluations are regularly required. As part of reactor core management the important activities are maintaining core reactivity status, core power distribution, xenon estimations, safety evaluation of in-pile irradiation samples and experimental assemblies and assessment of nuclear safety in fuel handling/storage. In-pile irradiation of samples requires a prior estimation of the reactivity load due to the sample, the heating rate and the activity developed in it during irradiation. For the safety of personnel handling irradiated samples the dose rate at the surface of shielded flask housing the irradiated sample should be less than 200 mR/Hr.Therefore, a proper shielding and radioactive cooling of the irradiated sample are required to meet the said requirement. Knowledge of xenon load variation with time (Startup-curve) helps in estimating Xenon override time. Monitoring of power in individual fuel channels during reactor operation is essential to know any abnormal power distribution to avoid unsafe situations. Complexities in the estimation of above mentioned reactor parameters and their frequent requirement compel one to use computer codes to avoid possible human errors. For efficient and quick evaluation of parameters related to reactor operations such as xenon load, critical moderator height and nuclear heating and reactivity load of isotope samples/experimental assembly, a computer code ORPAC (Operational Reactor Physics Analysis Codes) has been developed. This code is being used for regular assessment of reactor physics parameters in Dhruva and Cirus. The code ORPAC written in Visual Basic 6.0 environment incorporates several important operational reactor physics aspects on a single platform with graphical user interfaces (GUI) to make it more user-friendly and presentable. (author)

  7. Lead reactor strategy economical analysis

    International Nuclear Information System (INIS)

    Ciotti, Marco

    2013-01-01

    Conclusions: • A first attempt to evaluate LFR power plant electricity production cost has been performed; • Electricity price is similar to Gen III + plants; • The estimation accuracy is probably low; • Possible costs reduction could arise from coolant characteristics that may improve safety and simplicity by design; • Accident perception, not acceptable by public opinion, may be changed with low potential energy system (non exploding coolant); • Sustainability improvement could open to a better Public acceptance, depending on us. • Problems may arise in coupling a high capital cost low fuel cost plant in a grid with large amount of intermittent sources with priority dispatch. • Lead fast reactors can compete

  8. Requirements Analysis in the Value Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Conner, Alison Marie

    2001-05-01

    The Value Methodology (VM) study brings together a multidisciplinary team of people who own the problem and have the expertise to identify and solve it. With the varied backgrounds and experiences the team brings to the study, come different perspectives on the problem and the requirements of the project. A requirements analysis step can be added to the Information and Function Analysis Phases of a VM study to validate whether the functions being performed are required, either regulatory or customer prescribed. This paper will provide insight to the level of rigor applied to a requirements analysis step and give some examples of tools and techniques utilized to ease the management of the requirements and functions those requirements support for highly complex problems.

  9. Methodology for the evaluation of tolerability of defects in WWER-1000/V-320 reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Horacek, L.; Ruscak, M.

    1996-05-01

    The methodology provides guidelines for the assessment of tolerability of defects found during in-service inspection of the base material and overlay of WWER-1000/V-320 type reactor pressure vessels. With regard to the method of calculating the tolerability of defects and rules for the preparation and implementation of repairs, this methodology can also find use in the assessment of tolerability of defects in selected facilities of WWER-1000/V-320 type nuclear power plants provided that adequate input data concerning the materials, manufacturing technology, and operating load regime are available and that the facilities are made of ferrite/bainite type steels. This methodology should serve as a binding document underlying the development of a technical approach to provisions for a further operation of facilities in which intolerable defects have been found by nondestructive testing. (author)

  10. RAMS (Risk Analysis - Modular System) methodology

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, R.D.; Strenge, D.L.; Buck, J.W. [and others

    1996-10-01

    The Risk Analysis - Modular System (RAMS) was developed to serve as a broad scope risk analysis tool for the Risk Assessment of the Hanford Mission (RAHM) studies. The RAHM element provides risk analysis support for Hanford Strategic Analysis and Mission Planning activities. The RAHM also provides risk analysis support for the Hanford 10-Year Plan development activities. The RAMS tool draws from a collection of specifically designed databases and modular risk analysis methodologies and models. RAMS is a flexible modular system that can be focused on targeted risk analysis needs. It is specifically designed to address risks associated with overall strategy, technical alternative, and `what if` questions regarding the Hanford cleanup mission. RAMS is set up to address both near-term and long-term risk issues. Consistency is very important for any comparative risk analysis, and RAMS is designed to efficiently and consistently compare risks and produce risk reduction estimates. There is a wide range of output information that can be generated by RAMS. These outputs can be detailed by individual contaminants, waste forms, transport pathways, exposure scenarios, individuals, populations, etc. However, they can also be in rolled-up form to support high-level strategy decisions.

  11. Reactor applications of quantitative diffraction analysis

    International Nuclear Information System (INIS)

    Feguson, I.F.

    1976-09-01

    Current work in quantitative diffraction analysis was presented under the main headings of: thermal systems, fast reactor systems, SGHWR applications and irradiation damage. Preliminary results are included on a comparison of various new instrumental methods of boron analysis as well as preliminary new results on Zircaloy corrosion, and materials transfer in liquid sodium. (author)

  12. Seismic analysis of fast breeder reactor block

    International Nuclear Information System (INIS)

    Gantenbein, F.

    1990-01-01

    Seismic analysis of LMFBR reactor block is complex due mainly to the fluid structure interaction and the 3D geometry of the structure. Analytical methods which have been developed for this analysis will be briefly described in the paper and applications to a geometry similar to SPX1 will be shown

  13. Using of BEPU methodology in a final safety analysis report

    International Nuclear Information System (INIS)

    Menzel, Francine; Sabundjian, Gaiane; D'auria, Francesco; Madeira, Alzira A.

    2015-01-01

    The Nuclear Reactor Safety (NRS) has been established since the discovery of nuclear fission, and the occurrence of accidents in Nuclear Power Plants worldwide has contributed for its improvement. The Final Safety Analysis Report (FSAR) must contain complete information concerning safety of the plant and plant site, and must be seen as a compendium of NRS. The FSAR integrates both the licensing requirements and the analytical techniques. The analytical techniques can be applied by using a realistic approach, addressing the uncertainties of the results. This work aims to show an overview of the main analytical techniques that can be applied with a Best Estimated Plus Uncertainty (BEPU) methodology, which is 'the best one can do', as well as the ALARA (As Low As Reasonably Achievable) principle. Moreover, the paper intends to demonstrate the background of the licensing process through the main licensing requirements. (author)

  14. Using of BEPU methodology in a final safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Francine; Sabundjian, Gaiane, E-mail: fmenzel@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); D' auria, Francesco, E-mail: f.dauria@ing.unipi.it [Universita degli Studi di Pisa, Gruppo di Ricerca Nucleare San Piero a Grado (GRNSPG), Pisa (Italy); Madeira, Alzira A., E-mail: alzira@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The Nuclear Reactor Safety (NRS) has been established since the discovery of nuclear fission, and the occurrence of accidents in Nuclear Power Plants worldwide has contributed for its improvement. The Final Safety Analysis Report (FSAR) must contain complete information concerning safety of the plant and plant site, and must be seen as a compendium of NRS. The FSAR integrates both the licensing requirements and the analytical techniques. The analytical techniques can be applied by using a realistic approach, addressing the uncertainties of the results. This work aims to show an overview of the main analytical techniques that can be applied with a Best Estimated Plus Uncertainty (BEPU) methodology, which is 'the best one can do', as well as the ALARA (As Low As Reasonably Achievable) principle. Moreover, the paper intends to demonstrate the background of the licensing process through the main licensing requirements. (author)

  15. Development of the evaluation methodology for the material relocation behavior in the core disruptive accident of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Tobita, Yoshiharu; Kamiyama, Kenji; Tagami, Hirotaka; Matsuba, Ken-ichi; Suzuki, Tohru; Isozaki, Mikio; Yamano, Hidemasa; Morita, Koji; Guo, Liancheng; Zhang, Bin

    2014-01-01

    The in-vessel retention (IVR) of core disruptive accident (CDA) is of prime importance in enhancing safety characteristics of sodium-cooled fast reactors (SFRs). In the CDA of SFRs, molten core material relocates to the lower plenum of reactor vessel and may impose significant thermal load on the structures, resulting in the melt through of the reactor vessel. In order to enable the assessment of this relocation process and prove that IVR of core material is the most probable consequence of the CDA in SFRs, a research program to develop the evaluation methodology for the material relocation behavior in the CDA of SFRs has been conducted. This program consists of three developmental studies, namely the development of the analysis method of molten material discharge from the core region, the development of evaluation methodology of molten material penetration into sodium pool, and the development of the simulation tool of debris bed behavior. The analysis method of molten material discharge was developed based on the computer code SIMMER-III since this code is designed to simulate the multi-phase, multi-component fluid dynamics with phase changes involved in the discharge process. Several experiments simulating the molten material discharge through duct using simulant materials were utilized as the basis of validation study of the physical models in this code. It was shown that SIMMER-III with improved physical models could simulate the molten material discharge behavior including the momentum exchange with duct wall and thermal interaction with coolant. In order to develop evaluation methodology of molten material penetration into sodium pool, a series of experiments simulating jet penetration behavior into sodium pool in SFR thermal condition were performed. These experiments revealed that the molten jet was fragmented in significantly shorter penetration length than the prediction by existing correlation for light water reactor conditions, due to the direct

  16. Environmental impact statement analysis: dose methodology

    International Nuclear Information System (INIS)

    Mueller, M.A.; Strenge, D.L.; Napier, B.A.

    1981-01-01

    Standardized sections and methodologies are being developed for use in environmental impact statements (EIS) for activities to be conducted on the Hanford Reservation. Five areas for standardization have been identified: routine operations dose methodologies, accident dose methodology, Hanford Site description, health effects methodology, and socioeconomic environment for Hanford waste management activities

  17. Distributed computing and nuclear reactor analysis

    International Nuclear Information System (INIS)

    Brown, F.B.; Derstine, K.L.; Blomquist, R.N.

    1994-01-01

    Large-scale scientific and engineering calculations for nuclear reactor analysis can now be carried out effectively in a distributed computing environment, at costs far lower than for traditional mainframes. The distributed computing environment must include support for traditional system services, such as a queuing system for batch work, reliable filesystem backups, and parallel processing capabilities for large jobs. All ANL computer codes for reactor analysis have been adapted successfully to a distributed system based on workstations and X-terminals. Distributed parallel processing has been demonstrated to be effective for long-running Monte Carlo calculations

  18. Reactor sensor surveillance using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.

    1986-01-01

    Reactor noise signals, as measured by neutron detectors and process sensors, contain information about the dynamics of the process and sensor characteristics. The extent of sensor characteristics that can be determined from such measurements depends on the sensor type, the property of the process noise exciting the sensor and its location. This paper addresses degradation monitoring of temperature and pressure sensors, analysis methods and results of application to operating pressurized water reactors. In addition, the use of noise analysis for monitoring of pressure sensing lines in nuclear power plants is discussed

  19. LOCA analysis of the IRIS reactor

    International Nuclear Information System (INIS)

    Bajs, T.; Grgic, D.; Cavlina, N.

    2003-01-01

    The IRIS reactor (International Reactor Innovative and Secure) is an integral, light water cooled, medium power reactor. IRIS has been selected as an International Near Term Deployable (INTD) reactor, within the Generation IV International Forum activities. The IRIS concept addresses the key-requirements defined by the US DOE for next generation reactors, i.e. enhanced reliability and safety, and improved economics. It features innovative, advanced engineering, but it is firmly based on the proven technology of pressurized water reactors (PWR). An innovative safety approach has been developed to mitigate the IRIS response to small-to-medium Loss of Coolant Accident (LOCA). This strategy is based on the interaction of IRIS compact containment with the reactor vessel to limit initial blowdown, and on depressurization through the use of a passive Emergency Heat Removal System (EHRS). A small Automatic Depressurization System (ADS) provides supplementary depressurization capability. A pressure suppression system is provided to limit the pressure peak following the initial blowdown to well below the containment design limit. The ultimate result is that during a small-to-medium LOCA, the core remains covered for an extended period of time, without credit for emergency water injection or external core makeup. The IRIS LOCA response is based on 'maintaining water inventory' rather than on the principle of safety injection. This novel safety approach poses significant issues for computational and analysis methods since the IRIS vessel and containment are strongly coupled, and the system response is based on the interaction between the two. The small break LOCA was calculated using RELAP5/mod3.3 and GOTHIC codes. Break of the largest line connected to the IRIS Reactor Pressure Vessel (RPV) was analyzed. The results of the calculations confirmed good performance of the IRIS system during LOCA. (author)

  20. Economic assessment of the IRIS reactor for deployment in Brazil using INPRO methodology

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando Joao Agostinho

    2009-01-01

    This paper presents the main results of the evaluation of the economic competitiveness of the International Reactor Innovative and Secure (IRIS) for deployment in Brazil using the assessment methodology developed under the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), co-ordinated by the International Atomic Energy Agency (IAEA). INPRO was initiated in 2001 and has the main objective of helping to ensure that nuclear energy will be available to contribute in a sustainable manner to the energy needs of the 21st century. Among its missions are the development of a methodology to assess innovative nuclear energy systems (INS) on a global, regional and national basis, and to facilitate the co-operation among IAEA Member States for planning the development and deployment of INS. Brazil joined INPRO since its beginning and in 2005 submitted a proposal for the screening assessment of two small-sized integral-type PWR reactors as alternative components of an INS completed with a conventional open nuclear fuel cycle based on enriched uranium. This paper outlines the rationale and the main results of the economic assessment of the IRIS-based INS completed in August 2008. The study concluded that IRIS reference design satisfies most of INPRO criteria in the area of economics. (author)

  1. Advanced methodology to simulate boiling water reactor transient using coupled thermal-hydraulic/neutron-kinetic codes

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Christoph Oliver

    2016-06-13

    -sets) predicted by SCALE6/TRITON and CASMO. Thereby the coupled TRACE/PARCS simulations reproduced the single fuel assembly depletion and stand-alone PARCS results. A turbine trip event, occurred at a BWR plant of type 72, has been investigated in detail using the cross-section libraries generated with SCALE/TRITON and CASMO. Thereby the evolution of the integral BWR parameters predicted by the coupled codes using cross-sections from SCALE/TRITON is very close to the global trends calculated using CASMO cross-sections. Further, to implement uncertainty quantifications, the PARCS reactor dynamic code was extended (uncertainty module) to facilitate the consideration of the uncertainty of neutron kinetic parameters in coupled TRACE/PARCS simulations. For a postulated pressure pertubation, an uncertainty and sensitivity study was performed using TRACE/PARCS and SUSA. The obtained results illustrated the capability of such methodologies which are still under development. Based on this analysis, the uncertainty band for key-parameters, e.g. reactivity, as well as the importance ranking of reactor kinetics parameters could be predicted and identified for this accident scenario.

  2. Application of linearized model to the stability analysis of the pressurized water reactor

    International Nuclear Information System (INIS)

    Li Haipeng; Huang Xiaojin; Zhang Liangju

    2008-01-01

    A Linear Time-Invariant model of the Pressurized Water Reactor is formulated through the linearization of the nonlinear model. The model simulation results show that the linearized model agrees well with the nonlinear model under small perturbation. Based upon the Lyapunov's First Method, the linearized model is applied to the stability analysis of the Pressurized Water Reactor. The calculation results show that the methodology of linearization to stability analysis is conveniently feasible. (authors)

  3. Improved best estimate plus uncertainty methodology, including advanced validation concepts, to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Unal, C.; Williams, B.; Hemez, F.; Atamturktur, S.H.; McClure, P.

    2011-01-01

    Research highlights: → The best estimate plus uncertainty methodology (BEPU) is one option in the licensing of nuclear reactors. → The challenges for extending the BEPU method for fuel qualification for an advanced reactor fuel are primarily driven by schedule, the need for data, and the sufficiency of the data. → In this paper we develop an extended BEPU methodology that can potentially be used to address these new challenges in the design and licensing of advanced nuclear reactors. → The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. → The methodology includes a formalism to quantify an adequate level of validation (predictive maturity) with respect to existing data, so that required new testing can be minimized, saving cost by demonstrating that further testing will not enhance the quality of the predictive tools. - Abstract: Many evolving nuclear energy technologies use advanced predictive multiscale, multiphysics modeling and simulation (M and S) capabilities to reduce the cost and schedule of design and licensing. Historically, the role of experiments has been as a primary tool for the design and understanding of nuclear system behavior, while M and S played the subordinate role of supporting experiments. In the new era of multiscale, multiphysics computational-based technology development, this role has been reversed. The experiments will still be needed, but they will be performed at different scales to calibrate and validate the models leading to predictive simulations for design and licensing. Minimizing the required number of validation experiments produces cost and time savings. The use of multiscale, multiphysics models introduces challenges in validating these predictive tools - traditional methodologies will have to be modified to address these challenges. This paper gives the basic aspects of a methodology that can potentially be used to address these new challenges in

  4. Characterization of decommissioned reactor internals: Monte Carlo analysis technique

    International Nuclear Information System (INIS)

    Reid, B.D.; Love, E.F.; Luksic, A.T.

    1993-03-01

    This study discusses computer analysis techniques for determining activation levels of irradiated reactor component hardware to yield data for the Department of Energy's Greater-Than-Class C Low-Level Radioactive Waste Program. The study recommends the Monte Carlo Neutron/Photon (MCNP) computer code as the best analysis tool for this application and compares the technique to direct sampling methodology. To implement the MCNP analysis, a computer model would be developed to reflect the geometry, material composition, and power history of an existing shutdown reactor. MCNP analysis would then be performed using the computer model, and the results would be validated by comparison to laboratory analysis results from samples taken from the shutdown reactor. The report estimates uncertainties for each step of the computational and laboratory analyses; the overall uncertainty of the MCNP results is projected to be ±35%. The primary source of uncertainty is identified as the material composition of the components, and research is suggested to address that uncertainty

  5. Thermal aging of some decommissioned reactor components and methodology for life prediction

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-03-01

    Since a realistic aging of cast stainless steel components for end-of-life or life-extension conditions cannot be produced, it is customary to simulate the thermal aging embrittlement by accelerated aging at ∼400 degree C. In this investigation, field components obtained from decommissioned reactors have been examined after service up to 22 yr to provide a benchmark of the laboratory simulation. The primary and secondary aging processes were found to be identical to those of the laboratory-aged specimens, and the kinetic characteristics were also similar. The extent of the aging embrittlement processes and other key factors that are known to influence the embrittlement kinetics have been compared for the decommissioned reactor components and materials aged under accelerated conditions. On the basis of the study, a mechanistic understanding of the causes of the complex behavior in kinetics and activation energy of aging (i.e., the temperature dependence of aging embrittlement between the accelerated and reactor-operating conditions) is presented. A mechanistic correlation developed thereon is compared with a number of available empirical correlations to provide an insight for development of a better methodology of life prediction of the reactor components. 18 refs., 18 figs., 5 tabs

  6. The PEC reactor. Safety analysis: Detailed reports

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In the safety-analysis of the PEC Brasimone reactor (Italy), attention was focused on the role of plant-incident analysis during the design stage and the conclusions reached. The analysis regarded the following: thermohydraulic incidents at full power; incidents with the reactor shut down; reactivity incidents; core local faults; analysis of fuel-handling incidents; engineered safeguards and passive safety features; coolant leakage and sodium fires; research and development studies on the seismic behaviour of the PEC fast reactor; generalized sodium fire; severe accidents, accident sequences with shudown; reference accident. Both the theoretical and experimental analyses demonstrated the adequacy of the design of the PEC fast reactor, aimed at minimizing the consequences of a hypothetical disruptive core accident with mechanical energy release. It was shown that the containment barriers were sized correctly and that the residual heat from a disassembled core would be removed. The re-evaluation of the source term emphasized the conservative nature of the hypotheses assumed in the preliminary safety analysis for calculating the risk to the public.

  7. RIA Analysis of Unprotected TRIGA Reactor

    Directory of Open Access Journals (Sweden)

    M.H. Altaf

    2017-07-01

    Full Text Available An RIA (reactivity initiated accident analysis has been carried out for the TRIGA Mark II research reactor considering both step and ramp reactivity ranges within 0.5 % dk/k (< $1 to 2.0 % dk/k (>$2. The insertion time was set at 10 s. Based on the fact that a reactor becomes unprotected if scram does not work at the event of danger, to define unprotected conditions, the time to actuate scram (trip was taken as close to total simulation time. In this long duration of scram inactivity, it is obtained from the present analysis that the reactor remained safe to up to 1.8 % dk/k ($2.57 for step reactivity and 1.99 % dk/k ($2.84 for ramp reactivity. In addition to negative temperature coefficient of reativity, probably the longer time of reactivity insertion keeps TRIGA safe even at larger magnitudes of reactivity during unprotected reactor transients. Coupled point kinetics, neutronics, and thermal hydraulics code EUREKA-2/R has been utilized for this work. It appears that EUREKA-2/RR predicts the sequence of unprotected transient scenario of TRIGA core with good approximation and the results will definitely be helpful for the reactor operators.

  8. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Jayalal, M.L.; Ramachandran, Suja; Rathakrishnan, S.; Satya Murty, S.A.V.; Sai Baba, M.

    2015-01-01

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  9. Chemical analysis of reactor and commercial columbium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The methods cover the chemical analysis of reactor and commercial columbium having chemical compositions within specified limits. The following analytical procedures are discussed along with apparatus, reagents, photometric practice, safety precautions, sampling, and rounding calculated values: nitrogen, by distillation (photometric) method; molybdenum and tungsten by the dithiol (photometric) method; iron by the 1,10-phenanthroline (photometric) method

  10. Performances on nuclear activation analysis by TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Capannesi, G.; Rosada, A.

    1986-01-01

    Progresses in methodological research and connected applications in the field of activation analysis are introduced. Some peculiar characteristics on the TRIGA MARK II reactor have enabled the possibility of obtaining interesting results. The particular, the rotating radiation device Lazy Susan, with a capability of 40 positionings, permits homogeneity in neutron flux and energy spectrum stability within 15%. High level of precision and accuracy are obtained in analytic. Applications of major interest have been: - reference material certification; - forensic applications; - electrolytic cell productivity evaluation. The TRIGA MARK II reactor is equipped with a thermal column throughout a D 2 O diaphragm with a thickness of 70 cm. The available neutron flux has no fast and epithermal components. Via this facility a method has been tested for the instrumental determination of Al in Si metal of solar and electronic degree. (author)

  11. Severe accident analysis for level 2 PSA of SMART reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Yong; Lee, Jeong Hun; Kim, Jong Uk; Yoo, Tae Geun; Chung, Soon Il; Kim, Min Gi [FNC Technology Co., Seoul (Korea, Republic of)

    2010-12-15

    The objectives of this study are to produce data for level 2 PSA and evaluation results of severe accident by analyzing severe accident sequence of transient events, producing fault tree of containment systems and evaluating direct containment heating of the SMART. In this project, severe accident analysis results were produced for general transient, loss of feedwater, station blackout, and steam line break events, and based on the results, design safety of SMART was verified. Also, direct containment heating phenomenon of the SMART was evaluated using TCE methodology. For level 2 PSA, fault tree of the containment isolation system, reactor cavity flooding system, plant chilled water system, and reactor containment building HVAC system was produced and analyzed

  12. Studying creativity training programs: A methodological analysis

    DEFF Research Database (Denmark)

    Valgeirsdóttir, Dagný; Onarheim, Balder

    2017-01-01

    Throughout decades of creativity research, a range of creativity training programs have been developed, tested, and analyzed. In 2004 Scott and colleagues published a meta‐analysis of all creativity training programs to date, and the review presented here sat out to identify and analyze studies...... published since the seminal 2004 review. Focusing on quantitative studies of creativity training programs for adults, our systematic review resulted in 22 publications. All studies were analyzed, but comparing the reported effectiveness of training across studies proved difficult due to methodological...... inconsistencies, variations in reporting of results as well as types of measures used. Thus a consensus for future studies is called for to answer the question: Which elements make one creativity training program more effective than another? This is a question of equal relevance to academia and industry...

  13. Methodologies for risk analysis in slope instability

    International Nuclear Information System (INIS)

    Bernabeu Garcia, M.; Diaz Torres, J. A.

    2014-01-01

    This paper is an approach to the different methodologies used in conducting landslide risk maps so that the reader can get a basic knowledge about how to proceed in its development. The landslide hazard maps are increasingly demanded by governments. This is because due to climate change, deforestation and the pressure exerted by the growth of urban centers, damage caused by natural phenomena is increasing each year, making this area of work a field of study with increasing importance. To explain the process of mapping a journey through each of the phases of which it is composed is made: from the study of the types of slope movements and the necessary management of geographic information systems (GIS) inventories and landslide susceptibility analysis, threat, vulnerability and risk. (Author)

  14. Reaction kinetic analysis of reactor surveillance data

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiie, T., E-mail: yoshiie@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka-fu 590-0494 (Japan); Kinomura, A. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka-fu 590-0494 (Japan); Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2017-02-15

    In the reactor pressure vessel surveillance data of a European-type pressurized water reactor (low-Cu steel), it was found that the concentration of matrix defects was very high, and a large number of precipitates existed. In this study, defect structure evolution obtained from surveillance data was simulated by reaction kinetic analysis using 15 rate equations. The saturation of precipitation and the growth of loops were simulated, but it was not possible to explain the increase in DBTT on the basis of the defect structures. The sub-grain boundary segregation of solutes was discussed for the origin of the DBTT increase.

  15. Simplified methodology for control cell constant calculations of the reactor cores for the space kinetics

    International Nuclear Information System (INIS)

    Santos, Rubens Souza dos; Martinez, Aquilino Senra; Alvim, Antonio Carlos Marques

    2002-01-01

    In this work is presented a methodology which focuses the distribution of neutron absorber rods in nuclear reactor power plants, for utilizing in space kinetic calculations, principally in the cluster ejection transients of control rods. A numerical model for macroscopic constant calculations based on the knowledge of the neutron flux without the control rods is proposed, as alternative to the analytical models, based on the hypothesis of the null current on the cell super boundaries. The proposed model in this work has itself showed adequate to deal with problems with strong space dependence, once that the model showed consistence in the global average built in the analytical model. (author)

  16. Safety Analysis for Power Reactor Protection System

    International Nuclear Information System (INIS)

    Eisawy, E.A.; Sallam, H.

    2012-01-01

    The main function of a Reactor Protection System (RPS) is to safely shutdown the reactor and prevents the release of radioactive materials. The purpose of this paper is to present a technique and its application for used in the analysis of safety system of the Nuclear Power Plant (NPP). A more advanced technique has been presented to accurately study such problems as the plant availability assessments and Technical Specifications evaluations that are becoming increasingly important. The paper provides the Markov model for the Reactor Protection System of the NPP and presents results of model evaluations for two testing policies in technical specifications. The quantification of the Markov model provides the probability values that the system will occupy each of the possible states as a function of time.

  17. Study and implementation of the CADIS methodology to research reactor shielding design

    International Nuclear Information System (INIS)

    Souza, Gregorio S.; Shorto, Julian M.B.; Santos, Adimir dos

    2013-01-01

    The Consistent Adjoint Driven Importance Sampling (CADIS) is a methodology that basically uses source biasing and a mesh-based importance map. Therefore, to make the best use of an importance map, the map must be consistent with the source biasing. To achieve this consistency, a Sn calculation could be made to improve the importance map and the computational performance. The MAVRIC (Monaco with Automated Variance Reduction using Importance Calculations) code does that and this work intends to study the code options to generate the importance map. A pool type 10 MW research reactor was designed in a simple way just to study the prompt gamma rays penetration in the concrete and therefore study the CADIS methodology applied to point detectors and mesh tallies. By keeping constant the simulation time and the CPU (Central Processing Unit) power a significant improvement was achieved in the relative errors for the point detectors and for the mesh tally. (author)

  18. Comparative analysis of nuclear reactor control system designs

    International Nuclear Information System (INIS)

    Russcher, G.E.

    1975-01-01

    Control systems are vital to the safe operation of nuclear reactors. Their seismic design requirements are some of the most important criteria governing reactor system design evaluation. Consequently, the seismic analysis for nuclear reactors is directed to include not only the mechanical and structural seismic capabilities of a reactor, but the control system functional requirements as well. In the study described an alternate conceptual design of a safety rod system was compared with a prototypic system design to assess their relative functional reliabilities under design seismic conditions. The comparative methods utilized standard success tree and decision tree techniques to determine the relative figures of merit. The study showed: (1) The methodology utilized can provide both qualitative and quantitative bases for design decisions regarding seismic functional capabilities of two systems under comparison, (2) the process emphasizes the visibility of particular design features that are subject to common mode failure while under seismic loading, and (3) minimal improvement was shown to be available in overall system seismic performance of an independent conceptual design, however, it also showed the system would be subject to a new set of operational uncertainties which would have to be resolved by extensive development programs

  19. Application of transient analysis methodology to heat exchanger performance monitoring

    International Nuclear Information System (INIS)

    Rampall, I.; Soler, A.I.; Singh, K.P.; Scott, B.H.

    1994-01-01

    A transient testing technique is developed to evaluate the thermal performance of industrial scale heat exchangers. A Galerkin-based numerical method with a choice of spectral basis elements to account for spatial temperature variations in heat exchangers is developed to solve the transient heat exchanger model equations. Testing a heat exchanger in the transient state may be the only viable alternative where conventional steady state testing procedures are impossible or infeasible. For example, this methodology is particularly suited to the determination of fouling levels in component cooling water system heat exchangers in nuclear power plants. The heat load on these so-called component coolers under steady state conditions is too small to permit meaningful testing. An adequate heat load develops immediately after a reactor shutdown when the exchanger inlet temperatures are highly time-dependent. The application of the analysis methodology is illustrated herein with reference to an in-situ transient testing carried out at a nuclear power plant. The method, however, is applicable to any transient testing application

  20. Methodology to analysis of aging processes of containment spray system

    International Nuclear Information System (INIS)

    Borges, D. da Silva; Lava, D.D.; Moreira, M. de L.; Ferreira Guimarães, A.C.; Fernandes da Silva, L.

    2015-01-01

    This paper presents a contribution to the study of aging process of components in commercial plants of Pressurized Water Reactors (PWRs). The motivation for write this work emerged from the current perspective nuclear. Numerous nuclear power plants worldwide have an advanced operating time. This problem requires a process to ensure the confiability of the operative systems of these plants, because of this, it is necessary a methodologies capable of estimate the failure probability of the components and systems. In addition to the safety factors involved, such methodologies can to be used to search ways to ensure the extension of the life cycle of nuclear plants, which inevitably will pass by the decommissioning process after the operating time of 40 years. This process negatively affects the power generation, besides demanding an enormous investment for such. Thus, this paper aims to present modeling techniques and sensitivity analysis, which together can generate an estimate of how components, which are more sensitive to the aging process, will behave during the normal operation cycle of a nuclear power plant. (authors)

  1. Consequence analysis for nuclear reactors, Yongbyon

    International Nuclear Information System (INIS)

    Kang, Taewook; Jae, Moosung

    2017-01-01

    Since the Fukushima nuclear power plant accidents in 2011, there have been an increased public anxiety about the safety of nuclear power plants in Korea. The lack of safeguards and facility aging issues at the Yongbyon nuclear facilities have increased doubts. In this study, the consequence analysis for the 5-MWe graphite-moderated reactor in North Korea was performed. Various accident scenarios including accidents at the interim spent fuel pool in the 5-MWe reactor have been developed and evaluated quantitatively. Since data on the design and safety system of nuclear facilities are currently insufficient, the release fractions were set by applying the alternative source terms made for utilization in the analysis of a severe accident by integrating the results of studies of severe accidents occurred before. The calculation results show the early fatality zero deaths and latent cancer fatality about only 13 deaths in Seoul. Thus, actual impacts of a radiological release will be psychological in terms of downwind perceptions and anxiety on the part of potentially exposed populations. Even considering the simultaneous accident occurrence in both 5-MWe graphite-moderated reactor and 100-MWt light water reactor, the consequence analysis using the MACCS2 code shows no significant damage to people in South Korea. (author)

  2. Analysis of dynamic stability and safety of the reactor system by reactor simulator

    International Nuclear Information System (INIS)

    Raisic, N.

    1963-11-01

    This document defines the approximations done for establishing a mathematical model of a reactor. Since the model should be used for safety analysis, it was important to choose a mathematical model less stable than the reactor itself. The analysis was performed on the analog computer RAS. Results obtained and conclusions concerned with three possible reactor accidents are presented [sr

  3. Computational methodology of sodium-water reaction phenomenon in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Takata, Takashi; Yamaguchi, Akira; Uchibori, Akihiro; Ohshima, Hiroyuki

    2009-01-01

    A new computational methodology of sodium-water reaction (SWR), which occurs in a steam generator of a liquid-sodium-cooled fast reactor when a heat transfer tube in the steam generator fails, has been developed considering multidimensional and multiphysics thermal hydraulics. Two kinds of reaction models are proposed in accordance with a phase of sodium as a reactant. One is the surface reaction model in which water vapor reacts directly with liquid sodium at the interface between the liquid sodium and the water vapor. The reaction heat will lead to a vigorous evaporation of liquid sodium, resulting in a reaction of gas-phase sodium. This is designated as the gas-phase reaction model. These two models are coupled with a multidimensional, multicomponent gas, and multiphase thermal hydraulics simulation method with compressibility (named the 'SERAPHIM' code). Using the present methodology, a numerical investigation of the SWR under a pin-bundle configuration (a benchmark analysis of the SWAT-1R experiment) has been carried out. As a result, the maximum gas temperature of approximately 1,300degC is predicted stably, which lies within the range of previous experimental observations. It is also demonstrated that the maximum temperature of the mass weighted average in the analysis agrees reasonably well with the experimental result measured by thermocouples. The present methodology will be promising to establish a theoretical and mechanical modeling of secondary failure propagation of heat transfer tubes due to such as an overheating rupture and a wastage. (author)

  4. RB reactor noise analysis; Analiza sumova reaktora RB

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Velickovic, Lj; Markovic, V; Jovanovic, S [Institut za nuklearne nauke Boris Kidric, Vinca, Beograd (Yugoslavia)

    1964-07-01

    Statistical fluctuations of reactivity represent reactor noise. Analysis of reactor noise enables determining a series of reactor kinetic parameters. Fluctuations of power was measured by ionization chamber placed next to the tank of the RB reactor. The signal was digitized by an analog-digital converter. After calculation of the mean power, 3000 data obtained by sampling were analysed.

  5. Advancements in reactor physics modelling methodology of Monte Carlo Burnup Code MCB dedicated to higher simulation fidelity of HTR cores

    International Nuclear Information System (INIS)

    Cetnar, Jerzy

    2014-01-01

    The recent development of MCB - Monte Carlo Continuous Energy Burn-up code is directed towards advanced description of modern reactors, including double heterogeneity structures that exist in HTR-s. In this, we exploit the advantages of MCB methodology in integrated approach, where physics, neutronics, burnup, reprocessing, non-stationary process modeling (control rod operation) and refined spatial modeling are carried in a single flow. This approach allows for implementations of advanced statistical options like analysis of error propagation, perturbation in time domain, sensitivity and source convergence analyses. It includes statistical analysis of burnup process, emitted particle collection, thermal-hydraulic coupling, automatic power profile calculations, advanced procedures of burnup step normalization and enhanced post processing capabilities. (author)

  6. Sensitivity analysis of the reactor safety study. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.J.; Rasmussen, N.C.; Hinkle, W.D.

    1979-01-01

    The Reactor Safety Study (RSS) or Wash 1400 developed a methodology estimating the public risk from light water nuclear reactors. In order to give further insights into this study, a sensitivity analysis has been performed to determine the significant contributors to risk for both the PWR and BWR. The sensitivity to variation of the point values of the failure probabilities reported in the RSS was determined for the safety systems identified therein, as well as for many of the generic classes from which individual failures contributed to system failures. Increasing as well as decreasing point values were considered. An analysis of the sensitivity to increasing uncertainty in system failure probabilities was also performed. The sensitivity parameters chosen were release category probabilities, core melt probability, and the risk parameters of early fatalities, latent cancers and total property damage. The latter three are adequate for describing all public risks identified in the RSS. The results indicate reductions of public risk by less than a factor of two for factor reductions in system or generic failure probabilities as high as one hundred. There also appears to be more benefit in monitoring the most sensitive systems to verify adherence to RSS failure rates than to backfitting present reactors. The sensitivity analysis results do indicate, however, possible benefits in reducing human error rates

  7. Numerical analysis of reactor internals under hydrodynamic loads

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Da Hye; Chang, Yoon Suk [Kyung Hee Univ., Yongin (Korea, Republic of); Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In the present study, six kinds of major equipment of a typical reactor internals were identified by incorporating recent research trend. Based on this, detailed numerical models were developed and used for establishment of optimum analysis methodology subjected to hydrodynamic loads. As a result, stress values of the major equipment were calculated through the acoustic-structure analysis under periodic hydrodynamic load and the turbulence-structure analysis under random hydrodynamic load. The numerical analysis scheme can be used for development of preventive action plan and management procedures of the reactor internals. Reactor internals installed in a pressure vessel have been exposed to harsh environment such as high neutron irradiation and temperature with complex fluid flow. As the increase of operational years of NPPs(Nuclear Power Plants), possibility of functional loss of the reactor internals is increased due to degradation caused by radiation embrittlement, thermal aging, fatigue, corrosion and FIV(Flow-Induced Vibration) etc. In practice, defects were detected at core support structure as well as upper and lower parts of structural assembly in European and United States NPPs. Recently, in a GALL(Generic Aging Lessons Learned) report, US NRC(Nuclear Regulatory Commission) identified reactor internals as a high priority component and addressed relevant management programs. In Korea, similar activities have been conducted for long-term operation beyond design lifetime but most of them were limited to qualitative evaluation based on examination and maintenance programs. Therefore, not only to reduce repair and replacement efforts but also to secure the stability of NPPs, necessity for development of quantitative evaluation technique as well as establishment of preventive action plan and management procedures is on the rise. The FIV represents the structural vibration phenomenon induced by liquid flow and generally occurs at contact surfaces. In the present

  8. Fault tree analysis of a research reactor

    International Nuclear Information System (INIS)

    Hall, J.A.; O'Dacre, D.F.; Chenier, R.J.; Arbique, G.M.

    1986-08-01

    Fault Tree Analysis Techniques have been used to assess the safety system of the ZED-2 Research Reactor at the Chalk River Nuclear Laboratories. This turned out to be a strong test of the techniques involved. The resulting fault tree was large and because of inter-links in the system structure the tree was not modularized. In addition, comprehensive documentation was required. After a brief overview of the reactor and the analysis, this paper concentrates on the computer tools that made the job work. Two types of tools were needed; text editing and forms management capability for large volumes of component and system data, and the fault tree codes themselves. The solutions (and failures) are discussed along with the tools we are already developing for the next analysis

  9. Design and analysis of prestressed reactor vessels

    International Nuclear Information System (INIS)

    Burrow, R.E.D.

    1978-01-01

    This review is intended to draw attention to subjects of interest from papers given at two sessions of the SMiRT 4 conference. The first of these is the structural engineering of prestressed reactor vessels. The topics include developments in the general design of prestressed vessels, structural analysis of PCVRs, model tests and design of penetration, closures and liners for PCVRs. The question of gas cracks was amongst other issues raised. The second of the sessions was concerned with loading conditions and structural analysis of reactor containment. Reference is made to a variety of topics discussed in this session. Particular attention is given to the effects caused by missiles. In concluding, the reviewer suggests the need for a critical assessment of the existing mass of information to sort out the essentials and to bring back some simplicity into design analysis. (UK)

  10. A discussion about simplified methodologies for failure assessment of nuclear reactor components

    International Nuclear Information System (INIS)

    Cruz, J.R.B.; Andrade, A.H.P. de; Landes, J.D.

    1996-01-01

    Failure of nuclear reactor components like pressure vessels and piping must be avoided for all phases of reactor operation. Especially severe loading conditions come from postulated accident scenarios during which the integrity of the component is required. The use of Fracture Mechanics concepts to investigate the mechanical behavior of flawed structures in the non-linear regime is a complex subject due to the fact that the crack driving force (expressed in terms of J or CTOD) is not /only a function of the cracked geometry, but depends also on the plastic flow properties of the material. Since the numerical solutions by the finite element method are expensive and time consuming, the existence of simplified engineering procedures is of great relevance. These allow a ready identification of the main parameters affecting the crack driving force, and permit a fast and simple evaluation of the structural integrity of the cracked component. This paper presents an overview of the major simplified ductile fracture methodologies that have been proposed in the literature trying to point out their similarities, strong points and negative aspects. Once the best characteristics of each method are identified, they could then be combined to develop a single methodology, one that would be both easy to use and capable of making accurate failure predictions

  11. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Bambang Tri Nugroho

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.23.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.23.23-31

  12. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31.  doi:10.9767/bcrec.4.1.7115.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.7115.23-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7115

  13. Development of probabilistic risk assessment methodology against extreme snow for sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Hidemasa, E-mail: yamano.hidemasa@jaea.go.jp; Nishino, Hiroyuki; Kurisaka, Kenichi

    2016-11-15

    Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.

  14. Development of probabilistic risk assessment methodology against extreme snow for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi

    2016-01-01

    Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10"−"6/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10"−"6/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.

  15. Quantifying reactor safety margins: Part 1: An overview of the code scaling, applicability, and uncertainty evaluation methodology

    International Nuclear Information System (INIS)

    Boyack, B.E.; Duffey, R.B.; Griffith, P.

    1988-01-01

    In August 1988, the Nuclear Regulatory Commission (NRC) approved the final version of a revised rule on the acceptance of emergency core cooling systems (ECCS) entitled ''Emergency Core Cooling System; Revisions to Acceptance Criteria.'' The revised rule states an alternate ECCS performance analysis, based on best-estimate methods, may be used to provide more realistic estimates of plant safety margins, provided the licensee quantifies the uncertainty of the estimates and included that uncertainty when comparing the calculated results with prescribed acceptance limits. To support the revised ECCS rule, the NRC and its contractors and consultants have developed and demonstrated a method called the Code Scaling, Applicability, and Uncertainty (CSAU) evaluation methodology. It is an auditable, traceable, and practical method for combining quantitative analyses and expert opinions to arrive at computed values of uncertainty. This paper provides an overview of the CSAU evaluation methodology and its application to a postulated cold-leg, large-break loss-of-coolant accident in a Westinghouse four-loop pressurized water reactor with 17 /times/ 17 fuel. The code selected for this demonstration of the CSAU methodology was TRAC-PF1/MOD1, Version 14.3. 23 refs., 5 figs., 1 tab

  16. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  17. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  18. Computer graphics in reactor safety analysis

    International Nuclear Information System (INIS)

    Fiala, C.; Kulak, R.F.

    1989-01-01

    This paper describes a family of three computer graphics codes designed to assist the analyst in three areas: the modelling of complex three-dimensional finite element models of reactor structures; the interpretation of computational results; and the reporting of the results of numerical simulations. The purpose and key features of each code are presented. The graphics output used in actual safety analysis are used to illustrate the capabilities of each code. 5 refs., 10 figs

  19. Light-water reactor safety analysis codes

    International Nuclear Information System (INIS)

    Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.

    1980-01-01

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented

  20. Research reactor operations for neutron activation analysis

    International Nuclear Information System (INIS)

    Tv'ehlov, Yu.

    2002-01-01

    The IAEA Special Manual devoted to quality control during neutron activation analysis (NAA) on research and test reactors is discussed. Three parts of the publication involve presentation of common rules for performance of NAA, quantitative and qualitative analyses, statistic and systematic errors, safety regulations and radioactive waste management. Besides, the publication contains practical manual for the performance of NAA, and examples of different NAA regulating registration forms are presented [ru

  1. N Reactor updated safety analysis report, NUSAR

    International Nuclear Information System (INIS)

    1978-01-01

    An update of the N Reactor safety analysis is presented to reconfirm that the continued operation does not pose undue risk to DOE personnel and property, the public, or the environment. A reanalysis of LOCA and reactivity transients utilizing current codes and methods is made. The principal aspects of the overall submission, a general description, and site characteristics including geography and demography, nearby industrial, transportation and military facilities, meteorology, hydraulic engineering, and geology and seismology are described

  2. Nodal method for fast reactor analysis

    International Nuclear Information System (INIS)

    Shober, R.A.

    1979-01-01

    In this paper, a nodal method applicable to fast reactor diffusion theory analysis has been developed. This method has been shown to be accurate and efficient in comparison to highly optimized finite difference techniques. The use of an analytic solution to the diffusion equation as a means of determining accurate coupling relationships between nodes has been shown to be highly accurate and efficient in specific two-group applications, as well as in the current multigroup method

  3. Methodologies to assess PWSCC susceptibility of primary component Alloy 600 locations in pressurized water reactors

    International Nuclear Information System (INIS)

    Rao, G.V.

    1993-01-01

    Methodologies to assess susceptibility to Primary Water Stress Corrosion Cracking (PWSCC) of Alloy 600 component locations in the Primary System of Pressurized Water Reactors are presented. The assessment methodologies are presented. The assessment methodologies are based on Relative Susceptibility Index (RSI) and Cumulative Susceptibility Index (CSI) models utilizing key contributing parameters such as service and residual stresses, yield strength, service temperature, material condition and microstructure, and the accumulated service time. To aid in the development of future inspection plans, a method of ranking of the assessed susceptibilities by 'bench marking' with respect to the susceptibility of a reference location of known PWSCC history of a reference location of known PWSCC history is presented. Means of utilizing the susceptibility ranking results in developing a prioritized inspection plan are discussed. A follow-up investigative plan to the initial inspection is proposed, which includes identification of critical sampling locations, sample extraction, sample investigations and testing to ensure that the potentially highest susceptibility locations are free from near term PWSCC and, further, to provide a basis for established schedules for future inspections. Finally, parametric considerations of the contributing factor are presented to help the utility choose suitable option to mitigate the PWSCC issue while minimizing the impact on continued service

  4. A Review of Citation Analysis Methodologies for Collection Management

    Science.gov (United States)

    Hoffmann, Kristin; Doucette, Lise

    2012-01-01

    While there is a considerable body of literature that presents the results of citation analysis studies, most researchers do not provide enough detail in their methodology to reproduce the study, nor do they provide rationale for methodological decisions. In this paper, we review the methodologies used in 34 recent articles that present a…

  5. Clean Energy Manufacturing Analysis Center Benchmark Report: Framework and Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-23

    This report documents the CEMAC methodologies for developing and reporting annual global clean energy manufacturing benchmarks. The report reviews previously published manufacturing benchmark reports and foundational data, establishes a framework for benchmarking clean energy technologies, describes the CEMAC benchmark analysis methodologies, and describes the application of the methodologies to the manufacturing of four specific clean energy technologies.

  6. Methodology for advanced control rooms assessment of nuclear reactors: case study using Laboratory of Human System Interface (LABIHS)

    International Nuclear Information System (INIS)

    Carvalho, Eduardo Ferro; Verboonen, Monique; Carvalho, Bruno Batista de

    2005-01-01

    A control room of a nuclear reactor is a complex system that controls a thermodynamic process used to produce electric energy. The operators interact with the control room through interfaces and several monitoring stations. These interfaces present significant implications for the safety of the nuclear power plant, once they influence the activities of the operators, affect the way how operators receive information related with the status from the main systems and determine the necessary requirements so that the operators understand and supervise the main parameters. This article intends to present the methodology and the results of the evaluation carried through in the advanced control room of a compact simulator, that uses as reference a nuclear plant PWR of the Westinghouse. The structure used for evaluation of the simulator is formed by the guideline of human factors of the NRC, the NUREG 700, checklist, questionnaires and the analysis of the operator's activity. (author)

  7. A calculational methodology for comparing the accident, occupational, and waste-disposal hazards of fusion reactor designs

    International Nuclear Information System (INIS)

    Fetter, S.

    1985-01-01

    A methodology has been developed for calculating indices of three classes of radiological hazards: reactor accidents, occupational exposures, and waste-disposal hazards. Radionuclide inventories, biological hazard potentials (BHP), and various dose-related indices are calculated. In the case of reactor accidents, the critical, 50-year and chronic dose are computed, as well as the number of early deaths and illnesses and late cancer fatalities. For occupational exposure, the contact dose rate is calculated for several times after reactor shutdown. In the case of waste-disposal hazards, the intruder dose and the intruder hazard potential (IHP) are calculated. Sample calculations for the MARS reactor design show the usefulness of the methodology in exploring design improvements

  8. Development of a simplified methodology for the isotopic determination of fuel spent in Light Water Reactors; Desarrollo de una metodologia simplificada para la determinacion isotopica del combustible gastado en reactores de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez N, H.; Francois L, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: hermilo@lairn.fi-b.unam.mx

    2005-07-01

    The present work presents a simplified methodology to quantify the isotopic content of the spent fuel of light water reactors; their application is it specific to the Laguna Verde Nucleo electric Central by means of a balance cycle of 18 months. The methodology is divided in two parts: the first one consists on the development of a model of a simplified cell, for the isotopic quantification of the irradiated fuel. With this model the burnt one is simulated 48,000 MWD/TU of the fuel in the core of the reactor, taking like base one fuel assemble type 10x10 and using a two-dimensional simulator for a fuel cell of a light water reactor (CPM-3). The second part of the methodology is based on the creation from an isotopic decay model through an algorithm in C++ (decay) to evaluate the amount, by decay of the radionuclides, after having been irradiated the fuel until the time in which the reprocessing is made. Finally the method used for the quantification of the kilograms of uranium and obtained plutonium of a normalized quantity (1000 kg) of fuel irradiated in a reactor is presented. These results will allow later on to make analysis of the final disposition of the irradiated fuel. (Author)

  9. WRAP: a water reactor analysis package

    International Nuclear Information System (INIS)

    Anderson, M.M.

    1977-06-01

    The modular computational system known as the Water Reactor Analysis Package (WRAP) has been developed at the Savannah River Laboratory. WRAP is essentially a reprogrammed version of the RELAP4 computer code with an extensively restructured input format, a dynamic dimensioning capability and additional computational capabilities such as an automatic steady-state option for pressurized water reactors and an automatic restart capability with provision for renodalization. The report describes the capabilities of WRAP at its current stage of development. The addition of new capabilities (e.g., a BWR steady-state capability), the inclusion of improved models (e.g., models in RELAP4/M0D8) and the development of improved numerical techniques to reduce execution time are being planned at this time

  10. Development of Non-LOCA Safety Analysis Methodology with RETRAN-3D and VIPRE-01/K

    International Nuclear Information System (INIS)

    Kim, Yo-Han; Cheong, Ae-Ju; Yang, Chang-Keun

    2004-01-01

    Korea Electric Power Research Institute has launched a project to develop an in-house non-loss-of-coolant-accident analysis methodology to overcome the hardships caused by the narrow analytical scopes of existing methodologies. Prior to the development, some safety analysis codes were reviewed, and RETRAN-3D and VIPRE-01 were chosen as the base codes. The codes have been modified to improve the analytical capabilities required to analyze the nuclear power plants in Korea. The methodologies of the vendors and the Electric Power Research Institute have been reviewed, and some documents of foreign utilities have been used to compensate for the insufficiencies. For the next step, a draft methodology for pressurized water reactors has been developed and modified to apply to Westinghouse-type plants in Korea. To verify the feasibility of the methodology, some events of Yonggwang Units 1 and 2 have been analyzed from the standpoints of reactor coolant system pressure and the departure from nucleate boiling ratio. The results of the analyses show trends similar to those of the Final Safety Analysis Report

  11. Assessment of two small-sized innovative nuclear reactors for electricity generation in Brazil using INPRO methodology

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando Joao Agostinho; Sefidvash, Farhang

    2009-01-01

    This paper presents the main results of the assessment study of two small-sized innovative reactors for electricity generation in Brazil using the methodology developed under the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), co-ordinated by the International Atomic Energy Agency (IAEA). INPRO was initiated in 2001 and has the main objective of helping to ensure that nuclear energy is available to contribute in a sustainable manner to the energy needs of the 21st century. Brazil joined the INPRO project since its beginning and in 2005 submitted a proposal for the assessment using INPRO methodology of two small-sized reactors (IRIS - International Reactor Innovative and Secure, and FBNR - Fixed Bed Nuclear Reactor) as potential components of an innovative nuclear energy system (INS) completed by a conventional open nuclear fuel cycle based on enriched uranium. The scope of this assessment study was restricted to the reactor component of the INS and to the methodology areas of economics and safety for IRIS, and proliferation resistance and safety for FBNR. The results indicate that both IRIS and FBNR innovative designs comply mostly with the basic principles of the areas assessed and have potential to comply with the remaining ones. (author)

  12. Reliability analysis of reactor pressure vessel intensity

    International Nuclear Information System (INIS)

    Zheng Liangang; Lu Yongbo

    2012-01-01

    This paper performs the reliability analysis of reactor pressure vessel (RPV) with ANSYS. The analysis method include direct Monte Carlo Simulation method, Latin Hypercube Sampling, central composite design and Box-Behnken Matrix design. The RPV integrity reliability under given input condition is proposed. The result shows that the effects on the RPV base material reliability are internal press, allowable basic stress and elasticity modulus of base material in descending order, and the effects on the bolt reliability are allowable basic stress of bolt material, preload of bolt and internal press in descending order. (authors)

  13. Probabilistic risk analysis of Angra-1 reactor

    International Nuclear Information System (INIS)

    Spivak, R.C.; Collussi, I.; Silva, M.C. da; Onusic Junior, J.

    1986-01-01

    The first phase of probabilistic study for safety analysis and operational analysis of Angra-1 reactor is presented. The study objectives and uses are: to support decisions about safety problems; to identify operational and/or project failures; to amplify operator qualification tests to include accidents in addition to project base; to provide informations to be used in development and/or review of operation procedures in emergency, test and maintenance procedures; to obtain experience for data collection about abnormal accurences; utilization of study results for training operators; and training of evaluation and reliability techniques for the personnel of CNEN and FURNAS. (M.C.K.) [pt

  14. Methodology of a PWR containment analysis during a thermal-hydraulic accident

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dayane F.; Sabundjian, Gaiane; Lima, Ana Cecilia S., E-mail: dayane.silva@usp.br, E-mail: gdjian@ipen.br, E-mail: aclima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The aim of this work is to present the methodology of calculation to Angra 2 reactor containment during accidents of the type Loss of Coolant Accident (LOCA). This study will be possible to ensure the safety of the population of the surroundings upon the occurrence of accidents. One of the programs used to analyze containment of a nuclear plant is the CONTAIN. This computer code is an analysis tool used for predicting the physical conditions and distributions of radionuclides inside a containment building following the release of material from the primary system in a light-water reactor during an accident. The containment of the type PWR plant is a concrete building covered internally by metallic material and has limits of design pressure. The methodology of containment analysis must estimate the limits of pressure during a LOCA. The boundary conditions for the simulation are obtained from RELAP5 code. (author)

  15. Methodology of a PWR containment analysis during a thermal-hydraulic accident

    International Nuclear Information System (INIS)

    Silva, Dayane F.; Sabundjian, Gaiane; Lima, Ana Cecilia S.

    2015-01-01

    The aim of this work is to present the methodology of calculation to Angra 2 reactor containment during accidents of the type Loss of Coolant Accident (LOCA). This study will be possible to ensure the safety of the population of the surroundings upon the occurrence of accidents. One of the programs used to analyze containment of a nuclear plant is the CONTAIN. This computer code is an analysis tool used for predicting the physical conditions and distributions of radionuclides inside a containment building following the release of material from the primary system in a light-water reactor during an accident. The containment of the type PWR plant is a concrete building covered internally by metallic material and has limits of design pressure. The methodology of containment analysis must estimate the limits of pressure during a LOCA. The boundary conditions for the simulation are obtained from RELAP5 code. (author)

  16. Go-flow: a reliability analysis methodology applicable to piping system

    International Nuclear Information System (INIS)

    Matsuoka, T.; Kobayashi, M.

    1985-01-01

    Since the completion of the Reactor Safety Study, the use of probabilistic risk assessment technique has been becoming more widespread in the nuclear community. Several analytical methods are used for the reliability analysis of nuclear power plants. The GO methodology is one of these methods. Using the GO methodology, the authors performed a reliability analysis of the emergency decay heat removal system of the nuclear ship Mutsu, in order to examine its applicability to piping systems. By this analysis, the authors have found out some disadvantages of the GO methodology. In the GO methodology, the signal is on-to-off or off-to-on signal, therefore the GO finds out the time point at which the state of a system changes, and can not treat a system which state changes as off-on-off. Several computer runs are required to obtain the time dependent failure probability of a system. In order to overcome these disadvantages, the authors propose a new analytical methodology: GO-FLOW. In GO-FLOW, the modeling method (chart) and the calculation procedure are similar to those in the GO methodology, but the meaning of signal and time point, and the definitions of operators are essentially different. In the paper, the GO-FLOW methodology is explained and two examples of the analysis by GO-FLOW are given

  17. A methodology for performing virtual measurements in a nuclear reactor system

    International Nuclear Information System (INIS)

    Ikonomopoulos, A.; Uhrig, R.E.; Tsoukalas, L.H.

    1992-01-01

    A novel methodology is presented for monitoring nonphysically measurable variables in an experimental nuclear reactor. It is based on the employment of artificial neural networks to generate fuzzy values. Neural networks map spatiotemporal information (in the form of time series) to algebraically defined membership functions. The entire process can be thought of as a virtual measurement. Through such virtual measurements the values of nondirectly monitored parameters with operational significance, e.g., transient-type, valve-position, or performance, can be determined. Generating membership functions is a crucial step in the development and practical utilization of fuzzy reasoning, a computational approach that offers the advantage of describing the state of the system in a condensed, linguistic form, convenient for monitoring, diagnostics, and control algorithms

  18. Research Activities on Development of Piping Design Methodology of High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Nam-Su [Seoul National Univ. of Science and Technology, Seoul(Korea, Republic of); Won, Min-Gu [Sungkyukwan Univ., Suwon (Korea, Republic of); Oh, Young-Jin [KEPCO Engineering and Construction Co. Inc., Gimcheon (Korea, Republic of); Lee, Hyeog-Yeon; Kim, Yoo-Gon [Korea Atomic Energy Research Institute, Daejeon(Korea, Republic of)

    2016-10-15

    A SFR is operated at high temperature and low pressure compared with commercial pressurized water reactor (PWR), and such an operating condition leads to time-dependent damages such as creep rupture, excessive creep deformation, creep-fatigue interaction and creep crack growth. Thus, high temperature design and structural integrity assessment methodology should be developed considering such failure mechanisms. In terms of design of mechanical components of SFR, ASME B and PV Code, Sec. III, Div. 5 and RCC-MRx provide high temperature design and assessment procedures for nuclear structural components operated at high temperature, and a Leak-Before-Break (LBB) assessment procedure for high temperature piping is also provided in RCC-MRx, A16. Three web-based evaluation programs based on the current high temperature codes were developed for structural components of high temperature reactors. Moreover, for the detailed LBB analyses of high temperature piping, new engineering methods for predicting creep C*-integral and creep COD rate based either on GE/EPRI or on reference stress concepts were proposed. Finally, the numerical methods based on Garofalo's model and RCC-MRx have been developed, and they have been implemented into ABAQUS. The predictions based on both models were compared with the experimental results, and it has been revealed that the predictions from Garafalo's model gave somewhat successful results to describe the deformation behavior of Gr. 91 at elevated temperatures.

  19. Seal analysis technology for reactor pressure vessel

    International Nuclear Information System (INIS)

    Zheng Liangang; Zhang Liping; Yang Yu; Zang Fenggang

    2009-01-01

    There is the coolant with radiation, high temperature and high pressure in the reactor pressure vessel (RPV). It is closely correlated to RPV sealing capability whether the whole nuclear system work well or not. The aim of this paper is to study the seal analysis method and technology, such as the pre-tensioning of the bolt, elastoplastic contact and coupled technology of thermal and structure. The 3 D elastoplastic seal analysis method really and generally consider the loads and model the contact problem with friction between the contact plates. This method is easier than the specialized seal program and used widely. And it is more really than the 2 D seal analysis method. This 3 D elastoplastic seal analysis method has been successfully used in the design and analysis of RPV. (authors)

  20. A review of the current thermal-hydraulic modeling of the Jules Horowitz Reactor: A loss of flow accident analysis

    International Nuclear Information System (INIS)

    Pegonen, R.; Bourdon, S.; Gonnier, C.; Anglart, H.

    2014-01-01

    Highlights: • CEA methodology for thermal-hydraulic calculations in the JHR reactor is described. • Thermal-hydraulics of the JHR is analyzed during LOFA using CATHARE and FLICA4. • Safety criteria, important modeling parameters and correlations are presented. • Possible improvements of the current methodology are discussed and proposed. - Abstract: The newest European high performance material testing reactor, the Jules Horowitz Reactor, will support existing and future nuclear reactor designs. The reactor is under construction at CEA Cadarache research center in France and is expected to start operation at the end of this decade. R and D and analytical works have already been performed to set-up the methodology for thermal-hydraulic calculations of the reactor. This paper presents the off-line coupled thermal-hydraulic modeling of the reactor using the CATHARE system code and the FLICA4 core analysis code. The main objective of the present work is to analyze the thermal-hydraulic calculations of the reactor during the loss of flow accident using CEA methodology. Possible improvements of the current methodology are shortly discussed and suggested

  1. Optimization of lipase-catalyzed biodiesel by isopropanolysis in a continuous packed-bed reactor using response surface methodology.

    Science.gov (United States)

    Chang, Cheng; Chen, Jiann-Hwa; Chang, Chieh-Ming J; Wu, Tsung-Ta; Shieh, Chwen-Jen

    2009-10-31

    Isopropanolysis reactions were performed using triglycerides with immobilized lipase in a solvent-free environment. This study modeled the degree of isopropanolysis of soybean oil in a continuous packed-bed reactor when Novozym 435 was used as the biocatalyst. Response surface methodology (RSM) and three-level-three-factor Box-Behnken design were employed to evaluate the effects of synthesis parameters, reaction temperature ( degrees C), flow rate (mL/min) and substrate molar ratio of isopropanol to soybean oil, on the percentage molar conversion of biodiesel by transesterification. The results show that flow rate and temperature have a significant effect on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions for synthesis were as follows: flow rate 0.1 mL/min, temperature 51.5 degrees C and substrate molar ratio 1:4.14. The predicted value was 76.62+/-1.52% and actual experimental value was 75.62+/-0.81% molar conversion. Moreover, continuous enzymatic process for seven days did not show any appreciable decrease in the percent of molar conversion (75%). This work demonstrates the applicability of lipase catalysis to prepare isopropyl esters by transesterification in solvent-free system with a continuous packed-bed reactor for industrial production.

  2. Integrated detoxification methodology of hazardous phenolic wastewaters in environmentally based trickle-bed reactors: Experimental investigation and CFD simulation

    International Nuclear Information System (INIS)

    Lopes, Rodrigo J.G.; Almeida, Teresa S.A.; Quinta-Ferreira, Rosa M.

    2011-01-01

    Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters.

  3. Integrated detoxification methodology of hazardous phenolic wastewaters in environmentally based trickle-bed reactors: Experimental investigation and CFD simulation.

    Science.gov (United States)

    Lopes, Rodrigo J G; Almeida, Teresa S A; Quinta-Ferreira, Rosa M

    2011-05-15

    Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Establishment of Safety Analysis System and Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Rhee, B. W.; Min, B. J.; Kim, H. T.; Kim, W. Y.; Yoon, C.; Chun, J. S.; Cho, M. S.; Jeong, J. Y.; Kang, H. S.

    2007-06-01

    The following 4 research items have been studied to establish a CANDU safety analysis system and to develop the relevant elementary technology for CANDU reactors. First, to improve and validate the CANDU design and operational safety analysis codes, the CANDU physics cell code WIMS-CANDU was improved, and validated, and an analysis of the moderator subcooling and pressure tube integrity has been performed for the large break LOCAs without ECCS. Also a CATHENA model and a CFD model for a post-blowdown fuel channel analysis have been developed and validated against two high temperature thermal-chemical experiments, CS28-1 and 2. Second, to improve the integrated operating system of the CANDU safety analysis codes, an extension has been made to them to include the core and fuel accident analyses, and a web-based CANDU database, CANTHIS version 2.0 was completed. Third, to assess the applicability of the ACR-7 safety analysis methodology to CANDU-6 the ACR-7 safety analysis methods were reviewed and the safety analysis methods of ACR-7 applicable to CANDU-6 were recommended. Last, to supplement and improve the existing CANDU safety analysis procedures, detailed analysis procedures have been prepared for individual accident scenarios. The results of this study can be used to resolve the CANDU safety issues, to improve the current design and operational safety analysis codes, and to technically support the Wolsong site to resolve their problems

  5. Response surface methodology approach for structural reliability analysis: An outline of typical applications performed at CEC-JRC, Ispra

    International Nuclear Information System (INIS)

    Lucia, A.C.

    1982-01-01

    The paper presents the main results of the work carried out at JRC-Ispra for the study of specific problems posed by the application of the response surface methodology to the exploration of structural and nuclear reactor safety codes. Some relevant studies have been achieved: assessment of structure behaviours in the case of seismic occurrences; determination of the probability of coherent blockage in LWR fuel elements due to LOCA occurrence; analysis of ATWS consequences in PWR reactors by means of an ALMOD code; analysis of the first wall for an experimental fusion reactor by means of the Bersafe code. (orig.)

  6. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  7. Analysis of Confinement Strategies for a Tokamak Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Christian; Gaillard, Jean-Philippe; Marbach, Gabriel; Cambi, Gilio; Cook, Ian; Johansson, Lise-Lotte; Meyder, Rainer; Mustoe, Julian; Pinna, Tonio

    2001-01-15

    The Safety and Environmental Assessment of Fusion Power (SEAFP) was performed in the framework of the European fusion program, whose results have already been published. The European Commission decided to continue this program for some identified issues that required development. One of these issues was the analysis and specification of the containment concepts that minimize accidental releases to the environment.To perform such an assessment, a methodology was followed to identify the most challenging accidental sequences in terms of containment integrity.The results of the accident selection and analysis that were performed during the extension of the SEAFP-2 program are given. Preliminary recommendations for the definition of a confinement strategy for tokamak fusion reactors are established.

  8. Analysis of Confinement Strategies for a Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Girard, Christian; Gaillard, Jean-Philippe; Marbach, Gabriel; Cambi, Gilio; Cook, Ian; Johansson, Lise-Lotte; Meyder, Rainer; Mustoe, Julian; Pinna, Tonio

    2001-01-01

    The Safety and Environmental Assessment of Fusion Power (SEAFP) was performed in the framework of the European fusion program, whose results have already been published. The European Commission decided to continue this program for some identified issues that required development. One of these issues was the analysis and specification of the containment concepts that minimize accidental releases to the environment.To perform such an assessment, a methodology was followed to identify the most challenging accidental sequences in terms of containment integrity.The results of the accident selection and analysis that were performed during the extension of the SEAFP-2 program are given. Preliminary recommendations for the definition of a confinement strategy for tokamak fusion reactors are established

  9. Cost analysis of light water reactor power plants

    International Nuclear Information System (INIS)

    Mooz, W.E.

    1978-06-01

    A statistical analysis is presented of the capital costs of light water reactor (LWR) electrical power plants. The objective is twofold: to determine what factors are statistically related to capital costs and to produce a methodology for estimating these costs. The analysis in the study is based on the time and cost data that are available on U.S. nuclear power plants. Out of a total of about 60 operating plants, useful capital-cost data were available on only 39 plants. In addition, construction-time data were available on about 65 plants, and data on completed construction permit applications were available for about 132 plants. The cost data were first systematically adjusted to constant dollars. Then multivariate regression analyses were performed by using independent variables consisting of various physical and locational characteristics of the plants. The dependent variables analyzed were the time required to obtain a construction permit, the construction time, and the capital cost

  10. Methodology for Mode Selection in Corridor Analysis of Freight Transportation

    OpenAIRE

    Kanafani, Adib

    1984-01-01

    The purpose of tins report is to outline a methodology for the analysis of mode selection in freight transportation. This methodology is intended to partake of transportation corridor analysts, a component of demand analysis that is part of a national transportation process. The methodological framework presented here provides a basis on which specific models and calculation procedures might be developed. It also provides a basis for the development of a data management system suitable for co...

  11. Application of a new methodology on the multicycle analysis for the Laguna Verde NPP en Mexico

    International Nuclear Information System (INIS)

    Cortes C, Carlos C.

    1997-01-01

    This paper describes the improvements done in the physical and economic methodologies on the multicycle analysis for the Boiling Water Reactors of the Laguna Verde NPP in Mexico, based on commercial codes and in-house developed computational tools. With these changes in our methodology, three feasible scenarios are generated for the operation of Laguna Verde Nuclear Power Plant Unit 2 at 12, 18 and 24 months. The physical economic results obtained are showed. Further, the effect of the replacement power is included in the economic evaluation. (author). 11 refs., 3 figs., 7 tabs

  12. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  13. Physical data generation methodology for return-to-power steam line break analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Lee, Chung Chan; Lee, Chang Kue [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-02-01

    Current methodology to generate physics data for steamline break accident analysis of CE-type nuclear plant such as Yonggwang Unit 3 is valid only if the core reactivity does not reach the criticality after shutdown. Therefore, the methodology requires tremendous amount of net scram worth, specially at the end of the cycle when moderator temperature coefficient is most negative. Therefore, we need a new methodology to obtain reasonably conservation physics data, when the reactor returns to power condition. Current methodology used ROCS which include only closed channel model. But it is well known that the closed channel model estimates the core reactivity too much negative if core flow rate is low. Therefore, a conservative methodology is presented which utilizes open channel 3D HERMITE model. Current methodology uses ROCS which include only closed channel model. But it is well known that the closed channel model estimates the core reactivity too much negative if core flow rate is low. Therefore, a conservative methodology is presented which utilizes open channel 3D HERMITE model. Return-to-power reactivity credit is produced to assist the reactivity table generated by closed channel model. Other data includes hot channel axial power shape, peaking factor and maximum quality for DNBR analysis. It also includes pin census for radiological consequence analysis. 48 figs., 22 tabs., 18 refs. (Author) .new.

  14. A practical methodology of radiological protection for the reduction of hot particles in BWR type reactors

    International Nuclear Information System (INIS)

    Alvarez G, G.

    1991-01-01

    The purpose of this work, in general form, is to describe a practical method for reduction of hot particles generated as consequence of the operational activities of BWR nuclear reactors. This methodology provides a description of the localizations and/or probable activities of finding particles highly radioactive denominated hot particles. For this purpose it was developed a strategy based on the decontamination lineaments, as well as the manipulation, gathering, registration, contention, documentation, control and final disposition of the hot particles. In addition, some recommendations are reiterated and alternative, in order to gathering the hot particles in a dynamic way given to the activities of the personal occupationally exposed in highly radioactive areas. The structure of the methodology of hot particles is supported in the radiological controls based on the Code of Federal Regulation 10 CFR 20 as well as the applicable regulatory documents. It provides an idea based on administrative controls of radiological protection, in order to suggesting the responsibilities and necessary directing for the control of the hot particles required in nuclear plants of the BWR type. (author)

  15. Development of extreme rainfall PRA methodology for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2016-01-01

    The objective of this study is to develop a probabilistic risk assessment (PRA) methodology for extreme rainfall with focusing on decay heat removal system of a sodium-cooled fast reactor. For the extreme rainfall, annual excess probability depending on the hazard intensity was statistically estimated based on meteorological data. To identify core damage sequence, event trees were developed by assuming scenarios that structures, systems and components (SSCs) important to safety are flooded with rainwater coming into the buildings through gaps in the doors and the SSCs fail when the level of rainwater on the ground or on the roof of the building becomes higher than thresholds of doors on first floor or on the roof during the rainfall. To estimate the failure probability of the SSCs, the level of water rise was estimated by comparing the difference between precipitation and drainage capacity. By combining annual excess probability and the failure probability of SSCs, the event trees led to quantification of core damage frequency, and therefore the PRA methodology for rainfall was developed. (author)

  16. Statistical hot spot analysis of reactor cores

    International Nuclear Information System (INIS)

    Schaefer, H.

    1974-05-01

    This report is an introduction into statistical hot spot analysis. After the definition of the term 'hot spot' a statistical analysis is outlined. The mathematical method is presented, especially the formula concerning the probability of no hot spots in a reactor core is evaluated. A discussion with the boundary conditions of a statistical hot spot analysis is given (technological limits, nominal situation, uncertainties). The application of the hot spot analysis to the linear power of pellets and the temperature rise in cooling channels is demonstrated with respect to the test zone of KNK II. Basic values, such as probability of no hot spots, hot spot potential, expected hot spot diagram and cumulative distribution function of hot spots, are discussed. It is shown, that the risk of hot channels can be dispersed equally over all subassemblies by an adequate choice of the nominal temperature distribution in the core

  17. Methodology comparison for gamma-heating calculations in material-testing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A. [CEA, DEN, DER, Cadarache F-13108 Saint Paul les Durance (France); Reynard-Carette, C. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France)

    2015-07-01

    The Jules Horowitz Reactor (JHR) is a Material-Testing Reactor (MTR) under construction in the south of France at CEA Cadarache (French Alternative Energies and Atomic Energy Commission). It will typically host about 20 simultaneous irradiation experiments in the core and in the beryllium reflector. These experiments will help us better understand the complex phenomena occurring during the accelerated ageing of materials and the irradiation of nuclear fuels. Gamma heating, i.e. photon energy deposition, is mainly responsible for temperature rise in non-fuelled zones of nuclear reactors, including JHR internal structures and irradiation devices. As temperature is a key parameter for physical models describing the behavior of material, accurate control of temperature, and hence gamma heating, is required in irradiation devices and samples in order to perform an advanced suitable analysis of future experimental results. From a broader point of view, JHR global attractiveness as a MTR depends on its ability to monitor experimental parameters with high accuracy, including gamma heating. Strict control of temperature levels is also necessary in terms of safety. As JHR structures are warmed up by gamma heating, they must be appropriately cooled down to prevent creep deformation or melting. Cooling-power sizing is based on calculated levels of gamma heating in the JHR. Due to these safety concerns, accurate calculation of gamma heating with well-controlled bias and associated uncertainty as low as possible is all the more important. There are two main kinds of calculation bias: bias coming from nuclear data on the one hand and bias coming from physical approximations assumed by computer codes and by general calculation route on the other hand. The former must be determined by comparison between calculation and experimental data; the latter by calculation comparisons between codes and between methodologies. In this presentation, we focus on this latter kind of bias. Nuclear

  18. Using a Realist Research Methodology in Policy Analysis

    Science.gov (United States)

    Lourie, Megan; Rata, Elizabeth

    2017-01-01

    The article describes the usefulness of a realist methodology in linking sociological theory to empirically obtained data through the development of a methodological device. Three layers of analysis were integrated: 1. the findings from a case study about Maori language education in New Zealand; 2. the identification and analysis of contradictions…

  19. The methodology of semantic analysis for extracting physical effects

    Science.gov (United States)

    Fomenkova, M. A.; Kamaev, V. A.; Korobkin, D. M.; Fomenkov, S. A.

    2017-01-01

    The paper represents new methodology of semantic analysis for physical effects extracting. This methodology is based on the Tuzov ontology that formally describes the Russian language. In this paper, semantic patterns were described to extract structural physical information in the form of physical effects. A new algorithm of text analysis was described.

  20. Safety Analysis Of Actinide Recycled Fast Power Reactor

    International Nuclear Information System (INIS)

    Taufik, Mohammad

    2001-01-01

    Simulation for safety analysis of actinide recycled fast power reactor has been performed. The objective is to know reactor response about ULOF and ULOF and UTOP simultaneous accident. From parameter result such reactivity feedback, power, temperature, and cooled flow rate can conclusion that reactor have inherent safety system, which can back to new Equilibrium State

  1. A numerical technique for reactor subchannel analysis

    International Nuclear Information System (INIS)

    Fath, Hassan E.S.

    1983-01-01

    A numerical technique is developed for the solution of the transient boundary layer equations with a moving liquid-vapour interface boundary. The technique uses the finite difference method with the velocity components defined over an Eulerian mesh. A system of interface massless markers is defined where the markers move with the flow field according to a simple kinematic relation between the interface geometry and the fluid velocity. Different applications of nuclear engineering interest are reported with some available results. The present technique is capable of predicting the interface profile near the wall which is important in the reactor subchannel analysis

  2. Computation system for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals

  3. Physics: A New Reactor Physics Analysis Toolkit

    International Nuclear Information System (INIS)

    Rabiti, C.; Wang, Y.; Palmiotti, G.; Hiruta, H.; Cogliati, J.; Alfonsi, A.

    2011-01-01

    In the last year INL has internally pursued the development of a new reactor analysis tool: PHISICS. The software is built in a modular approach to simplify the independent development of modules by different teams and future maintenance. Most of the modules at the time of this summary are still under development (time dependent transport driver, depletion, cross section I/O and interpolation, generalized perturbation theory), while the transport solver INSTANT (Intelligent Nodal and Semi-structured Treatment for Advanced Neutron Transport) has already been widely used1, 2, 3, 4. For this reason we will focus mainly on the presentation of the transport solver INSTANT

  4. Accident analysis for US fast burst reactors

    International Nuclear Information System (INIS)

    Paternoster, R.; Flanders, M.; Kazi, H.

    1994-01-01

    In the US fast burst reactor (FBR) community there has been increasing emphasis and scrutiny on safety analysis and understanding of possible accident scenarios. This paper summarizes recent work in these areas that is going on at the different US FBR sites. At this time, all of the FBR facilities have or in the process of updating and refining their accident analyses. This effort is driven by two objectives: to obtain a more realistic scenario for emergency response procedures and contingency plans, and to determine compliance with changing regulatory standards

  5. Development of analysis methodology on turbulent thermal stripping

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Geun Jong; Jeon, Won Dae; Han, Jin Woo; Gu, Byong Kook [Changwon National University, Changwon(Korea)

    2001-03-01

    For developing analysis methodology, important governing factors of thermal stripping phenomena are identified as geometric configuration and flow characteristics such as velocity. Along these factors, performance of turbulence models in existing analysis methodology are evaluated against experimental data. Status of DNS application is also accessed based on literature. Evaluation results are reflected in setting up the new analysis methodology. From the evaluation of existing analysis methodology, Full Reynolds Stress model is identified as best one among other turbulence models. And LES is found to be able to provide time dependent turbulence values. Further improvements in near-wall region and temperature variance equation are required for FRS and implementation of new sub-grid scale models is also required for LES. Through these improvements, new reliable analysis methodology for thermal stripping can be developed. 30 refs., 26 figs., 6 tabs. (Author)

  6. Assessment of Proliferation Resistance of Closed Nuclear Fuel Cycle System with Sodium Cooled Fast Reactors Using INPRO Evaluation Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2007-11-15

    Using the INPRO methodology, the proliferation resistance of an innovative nuclear energy system(INS) defined as a closed nuclear fuel cycle system consisting of KALIMER and pyroprocessing, has been assessed. Considering a very early development stage of the INS concept, the PR assessment is carried out based on intrinsic features, if required information and data are not available. The PR assessment of KALIMER and JSFR using the INPRO methodology affirmed that an adequate proliferation resistance has been achieved in both INSs CNFC-SFR, considering the assessor's progress and maturity of design development. KALIMER and JSFR are developed or being developed conforming to the targets and criteria defined for developing Gen IV nuclear reactor system. Based on these assessment results, proliferation resistance and physical protection(PR and PP) of KALIMER and JSFR are evaluated from the viewpoint of requirements for future nuclear fuel cycle system. The envisioned INSs CNFC-SFR rely on active plutonium management based on a closed fuel cycle, in which a fissile material is recycled in an integrated fuel cycle facility within proper safeguards. There is no isolated plutonium in the closed fuel cycle. The material remains continuously in a sequence of highly radioactive matrices within inaccessible facilities. The proliferation resistance assessment should be an ongoing analysis that keeps up with the progress and maturity of the design of Gen IV SFR.

  7. Assessment of Proliferation Resistance of Closed Nuclear Fuel Cycle System with Sodium Cooled Fast Reactors Using INPRO Evaluation Methodology

    International Nuclear Information System (INIS)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2007-11-01

    Using the INPRO methodology, the proliferation resistance of an innovative nuclear energy system(INS) defined as a closed nuclear fuel cycle system consisting of KALIMER and pyroprocessing, has been assessed. Considering a very early development stage of the INS concept, the PR assessment is carried out based on intrinsic features, if required information and data are not available. The PR assessment of KALIMER and JSFR using the INPRO methodology affirmed that an adequate proliferation resistance has been achieved in both INSs CNFC-SFR, considering the assessor's progress and maturity of design development. KALIMER and JSFR are developed or being developed conforming to the targets and criteria defined for developing Gen IV nuclear reactor system. Based on these assessment results, proliferation resistance and physical protection(PR and PP) of KALIMER and JSFR are evaluated from the viewpoint of requirements for future nuclear fuel cycle system. The envisioned INSs CNFC-SFR rely on active plutonium management based on a closed fuel cycle, in which a fissile material is recycled in an integrated fuel cycle facility within proper safeguards. There is no isolated plutonium in the closed fuel cycle. The material remains continuously in a sequence of highly radioactive matrices within inaccessible facilities. The proliferation resistance assessment should be an ongoing analysis that keeps up with the progress and maturity of the design of Gen IV SFR

  8. Comparison of methodologies for assessing the risks from nuclear weapons and from nuclear reactors

    International Nuclear Information System (INIS)

    Benjamin, A.S.

    1996-01-01

    There are important differences between the safety principles for nuclear weapons and for nuclear reactors. For example, a principal concern for nuclear weapons is to prevent electrical energy from reaching the nuclear package during accidents produced by crashes, fires, and other hazards, whereas the foremost concern for nuclear reactors is to maintain coolant around the core in the event of certain system failures. Not surprisingly, new methods have had to be developed to assess the risk from nuclear weapons. These include fault tree transformations that accommodate time dependencies, thermal and structural analysis techniques that are fast and unconditionally stable, and parameter sampling methods that incorporate intelligent searching. This paper provides an overview of the new methods for nuclear weapons and compares them with existing methods for nuclear reactors. It also presents a new intelligent searching process for identifying potential nuclear detonation vulnerabilities. The new searching technique runs very rapidly on a workstation and shows promise for providing an accurate assessment of potential vulnerabilities with far fewer physical response calculations than would be required using a standard Monte Carlo sampling procedure

  9. Hydrogen safety risk assessment methodology applied to a fluidized bed membrane reactor for autothermal reforming of natural gas

    NARCIS (Netherlands)

    Psara, N.; Van Sint Annaland, M.; Gallucci, F.

    2015-01-01

    The scope of this paper is the development and implementation of a safety risk assessment methodology to highlight hazards potentially prevailing during autothermal reforming of natural gas for hydrogen production in a membrane reactor, as well as to reveal potential accidents related to hydrogen

  10. Human Reliability Analysis for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  11. Introduction to Safety Analysis Approach for Research Reactors

    International Nuclear Information System (INIS)

    Park, Suki

    2016-01-01

    The research reactors have a wide variety in terms of thermal powers, coolants, moderators, reflectors, fuels, reactor tanks and pools, flow direction in the core, and the operating pressure and temperature of the cooling system. Around 110 research reactors have a thermal power greater than 1 MW. This paper introduces a general approach to safety analysis for research reactors and deals with the experience of safety analysis on a 10 MW research reactor with an open-pool and open-tank reactor and a downward flow in the reactor core during normal operation. The general approach to safety analysis for research reactors is described and the design features of a typical open-pool and open-tank type reactor are discussed. The representative events expected in research reactors are investigated. The reactor responses and the thermal hydraulic behavior to the events are presented and discussed. From the minimum CHFR and the maximum fuel temperature calculated, it is ensured that the fuel is not damaged in the step insertion of reactivity by 1.8 mk and the failure of all primary pumps for the reactor with a 10 MW thermal power and downward core flow

  12. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; DeCarvalho Santos, S.H.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a NPP Reactor Building. The main results of this analysis are compared with the ones obtained by deterministic methods

  13. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a reactor building. The main results of this analysis are compared with the ones obtained by deterministic methods. (orig./HP)

  14. Cost benefit analysis of reactor safety systems

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1984-01-01

    Cost/benefit analysis of reactor safety systems is a possibility appropriate to deal with reactor safety. The Commission of the European Communities supported a study on the cost-benefit or cost effectiveness of safety systems installed in modern PWR nuclear power plants. The following systems and their cooperation in emergency cases were in particular investigated in this study: the containment system (double containment), the leakage exhaust and control system, the annulus release exhaust system and the containment spray system. The benefit of a safety system is defined according to its contribution to the reduction of the radiological consequences for the environment after a LOCA. The analysis is so far performed in two different steps: the emergency core cooling system is considered to function properly, failure of the emergency core cooling system is assumed (with the possible consequence of core melt-down) and the results may demonstrate the evidence that striving for cost-effectiveness can produce a safer end result than the philosophy of safety at any cost. (orig.)

  15. A Goal based methodology for HAZOP analysis

    DEFF Research Database (Denmark)

    Rossing, Netta Liin; Lind, Morten; Jensen, Niels

    2010-01-01

    to nodes with simple functions such as liquid transport, gas transport, liquid storage, gas-liquid contacting etc. From the functions of the nodes the selection of relevant process variables and deviation variables follows directly. The knowledge required to perform the pre-meeting HAZOP task of dividing...... the plant along functional lines is that of chemical unit operations and transport processes plus a some familiarity with the plant a hand. Thus the preparatory work may be performed by a chemical engineer with just an introductory course in risk assessment. The goal based methodology lends itself directly...

  16. Methodology for risk analysis of nuclear installations

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Senne Junior, Murillo; Jordao, Elizabete

    2002-01-01

    Both the licensing standards for general uses in nuclear facilities and the specific ones require a risk assessment during their licensing processes. The risk assessment is carried out through the estimation of both probability of the occurrence of the accident, and their magnitudes. This is a complex task because the great deal of potential hazardous events that can occur in nuclear facilities difficult the statement of the accident scenarios. There are also many available techniques to identify the potential accidents, estimate their probabilities, and evaluate their magnitudes. In this paper is presented a new methodology that systematizes the risk assessment process, and orders the accomplishment of their several steps. (author)

  17. A Qualitative Assessment of Diversion Scenarios for an Example Sodium Fast Reactor Using the GEN IV PR and PP Methodology

    International Nuclear Information System (INIS)

    Zentner, Michael D.; Coles, Garill A.; Therios, Ike

    2012-01-01

    FAST REACTORS;NUCLEAR ENERGY;NUCLEAR MATERIALS MANAGEMENT;PROLIFERATION;SAFEGUARDS;THEFT; A working group was created in 2002 by the Generation IV International Forum (GIF) for the purpose of developing an internationally accepted methodology for assessing the Proliferation Resistance of a nuclear energy system (NES) and its individual elements. A two year case study is being performed by the experts group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the PR and PP methodology can be used to provide important information at various levels of details to NES designers, safeguard administrators and decision makers. The study analyzes the response of the complete ESFR nuclear energy system to different proliferation and theft strategies. The challenges considered include concealed diversion, concealed misuse and 'break out' strategies. This paper describes the work done in performing a qualitative assessment of concealed diversion scenarios from the ESFR.

  18. United States Department of Energy's reactor core protection evaluation methodology for fires at RBMK and VVER nuclear power plants. Revision 1

    International Nuclear Information System (INIS)

    1997-06-01

    This document provides operators of Soviet-designed RBMK (graphite moderated light water boiling water reactor) and VVER (pressurized light water reactor) nuclear power plants with a systematic Methodology to qualitatively evaluate plant response to fires and to identify remedies to protect the reactor core from fire-initiated damage

  19. Parametric systems analysis for ICF hybrid reactors

    International Nuclear Information System (INIS)

    Berwald, D.H.; Maniscalco, J.A.; Chapin, D.L.

    1981-01-01

    Parametric design and systems analysis for inertial confinement fusion-fission hybrids are presented. These results were generated as part of the Electric Power Research Institute (EPRI) sponsored Feasibility Assessment of Fusion-Fission Hybrids, using an Inertial Confinement Fusion (ICF) hybrid power plant design code developed in conjunction with the feasibility assessment. The SYMECON systems analysis code, developed by Westinghouse, was used to generate economic results for symbiotic electricity generation systems consisting of the hybrid and its client Light Water Reactors (LWRs). These results explore the entire fusion parameter space for uranium fast fission blanket hybrids, thorium fast fission blanket hybrids, and thorium suppressed fission blanket types are discussed, and system sensitivities to design uncertainties are explored

  20. Integrated systems analysis of the PIUS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, F.; Kroeger, P.; Higgins, J. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1993-11-01

    Results are presented of a systems failure analysis of the PIUS plant systems that are used during normal reactor operation and postulated accidents. This study was performed to provide the NRC with an understanding of the behavior of the plant. The study applied two diverse failure identification methods, Failure Modes Effects & Criticality Analysis (FMECA) and Hazards & Operability (HAZOP) to the plant systems, supported by several deterministic analyses. Conventional PRA methods were also used along with a scheme for classifying events by initiator frequency and combinations of failures. Principal results of this study are: (a) an extensive listing of potential event sequences, grouped in categories that can be used by the NRC, (b) identification of support systems that are important to safety, and (c) identification of key operator actions.

  1. Integrated systems analysis of the PIUS reactor

    International Nuclear Information System (INIS)

    Fullwood, F.; Kroeger, P.; Higgins, J.

    1993-11-01

    Results are presented of a systems failure analysis of the PIUS plant systems that are used during normal reactor operation and postulated accidents. This study was performed to provide the NRC with an understanding of the behavior of the plant. The study applied two diverse failure identification methods, Failure Modes Effects ampersand Criticality Analysis (FMECA) and Hazards ampersand Operability (HAZOP) to the plant systems, supported by several deterministic analyses. Conventional PRA methods were also used along with a scheme for classifying events by initiator frequency and combinations of failures. Principal results of this study are: (a) an extensive listing of potential event sequences, grouped in categories that can be used by the NRC, (b) identification of support systems that are important to safety, and (c) identification of key operator actions

  2. Review of advanced reactor transient analysis capabilities and applications for Savannah River Plant reactors

    International Nuclear Information System (INIS)

    Buckner, M.R.; Hostetler, D.E.; Anderson, M.M.; Dodds, H.L.

    1977-01-01

    GRASS is a three-dimensional, coupled neutronic and engineering code for analysis of the radioisotope production reactors at the Savannah River Plant. The capabilities of GRASS are reviewed with emphasis on recent additions to model accident conditions involving the transport of molten fuel material and to accurately characterize neutronic and engineering feedback. The general application of GRASS to the Savannah River reactors is discussed, and results are presented for the analyses of severla reactor transient calculations

  3. National assessment study in Armenia using innovative nuclear reactors and fuel cycles methodology for an innovative nuclear systems in a country with small grid

    International Nuclear Information System (INIS)

    Sargsyan, V.H.; Galstyan, A.A.; Gevorgyan, A.A.

    2010-01-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in November 2000 under the aegis of the IAEA. Phases 1A and IB (first Part) of the Project were dedicated to elaboration, testing and validation of the INPRO Methodology. At the Technical Meeting in Vienna (13-15 October 2004) Armenia has proposed an assessment using the INPRO Methodology for an Innovative Nuclear Energy System in a country with a small electrical grid. Such kind of study helps Armenia in analysis of Innovative Nuclear Energy System (INS), including fuel cycle options, as well as shows applicability of INPRO methodology for small countries, like Armenia. This study was based on the results given in [3] and [4], and also on the main objectives, declared by the Government of Armenia in the paper 'Energy Sector Development Strategies in the Context of Economic Development in Armenia'

  4. An overview-probabilistic safety analysis for research reactors

    International Nuclear Information System (INIS)

    Liu Jinlin; Peng Changhong

    2015-01-01

    For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)

  5. Update of Part 61 Impacts Analysis Methodology. Methodology report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Oztunali, O.I.; Roles, G.W.

    1986-01-01

    Under contract to the US Nuclear Regulatory Commission, the Envirosphere Company has expanded and updated the impacts analysis methodology used during the development of the 10 CFR Part 61 rule to allow improved consideration of the costs and impacts of treatment and disposal of low-level waste that is close to or exceeds Class C concentrations. The modifications described in this report principally include: (1) an update of the low-level radioactive waste source term, (2) consideration of additional alternative disposal technologies, (3) expansion of the methodology used to calculate disposal costs, (4) consideration of an additional exposure pathway involving direct human contact with disposed waste due to a hypothetical drilling scenario, and (5) use of updated health physics analysis procedures (ICRP-30). Volume 1 of this report describes the calculational algorithms of the updated analysis methodology.

  6. Update of Part 61 Impacts Analysis Methodology. Methodology report. Volume 1

    International Nuclear Information System (INIS)

    Oztunali, O.I.; Roles, G.W.

    1986-01-01

    Under contract to the US Nuclear Regulatory Commission, the Envirosphere Company has expanded and updated the impacts analysis methodology used during the development of the 10 CFR Part 61 rule to allow improved consideration of the costs and impacts of treatment and disposal of low-level waste that is close to or exceeds Class C concentrations. The modifications described in this report principally include: (1) an update of the low-level radioactive waste source term, (2) consideration of additional alternative disposal technologies, (3) expansion of the methodology used to calculate disposal costs, (4) consideration of an additional exposure pathway involving direct human contact with disposed waste due to a hypothetical drilling scenario, and (5) use of updated health physics analysis procedures (ICRP-30). Volume 1 of this report describes the calculational algorithms of the updated analysis methodology

  7. Shuttle TPS thermal performance and analysis methodology

    Science.gov (United States)

    Neuenschwander, W. E.; Mcbride, D. U.; Armour, G. A.

    1983-01-01

    Thermal performance of the thermal protection system was approximately as predicted. The only extensive anomalies were filler bar scorching and over-predictions in the high Delta p gap heating regions of the orbiter. A technique to predict filler bar scorching has been developed that can aid in defining a solution. Improvement in high Delta p gap heating methodology is still under study. Minor anomalies were also examined for improvements in modeling techniques and prediction capabilities. These include improved definition of low Delta p gap heating, an analytical model for inner mode line convection heat transfer, better modeling of structure, and inclusion of sneak heating. The limited number of problems related to penetration items that presented themselves during orbital flight tests were resolved expeditiously, and designs were changed and proved successful within the time frame of that program.

  8. METHODOLOGICAL ANALYSIS OF TRAINING STUDENT basketball teams

    Directory of Open Access Journals (Sweden)

    Kozina Zh.L.

    2011-06-01

    Full Text Available Considered the leading position of the preparation of basketball teams in high schools. The system includes the following: reliance on top-quality players in the structure of preparedness, widespread use of visual aids, teaching movies and cartoons with a record of technology implementation of various methods by professional basketball players, the application of the methods of autogenic and ideomotor training according to our methodology. The study involved 63 students 1.5 courses from various universities of Kharkov 1.2 digits: 32 experimental group and 31 - control. The developed system of training students, basketball players used within 1 year. The efficiency of the developed system in the training process of students, basketball players.

  9. Kinetic analysis of sub-prompt-critical reactor assemblies

    International Nuclear Information System (INIS)

    Das, S.

    1992-01-01

    Neutronic analysis of safety-related kinetics problems in experimental neutron multiplying assemblies has been carried out using a sub-prompt-critical reactor model. The model is based on the concept of a sub-prompt-critical nuclear reactor and the concept of instantaneous neutron multiplication in a reactor system. Computations of reactor power, period and reactivity using the model show excellent agreement with results obtained from exact kinetics method. Analytic expressions for the energy released in a controlled nuclear power excursion are derived. Application of the model to a Pulsed Fast Reactor gives its sensitivity between 4 and 5. (author). 6 refs., 4 figs., 1 tab

  10. Argentinean integrated small reactor design and scale economy analysis of integrated reactor

    International Nuclear Information System (INIS)

    Florido, P. C.; Bergallo, J. E.; Ishida, M. V.

    2000-01-01

    This paper describes the design of CAREM, which is Argentinean integrated small reactor project and the scale economy analysis results of integrated reactor. CAREM project consists on the development, design and construction of a small nuclear power plant. CAREM is an advanced reactor conceived with new generation design solutions and standing on the large experience accumulated in the safe operation of Light Water Reactors. The CAREM is an indirect cycle reactor with some distinctive and characteristic features that greatly simplify the reactor and also contribute to a highly level of safety: integrated primary cooling system, self pressurized, primary cooling by natural circulation and safety system relying on passive features. For a fully doupled economic evaluation of integrated reactors done by IREP (Integrated Reactor Evaluation Program) code transferred to IAEA, CAREM have been used as a reference point. The results shows that integrated reactors become competitive with power larger than 200MWe with Argentinean cheapest electricity option. Due to reactor pressure vessel construction limit, low pressure drop steam generator are used to reach power output of 200MWe for natural circulation. For forced circulation, 300MWe can be achieved. (author)

  11. On the major ductile fracture methodologies for failure assessment of nuclear reactor components

    International Nuclear Information System (INIS)

    Cruz, Julio R.B.; Andrade, Arnaldo H.P. de; Landes, John D.

    1996-01-01

    In structures like nuclear reactor components there is a special concern with the loads that may occur under postulated accident conditions. These loads can cause the stresses to go well beyond the linear elastic limits, requiring the use of ductile fracture mechanics methods to the prediction of the structure behavior. Since the use of numerical methods to apply EPFM concepts is expensive and time consuming, the existence of analytical engineering procedures are of great relevance. The lack of precision in detail, as compared with numerical nonlinear analyses, is compensated by the possibility of quick failure assessments. This is a determinant factor in situations where a systematic evaluation of a large range of geometries and loading conditions is necessary, like in thr application of the Leak-Before-Break (LBB) concept on nuclear piping. This paper outlines four ductile fracture analytical methods, pointing out positive and negative aspects of each one. The objective is to take advantage of this critical review to conceive a new methodology, one that would gather strong points of the major existent methods and would try to eliminate some of their drawbacks. (author)

  12. PCI-OGRAMS: application of CANDU fuelogram methodology to PCI data from light water reactors

    International Nuclear Information System (INIS)

    Wood, J.C.

    1979-01-01

    The FUELOGRAM model was derived to predict PCI defect probablilities for CANDU fuel bundles that had experienced power increases after being irradiated to burnups mostly in the range 100 +- 60 MW.h/kg U. It is inappropriate to extrapolate the FUELOGRAM model to predict the performance of differently designed fuels at burnups up to 600 MW.h/kg U Therefore data obtained from the operaton of a Boiling Water Reactor were analyzed using the FUELOGRAM methodology to assess fuel performance criteria at high burnups. The resultant PCI-OGRAMS evaluate defect probabilities in terms of power increase (ΔP), ramped power (P), and the burnup (ω) of the most highly rated rod in a fuel assembly. Defect probability also depends on the dwell time (t), of fuel at the ramped power. The predictions of the PCI-OGRAM, FUELOGRAM and other models are compared in three-dimensional sketches of P, ΔP, and ω with the dwell time t held constant. (author)

  13. Study of the methodology for sensitivity calculations of fast reactors integral parameters

    International Nuclear Information System (INIS)

    Renke, C.A.C.

    1981-06-01

    A study of the methodology for sensitivity calculations of integral parameters of fast reactors for the adjustment of multigroup cross sections is presented. A description of several existent methods and theories is given, with special emphasis being regarded to variational perturbation theory, integrant of the sensitivity code VARI-1D used in this work. Two calculational systems are defined and a set of procedures and criteria is structured gathering the necessary conditions for the determination of the sensitivity coefficients. These coefficients are then computed by both the direct method and the variational perturbation theory. A reasonable number of sensitivity coefficients are computed and analyzed for three fast critical assemblies, covering a range of special interest of the spectrum. These coefficients are determined for severa integral parameters, for the capture and fission cross sections of the U-238 and Pu-239, covering all the energy up to 14.5 MeV. The nuclear data used were obtained the CARNAVAL II calculational system of the Instituto de Engenharia Nuclear. An optimization for sensitivity computations in a chainned sequence of procedures is made, yielding the sensitivities in the energy macrogroups as the final stage. (Author) [pt

  14. Reactor noise analysis applications in NPP I and C systems

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckler, O. [International Atomic Energy Agency, Wagramer Strosse 5, A-1400 Vienna, Austria Ontario Power Generation, 230 Westney Road South, Ajax, Ont. L1S 7R3 (Canada)

    2006-07-01

    Reactor noise analysis techniques are used in many NPPs on a routine basis as 'inspection tools' to get information on the dynamics of reactor processes and their instrumentation in a passive, non-intrusive way. The paper discusses some of the tasks and requirements an NPP has to take to implement and to use the full advantages of reactor noise analysis techniques. Typical signal noise analysis applications developed for the monitoring of the reactor shutdown system and control system instrumentation of the Candu units of Ontario Power Generation and Bruce Power are also presented. (authors)

  15. JAERI thermal reactor standard code system for reactor design and analysis SRAC

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1985-01-01

    SRAC, JAERI thermal reactor standard code system for reactor design and analysis, developed in Japan Atomic Energy Research Institute, is for all types of thermal neutron nuclear design and analysis. The code system has undergone extensive verifications to confirm its functions, and has been used in core modification of the research reactor, detailed design of the multi-purpose high temperature gas reactor and analysis of the experiment with a critical assembly. In nuclear calculation with the code system, multi-group lattice calculation is first made with the libraries. Then, with the resultant homogeneous equivalent group constants, reactor core calculation is made. Described are the following: purpose and development of the code system, functions of the SRAC system, bench mark tests and usage state and future development. (Mori, K.)

  16. Development of safety analysis technology for integral reactor

    International Nuclear Information System (INIS)

    Kim, Hee Cheol; Kim, K. K.; Kim, S. H.

    2002-04-01

    The state-of-the-arts for the integral reactor was performed to investigate the safety features. The safety and performance of SMART were assessed using the technologies developed during the study. For this purpose, the computer code system and the analysis methodology were developed and the safety and performance analyses on SMART basic design were carried out for the design basis event and accident. The experimental facilities were designed for the core flow distribution test and the self-pressurizing pressurizer performance test. The tests on the 2-phase critical flow with non-condensable gas were completed and the results were used to assess the critical flow model. Probabilistic Safety Assessment(PSA) was carried out to evaluate the safety level and to optimize the design by identifying and remedying any weakness in the design. A joint study with KINS was carried out to promote licensing environment. The generic safety issues of integral reactors were identified and the solutions were formulated. The economic evaluation of the SMART desalination plant and the activities related to the process control were carried out in the scope of the study

  17. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  18. A model for structural analysis of nuclear reactor pressure vessel flanges

    International Nuclear Information System (INIS)

    Oliveira, C.A. de.

    1987-01-01

    Due to the recent Brazilian advances in the nuclear technology area, it has been necessary the development of design and analysis methods for pressurized water reactor components, also as other components of a nuclear plant. This work proposes a methodology for the structural analysis of large diameter nuclear reactor pressure vessel flanges. In the analysis the vessel is divided into shell-of-revolution elements, the flanges are represented by rigid rings, and the bolts are treated as beams. The flexibility method is used for solving the problem. A computer program is shown, and the given results (displacements and stresses) are compared with results obtained by the finite element method. Although developed for nuclear reactor pressure vessel calculations, the program is more general, being possible its use for the analysis of any structure composed by shells of revolution. (author)

  19. Progress in the development of tooling and dismantling methodologies for the Windscale advanced gas cooled reactor (WAGR)

    International Nuclear Information System (INIS)

    Cross, M.T.; Wareing, M.I.; Dixon, C.

    1998-01-01

    Decommissioning of the Windscale Advanced Gas-Cooled Reactor (WAGR) is a major UK reactor decommissioning project co-funded by the UK Government, the European Commission and Magnox Electric. WAGR was a CO 2 cooled, graphite moderated reactor which served as a test bed for the development of Advanced Gas-Cooled Reactor technology in the UK. It operated from 1963 until shutdown in 1981. AEA Technology plc are currently the Managing Agents on behalf of UKAEA for the WAGR decommissioning project and are responsible for the co-ordination of the project up to the point when the contents of the reactor core and associated radioactive materials are removed and either disposed of or packaged for disposal at some time in the future. Decommissioning has progressed to the point where the reactor has been dismantled down to the level of the hot gas collection manifold with the removal of the top biological shield, the refuelling standpipes and the top section of the reactor pressure vessel. The 4 heat exchangers have also been removed and committed to shallow land burial. This paper describes the work carried out by AEA Technology under separate contracts of UKAEA in developing some of the equipment and deployment methods for the next phase of active operations required in preparation for the dismantling of the core structure. Most recent work has concentrated on the development of specialist tooling for removal of items of operational waste stored within the reactor core, equipment for cutting and removal of the highly radioactive stainless steel 'loop' pressure tubes, diamond wire cutting equipment for sectioning large diameter pipework, and equipment for dismantling the reactor neutron shield. The paper emphasises the process of adaptation and extension of existing technologies for cost-effective application in the decommissioning environment, the need for adequate forward planning of decommissioning methodologies together with large-scale 'mock-up' testing of equipment to

  20. An economic analysis methodology for project evaluation and programming.

    Science.gov (United States)

    2013-08-01

    Economic analysis is a critical component of a comprehensive project or program evaluation methodology that considers all key : quantitative and qualitative impacts of highway investments. It allows highway agencies to identify, quantify, and value t...

  1. Development of Advanced Non-LOCA Analysis Methodology for Licensing

    International Nuclear Information System (INIS)

    Jang, Chansu; Um, Kilsup; Choi, Jaedon

    2008-01-01

    KNF is developing a new design methodology on the Non-LOCA analysis for the licensing purpose. The code chosen is the best-estimate transient analysis code RETRAN and the OPR1000 is aimed as a target plant. For this purpose, KNF prepared a simple nodal scheme appropriate to the licensing analyses and developed the designer-friendly analysis tool ASSIST (Automatic Steady-State Initialization and Safety analysis Tool). To check the validity of the newly developed methodology, the single CEA withdrawal and the locked rotor accidents are analyzed by using a new methodology and are compared with current design results. Comparison results show a good agreement and it is concluded that the new design methodology can be applied to the licensing calculations for OPR1000 Non-LOCA

  2. Opening Remarks of the Acquisition Path Analysis Methodology Session

    International Nuclear Information System (INIS)

    Renis, T.

    2015-01-01

    An overview of the recent development work that has been done on acquisition path analysis, implementation of the methodologies within the Department of Safeguards, lessons learned and future areas for development will be provided. (author)

  3. Vulnerability and Risk Analysis Program: Overview of Assessment Methodology

    National Research Council Canada - National Science Library

    2001-01-01

    .... Over the last three years, a team of national laboratory experts, working in partnership with the energy industry, has successfully applied the methodology as part of OCIP's Vulnerability and Risk Analysis Program (VRAP...

  4. A methodology for the data energy regional consumption consistency analysis

    International Nuclear Information System (INIS)

    Canavarros, Otacilio Borges; Silva, Ennio Peres da

    1999-01-01

    The article introduces a methodology for data energy regional consumption consistency analysis. The work was going based on recent studies accomplished by several cited authors and boarded Brazilian matrices and Brazilian energetics regional balances. The results are compared and analyzed

  5. Light water reactor lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response

  6. Light water reactor lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  7. Probabilistic safety analysis applied to RBMK reactors

    International Nuclear Information System (INIS)

    Gerez Martin, L.; Fernandez Ramos, P.

    1995-01-01

    The project financed by the European Union ''Revision of RBMK Reactor Safety was divided into nine Topic Groups dealing with different aspects of safety. The area covered by Topic Group 9 was Probabilistic Safety Analysis. TG9 will have touched on some of the problems discussed by other groups, although in terms of the systematic quantification of the impact of design characteristics and RBMK reactor operating practices on the risk of core damage. On account of the reduced time scale and the resources available for the project, the analysis was made using a simplified method based on the results of PSAs conducted in Western countries and on the judgement of the group members. The simplifies method is based on the concepts of Qualification, Redundancy and Automatic Actuation of the systems considered. PSA experience shows that systems complying with the above-mentioned concepts have a failure probability of 1.0E-3 when redundancy is simple, ie two similar equipment items capable of carrying out the same function. In general terms, this value can be considered to be dominated by potential common cause failures. The value considered above changes according to factors that have a positive effect upon it, such as an additional redundancy with a different equipment item (eg a turbo pumps and a motor pump), individual trains with good separations, etc, or a negative effect, such as the absence of suitable periodical tests, the need for operators to perform manual operations, etc. Similarly, possible actions required by the operator during accident sequences are assigned failure probability values between 1 and 1.0E-4, according to the complexity of the action (including local actions to be performed outside the control room) and the time available

  8. Severe accident analysis methodology in support of accident management

    International Nuclear Information System (INIS)

    Boesmans, B.; Auglaire, M.; Snoeck, J.

    1997-01-01

    The author addresses the implementation at BELGATOM of a generic severe accident analysis methodology, which is intended to support strategic decisions and to provide quantitative information in support of severe accident management. The analysis methodology is based on a combination of severe accident code calculations, generic phenomenological information (experimental evidence from various test facilities regarding issues beyond present code capabilities) and detailed plant-specific technical information

  9. Radiochemical Analysis Methodology for uranium Depletion Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Scatena-Wachel DE

    2007-01-09

    This report provides sufficient material for a test sponsor with little or no radiochemistry background to understand and follow physics irradiation test program execution. Most irradiation test programs employ similar techniques and the general details provided here can be applied to the analysis of other irradiated sample types. Aspects of program management directly affecting analysis quality are also provided. This report is not an in-depth treatise on the vast field of radiochemical analysis techniques and related topics such as quality control. Instrumental technology is a very fast growing field and dramatic improvements are made each year, thus the instrumentation described in this report is no longer cutting edge technology. Much of the background material is still applicable and useful for the analysis of older experiments and also for subcontractors who still retain the older instrumentation.

  10. Diversion Path Analysis Handbook. Volume 1. Methodology

    International Nuclear Information System (INIS)

    Goodwin, K.E.; Schleter, J.C.; Maltese, M.D.K.

    1978-11-01

    Diversion Path Analysis (DPA) is a safeguards evaluation tool which is used to determine the vulnerability of the Material Control and Material Accounting (MC and MA) Subsystems to the threat of theft of Special Nuclear Material (SNM) by a knowledgeable Insider. The DPA team should consist of two individuals who have technical backgrounds. The implementation of DPA is divided into five basic steps: Information and Data Gathering, Process Characterization, Analysis of Diversion Paths, Results and Findings, and Documentation

  11. Analysis methodology for the post-trip return to power steam line break event

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Shin; Kim, Chul Woo; You, Hyung Keun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    An analysis for Steam Line Break (SLB) events which result in a Return-to-Power (RTP) condition after reactor trip was performed for a postulated Yonggwang Nuclear Power Plant Unit 3 cycle 8. Analysis methodology for post-trip RTP SLB is quite different from that of non-RTP SLB and is more difficult. Therefore, it is necessary to develop a methodology to analyze the response of the NSSS parameters to the post-trip RTP SLB events and the fuel performance after the total reactivity exceeds the criticality. In this analysis, the cases with and without offsite power were simulated crediting 3-D reactivity feedback effect due to a local heatup in the vicinity of stuck CEA and compared with the cases without 3-D reactivity feedback with respect to post-trip fuel performance. Departure-to Nucleate Boiling Ratio (DNBR) and Linear Heat Generation Rate (LHGR). 36 tabs., 32 figs., 11 refs. (Author) .new.

  12. SINGULAR SPECTRUM ANALYSIS: METHODOLOGY AND APPLICATION TO ECONOMICS DATA

    Institute of Scientific and Technical Information of China (English)

    Hossein HASSANI; Anatoly ZHIGLJAVSKY

    2009-01-01

    This paper describes the methodology of singular spectrum analysis (SSA) and demonstrate that it is a powerful method of time series analysis and forecasting, particulary for economic time series. The authors consider the application of SSA to the analysis and forecasting of the Iranian national accounts data as provided by the Central Bank of the Islamic Republic of lran.

  13. A fast reactor transient analysis methodology for PCs

    International Nuclear Information System (INIS)

    Ott, K.O.

    1991-10-01

    This Manual describes a PC program for LMR Transient Calculations, LTC, written in GW-BASIC. It calculates the power and temperature trajectories for unscrammed TOP and LOHS transients. The LOF transient treatment is not operational in the GW-BASIC program because of storage limitations. The corresponding mathematical model, which allows a rapid treatment of the kinetics and the various feedback effects, is described in Ref. 1. It is briefly reviewed in Sec. 1. The program structure is outlined in Sec. 2, followed by a more detailed description in Sec. 3. Computational details are presented in Appendix A. A complete listing of the GW-BASIC program is given in Appendix B. Appendix C shows input-echo and output for a TOP sample problem, and Appendix D is a Glossary of all quantities used in the LTC program. The limitations of the GW-BASIC storage (to about 60K) are removed if it is run within Quick-BASIC. This then allows the extension of this program to treat LOF transients. Running LTC in Quick-BASIC permits also larger ''Dimensions'' for TOP and LOHS transients

  14. Gap analysis methodology for business service engineering

    NARCIS (Netherlands)

    Nguyen, D.K.; van den Heuvel, W.J.A.M.; Papazoglou, M.; de Castro, V.; Marcos, E.; Hofreiter, B.; Werthner, H.

    2009-01-01

    Many of today’s service analysis and design techniques rely on ad-hoc and experience-based identification of value-creating business services and implicitly assume a “green-field” situation focusing on the development of completely new services while offering very limited support for discovering

  15. Discourse analysis: making complex methodology simple

    NARCIS (Netherlands)

    Bondarouk, Tatiana; Ruel, Hubertus Johannes Maria; Leino, T.; Saarinen, T.; Klein, S.

    2004-01-01

    Discursive-based analysis of organizations is not new in the field of interpretive social studies. Since not long ago have information systems (IS) studies also shown a keen interest in discourse (Wynn et al, 2002). The IS field has grown significantly in its multiplicity that is echoed in the

  16. Development of comprehensive and versatile framework for reactor analysis, MARBLE

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hazama, Taira; Numata, Kazuyuki; Jin, Tomoyuki

    2014-01-01

    Highlights: • We have developed a neutronics code system for reactor analysis. • The new code system covers all five phases of the core design procedures. • All the functionalities are integrated and validated in the same framework. • The framework supports continuous improvement and extension. • We report results of validation and practical applications. - Abstract: A comprehensive and versatile reactor analysis code system, MARBLE, has been developed. MARBLE is designed as a software development framework for reactor analysis, which offers reusable and extendible functions and data models based on physical concepts, rather than a reactor analysis code system. From a viewpoint of the code system, it provides a set of functionalities utilized in a detailed reactor analysis scheme for fast criticality assemblies and power reactors, and nuclear data related uncertainty quantification such as cross-section adjustment. MARBLE includes five sub-systems named ECRIPSE, BIBLO, SCHEME, UNCERTAINTY and ORPHEUS, which are constructed of the shared functions and data models in the framework. By using these sub-systems, MARBLE covers all phases required in fast reactor core design prediction and improvement procedures, i.e. integral experiment database management, nuclear data processing, fast criticality assembly analysis, uncertainty quantification, and power reactor analysis. In the present paper, these functionalities are summarized and system validation results are described

  17. SCALE-4 analysis of pressurized water reactor critical configurations. Volume 1: Summary

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1995-03-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original fresh composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized water reactors (PWR). The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Each of the five volumes comprising this report provides an overview of the methodology applied. Subsequent volumes also describe in detail the approach taken in performing criticality calculations for these PWR configurations: Volume 2 describes criticality calculations for the Tennessee Valley Authority's Sequoyah Unit 2 reactor for Cycle 3; Volume 3 documents the analysis of Virginia Power's Surry Unit 1 reactor for the Cycle 2 core; Volume 4 documents the calculations performed based on GPU Nuclear Corporation's Three Mile Island Unit 1 Cycle 5 core; and, lastly, Volume 5 describes the analysis of Virginia Power's North Anna Unit 1 Cycle 5 core. Each of the reactor-specific volumes provides the details of calculations performed to determine the effective multiplication factor for each reactor core for one or more critical configurations using the SCALE-4 system; these results are summarized in this volume. Differences between the core designs and their possible impact on the criticality calculations are also discussed. Finally, results are presented for additional analyses performed to verify that solutions were sufficiently converged

  18. Methodological aspects on drug receptor binding analysis

    International Nuclear Information System (INIS)

    Wahlstroem, A.

    1978-01-01

    Although drug receptors occur in relatively low concentrations, they can be visualized by the use of appropriate radioindicators. In most cases the procedure is rapid and can reach a high degree of accuracy. Specificity of the interaction is studied by competition analysis. The necessity of using several radioindicators to define a receptor population is emphasized. It may be possible to define isoreceptors and drugs with selectivity for one isoreceptor. (Author)

  19. Seismic analysis of the Aguirre Nuclear Reactor

    International Nuclear Information System (INIS)

    Sepulveda Soza, Cristian

    1999-01-01

    This thesis aims to verify the seismic design of the Aguirre Nuclear Reactor using the finite elements method and comparing the results with the original analysis. The study focused on the dynamic interaction of soil and structures, using the ANSYS program for the analysis, which was implemented for a work station under a UNIX platform belonging to the Chilean Nuclear Energy Commission. The modeling of the structures was carried out following International Atomic Energy recommendations, those of the makers of the Swanson Analysis Systems program and the prior study by S y S Ingenieros Consultores. Two-dimensional models were developed with axial and symmetry and three-dimensional models with symmetric and asymmetric plans, where the retaining building, the pond block and the soil down to the basal rock were included. The seismic stresses were defined according to the Chilean Standard NCh433.of96, using the spectrum of design accelerations for type II soils for the structural models and type IV for the soil-structure interaction models.The results of interest for this study are: the compression and cutting tensions, the unitary cut distortions and the displacements, which are shown graphically and are compared between the different models and with the original analysis. A sensitivity analysis was prepared for the models with axial symmetry considering soil reaction coefficient values of 20, 10, 5, 2, 1 and 0.5 kp/cm 3 ; and four screens with maximum sizes of 100, 50, 25 and 12.5 cm. The behavior of the stressed materials was studied as well as the result of the seismic stress (CS)

  20. Reactor neutron activation for multielemental analysis

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    1999-01-01

    Neutron Activation Analysis using single comparator (K 0 NAA method) has been used for obtaining multielemental profiles in a variety of matrices related to environment. Gold was used as the comparator. Neutron flux was characterised by determining f, the epithermal to thermal neutron flux ratio and cc, the deviation from ideal shape of the neutron spectrum. The f and a were determined in different irradiation positions in APSARA reactor, PCF position in CIRUS reactor and tray rod position in Dhruva reactor using both cadmium cut off and multi isotope detector methods. High resolution gamma ray spectrometry was used for radioactive assay of the activation products. This technique is being used for multielement analysis in a variety of matrices like lake sediments, sea nodules and crusts, minerals, leaves, cereals, pulses, leaves, water and soil. Elemental profiles of the sediments corresponding to different depths from Nainital lake were determined and used to understand the history of natural absorption/desorption pattern of the previous 160 years. Ferromanganese crusts from different locations of Indian Ocean were analysed with a view to studying the distribution of some trace elements along with Fe and Mn. Variation of Mn/Fe ratio was used to identify the nature of the crusts as hydrogenous or hydrothermal. Fe-rich and Fe-depleted nodules from Indian Ocean were analysed to understand the REE patterns and it is proposed that REE-Th associated minerals could be the potential Th contributors to the sea water and thus reached ferromanganese nodules. Dolomites (unaltered and altered), two types of serpentines and intrusive rock dolerite from the asbestos mines of Cuddapah basin were analysed for major, minor and trace elements. The elemental concentrations are used for distinguishing and characterising these minerals. From our investigations, it was concluded that both dolomite and dolerite contribute elements in the serpentinisation process. Chemical neutron

  1. An approach to model reactor core nodalization for deterministic safety analysis

    Science.gov (United States)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  2. An approach to model reactor core nodalization for deterministic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my [Nuclear Energy Department, Regulatory Economics & Planning Division, Tenaga Nasional Berhad (Malaysia); Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my [Prototypes & Plant Development Center, Malaysian Nuclear Agency (Malaysia); Roslan, Ridha, E-mail: ridha@aelb.gov.my; Sadri, Abd Aziz [Nuclear Installation Divisions, Atomic Energy Licensing Board (Malaysia); Farid, Mohd Fairus Abd [Reactor Technology Center, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  3. An approach to model reactor core nodalization for deterministic safety analysis

    International Nuclear Information System (INIS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH 1.6 , stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D ® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M

  4. Study on statistical analysis of nonlinear and nonstationary reactor noises

    International Nuclear Information System (INIS)

    Hayashi, Koji

    1993-03-01

    For the purpose of identification of nonlinear mechanism and diagnosis of nuclear reactor systems, analysis methods for nonlinear reactor noise have been studied. By adding newly developed approximate response function to GMDH, a conventional nonlinear identification method, a useful method for nonlinear spectral analysis and identification of nonlinear mechanism has been established. Measurement experiment and analysis were performed on the reactor power oscillation observed in the NSRR installed at the JAERI and the cause of the instability was clarified. Furthermore, the analysis and data recording methods for nonstationary noise have been studied. By improving the time resolution of instantaneous autoregressive spectrum, a method for monitoring and diagnosis of operational status of nuclear reactor has been established. A preprocessing system for recording of nonstationary reactor noise was developed and its usability was demonstrated through a measurement experiment. (author) 139 refs

  5. Analysis of Alternatives for Risk Assessment Methodologies and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Nachtigal, Noel M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). System Analytics; Fruetel, Julia A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Systems Research and Analysis; Gleason, Nathaniel J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Systems Research and Analysis; Helms, Jovana [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Systems Research and Analysis; Imbro, Dennis Raymond [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Systems Research and Analysis; Sumner, Matthew C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Systems Research and Analysis

    2013-10-01

    The purpose of this document is to provide a basic overview and understanding of risk assessment methodologies and tools from the literature and to assess the suitability of these methodologies and tools for cyber risk assessment. Sandia National Laboratories (SNL) performed this review in support of risk modeling activities performed for the Stakeholder Engagement and Cyber Infrastructure Resilience (SECIR) division of the Department of Homeland Security (DHS) Office of Cybersecurity and Communications (CS&C). The set of methodologies and tools covered in this document is not intended to be exhaustive; instead, it focuses on those that are commonly used in the risk assessment community. The classification of methodologies and tools was performed by a group of analysts with experience in risk analysis and cybersecurity, and the resulting analysis of alternatives has been tailored to address the needs of a cyber risk assessment.

  6. Progress in Methodologies for the Assessment of Passive Safety System Reliability in Advanced Reactors. Results from the Coordinated Research Project on Development of Advanced Methodologies for the Assessment of Passive Safety Systems Performance in Advanced Reactors

    International Nuclear Information System (INIS)

    2014-09-01

    Strong reliance on inherent and passive design features has become a hallmark of many advanced reactor designs, including several evolutionary designs and nearly all advanced small and medium sized reactor (SMR) designs. Advanced nuclear reactor designs incorporate several passive systems in addition to active ones — not only to enhance the operational safety of the reactors but also to eliminate the possibility of serious accidents. Accordingly, the assessment of the reliability of passive safety systems is a crucial issue to be resolved before their extensive use in future nuclear power plants. Several physical parameters affect the performance of a passive safety system, and their values at the time of operation are unknown a priori. The functions of passive systems are based on basic physical laws and thermodynamic principals, and they may not experience the same kind of failures as active systems. Hence, consistent efforts are required to qualify the reliability of passive systems. To support the development of advanced nuclear reactor designs with passive systems, investigations into their reliability using various methodologies are being conducted in several Member States with advanced reactor development programmes. These efforts include reliability methods for passive systems by the French Atomic Energy and Alternative Energies Commission, reliability evaluation of passive safety system by the University of Pisa, Italy, and assessment of passive system reliability by the Bhabha Atomic Research Centre, India. These different approaches seem to demonstrate a consensus on some aspects. However, the developers of the approaches have been unable to agree on the definition of reliability in a passive system. Based on these developments and in order to foster collaboration, the IAEA initiated the Coordinated Research Project (CRP) on Development of Advanced Methodologies for the Assessment of Passive Safety Systems Performance in Advanced Reactors in 2008. The

  7. Methodology and results of investigations of physical parameters of high-temperature reactors

    International Nuclear Information System (INIS)

    Cherepnin, Yu.S.; Chertkov, Yu.B.

    1995-01-01

    A physical investigations of reactors of stand complexes Baikal-1 and IGR have been carrying out more 30 years. Measuring methods of the physical investigations were divided into 2 groups: 1) methods for measuring of reactivity effects; 2) methods for measuring relative and absolute values of neutron flux and power release. The physical investigations on the reactors IVG-1 and IGR were carryied out under following conditions: during physical starts-up of regular variants of reactor cores; during energy starts-up of the reactors; before beginning of new loop chanel tests of the reactors; during research hot starts-up of the reactors the physical parameters were controled. The most full and authentic information about studied reactor have been providing by physical investigations. In 1984 physical investigations were carryied out on the IGR reactor and then the hot start-up of the mostest power and mostest large on fuel loading loop chanel was carryied out. This chanel contained 6 fuel assemblies with the summary fuel loading 3,06 kilogrammes of uranium and it was calculated for power equal to 20 MW. In 1988 the physical investigations for selection of project process chanels destined for new water cooled reactor core were carryied out. In 1993 the neutron-physical calculation on possibility of tests for the rector Nerva fuel element was carryied out. 9 refs., 4 figs

  8. Application of the integrated analysis of safety (ISA) to sequences of Total loss of feed water in a PWR Reactor

    International Nuclear Information System (INIS)

    Moreno Chamorro, P.; Gallego Diaz, C.

    2011-01-01

    The main objective of this work is to show the current status of the implementation of integrated analysis of safety (ISA) methodology and its SCAIS associated tool (system of simulation codes for ISA) to the sequence analysis of total loss of feedwater in a PWR reactor model Westinghouse of three loops with large, dry containment.

  9. Diversion path analysis handbook. Volume I. Methodology

    International Nuclear Information System (INIS)

    Maltese, M.D.K.; Goodwin, K.E.; Schleter, J.C.

    1976-10-01

    Diversion Path Analysis (DPA) is a procedure for analyzing internal controls of a facility in order to identify vulnerabilities to successful diversion of material by an adversary. The internal covert threat is addressed but the results are also applicable to the external overt threat. The diversion paths are identified. Complexity parameters include records alteration or falsification, multiple removals of sub-threshold quantities, collusion, and access authorization of the individual. Indicators, or data elements and information of significance to detection of unprevented theft, are identified by means of DPA. Indicator sensitivity is developed in terms of the threshold quantity, the elapsed time between removal and indication and the degree of localization of facility area and personnel given by the indicator. Evaluation of facility internal controls in light of these sensitivities defines the capability of interrupting identified adversary action sequences related to acquisition of material at fixed sites associated with the identified potential vulnerabilities. Corrective measures can, in many cases, also be prescribed for management consideration and action. DPA theory and concepts have been developing over the last several years, and initial field testing proved both the feasibility and practicality of the procedure. Follow-on implementation testing verified the ability of facility personnel to perform DPA

  10. Job analysis of nuclear power reactor health physics technicians

    International Nuclear Information System (INIS)

    Davis, L.T.; Mazour, T.J.; Clark, P.V.; Todd, R.C.; Marotta, F.J.

    1984-06-01

    This report describes a project, an industry-wide Job Analysis of Nuclear Power Reactor Health Physics Technicians (HPTs), conducted by Brookhaven National Laboratory and Analysis and Technology, Inc. to provide the industry with job-performance data that can be used in systematically defining training programs in terms of required job functions responsibilities, and performance standards. The job-analysis methodology is consistent with that used by the Institute of Nuclear Power Operations (INPO) in similar industry-wide projects and includes administration of over 850 job task questionnaires to utility and contractor Health Physics Technicians throughout the country. Data collected includes task performance (difficulty, importance, and frequency) and industry-wide demographics (job levels, experience, education, and training). The results of this project discussed herein include model job descriptions for HPT positions, summaries of HPT experience, education, and training, industry-wide task listings with task-performance characteristics, and recommendations of selected tasks as a basis for HPT training development. Finally, potential future applications of the data base by utility and contractor organizations in training program development and evaluation and personnel qualifications are discussed

  11. Advanced Power Plant Development and Analysis Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  12. Boiling water reactor stability analysis in the time domain

    International Nuclear Information System (INIS)

    Borkowski, J.A.

    1991-01-01

    Boiling water nuclear reactors may experience density wave instabilities. These instabilities cause the density, and consequently the mass flow rate, to oscillate in the shrouded fuel bundles. This effect causes the nuclear power generation to oscillate due to the tight coupling of flow to power, especially under gravity-driven circulation. In order to predict the amplitude of the power oscillation, a time domain transient analysis tool may be employed. The modeling tool must have sufficient hydrodynamic detail to model natural circulation in two-phase flow as well as the coupled nuclear feedback. TRAC/BF1 is a modeling code with such capabilities. A dynamic system model has been developed for a typical boiling water reactor. Using this tool it has been demonstrated that density waxes may be modeled in this fashion and that their resultant hydrodynamic and nuclear behavior correspond well to simple theory. Several cases have been analyzed using this model, the goal being to determine the coupling between the channel hydrodynamics and the nuclear power. From that study it has been concluded that two-phase friction controls the extent of the oscillation and that the existing conventional methodologies of implementing two-phase friction into analysis codes of this type can lead to significant deviation in results from case to case. It has also been determined that higher dimensional nuclear feedback models reduce the extent of the oscillation. It has also been confirmed from a nonlinear dynamic standpoint that the birth of this oscillation may be described as a Hopf Bifurcation

  13. Prism reactor system design and analysis of postulated unscrammed events

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.C.

    1991-08-01

    Key safety characteristics of the PRISM reactor system include the passive reactor shutdown characteristic and the passive shutdown heat removal system, RVACS. While these characteristics are simple in principle, the physical processes are fairly complex, particularly for the passive reactor shutdown. It has been possible to adapt independent safety analysis codes originally developed for the Clinch River Breeder Reactor review, although some limitations remain. In this paper, the analyses of postulated unscrammed events are discussed, along with limitations in the predictive capabilities and plans to correct the limitations in the near future. 6 refs., 4 figs

  14. PRISM reactor system design and analysis of postulated unscrammed events

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.C.

    1991-01-01

    Key safety characteristics of the PRISM reactor system include the passive reactor shutdown characteristic and the passive shutdown heat removal system, RVACS. While these characteristics are simple in principle, the physical processes are fairly complex, particularly for the passive reactor shutdown. It has been possible to adapt independent safety analysis codes originally developed for the Clinch River Breeder Reactor review, although some limitations remain. In this paper, the analyses of postulated unscrammed events are discussed, along with limitations in the predictive capabilities and plans to correct the limitations in the near future. (author)

  15. PRISM reactor system design and analysis of postulated unscrammed events

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.C.; Rosztoczy, Z.; Lane, J.

    1991-01-01

    Key safety characteristics of the PRISM reactor system include the passive reactor shutdown characteristics and the passive shutdown heat removal system, RVACS. While these characteristics are simple in principle, the physical processes are fairly complex, particularly for the passive reactor shutdown. It has been possible to adapt independent safety analysis codes originally developed for the Clinch River Breeder Reactor review, although some limitations remain. In this paper, the analyses of postulated unscrammed events are discussed, along with limitations in the predictive capabilities and plans to correct the limitations in the near future. 6 refs., 4 figs

  16. Computer System Analysis for Decommissioning Management of Nuclear Reactor

    International Nuclear Information System (INIS)

    Nurokhim; Sumarbagiono

    2008-01-01

    Nuclear reactor decommissioning is a complex activity that should be planed and implemented carefully. A system based on computer need to be developed to support nuclear reactor decommissioning. Some computer systems have been studied for management of nuclear power reactor. Software system COSMARD and DEXUS that have been developed in Japan and IDMT in Italy used as models for analysis and discussion. Its can be concluded that a computer system for nuclear reactor decommissioning management is quite complex that involved some computer code for radioactive inventory database calculation, calculation module on the stages of decommissioning phase, and spatial data system development for virtual reality. (author)

  17. Risk analysis methodologies for the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Geffen, C.A.

    1983-05-01

    Different methodologies have evolved for consideration of each of the many steps required in performing a transportation risk analysis. Although there are techniques that attempt to consider the entire scope of the analysis in depth, most applications of risk assessment to the transportation of nuclear fuel cycle materials develop specific methodologies for only one or two parts of the analysis. The remaining steps are simplified for the analyst by narrowing the scope of the effort (such as evaluating risks for only one material, or a particular set of accident scenarios, or movement over a specific route); performing a qualitative rather than a quantitative analysis (probabilities may be simply ranked as high, medium or low, for instance); or assuming some generic, conservative conditions for potential release fractions and consequences. This paper presents a discussion of the history and present state-of-the-art of transportation risk analysis methodologies. Many reports in this area were reviewed as background for this presentation. The literature review, while not exhaustive, did result in a complete representation of the major methods used today in transportation risk analysis. These methodologies primarily include the use of severity categories based on historical accident data, the analysis of specifically assumed accident sequences for the transportation activity of interest, and the use of fault or event tree analysis. Although the focus of this work has generally been on potential impacts to public groups, some effort has been expended in the estimation of risks to occupational groups in transportation activities

  18. Stochastic processes analysis in nuclear reactor using ARMA models

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1990-01-01

    The analysis of ARMA model derived from general stochastic state equations of nuclear reactor is given. The dependence of ARMA model parameters on the main physical characteristics of RB nuclear reactor in Vinca is presented. Preliminary identification results are presented, observed discrepancies between theory and experiment are explained and the possibilities of identification improvement are anticipated. (author)

  19. A systems analysis of the ARIES tokamak reactors

    International Nuclear Information System (INIS)

    Bathke, C.G.

    1992-01-01

    The multi-institutional ARIES study has completed a series of cost-of-electricity optimized conceptual designs of commercial tokamak fusion reactors that vary the assumed advances in technology and physics. A comparison of these designs indicates the cost benefit of various design options. A parametric systems analysis suggests a possible means to obtain a marginally competitive fusion reactor

  20. Development of fault diagnostic technique using reactor noise analysis

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, J. S.; Oh, I. S.; Ryu, J. S.; Joo, Y. S.; Choi, S.; Yoon, D. B.

    1999-04-01

    The ultimate goal of this project is to establish the analysis technique to diagnose the integrity of reactor internals using reactor noise. The reactor noise analyses techniques for the PWR and CANDU NPP(Nuclear Power Plants) were established by which the dynamic characteristics of reactor internals and SPND instrumentations could be identified, and the noise database corresponding to each plant(both Korean and foreign one) was constructed and compared. Also the change of dynamic characteristics of the Ulchin 1 and 2 reactor internals were simulated under presumed fault conditions. Additionally portable reactor noise analysis system was developed so that real time noise analysis could directly be able to be performed at plant site. The reactor noise analyses techniques developed and the database obtained from the fault simulation, can be used to establish a knowledge based expert system to diagnose the NPP's abnormal conditions. And the portable reactor noise analysis system may be utilized as a substitute for plant IVMS(Internal Vibration Monitoring System). (author)

  1. An approach to neutronics analysis of candu reactors

    International Nuclear Information System (INIS)

    Gul, S.; Arshad, M.

    1982-12-01

    An attempt is made to tackle the problem of neutronics analysis of CANDU reactors. Until now CANDU reactors have been analysed by the methods developed at AECL and CGE using mainly receipe methods. Relying on multigroup transport codes GAM-GATHER in combination with diffusion code CITATION a package of codes is established to use it for survey as well as production purposes. (authors)

  2. Development of fault diagnostic technique using reactor noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Kim, J. S.; Oh, I. S.; Ryu, J. S.; Joo, Y. S.; Choi, S.; Yoon, D. B

    1999-04-01

    The ultimate goal of this project is to establish the analysis technique to diagnose the integrity of reactor internals using reactor noise. The reactor noise analyses techniques for the PWR and CANDU NPP(Nuclear Power Plants) were established by which the dynamic characteristics of reactor internals and SPND instrumentations could be identified, and the noise database corresponding to each plant(both Korean and foreign one) was constructed and compared. Also the change of dynamic characteristics of the Ulchin 1 and 2 reactor internals were simulated under presumed fault conditions. Additionally portable reactor noise analysis system was developed so that real time noise analysis could directly be able to be performed at plant site. The reactor noise analyses techniques developed and the database obtained from the fault simulation, can be used to establish a knowledge based expert system to diagnose the NPP's abnormal conditions. And the portable reactor noise analysis system may be utilized as a substitute for plant IVMS(Internal Vibration Monitoring System). (author)

  3. Sensitivity Analysis on LOCCW of Westinghouse typed Reactors Considering WOG2000 RCP Seal Leakage Model

    International Nuclear Information System (INIS)

    Na, Jang-Hwan; Jeon, Ho-Jun; Hwang, Seok-Won

    2015-01-01

    In this paper, we focus on risk insights of Westinghouse typed reactors. We identified that Reactor Coolant Pump (RCP) seal integrity is the most important contributor to Core Damage Frequency (CDF). As we reflected the latest technical report; WCAP-15603(Rev. 1-A), 'WOG2000 RCP Seal Leakage Model for Westinghouse PWRs' instead of the old version, RCP seal integrity became more important to Westinghouse typed reactors. After Fukushima accidents, Korea Hydro and Nuclear Power (KHNP) decided to develop Low Power and Shutdown (LPSD) Probabilistic Safety Assessment (PSA) models and upgrade full power PSA models of all operating Nuclear Power Plants (NPPs). As for upgrading full power PSA models, we have tried to standardize the methodology of CCF (Common Cause Failure) and HRA (Human Reliability Analysis), which are the most influential factors to risk measures of NPPs. Also, we have reviewed and reflected the latest operating experiences, reliability data sources and technical methods to improve the quality of PSA models. KHNP has operating various types of reactors; Optimized Pressurized Reactor (OPR) 1000, CANDU, Framatome and Westinghouse. So, one of the most challengeable missions is to keep the balance of risk contributors of all types of reactors. This paper presents the method of new RCP seal leakage model and the sensitivity analysis results from applying the detailed method to PSA models of Westinghouse typed reference reactors. To perform the sensitivity analysis on LOCCW of the reference Westinghouse typed reactors, we reviewed WOG2000 RCP seal leakage model and developed the detailed event tree of LOCCW considering all scenarios of RCP seal failures. Also, we performed HRA based on the T/H analysis by using the leakage rates for each scenario. We could recognize that HRA was the sensitive contributor to CDF, and the RCP seal failure scenario of 182gpm leakage rate was estimated as the most important scenario

  4. Sensitivity Analysis on LOCCW of Westinghouse typed Reactors Considering WOG2000 RCP Seal Leakage Model

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jang-Hwan; Jeon, Ho-Jun; Hwang, Seok-Won [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, we focus on risk insights of Westinghouse typed reactors. We identified that Reactor Coolant Pump (RCP) seal integrity is the most important contributor to Core Damage Frequency (CDF). As we reflected the latest technical report; WCAP-15603(Rev. 1-A), 'WOG2000 RCP Seal Leakage Model for Westinghouse PWRs' instead of the old version, RCP seal integrity became more important to Westinghouse typed reactors. After Fukushima accidents, Korea Hydro and Nuclear Power (KHNP) decided to develop Low Power and Shutdown (LPSD) Probabilistic Safety Assessment (PSA) models and upgrade full power PSA models of all operating Nuclear Power Plants (NPPs). As for upgrading full power PSA models, we have tried to standardize the methodology of CCF (Common Cause Failure) and HRA (Human Reliability Analysis), which are the most influential factors to risk measures of NPPs. Also, we have reviewed and reflected the latest operating experiences, reliability data sources and technical methods to improve the quality of PSA models. KHNP has operating various types of reactors; Optimized Pressurized Reactor (OPR) 1000, CANDU, Framatome and Westinghouse. So, one of the most challengeable missions is to keep the balance of risk contributors of all types of reactors. This paper presents the method of new RCP seal leakage model and the sensitivity analysis results from applying the detailed method to PSA models of Westinghouse typed reference reactors. To perform the sensitivity analysis on LOCCW of the reference Westinghouse typed reactors, we reviewed WOG2000 RCP seal leakage model and developed the detailed event tree of LOCCW considering all scenarios of RCP seal failures. Also, we performed HRA based on the T/H analysis by using the leakage rates for each scenario. We could recognize that HRA was the sensitive contributor to CDF, and the RCP seal failure scenario of 182gpm leakage rate was estimated as the most important scenario.

  5. Methodology used to calculate moderator-system heat load at full power and during reactor transients in CANDU reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.

    1998-01-01

    Nine components determine the moderator-system heat load during full-power operation and during a reactor power transient in a CANDU reactor. The components that contribute to the total moderator-system heat load at any time consist of the heat generated in the calandria tubes, guide tubes and reactivity mechanisms, moderator and reflector; the heat transferred from calandria shell, the inner tubesheets and the fuel channels; and the heat gained from moderator pumps and heat lost from piping. The contributions from each of these components will vary with time during a reactor transient. The sources of heat that arise from the deposition of nuclear energy can be divided into two categories, viz., a) the neutronic component (which is directly proportional to neutronic power), which includes neutron energy absorption, prompt-fission gamma absorption and capture gamma absorption; and b) the fission-product decay-gamma component, which also varies with time after initiation of the transient. An equation was derived to calculate transient heat loads to the moderator. The equation includes two independent variables that are the neutronic power and fission-product decay-gamma power fractions during the transient and a constant term that represents the heat gained from moderator pumps and heat lost from piping. The calculated heat load in the moderator during steady-state full-power operation for a CANDU 6 reactor was compared with available measurements from the Point Lepreau, Wolsong 1 and Gentilly-2 nuclear generating stations. The calculated and measured values were in reasonably good agreement. (author)

  6. CONTENT ANALYSIS, DISCOURSE ANALYSIS, AND CONVERSATION ANALYSIS: PRELIMINARY STUDY ON CONCEPTUAL AND THEORETICAL METHODOLOGICAL DIFFERENCES

    Directory of Open Access Journals (Sweden)

    Anderson Tiago Peixoto Gonçalves

    2016-08-01

    Full Text Available This theoretical essay aims to reflect on three models of text interpretation used in qualitative research, which is often confused in its concepts and methodologies (Content Analysis, Discourse Analysis, and Conversation Analysis. After the presentation of the concepts, the essay proposes a preliminary discussion on conceptual and theoretical methodological differences perceived between them. A review of the literature was performed to support the conceptual and theoretical methodological discussion. It could be verified that the models have differences related to the type of strategy used in the treatment of texts, the type of approach, and the appropriate theoretical position.

  7. Code system for fast reactor neutronics analysis

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Abe, Junji; Sato, Wakaei.

    1983-04-01

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  8. Neutronics analysis of Nigerian Research Reactor-1

    International Nuclear Information System (INIS)

    Azande, T.S.; Balogun, G.I.

    2010-01-01

    Feasibility studies for the conversion of the Nigerian Research Reactor-1 (NIRR-1) have been performed using WIMS and CITATION codes (Azande et al, 2009 and Balogun, 2003) at the Centre for Energy Research and Training (CERT), Ahmadu Bello University, Zaria Kaduna State. In this work, the neutronics analysis of NIRR-1 core concerning mass loading of U-235 in the core, shut down margin (SDM), safety reactivity factor (SRF), control rod worth, and control rod critical depth of insertion were investigated at low enrichment. Two fuel types (UAl 4 and UO 2 ) were considered and the uranium densities required for the conversion of NIRR-1 core to low enrichment were computed to be 1201g/cc with 20% enrichment, 1144 g/cc with 19.75% enrichment, 1274 g/cc with 15% enrichment, 1448 g/cc with 10% enrichment for UAl 4 fuel type and 1141g/cc with 20% enrichment, 1144 g/cc with 19.75% enrichment, 1216 g/cc with 15% enrichment, and 1389 g/cc with 10% enrichment for UO 2 fuel type. Signi ficantly, higher uranium densities are required to convert NIRR-1 from HEU to LEU - indicating a drastic review of the NIRR-1 core.

  9. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology

    International Nuclear Information System (INIS)

    Rastegar, S.O.; Mousavi, S.M.; Shojaosadati, S.A.; Sheibani, S.

    2011-01-01

    Highlights: ► A UASB was successfully used for treatment of petroleum refinery effluent. ► Response surface methodology was applied to design and analysis of experiments. ► System was modeled between efficient factors include HRT, influent COD and V up . ► UASB was able to remove about 76.3% influent COD at optimum conditions. - Abstract: An upflow anaerobic sludge blanket (UASB) bioreactor was successfully used for the treatment of petroleum refinery effluent. Before optimization, chemical oxygen demand (COD) removal was 81% at a constant organic loading rate (OLR) of 0.4 kg/m 3 d and a hydraulic retention time (HRT) of 48 h. The rate of biogas production was 559 mL/h at an HRT of 40 h and an influent COD of 1000 mg/L. Response surface methodology (RSM) was applied to predict the behaviors of influent COD, upflow velocity (V up ) and HRT in the bioreactor. RSM showed that the best models for COD removal and biogas production rate were the reduced quadratic and cubic models, respectively. The optimum region, identified based on two critical responses, was an influent COD of 630 mg/L, a V up of 0.27 m/h, and an HRT of 21.4 h. This resulted in a 76.3% COD removal efficiency and a 0.25 L biogas/L feed d biogas production rate.

  10. Development of a Long Term Cooling Analysis Methodology Using Rappel

    International Nuclear Information System (INIS)

    Lee, S. I.; Jeong, J. H.; Ban, C. H.; Oh, S. J.

    2012-01-01

    Since the revision of the 10CFR50.46 in 1988, which allowed BE (Best-Estimate) method in analyzing the safety performance of a nuclear power plant, safety analysis methodologies have been changed continuously from conservative EM (Evaluation Model) approaches to BE ones. In this context, LSC (Long-Term core Cooling) methodologies have been reviewed by the regulatory bodies of USA and Korea. Some non-conservatism and improperness of the old methodology have been identified, and as a result, USNRC suspended the approval of CENPD-254-P-A which is the old LSC methodology for CE-designed NPPs. Regulatory bodies requested to remove the non-conservatisms and to reflect system transient behaviors in all the LSC methodologies used. In the present study, a new LSC methodology using RELAP5 is developed. RELAP5 and a newly developed code, BACON (Boric Acid Concentration Of Nuclear power plant) are used to calculate the transient behavior of the system and the boric acid concentration, respectively. Full range of break spectrum is considered and the applicability is confirmed through plant demonstration calculations. The result shows a good comparison with the old-fashioned ones, therefore, the methodology could be applied with no significant changes of current LSC plans

  11. Sensitivity analysis of source driven subcritical systems by the HGPT methodology

    International Nuclear Information System (INIS)

    Gandini, A.

    1997-01-01

    The heuristically based generalized perturbation theory (HGPT) methodology has been extensively used in the last decades for analysis studies in the nuclear reactor field. Its use leads to fundamental reciprocity relationships from which perturbation, or sensitivity expressions can be derived, to first and higher order, in terms of simple integration operation of quantities calculated at unperturbed system conditions. Its application to subcritical, source-driven systems, now considered with increasing interest in many laboratories for their potential use as nuclear waste burners and/or safer energy producers, is here commented, with particular emphasis to problems implying an intensive system control variable. (author)

  12. A Qualitative Assessment Of Diversion Scenarios For A Example Sodium Fast Reactor Using The Gen IV PR And PP Methodology

    International Nuclear Information System (INIS)

    Zentner, Michael D.

    2008-01-01

    A working group was created in 2002 by the Generation IV International Forum (GIF) for the purpose of developing an internationally accepted methodology for assessing the Proliferation Resistance of a nuclear energy system (NES) and its individual elements. A two year case study is being performed by the experts group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the PR and PP methodology can be used to provide important information at various levels of details to NES designers, safeguard administrators and decision makers. The study analyzes the response of the complete ESFR nuclear energy system to different proliferation and theft strategies. The challenges considered include concealed diversion, concealed misuse and 'break out' strategies. This paper describes the work done in performing a qualitative assessment of concealed diversion scenarios from the ESFR.

  13. Surveillance of a nuclear reactor by use of a pattern recognition methodology

    International Nuclear Information System (INIS)

    Dubuisson, B.; Lavison, P.

    1980-01-01

    A multivariate nonparametric pattern recognition system is described for the surveillance of a high-flux isotope reactor. Two nonparametric methods are worked out: one using the Bayes rule with the Rosenblatt-Parzen estimator for the probability law, and one using the k-nearest neighbor rule. Performances are evaluated by comparing the probability of misclassification between the two chosen classes: the first corresponds to a nonaction of the reactor operator on its power and the second to an action of the pilot. Processing is performed on the power signal of the reactor which is an observation corrupted by noise. The system has been tested on several experiences and implemented to work in real time on the reactor. The aim is to conceive a computer-aided decision system for the reactor's pilot. 17 refs

  14. Occupational analysis for the Angra-1 reactor

    International Nuclear Information System (INIS)

    Moraes, A.

    1991-01-01

    Due to several modifications which were imposed to its time schedule during construction, the Angra-1 reactor did not enter to the grid in 1982 as it was initially foreseen. These modifications occurred due to an unforeseen scenario that was verified in steam generators (serie D-3, Westinghouse) of power stations with similar configurations which had been installed in other countries such as Ringhals-3 (Sweden), Almaraz-1 (Spain) and McGuine-1 (USA). So, among the main events that occurred in the Angra-1 reactor, which were of interest from the point of view of radiation protection, it could be pointed out the personnel monitoring, and the occupational exposure measurements at different reactor power, during the reactor fueling and during modification and tests performed at the steam generators and at ducts of the primary coolant circuit. (author)

  15. Linear regression and sensitivity analysis in nuclear reactor design

    International Nuclear Information System (INIS)

    Kumar, Akansha; Tsvetkov, Pavel V.; McClarren, Ryan G.

    2015-01-01

    Highlights: • Presented a benchmark for the applicability of linear regression to complex systems. • Applied linear regression to a nuclear reactor power system. • Performed neutronics, thermal–hydraulics, and energy conversion using Brayton’s cycle for the design of a GCFBR. • Performed detailed sensitivity analysis to a set of parameters in a nuclear reactor power system. • Modeled and developed reactor design using MCNP, regression using R, and thermal–hydraulics in Java. - Abstract: The paper presents a general strategy applicable for sensitivity analysis (SA), and uncertainity quantification analysis (UA) of parameters related to a nuclear reactor design. This work also validates the use of linear regression (LR) for predictive analysis in a nuclear reactor design. The analysis helps to determine the parameters on which a LR model can be fit for predictive analysis. For those parameters, a regression surface is created based on trial data and predictions are made using this surface. A general strategy of SA to determine and identify the influential parameters those affect the operation of the reactor is mentioned. Identification of design parameters and validation of linearity assumption for the application of LR of reactor design based on a set of tests is performed. The testing methods used to determine the behavior of the parameters can be used as a general strategy for UA, and SA of nuclear reactor models, and thermal hydraulics calculations. A design of a gas cooled fast breeder reactor (GCFBR), with thermal–hydraulics, and energy transfer has been used for the demonstration of this method. MCNP6 is used to simulate the GCFBR design, and perform the necessary criticality calculations. Java is used to build and run input samples, and to extract data from the output files of MCNP6, and R is used to perform regression analysis and other multivariate variance, and analysis of the collinearity of data

  16. Quantifying reactor safety margins: Application of code scaling, applicability, and uncertainty evaluation methodology to a large-break, loss-of-coolant accident

    International Nuclear Information System (INIS)

    Boyack, B.; Duffey, R.; Wilson, G.; Griffith, P.; Lellouche, G.; Levy, S.; Rohatgi, U.; Wulff, W.; Zuber, N.

    1989-12-01

    The US Nuclear Regulatory Commission (NRC) has issued a revised rule for loss-of-coolant accident/emergency core cooling system (ECCS) analysis of light water reactors to allow the use of best-estimate computer codes in safety analysis as an option. A key feature of this option requires the licensee to quantify the uncertainty of the calculations and include that uncertainty when comparing the calculated results with acceptance limits provided in 10 CFR Part 50. To support the revised ECCS rule and illustrate its application, the NRC and its contractors and consultants have developed and demonstrated an uncertainty evaluation methodology called code scaling, applicability, and uncertainty (CSAU). The CSAU methodology and an example application described in this report demonstrate that uncertainties in complex phenomena can be quantified. The methodology is structured, traceable, and practical, as is needed in the regulatory arena. The methodology is systematic and comprehensive as it addresses and integrates the scenario, experiments, code, and plant to resolve questions concerned with: (a) code capability to scale-up processes from test facility to full-scale nuclear power plants; (b) code applicability to safety studies of a postulated accident scenario in a specified nuclear power plant; and (c) quantifying uncertainties of calculated results. 127 refs., 55 figs., 40 tabs

  17. Development of the evaluation methodology for the material relocation behavior in the core disruptive accident of sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Tobita, Yoshiharu; Kamiyama, Kenji; Tagami, Hirotaka; Matsuba, Ken-ichi; Suzuki, Tohru; Isozaki, Mikio; Yamano, Hidemasa; Morita, Koji; Guo, LianCheng; Zhang, Bin

    2016-01-01

    The in-vessel retention (IVR) of core disruptive accident (CDA) is of prime importance in enhancing safety characteristics of sodium-cooled fast reactors (SFRs). In the CDA of SFRs, molten core material relocates to the lower plenum of reactor vessel and may impose significant thermal load on the structures, resulting in the melt-through of the reactor vessel. In order to enable the assessment of this relocation process and prove that IVR of core material is the most probable consequence of the CDA in SFRs, a research program to develop the evaluation methodology for the material relocation behavior in the CDA of SFRs has been conducted. This program consists of three developmental studies, namely the development of the analysis method of molten material discharge from the core region, the development of evaluation methodology of molten material penetration into sodium pool, and the development of the simulation tool of debris bed behavior. The analysis method of molten material discharge was developed based on the computer code SIMMER-III since this code is designed to simulate the multi-phase, multi-component fluid dynamics with phase changes involved in the discharge process. Several experiments simulating the molten material discharge through duct using simulant materials were utilized as the basis of validation study of the physical models in this code. It was shown that SIMMER-III with improved physical models could simulate the molten material discharge behavior, including the momentum exchange with duct wall and thermal interaction with coolant. In order to develop an evaluation methodology of molten material penetration into sodium pool, a series of experiments simulating jet penetration behavior into sodium pool in SFR thermal condition were performed. These experiments revealed that the molten jet was fragmented in significantly shorter penetration length than the prediction by existing correlation for light water reactor conditions, due to the direct

  18. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  19. Preliminary conceptual design and analysis on KALIMER reactor structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    1996-10-01

    The objectives of this study are to perform preliminary conceptual design and structural analyses for KALIMER (Korea Advanced Liquid Metal Reactor) reactor structures to assess the design feasibility and to identify detailed analysis requirements. KALIMER thermal hydraulic system analysis results and neutronic analysis results are not available at present, only-limited preliminary structural analyses have been performed with the assumptions on the thermal loads. The responses of reactor vessel and reactor internal structures were based on the temperature difference of core inlet and outlet and on engineering judgments. Thermal stresses from the assumed temperatures were calculated using ANSYS code through parametric finite element heat transfer and elastic stress analyses. While, based on the results of preliminary conceptual design and structural analyses, the ASME Code limits for the reactor structures were satisfied for the pressure boundary, the needs for inelastic analyses were indicated for evaluation of design adequacy of the support barrel and the thermal liner. To reduce thermal striping effects in the bottom are of UIS due to up-flowing sodium form reactor core, installation of Inconel-718 liner to the bottom area was proposed, and to mitigate thermal shock loads, additional stainless steel liner was also suggested. The design feasibilities of these were validated through simplified preliminary analyses. In conceptual design phase, the implementation of these results will be made for the design of the reactor structures and the reactor internal structures in conjunction with the thermal hydraulic, neutronic, and seismic analyses results. 4 tabs., 24 figs., 4 refs. (Author)

  20. Development of a calculation method for one dimensional kinetic analysis in fission reactors, with feedback effects

    International Nuclear Information System (INIS)

    Paixao, S.B.

    1985-01-01

    The methodology used in the WIGLE3 computer code is studied. This methodology has been applied for the steady-state and transient solutions of the one-dimensional, two-group, diffusion equations in slab geometry, in axial type probelm analysis. It's also studied, based in a WIGLE3 computer code, reactor representative models, considering non-boiling heat transfer. A steady-state program for control rod bank position search- CITER 1D- has been developed. Some criticality research on the proposed system has been done using different control rod bank initial positions, time steps and convergence parameters. (E.G.) [pt

  1. Accident sequence analysis for a BWR [Boiling Water Reactor] during low power and shutdown operations

    International Nuclear Information System (INIS)

    Whitehead, D.W.; Hake, T.M.

    1990-01-01

    Most previous Probabilistic Risk Assessments have excluded consideration of accidents initiated in low power and shutdown modes of operation. A study of the risk associated with operation in low power and shutdown is being performed at Sandia National Laboratories for a US Boiling Water Reactor (BWR). This paper describes the proposed methodology for the analysis of the risk associated with the operation of a BWR during low power and shutdown modes and presents preliminary information resulting from the application of the methodology. 2 refs., 2 tabs

  2. A sustainability analysis of the Brazilian multipurpose reactor project

    International Nuclear Information System (INIS)

    Obadia, I.J.; Perrotta, J.A.

    2010-01-01

    The project of a new research reactor in Brazil for radioisotope production, support of the nuclear energy program and scientific research has received a positive sign of the government and is starting to be developed by the Brazilian Commission of Nuclear Energy. International Atomic Energy Agency points out that the implementation of a new research reactor is a major undertaking for a country, requiring an analysis to identify to which extent the conditions of the national nuclear program are proper and adequate to lead to a sustainable research reactor life cycle. This paper introduces the Brazilian Multipurpose Reactor Project (RMB) and describes the sustainability analysis performed, which has shown that the national nuclear infrastructure presents a very favourable condition to the implementation of the RMB project as well as to provide a sustainable life cycle for this new research reactor. (author)

  3. Radioactivity analysis of KAMINI reactor coolant from regulatory perspectives

    International Nuclear Information System (INIS)

    Srinivasan, T.K.; Sulthan, Bajeer; Sarangapani, R.; Jose, M.T.; Venkatraman, B.; Thilagam, L.

    2016-01-01

    KAMINI (a 30kWt) research reactor is operated for neutron radiography of fuel subassemblies and pyro devices and activation analysis of various samples. The reactor is fueled by 233 U and DM water is used as the coolant. During reactor operation, fission product noble gasses (FPNGs) such as 85m Kr, 87 Kr, 88 Kr, 135 Xe, 135m Xe and 138 Xe are detected in the coolant water. In order to detect clad failure, the water is sampled during reactor operation at regular intervals as per the technical specifications. In the present work, analysis of measured activities in coolant samples collected during reactor operation at 25 kWt are presented and compared with computed values obtained using ORIGEN (Isotope Generation) code

  4. Convective heat transfer analysis in aggregates rotary drum reactor

    International Nuclear Information System (INIS)

    Le Guen, Laurédan; Huchet, Florian; Dumoulin, Jean; Baudru, Yvan; Tamagny, Philippe

    2013-01-01

    Heat transport characterisation inside rotary drum dryer has a considerable importance linked to many industrial applications. The present paper deals with the heat transfer analysis from experimental apparatus installed in a large-scale rotary drum reactor applied to the asphalt materials production. The equipment including in-situ thermal probes and external visualization by mean of infrared thermography gives rise to the longitudinal evaluation of inner and external temperatures. The assessment of the heat transfer coefficients by an inverse methodology is resolved in order to accomplish a fin analysis of the convective mechanism inside baffled (or flights) rotary drum. The results are discussed and compared with major results of the literature. -- Highlights: ► A thermal and flow experimentation is performed on a large-scale rotary drum. ► Four working points is chosen in the frame of asphalt materials production. ► Evaluation of the convective transfer mechanisms is calculated by inverse method. ► The drying stage is performed in the combustion area. ► Wall/aggregates heat exchanges have a major contribution in the heating stage

  5. Simplified methodology for analysis of Angra-1 containing

    International Nuclear Information System (INIS)

    Neves Conti, T. das; Souza, A.L. de; Sabundjian, G.

    1988-01-01

    A simplified methodology of analysis was developed to simulate a Large Break Loss of Coolant Accident in the Angra 1 Nuclear Power Station. Using the RELAP5/MOD1, RELAP4/MOD5 and CONTEMPT-LT Codes, the time the variation of pressure and temperature in the containment was analysed. The obtained data was compared with the Angra 1 Final Safety Analysis Report, and too those calculated by a Detailed Model. The results obtained by this new methodology such as the small computational time of simulation, were satisfactory when getting the preliminar avaliation of the Angra 1 global parameters. (author) [pt

  6. Methodological developments and applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.

    2007-01-01

    The paper reviews the author's experience acquired and achievements made in methodological developments of neutron activation analysis (NAA) of mostly biological materials. These involve epithermal neutron activation analysis, radiochemical neutron activation analysis using both single- and multi-element separation procedures, use of various counting modes, and the development and use of the self-verification principle. The role of NAA in the detection of analytical errors is discussed and examples of applications of the procedures developed are given. (author)

  7. PIXE methodology of rare earth element analysis and its applications

    International Nuclear Information System (INIS)

    Ma Xinpei

    1992-01-01

    The Proton Induced X-ray Emission (PIXE) methodology of rare earth element (REEs) analysis is discussed, including the significance of REE analysis, the principle of PIXE applied to REE, selection of characteristic X-ray for Lanthanide series elements, deconvolution of highly over lapped PIXE spectrum and minimum detection limit (MDL) of REEs. Some practical applications are presented. And the specialities of PIXE analysis to the high pure REE chemicals are discussed. (author)

  8. Development of seismic risk analysis methodologies at JAERI

    International Nuclear Information System (INIS)

    Tanaka, T.; Abe, K.; Ebisawa, K.; Oikawa, T.

    1988-01-01

    The usefulness of probabilistic safety assessment (PSA) is recognized worldwidely for balanced design and regulation of nuclear power plants. In Japan, the Japan Atomic Energy Research Institute (JAERI) has been engaged in developing methodologies necessary for carrying out PSA. The research and development program was started in 1980. In those days the effort was only for internal initiator PSA. In 1985 the program was expanded so as to include external event analysis. Although this expanded program is to cover various external initiators, the current effort is dedicated for seismic risk analysis. There are three levels of seismic PSA, similarly to internal initiator PSA: Level 1: Evaluation of core damage frequency, Level 2: Evaluation of radioactive release frequency and source terms, and Level 3: Evaluation of environmental consequence. In the JAERI's program, only the methodologies for level 1 seismic PSA are under development. The methodology development for seismic risk analysis is divided into two phases. The Phase I study is to establish a whole set of simple methodologies based on currently available data. In the Phase II, Sensitivity study will be carried out to identify the parameters whose uncertainty may result in lage uncertainty in seismic risk, and For such parameters, the methodology will be upgraded. Now the Phase I study has almost been completed. In this report, outlines of the study and some of its outcomes are described

  9. A Global Sensitivity Analysis Methodology for Multi-physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tong, C H; Graziani, F R

    2007-02-02

    Experiments are conducted to draw inferences about an entire ensemble based on a selected number of observations. This applies to both physical experiments as well as computer experiments, the latter of which are performed by running the simulation models at different input configurations and analyzing the output responses. Computer experiments are instrumental in enabling model analyses such as uncertainty quantification and sensitivity analysis. This report focuses on a global sensitivity analysis methodology that relies on a divide-and-conquer strategy and uses intelligent computer experiments. The objective is to assess qualitatively and/or quantitatively how the variabilities of simulation output responses can be accounted for by input variabilities. We address global sensitivity analysis in three aspects: methodology, sampling/analysis strategies, and an implementation framework. The methodology consists of three major steps: (1) construct credible input ranges; (2) perform a parameter screening study; and (3) perform a quantitative sensitivity analysis on a reduced set of parameters. Once identified, research effort should be directed to the most sensitive parameters to reduce their uncertainty bounds. This process is repeated with tightened uncertainty bounds for the sensitive parameters until the output uncertainties become acceptable. To accommodate the needs of multi-physics application, this methodology should be recursively applied to individual physics modules. The methodology is also distinguished by an efficient technique for computing parameter interactions. Details for each step will be given using simple examples. Numerical results on large scale multi-physics applications will be available in another report. Computational techniques targeted for this methodology have been implemented in a software package called PSUADE.

  10. Simulation model and methodology for calculating the damage by internal radiation in a PWR reactor; Modelo de simulacion y metodologia para el calculo del dano por irradiacion en los internos de un reactor PWR

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas Mendicoa, A. M.; Benito Hernandez, M.; Barreira Pereira, P.

    2012-07-01

    This study involves the development of the methodology and three-dimensional models to estimate the damage to the vessel internals of a commercial PWR reactor from irradiation history of operating cycles.

  11. Exploiting Semantic Search Methodologies to Analyse Fast Nuclear Reactor Nuclear Related Information

    International Nuclear Information System (INIS)

    Costantini, L.

    2016-01-01

    Full text: This paper describes an experiment to evaluate the outcomes of using the semantic search engine together with the entity extraction approach and the visualisation tools in large set of nuclear data related to fast nuclear reactors (FNR) documents originated from INIS database and the IAEA web publication. The INIS database has been used because is the larger collection of nuclear related data and a sub-set of it can be utilised to verify the efficiency and the effectiveness of this approach. In a nutshell, the goal of the study was to: 1) find and monitor documents dealing with FNR; 2) building knowledge base (KB) according to the FNR nuclear components and populate the KB with relevant documents; 3) communicate the conclusion of the analysis by utilising visualisation tools. The semantic search engine used in the case study has the capability to perform what is called evidential reasoning: accruing, weighing and evaluating the evidence to determinate a mathematical score for each article that measures its relevance to the subject of interest. This approach provides a means to differentiate between articles that closely meet the search criteria versus those less relevant articles. Tovek software platform was chosen for this case study. (author

  12. A methodology to incorporate organizational factors into human reliability analysis

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Xiao Dongsheng

    2010-01-01

    A new holistic methodology for Human Reliability Analysis (HRA) is proposed to model the effects of the organizational factors on the human reliability. Firstly, a conceptual framework is built, which is used to analyze the causal relationships between the organizational factors and human reliability. Then, the inference model for Human Reliability Analysis is built by combining the conceptual framework with Bayesian networks, which is used to execute the causal inference and diagnostic inference of human reliability. Finally, a case example is presented to demonstrate the specific application of the proposed methodology. The results show that the proposed methodology of combining the conceptual model with Bayesian Networks can not only easily model the causal relationship between organizational factors and human reliability, but in a given context, people can quantitatively measure the human operational reliability, and identify the most likely root causes or the prioritization of root causes caused human error. (authors)

  13. A methodology for radiological accidents analysis in industrial gamma radiography

    International Nuclear Information System (INIS)

    Silva, F.C.A. da.

    1990-01-01

    A critical review of 34 published severe radiological accidents in industrial gamma radiography, that happened in 15 countries, from 1960 to 1988, was performed. The most frequent causes, consequences and dose estimation methods were analysed, aiming to stablish better procedures of radiation safety and accidents analysis. The objective of this work is to elaborate a radiological accidents analysis methodology in industrial gamma radiography. The suggested methodology will enable professionals to determine the true causes of the event and to estimate the dose with a good certainty. The technical analytical tree, recommended by International Atomic Energy Agency to perform radiation protection and nuclear safety programs, was adopted in the elaboration of the suggested methodology. The viability of the use of the Electron Gamma Shower 4 Computer Code System to calculate the absorbed dose in radiological accidents in industrial gamma radiography, mainly at sup(192)Ir radioactive source handling situations was also studied. (author)

  14. Progress of the DUPIC fuel compatibility analysis (I) - reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Jeong, Chang Joon; Roh, Gyu Hong; Rhee, Bo Wook; Park, Jee Won

    2003-12-01

    Since 1992, the direct use of spent pressurized water reactor fuel in CANada Deuterium Uranium (CANDU) reactors (DUPIC) has been studied as an alternative to the once-through fuel cycle. The DUPIC fuel cycle study is focused on the technical feasibility analysis, the fabrication of DUPIC fuels for irradiation tests and the demonstration of the DUPIC fuel performance. The feasibility analysis was conducted for the compatibility of the DUPIC fuel with existing CANDU-6 reactors from the viewpoints of reactor physics, reactor safety, fuel cycle economics, etc. This study has summarized the intermediate results of the DUPIC fuel compatibility analysis, which includes the CANDU reactor physics design requirements, DUPIC fuel core physics design method, performance of the DUPIC fuel core, regional overpower trip setpoint, and the CANDU primary shielding. The physics analysis showed that the CANDU-6 reactor can accommodate the DUPIC fuel without deteriorating the physics design requirements by adjusting the fuel management scheme if the fissile content of the DUPIC fuel is tightly controlled.

  15. Reactor physics computer code development for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs

    International Nuclear Information System (INIS)

    Rastogi, B.P.

    1989-01-01

    This report discusses various reactor physics codes developed for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs. These code packages have been utilized for nuclear design of 500 MWe and new 235 MWe PHWRs. (author)

  16. An investigation of structural design methodology for HTGR reactor internals with ceramic materials (Contract research)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Nakagawa, Shigeaki; Iyoku, Tatsuo; Sawa, Kazuhiro

    2008-03-01

    To advance the performance and safety of HTGR, heat-resistant ceramic materials are expected to be used as reactor internals of HTGR. C/C composite and superplastic zirconia are the promising materials for this purpose. In order to use these new materials as reactor internals in HTGR, it is necessary to establish a structure design method to guarantee the structural integrity under environmental and load conditions. Therefore, C/C composite expected as reactor internals of VHTR is focused and an investigation on the structural design method applicable to the C/C composite and a basic applicability of the C/C composite to representative structures of HTGR were carried out in this report. As the results, it is found that the competing risk theory for the strength evaluation of the C/C composite is applicable to design method and C/C composite is expected to be used as reactor internals of HTGR. (author)

  17. Application of autoregressive moving average model in reactor noise analysis

    International Nuclear Information System (INIS)

    Tran Dinh Tri

    1993-01-01

    The application of an autoregressive (AR) model to estimating noise measurements has achieved many successes in reactor noise analysis in the last ten years. The physical processes that take place in the nuclear reactor, however, are described by an autoregressive moving average (ARMA) model rather than by an AR model. Consequently more correct results could be obtained by applying the ARMA model instead of the AR model to reactor noise analysis. In this paper the system of the generalised Yule-Walker equations is derived from the equation of an ARMA model, then a method for its solution is given. Numerical results show the applications of the method proposed. (author)

  18. Establishment of computer code system for nuclear reactor design - analysis

    International Nuclear Information System (INIS)

    Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.

    1996-01-01

    Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab

  19. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rastegar, S.O. [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mousavi, S.M., E-mail: mousavi_m@modares.ac.ir [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shojaosadati, S.A. [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Sheibani, S. [R and T Management Department, National Iranian Oil Refining and Distribution Company, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer A UASB was successfully used for treatment of petroleum refinery effluent. Black-Right-Pointing-Pointer Response surface methodology was applied to design and analysis of experiments. Black-Right-Pointing-Pointer System was modeled between efficient factors include HRT, influent COD and V{sub up}. Black-Right-Pointing-Pointer UASB was able to remove about 76.3% influent COD at optimum conditions. - Abstract: An upflow anaerobic sludge blanket (UASB) bioreactor was successfully used for the treatment of petroleum refinery effluent. Before optimization, chemical oxygen demand (COD) removal was 81% at a constant organic loading rate (OLR) of 0.4 kg/m{sup 3} d and a hydraulic retention time (HRT) of 48 h. The rate of biogas production was 559 mL/h at an HRT of 40 h and an influent COD of 1000 mg/L. Response surface methodology (RSM) was applied to predict the behaviors of influent COD, upflow velocity (V{sub up}) and HRT in the bioreactor. RSM showed that the best models for COD removal and biogas production rate were the reduced quadratic and cubic models, respectively. The optimum region, identified based on two critical responses, was an influent COD of 630 mg/L, a V{sub up} of 0.27 m/h, and an HRT of 21.4 h. This resulted in a 76.3% COD removal efficiency and a 0.25 L biogas/L feed d biogas production rate.

  20. Seismological analysis of group pile foundation for reactor

    International Nuclear Information System (INIS)

    Wang Demin.

    1984-01-01

    In the seismic analysis for reactor foundation of nuclear power plant, the local raise of base mat is of great significance. Base on the study of static and dynamic stability as well as soil-structure interaction of group piles on stratified soil, this paper presents a method of seismic analysis for group piles of reactor foundation at abroad, and a case history is enclosed. (Author)

  1. Advanced reactor passive system reliability demonstration analysis for an external event

    International Nuclear Information System (INIS)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin

    2017-01-01

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event

  2. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    Directory of Open Access Journals (Sweden)

    Matthew Bucknor

    2017-03-01

    Full Text Available Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general for the postulated transient event.

  3. Advanced reactor passive system reliability demonstration analysis for an external event

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin [Argonne National Laboratory, Argonne (United States)

    2017-03-15

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.

  4. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  5. Study on effects of development of reactor constant in fast reactor analysis

    International Nuclear Information System (INIS)

    Chiba, Gou

    2002-12-01

    Evaluation was carried out about an effect of development of the new generation reactor constant system that substitutes for the JFS library in fast reactor analysis. Analyzed cores were ZPPR in JUPITER critical experiment and several power reactor cores that were designed in the feasibility study. In the JUPITER analysis, large effects, over 10%, were observed in sodium void reactivity and sample Doppler reactivity. The former resulted from several factors, while the latter was due to an accurate of a resonance interaction effect between Doppler sample and core fuel. In the previous study, the effect had been evaluated in power reactor cores. The effect included an effect of corrosion of weighting spectrum because JFS-3-J3.2, which had been made with the incorrect weighting spectrum, was used in the evaluation. In the present study, JFS-3-J3.2R, which had been made with the correct weighting spectrum, was used. It was confirmed that the effect of development of reactor constant in power reactor was not as large as that in critical assembly. (author)

  6. A Local Approach Methodology for the Analysis of Ultimate Strength ...

    African Journals Online (AJOL)

    The local approach methodology in contrast to classical fracture mechanics can be used to predict the onset of tearing fracture, and the effects of geometry in tubular joints. Finite element analysis of T-joints plate geometries, and tubular joints has been done. The parameters of constraint, equivalent stress, plastic strain and ...

  7. Human Schedule Performance, Protocol Analysis, and the "Silent Dog" Methodology

    Science.gov (United States)

    Cabello, Francisco; Luciano, Carmen; Gomez, Inmaculada; Barnes-Holmes, Dermot

    2004-01-01

    The purpose of the current experiment was to investigate the role of private verbal behavior on the operant performances of human adults, using a protocol analysis procedure with additional methodological controls (the "silent dog" method). Twelve subjects were exposed to fixed ratio 8 and differential reinforcement of low rate 3-s schedules. For…

  8. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    International Nuclear Information System (INIS)

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.; Ellison, Paul B.; Francis, M.; Gabor, John D.; Gauntt, R.; Henry, C.; Linthicum, R.; Luangdilok, W.; Lutz, R.; Paik, C.; Plys, M.; Rabiti, Cristian; Rempe, J.; Robb, K.; Wachowiak, R.

    2015-01-01

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy's (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affect reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).

  9. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Mitchell T. [Argonne National Lab. (ANL), Argonne, IL (United States); Bunt, R. [Southern Nuclear, Atlanta, GA (United States); Corradini, M. [Univ. of Wisconsin, Madison, WI (United States); Ellison, Paul B. [GE Power and Water, Duluth, GA (United States); Francis, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Gabor, John D. [Erin Engineering, Walnut Creek, CA (United States); Gauntt, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, C. [Fauske and Associates, Burr Ridge, IL (United States); Linthicum, R. [Exelon Corp., Chicago, IL (United States); Luangdilok, W. [Fauske and Associates, Burr Ridge, IL (United States); Lutz, R. [PWR Owners Group (PWROG); Paik, C. [Fauske and Associates, Burr Ridge, IL (United States); Plys, M. [Fauske and Associates, Burr Ridge, IL (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rempe, J. [Rempe and Associates LLC, Idaho Falls, ID (United States); Robb, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Wachowiak, R. [Electric Power Research Inst. (EPRI), Knovville, TN (United States)

    2015-01-31

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affect reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).

  10. Analysis of an accelerator-driven subcritical light water reactor

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Wakker, P.H.; Wetering, T.F.H. van de; Verkooijen, A.H.M.

    1997-01-01

    An analysis of the basic characteristics of an accelerator-driven light water reactor has been made. The waste in the nuclear fuel cycle is considerably less than in the light water reactor open fuel cycle. This is mainly caused by the use of equilibrium nuclear fuel in the reactor. The accelerator enables the use of a fuel composition with infinite multiplication factor k ∞ < 1. The main problem of the use of this type of fuel is the strongly peaked flux distribution in the reactor core. A simple analytical model shows that a large core is needed with a high peak power factor in order to generate net electric energy. The fuel in the outer regions of the reactor core is used very poorly. 7 refs., 4 figs., 1 tab

  11. Review of the treat upgrade reactor scram system reliability analysis

    International Nuclear Information System (INIS)

    Montague, D.F.; Fussell, J.B.; Krois, P.A.; Morelock, T.C.; Knee, H.E.; Manning, J.J.; Haas, P.M.; West, K.W.

    1984-10-01

    In order to resolve some key LMFBR safety issues, ANL personnel are modifying the TREAT reactor to handle much larger experiments. As a result of these modifications, the upgraded Treat reactor will not always operate in a self-limited mode. During certain experiments in the upgraded TREAT reactor, it is possible that the fuel could be damaged by overheating if, once the computer systems fail, the reactor scram system (RSS) fails on demand. To help ensure that the upgraded TREAT reactor is shut down when required, ANL personnel have designed a triply redundant RSS for the facility. The RSS is designed to meet three reliability goals: (1) a loss of capability failure probability of 10 -9 /demand (independent failures only); (2) an inadvertent shutdown probability of 10 -3 /experiment; and (3) protection agaist any known potential common cause failures. According to ANL's reliability analysis of the RSS, this system substantially meets these goals

  12. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  13. Discussion on safety analysis approach for sodium fast reactors

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Suh, Nam Duk; Shin, Ahn Dong; Bae, Moo Hoon

    2012-01-01

    Utilization of nuclear energy is increasingly necessary not only because of the increasing energy consumption but also because of the controls on greenhouse emissions against global warming. To keep step with such demands, advanced reactors are now world widely under development with the aims of highly economical advances, and enhanced safety. Recently, further elaborating is encouraged on the research and development program for Generation IV (GEN IV) reactors, and in collaboration with other interested countries through the Generation IV International Forum (GIF). Sodium cooled Fast Reactor (SFR) is a strong contender amongst the GEN IV reactor concepts. Korea also takes part in that program and plans to construct demonstration reactor of SFR. SFR is under the development for a candidate of small modular reactors, for example, PRISM (Power Reactor Innovative Small Module). Understanding of safety analysis approach has also advanced by the demand of increasing comprehensive safety requirement. Reviewing the past development of the licensing and safety basis in the advanced reactors, such approaches seemed primarily not so satisfactory because the reference framework of licensing and safety analysis approach in the advanced reactors was always the one in water reactors. And, the framework is very plant specific one and thereby the advanced reactors and their frameworks don't look like a well assorted couple. Recently as a result of considerable advances in probabilistic safety assessment (PSA), risk informed approaches are increasingly applied together with some of the deterministic approaches like as the ones in water reactors. Technology neutral framework (TNF) can be said to be the utmost works of such risk informed approaches, even though an intensive assessment of the applicability has not been sufficiently accomplished. This study discusses the viable safety analysis approaches for the urgent application to the construction of pool type SFR. As discussed in

  14. Neutronics and thermal-hydraulics coupling: some contributions toward an improved methodology to simulate the initiating phase of a severe accident in a sodium fast reactor

    International Nuclear Information System (INIS)

    Guyot, Maxime

    2014-01-01

    This project is dedicated to the analysis and the quantification of bias corresponding to the computational methodology for simulating the initiating phase of severe accidents on Sodium Fast Reactors. A deterministic approach is carried out to assess the consequences of a severe accident by adopting best estimate design evaluations. An objective of this deterministic approach is to provide guidance to mitigate severe accident developments and re-criticalities through the implementation of adequate design measures. These studies are generally based on modern simulation techniques to test and verify a given design. The new approach developed in this project aims to improve the safety assessment of Sodium Fast Reactors by decreasing the bias related to the deterministic analysis of severe accident scenarios. During the initiating phase, the subassembly wrapper tubes keep their mechanical integrity. Material disruption and dispersal is primarily one-dimensional. For this reason, evaluation methodology for the initiating phase relies on a multiple-channel approach. Typically a channel represents an average pin in a subassembly or a group of similar subassemblies. In the multiple-channel approach, the core thermal-hydraulics model is composed of 1 or 2 D channels. The thermal-hydraulics model is coupled to a neutronics module to provide an estimate of the reactor power level. In this project, a new computational model has been developed to extend the initiating phase modeling. This new model is based on a multi-physics coupling. This model has been applied to obtain information unavailable up to now in regards to neutronics and thermal-hydraulics models and their coupling. (author) [fr

  15. Nonlinear dynamic analysis of nuclear reactor primary coolant systems

    International Nuclear Information System (INIS)

    Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.

    1979-01-01

    The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development

  16. PROBLEMS AND METHODOLOGY OF THE PETROLOGIC ANALYSIS OF COAL FACIES.

    Science.gov (United States)

    Chao, Edward C.T.

    1983-01-01

    This condensed synthesis gives a broad outline of the methodology of coal facies analysis, procedures for constructing sedimentation and geochemical formation curves, and micro- and macrostratigraphic analysis. The hypothetical coal bed profile has a 3-fold cycle of material characteristics. Based on studies of other similar profiles of the same coal bed, and on field studies of the sedimentary rock types and their facies interpretation, one can assume that the 3-fold subdivision is of regional significance.

  17. Heat transfer capability analysis of heat pipe for space reactor

    International Nuclear Information System (INIS)

    Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang

    2015-01-01

    To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)

  18. Calculation system for physical analysis of boiling water reactors

    International Nuclear Information System (INIS)

    Bouveret, F.

    2001-01-01

    Although Boiling Water Reactors generate a quarter of worldwide nuclear electricity, they have been only little studied in France. A certain interest now shows up for these reactors. So, the aim of the work presented here is to contribute to determine a core calculation methodology with CEA (Commissariat a l'Energie Atomique) codes. Vapour production in the reactor core involves great differences in technological options from pressurised water reactor. We analyse main physical phenomena for BWR and offer solutions taking them into account. BWR fuel assembly heterogeneity causes steep thermal flux gradients. The two dimensional collision probability method with exact boundary conditions makes possible to calculate accurately the flux in BWR fuel assemblies using the APOLLO-2 lattice code but induces a very long calculation time. So, we determine a new methodology based on a two-level flux calculation. Void fraction variations in assemblies involve big spectrum changes that we have to consider in core calculation. We suggest to use a void history parameter to generate cross-sections libraries for core calculation. The core calculation code has also to calculate the depletion of main isotopes concentrations. A core calculation associating neutronics and thermal-hydraulic codes lays stress on points we still have to study out. The most important of them is to take into account the control blade in the different calculation stages. (author)

  19. Probabilistic study of primary pump trip in a P.W.R. reactor: use of response surface methodology

    International Nuclear Information System (INIS)

    Bars, C.; Duchemin, B.; Maigret, N.; Peltier, J.; Rostan, O.; Villeneuve, M.J. de; Lanore, J.M.

    1981-09-01

    This paper describes a probabilistic study about the consequences of the trip or blockage of one of the three PWR reactor primary pumps. The distribution of the input parameters is taken into account and the resulting distribution of the consequence (number of failed fuel rods) is assessed. The necessity to do this study with the response surface methodology and the precautions to take are outlined. The results show that the probability to have failed fuel rods is about 10 -4 for pump trip and 0.16 for blockage with, in this case, a mean of 196 failed rods, that is 0.5 % of total number of rods

  20. Production of specifically structured lipids by enzymatic interesterification in a pilot enzyme bed reactor: process optimization by response surface methodology

    DEFF Research Database (Denmark)

    Xu, Xuebing; Mu, Huiling; Høy, Carl-Erik

    1999-01-01

    Pilot production of specifically structured lipids by Lipozyme IM-catalyzed interesterification was carried out in a continuous enzyme bed reactor without the use of solvent. Medium chain triacylglycerols and oleic acid were used as model substrates. Response surface methodology was applied...... and the production of mono-incorporated and di-incorporated structured lipids with multiple regression and backward elimination. The coefficient of determination (R2) for the incorporation was 0.93, and that for the di-incorporated products was 0.94. The optimal conditions were flow rate, 2 ml/min; temperature, 65...

  1. Disposal criticality analysis methodology for fissile waste forms

    International Nuclear Information System (INIS)

    Davis, J.W.; Gottlieb, P.

    1998-03-01

    A general methodology has been developed to evaluate the criticality potential of the wide range of waste forms planned for geologic disposal. The range of waste forms include commercial spent fuel, high level waste, DOE spent fuel (including highly enriched), MOX using weapons grade plutonium, and immobilized plutonium. The disposal of these waste forms will be in a container with sufficiently thick corrosion resistant barriers to prevent water penetration for up to 10,000 years. The criticality control for DOE spent fuel is primarily provided by neutron absorber material incorporated into the basket holding the individual assemblies. For the immobilized plutonium, the neutron absorber material is incorporated into the waste form itself. The disposal criticality analysis methodology includes the analysis of geochemical and physical processes that can breach the waste package and affect the waste forms within. The basic purpose of the methodology is to guide the criticality control features of the waste package design, and to demonstrate that the final design meets the criticality control licensing requirements. The methodology can also be extended to the analysis of criticality consequences (primarily increased radionuclide inventory), which will support the total performance assessment for the respository

  2. Two methodologies for optical analysis of contaminated engine lubricants

    International Nuclear Information System (INIS)

    Aghayan, Hamid; Yang, Jun; Bordatchev, Evgueni

    2012-01-01

    The performance, efficiency and lifetime of modern combustion engines significantly depend on the quality of the engine lubricants. However, contaminants, such as gasoline, moisture, coolant and wear particles, reduce the life of engine mechanical components and lubricant quality. Therefore, direct and indirect measurements of engine lubricant properties, such as physical-mechanical, electro-magnetic, chemical and optical properties, are intensively utilized in engine condition monitoring systems and sensors developed within the last decade. Such sensors for the measurement of engine lubricant properties can be used to detect a functional limit of the in-use lubricant, increase drain interval and reduce the environmental impact. This paper proposes two new methodologies for the quantitative and qualitative analysis of the presence of contaminants in the engine lubricants. The methodologies are based on optical analysis of the distortion effect when an object image is obtained through a thin random optical medium (e.g. engine lubricant). The novelty of the proposed methodologies is in the introduction of an object with a known periodic shape behind a thin film of the contaminated lubricant. In this case, an acquired image represents a combined lubricant–object optical appearance, where an a priori known periodic structure of the object is distorted by a contaminated lubricant. In the object shape-based optical analysis, several parameters of an acquired optical image, such as the gray scale intensity of lubricant and object, shape width at object and lubricant levels, object relative intensity and width non-uniformity coefficient are newly proposed. Variations in the contaminant concentration and use of different contaminants lead to the changes of these parameters measured on-line. In the statistical optical analysis methodology, statistical auto- and cross-characteristics (e.g. auto- and cross-correlation functions, auto- and cross-spectrums, transfer function

  3. Methodology for dimensional variation analysis of ITER integrated systems

    International Nuclear Information System (INIS)

    Fuentes, F. Javier; Trouvé, Vincent; Cordier, Jean-Jacques; Reich, Jens

    2016-01-01

    Highlights: • Tokamak dimensional management methodology, based on 3D variation analysis, is presented. • Dimensional Variation Model implementation workflow is described. • Methodology phases are described in detail. The application of this methodology to the tolerance analysis of ITER Vacuum Vessel is presented. • Dimensional studies are a valuable tool for the assessment of Tokamak PCR (Project Change Requests), DR (Deviation Requests) and NCR (Non-Conformance Reports). - Abstract: The ITER machine consists of a large number of complex systems highly integrated, with critical functional requirements and reduced design clearances to minimize the impact in cost and performances. Tolerances and assembly accuracies in critical areas could have a serious impact in the final performances, compromising the machine assembly and plasma operation. The management of tolerances allocated to part manufacture and assembly processes, as well as the control of potential deviations and early mitigation of non-compliances with the technical requirements, is a critical activity on the project life cycle. A 3D tolerance simulation analysis of ITER Tokamak machine has been developed based on 3DCS dedicated software. This integrated dimensional variation model is representative of Tokamak manufacturing functional tolerances and assembly processes, predicting accurate values for the amount of variation on critical areas. This paper describes the detailed methodology to implement and update the Tokamak Dimensional Variation Model. The model is managed at system level. The methodology phases are illustrated by its application to the Vacuum Vessel (VV), considering the status of maturity of VV dimensional variation model. The following topics are described in this paper: • Model description and constraints. • Model implementation workflow. • Management of input and output data. • Statistical analysis and risk assessment. The management of the integration studies based on

  4. Methodology for dimensional variation analysis of ITER integrated systems

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, F. Javier, E-mail: FranciscoJavier.Fuentes@iter.org [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France); Trouvé, Vincent [Assystem Engineering & Operation Services, rue J-M Jacquard CS 60117, 84120 Pertuis (France); Cordier, Jean-Jacques; Reich, Jens [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France)

    2016-11-01

    Highlights: • Tokamak dimensional management methodology, based on 3D variation analysis, is presented. • Dimensional Variation Model implementation workflow is described. • Methodology phases are described in detail. The application of this methodology to the tolerance analysis of ITER Vacuum Vessel is presented. • Dimensional studies are a valuable tool for the assessment of Tokamak PCR (Project Change Requests), DR (Deviation Requests) and NCR (Non-Conformance Reports). - Abstract: The ITER machine consists of a large number of complex systems highly integrated, with critical functional requirements and reduced design clearances to minimize the impact in cost and performances. Tolerances and assembly accuracies in critical areas could have a serious impact in the final performances, compromising the machine assembly and plasma operation. The management of tolerances allocated to part manufacture and assembly processes, as well as the control of potential deviations and early mitigation of non-compliances with the technical requirements, is a critical activity on the project life cycle. A 3D tolerance simulation analysis of ITER Tokamak machine has been developed based on 3DCS dedicated software. This integrated dimensional variation model is representative of Tokamak manufacturing functional tolerances and assembly processes, predicting accurate values for the amount of variation on critical areas. This paper describes the detailed methodology to implement and update the Tokamak Dimensional Variation Model. The model is managed at system level. The methodology phases are illustrated by its application to the Vacuum Vessel (VV), considering the status of maturity of VV dimensional variation model. The following topics are described in this paper: • Model description and constraints. • Model implementation workflow. • Management of input and output data. • Statistical analysis and risk assessment. The management of the integration studies based on

  5. Methodology for development of health physics procedures at research reactors in agreement states

    International Nuclear Information System (INIS)

    Woodard, R.C.; Bauer, T.L.; Wehring, B.W.

    1991-01-01

    The University of Texas at Austin is awaiting final license approval to operate a new 1 MW TRIGA reactor for teaching and research. All reactor and laboratory operations, experiments, and monitoring are carried out under health physics procedures that address to ensure consideration of all applicable documents as references in order to comply with the regulations and accepted good practices. This paper examines the development of one procedure Radioactive Material Control by use of the method. The process is examined as a tool to apply to any health physics procedure development. Further discussion focuses on the regulatory anomalies observed during development of the procedure and presents the arguments for the authors resolution of these issues. The design of the reactor facility is also detailed to allow for understanding of the problems encountered during procedural development

  6. Preliminary analysis of basic reactor physics of the Dual Fluid Reactor - 15270

    International Nuclear Information System (INIS)

    Wang, X.; Macian-Juan, R.; Seidl, M.

    2015-01-01

    The Dual Fluid Reactor (DFR) is a novel fast nuclear reactor concept invented by the IFK based on the Generation IV Molten Salt Reactor and the Liquid Metal Cooled Reactor. The DFR uses a chloride based molten fuel salt in order to harden the neutron spectrum. The molten fuel salt is cooled with a separated liquid lead loop, which in principle allows for higher power densities and better breeding performance. The DFR does not combine heat removal and breeding into a single circuit but separates the two functions into two independent circuits. Since there are attractive features mentioned in this design, the main task of this paper is to verify the model of the whole reactor based on this concept. For this purpose several calculations are presented, including steady state calculations, sensitivity calculations with regard to the nuclide cross sections, the temperature and geometry coefficient of k eff as well as the burnup calculation. The Monte Carlo calculation codes MCNP, SERPENT and SCALE are used for the analysis. As expected the study shows a significant negative reactivity feedback with temperature in the overall fission zone. For the coupled coolant and reflector design the temperature feedback is rather small for practical purposes such as reactor control during normal operation. In the view of these results the DFR in principle can be self-regulated totally by the temperature change of its own fuel salt and consequently can rely on fully passive safety systems for accident management

  7. The spatial kinetic analysis of accelerator-driven subcritical reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; An, Y.; Chen, X.

    1998-02-01

    The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code

  8. Reactor building integrity testing: A novel approach at Gentilly 2 - principles and methodology

    International Nuclear Information System (INIS)

    Collins, N.; Lafreniere, P.

    1991-01-01

    In 1987, Hydro-Quebec embarked on an ambitious development program to provide the Gentilly 2 nuclear power station with an effective, yet practical reactor building Integrity Test. The Gentilly 2 Integrity Test employs an innovative approach based on the reference volume concept. It is identified as the Temperature Compensation Method (TCM) System. This configuration has been demonstrated at both high and low test pressure and has achieved extraordinary precision in the leak rate measurement. The Gentilly 2 design allows the Integrity Test to be performed at a nominal 3 kPa(g) test pressure during an (11) hour period with the reactor at full power. The reactor building Pressure Test by comparison, is typically performed at high pressure 124 kPa(g)) in a 7 day window during an annual outage. The Integrity Test was developed with the goal of demonstrating containment availability. Specifically it was purported to detect a leak or hole in the 'bottled-up' reactor building greater in magnitude than an equivalent pipe of 25 mm diameter. However it is considered feasible that the high precision of the Gentilly 2 TCM System Integrity Test and a stable reactor building leak characteristic will constitute sufficient grounds for the reduction of the Pressure Test frequency. It is noted that only the TCM System has, to this date, allowed a relevant determination of the reactor building leak rate at a nominal test pressure of 3 kPa(g). Classical method tests at low pressure have lead to inconclusive results due to the high lack of precision

  9. Numerical analysis of magnetoelastic coupled buckling of fusion reactor components

    International Nuclear Information System (INIS)

    Demachi, K.; Yoshida, Y.; Miya, K.

    1994-01-01

    For a tokamak fusion reactor, it is one of the most important subjects to establish the structural design in which its components can stand for strong magnetic force induced by plasma disruption. A number of magnetostructural analysis of the fusion reactor components were done recently. However, in these researches the structural behavior was calculated based on the small deformation theory where the nonlinearity was neglected. But it is known that some kinds of structures easily exceed the geometrical nonlinearity. In this paper, the deflection and the magnetoelastic buckling load of fusion reactor components during plasma disruption were calculated

  10. Electromagnetic analysis for fusion reactors: status and needs

    International Nuclear Information System (INIS)

    Turner, L.R.

    1983-01-01

    Electromagnetic effects have far-reaching implications for the design, operation, and maintenance of future fusion reactors. Two-dimensional (2-D) eddy current computer codes are available, but are of limited value in analyzing reactors. Three-dimensional (3-D) codes are needed, but are only beginning to be developed. Both 2-D and 3-D codes need verification against experimental data, such as that provided by the upcoming FELIX experiments. Coupling between eddy currents and deflections has application in fusion reactor design and is being studied both by analysis and experiment

  11. Methods and Models for the Coupled Neutronics and Thermal-Hydraulics Analysis of the CROCUS Reactor at EFPL

    Directory of Open Access Journals (Sweden)

    A. Rais

    2015-01-01

    Full Text Available In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear data library for the CROCUS reactor using the Serpent 2 Monte Carlo code and also with reactor core modeling using the PARCS code. PARCS eigenvalue, radial power distribution, and control rod reactivity worth results were benchmarked against Serpent 2 full-core model results. Using the Serpent 2 model as reference, PARCS eigenvalue predictions were within 240 pcm, radial power was within 3% in the central region of the core, and control rod reactivity worth was within 2%. A second part reviews the current methodology used for the safety analysis of the CROCUS reactor and presents the envisioned approach for the multiphysics modeling of the reactor.

  12. Analysis of short-term reactor cavity transient

    International Nuclear Information System (INIS)

    Cheng, T.C.; Fischer, S.R.

    1981-01-01

    Following the transient of a hypothetical loss-of-coolant accident (LOCA) in a nuclear reactor, peak pressures are reached within the first 0.03 s at different locations inside the reactor cavity. Due to the complicated multidimensional nature of the reactor cavity, the short-term analysis of the LOCA transient cannot be performed by using traditional containment codes, such as CONTEMPT. The advanced containment code, BEACON/MOD3, developed at the Idaho National Engineering Laboratory (INEL), can be adapted for such analysis. This code provides Eulerian, one and two-dimensional, nonhomogeneous, nonequilibrium flow modeling as well as lumped parameter, homogeneous, equilibrium flow modeling for the solution of two-component, two-phase flow problems. The purpose of this paper is to demonstrate the capability of the BEACON code to analyze complex containment geometry such as a reactor cavity

  13. Methodology for reliability allocation based on fault tree analysis and dualistic contrast

    Institute of Scientific and Technical Information of China (English)

    TONG Lili; CAO Xuewu

    2008-01-01

    Reliability allocation is a difficult multi-objective optimization problem.This paper presents a methodology for reliability allocation that can be applied to determine the reliability characteristics of reactor systems or subsystems.The dualistic contrast,known as one of the most powerful tools for optimization problems,is applied to the reliability allocation model of a typical system in this article.And the fault tree analysis,deemed to be one of the effective methods of reliability analysis,is also adopted.Thus a failure rate allocation model based on the fault tree analysis and dualistic contrast is achieved.An application on the emergency diesel generator in the nuclear power plant is given to illustrate the proposed method.

  14. Development of risk assessment methodology against natural external hazards for sodium-cooled fast reactors: project overview and strong Wind PRA methodology - 15031

    International Nuclear Information System (INIS)

    Yamano, H.; Nishino, H.; Kurisaka, K.; Okano, Y.; Sakai, T.; Yamamoto, T.; Ishizuka, Y.; Geshi, N.; Furukawa, R.; Nanayama, F.; Takata, T.; Azuma, E.

    2015-01-01

    This paper describes mainly strong wind probabilistic risk assessment (PRA) methodology development in addition to the project overview. In this project, to date, the PRA methodologies against snow, tornado and strong wind were developed as well as the hazard evaluation methodologies. For the volcanic eruption hazard, ash fallout simulation was carried out to contribute to the development of the hazard evaluation methodology. For the forest fire hazard, the concept of the hazard evaluation methodology was developed based on fire simulation. Event sequence assessment methodology was also developed based on plant dynamics analysis coupled with continuous Markov chain Monte Carlo method in order to apply to the event sequence against snow. In developing the strong wind PRA methodology, hazard curves were estimated by using Weibull and Gumbel distributions based on weather data recorded in Japan. The obtained hazard curves were divided into five discrete categories for event tree quantification. Next, failure probabilities for decay heat removal related components were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or out-take in the decay heat removal system, and fragility caused by the missile impacts. Finally, based on the event tree, the core damage frequency was estimated about 6*10 -9 /year by multiplying the discrete hazard probabilities in the Gumbel distribution by the conditional decay heat removal failure probabilities. A dominant sequence was led by the assumption that the operators could not extinguish fuel tank fire caused by the missile impacts and the fire induced loss of the decay heat removal system. (authors)

  15. Contribution to the methodology of safety evaluation - and licensing of reloading cycle for PWR type reactors

    International Nuclear Information System (INIS)

    Esteves, R.G.

    1981-01-01

    A simplified methodology for evaluating a reload safety cycle is presented. This methodology consists in selecting for each foreseen accident, the nuclear key reload safety parameters which determine the accident evolution. So, each key reload parameter is calculated and compared with its value for the first cycle. Those accidents, which have their key reload parameter bounded by the values of the first cycle do not need reanalise. Extension of the validity of this methodology when there exists change of fuel supplier is commented. (Author) [pt

  16. Development of Audit Calculation Methodology for RIA Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joosuk; Kim, Gwanyoung; Woo, Swengwoong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    The interim criteria contain more stringent limits than previous ones. For example, pellet-to-cladding mechanical interaction(PCMI) was introduced as a new failure criteria. And both short-term (e.g. fuel-to coolant interaction, rod burst) and long-term(e.g., fuel rod ballooning, flow blockage) phenomena should be addressed for core coolability assurance. For dose calculations, transient-induced fission gas release has to be accounted additionally. Traditionally, the approved RIA analysis methodologies for licensing application are developed based on conservative approach. But newly introduced safety criteria tend to reduce the margins to the criteria. Thereby, licensees are trying to improve the margins by utilizing a less conservative approach. In this situation, to cope with this trend, a new audit calculation methodology needs to be developed. In this paper, the new methodology, which is currently under developing in KINS, was introduced. For the development of audit calculation methodology of RIA safety analysis based on the realistic evaluation approach, preliminary calculation by utilizing the best estimate code has been done on the initial core of APR1400. Followings are main conclusions. - With the assumption of single full-strength control rod ejection in HZP condition, rod failure due to PCMI is not predicted. - And coolability can be assured in view of entalphy and fuel melting. - But, rod failure due to DNBR is expected, and there is possibility of fuel failure at the rated power conditions also.

  17. Development of a methodology for safety classification on a non-reactor nuclear facility illustrated using an specific example

    International Nuclear Information System (INIS)

    Scheuermann, F.; Lehradt, O.; Traichel, A.

    2015-01-01

    To realize the safety of personnel and environment systems and components of nuclear facilities are classified according to their potential danger into safety classes. Based on this classification different demands on the manufacturing quality result. The objective of this work is to present the standardized method developed by NUKEM Technologies Engineering Services for the categorization into the safety classes restricted to Non-reactor nuclear facilities (NRNF). Exemplary the methodology is used on the complex Russian normative system (four safety classes). For NRNF only the lower two safety classes are relevant. The classification into the lowest safety class 4 is accordingly if the maximum resulting dose following from clean-up actions in case of incidents/accidents remains below 20 mSv and the volume activity restrictions of set in NRB-99/2009 are met. The methodology is illustrated using an example. In short the methodology consists of: - Determination of the working time to remove consequences of incidents, - Calculation of the dose resulting from direct radiation and due to inhalation during these works. The application of this methodology avoids over-conservative approaches. As a result some previously higher classified equipment can be classified into the lower safety class.

  18. Core conversion effects on the safety analysis of research reactors

    International Nuclear Information System (INIS)

    Anoussis, J.N.; Chrysochoides, N.G.; Papastergiou, C.N.

    1982-07-01

    The safety related parameters of the 5 MW Democritus research reactor that will be affected by the scheduled core conversion to use LEU instead of HEU are considered. The analysis of the safety related items involved in such a core conversion, mainly the consequences due to MCA, DBA, etc., is of a general nature and can, therefore, be applied to other similar pool type reactors as well. (T.A.)

  19. Automation of reactor neutron activation analysis

    International Nuclear Information System (INIS)

    Pavlov, S.S.; Dmitriev, A.Yu.; Frontasyeva, M.V.

    2013-01-01

    The present status of the development of a software package designed for automation of NAA at the IBR-2 reactor of FLNP, JINR, Dubna, is reported. Following decisions adopted at the CRP Meeting in Delft, August 27-31, 2012, the missing tool - a sample changer - will be installed for NAA in compliance with the peculiar features of the radioanalytical laboratory REGATA at the IBR-2 reactor. The details of the design are presented. The software for operation with the sample changer consists of two parts. The first part is a user interface and the second one is a program to control the sample changer. The second part will be developed after installing the tool.

  20. Depleted Reactor Analysis With MCNP-4B

    International Nuclear Information System (INIS)

    Caner, M.; Silverman, L.; Bettan, M.

    2004-01-01

    Monte Carlo neutronics calculations are mostly done for fresh reactor cores. There is today an ongoing activity in the development of Monte Carlo plus burnup code systems made possible by the fast gains in computer processor speeds. In this work we investigate the use of MCNP-4B for the calculation of a depleted core of the Soreq reactor (IRR-1). The number densities as function of burnup were taken from the WIMS-D/4 cell code calculations. This particular code coupling has been implemented before. The Monte Carlo code MCNP-4B calculates the coupled transport of neutrons and photons for complicated geometries. We have done neutronics calculations of the IRR-1 core with the WIMS and CITATION codes in the past Also, we have developed an MCNP model of the IRR-1 standard fuel for a criticality safety calculation of a spent fuel storage pool

  1. Parameter analysis calculation on characteristics of portable FAST reactor

    International Nuclear Information System (INIS)

    Otsubo, Akira; Kowata, Yasuki

    1998-06-01

    In this report, we performed a parameter survey analysis by using the analysis program code STEDFAST (Space, TErrestrial and Deep sea FAST reactor-gas turbine system). Concerning the deep sea fast reactor-gas turbine system, calculations with many variable parameters were performed on the base case of a NaK cooled reactor of 40 kWe. We aimed at total equipment weight and surface area necessary to remove heat from the system as important values of the characteristics of the system. Electric generation power and the material of a pressure hull were specially influential for the weight. The electric generation power, reactor outlet/inlet temperatures, a natural convection heat transfer coefficient of sea water were specially influential for the area. Concerning the space reactor-gas turbine system, the calculations with the variable parameters of compressor inlet temperature, reactor outlet/inlet temperatures and turbine inlet pressure were performed on the base case of a Na cooled reactor of 40 kWe. The first and the second variable parameters were influential for the total equipment weight of the important characteristic of the system. Concerning the terrestrial fast reactor-gas turbine system, the calculations with the variable parameters of heat transferred pipe number in a heat exchanger to produce hot water of 100degC for cogeneration, compressor stage number and the kind of primary coolant material were performed on the base case of a Pb cooled reactor of 100 MWt. In the comparison of calculational results for Pb and Na of primary coolant material, the primary coolant weight flow rate was naturally large for the former case compared with for the latter case because density is very different between them. (J.P.N.)

  2. Analysis of a molten salt reactor benchmark

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Bajpai, Anil; Degweker, S.B.

    2013-01-01

    This paper discusses results of our studies of an IAEA molten salt reactor (MSR) benchmark. The benchmark, proposed by Japan, involves burnup calculations of a single lattice cell of a MSR for burning plutonium and other minor actinides. We have analyzed this cell with in-house developed burnup codes BURNTRAN and McBURN. This paper also presents a comparison of the results of our codes and those obtained by the proposers of the benchmark. (author)

  3. SMART - Structure mechanical analysis in reactor technology

    International Nuclear Information System (INIS)

    Argyris, J.H.; Faust, G.; Szimmat, J.; Warnke, E.P.; Willam, K.J.

    1975-01-01

    The programme system SMART was developed in the years 1970-75 to calculate prestressed-concrete reactor pressure vessels with finite elements. The present report outlines the course and present state of research and development work. Following the specification of SMART, a brief presentation of the analytical possibilities and of the expansions for investigating creep, ultimate load behaviour and thermodiffusion is given. In conclusion, the fields of application of SMART are illustrated by means of examples. (orig./LH) [de

  4. Analysis of stirred-tank carbonation reactors

    International Nuclear Information System (INIS)

    Sheppard, N.F.; Rizo-Patron, R.C.; Sun, W.H.

    1978-01-01

    The removal of CO 2 from air in a calcium hydroxide slurry-agitated reactor was investigated to aid the design of such vessels. Gas-liquid interfacial areas were calculated using theoretical rate expression and experimental data at specific operating conditions. A correlation for interfacial areas was then determined as a function of impeller speed, impeller diameter, gas flow rate, and concentration of the slurry. Decontamination factors were also determined

  5. Design of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodology

    KAUST Repository

    Zhao, Zhenlong; Iloeje, Chukwunwike O.; Chen, Tianjiao; Ghoniem, Ahmed F.

    2014-01-01

    of the OC characteristics, the design parameters, and the operating conditions are studied. The design procedures are presented on the basis of the relative importance of each parameter, enabling a systematic methodology of selecting the design parameters

  6. Reliability analysis of reactor protection systems

    International Nuclear Information System (INIS)

    Alsan, S.

    1976-07-01

    A theoretical mathematical study of reliability is presented and the concepts subsequently defined applied to the study of nuclear reactor safety systems. The theory is applied to investigations of the operational reliability of the Siloe reactor from the point of view of rod drop. A statistical study conducted between 1964 and 1971 demonstrated that most rod drop incidents arose from circumstances associated with experimental equipment (new set-ups). The reliability of the most suitable safety system for some recently developed experimental equipment is discussed. Calculations indicate that if all experimental equipment were equipped with these new systems, only 1.75 rod drop accidents would be expected to occur per year on average. It is suggested that all experimental equipment should be equipped with these new safety systems and tested every 21 days. The reliability of the new safety system currently being studied for the Siloe reactor was also investigated. The following results were obtained: definite failures must be detected immediately as a result of the disturbances produced; the repair time must not exceed a few hours; the equipment must be tested every week. Under such conditions, the rate of accidental rod drops is about 0.013 on average per year. The level of nondefinite failures is less than 10 -6 per hour and the level of nonprotection 1 hour per year. (author)

  7. Neutronics analysis of Dalat Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong; Nguyen Manh Hung; Pham Hong Son; Tran Quoc Duong

    2006-01-01

    Many neutronics codes have been used to calculate for Dalat Research Reactor (DRR) from 1983 (the first critical of DRR in December, 1983). The purposes of all calculations are to know exactly many important parameters related to Reactor Physics and Neutron Physics in reactor core. The results from calculation play important role in core and fuel management for DRR. Especially basing on the results we can predict about fuel cycle, fuel burn up distribution and plan for using optimize remain fresh fuel assemblies of DRR. By using system neutronics code including transport codes, diffusion codes and Mote Carlo code, many characteristics of fuel assemblies and other parameters of whole core were received such as main features of VVR-M2 fuel assembly type, multiplication factor, neutron flux distribution, power distribution, burn up distribution, excess reactivity, control rods worth, neutron spectrum, temperature reactivity coefficient ect. In the paper, brief description all computer codes to being used in DRR and the calculation results from the codes above are presented. (author)

  8. Transient analysis of the IRIS reactor

    International Nuclear Information System (INIS)

    Bajs, T.; Oriani, L.; Ricotti, M.E.; Barroso, A.C.

    2002-01-01

    An international consortium of industry, laboratory, university and utility establishments, led by Westinghouse, is developing a modular, integral, light water cooled, small to medium power reactor, the International Reactor Innovative and Secure (IRIS). IRIS features innovative, advanced engineering, but it is firmly based on the proven technology of pressurized water reactors (PWR). Given the large number of organizations involved in the IRIS design, the RELAP5/MOD 3.3 code has been selected as the main system code. A nodalization of the reference IRIS design has been developed with a basic set of protective functions and controls. Engineered Safety Features of the concept are being also implemented, and in particular the Emergency Heat Removal System that is used for safety grade decay heat removal and in the small break LOCA response of IRIS (Large break LOCAs are eliminated in IRIS by the adoption of the Integral layout) This paper discusses developed model and transient behavior of the system for representative transient sequences.(author)

  9. Vibration analysis of reactor assembly internals for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Jalaldeen, S.; Srinivasan, R.; Chetal, S.C.; Bhoje, S.B.

    2003-01-01

    Vibration analysis of the reactor assembly components of 500 MWe Prototype Fast Breeder Reactor (PFBR) is presented. The vibration response of primary pump as well as dynamic forces developed at its supports are predicted numerically. The stiffness properties of hydrostatic bearing are determined by formulating and solving governing fluid and structural mechanics equations. The dynamic forces exerted by pump are used as input data for the dynamic response of reactor assembly components, mainly inner vessel, thermal baffle and control plug. Dynamic response of reactor assembly components is also predicted for the pressure fluctuations caused by sodium free level oscillations. Thermal baffle (weir shell) which is subjected to fluid forces developed at the associated sodium free levels is analysed by formulating and solving a set of non-linear equations for fluids, structures and fluid structure interaction (FSI). The control rod drive mechanism is analysed for response under flow induced forces on the parts subjected to cross flow in the zone just above the core top, taking into account FSI between sheaths of control and safety rod and absorber pin bundle. Based on the analysis results, it is concluded that the reactor assembly internals are free from any risk of mechanical as well as flow induced vibrations. (author)

  10. Major upgrade of the reactor dosimetry interpretation methodology used at CEA. Architecture description

    International Nuclear Information System (INIS)

    Gregoire, Gilles; Destouches, Christophe; Beretz, Daniel; Bourganel, Stephane

    2009-01-01

    One of the main objectives of reactor dosimetry is the determination of the physical parameters characterizing the neutron field in which studied samples are irradiated. These values, from neutron spectrum to reaction rates are used on the one hand in experimental reactors to carry out the follow-up of the irradiation and to qualify the neutron calculation (modeling scheme for the experiment) and, on the other hand in power reactors for the follow-up of the damaging of vessel and internals. Neutron parameters are obtained from the treatment of dosimeter's activities which have suitable reactions (response functions and radioactive emissions). Then, activities are analyzed using nuclear data, neutron computation results and data characterizing the conditions of irradiation (temporal and technological data, changes of location...). This current interpretation process presents limitations coming mainly from the calculations tools and the nuclear data knowledge. But nowadays due to, first the improvement of the neutron calculation tools, a full 3D Monte Carlo reactor modeling providing reaction in a point wise format is now possible in a reasonable time, and second, recent releases of the international nuclear data libraries, JEFF3.1, ENDFB7 for transport calculation and IRDF2002 and EAF2007 for dosimetry libraries, a deep renewal of the reactor dosimetry interpretation process has been engaged. In addition, uncertainties associated to the results are derived in a rigorous way using simulation methods. This paper lists the main improvements of the neutron calculation codes and of the international nuclear data libraries. The principle of new interpretation process is then detailed. The general software architecture is then described, especially open-source tools chosen for the implementation. The paper finally analyzes expected improvements. (author)

  11. Methodology for sodium fire vulnerability assessment of sodium cooled fast reactor based on the Monte-Carlo principle

    International Nuclear Information System (INIS)

    Song, Wei; Wu, Yuanyu; Hu, Wenjun; Zuo, Jiaxu

    2015-01-01

    Highlights: • Monte-Carlo principle coupling with fire dynamic code is adopted to perform sodium fire vulnerability assessment. • The method can be used to calculate the failure probability of sodium fire scenarios. • A calculation example and results are given to illustrate the feasibility of the methodology. • Some critical parameters and experience are shared. - Abstract: Sodium fire is a typical and distinctive hazard in sodium cooled fast reactors, which is significant for nuclear safety. In this paper, a method of sodium fire vulnerability assessment based on the Monte-Carlo principle was introduced, which could be used to calculate the probabilities of every failure mode in sodium fire scenarios. After that, the sodium fire scenario vulnerability assessment of primary cold trap room of China Experimental Fast Reactor was performed to illustrate the feasibility of the methodology. The calculation result of the example shows that the conditional failure probability of key cable is 23.6% in the sodium fire scenario which is caused by continuous sodium leakage because of the isolation device failure, but the wall temperature, the room pressure and the aerosol discharge mass are all lower than the safety limits.

  12. Methodology for sodium fire vulnerability assessment of sodium cooled fast reactor based on the Monte-Carlo principle

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wei [Nuclear and Radiation Safety Center, P. O. Box 8088, Beijing (China); Wu, Yuanyu [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint-Paul-lès-Durance (France); Hu, Wenjun [China Institute of Atomic Energy, P. O. Box 275(34), Beijing (China); Zuo, Jiaxu, E-mail: zuojiaxu@chinansc.cn [Nuclear and Radiation Safety Center, P. O. Box 8088, Beijing (China)

    2015-11-15

    Highlights: • Monte-Carlo principle coupling with fire dynamic code is adopted to perform sodium fire vulnerability assessment. • The method can be used to calculate the failure probability of sodium fire scenarios. • A calculation example and results are given to illustrate the feasibility of the methodology. • Some critical parameters and experience are shared. - Abstract: Sodium fire is a typical and distinctive hazard in sodium cooled fast reactors, which is significant for nuclear safety. In this paper, a method of sodium fire vulnerability assessment based on the Monte-Carlo principle was introduced, which could be used to calculate the probabilities of every failure mode in sodium fire scenarios. After that, the sodium fire scenario vulnerability assessment of primary cold trap room of China Experimental Fast Reactor was performed to illustrate the feasibility of the methodology. The calculation result of the example shows that the conditional failure probability of key cable is 23.6% in the sodium fire scenario which is caused by continuous sodium leakage because of the isolation device failure, but the wall temperature, the room pressure and the aerosol discharge mass are all lower than the safety limits.

  13. Methodology for Identification of the Coolant Thermalhydraulic Regimes in the Core of Nuclear Reactors

    International Nuclear Information System (INIS)

    Sharaevsky, L.G.; Sharaevskaya, E.I.; Domashev, E.D.; Arkhypov, A.P.; Kolochko, V.N.

    2002-01-01

    The paper deals with one of the acute for the nuclear energy problem of accident regimes of NPPs recognition diagnostics using noise signal diagnostics methodology. The methodology intends transformation of the random noise signals of the main technological parameters at the exit of a nuclear facility (neutron flow, dynamic pressure etc.) which contain the important information about the technical status of the equipment. The effective algorithms for identification of random processes wore developed. After proper transformation its were considered as multidimensional random vectors. Automatic classification of these vectors in the developed algorithms is realized on the basis of the probability function in particular Bayes classifier and decision functions. Till now there no mathematical models for thermalhydraulic regimes of fuel assemblies recognition on the acoustic and neutron noises parameters in the core of nuclear facilities. The two mathematical models for analysis of the random processes submitted to the automatic classification is proposed, i.e. statistical (using Bayes classifier of acoustic spectral density diagnosis signals) and geometrical (on the basis of formation in the featured space of dividing hyper-plane). The theoretical basis of the bubble boiling regimes in the fuel assemblies is formulated as identification of these regimes on the basis of random parameters of auto spectral density of acoustic noise (ASD) measured in the fuel assemblies (dynamic pressure in the upper plenum in the paper). The elaborated algorithms allow recognize realistic status of the fuel assemblies. For verification of the proposed mathematical models the analysis of experimental measurements was carried out. The research of the boiling onset and definition of the local values of the flow parameters in the seven-beam fuel assembly (length of 1.3 m, diameter of 6 mm) have shown the correct identification of the bubble boiling regimes. The experimental measurements on

  14. Méthodologie de l'extrapolation des réacteurs chimiques Methodology for Scaling Up Chemical Reactors

    Directory of Open Access Journals (Sweden)

    Trambouze P.

    2006-11-01

    Full Text Available Après un exposé général relatif à la méthodologie du développement des procédés, applicable à l'extrapolation des réacteurs, est présenté un rapide examen critique des deux principales techniques mises en oeuvre, à savoir : - la théorie de la similitude ; - l'élaboration de modèles mathématiques. Deux exemples pratiques, relatifs aux réacteurs homogènes et aux réacteurs catalytiques à lit fixe et deux phases fluides, sont ensuite examinés à la lumière des considérations générales précédentes. After giving a general description of process-development methodology applicable to scaling up reactors, this article makes a quick critical examination of the two main techniques involved, i. e. : (a the theory of similarity, and (b the compiling of mathematical models. Two practical examples relating to homogeneous reactors and trickle-bed catalytic reactors are then examined in the light of the preceding general considerations.

  15. Neutronic analysis of two-fluid thorium molten salt reactor

    International Nuclear Information System (INIS)

    Frybort, Jan; Vocka, Radim

    2009-01-01

    The aim of this paper is to evaluate features of the two-fluid MSBR through a parametric study and compare its properties to one-fluid MSBR concepts. The starting point of the analysis is the original ORNL 1000 MWe reactor design, although simplified to some extent. We studied the influence of dimensions of distinct reactor parts - fuel and fertile channels radius, plenum height, design etc. - on fundamental reactor properties: breeding ratio and doubling time, reactor inventory, graphite lifetime, and temperature feedback coefficients. The calculations were carried out using MCNP5 code. Based on obtained results we proposed an improved reactor design. Our results show clear advantages of the concept with two separate fluoride salts if compared to the one fluid concept in breading, doubling time, and temperature feedback coefficients. Limitations of the two-fluid concept - particularly the graphite lifetime - are also pointed out. The reactor design can be a subject of further optimizations, namely from the viewpoint of reactor safety. (author)

  16. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    Science.gov (United States)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  17. Thermal hydraulics analysis of the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dean, E-mail: Dean_Wang@uml.edu [University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 (United States); Yoder, Graydon L.; Pointer, David W.; Holcomb, David E. [Oak Ridge National Laboratory, 1 Bethel Valley RD #6167, Oak Ridge, TN 37831 (United States)

    2015-12-01

    Highlights: • The TRACE AHTR model was developed and used to define and size the DRACS and the PHX. • A LOFF transient was simulated to evaluate the reactor performance during the transient. • Some recommendations for modifying FHR reactor system component designs are discussed. - Abstract: The Advanced High Temperature Reactor (AHTR) is a liquid salt-cooled nuclear reactor design concept, featuring low-pressure molten fluoride salt coolant, a carbon composite fuel form with embedded coated particle fuel, passively triggered negative reactivity insertion mechanisms, and fully passive decay heat rejection. This paper describes an AHTR system model developed using the Nuclear Regulatory Commission (NRC) thermal hydraulic transient code TRAC/RELAP Advanced Computational Engine (TRACE). The TRACE model includes all of the primary components: the core, downcomer, hot legs, cold legs, pumps, direct reactor auxiliary cooling system (DRACS), the primary heat exchangers (PHXs), etc. The TRACE model was used to help define and size systems such as the DRACS and the PHX. A loss of flow transient was also simulated to evaluate the performance of the reactor during an anticipated transient event. Some initial recommendations for modifying system component designs are also discussed. The TRACE model will be used as the basis for developing more detailed designs and ultimately will be used to perform transient safety analysis for the reactor.

  18. Latest developments on safety analysis methodologies at the Juzbado plant

    International Nuclear Information System (INIS)

    Zurron-Cifuentes, Oscar; Ortiz-Trujillo, Diego; Blanco-Fernandez, Luis A.

    2010-01-01

    Over the last few years the Juzbado Plant has developed and implemented several analysis methodologies to cope with specific issues regarding safety management. This paper describes the three most outstanding of them, so as to say, the Integrated Safety Analysis (ISA) project, the adaptation of the MARSSIM methodology for characterization surveys of radioactive contamination spots, and the programme for the Systematic Review of the Operational Conditions of the Safety Systems (SROCSS). Several reasons motivated the decision to implement such methodologies, such as Regulator requirements, operational experience and of course, the strong commitment of ENUSA to maintain the highest standards of nuclear industry on all the safety relevant activities. In this context, since 2004 ENUSA is undertaking the ISA project, which consists on a systematic examination of plant's processes, equipment, structures and personnel activities to ensure that all relevant hazards that could result in unacceptable consequences have been adequately evaluated and the appropriate protective measures have been identified. On the other hand and within the framework of a current programme to ensure the absence of radioactive contamination spots on unintended areas, the MARSSIM methodology is being applied as a tool to conduct the radiation surveys and investigation of potentially contaminated areas. Finally, the SROCSS programme was initiated earlier this year 2009 to assess the actual operating conditions of all the systems with safety relevance, aiming to identify either potential non-conformities or areas for improvement in order to ensure their high performance after years of operation. The following paragraphs describe the key points related to these three methodologies as well as an outline of the results obtained so far. (authors)

  19. Preliminary CFD analysis methodology for flow in a LFR fuel assembly

    International Nuclear Information System (INIS)

    Catana, A.; Ioan, M.; Serbanel, M.

    2013-01-01

    In this paper a preliminary Computational Fluid Dynamics (CFD) analysis was performed in order to setup a methodology to be used for more complex coolant flow analysis inside ALFRED nuclear reactor fuel assembly. The core contains 171 separated fuel assembly, each consisting in a hexagonal array of 127 fuel rods. Three honey comb spacer grids are proposed along fuel rods with the aim to keep flow geometry intact during reactor operation. The main goal of this paper is to compute some hydraulic parameters: pressure, velocity, wall shear stress and turbulence parameters with and without spacer grids. In this analysis we consider an adiabatic case, so far no heat transfer is considered but we pave the road toward more complex thermo hydraulic analysis for ALFRED (LFR in general). The CAELINUX CFD distribution was used with its main components: Salome-Meca (for geometry and mesh) and Code-Saturne as mono-phase CFD solver. Paraview and Visist Postprocessors were used for data extraction and graphical displays. (authors)

  20. Application of human reliability analysis methodology of second generation

    International Nuclear Information System (INIS)

    Ruiz S, T. de J.; Nelson E, P. F.

    2009-10-01

    The human reliability analysis (HRA) is a very important part of probabilistic safety analysis. The main contribution of HRA in nuclear power plants is the identification and characterization of the issues that are brought together for an error occurring in the human tasks that occur under normal operation conditions and those made after abnormal event. Additionally, the analysis of various accidents in history, it was found that the human component has been a contributing factor in the cause. Because of need to understand the forms and probability of human error in the 60 decade begins with the collection of generic data that result in the development of the first generation of HRA methodologies. Subsequently develop methods to include in their models additional performance shaping factors and the interaction between them. So by the 90 mid, comes what is considered the second generation methodologies. Among these is the methodology A Technique for Human Event Analysis (ATHEANA). The application of this method in a generic human failure event, it is interesting because it includes in its modeling commission error, the additional deviations quantification to nominal scenario considered in the accident sequence of probabilistic safety analysis and, for this event the dependency actions evaluation. That is, the generic human failure event was required first independent evaluation of the two related human failure events . So the gathering of the new human error probabilities involves the nominal scenario quantification and cases of significant deviations considered by the potential impact on analyzed human failure events. Like probabilistic safety analysis, with the analysis of the sequences were extracted factors more specific with the highest contribution in the human error probabilities. (Author)

  1. Nuclear reactor descriptions for space power systems analysis

    Science.gov (United States)

    Mccauley, E. W.; Brown, N. J.

    1972-01-01

    For the small, high performance reactors required for space electric applications, adequate neutronic analysis is of crucial importance, but in terms of computational time consumed, nuclear calculations probably yield the least amount of detail for mission analysis study. It has been found possible, after generation of only a few designs of a reactor family in elaborate thermomechanical and nuclear detail to use simple curve fitting techniques to assure desired neutronic performance while still performing the thermomechanical analysis in explicit detail. The resulting speed-up in computation time permits a broad detailed examination of constraints by the mission analyst.

  2. Analysis of cold leg LOCA with failed HPSI by means of integrated safety assessment methodology

    International Nuclear Information System (INIS)

    Gonzalez-Cadelo, J.; Queral, C.; Montero-Mayorga, J.

    2014-01-01

    Highlights: • Results of ISA for considered sequences endorse EOPs guidance in an original way. • ISA allows to obtain accurate available times for accident management actions. • RCP-trip adequacy and available time for beginning depressurization are evaluated. • ISA minimizes the necessity of expert judgment to perform safety assessment. - Abstract: The integrated safety assessment (ISA) methodology, developed by the Spanish Nuclear Safety Council (CSN), has been applied to a thermal–hydraulic analysis of cold leg LOCA sequences with unavailable High Pressure Injection System in a Westinghouse 3-loop PWR. This analysis has been performed with TRACE 5.0 patch 1 code. ISA methodology allows obtaining the Damage Domain (the region of space of parameters where a safety limit is exceeded) as a function of uncertain parameters (break area) and operator actuation times, and provides to the analyst useful information about the impact of these uncertain parameters in safety concerns. In this work two main issues have been analyzed: the effect of reactor coolant pump trip and the available time for beginning of secondary-side depressurization. The main conclusions are that present Emergency Operating Procedures (EOPs) are adequate for managing this kind of sequences and the ISA methodology is able to take into account time delays and parameter uncertainties

  3. A SAS2H/KENO-V methodology for 3D fuel burnup analysis

    International Nuclear Information System (INIS)

    Milosevic, M.; Greenspan, E.; Vujic, J.

    2002-01-01

    An efficient methodology for 3D fuel burnup analysis of LWR reactors is described in this paper. This methodology is founded on coupling Monte Carlo method for 3D calculation of node power distribution, and transport method for depletion calculation in ID Wigner-Seitz equivalent cell for each node independently. The proposed fuel burnup modeling, based on application of SCALE-4.4a control modules SAS2H and KENO-V.a is verified for the case of 2D x-y model of IRIS 15 x 15 fuel assembly (with reflective boundary condition) by using two well benchmarked code systems. The one is MOCUP, a coupled MCNP-4C and ORIGEN2.1 utility code, and the second is KENO-V.a/ORIGEN2.1 code system recently developed by authors of this paper. The proposed SAS2H/KENO-V.a methodology was applied for 3D burnup analysis of IRIS-1000 benchmark.44 core. Detailed k sub e sub f sub f and power density evolution with burnup are reported. (author)

  4. Application of the integrated analysis of safety (IAS) to sequences of Total loss of feed water in a PWR Reactor; Aplicacion del Analisis Integrado de Seguridad (ISA) a Secuencias de Perdidas Total de Agua de Alimentacion en un Reactor PWR

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Chamorro, P.; Gallego Diaz, C.

    2011-07-01

    The main objective of this work is to show the current status of the implementation of integrated analysis of safety (IAS) methodology and its SCAIS associated tool (system of simulation codes for IAS) to the sequence analysis of total loss of feedwater in a PWR reactor model Westinghouse of three loops with large, dry containment.

  5. Validation of models for the analysis of the transient behavior of metallic fast reactor fuel

    International Nuclear Information System (INIS)

    Kramer, J.M.; Hughes, T.H.; Gruber, E.E.

    1989-01-01

    The Integral Fast Reactor (IFR) concept being developed at Argonne National Laboratory has prompted a renewed interest in U-Pu-Zr metal alloys as a fuel for sodium-cooled fast reactors. Part of the attractiveness of the IFR concept is the improvement in reactor safety margins through inherent features of a metal-fueled LMR core. In order to demonstrate these safety margins it is necessary to have computer codes available to analyze the detailed response of metallic fuel to a wide range of accident initiators. Two of the codes that play a key role in assessing this response are the STARS fission gas behavior code and the FPIN2 fuel pin mechanics code. Verification and validation are two important components in the development of models and computer codes. Verification demonstrates through comparison of calculations with analytical solutions that the methodology and algorithms correctly solve the equations that govern the phenomena being modeled. Validation, on the other hand, demonstrates through comparison with data that the phenomena are being modeled correctly. Both components are necessary in order to have the confidence to extrapolate the calculations to reactor accident conditions. This paper presents the results of recent progress in the validation of models for the analysis of the behavior of metallic fast reactor fuel. 9 refs., 7 figs

  6. Contour analysis of steady state tokamak reactor performance

    International Nuclear Information System (INIS)

    Devoto, R.S.; Fenstermacher, M.E.

    1990-01-01

    A new method of analysis for presenting the possible operating space for steady state, non-ignited tokamak reactors is proposed. The method uses contours of reactor performance and plasma characteristics, fusion power gain, wall neutron flux, current drive power, etc., plotted on a two-dimensional grid, the axes of which are the plasma current I p and the normalized beta, β n = β/(I p /aB 0 ), to show possible operating points. These steady state operating contour plots are called SOPCONS. This technique is illustrated in an application to a design for the International Thermonuclear Experimental Reactor (ITER) with neutral beam, lower hybrid and bootstrap current drive. The utility of the SOPCON plots for pointing out some of the non-intuitive considerations in steady state reactor design is shown. (author). Letter-to-the-editor. 16 refs, 3 figs, 1 tab

  7. Methodology, Measurement and Analysis of Flow Table Update Characteristics in Hardware OpenFlow Switches

    KAUST Repository

    Kuźniar, Maciej; Pereší ni, Peter; Kostić, Dejan; Canini, Marco

    2018-01-01

    and performance characteristics is essential for ensuring successful and safe deployments.We propose a systematic methodology for SDN switch performance analysis and devise a series of experiments based on this methodology. The methodology relies on sending a

  8. Transient Analysis Needs for Generation IV Reactor Concepts

    International Nuclear Information System (INIS)

    Siefken, L.J.; Harvego, E.A.; Coryell, E.W.; Davis, C.B.

    2002-01-01

    The importance of nuclear energy as a vital and strategic resource in the U. S. and world's energy supply mix has led to an initiative, termed Generation IV by the U.S. Department of Energy (DOE), to develop and demonstrate new and improved reactor technologies. These new Generation IV reactor concepts are expected to be substantially improved over the current generation of reactors with respect to economics, safety, proliferation resistance and waste characteristics. Although a number of light water reactor concepts have been proposed as Generation IV candidates, the majority of proposed designs have fundamentally different characteristics than the current generation of commercial LWRs operating in the U.S. and other countries. This paper presents the results of a review of these new reactor technologies and defines the transient analyses required to support the evaluation and future development of the Generation IV concepts. The ultimate objective of this work is to identify and develop new capabilities needed by INEEL to support DOE's Generation IV initiative. In particular, the focus of this study is on needed extensions or enhancements to SCDAP/RELAP5/3D code. This code and the RELAP5-3D code from which it evolved are the primary analysis tools used by the INEEL and others for the analysis of design-basis and beyond-design-basis accidents in current generation light water reactors. (authors)

  9. Structural dynamics in fast reactor accident analysis

    International Nuclear Information System (INIS)

    Fistedis, S.H.

    1975-01-01

    Analyses and codes are under development combining the hydrodynamics and solid mechanics (and more recently the bubble dynamics) phenomena to gage the stresses, strains, and deformations of important primary components, as well as the overall adequacy of primary and secondary containments. An arbitrary partition of the structural components treated evolves into (1) a core mechanics effort; and (2) a primary system and containment program. The primary system and containment program treats the structural response of components beyond the core, starting with the core barrel. Combined hydrodynamics-solid mechanics codes provide transient stresses and strains and final deformations for components such as the reactor vessel, reactor cover, cover holddown bolts, as well as the pulses for which the primary piping system is to be analyzed. Both, Lagrangian and Eulerian two-dimensional codes are under development, which provide greater accuracy and longer durations for the treatment of HCDA. The codes are being augmented with bubble migration capability pertaining to the latter stages of the HCDA, after slug impact. Recent developments involve the adaptation of the 2-D Eulerian primary system code to the 2-D elastic-plastic treatment of primary piping. Pulses are provided at the vessel-primary piping interfaces of the inlet and outlet nozzles, calculation includes the elbows and pressure drops along the components of the primary piping system. Recent improvements to the primary containment codes include introduction of bending strength in materials, Langrangian mesh regularization techniques, and treatment of energy absorbing materials for the slug impact. Another development involves the combination of a 2-D finite element code for the reactor cover with the hydrodynamic containment code

  10. Advanced Light Water Reactor Program: Program management and staff review methodology

    International Nuclear Information System (INIS)

    Moran, D.H.

    1986-12-01

    This report summarizes the NRC/EPRI coordinated effort to develop design requirements for a standardized advanced light water reactor (ALWR) and the procedures for screening and applying new generic safety issues to this program. The end-product will be an NRC-approved ALWR Requirements Document for use by the nuclear industry in generating designs of LWRs to be constructed for operation in the 1990s and beyond

  11. A methodology for determining fabrication flaws in a reactor pressure vessel

    International Nuclear Information System (INIS)

    Schuster, G.J.; Doctor, S.R.; Simonen, F.A.

    1996-01-01

    The Pacific Northwest National Laboratory (PNNL) conducted a program with the major objective of estimating the rate of occurrence of fabrication flaws in US light-water reactor pressure vessels (RPVs). In this study, RPV mate4rial was examined using the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT-UT) to detect and characterize flaws created during fabrication. The inspection data obtained in this program has been analyzed to address the rates of flaw occurrence

  12. Thermodynamic analysis of a supercritical water reactor

    International Nuclear Information System (INIS)

    Edwards, M.

    2007-01-01

    A thermodynamic model has been developed for a hypothetical design of a Supercritical Water Reactor, with emphasis on Canadian design criteria. The model solves for cycle efficiency, mass flows and physical conditions throughout the plant based on input parameters of operating pressures and efficiencies of components. The model includes eight feedwater heaters, three feedwater pumps, a deaerator, a condenser, the core, three turbines and two reheaters. To perform the calculations, Microsoft Excel was used in conjunction with FLUIDCAL-IAPWS95 and VBA code. The calculations show that a thermal efficiency of 47.5% can be achieved with a core outlet temperature of 625 o C. (author)

  13. Dynamic operator actions analysis for inherently safe fast reactors and light water reactors

    International Nuclear Information System (INIS)

    Ho, V.; Apostolakis, G.

    1988-01-01

    A comparative dynamic human actions analysis of inherently safe fast reactors (ISFRs) and light water reactors (LWRs) in terms of systems response and estimated human error rates is presented. Brief overviews of the ISFR and LWR systems are given to illustrate the design differences. Key operator actions required by the ISFR reactor shutdown and decay heat removal systems are identified and are compared with those of the LWR. It is observed that, because of the passive nature of the ISFR safety-related systems, a large time window is available for operator actions during transient events. Furthermore, these actions are fewer in number, are less complex, and have lower error rates and less severe consequences than those of the LWRs. We expect the ISFR operator errors' contribution to risk is smaller (at least in the context of the existing human reliability models) than that of the LWRs. (author)

  14. Analysis of Kinetic Parameter Effect on Reactor Operation Stability of the RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Rokhmadi

    2007-01-01

    Kinetic parameter has influence to behaviour on RSG-GAS reactor operation. In this paper done is the calculation of reactivity curve, period-reactivity relation and low power transfer function in silicide fuel. This parameters is necessary and useful for reactivity characteristic analysis and reactor stability. To know the reactivity response, it was done reactivity insertion at power 1 watt using POKDYN code because at this level of power no feedback reactivity so important for reactor operation safety. The result of calculation showed that there is no change of significant a period-reactivity relation and transfer function at low power for 2.96 gU/cc, 3.55 gU/cc and 4.8 gU/cc density of silicide fuels. The result of the transfer function at low power showed that the reactor is critical stability with no feedback. The result of calculation also showed that reactivity response no change among three kinds of fuel densities. It can be concluded that from kinetic parameter point of view period-reactivity relation, transfer function at low power, and reactivity response are no change reactor operation from reactivity effect when fuel exchanged. (author)

  15. Standard practice for analysis and interpretation of physics dosimetry results for test reactors

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This practice describes the methodology summarized in Annex Al to be used in the analysis and interpretation of physics-dosimetry results from test reactors. This practice relies on, and ties together, the application of several supporting ASTM standard practices, guides, and methods that are in various stages of completion (see Fig. 1). Support subject areas that are discussed include reactor physics calculations, dosimeter selection and analysis, exposure units, and neutron spectrum adjustment methods. This practice is directed towards the development and application of physics-dosimetrymetallurgical data obtained from test reactor irradiation experiments that are performed in support of the operation, licensing, and regulation of LWR nuclear power plants. It specifically addresses the physics-dosimetry aspects of the problem. Procedures related to the analysis, interpretation, and application of both test and power reactor physics-dosimetry-metallurgy results are addressed in Practice E 853, Practice E 560, Matrix E 706(IE), Practice E 185, Matrix E 706(IG), Guide E 900, and Method E 646

  16. Analysis of reactor cavity radiation streaming: some practical considerations

    International Nuclear Information System (INIS)

    Simmons, G.L.

    1979-01-01

    A description is presented of a cost effective analysis procedure for use in the prediction of radiation environments in the cavity and containment building of a nuclear power reactor. Comments are offered on potential problems in certification of analysis procedures and the availability of benchmarkable data sets, both measurements and calculations

  17. Lifetime analysis for fusion reactor first walls and divertor plates

    International Nuclear Information System (INIS)

    Horie, T.; Tsujimura, S.; Minato, A.; Tone, T.

    1987-01-01

    Lifetime analysis of fusion reactor first walls and divertor plates is performed by (1) a one-dimensional analytical plate model, and (2) a two-dimensional elastic-plastic finite element method. Life-limiting mechanisms and the limits of applicability for these analysis methods are examined. Structural design criteria are also discussed. (orig.)

  18. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    1985-12-01

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  19. Stability analysis of the Ghana Research Reactor-1 (GHARR-1)

    International Nuclear Information System (INIS)

    Della, R.; Alhassan, E.; Adoo, N.A.; Bansah, C.Y.; Nyarko, B.J.B.; Akaho, E.H.K.

    2013-01-01

    Highlights: • We developed a theoretical model to study the stability of the Ghana Research Reactor-1. • The neutronics transfer function was described by the point kinetics model for a single group of delayed neutrons. • The thermal hydraulics transfer function was based on the modified lumped parameter concept. • A computer code, RESA (REactor Stability Analysis) was developed. • Results show that the closed-loop transfer function was stable and well damped for variable operating power levels. - Abstract: A theoretical model has been developed to study the stability of the Ghana Research Reactor one (GHARR-1). The closed-loop transfer function of GHARR-1 was established based on the model, which involved the neutronics and the thermal hydraulics transfer functions. The reactor kinetics was described by the point kinetics model for a single group of delayed neutrons, whilst the thermal hydraulics transfer function was based on the modified lumped parameter concept. The inherent internal feedback effect due to the fuel and the coolant was represented by the fuel temperature coefficient and the moderator temperature coefficient respectively. A computer code, RESA (REactor Stability Analysis), entirely in Java was developed based on the model for systems analysis. Stability analysis of the open-loop transfer function of GHARR-1 based on the Nyquist criterion and Bode diagrams using RESA, has shown that the closed-loop transfer function was marginally stable for variable operating power levels. The relative stability margins of GHARR-1 were also identified

  20. Snapshot analysis for rhodium fixed incore detector using BEACON methodology

    International Nuclear Information System (INIS)

    Cha, Kyoon Ho; Choi, Yu Sun; Lee, Eun Ki; Park, Moon Ghu; Morita, Toshio; Heibel, Michael D.

    2004-01-01

    The purpose of this report is to process the rhodium detector data of the Yonggwang nuclear unit 4 cycle 5 core for the measured power distribution by using the BEACON methodology. Rhodium snapshots of the YGN 4 cycle 5 have been analyzed by both BEACON/SPINOVA and CECOR to compare the results of both codes. By analyzing a large number of snapshots obtained during normal plant operation. Reviewing the results of this analysis, the BEACON/SPNOVA can be used for the snapshot analysis of Korean Standard Nuclear Power (KSNP) plants