WorldWideScience

Sample records for reactivity reaction conditions

  1. Metastable Structures in Cluster Catalysis from First-Principles: Structural Ensemble in Reaction Conditions and Metastability Triggered Reactivity.

    Science.gov (United States)

    Sun, Geng; Sautet, Philippe

    2018-02-28

    Reactivity studies on catalytic transition metal clusters are usually performed on a single global minimum structure. With the example of a Pt 13 cluster under a pressure of hydrogen, we show from first-principle calculations that low energy metastable structures of the cluster can play a major role for catalytic reactivity and that hence consideration of the global minimum structure alone can severely underestimate the activity. The catalyst is fluxional with an ensemble of metastable structures energetically accessible at reaction conditions. A modified genetic algorithm is proposed to comprehensively search for the low energy metastable ensemble (LEME) structures instead of merely the global minimum structure. In order to reduce the computational cost of density functional calculations, a high dimensional neural network potential is employed to accelerate the exploration. The presence and influence of LEME structures during catalysis is discussed by the example of H covered Pt 13 clusters for two reactions of major importance: hydrogen evolution reaction and methane activation. The results demonstrate that although the number of accessible metastable structures is reduced under reaction condition for Pt 13 clusters, these metastable structures can exhibit high activity and dominate the observed activity due to their unique electronic or structural properties. This underlines the necessity of thoroughly exploring the LEME structures in catalysis simulations. The approach enables one to systematically address the impact of isomers in catalysis studies, taking into account the high adsorbate coverage induced by reaction conditions.

  2. Method for reactivating solid catalysts used in alkylation reactions

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  3. Automatized Assessment of Protective Group Reactivity: A Step Toward Big Reaction Data Analysis.

    Science.gov (United States)

    Lin, Arkadii I; Madzhidov, Timur I; Klimchuk, Olga; Nugmanov, Ramil I; Antipin, Igor S; Varnek, Alexandre

    2016-11-28

    We report a new method to assess protective groups (PGs) reactivity as a function of reaction conditions (catalyst, solvent) using raw reaction data. It is based on an intuitive similarity principle for chemical reactions: similar reactions proceed under similar conditions. Technically, reaction similarity can be assessed using the Condensed Graph of Reaction (CGR) approach representing an ensemble of reactants and products as a single molecular graph, i.e., as a pseudomolecule for which molecular descriptors or fingerprints can be calculated. CGR-based in-house tools were used to process data for 142,111 catalytic hydrogenation reactions extracted from the Reaxys database. Our results reveal some contradictions with famous Greene's Reactivity Charts based on manual expert analysis. Models developed in this study show high accuracy (ca. 90%) for predicting optimal experimental conditions of protective group deprotection.

  4. Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.

    Science.gov (United States)

    Bose, Amartya; Makri, Nancy

    2017-10-21

    The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.

  5. From conservative to reactive transport under diffusion-controlled conditions

    Science.gov (United States)

    Babey, Tristan; de Dreuzy, Jean-Raynald; Ginn, Timothy R.

    2016-05-01

    We assess the possibility to use conservative transport information, such as that contained in transit time distributions, breakthrough curves and tracer tests, to predict nonlinear fluid-rock interactions in fracture/matrix or mobile/immobile conditions. Reference simulated data are given by conservative and reactive transport simulations in several diffusive porosity structures differing by their topological organization. Reactions includes nonlinear kinetically controlled dissolution and desorption. Effective Multi-Rate Mass Transfer models (MRMT) are calibrated solely on conservative transport information without pore topology information and provide concentration distributions on which effective reaction rates are estimated. Reference simulated reaction rates and effective reaction rates evaluated by MRMT are compared, as well as characteristic desorption and dissolution times. Although not exactly equal, these indicators remain very close whatever the porous structure, differing at most by 0.6% and 10% for desorption and dissolution. At early times, this close agreement arises from the fine characterization of the diffusive porosity close to the mobile zone that controls fast mobile-diffusive exchanges. At intermediate to late times, concentration gradients are strongly reduced by diffusion, and reactivity can be captured by a very limited number of rates. We conclude that effective models calibrated solely on conservative transport information like MRMT can accurately estimate monocomponent kinetically controlled nonlinear fluid-rock interactions. Their relevance might extend to more advanced biogeochemical reactions because of the good characterization of conservative concentration distributions, even by parsimonious models (e.g., MRMT with 3-5 rates). We propose a methodology to estimate reactive transport from conservative transport in mobile-immobile conditions.

  6. An autonomous organic reaction search engine for chemical reactivity

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Henson, Alon B.; Granda, Jaroslaw M.; Cronin, Leroy

    2017-06-01

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  7. [Changes of vascular reactivity and reactive oxygen species in conditions of varying duration of permanent stay in the alienation zone in mice].

    Science.gov (United States)

    Tkachenko, M M; Kotsiuruba, A V; Baziliuk, O V; Horot', I V; Sahach, V F

    2010-01-01

    Peculiarities of changes in the vascular reactivity and in the content of reactive forms of oxygen and stable metabolites of nitric oxide (NO) were studied in the aorta preparations of C57BL/6 and BALB/c mice of the two age groups (6 and 18 mo.), which were born and permanently kept in the Chernobyl alienation zone. The results obtained showed a disturbance of acetylcholine-induced endothelium-dependent reactions of relaxation of smooth muscles of the thoracic aorta. A lower level of NO synthesis and lower level of oxidative arginase metabolism of arginine corresponded to a higher degree of damage of endothelium-dependent reactions of relaxation of the thoracic aorta smooth muscles. A decrease of NO synthesis in conditions of permanent effects of low doses of radiation was conditioned by an increase of generation of reactive forms of oxygen, namely, superoxide and hydroxyl radicals, which might be formed in mitochondria. In conditions of permanent effects of low doses of radiation a lesser level of protein nitrosothilation, same as lesser one of generation of OH-radical, corresponded to a higher level of damage of endothelium-dependent reactions.

  8. Sensitivity of ICF ignition conditions to non-Maxwellian DT fusion reactivity

    International Nuclear Information System (INIS)

    Garbett, W. J.

    2013-01-01

    The hotspot ignition conditions in ICF are determined by considering the power balance between fusion energy deposition and energy loss terms. Uncertainty in any of these terms has potential to modify the ignition conditions, changing the optimum ignition capsule design. This paper considers the impact of changes to the DT fusion reaction rate due to non-thermal ion energy distributions. The DT fusion reactivity has been evaluated for a class of non-Maxwellian distributions representing a perturbation to the tail of a thermal distribution. The resulting reactivity has been used to determine hotspot ignition conditions as a function of the characteristic parameter of the modified distribution. (authors)

  9. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  10. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  11. Accounting for the Decreasing Reaction Potential of Heterogeneous Aquifers in a Stochastic Framework of Aquifer-Scale Reactive Transport

    Science.gov (United States)

    Loschko, Matthias; Wöhling, Thomas; Rudolph, David L.; Cirpka, Olaf A.

    2018-01-01

    Many groundwater contaminants react with components of the aquifer matrix, causing a depletion of the aquifer's reactivity with time. We discuss conceptual simplifications of reactive transport that allow the implementation of a decreasing reaction potential in reactive-transport simulations in chemically and hydraulically heterogeneous aquifers without relying on a fully explicit description. We replace spatial coordinates by travel-times and use the concept of relative reactivity, which represents the reaction-partner supply from the matrix relative to a reference. Microorganisms facilitating the reactions are not explicitly modeled. Solute mixing is neglected. Streamlines, obtained by particle tracking, are discretized in travel-time increments with variable content of reaction partners in the matrix. As exemplary reactive system, we consider aerobic respiration and denitrification with simplified reaction equations: Dissolved oxygen undergoes conditional zero-order decay, nitrate follows first-order decay, which is inhibited in the presence of dissolved oxygen. Both reactions deplete the bioavailable organic carbon of the matrix, which in turn determines the relative reactivity. These simplifications reduce the computational effort, facilitating stochastic simulations of reactive transport on the aquifer scale. In a one-dimensional test case with a more detailed description of the reactions, we derive a potential relationship between the bioavailable organic-carbon content and the relative reactivity. In a three-dimensional steady-state test case, we use the simplified model to calculate the decreasing denitrification potential of an artificial aquifer over 200 years in an ensemble of 200 members. We demonstrate that the uncertainty in predicting the nitrate breakthrough in a heterogeneous aquifer decreases with increasing scale of observation.

  12. Reactivity of bacterial and fungal laccases with lignin under alkaline conditions.

    Science.gov (United States)

    Moya, Raquel; Saastamoinen, Päivi; Hernández, Manuel; Suurnäkki, Anna; Arias, Enriqueta; Mattinen, Maija-Liisa

    2011-11-01

    The ability of Streptomyces ipomoea laccase to polymerize secoisolariciresinol lignan and technical lignins was assessed. The reactivity of S. ipomoea laccase was also compared to that of low redox fungal laccase from Melanocarpus albomyces using low molecular mass p-coumaric, ferulic and sinapic acid as well as natural (acetosyringone) and synthetic 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) mediators as substrates. Oxygen consumption measurement, MALDI-TOF MS and SEC were used to follow the enzymatic reactions at pH 7, 8, 9 and 10 at 30°C and 50°C. Polymerization of lignins and lignan by S. ipomoea laccase under alkaline reaction conditions was observed, and was enhanced in the presence of acetosyringone almost to the level obtained with M. albomyces laccase without mediator. Reactivities of the enzymes towards acetosyringone and TEMPO were similar, suggesting exploitation of the compounds and low redox laccase in lignin valorization under alkaline conditions. The results have scientific impact on basic research of laccases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Effects of network dissolution changes on pore-to-core upscaled reaction rates for kaolinite and anorthite reactions under acidic conditions

    KAUST Repository

    Kim, Daesang

    2013-11-01

    We have extended reactive flow simulation in pore-network models to include geometric changes in the medium from dissolution effects. These effects include changes in pore volume and reactive surface area, as well as topological changes that open new connections. The computed changes were based upon a mineral map from an X-ray computed tomography image of a sandstone core. We studied the effect of these changes on upscaled (pore-scale to core-scale) reaction rates and compared against the predictions of a continuum model. Specifically, we modeled anorthite and kaolinite reactions under acidic flow conditions during which the anorthite reactions remain far from equilibrium (dissolution only), while the kaolinite reactions can be near-equilibrium. Under dissolution changes, core-scale reaction rates continuously and nonlinearly evolved in time. At higher injection rates, agreement with predictions of the continuum model degraded significantly. For the far-from-equilibrium reaction, our results indicate that the ability to correctly capture the heterogeneity in dissolution changes in the reactive mineral surface area is critical to accurately predict upscaled reaction rates. For the near-equilibrium reaction, the ability to correctly capture the heterogeneity in the saturation state remains critical. Inclusion of a Nernst-Planck term to ensure neutral ionic currents under differential diffusion resulted in at most a 9% correction in upscaled rates.

  14. Pathways of the Maillard reaction under physiological conditions.

    Science.gov (United States)

    Henning, Christian; Glomb, Marcus A

    2016-08-01

    Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.

  15. Surface reactivity and layer analysis of chemisorbed reaction films in ...

    Indian Academy of Sciences (India)

    Administrator

    Surface reactivity and layer analysis of chemisorbed reaction films in ... in the nitrogen environment. Keywords. Surface reactivity ... sium (Na–K) compounds in the coating or core of the ..... Barkshire I R, Pruton M and Smith G C 1995 Appl. Sur.

  16. Reactivity of Single-Walled Carbon Nanotubes in the Diels-Alder Cycloaddition Reaction: Distortion-Interaction Analysis along the Reaction Pathway.

    Science.gov (United States)

    Li, Yingzi; Osuna, Sílvia; Garcia-Borràs, Marc; Qi, Xiaotian; Liu, Song; Houk, Kendall N; Lan, Yu

    2016-08-26

    Diels-Alder cycloaddition is one of the most powerful tools for the functionalization of single-walled carbon nanotubes (SWCNTs). Density functional theory at the B3-LYP level of theory has been used to investigate the reactivity of different-diameter SWCNTs (4-9,5) in Diels-Alder reactions with 1,3-butadiene; the reactivity was found to decrease with increasing SWCNT diameter. Distortion/interaction analysis along the whole reaction pathway was found to be a better way to explore the reactivity of this type of reaction. The difference in interaction energy along the reaction pathway is larger than that of the corresponding distortion energy. However, the distortion energy plots for these reactions show the same trend. Therefore, the formation of the transition state can be determined from the interaction energy. A lower interaction energy leads to an earlier transition state, which indicates a lower activation energy. The computational results also indicate that the original distortion of the SWCNTs leads to an increase in the reactivity of the SWCNTs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reduced Reactivity of Amines against Nucleophilic Substitution via Reversible Reaction with Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Fiaz S. Mohammed

    2015-12-01

    Full Text Available The reversible reaction of carbon dioxide (CO2 with primary amines to form alkyl-ammonium carbamates is demonstrated in this work to reduce amine reactivity against nucleophilic substitution reactions with benzophenone and phenyl isocyanate. The reversible formation of carbamates has been recently exploited for a number of unique applications including the formation of reversible ionic liquids and surfactants. For these applications, reduced reactivity of the carbamate is imperative, particularly for applications in reactions and separations. In this work, carbamate formation resulted in a 67% reduction in yield for urea synthesis and 55% reduction for imine synthesis. Furthermore, the amine reactivity can be recovered upon reversal of the carbamate reaction, demonstrating reversibility. The strong nucleophilic properties of amines often require protection/de-protection schemes during bi-functional coupling reactions. This typically requires three separate reaction steps to achieve a single transformation, which is the motivation behind Green Chemistry Principle #8: Reduce Derivatives. Based upon the reduced reactivity, there is potential to employ the reversible carbamate reaction as an alternative method for amine protection in the presence of competing reactions. For the context of this work, CO2 is envisioned as a green protecting agent to suppress formation of n-phenyl benzophenoneimine and various n-phenyl–n-alky ureas.

  18. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry.

    Science.gov (United States)

    Zhang, Wei; Huang, Guangming

    2015-11-15

    Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Characterization of reaction conditions providing rapid and specific cysteine alkylation for peptide-based mass spectrometry.

    Science.gov (United States)

    Paulech, Jana; Solis, Nestor; Cordwell, Stuart J

    2013-01-01

    Alkylation converts Cys thiols to thioethers and prevents unwanted side reactions, thus facilitating mass spectrometric identification of Cys-containing peptides. Alkylation occurs preferentially at Cys due to its high nucleophilicity, however reactions at other such sites are possible. N-ethylmaleimide (NEM) shows rapid reaction kinetics with Cys and careful definition of reaction conditions results in little reactivity at other sites. Analysis of a protein standard alkylated under differing reaction conditions (pH, NEM concentrations and reaction times) was performed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and selected reaction monitoring (SRM) of NEM-modified and unmodified peptide pairs. Mis-alkylation sites at primary and secondary amines were identified and limited to one equivalent of NEM. No evidence for hydroxyl or thioether alkylation was observed. Improved specificity was achieved by restricting the pH below neutral, NEM concentration below 10mM and/or reaction time to below 5min. Maximal removal of Cys activity was observed in tissue homogenates at 40mM NEM within 1min, dependent upon efficient protein denaturation. SRM assays identified peptide-specific levels of mis-alkylation, indicating that NEM-modified to unmodified ratios did not exceed 10%, with the exception of Cys alkylation that proceeded to 100%, and some Lys residues that resulted in tryptic missed cleavages. High reactivity was observed for His residues considering their relatively low abundance. These data indicate that rapid and specific Cys alkylation is possible with NEM under relatively mild conditions, with more abrasive conditions leading to increased non-specific alkylation without appreciable benefit for MS-based proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Entropy-based critical reaction time for mixing-controlled reactive transport

    DEFF Research Database (Denmark)

    Chiogna, Gabriele; Rolle, Massimo

    2017-01-01

    Entropy-based metrics, such as the dilution index, have been proposed to quantify dilution and reactive mixing in solute transport problems. In this work, we derive the transient advection dispersion equation for the entropy density of a reactive plume. We restrict our analysis to the case where...... the concentration distribution of the transported species is Gaussian and we observe that, even in case of an instantaneous complete bimolecular reaction, dilution caused by dispersive processes dominates the entropy balance at early times and results in the net increase of the entropy density of a reactive species...

  1. The Link between Hypersensitivity Syndrome Reaction Development and Human Herpes Virus-6 Reactivation

    Directory of Open Access Journals (Sweden)

    Joshua C. Pritchett

    2012-01-01

    Data Sources and Extraction. Drugs identified as causes of (i idiosyncratic reactions, (ii drug-induced hypersensitivity, drug-induced hepatotoxicity, acute liver failure, and Stevens-Johnson syndrome, and (iii human herpes virus reactivation in PubMed since 1997 have been collected and discussed. Results. Data presented in this paper show that HHV-6 reactivation is associated with more severe organ involvement and a prolonged course of disease. Conclusion. This analysis of HHV-6 reactivation associated with drug-induced severe cutaneous reactions and hepatotoxicity will aid in causality assessment and clinical diagnosis of possible life-threatening events and will provide a basis for further patient characterization and therapy.

  2. Hoarding and emotional reactivity: The link between negative emotional reactions and hoarding symptomatology

    Science.gov (United States)

    Shaw, A.M.; Timpano, K.R.; Steketee, G.; Tolin, D. F.; Frost, R.O.

    2015-01-01

    Hoarding disorder (HD) is characterized by difficulty discarding, clutter, and frequently excessive acquiring. Theories have pointed to intense negative emotional reactions (e.g., sadness) as one factor that may play a critical role in HD’s etiology. Preliminary work with an analogue sample indicated that more intense negative emotions following emotional films were linked with greater hoarding symptoms. Symptom provocation imaging studies with HD patients have also found evidence for excessive activation in brain regions implicated in processing emotions. The current study utilized a sample with self-reported serious hoarding difficulties to examine how hoarding symptoms related to both general and hoarding-related emotional reactivity, taking into account the specificity of these relationships. We also examined how two cognitive factors, fear of decision-making and confidence in memory, modified this relationship. 628 participants with self-identified hoarding difficulties completed questionnaires about general emotional reactivity, depression, anxiety, decision-making, and confidence in memory. To assess hoarding-related emotional reactivity, participants reported their emotional reactions when imagining discarding various items. Heightened general emotional reactivity and more intense emotional reactions to imagined discarding were associated with both difficulty discarding and acquisition, but not clutter, controlling for age, gender, and co-occurring mood and anxiety symptoms. Fear of decision-making and confidence in memory interacted with general emotional reactivity to predict hoarding symptoms. These findings provide support for cognitive-behavioral models of hoarding. Experimental research should be conducted to discover whether emotional reactivity increases vulnerability for HD. Future work should also examine whether emotional reactivity should be targeted in interventions for hoarding. PMID:25732668

  3. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.

    Science.gov (United States)

    Wu, Wenjie; Wu, Zemin; Rong, Chunying; Lu, Tian; Huang, Ying; Liu, Shubin

    2015-07-23

    The electrophilic aromatic substitution for nitration, halogenation, sulfonation, and acylation is a vastly important category of chemical transformation. Its reactivity and regioselectivity is predominantly determined by nucleophilicity of carbon atoms on the aromatic ring, which in return is immensely influenced by the group that is attached to the aromatic ring a priori. In this work, taking advantage of recent developments in quantifying nucleophilicity (electrophilicity) with descriptors from the information-theoretic approach in density functional reactivity theory, we examine the reactivity properties of this reaction system from three perspectives. These include scaling patterns of information-theoretic quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy and information gain at both molecular and atomic levels, quantitative predictions of the barrier height with both Hirshfeld charge and information gain, and energetic decomposition analyses of the barrier height for the reactions. To that end, we focused in this work on the identity reaction of the monosubstituted-benzene molecule reacting with hydrogen fluoride using boron trifluoride as the catalyst in the gas phase. We also considered 19 substituting groups, 9 of which are ortho/para directing and the other 9 meta directing, besides the case of R = -H. Similar scaling patterns for these information-theoretic quantities found for stable species elsewhere were disclosed for these reactions systems. We also unveiled novel scaling patterns for information gain at the atomic level. The barrier height of the reactions can reliably be predicted by using both the Hirshfeld charge and information gain at the regioselective carbon atom. The energy decomposition analysis ensued yields an unambiguous picture about the origin of the barrier height, where we showed that it is the electrostatic interaction that plays the dominant role, while the roles played by exchange-correlation and

  4. Chemical reactivity of alkali lignin modified with laccase

    International Nuclear Information System (INIS)

    Sun, Yong; Qiu, Xueqing; Liu, Yunquan

    2013-01-01

    The modification of alkali lignin with laccase was investigated. The structural change of lignin was analyzed. The sulfonation reactivity was measured by the content of sulfonic group. The results showed the sulfonation reactivity increased to some extent under the condition of atmosphere pressure, but decreased under the condition of 0.3 MPa oxygen pressure. The analysis of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) showed the cleavage of various ether linkages and demethylation took place in the structure of lignin to certain extent during modification with laccase, which contributed to the improvement of sulfonation reactivity. Under the condition of 0.3 MPa oxygen pressure, the ratio of s/g (guaiacyl/syringyl) increased after modification, which reduced the sulfonation reactivity of lignin. Simultaneously partial polymerization reaction, such as 4-O-5′, β-5, 5-5 and other reaction in the aromatic ring decreased the activity sites of C 2 , C 5 and C 6 . Abundant polymerization reaction of α-O increased steric hindrance of C 2 and C 6 in aromatic ring, resulting in low sulfonation reactivity of lignin. -- Highlights: ► The modification of alkali lignin with laccase was investigated. ► The sulfonation reactivity increased under the condition of atmosphere pressure. ► More content of guaiacyl and hydroxy, the less content of methoxyl, syringyl can enhance the sulfonation reactivity of lignin. ► Partial moieties polymerized each other with α-O linkgages during treatment with laccase under oxygen pressure. ► The steric hindrance on C 2 and C 6 in aromatic ring resulted in low sulfonation reaction reactivity of lignin

  5. Reactivity of the functional groups in functional polymers. Use of T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Imaizumi, Hiroshi; Hasegawa, Shinobu.

    1997-01-01

    In order to reveal the reactivity of several functional polymers, the following two experiments were carried out: observing the hydrogen-isotope exchange reaction (T-for-H exchange reaction) between one of T-labeled functional polymers and 0.500 mol·l -1 aniline dissolved in p-xylene, observing the degree of the T dispersed from the surface area of the polymer under the several conditions. Consequently, the following six matters have been quantitatively obtained. The T-for-H exchange reaction occurred between each T-labeled polymer and aniline, and is more predominant than other chemical reactions within the range of 50-90degC. The reactivity of the polymers are strongly affected by their matrix structures. The degree of the T dispersed from the surface area of each T-labeled polymer is hardly affected by humidity. The higher the temperature is, the larger is the degree of the T dispersed from the surface area. At the same temperature, the degree of the T dispersed from the surface area of each polymer is strongly affected by the physical form of the polymer even if the polymer has the same functional group as the others, and the T existing in the surface area of a T-labeled glassy polymer is less dispersed than that of a porous one. The degree of the T dispersed from the surface area of a T-labeled polymer is small when the degree of the polymerization of the polymer is high. (author)

  6. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem

    KAUST Repository

    Nick, H.M.

    2013-02-01

    The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow, their chemical components dilute and react through dispersion. A larger interface and wider mixing zone may provide favorable conditions for the natural attenuation of contaminant plumes. It has been claimed that the extent of this mixing is controlled by both, porous media properties and flow conditions. In this study, the interplay between dispersion and reactive processes in coastal aquifers is investigated by means of numerical experiments. Particularly, the impact of dispersion coefficients, the velocity field induced by density driven flow and chemical component reactivities on reactive transport in such aquifers is studied. To do this, a hybrid finite-element finite-volume method and a reactive simulator are coupled, and model accuracy and applicability are assessed. A simple redox reaction is considered to describe the degradation of a contaminant which requires mixing of the contaminated groundwater and the seawater containing the terminal electron acceptor. The resulting degradation is observed for different scenarios considering different magnitudes of dispersion and chemical reactivity. Three reactive transport regimes are found: reaction controlled, reaction-dispersion controlled and dispersion controlled. Computational results suggest that the chemical components\\' reactivity as well as dispersion coefficients play a significant role on controlling reactive mixing zones and extent of contaminant removal in coastal aquifers. Further, our results confirm that the dilution index is a better alternative to the second central spatial moment of a plume to describe the mixing of reactive solutes in coastal aquifers. © 2012 Elsevier B.V.

  7. Kinetic analysis of the reactivity of aromatic amino acids in the T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Yoshida, Akira; Imaizumi, Hiroshi; Sato, Takayuki; Kano, Naoki

    2009-01-01

    To quantitatively evaluate the influence of tritium ( 3 H or T) on ecosystem, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between each aromatic amino acid (L-tyrosine, L-phenylalanine, or L-2-phenylglycine) and HTO vapor was observed at 50-70degC in the gas-solid system. Applying the A''-McKay plot method to data (obtained in the exchange reaction), the rate constants (k) of functional groups of each aromatic amino acid in this reaction was obtained. Comparing the rate constants, following six matters have been found in the T-for-H exchange reaction. (1) The reactivity of the functional groups in each amino acid increases with increasing temperature. (2) The reactivity of the functional groups of the amino acids (used) increases in the order of L-tyrosine, L-phenylalanine, and L-2-phenylglycine. (3) As to l-tyrosine, 1) the temperature dependence of each functional group increases in the order of COOH group, OH one, and NH 2 one, 2) the reactivity of OH group is 3.8 times greater than that of NH 2 one, and 3) the reactivity of COOH group is 2.0 times greater than NH 2 one. (4) As to the influence of the substituent, the reactivity of NH 2 group is larger than that of the COOH one. (5) Using the A''-McKay plot method, the reactivity of each functional group in an amino acid can be nondestructively and simultaneously clarified without using masking reagent. (6) The results obtained in this work is useful for preventing T contamination and for evaluating the influence of T on environment. (author)

  8. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Milena Becelic-Tomin

    2014-01-01

    Full Text Available Pyrite ash (PA is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4 degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L−1; [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  9. A computational study of the Diels Alder reactions involving acenes: reactivity and aromaticity

    Science.gov (United States)

    Cheng, Mei-Fun; Li, Wai-Kee

    2003-01-01

    Ab initio and DFT methods have been used to study the Diels-Alder reactivity and the aromaticity of four linear acenes, namely, naphthalene, anthracene, tetracene and pentacene. In total, eight additional pathways between ethylene and four acenes have been studied and all of them are concerted and exothermic reactions. It is found that the most reactive sites on the acenes are the center ring's meso-carbons. Also, reactivity decreases along the series pentacene > tetracene > anthracene > naphthalene. In addition, the NICS results indicate that the most reactive rings in the acenes are those with the highest aromaticity. These results are consistent with those of other theoretical studies and experiments.

  10. Reactivity and Regioselectivity in the Heck Reaction - A Hammett Study of 4-Substituted Styrenes

    DEFF Research Database (Denmark)

    Fristrup, Peter; Le Quement, Sebastian; Tanner, David Ackland

    2004-01-01

    The regioselectivity in the cationic Heck reaction of 4-substituted styrenes was addressed by a Hammett study. In this branching reaction, plots based on the substrate reactivity did not give meaningful data, whereas the product distribution was variable due to differing preferences for further...

  11. A study of different indicators of Maillard reaction with whey proteins and different carbohydrates under adverse storage conditions.

    Science.gov (United States)

    Leiva, Graciela E; Naranjo, Gabriela B; Malec, Laura S

    2017-01-15

    This study examined different indicators of each stage of Maillard reaction under adverse storage conditions in a system with whey proteins and lactose or glucose. The analysis of lysine loss by the o-phthaldialdehyde method can be considered a good indicator of the early stage, showing considerable differences in reactivity when systems with mono and disaccharides were analyzed. Capillary electrophoresis proved to be a sensitive method for evaluating the extent of glycosylation of the native proteins, providing valuable information when the loss of lysine was not significant. The estimation of the Amadori compound from the determination of total 5-hydroxymethyl-2-furfuraldehyde would have correlate well with reactive lysine content if the advanced stages of the reaction had not been reached. For assessing the occurrence of the intermediate and final stages, the measurement of free 5-hydroxymethyl-2-furfuraldehyde and color, proved not to be suitable for storage conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    Science.gov (United States)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2018-02-01

    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.

  13. Effect of reaction environments on the reactivity of PCB (2-chlorobiphenyl) over activated carbon impregnated with palladized iron

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok [Department of Civil Engineering, University of Texas at Arlington, 416 Yates Drive, Arlington, TX 76019-0308 (United States); Al-Abed, Souhail R., E-mail: al-abed.souhail@epa.gov [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2010-07-15

    Reactive activated carbon (RAC) impregnated with palladized iron nanoparticles has been developed to treat polychlorinated biphenyls (PCBs). In this study, we evaluated the effects of various reaction environments on the adsorption-mediated dechlorination of 2-chlorobiphenyl (2-ClBP) in the RAC system. The results were discussed in close connection to the implementation issue of the RAC system for the remediation of contaminated sites with PCBs. Adsorption event of 2-ClBP onto RAC limited the overall performance under condition with a 2-ClBP/RAC mass ratio of less than 1.0 x 10{sup -4} above which dechlorination of 2-ClBP adsorbed to RAC was the reaction rate-determining step. Acidic and basic conditions were harmful to 2-ClBP adsorption and iron stability while neutral pH showed the highest adsorption-promoted dechlorination of 2-ClBP and negligible metal leaching. Coexisting natural organic matter (NOM) slightly inhibited 2-ClBP adsorption onto RAC due to the partial partitioning of 2-ClBP into NOM in the liquid phase while the 2-ClBP absorbed into NOM, which also tended to adsorb onto RAC, was less available for the dechlorination reaction. Common anions slowed down 2-ClBP adsorption but adsorbed 2-ClBP was almost simultaneously dechlorinated. Some exceptions included strong inhibitory effect of carbonate species on 2-ClBP adsorption and severe detrimental effect of sulfite on 2-ClBP dechlorination. Results on treatment of 2-ClBP spiked to actual sediment supernatants implied site-specific reactivity of RAC.

  14. Reactivity and reactions to regulatory transparency in medicine, psychotherapy and counselling.

    Science.gov (United States)

    McGivern, Gerry; Fischer, Michael D

    2012-02-01

    We explore how doctors, psychotherapists and counsellors in the U.K. react to regulatory transparency, drawing on qualitative research involving 51 semi-structured interviews conducted during 2008-10. We use the concept of 'reactivity mechanisms' (Espeland & Sauder, 2007) to explain how regulatory transparency disrupts practices through simplifying and decontextualizing them, altering practitioners' reflexivity, leading to defensive forms of practice. We make an empirical contribution by exploring the impact of transparency on doctors compared with psychotherapists and counsellors, who represent an extreme case due to their uniquely complex practice, which is particularly affected by this form of regulation. We make a contribution to knowledge by developing a model of reactivity mechanisms, which explains how clinical professionals make sense of media and professional narratives about regulation in ways that produce emotional reactions and, in turn, defensive reactivity to transparency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Using reactive artificial muscles to determine water exchange during reactions

    International Nuclear Information System (INIS)

    Otero, T F; Martínez, J G; Zaifoglu, B

    2013-01-01

    Artificial muscles based on films of conducting polymers translate film volume variations, driven by electrochemical reactions (Faradaic motors), into macroscopic movements with generation of mechanical energy. The reaction promotes exchange of counterions (anions here) and solvent molecules with the electrolyte. Attributing here both the film volume variation and the movement originated by these exchanges of ions and solvent, the described angles can be used to quantify the exchanged solvent. Different angles described by bending muscles consuming equal driving charges in electrolytes having the same cation and different anions were measured. The number of exchanged counterions is given by the consumed charge and the ion valence: this is a Faradaic reaction. The described angle fraction due to the exchanged anions is given by the number of anions and the crystallographic radius. Taking as reference the anion giving the shorter angle, whatever the consumed charge, the relative number of solvent molecules exchanged by the polymeric membrane during a reversible reaction was determined. Actuators and artificial muscles can be used as useful tools for, at least, an initial study of the solvent exchange during reactions in reactive gels. (paper)

  16. Fast Curing Bio-Based Phenolic Resins via Lignin Demethylated under Mild Reaction Condition

    Directory of Open Access Journals (Sweden)

    Jiongjiong Li

    2017-09-01

    Full Text Available Demethylation technique has been used to enhance lignin reactivity for preparation of phenolic resins. However, the demethylation efficiency and the demethylated lignin (DL reactivity were still unsatisfactory. To improve the demethylation efficiency, alkali lignin was demethylated under different mild conditions using sodium sulfite as a catalyst. Lignin and DL were characterized by 1H-NMR (nuclear magnetic resonance and Fourier transform infrared (FT-IR spectroscopy to determine the demethylation mechanism. With the demethylation of lignin, the methoxyl group content decreased from 1.93 m mol/g to 1.09 m mol/g, and the phenolic hydroxyl group content increased from 0.56 m mol/g to 0.82 m mol/g. These results revealed that methoxyl groups were attacked by SO32−, and some methoxyl groups were converted to phenolic hydroxyl groups by a nucleophilic substitution reaction, generating DL with high reactivity. The chemical properties of lignin-based phenolic resins were studied by 13C-NMR and FT-IR spectroscopy, and their physical properties were also investigated. The results indicated that lignin-based phenolic resins exhibited faster curing rate and shorter gel time. In addition, the bonding strength increased from 0.92 MPa to 1.07 MPa, and the formaldehyde emission decreased from 0.58 mg/L to 0.22 mg/L after lignin demethylated at the optimum condition.

  17. Isolation and Spectroscopic Characterization of Reactive Species in Atmospheric and Interstellar Reactions

    Science.gov (United States)

    Relph, Rachael A.

    2011-12-01

    A critical element to the study of chemical reactions is the characterization of reaction intermediates. Methods have been developed to isolate these transient species in the gas phase and when combined with infrared spectroscopy have proven to be excellent tools for determining the structure and reactivity of key intermediates. The studies presented here exploit these technologies to better understand the chemistry of species involved in atmospheric and interstellar reactions. An excellent example of their utility is in the study of the formation of proton hydrates and HONO in the upper atmosphere by sequential addition of water molecules onto the nitrosonium ion. This reaction only proceeds to products after addition of the fourth water molecule, and isolation and characterization of the intermediate trihydrate, NO+(H 2O)3, shows that this species is formed in three isomeric forms, each with a different water network that controls the degree of bond formation between the nitrosonium ion and an activated water molecule. Many isomeric structures are also seen in the clustering reactions of acetylene which may be a mechanism for the formation of benzene cation in interstellar space. The spectroscopy of the trimer, (C2H2)3 + indicates that this species exists in two major isomer classes; covalent forms, one of which may be benzene, and an ion-molecule complex, comprised of a loosely bound acetylene on a dimer core. Interestingly, this dimer core is different from the cyclobutadiene-like structure observed in dimerized acetylene, and proves to be a robust species on the potential energy surface as it survives further clustering events. Two structural isomers of CO3 -and NO3 - are also investigated, and found to have drastically different infrared spectra which are analyzed in the context of their electronic structure. Isomers in these systems are prepared under different expansion conditions which accounts for their unique spectral signatures.

  18. Feasibility of Batch Reactive Distillation with Equilibrium-Limited Consecutive Reactions in Rectifier, Stripper, or Middle-Vessel Column

    Directory of Open Access Journals (Sweden)

    T. Lukács

    2011-01-01

    Full Text Available A general overall feasibility methodology of batch reactive distillation of multireaction systems is developed to study all the possible configurations of batch reactive distillation. The general model equations are derived for multireaction system with any number of chemical equilibrium-limited reactions and for any number of components. The present methodology is demonstrated with the detailed study of the transesterification of dimethyl carbonate in two reversible cascade reactions in batch reactive distillation process. Pure methanol is produced as distillate, and pure diethyl carbonate is produced at the bottom simultaneously in middle-vessel column; in each section, continuous feeding of ethanol is necessary. The results of feasibility study are successfully validated by rigorous simulations.

  19. Serpentinization as a reactive transport process: The brucite silicification reaction

    Science.gov (United States)

    Tutolo, Benjamin M.; Luhmann, Andrew J.; Tosca, Nicholas J.; Seyfried, William E.

    2018-02-01

    Serpentinization plays a fundamental role in the biogeochemical and tectonic evolution of the Earth and perhaps many other rocky planetary bodies. Yet, geochemical models still fail to produce accurate predictions of the various modes of serpentinization, which limits our ability to predict a variety of related geological phenomena over many spatial and temporal scales. Here, we use kinetic and reactive transport experiments to parameterize the brucite silicification reaction and provide fundamental constraints on SiO2 transport during serpentinization. We show that, at temperatures characteristic of the sub-seafloor at the serpentinite-hosted Lost City Hydrothermal Field (150 °C), the assembly of Si tetrahedra onto MgOH2 (i.e., brucite) surfaces is a rate-limiting elementary reaction in the production of serpentine and/or talc from olivine. Moreover, this reaction is exponentially dependent on the activity of aqueous silica (a SiO2 (aq)), such that it can be calculated according to the rate law:

  20. Basic visualization experiments on eutectic reaction of boron carbide and stainless steel under sodium-cooled fast reactor conditions

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Suzuki, Tohru; Kamiyama, Kenji; Kudo, Isamu

    2016-01-01

    This paper describes basic visualization experiments on eutectic reaction and relocation of boron carbide (B 4 C) and stainless steel (SS) under a high temperature condition exceeding 1500degC as well as the importance of such behaviors in molten core during a core disruptive accident in a Generation-IV sodium-cooled fast reactor (750 MWe class) designed in Japan. At first, a reactivity history was calculated using an exact perturbation calculation tool taking into account expected behaviors. This calculation indicated the importance of a relocation behavior of the B 4 C-SS eutectic because its behavior has a large uncertainty in the reactivity history. To clarify this behavior, basic experiments were carried out by visualizing the reaction of a B 4 C pellet contacted with molten SS in a high temperature-heating furnace. The experiments have shown the eutectic reaction visualization as well as freezing and relocation of the B 4 C-SS eutectic in upper part of the solidified test piece due to the density separation. (author)

  1. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhang

    2016-12-01

    Full Text Available This work represents our initial effort in identifying azide/alkyne pairs for optimal reactivity in copper-catalyzed azide-alkyne cycloaddition (CuAAC reactions. In previous works, we have identified chelating azides, in particular 2-picolyl azide, as “privileged” azide substrates with high CuAAC reactivity. In the current work, two types of alkynes are shown to undergo rapid CuAAC reactions under both copper(II- (via an induction period and copper(I-catalyzed conditions. The first type of the alkynes bears relatively acidic ethynyl C-H bonds, while the second type contains an N-(triazolylmethylpropargylic moiety that produces a self-accelerating effect. The rankings of reactivity under both copper(II- and copper(I-catalyzed conditions are provided. The observations on how other reaction parameters such as accelerating ligand, reducing agent, or identity of azide alter the relative reactivity of alkynes are described and, to the best of our ability, explained.

  2. Mineralization of hetero bi-functional reactive dye in aqueous solution by Fenton and photo-Fenton reactions.

    Science.gov (United States)

    Torrades, Francesc; García-Hortal, José Antonio; García-Montaño, Julia

    2015-01-01

    This study focused on the advanced oxidation of the hetero bi-functional reactive dye Sumifix Supra Yellow 3RF (CI Reactive Yellow 145) using dark Fenton and photo-Fenton conditions in a lab-scale experiment. A 2(3) factorial design was used to evaluate the effects of the three key factors: temperature, Fe(II) and H2O2 concentrations, for a dye concentration of 250 mg L(-1) with chemical oxygen demand (COD) of 172 mg L(-1) O2 at pH=3. The response function was the COD reduction. This methodology lets us find the effects and interactions of the studied variables and their roles in the efficiency of the treatment process. In the optimization, the correlation coefficients for the model (R2) were 0.948 and 0.965 for Fenton and photo-Fenton treatments, respectively. Under optimized reaction conditions: pH=3, temperature=298 K, [H2O2]=11.765 mM and [Fe(II)]=1.075 mM; 60 min of treatment resulted in a 79% and 92.2% decrease in COD, for the dye taken as the model organic compound, after Fenton and photo-Fenton treatments, respectively.

  3. The hexadehydro-Diels-Alder reaction.

    Science.gov (United States)

    Hoye, Thomas R; Baire, Beeraiah; Niu, Dawen; Willoughby, Patrick H; Woods, Brian P

    2012-10-11

    Arynes (aromatic systems containing, formally, a carbon-carbon triple bond) are among the most versatile of all reactive intermediates in organic chemistry. They can be 'trapped' to give products that are used as pharmaceuticals, agrochemicals, dyes, polymers and other fine chemicals. Here we explore a strategy that unites the de novo generation of benzynes-through a hexadehydro-Diels-Alder reaction-with their in situ elaboration into structurally complex benzenoid products. In the hexadehydro-Diels-Alder reaction, a 1,3-diyne is engaged in a [4+2] cycloisomerization with a 'diynophile' to produce the highly reactive benzyne intermediate. The reaction conditions for this simple, thermal transformation are notable for being free of metals and reagents. The subsequent and highly efficient trapping reactions increase the power of the overall process. Finally, we provide examples of how this de novo benzyne generation approach allows new modes of intrinsic reactivity to be revealed.

  4. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  5. Reactivity and reaction rate studies on the fourth loading of ZENITH

    International Nuclear Information System (INIS)

    Cameron, I.R.; Freemantle, R.G.; Reed, D.L.; Wilson, D.J.

    1963-08-01

    The determination of the excess reactivity, control rod worths, prompt neutron lifetime, flux fine structure, and reaction rates of various nuclides for the fourth loading of the heated zero energy reactor ZENITH is described. The core contains 7.76 kg of U235, giving a carbon/U235 atom ratio of 7578, and forms the most dilute of the range studied. Comparisons of the experimental results with calculations using multigroup diffusion codes are presented. (author)

  6. Reactivity and reaction rate studies on the fourth loading of ZENITH

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, I R; Freemantle, R G; Reed, D L; Wilson, D J [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-08-15

    The determination of the excess reactivity, control rod worths, prompt neutron lifetime, flux fine structure, and reaction rates of various nuclides for the fourth loading of the heated zero energy reactor ZENITH is described. The core contains 7.76 kg of U235, giving a carbon/U235 atom ratio of 7578, and forms the most dilute of the range studied. Comparisons of the experimental results with calculations using multigroup diffusion codes are presented. (author)

  7. Motor reactivity of animals exposed to ionizing radiation and treated with psychotropic drugs

    International Nuclear Information System (INIS)

    Szwaja, S.

    1978-01-01

    The influence of ionizing radiation on motor reactivity of animals and the influence of selected psychotropic drugs (fenactil, haloperidol, relanium) on the changes invoked by ionizing radiation were studied experimentally in rats whose motor reactivity was assessed on the basis of conditional reflexes. In unirradiated rats, fenactil and haloperidol, but not relanium, disordered positive conditional reactions. Roentgen irradiation of the rats with a single dose on the whole body caused a drop in positive conditional reactions. Relanium and fenactil enhanced psychomotor activity of rats after exposure to ionizing radiation. (author)

  8. Motor reactivity of animals exposed to ionizing radiation and treated with psychotropic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Szwaja, S [Uniwersytet Jagiellonski, Krakow (Poland)

    1978-01-01

    The influence of ionizing radiation on motor reactivity of animals and the influence of selected psychotropic drugs (fenactil, haloperidol, relanium) on the changes invoked by ionizing radiation were studied experimentally in rats whose motor reactivity was assessed on the basis of conditional reflexes. In unirradiated rats, fenactil and haloperidol, but not relanium, disordered positive conditional reactions. Roentgen irradiation of the rats with a single dose on the whole body caused a drop in positive conditional reactions. Relanium and fenactil enhanced psychomotor activity of rats after exposure to ionizing radiation.

  9. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  10. Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3

    International Nuclear Information System (INIS)

    Sun, Juan; Pantoya, Michelle L.; Simon, Sindee L.

    2006-01-01

    The oxidation reaction of aluminum nanoparticles with oxygen gas and the thermal behavior of a metastable intermolecular composite (MIC) composed of the aluminum nanoparticles and molybdenum trioxide are studied with differential scanning calorimetry (DSC) as a function of the size and size distribution of the aluminum particles. Both broad and narrow size distributions have been investigated with aluminum particle sizes ranging from 30 to 160 nm; comparisons are also made to the behavior of micrometer-size particles. Several parameters have been used to characterize the reactivity of aluminum nanoparticles, including the fraction of aluminum that reacts prior to aluminum melting, heat of reaction, onset and peak temperatures, and maximum reaction rates. The results indicate that the reactivity of aluminum nanoparticles is significantly higher than that of the micrometer-size samples, but depending on the measure of reactivity, it may also depend strongly on the size distribution. The isoconversional method was used to calculate the apparent activation energy, and the values obtained for both the Al/O 2 and Al/MoO 3 reaction are in the range of 200-300 kJ/mol

  11. Reactivation of αμ in muon-catalyzed fusion under plasma conditions

    International Nuclear Information System (INIS)

    Jandel, M.; Froelich, P.; Larson, G.; Stodden, C.D.

    1989-01-01

    The reactivation efficiency of αμ slowing down in a deuterium-tritium plasma has been calculated for a broad range of plasma conditions. The plasma stopping power has been obtained from the random-phase approximation, which includes both the quantum mechanics of short-range collisions and collective effects due to long-range plasma interactions. It is shown that muon reactivation increases with increasing plasma temperature and density. Near-complete reactivation is, however, reached only at temperatures higher than 1000 eV

  12. Reaction kinetics and reaction heat on thermal decomposition of solvent containing unstable reactive hydrocarbons with nitric acid at Tomsk-7 reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji; Watanabe, Kouji; Koike, Tadao; Miyato, Teijiro.

    1996-12-01

    For analyzing a cause of the Tomsk-7 accident at Russian reprocessing plant, it is necessary to determine reaction-rate constant and reaction heat for a thermal decomposition of TBP/kerosine containing unstable reactive hydrocarbons with nitric acid. In JAERI, the rate constant and reaction heat were obtained from data measured with a differential thermal analyzer (DTA) for unstable hydrocarbons such as n-butanol, n-butyl nitrate, aromatic hydrocarbons, and cyclic compounds. The safety evaluation of Tomsk tank ruptured by the reaction was carried out by heat balance calculations between heat generation and heat loss in the tank using these rate constants and reaction heats. Consequently, it is clear that the cause of the tank rupture would be due to an exothermic reaction of aromatic hydrocarbons in kerosine made by petroleum with the concentrated nitric acid of 14.2N. (author)

  13. Reactive gastropathy is associated with inflammatory conditions throughout the gastrointestinal tract.

    Science.gov (United States)

    Maguilnik, I; Neumann, W L; Sonnenberg, A; Genta, R M

    2012-10-01

    The epidemiology of reactive gastropathy and its relationship with other conditions of the gastrointestinal tract associated with NSAID use have not been evaluated. To test the hypothesis that if reactive gastropathy shares common aetiological factors with these conditions, the analysis of a large cohort would unveil associations. We queried a national pathology database for subjects with a diagnosis of reactive gastropathy; controls were patients with normal gastric biopsies. We also extracted diagnoses of H. pylori infection, intestinal metaplasia, duodenal lymphocytosis, duodenitis, ileitis, microscopic colitis and focal colitis. Of 504 011 patients with gastric biopsies, 69 101 had oesophageal, 166 134 duodenal, 13 010 ileal and 83 334 colonic biopsies. Reactive gastropathy was diagnosed in 15.6% of patients, H. pylori infection in 10.3% and normal gastric mucosa in 16.3%. Reactive gastropathy was evenly distributed across the US and increased from 2.0% in the first decade of life to >20% in octogenarians. Compared with controls, reactive gastropathy was significantly associated with Barrett's mucosa (OR 1.21 95% CI 1.16-129); duodenitis (OR 1.36; 95% CI 1.28-1.44); duodenal intraepithelial lymphocytosis (OR 1.25; 95% CI 1.13-1.39); active ileitis (OR 1.88; 95% CI 1.47-2.40); focal active colitis (OR 1.57; 95% CI 1.33-1.86); and collagenous colitis (OR 1.50; 95% CI 1.12-2.03). Reactive gastropathy, a common histopathological feature of the stomach, shows an age-dependent rise and is associated with changes of the digestive tract believed to be caused by NSAID use or duodenogastric reflux. However, a large fraction of reactive gastropathy remains unexplained; its frequent occurrence merits further efforts at elucidating its aetiology. © 2012 Blackwell Publishing Ltd.

  14. Methyl salicylate: a reactive chemical warfare agent surrogate to detect reaction with hypochlorite.

    Science.gov (United States)

    Salter, W Bruce; Owens, Jeffery R; Wander, Joseph D

    2011-11-01

    Methyl salicylate (MeS) has a rich history as an inert physical simulant for the chemical warfare agents sulfur mustard and soman, where it is used extensively for liquid- and vapor-permeation testing. Here we demonstrate possible utility of MeS as a reactivity simulant for chlorine-based decontaminants. In these experiments MeS was reacted with sodium hypochlorite varying stoichiometry, temperature, reaction time, and pH. No colored oxidation products were observed; however, chlorination of the aromatic ring occurred ortho (methyl 3-chlorosalicylate) and para (methyl 5-chlorosalicylate) to the position bearing the -OH group in both the mono- and disubstituted forms. The monosubstituted para product accumulated initially, and the ortho and 3,5-dichloro products formed over the next several hours. Yields from reactions conducted below pH 11 declined rapidly with decreasing pH. Reactions run at 40 °C produced predominantly para substitution, while those run at 0 °C produced lower yields of ortho- and para-substituted products. Reactions were also carried out on textile substrates of cotton, 50/50 nylon-cotton, and a meta aramid. The textile data broadly reproduced reaction times and stoichiometry observed in the liquid phase, but are complicated by physical and possibly chemical interactions with the fabric. These data indicate that, for hypochlorite-containing neutralizing agents operating at strongly alkaline pH, one can expect MeS to react stoichiometrically with the hypochlorite it encounters. This suggests utility of MeS in lieu of such highly hazardous surrogates as monochloroalkyl sulfides as a simulant for threat scenarios involving the stoichiometric decomposition of sulfur mustard. Specifically, the extent of coverage of the simulant on a fabric by the neutralizing agent can be directly measured. Similar reactivity toward other halogen oxidizing agents is likely but remains to be demonstrated.

  15. Reactivity and Synthetic Applications of 4,5-Dicyanopyridazine: An Overview

    Directory of Open Access Journals (Sweden)

    Donatella Giomi

    2010-03-01

    Full Text Available Despite the poor reputation of electron-deficient pyridazines in intermolecular Hetero Diels-Alder (HDA reactions, 4,5-dicyanopyridazine (DCP showed a surprising reactivity as a heterocyclic azadiene in inverse electron-demand HDA processes with different dienophiles. The use of alkenes, alkynes and enamines as 2p electron counterparts afforded dicyanocyclohexa-1,3-dienes and substituted phthalonitriles, respectively, while the use of suitable bis-dienophiles provides a general strategy for the one-pot synthesis of polycyclic carbo- and hetero-cage systemsthrough pericyclic three-step homodomino processes. HDA reactions with heterocyclic dienophiles allowed direct benzoannelation: in particular, pyrrole and indole derivatives were converted to dicyano-indoles and -carbazoles. In addition an unprecedented reactivity of DCP as a very reactive heterocyclic electrophile at the C-4 carbon was also evidenced: by changing the experimental conditions, cyanopyrrolyl- and cyanoindolyl-pyridazines were obtained through reactions of pyrrole and indole systems as carbon nucleophiles in formal SNAr2 processes where a CN group of DCP acts as leaving group. Thus, careful control of the reaction conditions allows exploitation of both pathways for the synthesis of different classes of heterocyclic derivatives.

  16. Reactions of CF3O radicals with selected alkenes and aromatics under atmospheric conditions

    DEFF Research Database (Denmark)

    Kelly, C.; Sidebottom, H.W.; Treacy, J.

    1994-01-01

    Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed.......Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed....

  17. Effect of degree of polymerization and of temperature on the reactivity of poly(vinyl alcohol) by applying T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Imaizumi, Hiroshi; Imai, Kazunari

    1999-01-01

    In order to reveal the effect of the degree of polymerization and of temperature on the reactivity of functional polymers, the hydrogen-isotope exchange reaction between poly(vinyl alcohol) (PVA) having each degree of polymerization and tritiated water vapor (HTO vapor) was dynamically observed at 35-80 deg C in a gas-solid system. The reason of the observation at 35 deg C is to clarify the possibility of the T-for-H exchange reaction at a temperature near the environment. The degree of polymerization of PVA used in this work was 500, 1000, 2000, 2800, or 3500. Applying the A''-McKay plot method to the data obtained in each observation, the rate constant (k) for each PVA in the reaction was calculated. Moreover, the Arrhenius plot for each PVA was made by using the k values. Comparing the k values and the results obtained previously, the following six matters have been clarified. In the temperature range of 35-80 deg C, the T-for-H exchange reaction between HTO vapor and each PVA occurred, and in this case, the atoms participating in the reaction are the H atoms in the OH groups in PVA and T atoms in HTO vapor. The reactivity of each PVA increases with rising temperature, and decreases with increasing the degree of polymerization. The rate of the decreasing of k with increasing the degree of polymerization changes at near the degree of polymerization of 1000, and the rate is fairly large under the degree of 1000. Under the degree of polymerization of 1000, the reactivity of PVA is more affected by the effect of the degree of polymerization than by the effect of temperature, and the reactivity is large when the degree of polymerization is small. Over the degree of polymerization of 1000, the reactivity of PVA is affected by both the degree of polymerization and temperature, and the reactivity is large when temperature is high. For the T-for-H exchange reaction in a gas-solid system, the reaction form is unchanged in the range of 35-80 deg C, and the reactivity at 35

  18. The Eschenmoser coupling reaction under continuous-flow conditions

    Science.gov (United States)

    Singh, Sukhdeep; Köhler, J Michael; Schober, Andreas

    2011-01-01

    Summary The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given. PMID:21915222

  19. The Eschenmoser coupling reaction under continuous-flow conditions

    Directory of Open Access Journals (Sweden)

    Sukhdeep Singh

    2011-08-01

    Full Text Available The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given.

  20. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems

    Directory of Open Access Journals (Sweden)

    M. De Lucia

    2015-02-01

    Full Text Available Fully coupled, multi-phase reactive transport simulations of CO2 storage systems can be approximated by a simplified one-way coupling of hydrodynamics and reactive chemistry. The main characteristics of such systems, and hypotheses underlying the proposed alternative coupling, are (i that the presence of CO2 is the only driving force for chemical reactions and (ii that its migration in the reservoir is only marginally affected by immobilisation due to chemical reactions. In the simplified coupling, the exposure time to CO2 of each element of the hydrodynamic grid is estimated by non-reactive simulations and the reaction path of one single batch geochemical model is applied to each grid element during its exposure time. In heterogeneous settings, analytical scaling relationships provide the dependency of velocity and amount of reactions to porosity and gas saturation. The analysis of TOUGHREACT fully coupled reactive transport simulations of CO2 injection in saline aquifer, inspired to the Ketzin pilot site (Germany, both in homogeneous and heterogeneous settings, confirms that the reaction paths predicted by fully coupled simulations in every element of the grid show a high degree of self-similarity. A threshold value for the minimum concentration of dissolved CO2 considered chemically active is shown to mitigate the effects of the discrepancy between dissolved CO2 migration in non-reactive and fully coupled simulations. In real life, the optimal threshold value is unknown and has to be estimated, e.g. by means of 1-D or 2-D simulations, resulting in an uncertainty ultimately due to the process de-coupling. However, such uncertainty is more than acceptable given that the alternative coupling enables using grids of the order of millions of elements, profiting from much better description of heterogeneous reservoirs at a fraction of the calculation time of fully coupled models.

  1. Self-propagating exothermic reaction analysis in Ti/Al reactive films using experiments and computational fluid dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Seema, E-mail: seema.sen@tu-ilmenau.de [Technical University of Ilmenau, Department of Materials for Electronics, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany); Niederrhein University of Applied Science, Department of Mechanical and Process Engineering, Reinarzstraße 49, 47805 Krefeld (Germany); Lake, Markus; Kroppen, Norman; Farber, Peter; Wilden, Johannes [Niederrhein University of Applied Science, Department of Mechanical and Process Engineering, Reinarzstraße 49, 47805 Krefeld (Germany); Schaaf, Peter [Technical University of Ilmenau, Department of Materials for Electronics, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-28

    Highlights: • Development of nanoscale Ti/Al multilayer films with 1:1, 1:2 and 1:3 molar ratios. • Characterization of exothermic reaction propagation by experiments and simulation. • The reaction velocity depends on the ignition potentials and molar ratios of the films. • Only 1Ti/3Al films exhibit the unsteady reaction propagation with ripple formation. • CFD simulation shows the time dependent atom mixing and temperature flow during exothermic reaction. - Abstract: This study describes the self-propagating exothermic reaction in Ti/Al reactive multilayer foils by using experiments and computational fluid dynamics simulation. The Ti/Al foils with different molar ratios of 1Ti/1Al, 1Ti/2Al and 1Ti/3Al were fabricated by magnetron sputtering method. Microstructural characteristics of the unreacted and reacted foils were analyzed by using electronic and atomic force microscopes. After an electrical ignition, the influence of ignition potentials on reaction propagation has been experimentally investigated. The reaction front propagates with a velocity of minimum 0.68 ± 0.4 m/s and maximum 2.57 ± 0.6 m/s depending on the input ignition potentials and the chemical compositions. Here, the 1Ti/3Al reactive foil exhibits both steady state and unsteady wavelike reaction propagation. Moreover, the numerical computational fluid dynamics (CFD) simulation shows the time dependent temperature flow and atomic mixing in a nanoscale reaction zone. The CFD simulation also indicates the potentiality for simulating exothermic reaction in the nanoscale Ti/Al foil.

  2. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  3. A test on reactive force fields for the study of silica dimerization reactions

    Energy Technology Data Exchange (ETDEWEB)

    Moqadam, Mahmoud; Riccardi, Enrico; Trinh, Thuat T.; Åstrand, Per-Olof; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117, 7491 Trondheim (Norway)

    2015-11-14

    We studied silica dimerization reactions in the gas and aqueous phase by density functional theory (DFT) and reactive force fields based on two parameterizations of ReaxFF. For each method (both ReaxFF force fields and DFT), we performed constrained geometry optimizations, which were subsequently evaluated in single point energy calculations using the other two methods. Standard fitting procedures typically compare the force field energies and geometries with those from quantum mechanical data after a geometry optimization. The initial configurations for the force field optimization are usually the minimum energy structures of the ab initio database. Hence, the ab initio method dictates which structures are being examined and force field parameters are being adjusted in order to minimize the differences with the ab initio data. As a result, this approach will not exclude the possibility that the force field predicts stable geometries or low transition states which are realistically very high in energy and, therefore, never considered by the ab initio method. Our analysis reveals the existence of such unphysical geometries even at unreactive conditions where the distance between the reactants is large. To test the effect of these discrepancies, we launched molecular dynamics simulations using DFT and ReaxFF and observed spurious reactions for both ReaxFF force fields. Our results suggest that the standard procedures for parameter fitting need to be improved by a mutual comparative method.

  4. Kinetic analysis of the reactivity of aliphatic cyclic alcohols and carboxylic acids in the T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Tamura, Kiyoshi; Imaizumi, Hiroshi; Kano, Naoki

    2007-01-01

    In order to quantitatively evaluate the influence of tritium ( 3 He or T) on various functional groups in environment, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between tritium-labeled poly-(vinyl alcohol) and each aliphatic cyclic alcohol (or carboxylic acid) has been dynamically observed in the range of 50 to 90degC. Consequently, the activities of the aliphatic cyclic alcohol and carboxylic acid increased with increasing reaction time. Applying in A''-McKay plot method to the observed data, the rate constants (k) for these materials were obtained. Using the k, the relation between the number of carbon atoms in the ring in each alcohol and the reactivity of the alcohol was quantitatively compared. Then, to clarify the effect of relative atomic charge of O atom (connected with the H atom in the hydroxy (or carboxy) group in the material) on the reactivity of the material, the MOPAC method was used. From both the above-mentioned and the obtained previously, the following nine items were found as to aliphatic cyclic alcohols (and carboxylic acids) in the T-for-H exchange reaction. (1) The reactivity of aliphatic cyclic alcohols (and carboxylic acids) depends on the temperature. (2) The reactivity of the cyclic materials decreases with increasing number of carbon atoms in the ring. (3) The reactivity of the aliphatic cyclic carboxylic acid seems to be smaller than that of aliphatic cyclic alcohol, and be larger than that of aliphatic cyclic amine. (4) For aliphatic cyclic alcohols, correlation exists between k and relative atomic charges of O atom obtained by the MOPAC method, but the tendency for aliphatic cyclic carboxylic acid is not clear. (5) As to having the same number of carbon atoms in each ring, the reactivity of the aliphatic cyclic carboxylic acid including the side chain is smaller than of the aliphatic cyclic carboxylic acid including no side chain. (6) The reactivity of aliphatic cyclic carboxylic acid is larger than that of

  5. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  6. The reactivity of anion-exchange resins by applying OT-for-OH exchange reaction in the equilibrium state

    International Nuclear Information System (INIS)

    Kano, Naoki; Nihei, Makoto; Imaizumi, Hiroshi

    1996-01-01

    In order to reveal the behavior of hydroxyl group in isotope exchange reaction, OT-for-OH exchange reaction between each anion-exchange resin (OH - form) and tritiated water (abbreviated as HTO water below) was observed at 80degC under the equilibrium. Anion-exchange resins used were Amberlite IRA-400, IRA-410 (both strongly basic), and IRA-94S (weakly basic). It can be thought that an HTO molecule dissociates into H + +OT - (or T + +OH - ). The activity of each resin based on OT-for-OH exchange reaction was measured with a liquid scintillation counter. From the above-mentioned, the following five were found. Isotope exchange reaction as 'atomic group' occurred between the OH group in each anion-exchange resin and the OT group in HTO water. The reactivity of strongly basic anion-exchange resin is larger than that of weakly basic one. The ratio of the reactivity of these resins can roughly be expressed as follows: (IRA-410): (IRA-400): (IRA-94S)=42: 7: 1. The degree of OT-for-OH exchange reaction may be smaller than that of T-for-H exchange reaction. The method used and results obtained in this work may be helpful to obtain the data for the prevention of T-contamination, especially to obtain the data from certain atomic groups including T. (author)

  7. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts

    Science.gov (United States)

    Pacardo, Dennis B.; Slocik, Joseph M.; Kirk, Kyle C.; Naik, Rajesh R.; Knecht, Marc R.

    2011-05-01

    To address issues concerning the global environmental and energy state, new catalytic technologies must be developed that translate ambient and efficient conditions to heavily used reactions. To achieve this, the structure/function relationship between model catalysts and individual reactions must be critically discerned to identify structural motifs responsible for the reactivity. This is especially true for nanoparticle-based systems where this level of information remains limited. Here we present evidence indicating that peptide-capped Pd nanoparticles drive Stille C-C coupling reactions via Pd atom leaching. Through a series of reaction studies, the materials are shown to be optimized for reactivity under ambient conditions where increases in temperature or catalyst concentration deactivate reactivity due to the leaching process. A quartz crystal microbalance analysis demonstrates that Pd leaching occurs during the initial oxidative addition step at the nanoparticle surface by aryl halides. Together, this suggests that peptide-based materials may be optimally suited for use as model systems to isolate structural motifs responsible for the generation of catalytically reactive materials under ambient synthetic conditions.

  8. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts.

    Science.gov (United States)

    Pacardo, Dennis B; Slocik, Joseph M; Kirk, Kyle C; Naik, Rajesh R; Knecht, Marc R

    2011-05-01

    To address issues concerning the global environmental and energy state, new catalytic technologies must be developed that translate ambient and efficient conditions to heavily used reactions. To achieve this, the structure/function relationship between model catalysts and individual reactions must be critically discerned to identify structural motifs responsible for the reactivity. This is especially true for nanoparticle-based systems where this level of information remains limited. Here we present evidence indicating that peptide-capped Pd nanoparticles drive Stille C-C coupling reactions via Pd atom leaching. Through a series of reaction studies, the materials are shown to be optimized for reactivity under ambient conditions where increases in temperature or catalyst concentration deactivate reactivity due to the leaching process. A quartz crystal microbalance analysis demonstrates that Pd leaching occurs during the initial oxidative addition step at the nanoparticle surface by aryl halides. Together, this suggests that peptide-based materials may be optimally suited for use as model systems to isolate structural motifs responsible for the generation of catalytically reactive materials under ambient synthetic conditions. © The Royal Society of Chemistry 2011

  9. Hydrazones as substrates for cycloaddition reactions

    International Nuclear Information System (INIS)

    Belskaya, N P; Eliseeva, A I; Bakulev, V A

    2015-01-01

    The [2+2]-, [4+2]- and [3+2]-cycloaddition reactions of hydrazones and 1,2-diazabuta-1,3-dienes, azomethine imines, nitrile imines and azomethine ylides formed upon hydrazone transformations with dienophiles, dipolarophiles and dienes are considered. The principal issues of structure and reactivity of active substrates and the influence of the reaction conditions and catalysts on the reaction regioselectivity and efficiency are discussed. The bibliography includes 288 references

  10. The major/minor concept: dependence of the selectivity of homogeneously catalyzed reactions on reactivity ratio and concentration ratio of the intermediates.

    Science.gov (United States)

    Schmidt, Thomas; Dai, Zhenya; Drexler, Hans-Joachim; Hapke, Marko; Preetz, Angelika; Heller, Detlef

    2008-07-07

    The homogeneously catalyzed asymmetric hydrogenation of prochiral olefins with cationic Rh(I) complexes is one of the best-understood selection processes. For some of the catalyst/substrate complexes, experimental proof points out the validation of the major/minor principle; the concentration-deficient minor substrate complex, which has very high reactivity, yields the excess enantiomer. As exemplified by the reaction system of [Rh(dipamp)(MeOH)2]+/methyl (Z)-alpha-acetamidocinnamate (dipamp=1,2-bis((o-methoxyphenyl)phenylphosphino)ethane), all six of the characteristic reaction rate constants have been previously identified. Recently, it was found that the major substrate complex can also yield the major enantiomer (lock-and-key principle). The differential equation system that results from the reaction sequence can be solved numerically for different hydrogen partial pressures by including the known equilibrium constants. The result displays the concentration-time dependence of all species that exist in the catalytic cycle. On the basis of the known constants as well as further experimental evidence, this work focuses on the examination of all principal possibilities resulting from the reaction sequence and leading to different results for the stereochemical outcome. From the simulation, the following conclusions can be drawn: 1) When an intermediate has extreme reactivity, its stationary concentration can become so small that it can no longer be the source of product selectivity; 2) in principle, the major/minor and lock-and-key principles can coexist depending on the applied pressure; 3) thermodynamically determined intermediate ratios can be completely converted under reaction conditions for a selection process; and 4) the increase in enantioselectivity with increasing hydrogen partial pressure, a phenomenon that is experimentally proven but theoretically far from being well-understood, can be explained by applying both the lock-and-key as well as the major

  11. Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

    KAUST Repository

    Mohan, Balaji; Jaasim, Mohammed; Ahmed, Ahfaz; Hernandez Perez, Francisco; Sim, Jaeheon; Roberts, William L.; Sarathy, Mani; Im, Hong G.

    2018-01-01

    Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.

  12. Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

    KAUST Repository

    Mohan, Balaji

    2018-04-03

    Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.

  13. Applying reaction condition index to predict sandstone type uranium deposit

    International Nuclear Information System (INIS)

    Chen Gongxin; Liu Jinhui; Cheng Hai

    2002-01-01

    On the basic of the explanation of reaction condition index, the deduction of reaction condition index calculation principle, the hydrogeological setting in Gongpoquan basin in Baishan, Gansu province and the study of reaction condition index of its water source point, the north Luotuoquan area in Gongpoquan basin seems to be a favourable place for sandstone type uranium deposit, and the prospect area for sandstone type uranium deposit is delimitated

  14. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    Science.gov (United States)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  15. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  16. Phase rule calculations and the thermodynamics of reactive systems under chemical equilibrium

    Directory of Open Access Journals (Sweden)

    PLATT G. M.

    1999-01-01

    Full Text Available In this paper, we examine the resolution of some phase rule problems within the context of multiple chemical equilibrium reactions, using cubic equations of state and an activity coefficient model. Bubble and dew reactive surfaces, reactive azeotropic loci and reactive critical loci are generated and presented in graphical form. Also isobaric bubble and dew reactive enthalpy loci, which may be useful in the modeling of reactive distillation operations, are depicted. All the formalism here employed is developed within the coordinate transformation of Ung and Doherty, which is appropriate for equilibrium reactive or multireactive systems. The major contribution of this work is the determination of critical loci for reactive or multireactive equilibrium systems. Since it is known that for some class of chemical reactions the kinetics and product distribution exhibit high sensitivity to pressure near criticality, the present study may be useful as a predicting tool in these cases if the chemical equilibrium condition is not too far from the real phenomenon.

  17. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Carraher, Jack McCaslin [Iowa State Univ., Ames, IA (United States)

    2014-01-01

    Reactive species like high-valent metal-oxo complexes and carbon and oxygen centered radicals are important intermediates in enzymatic systems, atmospheric chemistry, and industrial processes. Understanding the pathways by which these intermediates form, their relative reactivity, and their fate after reactions is of the utmost importance. Herein are described the mechanistic detail for the generation of several reactive intermediates, synthesis of precursors, characterization of precursors, and methods to direct the chemistry to more desirable outcomes yielding ‘greener’ sources of commodity chemicals and fuels.

  18. Simultaneous measurements of reactive scalar and velocity in a planar liquid jet with a second-order chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoaki; Sakai, Yasuhiko; Nagata, Kouji; Terashima, Osamu [Nagoya University, Department of Mechanical Science and Engineering, Nagoya (Japan); Kubo, Takashi [Meijo University, Faculty of Science and Technology, Nagoya (Japan)

    2012-11-15

    This paper presents a new experimental approach for simultaneous measurements of velocity and concentration in a turbulent liquid flow with a chemical reaction. For the simultaneous measurements, we developed a combined probe consisting of an I-type hot-film probe and an optical fiber probe based on the light absorption spectrometric method. In a turbulent planar liquid jet with a second-order chemical reaction (A+B{yields}R), streamwise velocity and concentrations of all reactive species are measured by the combined probe. The turbulent mass fluxes of the reactive species are estimated from the simultaneous measurements. The results show that the influence of the chemical reaction on the turbulent mass flux of the reactant species near the jet exit is different from its influence in other regions, and the turbulent mass flux of the product species has a negative value near the jet exit and a positive value in other regions. (orig.)

  19. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    International Nuclear Information System (INIS)

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-01-01

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material

  20. Complex Reaction Environments and Competing Reaction Mechanisms in Zeolite Catalysis: Insights from Advanced Molecular Dynamics

    NARCIS (Netherlands)

    De Wispelaere, K.; Ensing, B.; Ghysels, A.; Meijer, E.J.; van Van Speybroeck, V.

    2015-01-01

    The methanol-to-olefin process is a showcase example of complex zeolite-catalyzed chemistry. At real operating conditions, many factors affect the reactivity, such as framework flexibility, adsorption of various guest molecules, and competitive reaction pathways. In this study, the strength of first

  1. Rigorous Multicomponent Reactive Separations Modelling: Complete Consideration of Reaction-Diffusion Phenomena

    International Nuclear Information System (INIS)

    Ahmadi, A.; Meyer, M.; Rouzineau, D.; Prevost, M.; Alix, P.; Laloue, N.

    2010-01-01

    This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO 2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used. Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick's law is less adapted for multicomponent mixtures where some abnormalities such as counter

  2. Modelling and experimental evaluation of reaction kinetics in reactive extraction for chiral separation of amines, amino acids and amino-alcohols

    NARCIS (Netherlands)

    Steensma, M.; Kuipers, N.J.M.; de Haan, A.B.; Kwant, Gerard

    2007-01-01

    This paper reports on determination of the intrinsic reaction kinetics in reactive extraction of chiral compounds. It is important to know the mass transfer rates and reaction kinetics separately for a reliable scale-up. A kinetic model is developed to interpret the experimental data from the

  3. Chemical properties and reactive oxygen and nitrogen species quenching activities of dry sugar-amino acid maillard reaction mixtures exposed to baking temperatures.

    Science.gov (United States)

    Chen, Xiu-Min; Liang, Ningjian; Kitts, David D

    2015-10-01

    Maillard reaction products (MRPs) derived from 10 different, dry sugar-amino acid reaction model systems were examined for changes in color index (E), sugar loss, and formation of α-dicarbonyl compounds; the changes were correlated with relative activities to quench both reactive oxygen (ROS) and reactive nitrogen (RNS) species. Reducing sugars, xylose, ribose, fructose, glucose, and non-reducing sucrose were reacted with glycine (Xyl-Gly, Rib-Gly, Fru-Gly, Glc-Gly, and Suc-Gly), or lysine (Xyl-Lys, Rib-Lys, Fru-Lys, Glc-Lys, and Suc-Lys), respectively, at temperatures of 150°C and 180°C for time periods ranging from 5 to 60min. ROS quenching capacity was negatively correlated with color index (E) (r=-0.604, P<0.001), and positively correlated with sugar loss (r=0.567, P<0.001). MRPs also exhibited activity to quench RNS as assessed by nitric oxide (NO) inhibition in differentiated Caco-2 cells that were induced with interferon-γ (IFN-γ) and phorbol ester (PMA) cocktail. We also showed a correlation between RNS and color index, sugar loss, and ROS quenching activities for MR mixtures that were heated for a short time (e.g. 10min) at 150°C. MRP quenching of ROS was largely influenced by sugar type, whereas, RNS quenching was dependent more so on the interaction between reactants and reaction conditions used to generate MRPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The reactivity of natural phenols

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2009-11-30

    This review surveys physicochemical data of natural phenols published in recent years. The structures of some compounds of this class are given. A complete set of the dissociation energies of the O-H bonds for 71 natural phenols is presented. Kinetic characteristics of the reactions of peroxyl, alkyl and thiyl radicals with natural phenols, exchange reactions of phenoxyl radicals with phenols and reactions of phenoxyl radicals with lipids, hydroperoxides, cysteine and ascorbic acid are compiled and described systematically. The reactivity of phenols in radical reactions and the factors that determine the reactivity (the enthalpy of reaction, triplet repulsion, the electronegativities of atoms at the reaction centre, the presence of pi-electrons adjacent to the reaction centre, the radii of atoms at the reaction centre, steric hindrance, the force constants of the reacting bonds) are discussed. An important role of hydrogen bonding between surrounding molecules and the OH groups of natural phenols in decreasing their reactivities is noted.

  5. Insight into the Reaction Mechanism of Graphene Oxide with Oxidative Free Radical

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuejiao; XU Liangyou

    2017-01-01

    Graphene oxide(GO),as an important derivative of graphene,could be considered as a super aromatic molecule decorated with a range of reactive oxygen-containing groups on its surface,which endows graphene high reactivity with other molecules.In our previous work,we demonstrated that GO sheets were cut into small pieces(graphene quantum dots,GQDs) by oxidative free radicals(hydroxyl radical HO or oxygen radical [O]) under UV irradiation.It is notable that reactions involving free radicals are influenced by reaction conditions pronouncedly.However,researches on details about reactions of GO with free radicals have not been reported thus far.In this work,the effects of different factors on the photo-Fenton reaction of GO were studied.It is demonstrated that the reaction rate is closely related to the concentration of free radicals.It is speculated that through the optimization of reaction conditions,the reaction of graphene with free radicals could carry out efficiently for further applications.

  6. Reactions of stabilized Criegee Intermediates

    Science.gov (United States)

    Vereecken, Luc; Harder, Hartwig; Novelli, Anna

    2014-05-01

    Carbonyl oxides (Criegee intermediates) were proposed as key intermediates in the gas phase ozonolysis of alkenes in 1975 by Rudolf Criegee. Despite the importance of ozonolysis in atmospheric chemistry, direct observation of these intermediates remained elusive, with only indirect experimental evidence for their role in the oxidation of hydrocarbons, e.g. through scavenging experiments. Direct experimental observation of stabilized CI has only been achieved since 2008. Since then, a concerted effort using experimental and theoretical means is in motion to characterize the chemistry and kinetics of these reactive intermediates. We present the results of theoretical investigations of the chemistry of Criegee intermediates with a series of coreactants which may be of importance in the atmosphere, in experimental setups, or both. This includes the CI+CI cross-reaction, which proceeds with a rate coefficient near the collision limit and can be important in experimental conditions. The CI + alkene reactions show strong dependence of the rate coefficient depending on the coreactants, but is generally found to be rather slow. The CI + ozone reaction is sufficiently fast to occur both in experiment and the free troposphere, and acts as a sink for CI. The reaction of CI with hydroperoxides, ROOH, is complex, and leads both to the formation of oligomers, as to the formation of reactive etheroxides, with a moderately fast rate coefficient. The importance of these reactions is placed in the context of the reaction conditions in different atmospheric environments ranging from unpolluted to highly polluted.

  7. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  8. O-Methylisourea Can React with the α-Amino Group of Lysine: Implications for the Analysis of Reactive Lysine.

    Science.gov (United States)

    Hulshof, Tetske G; Rutherfurd, Shane M; Sforza, Stefano; Bikker, Paul; van der Poel, Antonius F B; Hendriks, Wouter H

    2017-02-01

    The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group.

  9. Electrochemical detection of C-reactive protein using Copper nanoparticles and hybridization chain reaction amplifying signal.

    Science.gov (United States)

    Zhang, Junjun; Zhang, Wenjuan; Guo, Jinjin; Wang, Junchun; Zhang, Yuzhong

    2017-12-15

    In this study, a sandwich-type electrochemical immunosensor for the detection of C-reactive protein (CRP) is described. In design, Copper nanoparticles (Cu NPs) were used for signal tag and hybridization chain reaction (HCR)amplified output signal. The immunosensor fabrication involved three steps: (i) primary antibodies (Ab 1 ) were immobilized on the surface of gold nanoparticles (Au NPs); (ii) the sandwich-type structure formation contained "primary antibodies-antigen-secondary antibodies conjugated with primer (Ab 2 -S 0 )"; and (iii) long DNA concatemers intercalating amounts of Cu NPs was linked to the sandwich-type structure via hybridization reaction. Differential pulse voltammetry (DPV) was used to record the response signal of the immunosensor in phosphate-buffered saline (PBS). Under optimal conditions, the anodic peak currents of Cu NPs at the peak potential of about 0.08V(VS.SCE) were linear with the logarithm of CRP concentration in the range of 1.0 fg mL -1 to 100 ng mL -1 with a detection limit of 0.33 fg mL -1 (at signal/noise [S/N] = 3). In addition, the practical application of immunosensor was evaluated by analyzing CRP in real human serum samples, the recoveries obtained were within 95.3%-103.8%, indicating the immunosensor possessed potential application ability for practical disease diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Surface reactivity of Ge[111] for organic functionalization by means of a radical-initiated reaction: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Pereda, Pamela, E-mail: rubio.pereda@gmail.com [Centro de Investigación Científica y de Educación Superior de Ensenada 3918, Código Postal 22860, Ensenada, Baja California (Mexico); Takeuchi, Noboru, E-mail: takeuchi@cnyn.unam.mx [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 14, Código Postal 22800, Ensenada, Baja California (Mexico)

    2016-08-30

    Highlights: • The surface reactivity of the Ge [111] surface is studied with DFT for the attachment of organic molecules by means of a radical-initiated reaction. • A hydrogen vacancy in the hydrogen terminated Ge [111] surface exhibits an accumulation of charge and electron pairing. • These characteristics make the hydrogen vacancy less reactive for the attachment of unsaturated organic molecules. • The adsorption of acetylene is probable to occur while the adsorption of ethylene and styrene is substantially less probable to occur. • The hydrogen terminated Ge [111] surface is found to be less reactive than its two-dimensional analogue, the hydrogen-terminated germanene. - Abstract: The study of interfacial chemistry at semiconductor surfaces has become an important area of research. Functionalities such as molecular recognition, biocompatibility of surfaces, and molecular computing, could be achieved by the combinations of organic chemistry with the semiconductor technology. One way to accomplish this goal is by means of organic functionalization of semiconductor surfaces such as the bulk-terminated germanium surfaces, more specifically the Ge[111]. In this work, we theoretically study, by applying density functional theory, the surface reactivity of the bulk-terminated Ge[111] surface for organic functionalization by means of a radical-initiated reaction of unsaturated molecules such as acetylene, ethylene and styrene with a hydrogen vacancy on a previously hydrogen-terminated Ge[111] surface. Results derived from this work are compared with those obtained in our previous calculations on the germanene surface, following the same chemical route. Our calculations show an accumulation of electronic charge at the H-vacancy having as a result electron pairing due to strong lattice-electron coupling and therefore a diminished surface reactivity. Calculation of the transition states for acetylene and ethylene indicates that the surface reactivity of the

  11. Numerical investigation on the effect of reactivity gradient in an RCCI engine fueled with gasoline and diesel

    International Nuclear Information System (INIS)

    Li, J.; Yang, W.M.; An, H.; Zhou, D.Z.; Yu, W.B.; Wang, J.X.; Li, L.

    2015-01-01

    Highlights: • A chemical reaction mechanism is newly developed for dual fuel combustion. • The developed chemical kinetics is coupled with KIVA4 to model the combustion. • The role of reactivity gradient in RCCI combustion is investigated. • The RCCI (dual fuel mode) combustion is compared with blend fuel mode. - Abstract: The reactivity controlled compression ignition (RCCI), which belongs to dual fuel mode (DFM) combustion has been considered as a promising way to achieve high fuel conversion efficiency and low emissions. By this strategy, a fuel reactivity gradient is formed in the combustion chamber which offers the probability of controlling combustion phasing. In this study, the role of fuel reactivity gradient was examined numerically by comparing a DFM (i.e., RCCI) combustion with other hypothetical cases under one specific load condition. Firstly, a chemical reaction mechanism was developed aiming at a modelling study on dual fuel and blend fuel combustion in internal combustion (IC) engines fueled by gasoline/diesel and gasoline/biodiesel. Ignition delays were validated for 100% diesel, 100% gasoline and 100% biodiesel under 102 conditions in total. Subsequently, the validated reaction mechanism which consists of 107 species and 425 reactions was implemented in coupled KIVA4-CHEMKIN code. Three dimensional validations were further conducted under 3 conditions including pure diesel combustion, and gasoline/diesel DFM combustion with both single and double injection strategies in the engine. To investigate the fuel reactivity gradient, the gasoline/diesel DFM combustion with single injection was compared with other three hypothetical cases, one of which was DFM without fuel reactivity gradient, two were the blend fuel mode but with different start of injection (SOI) timings. The results showed that the fuel reactivity gradient could retard the ignition timing, reduce heat release rate, and ease peak pressure rise rate. In addition, low levels of NO

  12. Considering a Threshold Energy in Reactive Transport Modeling of Microbially Mediated Redox Reactions in an Arsenic-Affected Aquifer

    Directory of Open Access Journals (Sweden)

    Marco Rotiroti

    2018-01-01

    Full Text Available The reductive dissolution of Fe-oxide driven by organic matter oxidation is the primary mechanism accepted for As mobilization in several alluvial aquifers. These processes are often mediated by microorganisms that require a minimum Gibbs energy available to conduct the reaction in order to sustain their life functions. Implementing this threshold energy in reactive transport modeling is rarely used in the existing literature. This work presents a 1D reactive transport modeling of As mobilization by the reductive dissolution of Fe-oxide and subsequent immobilization by co-precipitation in iron sulfides considering a threshold energy for the following terminal electron accepting processes: (a Fe-oxide reduction, (b sulfate reduction, and (c methanogenesis. The model is then extended by implementing a threshold energy on both reaction directions for the redox reaction pairs Fe(III reduction/Fe(II oxidation and methanogenesis/methane oxidation. The optimal threshold energy fitted in 4.50, 3.76, and 1.60 kJ/mol e− for sulfate reduction, Fe(III reduction/Fe(II oxidation, and methanogenesis/methane oxidation, respectively. The use of models implementing bidirectional threshold energy is needed when a redox reaction pair can be transported between domains with different redox potentials. This may often occur in 2D or 3D simulations.

  13. The reaction of hydroxylamine with bacteriorhodopsin studied with mutants that have altered photocycles: selective reactivity of different photointermediates.

    Science.gov (United States)

    Subramaniam, S; Marti, T; Rösselet, S J; Rothschild, K J; Khorana, H G

    1991-01-01

    The reaction of the retinylidene Schiff base in bacteriorhodopsin (bR) to the water-soluble reagent hydroxylamine is enhanced by greater than 2 orders of magnitude under illumination. We have used this reaction as a probe for changes in Schiff base reactivity during the photocycle of wild-type bR and mutants defective in proton transport. We report here that under illumination at pH 6, the D85N mutant has a 20-fold lower rate and the D212N mutant has a greater than 4-fold higher rate for the light-dependent reaction with hydroxylamine compared with wild-type bR. In contrast, the reactivities of wild-type bR and the D96N and T46V mutants are similar. It has been previously shown that the D96N and T46V replacements have no significant effect on the kinetics of "M" formation but have dramatic effects on rate of the decay of M. We therefore conclude that the hydroxylamine reaction occurs before formation of the M intermediate. Most likely it occurs at the "L" stage of the cycle and reflects increased water accessibility to the Schiff base due to a light-driven change in protein conformation. PMID:2006195

  14. Pericyclic reactions in an aqueous molecular flask.

    Science.gov (United States)

    Murase, Takashi; Fujita, Makoto

    2010-10-01

    A self-assembled molecular flask with a nanometer-sized restricted cavity offers a new reaction environment that is quite different from the bulk solution. The self-assembled cage accommodates a pair of hydrophobic molecules to perform unusual Diels-Alder reactions and [2+2] photoadditions of otherwise unreactive aromatic molecules. In this cage, for example, the Diels-Alder reaction of naphthalene proceeds smoothly under mild conditions, and aceanthrylene shows reactivity for both [2+2] and [2+4] cycloadditions via the identical ternary host-guest complex. The observed greatly enhanced reactivity stems from the increased local concentration and pre-organization of the substrate pair within the cage, which reduces the entropic cost and switches the reaction profile from a bimolecular to a pseudo-intramolecular reaction pathway. The reinforced orientation and arrangement of substrate pairs specify regio- and stereo-selectivities of the subsequent reactions in the cavity. Chiral auxiliaries outside the cage create the inner chiral environment and induce asymmetric reactions inside the cage (up to 50% ee). © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  15. Multi-scale modeling of diffusion-controlled reactions in polymers: renormalisation of reactivity parameters.

    Science.gov (United States)

    Everaers, Ralf; Rosa, Angelo

    2012-01-07

    The quantitative description of polymeric systems requires hierarchical modeling schemes, which bridge the gap between the atomic scale, relevant to chemical or biomolecular reactions, and the macromolecular scale, where the longest relaxation modes occur. Here, we use the formalism for diffusion-controlled reactions in polymers developed by Wilemski, Fixman, and Doi to discuss the renormalisation of the reactivity parameters in polymer models with varying spatial resolution. In particular, we show that the adjustments are independent of chain length. As a consequence, it is possible to match reactions times between descriptions with different resolution for relatively short reference chains and to use the coarse-grained model to make quantitative predictions for longer chains. We illustrate our results by a detailed discussion of the classical problem of chain cyclization in the Rouse model, which offers the simplest example of a multi-scale descriptions, if we consider differently discretized Rouse models for the same physical system. Moreover, we are able to explore different combinations of compact and non-compact diffusion in the local and large-scale dynamics by varying the embedding dimension.

  16. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    Directory of Open Access Journals (Sweden)

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  17. Origin of Enhanced Reactivity of a Microsolvated Nucleophile in Ion Pair SN2 Reactions: The Cases of Sodium p-Nitrophenoxide with Halomethanes in Acetone.

    Science.gov (United States)

    Li, Qiang-Gen; Xu, Ke; Ren, Yi

    2015-04-30

    In a kinetic experiment on the SN2 reaction of sodium p-nitrophenoxide with iodomethane in acetone-water mixed solvent, Humeres et al. (J. Org. Chem. 2001, 66, 1163) found that the reaction depends strongly on the medium, and the fastest rate constant was observed in pure acetone. The present work tries to explore why acetone can enhance the reactivity of the title reactions. Accordingly, we make a mechanistic study on the reactions of sodium p-nitrophenoxide with halomethanes (CH3X, X = Cl, Br, I) in acetone by using a supramolecular/continuum model at the PCM-MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) level, in which the ion pair nucleophile is microsolvated by one to three acetone molecules. We compared the reactivity of the microsolvated ion pair nucleophiles with solvent-free ion pair and anionic ones. Our results clearly reveal that the microsolvated ion pair nucleophile is favorable for the SN2 reactions; meanwhile, the origin of the enhanced reactivity induced by microsolvation of the nucleophile is discussed in terms of the geometries of transition state (TS) structures and activation strain model, suggesting that lower deformation energies and stronger interaction energies between the deformed reactants in the TS lead to the lower overall reaction barriers for the SN2 reaction of microsolvated sodium p-nitrophenoxide toward halomethanes in acetone.

  18. Kinetics and mechanisms of reactions involving small aromatic reactive intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.C. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    Small aromatic radicals such as C{sub 6}H{sub 5}, C{sub 6}H{sub 5}O and C{sub 6}H{sub 4} are key prototype species of their homologs. C{sub 6}H{sub 5} and its oxidation product, C{sub 6}H{sub 5}O are believed to be important intermediates which play a pivotal role in hydrocarbon combustion, particularly with regard to soot formation. Despite their fundamental importance, experimental data on the reaction mechanisms and reactivities of these species are very limited. For C{sub 6}H{sub 5}, most kinetic data except its reactions with NO and NO{sub 2}, were obtained by relative rate measurements. For C{sub 6}H{sub 5}O, the authors have earlier measured its fragmentation reaction producing C{sub 5}H{sub 5} + CO in shock waves. For C{sub 6}H{sub 4}, the only rate constant measured in the gas phase is its recombination rate at room temperature. The authors have proposed to investigate systematically the kinetics and mechanisms of this important class of molecules using two parallel laser diagnostic techniques--laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the past two years, study has been focused on the development of a new multipass adsorption technique--the {open_quotes}cavity-ring-down{close_quotes} technique for kinetic applications. The preliminary results of this study appear to be quite good and the sensitivity of the technique is at least comparable to that of the laser-induced fluorescence method.

  19. Evaluation of bituminized waste reactivity

    International Nuclear Information System (INIS)

    Camaro, S.; Moulinier, D.

    2000-01-01

    The bituminization process has been used for conditioning low and medium level (LML) radioactive waste, particularly to immobilize coprecipitation slurries and evaporation concentrates generated by effluent treatment. The process consists in mixing bitumen matrix with inactive soluble and slightly soluble salts added to insolubilize the radionuclides or resulting from the neutralization of acid effluents. This operation is performed at a sufficient temperature - depending on waste composition and bitumen grade to ensure the flow of the resulting mixture into metal containers. Exothermicity due to salts/salts or salts/bitumen reactions depending on the type of waste can be induced during or after the mixing step. This could produce an additional heat emission that the drum must be able to release to avoid a potentially incidental pattern with ignition risk, explaining why the CEA has been involved in evaluating the thermal reactivity of bituminized waste and its repercussions on the bituminization process. Given the difficulty of discriminating each exothermal reaction, the characterization of a global reactivity appears as a further precautionary measure, in addition to the definition of a working safety margin. The CEA has accordingly developed studies on this aspect. The article discusses the experimental methodology developed for the determination of the global reactivity. (authors)

  20. Investigation of Na-CO2 Reaction with Initial Reaction in Various Reacting Surface

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan; Wi, Myung-Hwan

    2015-01-01

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO 2 reaction according to various experimental parameter. Unlike SWR, Na-CO 2 reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO 2 reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO 2 gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO 2 interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO 2 brayton cycle energy conversion system for Na-CO 2 heat exchanger. And next parameter is sodium surface area which contact between sodium and CO 2 when CO 2 is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm 2 . Additionally, it has been reported in recent years that CO 2 Flow rate affects reactivity less significantly and CO 2 flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO 2 flow rate. Na-CO 2 reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO 2 . Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a database for the SFR safety analysis and additional experiments are needed

  1. Facet-Dependent Oxidative Goethite Growth As a Function of Aqueous Solution Conditions.

    Science.gov (United States)

    Strehlau, Jennifer H; Stemig, Melissa S; Penn, R Lee; Arnold, William A

    2016-10-04

    Nitroaromatic compounds are groundwater pollutants that can be degraded through reactions with Fe(II) adsorbed on iron oxide nanoparticles, although little is known about the evolving reactivity of the minerals with continuous pollutant exposure. In this work, Fe(II)/goethite reactivity toward 4-chloronitrobenzene (4-ClNB) as a function of pH, organic matter presence, and reactant concentrations was explored using sequential-spike batch reactors. Reaction rate constants were smaller with lower pH, introduction of organic matter, and diluted reactant concentrations as compared to a reference condition. Reaction rate constants did not change with the number of 4-ClNB spikes for all reaction conditions. Under all conditions, oxidative goethite growth was demonstrated through X-ray diffraction, magnetic characterization, and transmission electron microscopy. Nonparametric statistics were applied to compare histograms of lengths and widths of goethite nanoparticles as a function of varied solution conditions. The conditions that slowed the reaction also resulted in statistically shorter and wider particles than for the faster reactions. Additionally, added organic matter interfered with particle growth on the favorable {021} faces to a greater extent, with statistically reduced rate of growth on the tip facets and increased rate of growth on the side facets. These data demonstrate that oxidative growth of goethite in aqueous systems is dependent on major groundwater variables, such as pH and the presence of organic matter, which could lead to the evolving reactivity of goethite particles in natural environments.

  2. [Hyper-reactive malarial splenomegaly].

    Science.gov (United States)

    Maazoun, F; Deschamps, O; Barros-Kogel, E; Ngwem, E; Fauchet, N; Buffet, P; Froissart, A

    2015-11-01

    Hyper-reactive malarial splenomegaly is a rare and severe form of chronic malaria. This condition is a common cause of splenomegaly in endemic areas. The pathophysiology of hyper-reactive malarial splenomegaly involves an intense immune reaction (predominantly B cell-driven) to repeated/chronic infections with Plasmodium sp. The diagnosis may be difficult, due to a poorly specific clinical presentation (splenomegaly, fatigue, cytopenias), a long delay between residence in a malaria-endemic area and onset of symptoms, and a frequent absence of parasites on conventional thin and thick blood smears. A strongly contributive laboratory parameter is the presence of high levels of total immunoglobulin M. When the diagnostic of hyper-reactive malarial splenomegaly is considered, search for anti-Plasmodium antibodies and Plasmodium nucleic acids (genus and species) by PCR is useful. Diagnosis of hyper-reactive malarial splenomegaly relies on the simultaneous presence of epidemiological, clinical, biological and follow-up findings. Regression of both splenomegaly and hypersplenism following antimalarial therapy allows the differential diagnosis with splenic lymphoma, a common complication of hyper-reactive malarial splenomegaly. Although rare in Western countries, hyper-reactive malarial splenomegaly deserves increased medical awareness to reduce the incidence of incorrect diagnosis, to prevent progression to splenic lymphoma and to avoid splenectomy. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  3. Diffusive–Dispersive and Reactive Fronts in Porous Media

    DEFF Research Database (Denmark)

    Haberer, Christina M.; Muniruzzaman, Muhammad; Grathwohl, Peter

    2015-01-01

    , across the unsaturated–saturated interface, under both conservative and reactive transport conditions. As reactive system we considered the abiotic oxidation of Fe2+ in the presence of O2. We studied the reaction kinetics in batch experiments and its coupling with diffusive and dispersive transport...... processes by means of one-dimensional columns and two-dimensional flow-through experiments, respectively. A noninvasive optode technique was used to track O2 transport into the initially anoxic porous medium at highly resolved spatial and temporal scales. The results show significant differences...

  4. Assessment of sorption properties and kinetic reaction of phosphorus reactive material to limit diffuse pollution

    Directory of Open Access Journals (Sweden)

    Bus Agnieszka

    2017-09-01

    Full Text Available Assessment of sorption properties and kinetic reaction of phosphorus reactive material to limit diffuse pollution. Polonite® is an effective reactive material (manufactured from opoka rock for removing phosphorus from aqueous solutions. In conducted experiments, Polonite® of grain size of 2–5 mm was used as a potential reactive material which can be used as a filter fulfillment to reduce phosphorus diffuse pollution from agriculture areas. Kinetic and equilibrium studies (performed as a batch experiment were carried out as a function of time to evaluate the sorption properties of the material. The obtained results show that Polonite® effectively removes such contamination. All tested concentrations (0.998, 5.213, 10.965 mg P-PO4·L−1 are characterized by a better fit to pseudo-second kinetic order. The Langmuir isotherm the best reflects the mechanism of adsorption process in case of Polonite® and based on the isotherm, calculated maximum adsorption capacity equals 96.58 mg P-PO4·g−1.

  5. Dynamics of Reactive Microbial Hotspots in Concentration Gradient.

    Science.gov (United States)

    Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.

    2017-12-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  6. Kinetic study on S_NAr reactions of 1-(Y-Substituted-phenoxy)-2,4-dinitrobenzenes with azide ion: Effect of changing nucleophile from hydroxide to zzide ion on reaction mechanism and reactivity

    International Nuclear Information System (INIS)

    Seo, Hyeon Ok; Kim, Min Young; Han, So Yeop; Um, Ik Hwan

    2015-01-01

    Second-order rate constants (k_N_3_−) for SNAr reactions of 1-(Y-substituted-phenoxy)-2,4-dinitrobenzenes (2a–2h) with math formula in 80 mol % H_2O/20 mol % DMSO at 25.0 ± 0.1 °C have been measured spectrophotometrically. The Brønsted-type plot is linear with β"l"g = −0.38. The Hammett plots correlated with math formula and math formula constants exhibit highly scattered points. In contrast, the Yukawa–Tsuno plot results in an excellent linear correlation with ρ_Y = 1.02 and r = 0.51, indicating that a negative charge develops partially on the O atom of the leaving Y-substituted-phenoxy moiety in the transition state. Accordingly, the reactions have been concluded to proceed through a stepwise mechanism, in which expulsion of the leaving group occurs in the rate-determining step. Comparison of k_N_3_− with the k_O_H_− values reported previously for the corresponding reactions with OH"− has revealed that math formula is only 6- to 26-fold less reactive than OH"− toward substrates 2a–2h, although the former is over 11 pK_a units less basic than the latter. Solvation and polarizability effects have been suggested to be responsible for the unusual reactivity shown by math formula and OH"−. Effects of changing nucleophile from OH"− to N_3"− on reaction mechanism and reactivity are discussed in detail

  7. Dissociation of conditioned taste avoidance from conditioned disgust reactions induced by wheel running in rats.

    Science.gov (United States)

    Grant, Virginia L; McDonald, Sarah V; Sheppard, Robyn C; Caldwell, Catherine L; Heeley, Thomas H; Brown, Adam R; Martin, Gerard M

    2012-06-01

    It is well established that wheel running in rats produces conditioned taste avoidance; that is, rats that run in wheels after consuming a novel-tasting solution later consume less of that solution than rats that do not run. In experiment 1, we found that wheel running also produces conditioned disgust reactions, indicated by gapes elicited by both the taste and context that were experienced before running. Experiment 2 showed that the conditioned disgust reactions were likely not due to running itself but to a by-product of running, the rocking of the wheel that occurs when the running stops. When rocking was reduced, the disgust reactions were also reduced, but consumption of the taste solution was not changed, showing dissociation of conditioned taste avoidance and disgust. These findings indicate that the taste avoidance induced by wheel running itself is more like the taste avoidance produced by rewarding drugs than that produced by nausea-inducing drugs. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. Peptide Reactivity of Isothiocyanates - Implications for Skin Allergy

    Science.gov (United States)

    Karlsson, Isabella; Samuelsson, Kristin; Ponting, David J.; Törnqvist, Margareta; Ilag, Leopold L.; Nilsson, Ulrika

    2016-02-01

    Skin allergy is a chronic condition that affects about 20% of the population of the western world. This disease is caused by small reactive compounds, haptens, able to penetrate into the epidermis and modify endogenous proteins, thereby triggering an immunogenic reaction. Phenyl isothiocyanate (PITC) and ethyl isothiocyanate (EITC) have been suggested to be responsible for allergic skin reactions to chloroprene rubber, the main constituent of wetsuits, orthopedic braces, and many types of sports gear. In the present work we have studied the reactivity of the isothiocyanates PITC, EITC, and tetramethylrhodamine-6-isothiocyanate (6-TRITC) toward peptides under aqueous conditions at physiological pH to gain information about the types of immunogenic complexes these compounds may form in the skin. We found that all three compounds reacted quickly with cysteine moieties. For PITC and 6-TRITC the cysteine adducts decomposed over time, while stable adducts with lysine were formed. These experimental findings were verified by DFT calculations. Our results may suggest that the latter are responsible for allergic reactions to isothiocyanates. The initial adduct formation with cysteine residues may still be of great importance as it prevents hydrolysis and facilitates the transport of isothiocyanates into epidermis where they can form stable immunogenic complexes with lysine-containing proteins.

  9. Tem holder for sample transfer under reaction conditions

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Zandbergen, Henny W.; Wagner, Jakob Birkedal

    Environmental transmission electron microscopy (ETEM) studies are usually performed using conventional sample holders in a dedicated ETEM [1] or in a traditional TEM by use of a dedicated high-pressure cell sample holder [2]. In both cases, the setup defines the conditions regarding gas, pressure......]. Furthermore, dedicated transfer holders have been used to transfer catalyst samples between reactor set-ups and TEM at room temperature in inert atmosphere [5]. To take the full advantage of complementary in situ techniques, transfer under reactions conditions is essential. This study introduces the in situ...... transfer concept by use of a dedicated TEM transfer holder capable of enclosing the sample in a gaseous environment at temperatures up to approx. 900C. By oxidation and reduction experiments of Cu nanoparticles it is shown possible to keep the reaction conditions during transfer outside the microscope...

  10. Classical kinematic model for direct reactions of oriented reagents

    International Nuclear Information System (INIS)

    Schechter, I.; Prisant, M.G.; Levine, R.D.

    1987-01-01

    A simple kinematic model based on the concept of an orientation-dependent critical configuration for reaction is introduced and applied. The model serves two complementary purposes. In the predictive mode the model provides an easily implemented procedure for computing the reactivity of oriented reagents (including those actually amenable to measure) from a given potential energy surface. The predictions of the model are compared against classical trajectory results for the H + D 2 reaction. By use of realistic potential energy surfaces the model is applied to the Li + HF and O + HCl reactions where the HX molecules are pumped by a polarized laser. A given classical trajectory is deemed reactive or not according to whether it can surmount the barrier at that particular orientation. The essential difference with the model of Levine and Bernstein is that the averaging over initial conditions is performed by using a Monte Carlo integration. One can therefore use the correct orientation-dependent shape (and not only height) of the barrier to reaction and, furthermore, use oriented or aligned reagents. Since the only numerical step is a Monte Carlo sampling of initial conditions, very many trajectories can be run. This suffices to determine the reaction cross section for different initial conditions. To probe the products, they have employed the kinematic approach of Elsum and Gordon. The result is a model where, under varying initial conditions, examining final-state distributions or screening different potential energy surfaces can be efficiently carried out

  11. Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation.

    Science.gov (United States)

    Melin, Victoria; Henríquez, Adolfo; Freer, Juanita; Contreras, David

    2015-03-01

    Fenton reaction is the main source of free radicals in biological systems. The reactivity of this reaction can be modified by several factors, among these iron ligands are important. Catecholamine (dopamine, epinephrine, and norepinephrine) are able to form Fe(III) complexes whose extension in the coordination number depends upon the pH. Fe(III)-catecholamine complexes have been related with the development of several pathologies. In this work, the ability of catecholamines to enhance the oxidative degradation of an organic substrate (veratryl alcohol, VA) through Fenton and Fenton-like reactions was studied. The initial VA degradation rate at different pH values and its relationship to the different iron species present in solution were determined. Furthermore, the oxidative degradation of VA after 24 hours of reaction and its main oxidation products were also determined. The catecholamine-driven Fenton and Fenton-like systems showed higher VA degradation compared to unmodified Fenton or Fenton-like systems, which also showed an increase in the oxidation state of the VA degradation product. All of this oxidative degradation takes place at pH values lower than 5.50, where the primarily responsible species would be the Fe(III) mono-complex. The presence of Fe(III) mono-complex is essential in the ability of catecholamines to increase the oxidative capacity of Fenton systems.

  12. Photogeochemical reactions of manganese under anoxic conditions

    Science.gov (United States)

    Liu, W.; Yee, N.; Piotrowiak, P.; Falkowski, P. G.

    2017-12-01

    Photogeochemistry describes reactions involving light and naturally occurring chemical species. These reactions often involve a photo-induced electron transfer that does not occur in the absence of light. Although photogeochemical reactions have been known for decades, they are often ignored in geochemical models. In particular, reactions caused by UV radiation during an ozone free early Earth could have influenced the available oxidation states of manganese. Manganese is one of the most abundant transition metals in the crust and is important in both biology and geology. For example, the presence of manganese (VI) oxides in the geologic record has been used as a proxy for oxygenic photosynthesis; however, we suggest that the high oxidation state of Mn can be produced abiotically by photochemical reactions. Aqueous solutions of manganese (II) as well as suspensions of rhodochrosite (MnCO3) were irradiated under anoxic condition using a 450 W mercury lamp and custom built quartz reaction vessels. The photoreaction of the homogeneous solution of Mn(II) produced H2 gas and akhtenskite (ɛ-MnO2) as the solid product . This product is different than the previously identified birnessite. The irradiation of rhodochrosite suspensions also produced H2 gas and resulted in both a spectral shift as well as morphology changes of the mineral particles in the SEM images. These reactions offer alternative, abiotic pathways for the formation of manganese oxides.

  13. Effect of the number of phenyl groups per molecule on the reactivity of hydroxyl or carboxyl group in hydrogen-isotope exchange reaction

    International Nuclear Information System (INIS)

    Okada, Minoru; Imaizumi, Hiroshi; Oguma, Shuichi

    1989-01-01

    Hydrogen-exchange reactions in solid alcohols (or solid carboxylic acids) which contain phenyl group(s) in each molecule have been observed in a gas-solid system or liquid-solid system at 40 ≅ 80deg C. The data thus obtained have been analyzed by using the A''-McKay plot method, and 'the acidities based on kinetic logic' have been obtained for those compounds. From the acidities the following four characteristics have been determined. (1) The acidity increases with increases of temperature. (2) The reactivities of carboxylic acids are larger than those of alcohols at any temperature. (3) The effect of the number of phenyl groups on the reactivity of the functional group in the molecule in question is fairly large. (4) Acidity based on kinetic logic can be applied not only to gas-solid reactions, but also to liquid-solid reactions. (orig.)

  14. Comparison of the reactivity of the materials having two different kinds of functional groups by applying hydrogen-isotope exchange reaction

    International Nuclear Information System (INIS)

    Imaizumi, H.; Yumoto, Y.

    1995-01-01

    The hydrogen-isotope exchange reaction between m- (or p-) aminobenzoic acid and HTO vapor has been observed in order to estimate the scale of the reactivity of the material. Each rate constant has been obtained by the A''-McKay plot method. Comparing the rate constants, the following three items have been confirmed: (1) the reactivity of both COOH and NH 2 groups increases with temperature; (2) the degree of the effect of the COOH (or NH 2 ) group on the reactivity in m-aminobenzoic acid is larger than that in p-aminobenzoic acid; (3) the A''-McKay plot method is useful in studying the reactivity of the materials not only with one (or the same kinds of) functional group(s), but also with two different kinds of functional groups. (orig.)

  15. Gas phase reactivity of thermal metal clusters

    Science.gov (United States)

    Castleman, A. W., Jr.; Harms, A. C.; Leuchtner, R. E.

    1991-03-01

    Reaction kinetics of metal cluster ions under well defined thermal conditions were studied using a flow tube reactor in combination with laser vaporization. Aluminum anions and cations were reacted with oxygen, and several species which are predicted jellium shell closings, were found to have special stability. Metal alloy cluster anions comprised of Al, V and Nb were also seen to react with oxygen. Alloy clusters with an even number of electrons reacted more slowly than odd electron species, and certain clusters appeared to be exceptionally unreactive. Copper cation clusters were observed to associate with carbon monoxide with reactivities that approach bulk behavior at surprisingly small cluster size. These reactions demonstrate how the rate of reaction changes with cluster size.

  16. Density functional theory studies on electronic properties of thiophene s oxides as aromatic dienophiles for reactivity prediction in diels-alder reactions

    International Nuclear Information System (INIS)

    Banjo, S.

    2013-01-01

    The reactivity of thiophene S-oxides was discussed with special emphasis on the use of thiophene S-oxides as dienophiles in Diels-Alder type reactions. The omega values obtained for thiophene S-oxide (TO) with electron-donating group (-CH/sub 3/) increased the nucleophilicity power whereas substitution with electron-withdrawing groups (such as -NO/sub 2/ and -CO/sub 2/CH/sub 2/CH/sub 3/) increased the electrophilicity power, indicating an increase of reactivity towards a nucleophiles. The higher the value of delta omega the more favourable the D-A process, therefore apart from (4+2) addition reactions of these TO as diene with the typical dienophiles like 1,2-dicyanoethene and 1,2-dicyanoethene, it could be possible for TO with strong electron withdrawing substituents to serve as dienophile, e.g. heterocycles Ie and If. Also, from the value of delta omega heterocycle 1d could involve in (4+2) addition reactions with heterocyles 1e and If. (author)

  17. Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID

    Directory of Open Access Journals (Sweden)

    V. Sinha

    2012-12-01

    Full Text Available The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH. Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF system ("pump-and-probe" or "flow reactor" or the Comparative Reactivity Method (CRM with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS. Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID. Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques.

    Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60–70 s, sensitivity (LOD 3–6 s−1 and overall uncertainty (25% in optimum conditions for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests it

  18. Rare events in many-body systems: reactive paths and reaction constants for structural transitions

    International Nuclear Information System (INIS)

    Picciani, M.

    2012-01-01

    This PhD thesis deals with the study of fundamental physics phenomena, with applications to nuclear materials of interest. We have developed methods for the study of rare events related to thermally activated structural transitions in many body systems. The first method involves the numerical simulation of the probability current associated with reactive paths. After deriving the evolution equations for the probability current, a Diffusion Monte Carlo algorithm is implemented in order to sample this current. This technique, called Transition Current Sampling was applied to the study of structural transitions in a cluster of 38 atoms with Lennard-Jones potential (LJ-38). A second algorithm, called Transition Path Sampling with local Lyapunov bias (LyTPS), was then developed. LyTPS calculates reaction rates at finite temperature by following the transition state theory. A statistical bias based on the maximum local Lyapunov exponents is introduced to accelerate the sampling of reactive trajectories. To extract the value of the equilibrium reaction constants obtained from LyTPS, we use the Multistate Bennett Acceptance Ratio. We again validate this method on the LJ-38 cluster. LyTPS is then used to calculate migration constants for vacancies and divacancies in the α-Iron, and the associated migration entropy. These constants are used as input parameter for codes modeling the kinetic evolution after irradiation (First Passage Kinetic Monte Carlo) to reproduce numerically resistivity recovery experiments in α-Iron. (author) [fr

  19. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  20. Critical ignition conditions in exothermically reacting systems: first-order reactions

    Science.gov (United States)

    Filimonov, Valeriy Yu.

    2017-10-01

    In this paper, the comparative analysis of the thermal explosion (TE) critical conditions on the planes temperature-conversion degree and temperature-time was conducted. It was established that the ignition criteria are almost identical only at relatively small values of Todes parameter. Otherwise, the results of critical conditions analysis on the plane temperature-conversion degree may be wrong. The asymptotic method of critical conditions calculation for the first-order reactions was proposed (taking into account the reactant consumption). The degeneration conditions of TE were determined. The calculation of critical conditions for specific first-order reaction was made. The comparison of the analytical results obtained with the results of numerical calculations and experimental data showed that they are in good agreement.

  1. Critical ignition conditions in exothermically reacting systems: first-order reactions.

    Science.gov (United States)

    Filimonov, Valeriy Yu

    2017-10-01

    In this paper, the comparative analysis of the thermal explosion (TE) critical conditions on the planes temperature-conversion degree and temperature-time was conducted. It was established that the ignition criteria are almost identical only at relatively small values of Todes parameter. Otherwise, the results of critical conditions analysis on the plane temperature-conversion degree may be wrong. The asymptotic method of critical conditions calculation for the first-order reactions was proposed (taking into account the reactant consumption). The degeneration conditions of TE were determined. The calculation of critical conditions for specific first-order reaction was made. The comparison of the analytical results obtained with the results of numerical calculations and experimental data showed that they are in good agreement.

  2. Two steps simultaneous analysis of reactivity of L-norvaline in the T-for-H exchange reaction. Application of Taft equation to influence of Polar effect and steric effect

    International Nuclear Information System (INIS)

    Kataoka, Noriaki; Imaizumi, Hiroshi; Saito, Hiroshi; Sato, Takayuki; Kano, Naoki

    2010-01-01

    In order to quantitatively evaluate the influence of tritium ( 3 H or T) on ecosystem and the reactivity of materials having H atoms, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between L-norvaline and HTO vapor was observed at 50-70degC in the gas-solid system. Applying the A''-McKay plot method to data obtained in the reaction, the rate constants of the functional groups in the material were obtained. Comparing these rate constants, following seven matters have been found in the T-for-H exchange reaction. (1) The reactivity of the functional groups in L-norvaline increases with increasing temperature. (2) As to L-norvaline, 1) the temperature dependence of each functional group increases with the following order: COOH group > NH 2 one. 2) the reactivity of COOH group is 2.2 times greater than that of NH 2 one. (3) As to the influence of the substituent, the reactivity of COOH group is larger than that of the NH 2 one. (4) It seems that the reactivity of the amino acid follows Taft equation. (5) Applying Taft equation, the ratio of influence of polar effect to steric one is 10:0 in NH 2 group, and is 3:7 in COOH one. (6) Using the A - McKay plot method, the reactivity of each functional group in an amino acid is able to be nondestructively, quantitatively and simultaneously analyzed without using masking reagent. (7) The method used in this work may be useful to quickly determine the reactivity of the functional groups in the materials. (author)

  3. From simple to complex and backwards. Chemical reactions under very high pressure

    International Nuclear Information System (INIS)

    Bini, Roberto; Ceppatelli, Matteo; Citroni, Margherita; Schettino, Vincenzo

    2012-01-01

    Highlights: ► High pressure reactivity of several molecular systems. ► Reaction kinetics and dynamics in high density conditions. ► Key role of optical pumping and electronic excitation. ► Perspectives for the synthesis of hydrogen. - Abstract: High pressure chemical reactions of molecular systems are discussed considering the various factors that can affect the reactivity. These include steric hindrance and geometrical constraints in the confined environment of crystals at high pressure, changes of the free energy landscape with pressure, photoactivation by two-photon absorption, local and collective effects. A classification of the chemical reactions at high pressure is attempted on the basis of the prevailing factors.

  4. Reactivity of main components and substituent distribution in esterified sugarcane bagasse prepared by effective solid phase reaction.

    Science.gov (United States)

    Gan, Tao; Zhang, Yanjuan; Chen, Yane; Hu, Huayu; Yang, Mei; Huang, Zuqiang; Chen, Dong; Huang, Aimin

    2018-02-01

    Three main components of lignocellulose (cellulose, hemicellulose, and lignin isolated from sugarcane bagasse (SCB)) as well as holocellulose and SCB were modified with maleic acid by mechanical activation (MA)-assisted solid phase reaction (MASPR) technology. The order of reactivity was found to be lignin>hemicellulose>cellulose. The amorphous structure of lignin and hemicellulose mainly attributed to their better reactivity, and the modified lignin could reach a maximum degree of esterification (DE) of 93.45%. MA improved the accessibility and reactivity of cellulose, as the DE of modified cellulose gradually increased with milling time and reached the maximum value of 57.30% at 120min, which had significant effect on structure changes and DE of modified holocellulose and SCB. MA enhanced the esterification of all three components in lignocellulose with relatively high substituent distribution in them, and maleated SCB with a maximum DE of 64.17% was successfully prepared by this simple, green, and effective MASPR technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Reactivity of lignin and lignin models towards UV-assisted peroxide

    International Nuclear Information System (INIS)

    Sun, Y.P.; Wallis, A.F.A.; Nguyen, K.L.

    1997-01-01

    The comparative reactivities of a series of guaiacyl and syringyl lignin model compounds and their methylated analogues towards alkaline peroxide and UV-alkaline peroxide were investigated. The overall reaction was followed by monitoring the reduction of the substrate as a function of time, and in every case, the reaction showed pseudo-first-order kinetics. The reaction rates of most lignin models having identical sidechains with alkaline peroxide and with UV-alkaline peroxide were in the order syringyl guaiacyl 3,4,5-trimethoxyphenyl veratryl. Thus phenols react faster than their methyl ethers, and an extra ortho methoxyl group promotes the reaction. Lignin models possessing electron-donating sidechains had generally higher reaction rates than those with electron-withdrawing sidechains. The reaction rates of the series of benzoic acids were 2-4 times higher at pH 11 than at pH 5. UV-peroxide degradation of a eucalypt kraft lignin was faster than that of a pine kraft lignin, and degradation was 1.4-1.6 times faster at pH 11 than at pH 5. The data are consistent with the formation of higher amounts of reactive radicals under alkaline conditions, and aromatic rings with greater electronegativities promoting reactions with the radicals

  6. Treating water-reactive wastes

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated

  7. Reactivity variation's analysis in nuclear propulsion considering the operational real conditions requirements

    International Nuclear Information System (INIS)

    Pires, Leonardo Paredes; Santos, Rubens Souza dos; Lapa, Marcelo Franklin

    2015-01-01

    The work presented in this paper highlights the need for the study to determine the reactivity variation ramps needed and possible to meet the real operational conditions required by a nuclear submarine in this several operating phases. In accordance with the operational needs and necessary maneuvers in certain tactical situations, large power variations in the propulsion are demanded. As these sudden and severe changes in propulsion come from the thermal power of nuclear origin, the operation of the nuclear island has to know what kind of answers and criticality variations are necessary to meet each demand speed required. It should be noted that these criticality inserts are conditioned, not only by the propulsion needs, but fundamentally by the imperative need to ensure the core integrity and the chain reaction sustainability considering the phenomenons and complex effects, nonlinear and retro-fed involved. It has to be determined what is the past and required time for each criticality insertion is perceived as motor power. Considering the highlighted aspects, this article concludes and indicates to its end, the need to establish a base operating transitional agenda, according to the naval combat doctrine, to be tested and analyzed under the aspects and peculiarities of kinetic reactors, with the purpose of being generated the appropriate criticality curves for each real need and their respective times of anticipated action. (author)

  8. Reactivity variation's analysis in nuclear propulsion considering the operational real conditions requirements

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Leonardo Paredes; Santos, Rubens Souza dos; Lapa, Marcelo Franklin, E-mail: leonardo_paredes@icloud.com, E-mail: lapa@ien.gov.br, E-mail: rsantos@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The work presented in this paper highlights the need for the study to determine the reactivity variation ramps needed and possible to meet the real operational conditions required by a nuclear submarine in this several operating phases. In accordance with the operational needs and necessary maneuvers in certain tactical situations, large power variations in the propulsion are demanded. As these sudden and severe changes in propulsion come from the thermal power of nuclear origin, the operation of the nuclear island has to know what kind of answers and criticality variations are necessary to meet each demand speed required. It should be noted that these criticality inserts are conditioned, not only by the propulsion needs, but fundamentally by the imperative need to ensure the core integrity and the chain reaction sustainability considering the phenomenons and complex effects, nonlinear and retro-fed involved. It has to be determined what is the past and required time for each criticality insertion is perceived as motor power. Considering the highlighted aspects, this article concludes and indicates to its end, the need to establish a base operating transitional agenda, according to the naval combat doctrine, to be tested and analyzed under the aspects and peculiarities of kinetic reactors, with the purpose of being generated the appropriate criticality curves for each real need and their respective times of anticipated action. (author)

  9. Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study

    International Nuclear Information System (INIS)

    Lim, Steven; Lee, Keat Teong

    2013-01-01

    Highlights: ► Investigation of supercritical reactive extraction process for biodiesel production. ► Focus is given on optimizing methyl esters yield for Jatropha curcas L. seeds. ► Influence of process parameters to the reaction are discussed thoroughly. ► Comparison between the novel reaction with conventional process are studied. ► High methyl esters yield can be obtained without pre-extraction and catalyst. -- Abstract: In a bid to increase the cost competitiveness of biodiesel production against mineral diesel, process intensification has been studied for numerous biodiesel processing technologies. Subsequently, reactive extraction or in situ transesterification is actively being explored in which the solid oil-bearing seeds are used as the reactant directly with short-chain alcohol. This eliminates separate oil extraction process and combines both extraction and transesterification in a single unit. Supercritical reactive extraction takes one step further by substituting the role of catalyst with supercritical conditions to achieve higher yield and shorter processing time. In this work, supercritical reactive extraction with methanol was carried out in a high-pressure batch reactor to produce fatty acid methyl esters (FAMEs) from Jatropha curcas L. seeds. Material and process parameters including space loading, solvent to seed ratio, co-solvent (n-hexane) to seed ratio, reaction temperature, reaction time and mixing intensity were varied one at a time and optimized based on two responses i.e. extraction efficiency, M extract and FAME yield, F y . The optimum responses for supercritical reactive extraction obtained were 104.17% w/w and 99.67% w/w (relative to 100% lipid extraction with n-hexane) for M extract and F y respectively under the following conditions: 54.0 ml/g space loading, 5.0 ml/g methanol to seeds ratio, 300 °C, 9.5 MPa (Mega Pascal), 30 min reaction time and without n-hexane as co-solvent or any agitation source. This proved that

  10. Gas phase reactivity of thermal metal clusters

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.; Harms, A.C.; Leuchtner, R.E.

    1991-01-01

    Reaction kinetics of metal cluster ions under well defined thermal conditions were studied using a flow tube reactor in combination with laser vaporization. Aluminum anions and cations were reacted with oxygen, and several species which are predicted jellium shell closings, were found to have special stability. Metal alloy cluster anions comprised of Al, V and Nb were also seen to react with oxygen. Alloy clusters with an even number of electrons reacted more slowly than odd electron species, and certain clusters appeared to be exceptionally unreactive. Copper cation clusters were observed to associate with carbon monoxide with reactivities that approach bulk behavior at surprisingly small cluster size. These reactions demonstrate how the rate of reaction changes with cluster size. (orig.)

  11. Conditions for extinction events in chemical reaction networks with discrete state spaces.

    Science.gov (United States)

    Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert

    2018-05-01

    We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.

  12. Impact of aerobic exercise intensity on craving and reactivity to smoking cues.

    Science.gov (United States)

    Janse Van Rensburg, Kate; Elibero, Andrea; Kilpatrick, Marcus; Drobes, David J

    2013-06-01

    Aerobic exercise can acutely reduce cigarette cravings during periods of nicotine deprivation. The primary aim of this study was to assess the differential effects of light and vigorous intensity aerobic exercise on cigarette cravings, subjective and physiological reactivity to smoking cues, and affect after overnight nicotine deprivation. A secondary aim was to examine cortisol change as a mediator of the effects of exercise on smoking motivation. 162 (55 female, 107 male) overnight nicotine-deprived smokers were randomized to one of three exercise conditions: light intensity, vigorous intensity, or a passive control condition. After each condition, participants engaged in a standardized cue reactivity assessment. Self-reported urges to smoke, affect, and salivary cortisol were assessed at baseline (i.e., before each condition), immediately after each condition, and after the cue reactivity assessment. Light and vigorous exercise significantly decreased urges to smoke and increased positive affect, relative to the control condition. In addition, those in the vigorous exercise condition demonstrated suppressed appetitive reactivity to smoking cues, as indexed by the startle eyeblink reflex. Although exercise intensity was associated with expected changes in cortisol concentration, these effects were not related to changes in craving or cue reactivity. Both light and vigorous exercise can reduce general cravings to smoke, whereas vigorous exercise appears especially well-suited for reducing appetitive reactions to cues that may precede smoking. Results did not support exercise-induced cortisol release as a mechanism for these effects. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.

    Science.gov (United States)

    Grima, R

    2010-07-21

    Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the

  14. Investigation of Na-CO{sub 2} Reaction with Initial Reaction in Various Reacting Surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Wi, Myung-Hwan [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO{sub 2} reaction according to various experimental parameter. Unlike SWR, Na-CO{sub 2} reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO{sub 2} reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO{sub 2} gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO{sub 2} interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO{sub 2} brayton cycle energy conversion system for Na-CO{sub 2} heat exchanger. And next parameter is sodium surface area which contact between sodium and CO{sub 2} when CO{sub 2} is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm{sup 2}. Additionally, it has been reported in recent years that CO{sub 2} Flow rate affects reactivity less significantly and CO{sub 2} flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO{sub 2} flow rate. Na-CO{sub 2} reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO{sub 2}. Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a

  15. Influence of Reaction Conditions on Lignin Hydrothermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Erdocia, Xabier; Prado, Raquel; Corcuera, M. Ángeles; Labidi, Jalel, E-mail: jalel.labidi@ehu.es [Chemical and Environmental Engineering Department, University of the Basque Country, San Seabastian (Spain)

    2014-04-01

    Organosolv lignin, obtained from olive tree pruning under optimized conditions, was subjected to a hydrothermal depolymerization process catalyzed by sodium hydroxide. The depolymerization of lignin was carried out at 300°C using different reaction times (20, 40, 60, 70, 80, 90, and 100 min) in order to study the influence of this parameter on lignin depolymerization. The resulting products (oil and residual lignin) were measured and analyzed by different techniques (GC/MS, high-performance size-exclusion chromatography, and pyrolysis–GC/MS) in order to determine their nature and composition. Coke was also formed, at a lower quantity, uncompetitive repolymerization reactions during the lignin hydrothermal treatment. The maximum oil yield and concentration of monomeric phenolic compounds was obtained after 80 min of reaction time. The highest reaction time studied (100 min) had the worst results with the lowest oil yield and highest coke production.

  16. Ozone-surface reactions in five homes: surface reaction probabilities, aldehyde yields, and trends.

    Science.gov (United States)

    Wang, H; Morrison, G

    2010-06-01

    Field experiments were conducted in five homes during three seasons (summer 2005, summer 2006 and winter 2007) to quantify ozone-initiated secondary aldehyde yields, surface reaction probabilities, and trends any temporal over a 1.5-year interval. Surfaces examined include living room carpets, bedroom carpets, kitchen floors, kitchen counters, and living room walls. Reaction probabilities for all surfaces for all seasons ranged from 9.4 x 10(-8) to 1.0 x 10(-4). There were no significant temporal trends in reaction probabilities for any surfaces from summer 2005 to summer 2006, nor over the entire 1.5-year period, indicating that it may take significantly longer than this period for surfaces to exhibit any 'ozone aging' or lowering of ozone-surface reactivity. However, all surfaces in three houses exhibited a significant decrease in reaction probabilities from summer 2006 to winter 2007. The total yield of aldehydes for the summer of 2005 were nearly identical to that for summer of 2006, but were significantly higher than for winter 2007. We also observed that older carpets were consistently less reactive than in newer carpets, but that countertops remained consistently reactive, probably because of occupant activities such as cooking and cleaning. Ozone reactions taking place at indoor surfaces significantly influence personal exposure to ozone and volatile reaction products. These field studies show that indoor surfaces only slowly lose their ability to react with ozone over several year time frames, and that this is probably because of a combination of large reservoirs of reactive coatings and periodic additions of reactive coatings in the form of cooking, cleaning, and skin-oil residues. When considering exposure to ozone and its reaction products and in the absence of dramatic changes in occupancy, activities or furnishings, indoor surface reactivity is expected to change very slowly.

  17. Biotic and surface catalyzed reactivity of nitrates at alkaline pH

    International Nuclear Information System (INIS)

    Rafrafi, Y.; Erable, B.; Ranaivomanana, H.; Bertron, A.; Albrecht, A.

    2015-01-01

    This study investigates the reactivity of nitrates in abiotic and biotic conditions at alkaline pH in the context of a repository for long-lived intermediate- level radioactive wastes. The work, carried out under environmental conditions closed to those prevailing in the storage: alkaline pH, no oxygen, solid materials (cement paste, steel), aims to identify the by-products of the nitrate reduction, to evaluate reaction kinetics and to determine the role of organic matter in these reactions with and without the presence of denitrifying microbial activity. This paper demonstrated that in the extreme conditions of pH in nuclear waste storage cells, nitrate reduction is a really possible scenario in the presence of microorganisms. (authors)

  18. Modeling of fluctuating reaction networks

    International Nuclear Information System (INIS)

    Lipshtat, A.; Biham, O.

    2004-01-01

    Full Text:Various dynamical systems are organized as reaction networks, where the population size of one component affects the populations of all its neighbors. Such networks can be found in interstellar surface chemistry, cell biology, thin film growth and other systems. I cases where the populations of reactive species are large, the network can be modeled by rate equations which provide all reaction rates within mean field approximation. However, in small systems that are partitioned into sub-micron size, these populations strongly fluctuate. Under these conditions rate equations fail and the master equation is needed for modeling these reactions. However, the number of equations in the master equation grows exponentially with the number of reactive species, severely limiting its feasibility for complex networks. Here we present a method which dramatically reduces the number of equations, thus enabling the incorporation of the master equation in complex reaction networks. The method is examplified in the context of reaction network on dust grains. Its applicability for genetic networks will be discussed. 1. Efficient simulations of gas-grain chemistry in interstellar clouds. Azi Lipshtat and Ofer Biham, Phys. Rev. Lett. 93 (2004), 170601. 2. Modeling of negative autoregulated genetic networks in single cells. Azi Lipshtat, Hagai B. Perets, Nathalie Q. Balaban and Ofer Biham, Gene: evolutionary genomics (2004), In press

  19. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green.

    Science.gov (United States)

    Huang, Lanlan; Luo, Fang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2015-02-25

    This study investigates green tea extract synthesized conditions impacting on the reactivity of iron nanoparticles (Fe NPs) used for the degradation of malachite green (MG), including the volume ratio of Fe(2+) and tea extract, the solution pH and temperature. Results indicated that the reactivity of Fe NPs increased with higher temperature, but fell with increasing pH and the volume ratio of Fe(2+) and tea extract. Scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), Fourier transform infrared spectroscope (FTIR) and X-ray diffraction (XRD) indicated that Fe NPs were spherical in shape, their diameter was 70-80 nm and they were mainly composed of iron oxide nanoparticles. UV-visible (UV-vis) indicated that reactivity of Fe NPs used in degradation of MG significantly depended on the synthesized conditions of Fe NPs. This was due to their impact on the reactivity and morphology of Fe NPs. Finally, degradation of MG showed that 90.56% of MG was removed using Fe NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Reactivity to sorbitan sesquioleate affects reactivity to fragrance mix I.

    Science.gov (United States)

    Geier, Johannes; Schnuch, Axel; Lessmann, Holger; Uter, Wolfgang

    2015-11-01

    Fragrance mix I (FM I) and its single constituents contain 5% and 1% sorbitan sesquioleate (SSO), respectively. SSO is a rare sensitizer and a potential irritant. To determine whether the outcome of the FM I breakdown test is affected by positive patch test reactivity to SSO. A retrospective analysis of data from the Information Network of Departments of Dermatology, 1998-2013, was performed. The full FM I breakdown test including SSO was tested in 2952 patients. Of these, 154 (5.2%) had a positive patch test reaction to SSO 20% pet. and 2709 (91.8%) had a negative patch test reaction. Positive reactions to one or more of the single fragrances contained in the mix were significantly more common (82.5% versus 57.3%) in SSO-positive patients, who also had more multiple reactions than FM I-positive patients with negative SSO reactions (61.5% versus 21.3% patients with reactions to two or more fragrances). Our results indicate that reactivity to SSO markedly affects the outcome of patch testing with FM I and its single constituents. SSO must be an obligatory part of the full FM I breakdown test, and should ideally be included in the baseline series. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Fast Curing Bio-Based Phenolic Resins via Lignin Demethylated under Mild Reaction Condition

    OpenAIRE

    Jiongjiong Li; Jizhi Zhang; Shifeng Zhang; Qiang Gao; Jianzhang Li; Wei Zhang

    2017-01-01

    Demethylation technique has been used to enhance lignin reactivity for preparation of phenolic resins. However, the demethylation efficiency and the demethylated lignin (DL) reactivity were still unsatisfactory. To improve the demethylation efficiency, alkali lignin was demethylated under different mild conditions using sodium sulfite as a catalyst. Lignin and DL were characterized by 1H-NMR (nuclear magnetic resonance) and Fourier transform infrared (FT-IR) spectroscopy to determine the deme...

  2. Innovative reactive distillation process for the production of the MTBE substitute isooctane from isobutene

    Energy Technology Data Exchange (ETDEWEB)

    Chalakova, M. [Magdeburg Univ. (Germany). Process Systems Engineering; Kaur, R.; Mahajani, S. [Indian Inst. of Technology, Mumbai (India); Freund, H. [Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg (Germany); Sundmacher, K. [Magdeburg Univ. (Germany). Process Systems Engineering]|[Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg (Germany)

    2007-07-01

    Isooctane is a promising candidate to replace MTBE as gasoline additive if it can be produced in economically and environmentally efficient processes. A promising reaction way at mild conditions is the so called indirect alkylation of isobutene (IB). In the present work two innovative reactive distillation (RD) concepts where the reactions are carried out either simultaneously (fully integrated) or sequentially (partially integrated) are designed. Suitable operation conditions are identified and a comparison with the conventional process scheme under performance and economic aspects is carried out. (orig.)

  3. An expeditious and green synthesis of new enaminones and study their chemical reactivity toward some different amines and binucleophiles under environmentally friendly conditions

    Directory of Open Access Journals (Sweden)

    Khadijah M. Al-Zaydi

    2017-05-01

    Full Text Available The condensation reaction of 3-heteroaromatic-3-oxopropanenitriles 3, 4 and 7 with dimethylformamide–dimethylacetal (DMF–DMA gave the corresponding enaminones 8, 9 and 10, respectively. Nucleophilic substitution of 8 and 9 with different amines resulted in a new derivatives of enaminones 11–18. The reactivity of enaminones 8 and 9 toward some nitrogen nucleophiles was investigated with a view to synthesize new heterocyclic systems. Thus, treatment of compounds 8 and 9 with phenylhydrazine afforded the pyrazole derivatives 19 and 20, respectively. On the other hand, reacting 8 and 9 with guanidine gave the pyrimidines 21 and 22, respectively. Treatment of compound 9 with hydroxylamine hydrochloride afforded the aminoisoxazoles 23. The foregoing reactions were carried out with conventional heating and under green conditions [ultrasound (US irradiations or ionic liquids (ILs] and a comparative study was employed. All the new structures are fully characterized.

  4. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    International Nuclear Information System (INIS)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-01-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species, multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  5. Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory.

    Science.gov (United States)

    Tiwari, Ambuj; Ensing, Bernd

    2016-12-22

    Outer sphere electron transfer between two ions in aqueous solution is a rare event on the time scale of first principles molecular dynamics simulations. We have used transition path sampling to generate an ensemble of reactive trajectories of the self-exchange reaction between a pair of Ru 2+ and Ru 3+ ions in water. To distinguish between the reactant and product states, we use as an order parameter the position of the maximally localised Wannier center associated with the transferring electron. This allows us to align the trajectories with respect to the moment of barrier crossing and compute statistical averages over the path ensemble. We compare our order parameter with two typical reaction coordinates used in applications of Marcus theory of electron transfer: the vertical gap energy and the solvent electrostatic potential at the ions.

  6. Experimental and numerical reaction analysis on sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2015-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using an elementary reaction analysis. A quasi one-dimensional flame model is applied to a sodium-water counter-flow reaction field. The analysis contains 25 elementary reactions, which consist of 17 H_2-O_2 and 8 Na-H_2O reactions. Temperature and species concentrations in the counter-flow reaction field were measured using laser diagnostics such as LIF and CARS. The main reaction in the experimental conditions is Na+H_2O → NaOH+H and OH is produced by H_2O+H → H_2+OH. It is demonstrated that the reaction model in this study well explains the structure of the sodium-water counter-flow diffusion flame. (author)

  7. Heterocyclization reaction of 4-(2-Methylaziridin-1-yl)-3-ureidobenzotrifluorides under appel's conditions

    International Nuclear Information System (INIS)

    Cho, Hyun In; Lee, Kee Jung

    2003-01-01

    The reaction of 4-(2-Methylaziridin-1-yl)-3-ureidobenzotrifluorides 4 with triphenylphosphine, carbon tetrachloride, and triethylamine (Appel's condition) led to the corresponding carbodiimides 5, which underwent intramolecular cycloaddition reaction with aziridine under the reaction condition to give the benzimidazole-fused heterocycles, 2.3-dihydro-1H-imidazo(1,2-a)benzimidazoles 8 and 12,13-dihydro-5H-benzimidazo(2,3-b)(1,3)benzodizzepines 9

  8. Graft-versus-host reaction and immune function. III. Functional pre-T cells in the bone marrow of graft-versus-host-reactive mice displaying T cell immunodeficiency

    International Nuclear Information System (INIS)

    Seddik, M.; Seemayer, T.A.; Lapp, W.S.

    1986-01-01

    Studies were performed to determine whether pre-T cells develop normally in the bone marrow of mice displaying thymic dysplasia and T cell immunodeficiency as a consequence of a graft-versus-host (GVH) reaction. GVH reactions were induced in CBAxAF1 mice by the injection of A strain lymphoid cells. To test for the presence of pre-T cells in GVH-reactive mice, bone marrow from GVH-reactive mice (GVHBM) was injected into irradiated syngeneic F1 mice and 30-40 days later thymic morphology and function were studied. Morphology studies showed nearly normal thymic architectural restoration; moreover, such glands contained normal numbers of Thy-1-positive cells. Functional pre-T cells were evaluated by transferring thymocytes from the irradiated GVHBM-reconstituted mice into T-cell-deprived mice. These thymocytes reconstituted allograft reactivity, T helper cell function and Con A and PHA mitogen responses of T-cell-deprived mice. These results suggest that the pre-T cell population in the bone marrow is not affected by the GVH reaction. Therefore, the T cell immunodeficiency associated with the GVH reaction is not due to a deficiency of pre-T cells in the bone marrow but is more likely associated with GVH-induced thymic dysplasia

  9. Reactivity of Athabasca residue and of its SARA fractions during residue hydroconversion

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, J.; Danial-Fortain, P.; Gauthier, T.; Merdrignac, I. [IFP-Lyon, Vermaison (France); Budzinski, H. [Bordeaux Univ. (France). ISM-LPTC, UMR CNRS

    2009-07-01

    Residue conversion processes are becoming increasingly important because of the declining market for residual fuel oil and a greater demand for middle distillates. Ebullated-bed hydroconversion is a commercially proven technology for converting heavy feedstocks with high amounts of impurities. The process enables the conversion of atmospheric or vacuum residues at temperatures up to 440 degrees C, and at liquid hourly space velocity (LHSV) conditions in the range of 0.15 to 0.5 per hour. A 540 degrees C conversion of up to 80 weight per cent can be achieved under these conditions. This paper reported on a research study conducted at IFP Lyon in which the residue hydroconversion in a large-scale ebullated bed bench unit was investigated to determine the impact of operating conditions and feed properties on yield and product qualities. Hydrogen was added to the feed in the bench units to keep a high hydrogen partial pressure and favour the catalytic hydroconversion reactions. In a typical test, the reactor was fed with 50 g of feedstock and 0.45 g of crushed equilibrium industrial NiMo catalyst, pressurized hydrogen and quickly heated at the reaction temperature. This paper also discussed the conversion of Athabasca bitumen residue in the large-scale pilot plant and also in the small scale batch reactor. The effect of operating temperature and space velocity was examined. The reactivity of the saturates, aromatics, resins and asphaltenes (SARA) fractions of the bitumen was studied separately in order to better understand the conversion mechanisms and reactivities. The Athabasca bitumen feed and SARA fractions were also analyzed in terms of standard petroleum analysis, SARA fractionation, elemental analysis, size exclusion chromatography (SEC) and 13C NMR. Hydroconversion experiments were conducted in the batch unit at different reaction temperatures and reaction times. A comparison of small-scale batch results with those obtained with the continuous large-scale bench

  10. Interpersonal reactivity and the attribution of emotional reactions.

    Science.gov (United States)

    Haas, Brian W; Anderson, Ian W; Filkowski, Megan M

    2015-06-01

    The ability to identify the cause of another person's emotional reaction is an important component associated with improved success of social relationships and survival. Although many studies have investigated the mechanisms involved in emotion recognition, very little is currently known regarding the processes involved during emotion attribution decisions. Research on complementary "emotion understanding" mechanisms, including empathy and theory of mind, has demonstrated that emotion understanding decisions are often made through relatively emotion- or cognitive-based processing streams. The current study was designed to investigate the behavioral and brain mechanisms involved in emotion attribution decisions. We predicted that dual processes, emotional and cognitive, are engaged during emotion attribution decisions. Sixteen healthy adults completed the Interpersonal Reactivity Index to characterize individual differences in tendency to make emotion- versus cognitive-based interpersonal decisions. Participants then underwent functional MRI while making emotion attribution decisions. We found neuroimaging evidence that emotion attribution decisions engage a similar brain network as other forms of emotion understanding. Further, we found evidence in support of a dual processes model involved during emotion attribution decisions. Higher scores of personal distress were associated with quicker emotion attribution decisions and increased anterior insula activity. Conversely, higher scores in perspective taking were associated with delayed emotion attribution decisions and increased prefrontal cortex and premotor activity. These findings indicate that the making of emotion attribution decisions relies on dissociable emotional and cognitive processing streams within the brain. (c) 2015 APA, all rights reserved).

  11. Evidence for CO2 reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bandosz, Teresa J. [City College of New York, NY (United States). Dept. of Chemistry; Seredych, Mykola [City College of New York, NY (United States). Dept. of Chemistry; Rodríguez-Castellón, Enrique [Univ. of Malaga (Spain). Dept. of Inorganic Chemistry; Cheng, Yongqiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division; Daemen, Luke L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division; Ramírez-Cuesta, Anibal J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division

    2015-10-08

    CO2 interactions with nanoporous S- and N-doped polymer-derived carbon and commercial wood-based carbon were investigated in a broad range of conditions. The results showed that during CO2 adsorption nitrogen and sulfur species as well as water were released from the carbon surface as a result of chemical reactions of the surface groups with CO2. Inelastic neutron scattering experiments provided the unprecedented ability to characterize very small amounts of CO2 and H2O and revealed for the first time their physical/chemical status in the confined space of nanoporous carbons. The results obtained suggest that the reactivity of the carbon surface should be considered when CO2 storage media are chosen and when CO2 is used as a probe to determine the microporosity of carbon materials.

  12. Termination of nanoscale zero-valent iron reactivity by addition of bromate as a reducing reactivity competitor

    Science.gov (United States)

    Mines, Paul D.; Kaarsholm, Kamilla M. S.; Droumpali, Ariadni; Andersen, Henrik R.; Lee, Wontae; Hwang, Yuhoon

    2017-09-01

    Remediation of contaminated groundwater by nanoscale zero-valent iron (nZVI) is widely becoming a leading environmentally friendly solution throughout the globe. Since a wide range of various nZVI-containing materials have been developed for effective remediation, it is necessary to determine an appropriate way to terminate the reactivity of any nZVI-containing material for a practical experimental procedure. In this study, bimetallic Ni/Fe-NPs were prepared to enhance overall reduction kinetics owing to the catalytic reactivity of nickel on the surface of nZVI. We have tested several chemical strategies in order to terminate nZVI reactivity without altering the concentration of volatile compounds in the solution. The strategies include surface passivation in alkaline conditions by addition of carbonate, and consumption of nZVI by a reaction competitor. Four halogenated chemicals, trichloroethylene, 1,1,1-trichloroethane, atrazine, and 4-chlorophenol, were selected and tested as model groundwater contaminants. Addition of carbonate to passivate the nZVI surface was not effective for trichloroethylene. Nitrate and then bromate were applied to competitively consume nZVI by their faster reduction kinetics. Bromate proved to be more effective than nitrate, subsequently terminating nZVI reactivity for all four of the tested halogenated compounds. Furthermore, the suggested termination method using bromate was successfully applied to obtain trichloroethylene reduction kinetics. Herein, we report the simple and effective method to terminate the reactivity of nZVI by addition of a reducing reactivity competitor.

  13. Covalent functionalization of graphene with reactive intermediates.

    Science.gov (United States)

    Park, Jaehyeung; Yan, Mingdi

    2013-01-15

    Graphene, a material made exclusively of sp(2) carbon atoms with its π electrons delocalized over the entire 2D network, is somewhat chemically inert. Covalent functionalization can enhance graphene's properties including opening its band gap, tuning conductivity, and improving solubility and stability. Covalent functionalization of pristine graphene typically requires reactive species that can form covalent adducts with the sp(2) carbon structures in graphene. In this Account, we describe graphene functionalization reactions using reactive intermediates of radicals, nitrenes, carbenes, and arynes. These reactive species covalently modify graphene through free radical addition, CH insertion, or cycloaddition reactions. Free radical additions are among the most common reaction, and these radicals can be generated from diazonium salts and benzoyl peroxide. Electron transfer from graphene to aryl diazonium ion or photoactivation of benzoyl peroxide yields aryl radicals that subsequently add to graphene to form covalent adducts. Nitrenes, electron-deficient species generated by thermal or photochemical activation of organic azides, can functionalize graphene very efficiently. Because perfluorophenyl nitrenes show enhanced bimolecular reactions compared with alkyl or phenyl nitrenes, perfluorophenyl azides are especially effective. Carbenes are used less frequently than nitrenes, but they undergo CH insertion and C═C cycloaddition reactions with graphene. In addition, arynes can serve as a dienophile in a Diels-Alder type reaction with graphene. Further study is needed to understand and exploit the chemistry of graphene. The generation of highly reactive intermediates in these reactions leads to side products that complicate the product composition and analysis. Fundamental questions remain about the reactivity and regioselectivity of graphene. The differences in the basal plane and the undercoordinated edges of graphene and the zigzag versus arm-chair configurations

  14. Reaction progress pathways for glass and spent fuel under unsaturated conditions

    International Nuclear Information System (INIS)

    Bates, J.; Finn, P.; Bourcier, W.; Stout, R.

    1994-10-01

    The source term for the release of radionuclides from a nuclear waste repository is the waste form. In order to assess the performance of the repository and the engineered barrier system (EBS) compared to regulations established by the Nuclear Regulatory Commission and the Environmental Protection Agency it is necessary (1) to use available data to place bounding limits on release rates from the EBS, and (2) to develop a mechanistic predictive model of the radionuclide release and validate the model against tests done under a variety of different potential reaction conditions. The problem with (1) is that there is little experience to use when evaluating waste form reaction under unsaturated conditions such that errors in applying expert judgment to the problem may be significant. The second approach, to test and model the waste form reaction, is a more defensible means of providing input to the prediction of radionuclide release. In this approach, information related to the source term has a technical basis and provides a starting point to make reasonable assumptions for long-term behavior. Key aspects of this approach are an understanding of the reaction progress mechanism and the ability to model the tests using a geochemical code such as EQ3/6. Current knowledge of glass, UO 2 , and spent fuel reactions under different conditions are described below

  15. Quantification of Hydroxyl Radical reactivity in the urban environment using the Comparative Reactivity Method (CRM)

    Science.gov (United States)

    Panchal, Rikesh; Monks, Paul

    2015-04-01

    Hydroxyl (OH) radicals play an important role in 'cleansing' the atmosphere of many pollutants such as, NOx, CH4 and various VOCs, through oxidation. To measure the reactivity of OH, both the sinks and sources of OH need to be quantified, and currently the overall sinks of OH seem not to be fully constrained. In order to measure the total rate loss of OH in an ambient air sample, all OH reactive species must be considered and their concentrations and reaction rate coefficients with OH known. Using the method pioneered by Sinha and Williams at the Max Plank Institute Mainz, the Comparative Reactivity Method (CRM) which directly quantifies total OH reactivity in ambient air without the need to consider the concentrations of individual species within the sample that can react with OH, has been developed and applied in a urban setting. The CRM measures the concentration of a reactive species that is present only in low concentrations in ambient air, in this case pyrrole, flowing through a reaction vessel and detected using Proton Transfer Reaction - Mass Spectrometry (PTR-MS). The poster will show a newly developed and tested PTR-TOF-MS system for CRM. The correction regime will be detailed to account for the influence of the varying humidity between ambient air and clean air on the pyrrole signal. Further, examination of the sensitivity dependence of the PTR-MS as a function of relative humidity and H3O+(H2O) (m/z=37) cluster ion allows the correction for the humidity variation, between the clean humid air entering the reaction vessel and ambient air will be shown. NO, present within ambient air, is also a potential interference and can cause recycling of OH, resulting in an overestimation of OH reactivity. Tests have been conducted on the effects of varying NO concentrations on OH reactivity and a correction factor determined for application to data when sampling ambient air. Finally, field tests in the urban environment at the University of Leicester will be shown

  16. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  17. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    International Nuclear Information System (INIS)

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H 2 /minus/> DH + H and the substitution reaction D + C 2 H 2 /minus/> C 2 HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs

  18. The antioxidant action of Polypodium leucotomos extract and kojic acid: reactions with reactive oxygen species

    Directory of Open Access Journals (Sweden)

    A.J. Gomes

    2001-11-01

    Full Text Available Two natural products Polypodium leucotomos extract (PL and kojic acid (KA were tested for their ability to scavenge reactive oxygen species (·OH, ·O2-, H2O2, ¹O2 in phosphate buffer. Hydroxyl radicals were generated by the Fenton reaction, and the rate constants of scavenging were 1.6 x 10(9 M-1 s-1 for KA and 1.0 x 10(9 M-1 s-1 for PL, similar to that of ethanol (1.4 x 10(9 M-1 s-1. With superoxide anions generated by the xanthine/hypoxanthine system, KA and PL (0.2-1.0 mg/ml inhibited ·O2-dependent reduction of nitroblue tetrazolium by up to 30 and 31%, respectively. In the detection of ¹O2 by rose bengal irradiation, PL at 1.0 mg/ml quenched singlet oxygen by 43% relative to azide and KA by 36%. The present study demonstrates that PL showed an antioxidant effect, scavenging three of four reactive oxygen species tested here. Unlike KA, PL did not significantly scavenge hydrogen peroxide.

  19. Hydroxyl radical reactivity at the air-ice interface

    Directory of Open Access Journals (Sweden)

    T. F. Kahan

    2010-01-01

    Full Text Available Hydroxyl radicals are important oxidants in the atmosphere and in natural waters. They are also expected to be important in snow and ice, but their reactivity has not been widely studied in frozen aqueous solution. We have developed a spectroscopic probe to monitor the formation and reactions of hydroxyl radicals in situ. Hydroxyl radicals are produced in aqueous solution via the photolysis of nitrite, nitrate, and hydrogen peroxide, and react rapidly with benzene to form phenol. Similar phenol formation rates were observed in aqueous solution and bulk ice. However, no reaction was observed at air-ice interfaces, or when bulk ice samples were crushed prior to photolysis to increase their surface area. We also monitored the heterogeneous reaction between benzene present at air-water and air-ice interfaces with gas-phase OH produced from HONO photolysis. Rapid phenol formation was observed on water surfaces, but no reaction was observed at the surface of ice. Under the same conditions, we observed rapid loss of the polycyclic aromatic hydrocarbon (PAH anthracene at air-water interfaces, but no loss was observed at air-ice interfaces. Our results suggest that the reactivity of hydroxyl radicals toward aromatic organics is similar in bulk ice samples and in aqueous solution, but is significantly suppressed in the quasi-liquid layer (QLL that exists at air-ice interfaces.

  20. Reactive wetting by liquid sodium on thin Au platin

    International Nuclear Information System (INIS)

    Kawaguchi, Munemichi; Hamada, Hirotsugu

    2014-01-01

    For practical use of an under-sodium viewer, the behavior of sodium wetting is investigated by modeling the reactive and non-reactive wetting of metallic-plated steels by liquid sodium to simulate sodium wetting. The non-reactive wetting simulation results showed good agreement with Tanner's law, in which the time dependencies of the droplet radius and contact angle are expressed as R N ∝ t 1/10 and θ∝ t -3/10 , respectively; therefore, the model was considered suitable for the simulation. To simulate reactive wetting, the model of fluid flow induced by the interfacial reaction was incorporated into the simulation of non-reactive wetting. The reactive wetting simulation results, such as the behavior of the precursor liquid film and central droplet, showed good agreement with sodium wetting experiments using thin Au plating at 250°C. An important result of the reactive wetting simulation is that the gradient of the reaction energy at the interface appeared on the new interface around the triple line, and that fluid flow was induced. This interfacial reactivity during sodium wetting of thin Au plating was enhanced by the reaction of sodium and nickel oxide through pinholes in the plating. (author)

  1. A roadmap for OH reactivity research

    Science.gov (United States)

    Williams, Jonathan; Brune, William

    2015-04-01

    A fundamental property of the atmosphere is the frequency of gas-phase reactions with the OH radical, the atmosphere's primary oxidizing agent. This reaction frequency is called the OH reactivity and is the inverse the lifetime of the OH radical itself, which varies from a few seconds in the clean upper troposphere to below 10 ms in forests and polluted city environments. Ever since the discovery of the OH radical's importance to tropospheric chemistry, the characterization of its overall loss rate (OH reactivity) has remained a key question. At first, this property was assessed by summing the reactivity contributions of individually measured compounds; however, as improving analytical technology revealed ever more reactive species in ambient air, it became clear that this approach could provide only a lower limit. Approximately 15 years ago, the direct measurement of total OH reactivity was conceived independently by two groups. The first publications demonstrated direct OH reactivity measurements in the laboratory (Calpini et al., 1999) based on LIDAR and in the ambient air (Kovacs and Brune, 2001) based on in situ laser induced fluorescence detection of OH.

  2. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; B. Moghtaderi; R. Gupta; T.F. Wall [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering

    2004-11-01

    The physical and chemical structure as well as gasification reactivities of chars generated from several biomass species (i.e. pinus radiata, eucalyptus maculata and sugar cane bagasse) were studied to gain insight into the role of heating rate and pressure on the gasification characteristics of biomass chars. Char samples were generated in a suite of reactors including a wire mesh reactor, a tubular reactor, and a drop tube furnace. Scanning electron microscopy analysis, X-ray diffractometry, digital cinematography and surface area analysis were employed to determine the impact of operating conditions on the char structure. The global gasification reactivities of char samples were also determined for a range of pressures between 1 and 20 bar using pressurised thermogravimetric analysis technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. It was found that under high heating rates the char particles underwent plastic deformation (i.e. melted) developing a structure different to that of the virgin biomass. Pressure was also found to influence the physical and chemical structures of char particles. The difference in the gasification reactivities of biomass chars at pressure was found to correlate well with the effect of pyrolysis pressure on the graphitisation process in the biomass char structure. 29 refs., 18 figs., 2 tabs.

  3. Bray–Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Stanisavljev, Dragomir R., E-mail: dragisa@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 473, 11001 Belgrade (Serbia); Velikić, Zoran [Institute of Physics, University of Belgrade, Pregrevica 118, Zemun (Serbia); Veselinović, Dragan S.; Jacić, Nevena V.; Milenković, Maja C. [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 473, 11001 Belgrade (Serbia)

    2014-09-30

    Highlights: • Oscillatory Bray–Liebhafsky reaction is coupled with the radiofrequency radiation. • The effects of radiofrequency field on oscillatory parameters are investigated. • Radiofrequency power of up to the 0.2 W did not produced observable changes. • The explanation related with dissipative and capacitive effects is given. • Open the possibility of investigations of reactive effects on biological systems. - Abstract: Oscillatory Bray–Liebhafsky (BL) reaction is capacitively coupled with the electromagnetic radiation in the frequency range 60–110 MHz. Because of the specific reaction dynamics characterized by several characteristic parameters (induction period, period between chemical oscillations and their amplitude) it served as a good model system for the investigation of the effects of radiofrequent (RF) radiation. RF power of up to 0.2 W did not produce observable changes of the BL reaction parameters in the limit of the experiment reproductivity. Results indicate that, under the given experimental conditions, both dissipative and reactive properties of the solution are not considerably coupled with the RF electrical field.

  4. Reactive gas control of non-stable plasma conditions

    International Nuclear Information System (INIS)

    Bellido-Gonzalez, V.; Daniel, B.; Counsell, J.; Monaghan, D.

    2006-01-01

    Most industrial plasma processes are dependant upon the control of plasma properties for repeatable and reliable production. The speed of production and range of properties achieved depend on the degree of control. Process control involves all the aspects of the vacuum equipment, substrate preparation, plasma source condition, power supplies, process drift, valves (inputs/outputs), signal and data processing and the user's understanding and ability. In many cases, some of the processes which involve the manufacturing of interesting coating structures, require a precise control of the process in a reactive environment [S.J. Nadel, P. Greene, 'High rate sputtering technology for throughput and quality', International Glass Review, Issue 3, 2001, p. 45. ]. Commonly in these circumstances the plasma is not stable if all the inputs and outputs of the system were to remain constant. The ideal situation is to move a process from set-point A to B in zero time and maintain the monitored signal with a fluctuation equal to zero. In a 'real' process that's not possible but improvements in the time response and energy delivery could be achieved with an appropriate algorithm structure. In this paper an advanced multichannel reactive plasma gas control system is presented. The new controller offers both high-speed gas control combined with a very flexible control structure. The controller uses plasma emission monitoring, target voltage or any process sensor monitoring as the input into a high-speed control algorithm for gas input. The control algorithm and parameters can be tuned to different process requirements in order to optimize response times

  5. A new reactivity mode for the diazo group: diastereoselective 1,3-aminoalkylation reaction of β-amino-α-diazoesters to give triazolines.

    Science.gov (United States)

    Kuznetsov, Alexey; Gulevich, Anton V; Wink, Donald J; Gevorgyan, Vladimir

    2014-08-18

    A novel mode of reactivity for the diazo group, the 1,3-addition of a nucleophile and an electrophile to the diazo group, has been realized in the intramolecular aminoalkylation of β-amino-α-diazoesters to form tetrasubstituted 1,2,3-triazolines. The reaction exhibited a broad scope, good functional group tolerance, and excellent diastereoselectivity. In addition, a new Au-catalyzed intramolecular transannulation reaction of the obtained propargyl triazolines to give pyrroles has been discovered. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Manifestations of special functional capacity of trained athletes in rowing with a different type of physiological reactivity

    Directory of Open Access Journals (Sweden)

    Diachenko A.U.

    2010-10-01

    Full Text Available Features of manifestation of special functional potential sportsmen a high class are presented. 15 sportsmen participated in research - members of a combined team of Ukraine. The test was used high-intensity 2 mines. Discrepancies of an individual reactivity of sportsmen are defned. They are expressed by parameters of reactions of an organism and serviceability of sportsmen in conditions of building up fatigue. It is exhibited, that typological discrepancies of a reactivity repute discrepancies of the contents and conditions of an intensifcation of training process during a macrocycle of sports preparation.

  7. Reactivity of polychlorinated biphenyls in nucleophilic and electrophilic substitutions

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunova, Tatyana I., E-mail: gorbunova@ios.uran.ru [I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Kovalevskoy St., 22, Ekaterinburg 620990 (Russian Federation); Subbotina, Julia O. [Ural Federal University named after the first President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg 620002 (Russian Federation); Saloutin, Viktor I.; Chupakhin, Oleg N. [I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Kovalevskoy St., 22, Ekaterinburg 620990 (Russian Federation)

    2014-08-15

    Graphical abstract: - Highlights: • Quantum chemical calculations were carried out for PCBs congeners. • Calculated descriptors were used to explain the PCBs reactivity in S{sub N} and S{sub E} substitutions. • Obtained data were used to estimate the PCBs reactivity in the S{sub N} reactions. • Calculated descriptors were insufficient to explain the PCBs reactivity in the S{sub E} reactions. • New neutralization methods of the large-capacity PCBs were discussed. - Abstract: To explain the chemical reactivity of polychlorinated biphenyls in nucleophilic (S{sub N}) and electrophilic (S{sub E}) substitutions, quantum chemical calculations were carried out at the B3LYP/6-31G(d) level of the Density Functional Theory in gas phase. Carbon atomic charges in biphenyl structure were calculated by the Atoms-in-Molecules method. Chemical hardness and global electrophilicity index parameters were determined for congeners. A comparison of calculated descriptors and experimental data for congener reactivity in the S{sub N} and S{sub E} reactions was made. It is shown that interactions in the S{sub N} mechanism are reactions of the hard acid–hard base type, these are the most effective in case of highly chlorinated substrates. To explain the congener reactivity in the S{sub E} reactions, correct descriptors were not established. The obtained results can be used to carry out chemical transformations of the polychlorinated biphenyls in order to prepare them for microbiological destruction or preservation.

  8. Reactions of animals and people under conditions of brief weightlessness

    Science.gov (United States)

    Kitayev-Smik, L. A.

    1975-01-01

    It has been shown that under brief weightlessness sensory reactions arise in a number of people, mainly those under these conditions for the first time, in the form of spatial and visual illusions, motor excitation, in which tonic and motor components can be distinguished, and vestibular-vegetative disturbances (nausea, vomiting, etc.). In repeated flights with creation of weightlessness, a decrease in the extent of expression and, then, disappearance of these reactions occurred in a significant majority of those studied. Experiments in weightlessness with the vision cut off and with the absence of vestibular functions in the subjects confirm the hypothesis that spatial conceptions of people in weightlessness depend on predominance of gravireceptor or visual afferent signals under these conditions.

  9. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model.

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E; Lovley, Derek R

    2011-03-25

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  10. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-03-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  11. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    Science.gov (United States)

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…

  12. Upscaling of reactive flows

    NARCIS (Netherlands)

    Kumar, K.

    2012-01-01

    The thesis deals with the upscaling of reactive flows in complex geometry. The reactions which may include deposition or dissolution take place at a part of the boundary and depending on the size of the reaction domain, the changes in the pore structure that are due to the deposition process may or

  13. Stability of gas atomized reactive powders through multiple step in-situ passivation

    Science.gov (United States)

    Anderson, Iver E.; Steinmetz, Andrew D.; Byrd, David J.

    2017-05-16

    A method for gas atomization of oxygen-reactive reactive metals and alloys wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a protective reaction film on the atomized particles. The present invention is especially useful for making highly pyrophoric reactive metal or alloy atomized powders, such as atomized magnesium and magnesium alloy powders. The gaseous reactive species (agents) are introduced into the atomization spray chamber at locations downstream of a gas atomizing nozzle as determined by the desired powder or particle temperature for the reactions and the desired thickness of the reaction film.

  14. Serum IgE reactivity profiling in an asthma affected cohort.

    Directory of Open Access Journals (Sweden)

    Tania Dottorini

    Full Text Available BACKGROUND: Epidemiological evidence indicates that atopic asthma correlates with high serum IgE levels though the contribution of allergen specific IgE to the pathogenesis and the severity of the disease is still unclear. METHODS: We developed a microarray immunoassay containing 103 allergens to study the IgE reactivity profiles of 485 asthmatic and 342 non-asthmatic individuals belonging to families whose members have a documented history of asthma and atopy. We employed k-means clustering, to investigate whether a particular IgE reactivity profile correlated with asthma and other atopic conditions such as rhinitis, conjunctivitis and eczema. RESULTS: Both case-control and parent-to-siblings analyses demonstrated that while the presence of specific IgE against individual allergens correlated poorly with pathological conditions, particular reactivity profiles were significantly associated with asthma (p<10E-09. An artificial neural network (ANN-based algorithm, calibrated with the profile reactivity data, correctly classified as asthmatic or non-asthmatic 78% of the individual examined. Multivariate statistical analysis demonstrated that the familiar relationships of the study population did not affect the observed correlations. CONCLUSIONS: These findings indicate that asthma is a higher-order phenomenon related to patterns of IgE reactivity rather than to single antibody reactions. This notion sheds new light on the pathogenesis of the disease and can be readily employed to distinguish asthmatic and non-asthmatic individuals on the basis of their serum reactivity profile.

  15. Influence of substituents in vinyl groups on reactivity of parylene during polymerization process

    International Nuclear Information System (INIS)

    Freza, Sylwia; Skurski, Piotr; Bobrowski, Maciej

    2010-01-01

    The MCSCF calculations indicate that both triplet and singlet state of biradical di-para-xylylene can exist during polymerization of parylene in gas phase and both can potentially react with vinyl molecules. The singlet-state open-shell dimer turned out to exhibit multiconfigurational character. In the case of triplet state of the dimer two mechanisms of the reactions with various species containing vinyl groups have been examined at the B3LYP/6-31G level. The kinetic and thermodynamical barriers have been estimated for the reaction path involving the π-bond cleavage as well as for the route describing the hydrogen atom transfer. It was found that the overall reactions are thermodynamically favorable, whereas appropriate kinetic barriers for certain derivatives are very small (close to 0 kcal/mol) which in turn makes allowances for easy reactivity under accessible conditions. The calculated mechanisms indicate the influence of substituents in vinyl groups for reactivity of parylene during LPCVD process.

  16. Exploring the anionic reactivity of ynimines, useful precursors of metalated ketenimines.

    Science.gov (United States)

    Laouiti, Anouar; Couty, François; Marrot, Jérome; Boubaker, Taoufik; Rammah, Mohamed M; Rammah, Mohamed B; Evano, Gwilherm

    2014-04-18

    Insights into the reactivity of ynimines under anionic conditions are reported. They were shown to be excellent precursors of metalated ketenimines, which can be generated in situ by the reaction of ynimines with organolithium reagents or strong bases. The metalated ketenimines can then be trapped with various electrophiles and, depending on their substitution pattern, afford original and divergent entries to various building blocks.

  17. Nonlinear reaction-diffusion systems conditional symmetry, exact solutions and their applications in biology

    CERN Document Server

    Cherniha, Roman

    2017-01-01

    This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems  and those developing the theoretical aspects of conditional symmetry conception,...

  18. Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.

    Science.gov (United States)

    Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D

    2017-09-19

    Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial

  19. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  20. Cue reactivity towards shopping cues in female participants.

    Science.gov (United States)

    Starcke, Katrin; Schlereth, Berenike; Domass, Debora; Schöler, Tobias; Brand, Matthias

    2013-03-01

    Background and aims It is currently under debate whether pathological buying can be considered as a behavioural addiction. Addictions have often been investigated with cue-reactivity paradigms to assess subjective, physiological and neural craving reactions. The current study aims at testing whether cue reactivity towards shopping cues is related to pathological buying tendencies. Methods A sample of 66 non-clinical female participants rated shopping related pictures concerning valence, arousal, and subjective craving. In a subgroup of 26 participants, electrodermal reactions towards those pictures were additionally assessed. Furthermore, all participants were screened concerning pathological buying tendencies and baseline craving for shopping. Results Results indicate a relationship between the subjective ratings of the shopping cues and pathological buying tendencies, even if baseline craving for shopping was controlled for. Electrodermal reactions were partly related to the subjective ratings of the cues. Conclusions Cue reactivity may be a potential correlate of pathological buying tendencies. Thus, pathological buying may be accompanied by craving reactions towards shopping cues. Results support the assumption that pathological buying can be considered as a behavioural addiction. From a methodological point of view, results support the view that the cue-reactivity paradigm is suited for the investigation of craving reactions in pathological buying and future studies should implement this paradigm in clinical samples.

  1. Noncanonical Reactions of Flavoenzymes

    Directory of Open Access Journals (Sweden)

    Pablo Sobrado

    2012-11-01

    Full Text Available Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a “molecular scaffold” in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  2. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    International Nuclear Information System (INIS)

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-01-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions

  3. Reactivity of micas and cap-rock in wet supercritical CO_2 with SO_2 and O_2 at CO_2 storage conditions

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Dawson, Grant K.W.; Law, Alison C.K.; Biddle, Dean; Golding, Suzanne D.

    2016-01-01

    Seal or cap-rock integrity is a safety issue during geological carbon dioxide capture and storage (CCS). Industrial impurities such as SO_2, O_2, and NOx, may be present in CO_2 streams from coal combustion sources. SO_2 and O_2 have been shown recently to influence rock reactivity when dissolved in formation water. Buoyant water-saturated supercritical CO_2 fluid may also come into contact with the base of cap-rock after CO_2 injection. Supercritical fluid-rock reactions have the potential to result in corrosion of reactive minerals in rock, with impurity gases additionally present there is the potential for enhanced reactivity but also favourable mineral precipitation. The first observation of mineral dissolution and precipitation on phyllosilicates and CO_2 storage cap-rock (siliciclastic reservoir) core during water-saturated supercritical CO_2 reactions with industrial impurities SO_2 and O_2 at simulated reservoir conditions is presented. Phyllosilicates (biotite, phlogopite and muscovite) were reacted in contact with a water-saturated supercritical CO_2 containing SO_2, or SO_2 and O_2, and were also immersed in the gas-saturated bulk water. Secondary precipitated sulfate minerals were formed on mineral surfaces concentrated at sheet edges. SO_2 dissolution and oxidation resulted in solution pH decreasing to 0.74 through sulfuric acid formation. Phyllosilicate dissolution released elements to solution with ∼50% Fe mobilized. Geochemical modelling was in good agreement with experimental water chemistry. New minerals nontronite (smectite), hematite, jarosite and goethite were saturated in models. A cap-rock core siltstone sample from the Surat Basin, Australia, was also reacted in water-saturated supercritical CO_2 containing SO_2 or in pure supercritical CO_2. In the presence of SO_2, siderite and ankerite were corroded, and Fe-chlorite altered by the leaching of mainly Fe and Al. Corrosion of micas in the cap-rock was however not observed as the pH was

  4. Combining water-rock interaction experiments with reaction path and reactive transport modelling to predict reservoir rock evolution in an enhanced geothermal system

    Science.gov (United States)

    Kuesters, Tim; Mueller, Thomas; Renner, Joerg

    2016-04-01

    Reliably predicting the evolution of mechanical and chemical properties of reservoir rocks is crucial for efficient exploitation of enhanced geothermal systems (EGS). For example, dissolution and precipitation of individual rock forming minerals often result in significant volume changes, affecting the hydraulic rock properties and chemical composition of fluid and solid phases. Reactive transport models are typically used to evaluate and predict the effect of the internal feedback of these processes. However, a quantitative evaluation of chemo-mechanical interaction in polycrystalline environments is elusive due to poorly constrained kinetic data of complex mineral reactions. In addition, experimentally derived reaction rates are generally faster than reaction rates determined from natural systems, likely a consequence of the experimental design: a) determining the rate of a single process only, e.g. the dissolution of a mineral, and b) using powdered sample materials and thus providing an unrealistically high reaction surface and at the same time eliminating the restrictions on element transport faced in-situ for fairly dense rocks. In reality, multiple reactions are coupled during the alteration of a polymineralic rocks in the presence of a fluid and the rate determining process of the overall reactions is often difficult to identify. We present results of bulk rock-water interaction experiments quantifying alteration reactions between pure water and a granodiorite sample. The rock sample was chosen for its homogenous texture, small and uniform grain size (˜0.5 mm in diameter), and absence of pre-existing alteration features. The primary minerals are plagioclase (plg - 58 vol.%), quartz (qtz - 21 vol.%), K-feldspar (Kfs - 17 vol.%), biotite (bio - 3 vol.%) and white mica (wm - 1 vol.%). Three sets of batch experiments were conducted at 200 ° C to evaluate the effect of reactive surface area and different fluid path ways using (I) powders of the bulk rock with

  5. Nitrenes, carbenes, diradicals, and ylides. Interconversions of reactive intermediates.

    Science.gov (United States)

    Wentrup, Curt

    2011-06-21

    Rearrangements of aromatic and heteroaromatic nitrenes and carbenes can be initiated with either heat or light. The thermal reaction is typically induced by flash vacuum thermolysis, with isolation of the products at low temperatures. Photochemical experiments are conducted either under matrix isolation conditions or in solution at ambient temperature. These rearrangements are usually initiated by ring expansion of the nitrene or carbene to a seven-membered ring ketenimine, carbodiimide, or allene (that is, a cycloheptatetraene or an azacycloheptatetraene when a nitrogen is involved). Over the last few years, we have found that two types of ring opening take place as well. Type I is an ylidic ring opening that yields nitrile ylides or diazo compounds as transient intermediates. Type II ring opening produces either dienylnitrenes (for example, from 2-pyridylnitrenes) or 1,7-(1,5)-diradicals (such as those formed from 2-quinoxalinylnitrenes), depending on which of these species is better stabilized by resonance. In this Account, we describe our achievements in elucidating the nature of the ring-opened species and unraveling the connections between the various reactive intermediates. Both of these ring-opening reactions are found, at least in some cases, to dominate the subsequent chemistry. Examples include the formation of ring-opened ketenimines and carbodiimides, as well as the ring contraction reactions that form five-membered ring nitriles (such as 2- and 3-cyanopyrroles from pyridylnitrenes, N-cyanoimidazoles from 2-pyrazinyl and 4-pyrimidinylnitrenes, N-cyanopyrazoles from 2-pyrimidinylnitrenes and 3-pyridazinylnitrenes, and so forth). The mechanisms of formation of the open-chain and ring-contraction products were unknown at the onset of this study. In the course of our investigation, several reactions with three or more consecutive reactive intermediates have been unraveled, such as nitrene, seven-membered cyclic carbodiimide, and open-chain nitrile ylide

  6. Rudimentary, low tech incinerators as a means to produce reactive pozzolan out of sugar cane straw

    International Nuclear Information System (INIS)

    Martirena, Fernando; Middendorf, Bernhard; Day, Robert L.; Gehrke, Matthias; Roque, Pablo; Martinez, Lesday; Betancourt, Sergio

    2006-01-01

    The ashes of agricultural wastes from the processing of sugar cane are recognized as having pozzolanic properties. Burning of these wastes under controlled conditions, e.g. temperature and residence time results in significant improvement in reactivity. There are many reports of low-tech incinerators that have been successfully used to produce reactive rice husk ash in Asia. The paper presents the results of the evaluation of a rudimentary incinerator where sugar cane straw is burnt in order to obtain a reactive ash. The incinerator is designed and constructed according to state-of-the-art recommendations for this kind of device. Various burning trials were performed in order to obtain ash for the experiment. X-ray diffraction analysis performed on powdered ash shows significant presence of amorphous (glassy) material. Lime-pozzolana pastes were prepared. The pastes were subjected to X-ray diffraction, thermo-gravimetric analysis, chemical titration, and SEM observation, as a means to examine the pozzolanicity of the ash via the progress with time of calcium hydroxide consumption, and changes in the pore size distribution and strength. Calcium silicate hydrate phases are the main reaction product of the pozzolanic reaction. The long residence time of the ash in the burning chamber seems to be the reason for the fairly low reactivity of the ash; the reactivity of the ash was not significantly improved in comparison with that of the ash burnt in uncontrolled conditions in the open air

  7. Magnitude of reactive thrombocytosis and associated clinical conditions in dogs.

    Science.gov (United States)

    Athanasiou, Labrini V; Polizopoulou, Zoe S; Papavasileiou, Eleftheria G; Mpairamoglou, Efstathios L; Kantere, Maria C; Rousou, Xanthi A

    2017-09-09

    Previous studies on the underlying causes of thrombocytosis have raised scientific interest in its clinical relevance in dogs. The purpose of this study was: (1) to explore the clinical conditions associated with thrombocytosis; (2) to compare platelet counts among these conditions; and (3) to identify possible interactions with other haematological variables and associated conditions. Medical records of 195 dogs with thrombocytosis (platelet count >500×10 3 /μL) were reviewed for signalment, complete blood count results and definitive diagnosis. The prevalence of thrombocytosis was 6.02%. All cases included had reactive thrombocytosis, with non-neoplastic, non-inflammatory underlying conditions in 48.2%, inflammatory processes in 34.4% and neoplastic processes in 17.4%. Haemoglobin and white blood cell counts were negatively and positively associated with platelet count, respectively. This study revealed that mean platelet count in dogs with neoplasia and a packed cell volume of 35% or below was significantly higher than that for dogs with other disease categories. Therefore, for dogs with marked thrombocytosis and anaemia, it is recommended that neoplasia should be included in the list of differential diagnoses. © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Semi-Batch Reactive Distillation of Consecutive Reaction : The Saponification Reaction of Diethyl Adipate with Sodium Hydroxide Solution

    Directory of Open Access Journals (Sweden)

    Raghad Fareed Kasim

    2016-03-01

    Full Text Available This research presents a new study in reactive distillation by using consecutive reaction: the saponification reaction of diethyl adipate (DA with sodium hydroxide solution . The effect of three parameters were studied through a design of experiments applying 23 factorial design . These parameters were : the mole ratio of DA to NaOH solution (0.1 and 1 , NaOH solution concentration (3 N and 8 N , and batch time (1.5 hr. and 3.5 hr. . The conversion of DA to sodium monoethyladipate(SMA(intermediate product was the effect of these parameters which was detected . Also , the percentage purity of the intermediate product was recorded . The results showed that increasing mole ratio of DA to NaOHsolution increases the conversion and percentage purity to a maximum value within the range of study . The effect of NaOH solution concentration decreases the conversion and percentage purity to specified value within the range of study . The effect of batch time on conversion and percentage purity , when NaOH solution concentration (3 N is as follows : the increasing in batch time decreases the conversion and percentage purity to specified value within the range of study . When NaOH solution concentration (8 N increasing batch time decreases the conversion , while percentage purity increases with increasing batch time to a maximum value within the range of study . The maximum attainable conversion within the studied range of parameters was eighteen fold of the base case , while the maximum percentage purity was (99.40 % . Empirical equation was obtained using statistical analysis of experimental results . The empirical results of relative conversion was drawn . The empirical graphs showed linear variation .

  9. Reactive-brittle dynamics in peridotite alteration

    Science.gov (United States)

    Evans, O.; Spiegelman, M. W.; Kelemen, P. B.

    2017-12-01

    The interactions between reactive fluids and brittle solids are critical in Earth dynamics. Implications of such processes are wide-ranging: from earthquake physics to geologic carbon sequestration and the cycling of fluids and volatiles through subduction zones. Peridotite alteration is a common feature in many of these processes, which - despite its obvious importance - is relatively poorly understood from a geodynamical perspective. In particular, alteration reactions are thought to be self-limiting in nature, contradicting observations of rocks that have undergone 100% hydration/carbonation. One potential explanation of this observation is the mechanism of "reaction-driven cracking": that volume changes associated with these reactions are large enough to fracture the surrounding rock, leading to a positive feedback where new reactive surfaces are exposed and fluid pathways are created. The purpose of this study is to investigate the relative roles of reaction, elastic stresses and surface tension in alteration reactions. In this regard we derive a system of equations describing reactive fluid flow in an elastically deformable porous media, and explore them via a combination of analytic and numerical solutions. Using this model we show that the final stress state of a dry peridotite that has undergone reaction depends strongly on the rates of reaction versus fluid transport: significant fluid flow driven by pressure and/or surface tension gradients implies higher fractions of serpentinization, leaving behind a highly stressed residuum of partially reacted material. Using a model set-up that mimics a cylindrical triaxial apparatus we predict that the resulting stresses would lead to tensile failure and the generation of radially oriented cracks.

  10. Reactive simulation of the chemistry behind the condensed-phase ignition of RDX from hot spots.

    Science.gov (United States)

    Joshi, Kaushik L; Chaudhuri, Santanu

    2015-07-28

    Chemical events that lead to thermal initiation and spontaneous ignition of the high-pressure phase of RDX are presented using reactive molecular dynamics simulations. In order to initiate the chemistry behind thermal ignition, approximately 5% of RDX crystal is subjected to a constant temperature thermal pulse for various time durations to create a hot spot. After application of the thermal pulse, the ensuing chemical evolution of the system is monitored using reactive molecular dynamics under adiabatic conditions. Thermal pulses lasting longer than certain time durations lead to the spontaneous ignition of RDX after an incubation period. For cases where the ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. Contrary to the widely accepted unimolecular models of initiation chemistry, N-N bond dissociations that produce NO2 species are suppressed in the condensed phase. The gradual temperature and pressure increase in the incubation period is accompanied by the accumulation of short-lived, heavier polyradicals. The polyradicals contain intact triazine rings from the RDX molecules. At certain temperatures and pressures, the polyradicals undergo ring-opening reactions, which fuel a series of rapid exothermic chemical reactions leading to a thermal runaway regime with stable gas-products such as N2, H2O and CO2. The evolution of the RDX crystal throughout the thermal initiation, incubation and thermal runaway phases observed in the reactive simulations contains a rich diversity of condensed-phase chemistry of nitramines under high-temperature/pressure conditions.

  11. Comparative Study Between Ethylbenzene Disproportionation Reaction and its Ethylation Reaction with Ethanol over ZSM-5

    KAUST Repository

    Tukur, N. M.

    2009-06-23

    Ethylation of ethylbenzene with ethanol has been studied over ZSM-5 catalyst in a riser simulator that mimics the operation of a fluidized-bed reactor. The feed molar ratio of ethylbenzene:ethanol is 1:1. The study was carried out at 350, 400, 450, and 500°C for reaction times of 3, 5, 7, 10, 13, and 15 s. Comparisons are made between the results of the ethylbenzene ethylation reaction with that of ethylbenzene disproportionation reaction earlier reported. The effect of reaction conditions on ethylbenzene reactivity, p-diethylbenzene selectivity, total diethylbenzene (DEB) isomers selectivity, p-DEB-to-m-DEB ratio, benzene-to-DEB molar ratio, and benzene selectivity, are reported. Benzene selectivity is about 10 times more in the EB disproportion reaction as compared to its ethylation reaction with ethanol at 350°C. In addition, the results showed a p-DEB/m-DEB ratio for the EB ethylation reaction varying between 1.2-1.7, which is greater than the equilibrium values. Increase in temperature shifts the alkylation/dealkylation equilibrium towards dealkylation, thereby decreasing conversion and selectivity to DEB. © Springer Science+Business Media, LLC 2009.

  12. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  13. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2013-12-01

    The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation

  14. Reactivity of North Bohemian coals in coprocessing of coal/oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sebor, G.; Cerny, J.; Maxa, D.; Blazek, J. [Inst. of Chemical Technology, Prague (Czechoslovakia); Sykorova, I. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    Autoclave experiments with North Bohemian coal were done in order to evaluate their reactivity in coprocessing with petroleum vacuum residue, Selected coals were comprehensively characterized by using a number of analytical methods. While the coals were of similar geological origin, some of their characteristics differed largely from one coal to another. Despite the differences in physical and chemical structure, the coals provided very similar yields of desired reaction products. The yields of a heavy non- distillable fraction and/or an insoluble solid residue were, under experimental conditions, largely affected by retrogressive reactions (coking). The insoluble solid fractions were examined microscopically under polarized light.

  15. Gas phase reactions of organic iodine in containment conditions

    International Nuclear Information System (INIS)

    Kaerkalae, T.; Holm, J.; Auvinen, A.; Zilliacus, R.; Kajolinna, T.; Tapper, U.; Gaenneskog, H.; Ekberg, C.

    2010-01-01

    In case of a hypothetical severe accident it is very likely that iodine at least partly deposits on painted walls of a reactor containment building. Iodine may react with painted surfaces to form organic iodine species. These organic species are a possible source of volatile iodine, which may increase the fraction of releasable iodine. Therefore, it is important to study the transport of organic iodine in containment conditions. Another question is, in which form are the organic iodides transported as gaseous molecules or as aerosol particles resulting from organic iodides reacting with radiolysis products. To answer this last question methyl iodide was fed into the EXSI facility in an air mixture. In some experiments the flow contained also humidity. The reactions took place in a quartz tube heated either to 50 deg. C, 90 deg. C or 120 deg. C. UV-light was used as a source of radiation to produce ozone from oxygen. A separate generator was also applied to reach higher ozone concentrations. Nucleated aerosol particles were collected on plane filters and gaseous iodine species were trapped in trapping bottles. Aerosol mass flow rate and size distribution as well as speciation of gaseous reaction products were measured with several on-line instruments. Collected aerosol particles were analysed with SEM. It was found that the formation of aerosol particles was very fast when ozone and methyl iodide were present in the facility. Even a very low concentration of ozone produced high number concentration of particles. The measured aerosol mass concentration increased with increasing temperature and ozone concentration. Because the particle diameter was quite small (<180 nm), their settling velocity is low. Therefore, iodine containing aerosols may exist in containment atmosphere for a long period of time. Part of methyl iodide was always transported through the facility regardless of experimental conditions. All ozone was consumed in the reactions when only UV-light was

  16. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  17. Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions

    International Nuclear Information System (INIS)

    Lu Junguo

    2008-01-01

    In this paper, the global exponential stability and periodicity for a class of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions are addressed by constructing suitable Lyapunov functionals and utilizing some inequality techniques. We first prove global exponential converge to 0 of the difference between any two solutions of the original reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions, the existence and uniqueness of equilibrium is the direct results of this procedure. This approach is different from the usually used one where the existence, uniqueness of equilibrium and stability are proved in two separate steps. Furthermore, we prove periodicity of the reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Sufficient conditions ensuring the global exponential stability and the existence of periodic oscillatory solutions for the reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions are given. These conditions are easy to check and have important leading significance in the design and application of reaction-diffusion recurrent neural networks with delays. Finally, two numerical examples are given to show the effectiveness of the obtained results

  18. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN)

    Science.gov (United States)

    Danger, G.; Borget, F.; Chomat, M.; Duvernay, F.; Theulé, P.; Guillemin, J.-C.; Le Sergeant D'Hendecourt, L.; Chiavassa, T.

    2011-11-01

    Context. Studing chemical reactivity in astrophysical environments is an important means for improving our understanding of the origin of the organic matter in molecular clouds, in protoplanetary disks, and possibly, as a final destination, in our solar system. Laboratory simulations of the reactivity of ice analogs provide important insight into the reactivity in these environments. Here, we use these experimental simulations to investigate the Strecker synthesis leading to the formation of aminoacetonitrile in astrophysical-like conditions. The aminoacetonitrile is an interesting compound because it was detected in SgrB2, hence could be a precursor of the smallest amino acid molecule, glycine, in astrophysical environments. Aims: We present the first experimental investigation of the formation of aminoacetonitrile NH2CH2CN from the thermal processing of ices including methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN) in interstellar-like conditions without VUV photons or particules. Methods: We use Fourier Transform InfraRed (FTIR) spectroscopy to monitor the ice evolution during its warming. Infrared spectroscopy and mass spectroscopy are then used to identify the aminoacetonitrile formation. Results: We demonstrate that methanimine can react with -CN during the warming of ice analogs containing at 20 K methanimine, ammonia, and [NH4+ -CN] salt. During the ice warming, this reaction leads to the formation of poly(methylene-imine) polymers. The polymer length depend on the initial ratio of mass contained in methanimine to that in the [NH4+ -CN] salt. In a methanimine excess, long polymers are formed. As the methanimine is progressively diluted in the [NH4+ -CN] salt, the polymer length decreases until the aminoacetonitrile formation at 135 K. Therefore, these results demonstrate that aminoacetonitrile can be formed through the second step of the Strecker synthesis in astrophysical-like conditions.

  19. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong; Rockhold, mark; Peters, Catherine A.; Celia, Michael A.

    2013-02-15

    secondary mineral precipitates (cancrinite), conducting experiments under conditions with and without Al allowed us to experimentally separate the conditions that lead to quartz dissolution from the conditions that lead to quartz dissolution plus cancrinite precipitation. Consistent with our expectations, in the experiments without Al, there was a substantial reduction in volume of the solid matrix. With Al there was a net increase in the volume of the solid matrix. The rate and extent of reaction was found to increase with temperature. These results demonstrate a successful effort to identify conditions that lead to increases and conditions that lead to decreases in solid matrix volume due to reactions of caustic tank wastes with quartz sands. In addition, we have begun to work with slightly larger, intermediate-scale columns packed with Hanford natural sediments and quartz. Similar dissolution and precipitation were observed in these colums. The measurements are being interpreted with reactive transport modeling using STOMP; preliminary observations are reported here. 2) Multi-Scale Imaging and Analysis. Mineral dissolution and precipitation rates within a porous medium will be different in different pores due to natural heterogeneity and the heterogeneity that is created from the reactions themselves. We used a combination of X-ray computed microtomography, backscattered electron and energy dispersive X-ray spectroscopy combined with computational image analysis to quantify pore structure, mineral distribution, structure changes and fluid-air and fluid-grain interfaces. Results and Key Findings: Three of the columns from the reactive flow experiments at PNNL (S1, S3, S4) were imaged using 3D X-ray computed microtomography (XCMT) at BNL and analyzed using 3DMA-rock at SUNY Stony Brook. The imaging results support the mass balance findings reported by Dr. Um’s group, regarding the substantial dissolution of quartz in column S1. An important observation is that of grain

  20. Synchronization of Reaction-Diffusion Neural Networks With Dirichlet Boundary Conditions and Infinite Delays.

    Science.gov (United States)

    Sheng, Yin; Zhang, Hao; Zeng, Zhigang

    2017-10-01

    This paper is concerned with synchronization for a class of reaction-diffusion neural networks with Dirichlet boundary conditions and infinite discrete time-varying delays. By utilizing theories of partial differential equations, Green's formula, inequality techniques, and the concept of comparison, algebraic criteria are presented to guarantee master-slave synchronization of the underlying reaction-diffusion neural networks via a designed controller. Additionally, sufficient conditions on exponential synchronization of reaction-diffusion neural networks with finite time-varying delays are established. The proposed criteria herein enhance and generalize some published ones. Three numerical examples are presented to substantiate the validity and merits of the obtained theoretical results.

  1. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.

    Science.gov (United States)

    Kanzler, Clemens; Schestkowa, Helena; Haase, Paul T; Kroh, Lothar W

    2017-10-11

    In this study, the Maillard reaction of maltose and d-glucose in the presence of l-alanine was investigated in aqueous solution at 130 °C and pH 5. The reactivity of both carbohydrates was compared in regards of their degradation, browning, and antioxidant activity. In order to identify relevant differences in the reaction pathways, the concentrations of selected intermediates such as 1,2-dicarbonyl compounds, furans, furanones, and pyranones were determined. It was found, that the degradation of maltose predominantly yields 1,2-dicarbonyls that still carry a glucosyl moiety and thus subsequent reactions to HMF, furfural, and 2-acetylfuran are favored due to the elimination of d-glucose, which is an excellent leaving group in aqueous solution. Consequently, higher amounts of these heterocycles are formed from maltose. 3-deoxyglucosone and 3-deoxygalactosone represent the only relevant C 6 -1,2-dicarbonyls in maltose incubations and are produced in nearly equimolar amounts during the first 60 min of heating as byproducts of the HMF formation.

  2. Energy and Molecules from Photochemical/Photocatalytic Reactions. An Overview

    Directory of Open Access Journals (Sweden)

    Davide Ravelli

    2015-01-01

    Full Text Available Photocatalytic reactions have been defined as those processes that require both a (not consumed catalyst and light. A previous definition was whether such reactions brought a system towards or away from the (thermal equilibrium. This consideration brings in the question whether a part of the photon energy is incorporated into the photochemical reaction products. Data are provided for representative organic reactions involving or not molecular catalysts and show that energy storage occurs only when a heavily strained structure is generated, and in that case only a minor part of photon energy is actually stored (ΔG up to 25 kcal·mol−1. The green role of photochemistry/photocatalysis is rather that of forming highly reactive intermediates under mild conditions.

  3. Variation in aluminium patch test reactivity over time.

    Science.gov (United States)

    Siemund, Ingrid; Mowitz, Martin; Zimerson, Erik; Bruze, Magnus; Hindsén, Monica

    2017-11-01

    Contact allergy to aluminium has been reported more frequently in recent years. It has been pointed out that positive patch test reactions to aluminium may not be reproducible on retesting. To investigate possible variations in patch test reactivity to aluminium over time. Twenty-one adults, who had previously reacted positively to aluminium, were patch tested with equimolar dilution series in pet. of aluminium chloride hexahydrate and aluminium lactate, four times over a period of 8 months. Thirty-six of 84 (43%) serial dilution tests with aluminium chloride hexahydrate and 49 of 84 (58%) serial dilution tests with aluminium lactate gave negative results. The range of reactivity varied between a negative reaction to aluminium chloride hexahydrate at 10% and/or to aluminium lactate at 12%, and a positive reaction to aluminium chloride hexahydrate at 0.1% and/or to aluminium lactate at 0.12%. The highest individual difference in test reactivity noticed was 320-fold when the two most divergent minimal eliciting concentrations were compared. The patch test reactivity to aluminium varies over time. Aluminium-allergic individuals may have false-negative reactions. Therefore, retesting with aluminium should be considered when there is a strong suspicion of aluminium contact allergy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Imidazolide monolayers for versatile reactive microcontact printing

    NARCIS (Netherlands)

    Hsu, S.H.; Reinhoudt, David; Huskens, Jurriaan; Velders, Aldrik

    2008-01-01

    Imidazolide monolayers prepared from the reaction of amino SAMs with N,N-carbonyldiimidazole (CDI) are used as a versatile platform for surface patterning with amino-, carboxyl- and alcohol-containing compounds through reactive microcontact printing (µCP). To demonstrate the surface reactivity of

  5. 1,3,5-Triethylbenzene Transformation Reactions Compared to Its Transalkylation Reaction with Ethylbenzene

    KAUST Repository

    Akhtar, M. Naseem; Sulaiman, Al Khattaf

    2009-01-01

    The transalkylation of 1,3,5-triethylbenzene (1,3,5-TEB) with ethylbenzene (EB) has been studied over USYtype catalysts using a riser simulator that mimics the operation of a fluidized-bed reactor. The reaction mixture EB and 1,3,5-TEB was used at a molar ratio of 1:1, which is equivalent to 40:60 wt % of EB/1,3,5-TEB, respectively. The reaction temperature was varied from 350 to 500 °C with a time on stream ranging from 3-15 s. The effect of reaction conditions on 1,3,5-TEB conversion, DEB selectivity, and isomerization of 1,3,5-TEB is reported. The transalkylation of 1,3,5-TEB with EB has been compared to the transformation reaction of pure 1,3,5-TEB and EB. The experimental results have revealed that reactivity of 1,3,5-TEB and selectivity of DEB is increased during the transalkylation reaction (EB + 1,3,5-TEB) as compared to the transformation reaction of pure EB or 1,3,5-TEB. The 1,3,5-TEB undergoes isomerization and a cracking reaction to produce DEB and EB but does not undergo any appreciable disproportionation reaction. The isomerization of 1,3,5-TEB is more active at low temperatures, while cracking is more active at high temperatures. © 2009 American Chemical Society.

  6. 1,3,5-Triethylbenzene Transformation Reactions Compared to Its Transalkylation Reaction with Ethylbenzene

    KAUST Repository

    Akhtar, M. Naseem

    2009-08-20

    The transalkylation of 1,3,5-triethylbenzene (1,3,5-TEB) with ethylbenzene (EB) has been studied over USYtype catalysts using a riser simulator that mimics the operation of a fluidized-bed reactor. The reaction mixture EB and 1,3,5-TEB was used at a molar ratio of 1:1, which is equivalent to 40:60 wt % of EB/1,3,5-TEB, respectively. The reaction temperature was varied from 350 to 500 °C with a time on stream ranging from 3-15 s. The effect of reaction conditions on 1,3,5-TEB conversion, DEB selectivity, and isomerization of 1,3,5-TEB is reported. The transalkylation of 1,3,5-TEB with EB has been compared to the transformation reaction of pure 1,3,5-TEB and EB. The experimental results have revealed that reactivity of 1,3,5-TEB and selectivity of DEB is increased during the transalkylation reaction (EB + 1,3,5-TEB) as compared to the transformation reaction of pure EB or 1,3,5-TEB. The 1,3,5-TEB undergoes isomerization and a cracking reaction to produce DEB and EB but does not undergo any appreciable disproportionation reaction. The isomerization of 1,3,5-TEB is more active at low temperatures, while cracking is more active at high temperatures. © 2009 American Chemical Society.

  7. The factor that determines photo-induced crystalline-state reaction

    International Nuclear Information System (INIS)

    Takenaka, Y.

    1995-01-01

    The photo-induced crystalline-state reaction of cobaloxime complexes were investigated by X-ray diffraction method. The reactivity or the reaction rate is dependent only on the volume of the reaction cavity. The hydrogen bond formation of the reactive group and the difference of the base ligand have no effect. (author)

  8. Silica Gel-Mediated Organic Reactions under Organic Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Satoaki Onitsuka

    2012-09-01

    Full Text Available Silica gel was found to be an excellent medium for some useful organic transformations under organic solvent-free conditions, such as (1 the Friedel-Crafts-type nitration of arenes using commercial aqueous 69% nitric acid alone at room temperature, (2 one-pot Wittig-type olefination of aldehydes with activated organic halides in the presence of tributyl- or triphenylphosphine and Hunig’s base, and (3 the Morita-Baylis-Hillman reaction of aldehydes with methyl acrylate. After the reactions, the desired products were easily obtained in good to excellent yields through simple manipulation.

  9. Study on the reactive transient α-λ3-iodanyl-acetophenone complex in the iodine(III)/PhI(I) catalytic cycle of iodobenzene-catalyzed α-acetoxylation reaction of acetophenone by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Wang, Hao-Yang; Zhou, Juan; Guo, Yin-Long

    2012-03-30

    Hypervalent iodine compounds are important and widely used oxidants in organic chemistry. In 2005, Ochiai reported the PhI-catalyzed α-acetoxylation reaction of acetophenone by the oxidation of PhI with m-chloroperbenzoic acid (m-CPBA) in acetic acid. However, until now, the most critical reactive α-λ(3)-iodine alkyl acetophenone intermediate (3) had not been isolated or directly detected. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to intercept and characterize the transient reactive α-λ(3)-iodine alkyl acetophenone intermediate in the reaction solution. The trivalent iodine species was detected when PhI and m-CPBA in acetic acid were mixed, which indicated the facile oxidation of a catalytic amount of PhI(I) to the iodine(III) species by m-CPBA. Most importantly, 3·H(+) was observed at m/z 383 from the reaction solution and this ion gave the protonated α-acetoxylation product 4·H(+) at m/z 179 in MS/MS by an intramolecular reductive elimination of PhI. These ESI-MS/MS studies showed the existence of the reactive α-λ(3)-iodine alkyl acetophenone intermediate 3 in the catalytic cycle. Moreover, the gas-phase reactivity of 3·H(+) was consistent with the proposed solution-phase reactivity of the α-λ(3)-iodine alkyl acetophenone intermediate 3, thus confirming the reaction mechanism proposed by Ochiai. Copyright © 2012 John Wiley & Sons, Ltd.

  10. The oxidative response and viable reaction mechanism of the textile dyes by fenton reagent

    International Nuclear Information System (INIS)

    Masooda, Q.; Hijira, T.; Sitara, M.; Sehar, M.; Sundus, A.; Mohsin, A.

    2017-01-01

    The mechanism of the degradation of the Reactive Red 239 and Reactive Blue 19 by Fenton reagent was studied by advanced oxidation process in aqueous medium. The spectroscopic technique was adopted for the measurements of dye concentration. Moreover they were determined at 540 nm and 590 nm, respectively. Kinetics of the reaction was studied under the effect of concentration of reactive dyes, concentration of oxidant were followed under pseudo first order condition and found to influence the catalytic mechanism. The pH of the medium, vibrant response of several cations and anions and influence of ionic strength on the reaction kinetics were also monitored. Physical evidences for the degradation and mineralization of the dyes were evaluated by Lime water test, Ring Test and TLC test also confirmed the degradation of dye. Inhibitory effects of dyes were observed by CO3-, HCO3-, HPO42-, Cl-, I- Al3+ and Na+. Thermodynamic activation parameters in the oxidation reaction were studied and mode of mechanism was suggested on the basic of these parameters. This study explored the safe and eco friendly degradation of the textile dyes under Pseudo first order rate constant. It was observed that Fenton assisted degradation of the dyes under controlled conditions was found to be favorable for the treatment of textile wastewater. Moreover compared to other chemical methods it is effective and harmless to the environment. (author)

  11. Biogeochemical Reactions Under Simulated Europa Ocean Conditions

    Science.gov (United States)

    Amashukeli, X.; Connon, S. A.; Gleeson, D. F.; Kowalczyk, R. S.; Pappalardo, R. T.

    2007-12-01

    Galileo data have demonstrated the probable presence of a liquid water ocean on Europa, and existence of salts and carbon dioxide in the satellite's surface ice (e.g., Carr et al., 1998; McCord et al., 1999, Pappalardo et al., 1999; Kivelson et al., 2000). Subsequently, the discovery of chemical signatures of extinct or extant life in Europa's ocean and on its surface became a distinct possibility. Moreover, understanding of Europa's potential habitability is now one of the major goals of the Europa Orbiter Flagship mission. It is likely, that in the early stages of Europa's ocean formation, moderately alkaline oceanic sulfate-carbonate species and a magnetite-silicate mantel could have participated in low-temperature biogeochemical sulfur, iron and carbon cycles facilitated by primitive organisms (Zolotov and Shock, 2004). If periodic supplies of fresh rock and sulfate-carbonate ions are available in Europa's ocean, then an exciting prospect exists that life may be present in Europa's ocean today. In our laboratory, we began the study of the plausible biogeochemical reactions under conditions appropriate to Europa's ocean using barophilic psychrophilic organisms that thrive under anaerobic conditions. In the near absence of abiotic synthetic pathways due to low Europa's temperatures, the biotic synthesis may present a viable opportunity for the formation of the organic and inorganic compounds under these extreme conditions. This work is independent of assumptions regarding hydrothermal vents at Europa's ocean floor or surface-derived oxidant sources. For our studies, we have fabricated a high-pressure (5,000 psi) reaction vessel that simulates aqueous conditions on Europa. We were also successful at reviving barophilic psychrophilic strains of Shewanella bacterium, which serve as test organisms in this investigation. Currently, facultative barophilic psychrophilic stains of Shewanella are grown in the presence of ferric food source; the strains exhibiting iron

  12. Reaction of alkali nitrates with PuO2

    International Nuclear Information System (INIS)

    Yamashita, T.; Ohuchi, K.; Takahashi, K.; Fujino, T.

    1990-01-01

    Improvement of solubility of plutonium dioxide (PuO 2 ) in acid solution is important to establish the nuclear fuel reprocessing technique for uranium-plutonium mixed oxide fuels. If insoluble PuO 2 can be converted into any soluble plutonium compounds, problems arising from the fuel dissolution process will be reduced to a great extent. Alkali metal plutonates and alkaline-earth plutonates are known to have enhanced solubility in mineral acids. However, the reaction conditions to form such plutonates and characterization thereof are not well elucidated. Then the reactivity and reaction conditions to form lithium and sodium plutonates from their nitrates and PuO 2 were studied at temperatures between 500 and 900 degree C and alkali metal to plutonium atom ratios between 0.5 and 6 by means of thermogravimetry as well as X-ray diffraction technique. The reaction behavior of alkali plutonates will be discussed in comparison with corresponding alkali uranates

  13. Reactive Granulomatous Dermatitis: A Review of Palisaded Neutrophilic and Granulomatous Dermatitis, Interstitial Granulomatous Dermatitis, Interstitial Granulomatous Drug Reaction, and a Proposed Reclassification.

    Science.gov (United States)

    Rosenbach, Misha; English, Joseph C

    2015-07-01

    The terms "palisaded neutrophilic and granulomatous dermatitis," "interstitial granulomatous dermatitis," and the subset "interstitial granulomatous drug reaction" are a source of confusion. There exists substantial overlap among the entities with few strict distinguishing features. We review the literature and highlight areas of distinction and overlap, and propose a streamlined diagnostic workup for patients presenting with this cutaneous reaction pattern. Because the systemic disease associations and requisite workup are similar, and the etiopathogenesis is poorly understood but likely similar among these entities, we propose the simplified unifying term "reactive granulomatous dermatitis" to encompass these entities. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Reaction of Oxy Hemoglobin with Nitrite

    DEFF Research Database (Denmark)

    Hathazi, Denisa; Scurtu, Florina; Bischin, Cristina

    2018-01-01

    The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb), an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high...... to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations......-peroxynitrate. Density functional theory (DFT) calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp...

  15. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  16. Reaction of Aldehydes/Ketones with Electron-Deficient 1,3,5-Triazines Leading to Functionalized Pyrimidines as Diels-Alder/Retro-Diels-Alder Reaction Products: Reaction Development and Mechanistic Studies.

    Science.gov (United States)

    Yang, Kai; Dang, Qun; Cai, Pei-Jun; Gao, Yang; Yu, Zhi-Xiang; Bai, Xu

    2017-03-03

    Catalytic inverse electron demand Diels-Alder (IEDDA) reactions of heterocyclic aza-dienes are rarely reported since highly reactive and electron-rich dienophiles are often found not compatible with strong acids such as Lewis acids. Herein, we disclose that TFA-catalyzed reactions of electron-deficient 1,3,5-triazines and electron-deficient aldehydes/ketones can take place. These reactions led to highly functionalized pyrimidines as products in fair to good yields. The reaction mechanism was carefully studied by the combination of experimental and computational studies. The reactions involve a cascade of stepwise inverse electron demand hetero-Diels-Alder (ihDA) reactions, followed by retro-Diels-Alder (rDA) reactions and elimination of water. An acid was required for both ihDA and rDA reactions. This mechanism was further verified by comparing the relative reactivity of aldehydes/ketones and their corresponding vinyl ethers in the current reaction system.

  17. Gas-phase reactions of glycine, alanine, valine and their N-methyl derivatives with the nitrosonium ion, NO+.

    Science.gov (United States)

    Freitas, M A; O'Hair, R A; Schmidt, J A; Tichy, S E; Plashko, B E; Williams, T D

    1996-10-01

    The gas-phase reactions of the nitrosonium ion, NO+ with the amino acids glycine, alanine and valine and their N-methyl derivatives were investigated under chemical ionization mass spectrometric (CIMS) conditions. Two products were observed in all cases: the formation of the iminium ion and the formation of an [M-H]+ ion. The latter product is consistent with a reaction channel involving hydride abstraction by NO+, and was confirmed by (i) examining the Ar+CI mass spectra of the same amino acids under similar source conditions and (ii) examining the unimolecular fragmentation reactions of the [M + H]+ ions of the N-nitroso-N-methyl derivatives of each of the amino acids in a tandem mass spectrometer. Further insights into the reaction of glycine with NO+ were obtained by performing ab initio calculations (at the MP2/6-31G* parallel HF/6-31G* level). These results indicate that four reactions are thermodynamically viable for glycine: (i) hydride abstraction; (ii) iminium ion formation (with concomitant loss of HONO and CO); (iii) diazonium ion formation; and (iv) diazonium ion formation followed by loss of N2. Possible reasons why reactions (iii) and (iv) are not observed are discussed, and comparisons with solution reactivity and the gas-phase reactivity of NO+ are also made.

  18. Quantum mechanical calculations of vibrational population inversion in chemical reactions - Numerically exact L-squared-amplitude-density study of the H2Br reactive system

    Science.gov (United States)

    Zhang, Y. C.; Zhang, J. Z. H.; Kouri, D. J.; Haug, K.; Schwenke, D. W.

    1988-01-01

    Numerically exact, fully three-dimensional quantum mechanicl reactive scattering calculations are reported for the H2Br system. Both the exchange (H + H-prime Br to H-prime + HBr) and abstraction (H + HBR to H2 + Br) reaction channels are included in the calculations. The present results are the first completely converged three-dimensional quantum calculations for a system involving a highly exoergic reaction channel (the abstraction process). It is found that the production of vibrationally hot H2 in the abstraction reaction, and hence the extent of population inversion in the products, is a sensitive function of initial HBr rotational state and collision energy.

  19. Computer-assisted mechanistic evaluation of organic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gushurst, A.J.

    1988-01-01

    CAMEO, an interactive computer program which predicts the products of organic reactions given starting materials and conditions, has been refined and extended in the area of base-catalyzed and nucleophilic processes. The present capabilities of the program are outlined including brief discussion on the major segments in CAMEO: graphics, perception, and reaction evaluation. The implementation of general algorithms for predicting the acidities of a vast number of organic compounds to within 2 pK{sub a} units in dimethylsulfoxide and water are then described, followed by a presentation of the reactivity rules used by the program to evaluate nucleophilc reactions. Finally, a treatment of sulfur and phosphorus ylides, iminophosphoranes, and P=X-activated anions is given illuminating the various competitions available for these reagents, such as between proton transfer and addition, 1,2- and 1,4-addition, and the Peterson, Wittig, and Horner-Emmons olefination reactions.

  20. Stability and Reactivity of Cyclometallated Naphthylamine Complexes in Pd-C Bond Insertion Reactions with Coordinated Alkynylphosphanes

    KAUST Repository

    Chen, Shuli

    2013-09-17

    Phenylbis(phenylethynyl)phosphane PhP(C≡CPh)2 coordinates regiospecifically to the α-methyl-chiral ortho-platinated and -palladated naphthylamine units at the positions trans to the nitrogen donors. The P→Pt coordination bond is kinetically inert, whereas the P→Pd bond is labile. Upon heating of these phosphane complexes at 70 °C, one of the C≡C bonds in the coordinated PhP(C≡CPh)2 was activated towards an intermolecular Pd-C bond insertion reaction with an external ortho-palladated naphthylamine ring. No intramolecular insertion reaction occurred. In contrast to its palladium analogue, the ortho-platinated ring is not reactive towards coordinated PhP(C≡CPh)2, although it can promote the Pd-C bond insertion reaction. However, despite the high kinetic stability of the P→Pt coordination, the organoplatinum unit is a noticeably weaker activator than its organopalladium counterpart. The chirality of the reacting ortho-metallated naphthylamine ligand exhibited high stereochemical influence on the formation of the new stereogenic phosphorus center during the course of these C-C bond-formation reactions. The coordination chemistry and the absolute stereochemistry of the dimetallic products were determined by single-crystal X-ray crystallographic analysis. The asymmetric monoinsertion of PhP(C≡CPh)2 coordinated to a cyclometallated N,N-dimethyl naphthyl/benzylamine template into the Pd-C bonds of N,N-dimethylnaphthylamine palladacycles has been demonstrated for the synthesis of a variety of new P-stereogenic homo- or heterodimetallic complexes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation.

    Science.gov (United States)

    Cheng, Hanyang; Song, Dean; Chang, Yangyang; Liu, Huijuan; Qu, Jiuhui

    2015-12-01

    Tramadol (TRA) is one of the most detected analgesics in environmental matrices, and it is of high significance to study the reactivity of TRA during chlorination considering its potential toxicity to the environment. The chlorine/TRA reaction is first order with respect to the TRA concentration, and a combination of first-order and second-order with respect to chlorine concentration. The pH dependence of the observed rate constants (kobs) showed that the TRA oxidation reactivity increased with increasing pH. kobs can be quantitatively described by considering all active species including Cl2, Cl2O and HOCl, and the individual rate constants of HOCl/TRA(0), HOCl/TRAH(+), Cl2/TRA and Cl2O/TRA reactions were calculated to be (2.61±0.29)×10(3)M(-1)s(-1), 14.73±4.17M(-1)s(-1), (3.93±0.34)×10(5)M(-1)s(-1) and (5.66±1.83)×10(6)M(-1)s(-1), respectively. Eleven degradation products were detected with UPLC-Q-TOF-MS, and the corresponding structures of eight products found under various pH conditions were proposed. The amine group was proposed to be the initial attack site under alkaline pH conditions, where reaction of the deprotonated amine group with HOCl is favorable. Under acidic and neutral pH conditions, however, two possible reaction pathways were proposed. One is an electrophilic substitution on the aromatic ring, and another is an electrophilic substitution on the nitrogen, leading to an N-chlorinated intermediate, which can be further oxidized. Finally, the SOS/umu test showed that the genotoxicity of TRA chlorination products increased with increasing dosage of chlorine, which was mostly attributed to the formation of some chlorine substitution products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Time space domain decomposition methods for reactive transport - Application to CO2 geological storage

    International Nuclear Information System (INIS)

    Haeberlein, F.

    2011-01-01

    Reactive transport modelling is a basic tool to model chemical reactions and flow processes in porous media. A totally reduced multi-species reactive transport model including kinetic and equilibrium reactions is presented. A structured numerical formulation is developed and different numerical approaches are proposed. Domain decomposition methods offer the possibility to split large problems into smaller subproblems that can be treated in parallel. The class of Schwarz-type domain decomposition methods that have proved to be high-performing algorithms in many fields of applications is presented with a special emphasis on the geometrical viewpoint. Numerical issues for the realisation of geometrical domain decomposition methods and transmission conditions in the context of finite volumes are discussed. We propose and validate numerically a hybrid finite volume scheme for advection-diffusion processes that is particularly well-suited for the use in a domain decomposition context. Optimised Schwarz waveform relaxation methods are studied in detail on a theoretical and numerical level for a two species coupled reactive transport system with linear and nonlinear coupling terms. Well-posedness and convergence results are developed and the influence of the coupling term on the convergence behaviour of the Schwarz algorithm is studied. Finally, we apply a Schwarz waveform relaxation method on the presented multi-species reactive transport system. (author)

  3. Gasification reactivities of cokes derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1985-10-01

    Gasification reactivities of cokes obtained from Athabasca bitumen by delayed coking and fluid coking were compared in fixed and fluidized bed systems. In both systems the C + O/sub 2/ reaction accounted for the most of converted carbon. The C + H/sub 2/O reaction proceeded to a smaller extent. The bulk reactivity of the fluid coke was higher than that of delayed coke, when comparing -20 to +60 mesh particles in fluidized bed and -14 to +20 mesh particles in fixed bed, respectively. However, the reactivity of the delayed coke expressed per unit of surface area was markedly higher than that of the fluid coke. 9 figs., 7 tabs., 6 refs. (A.V.)

  4. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    Energy Technology Data Exchange (ETDEWEB)

    Gong, R [Georgia Institute of Technology; Lu, C [Georgia Institute of Technology; Luo, Jian [Georgia Institute of Technology; Wu, Wei-min [Stanford University; Cheng, H. [Stanford University; Criddle, Craig [Stanford University; Kitanidis, Peter K. [Stanford University; Gu, Baohua [ORNL; Watson, David B [ORNL; Jardine, Philip M [ORNL; Brooks, Scott C [ORNL

    2011-03-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  5. Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature

    International Nuclear Information System (INIS)

    Jin, Fei; Al-Tabbaa, Abir

    2013-01-01

    Highlights: • The characteristics of reactive MgO vary significantly in terms of their impurity content and reactivity depending on their sources and calcination conditions. • The synthesis of magnesium silicate hydrate (MSH) is affected by the characteristics of the precursors, i.e., MgO and silica. • The reaction process in the MgO–SiO 2 –H 2 O system can be followed by TGA, and is essential to develop MSH-based materials. - Abstract: The synthesis of magnesium silicate hydrate (MSH), which has wide applications in both construction and environmental fields, has been studied for decades. However, it is known that the characteristics of magnesia (MgO) vary significantly depending on their calcination conditions, which is expected to affect their performance in the MgO–SiO 2 –H 2 O system. This paper investigated the effect of different MgO and silica sources on the formation of magnesium silicate hydrate (MSH) at room temperature. The hydration process was studied by mixing commercial reactive MgO and silica powders with water and curing for 1, 7 and 28 days. The hydration products were analysed with the help of X-ray diffraction (XRD) and thermogravimatric analysis (TGA). The results showed the continuous consumption of MgO and the existence of MSH and brucite and other minor phases such as magnesite and calcite. It is found that the Mg and Si sources have significant effect on the hydration process of MgO–SiO 2 –H 2 O system. The reaction degree is controlled by the availability of dissolved Mg and Si in the solution. The former is determined by the reactivity of MgO and the latter is related to the reactivity of the silica as well as the pH of the system

  6. Synthesis of IV-VI Transition Metal Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution Reaction

    KAUST Repository

    Alhajri, Nawal Saad

    2016-01-01

    Interstitial carbides and nitrides of early transition metals in Groups IV-VI exhibit platinum-like behavior which makes them a promising candidate to replace noble metals in a wide variety of reactions. Most synthetic methods used to prepare these materials lead to bulk or micron size powder which limits their use in reactions in particular in catalytic applications. Attempts toward the production of transition metal carbide and nitride nanoparticles in a sustainable, simple and cheap manner have been rapidly increasing. In this thesis, a new approach was presented to prepare nano-scale transition metal carbides and nitrides of group IV-VI with a size as small as 3 nm through the reaction of transition metal precursor with mesoporous graphitic carbon nitride (mpg-C3N4) that not only provides confined spaces for nanoparticles formation but also acts as a chemical source of nitrogen and carbon. The produced nanoparticles were characterized by powder X-ray diffraction (XRD), temperature-programmed reaction with mass spectroscopy (MS), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The effects of the reaction temperature, the ratio of the transition metal precursor to the reactive template (mpg-C3N4), and the selection of the carrier gas (Ar, N2, and NH3) on the resultant crystal phases and structures were investigated. The results indicated that different tantalum phases with cubic structure, TaN, Ta2CN, and TaC, can be formed under a flow of nitrogen by changing the reaction temperatures. Two forms of tantalum nitride, namely TaN and Ta3N5, were selectively formed under N2 and NH3 flow, respectively. Significantly, the formation of TaC, Ta2CN, and TaN can be controlled by altering the weight ratio of the C3N4 template relative to the Ta precursor at 1573 K under a flow of nitrogen where high C3N4/Ta precursor ratio generally resulted in high carbide

  7. Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling

    KAUST Repository

    Rachidi, Mariam El; Thion, Sé bastien; Togbé , Casimir; Dayma, Guillaume; Mehl, Marco; Dagaut, Philippe; Pitz, William J.; Zá dor, Judit; Sarathy, Mani

    2016-01-01

    This study is concerned with the identification and quantification of species generated during the combustion of cyclopentane in a jet stirred reactor (JSR). Experiments were carried out for temperatures between 740 and 1250K, equivalence ratios from 0.5 to 3.0, and at an operating pressure of 10atm. The fuel concentration was kept at 0.1% and the residence time of the fuel/O/N mixture was maintained at 0.7s. The reactant, product, and intermediate species concentration profiles were measured using gas chromatography and Fourier transform infrared spectroscopy. The concentration profiles of cyclopentane indicate inhibition of reactivity between 850-1000K for ϕ = 2.0 and ϕ = 3.0. This behavior is interesting, as it has not been observed previously for other fuel molecules, cyclic or non-cyclic. A kinetic model including both low- and high-temperature reaction pathways was developed and used to simulate the JSR experiments. The pressure-dependent rate coefficients of all relevant reactions lying on the PES of cyclopentyl+O, as well as the C-C and C-H scission reactions of the cyclopentyl radical were calculated at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The simulations reproduced the unique reactivity trend of cyclopentane and the measured concentration profiles of intermediate and product species. Sensitivity and reaction path analyses indicate that this reactivity trend may be attributed to differences in the reactivity of allyl radical at different conditions, and it is highly sensitive to the C-C/C-H scission branching ratio of the cyclopentyl radical decomposition.

  8. Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling

    KAUST Repository

    Rachidi, Mariam El

    2016-06-23

    This study is concerned with the identification and quantification of species generated during the combustion of cyclopentane in a jet stirred reactor (JSR). Experiments were carried out for temperatures between 740 and 1250K, equivalence ratios from 0.5 to 3.0, and at an operating pressure of 10atm. The fuel concentration was kept at 0.1% and the residence time of the fuel/O/N mixture was maintained at 0.7s. The reactant, product, and intermediate species concentration profiles were measured using gas chromatography and Fourier transform infrared spectroscopy. The concentration profiles of cyclopentane indicate inhibition of reactivity between 850-1000K for ϕ = 2.0 and ϕ = 3.0. This behavior is interesting, as it has not been observed previously for other fuel molecules, cyclic or non-cyclic. A kinetic model including both low- and high-temperature reaction pathways was developed and used to simulate the JSR experiments. The pressure-dependent rate coefficients of all relevant reactions lying on the PES of cyclopentyl+O, as well as the C-C and C-H scission reactions of the cyclopentyl radical were calculated at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The simulations reproduced the unique reactivity trend of cyclopentane and the measured concentration profiles of intermediate and product species. Sensitivity and reaction path analyses indicate that this reactivity trend may be attributed to differences in the reactivity of allyl radical at different conditions, and it is highly sensitive to the C-C/C-H scission branching ratio of the cyclopentyl radical decomposition.

  9. Design report on the guide box-reactivity and safety control plates for MPR reactor under normal operation conditions

    International Nuclear Information System (INIS)

    Markiewicz, M.

    1999-01-01

    The reactivity control system for the MPR reactor (Multi Purpose Reactor) is a critical component regarding safety, it must ensure a fast shut down, maintaining the reactor in subcritical condition under normal or accidental operation condition. For this purpose, this core component must be designed to maintain its operating capacity during all the residence time and under any foreseen operation condition. The mechanical design of control plates and guide boxes must comply with structural integrity, maintaining its geometric and dimensional stability within the pre-established limits to prevent interferences with other core components. For this, the heat generation effect, mechanical loads and environment and irradiation effects were evaluated during the mechanical design. The reactivity control system is composed of guide boxes, manufactured from Aluminium alloy, located between the fuel elements, and control absorber plates of Ag-In-Cd alloy hermetically enclosed by a cladding of stainless steel sliding inside de guide boxes. The upward-downward movement is transmitted by a rod from the motion device located at the reactor lower part. The design requirements, criteria and limits were established to fulfill with the normal and abnormal operation conditions. The design verifications were performed by analytical method, estimating the guide box and control plates residence time. The result of the analysis performed, shows that the design of the reactivity control system and the material selected, are appropriate to fulfill the functional requirements, with no failures attributed to the mechanical design. (author)

  10. The composition dependence of the photochemical reactivity of strontium barium titanate

    Science.gov (United States)

    Bhardwaj, Abhilasha

    The efficiency of particulate water photolysis catalysts is impractically low due to the recombination of intermediate species and charge carriers. The back reaction can occur easily if the oxidation and reduction sites on the surface of the catalyst are not far enough apart. It is hypothesized that it will be possible to increase the separation of the sites of the two half reactions and reduce the recombination of photogenerated charge carriers by using a ferroelectric material with permanent internal dipolar fields. This separation of the reaction sites may significantly increase the efficiency of the process. The present work compares the photochemical reactivities of ferroelectric and nonferroelectric materials (SrxBa1-xTiO 3, 0.0≤ x ≤1.0) with similar composition and structure. The reactivities are compared by measuring the color change of methylene blue dye after the aqueous dye solution reacts on the surface of ceramic sample pellets as a result of exposure to UV light. The reactivities are also compared by measuring the amount of silver that is formed when an aqueous AgNO3 solution photochemically reacts on the surface. The change in the color of the dye is measured by diffuse reflectance spectroscopy and absorbance measurements. The amount of silver is measured by atomic force microscopy. The photochemical reactivity of SrxBa1-xTiO3 shows a local maximum at the composition of the ferroelectric to non-ferroelectric transition. Also, the reactivities decrease as BaTiO3 and SrTiO3 become less pure. The dominant factors causing this trend in reactivities of SrxBa1-xTiO3 are the dielectric constant and alloy scattering. It is found that higher values of the dielectric constant increase the photochemical reactivity by enlarging the space charge region. The increase in alloy scattering in SrxBa1-xTiO 3 solid solutions as x increases from zero or decreases from 1, has adverse effect on reactivity. There are other factors such as ferroelectric polarization

  11. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared......Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...... to that of a series of microsolvated oxygen centered anions. The association of the nucleophiles with a single water or methanol molecule allows the α-effect to be observed in the SN2 reaction with methyl chloride; this effect was not apparent in the reactions of the unsolvated anions. The results suggest...

  12. Hydroxyl radical reactivity with diethylhydroxylamine

    International Nuclear Information System (INIS)

    Gorse, R.A. Jr.; Lii, R.R.; Saunders, B.B.

    1977-01-01

    Diethylhydroxylamine (DEHA) reacts with gas-phase hydroxyl radicals on every third collision, whereas the corresponding reaction in aqueous solution is considerably slower. The high gas-phase reactivity explains the predicted inhibitory effect of DEHA in atmospheric smog processes. Results from the studies in the aqueous phase are helpful in predicting the mechanism of the reaction of DEHA with hydroxyl radicals

  13. Safer operating conditions and optimal scaling-up process for cyclohexanone peroxide reaction

    International Nuclear Information System (INIS)

    Zang, Na; Qian, Xin-Ming; Liu, Zhen-Yi; Shu, Chi-Min

    2015-01-01

    Highlights: • Thermal hazard of cyclohexanone peroxide reaction was measured by experimental techniques. • Levenberg–Marquardt algorithm was adopted to evaluate kinetic parameters. • Safer operating conditions at laboratory scale were acquired by BDs and TDs. • The verified safer operating conditions were used to obtain the optimal scale-up parameters applied in industrial plants. - Abstract: The cyclohexanone peroxide reaction process, one of the eighteen hazardous chemical processes identified in China, is performed in indirectly cooled semibatch reactors. The peroxide reaction is added to a mixture of hydrogen peroxide and nitric acid, which form heterogeneous liquid–liquid systems. A simple and general procedure for building boundary and temperature diagrams of peroxide process is given here to account for the overall kinetic expressions. Such a procedure has been validated by comparison with experimental data. Thermally safer operating parameters were obtained at laboratory scale, and the scaled-up procedure was performed to give the minimum dosing time in an industrial plant, which is in favor of maximizing industrial reactor productivity. The results are of great significance for governing the peroxide reaction process apart from the thermal runaway region. It also greatly aids in determining optimization on operating parameters in industrial plants.

  14. Quantum mechanical reactive scattering theory for simple chemical reactions: Recent developments in methodology and applications

    International Nuclear Information System (INIS)

    Miller, W.H.

    1989-08-01

    It has recently been discovered that the S-matrix version of the Kohn variational principle is free of the ''Kohn anomalies'' that have plagued other versions and prevented its general use. This has made a major contribution to heavy particle reactive (and also to electron-atom/molecule) scattering which involve non-local (i.e., exchange) interactions that prevent solution of the coupled channel equations by propagation methods. This paper reviews the methodology briefly and presents a sample of integral and differential cross sections that have been obtained for the H + H 2 → H 2 +H and D + H 2 → HD + H reactions in the high energy region (up to 1.2 eV translational energy) relevant to resonance structures reported in recent experiments. 35 refs., 11 figs

  15. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  16. Biogeochemical processes in a clay formation in situ experiment: Part F - Reactive transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tournassat, Christophe, E-mail: c.tournassat@brgm.fr [BRGM, French Geological Survey, Orleans (France); Alt-Epping, Peter [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland); Gaucher, Eric C. [BRGM, French Geological Survey, Orleans (France); Gimmi, Thomas [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland)] [Laboratory for Waste Management, Paul Scherrer Institut, Villigen (Switzerland); Leupin, Olivier X. [NAGRA, CH-5430 Wettingen (Switzerland); Wersin, Paul [Gruner Ltd., CH-4020 Basel (Switzerland)

    2011-06-15

    Highlights: > Reactive transport modelling was used to simulate simultaneously solute transport, thermodynamic reactions, ion exchange and biodegradation during an in-situ experiment in a clay-rock formation. > Opalinus clay formation has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. > Buffering capacity is mainly attributed to the carbonate system and to the reactivity of clay surfaces (cation exchange, pH buffering). - Abstract: Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C, dissolved inorganic C and SO{sub 4} concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of

  17. Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden)

    International Nuclear Information System (INIS)

    Molinero, Jorge; Raposo, Juan R.; Galindez, Juan M.; Arcos, David; Guimera, Jordi

    2008-01-01

    The Simpevarp area is one of the alternative sites being considered for the deep geological disposal of high level radioactive waste in Sweden. In this paper, a coupled regional groundwater flow and reactive solute transport model of the Simpevarp area is presented that integrates current hydrogeological and hydrochemical data of the area. The model simulates the current hydrochemical pattern of the groundwater system in the area. To that aim, a conceptual hydrochemical model was developed in order to represent the dominant chemical processes. Groundwater flow conditions were reproduced by taking into account fluid-density-dependent groundwater flow and regional hydrogeologic boundary conditions. Reactive solute transport calculations were performed on the basis of the velocity field so obtained. The model was calibrated and sensitivity analyses were carried out in order to investigate the effects of heterogeneities of hydraulic conductivity in the subsurface medium. Results provided by the reactive transport model are in good agreement with much of the measured hydrochemical data. This paper emphasizes the appropriateness of the use of reactive solute transport models when water-rock interaction reactions are involved, and demonstrates what powerful tools they are for the interpretation of hydrogeological and hydrochemical data from site geological repository characterization programs, by providing a qualitative framework for data analysis and testing of conceptual assumptions in a process-oriented approach

  18. Elucidating the hard/soft acid/base principle: A perspective based on half-reactions

    International Nuclear Information System (INIS)

    Ayers, Paul W.; Parr, Robert G.; Pearson, Ralph G.

    2006-01-01

    A comprehensive analysis is presented for the acid-base double-exchange reaction as well as the associated acid-displacement and base-displacement 'half-reactions' with the goal of elucidating the meaning of the hard/soft acid/base (HSAB) principle and the conditions for its validity. When electron-transfer effects are important and other effects are negligible, the HSAB principle is driven by the surpassing stability of the soft acid/soft base product. When electrostatic effects dominate the reactivity, the HSAB principle is driven by the surpassing stability of the hard acid/hard base product. Because electron-transfer effects favor soft/soft interactions, while electrostatic effects favor hard/hard interactions, acid-base exchange reactions may be used to determine whether a reagent's reactivity is dominated by electron-transfer or by electrostatic effects. Because electron-transfer and electrostatic considerations separately favor the HSAB principle whenever the electronic chemical potentials of the acids and bases involved in the reaction are similar, our analysis provides strong support for the HSAB principle. The electronic chemical potential measures the intrinsic strength of acids and bases

  19. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.

    Science.gov (United States)

    Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V

    2014-06-14

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  20. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns

    OpenAIRE

    Hartwig, Jan; Metternich, Jan B.; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V.

    2014-01-01

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  1. A new necessary condition for Turing instabilities.

    Science.gov (United States)

    Elragig, Aiman; Townley, Stuart

    2012-09-01

    Reactivity (a.k.a initial growth) is necessary for diffusion driven instability (Turing instability). Using a notion of common Lyapunov function we show that this necessary condition is a special case of a more powerful (i.e. tighter) necessary condition. Specifically, we show that if the linearised reaction matrix and the diffusion matrix share a common Lyapunov function, then Turing instability is not possible. The existence of common Lyapunov functions is readily checked using semi-definite programming. We apply this result to the Gierer-Meinhardt system modelling regenerative properties of Hydra, the Oregonator, to a host-parasite-hyperparasite system with diffusion and to a reaction-diffusion-chemotaxis model for a multi-species host-parasitoid community. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  3. Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines

    Science.gov (United States)

    Strehlau, Jennifer H.; Toner, Brandy M.; Arnold, William A.; Penn, R. Lee

    2017-01-01

    The reactivity of iron oxyhydroxide nanoparticles in low pH and high ionic strength solutions was quantified to assess abiotic contributions to oxidation-reduction chemistry in acidic brine environments, such as mine groundwater seepage, lakes in Western Australia, and acid mine drainage settings, which are of global interest for their environmental impacts and unique geomicrobiology. Factors expected to influence accessible and reactive surface area, including Fe(II) adsorption and aggregate size, were measured as a function of pH and CaCl2 concentration and related to the kinetics of redox reactions in aqueous suspensions of synthetic goethite (α-FeOOH), akaganeite (β-FeOOH), and ferrihydrite (Fe10O14(OH)2) nanoparticles. Aqueous conditions and iron oxyhydroxides were chosen based on characterization of natural iron-rich mine microbial mats located in Soudan Underground Mine State Park, Minnesota, USA. Quinone species were used as redox sensors because they are well-defined probes and are present in natural organic matter. Fe(II) adsorption to the iron oxyhydroxide mineral surfaces from aqueous solution was measurable only at pH values above 4 and either decreased or was not affected by CaCl2 concentration. Concentrations at or above 0.020 M CaCl2 in acetate buffer (pH 4.5) induced particle aggregation. Assessment of Fe(II) adsorption and particle aggregation in acidic brine suggested that accessible reactive surface area may be limited in acidic brines. This was supported by observations of decreasing benzoquinone reduction rate by adsorbed Fe(II) at high CaCl2 concentration. In contrast, the hydroquinone oxidation rate increased at high CaCl2 concentrations, which may be due to suppressed adsorption of Fe(II) generated by the reaction. Results suggest that iron geochemical cycling in acidic brine environments will be substantially different than for iron oxyhydroxides in low-saline waters with circumneutral pH. These findings have implications for acidic

  4. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C.R.; van Rij, A.M.

    1988-01-01

    The effects of Fe/sup 3 +/, lipid peroxy radicals and the antioxidant butylated hydroxytoluene on the 2-thiobarbituric (TBA) acid quantitation of plasma lipid peroxides were investigated. Whole plasma and plasma fractions prepared by trichloroacetic acid (TCA) protein precipitation and lipid extraction, demonstrated markedly differing TBA reactivities in the presence or absence of added Fe/sup 3 +/. Examination of the spectral profiles of the TBA reacted whole plasma and TCA precipitated fractions demonstrated the presence of interfering compounds which gave rise to an artifactual increase in lipid peroxide concentrations. In contrast the TBA reacted lipid extracts had low levels of interfering compounds that could be removed by our previously described high pressure liquid chromatographic method. Further characterization of the TBA reactivity of the lipid extract showed that Fe/sup 3 +/ at an optimal concentration of 0.5 mM was necessary for the quantitative decomposition of the lipid peroxides to the TBA reactive product malondialdehyde (MDA). However the presence of Fe/sup 3 +/ resulted in further peroxidation of any unsaturated lipids present.

  5. Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes.

    Science.gov (United States)

    Alaton, Idil Arslan; Balcioglu, Isil Akmehmet; Bahnemann, Detlef W

    2002-03-01

    In the present study the treatment efficiency of different AOPs (O3/OH- H2O2/UV-C and TiO2/UV-A) were compared for the oxidation of simulated reactive dyebath effluent containing a mixture of monochlorotriazine type reactive dyes and various dye auxiliary chemicals at typical concentrations encountered in exhausted reactive dyebath liquors. A525 (color), UV280 (aromaticity) and TOC removal rates were assessed to screen the most appropriate oxidative process in terms of reactive dyebath effluent treatment. Special emphasis was laid on the effect of reaction pH and applied oxidant (O3, H2O2) dose on the observed reaction kinetics. It was established that the investigated AOPs were negatively affected by the Na2CO3 content (= 867 mg/L) which is always present at high concentrations in dychouse effluents since it is applied as a pH buffer and dye fixation agent during the reactive dyeing process. The ozonation reaction exhibited almost instantaneous decolorization kinetics and a reasonable TOC reduction rate. It appeared to be stable under the investigated advanced oxidation conditions and outranked the other studied AOPs based on the above mentioned criteria. Besides, the electrical energy requirements based on the EE/O parameter (the electrical energy required per order of pollutant removal in 1 m3 wastewater) was calculated for the homogenous AOPs in terms of decolorization kinetics. In view of the electrical energy efficiency, ozonation and H2O2/UV-C oxidation at the selected treatment conditions appear to be promising candidates for full-scale dyehouse effluent decolorization.

  6. Haemoglobins with multiple reactive sulfhydryl groups: reactions of ...

    African Journals Online (AJOL)

    The pH dependence profile of kapp, the apparent second-order rate constant, for the fast phase resembles the titration curve of a diprotic acid. Quantitative analysis indicates that the reactivity of the sulfhydryl group to which this phase may be attributed is linked to two ionizable groups with pKas of 6.4 0.1 and 7.8 0.2.

  7. Skin reactions to histamine of healthy subjects after hypnotically induced emotions of sadness, anger, and happiness.

    Science.gov (United States)

    Zachariae, R; Jørgensen, M M; Egekvist, H; Bjerring, P

    2001-08-01

    The severity of symptoms in asthma and other hypersensitivity-related disorders has been associated with changes in mood but little is known about the mechanisms possibly mediating such a relationship. The purpose of this study was to examine the influence of mood on skin reactivity to histamine by comparing the effects of hypnotically induced emotions on flare and wheal reactions to cutaneous histamine prick tests. Fifteen highly hypnotically susceptible volunteers had their cutaneous reactivity to histamine measured before hypnosis at 1, 2, 3, 4, 5, 10, and 15 min after the histamine prick. These measurements were repeated under three hypnotically induced emotions of sadness, anger, and happiness presented in a counterbalanced order. Skin reactions were measured as change in histamine flare and wheal area in mm2 per minute. The increase in flare reaction in the time interval from 1 to 3 min during happiness and anger was significantly smaller than flare reactions during sadness (P<0.05). No effect of emotion was found for wheal reactions. Hypnotic susceptibility scores were associated with increased flare reactions at baseline (r=0.56; P<0.05) and during the condition of happiness (r=0.56; P<0.05). Our results agree with previous studies showing mood to be a predictor of cutaneous immediate-type hypersensitivity and histamine skin reactions. The results are also in concordance with earlier findings of an association between hypnotic susceptibility and increased reactivity to an allergen.

  8. Initial reaction between CaO and SO2 under carbonating and non-carbonating conditions

    DEFF Research Database (Denmark)

    Rasmussen, Martin Hagsted; Wedel, Stig; Pedersen, Kim H.

    2015-01-01

    The initial kinetics of the CaO/SO2 reaction have been investigated for reaction times shorter than 1s and in the temperature interval between 450 and 600°C under both carbonating and non-carbonating conditions (0-20 vol% CO2) to clarify how recirculating CaO influences the emission of SO2 from...... showed that the CaO conversion with respect to SO2 declined when the CO2 concentration was increased. Under all conditions, larger specific surface areas of CaO gave higher reaction rates with SO2. Higher temperatures had a positive effect on the reaction between SO2 and CaO under non......-carbonating conditions, but no or even a negative effect under carbonating conditions. The results led to the conclusion that SO2 released from raw meal in the upper stages of the preheater does not to any significant extent react with CaO recirculating in the preheater tower....

  9. Early stage oxynitridation process of Si(001) surface by NO gas: Reactive molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Cao, Haining; Kim, Seungchul; Lee, Kwang-Ryeol; Srivastava, Pooja; Choi, Keunsu

    2016-01-01

    Initial stage of oxynitridation process of Si substrate is of crucial importance in fabricating the ultrathin gate dielectric layer of high quality in advanced MOSFET devices. The oxynitridation reaction on a relaxed Si(001) surface is investigated via reactive molecular dynamics (MD) simulation. A total of 1120 events of a single nitric oxide (NO) molecule reaction at temperatures ranging from 300 to 1000 K are statistically analyzed. The observed reaction kinetics are consistent with the previous experimental or calculation results, which show the viability of the reactive MD technique to study the NO dissociation reaction on Si. We suggest the reaction pathway for NO dissociation that is characterized by the inter-dimer bridge of a NO molecule as the intermediate state prior to NO dissociation. Although the energy of the inter-dimer bridge is higher than that of the intra-dimer one, our suggestion is supported by the ab initio nudged elastic band calculations showing that the energy barrier for the inter-dimer bridge formation is much lower. The growth mechanism of an ultrathin Si oxynitride layer is also investigated via consecutive NO reactions simulation. The simulation reveals the mechanism of self-limiting reaction at low temperature and the time evolution of the depth profile of N and O atoms depending on the process temperature, which would guide to optimize the oxynitridation process condition.

  10. Early stage oxynitridation process of Si(001) surface by NO gas: Reactive molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Haining; Kim, Seungchul; Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr [Computational Science Research Center, Korea Institute of Science and Technology, 5, Hwarangno 14-gil, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Department of Nanomaterial Science and Technology, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Srivastava, Pooja; Choi, Keunsu [Computational Science Research Center, Korea Institute of Science and Technology, 5, Hwarangno 14-gil, Seongbuk-gu, Seoul 02792 (Korea, Republic of)

    2016-03-28

    Initial stage of oxynitridation process of Si substrate is of crucial importance in fabricating the ultrathin gate dielectric layer of high quality in advanced MOSFET devices. The oxynitridation reaction on a relaxed Si(001) surface is investigated via reactive molecular dynamics (MD) simulation. A total of 1120 events of a single nitric oxide (NO) molecule reaction at temperatures ranging from 300 to 1000 K are statistically analyzed. The observed reaction kinetics are consistent with the previous experimental or calculation results, which show the viability of the reactive MD technique to study the NO dissociation reaction on Si. We suggest the reaction pathway for NO dissociation that is characterized by the inter-dimer bridge of a NO molecule as the intermediate state prior to NO dissociation. Although the energy of the inter-dimer bridge is higher than that of the intra-dimer one, our suggestion is supported by the ab initio nudged elastic band calculations showing that the energy barrier for the inter-dimer bridge formation is much lower. The growth mechanism of an ultrathin Si oxynitride layer is also investigated via consecutive NO reactions simulation. The simulation reveals the mechanism of self-limiting reaction at low temperature and the time evolution of the depth profile of N and O atoms depending on the process temperature, which would guide to optimize the oxynitridation process condition.

  11. Mechanisms of chemical vapor generation by aqueous tetrahydridoborate. Recent developments toward the definition of a more general reaction model

    Science.gov (United States)

    D'Ulivo, Alessandro

    2016-05-01

    A reaction model describing the reactivity of metal and semimetal species with aqueous tetrahydridoborate (THB) has been drawn taking into account the mechanism of chemical vapor generation (CVG) of hydrides, recent evidences on the mechanism of interference and formation of byproducts in arsane generation, and other evidences in the field of the synthesis of nanoparticles and catalytic hydrolysis of THB by metal nanoparticles. The new "non-analytical" reaction model is of more general validity than the previously described "analytical" reaction model for CVG. The non-analytical model is valid for reaction of a single analyte with THB and for conditions approaching those typically encountered in the synthesis of nanoparticles and macroprecipitates. It reduces to the previously proposed analytical model under conditions typically employed in CVG for trace analysis (analyte below the μM level, borane/analyte ≫ 103 mol/mol, no interference). The non-analytical reaction model is not able to explain all the interference effects observed in CVG, which can be achieved only by assuming the interaction among the species of reaction pathways of different analytical substrates. The reunification of CVG, the synthesis of nanoparticles by aqueous THB and the catalytic hydrolysis of THB inside a common frame contribute to rationalization of the complex reactivity of aqueous THB with metal and semimetal species.

  12. In-situ high-pressure measurements and detailed numerical predictions of the catalytic reactivity of methane over platinum

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, M.; Mantzaras, I.; Schaeren, R.; Bombach, R.; Inauen, A.; Schenker, S.

    2003-03-01

    The catalytic reactivity of methane over platinum at pressures of up to 14 bar was evaluated with in-situ Raman measurements and detailed numerical predictions from two different heterogeneous chemical reaction schemes. The best agreement to the measurements was achieved with Deutschmann's reaction scheme that yielded the correct trend for the pressure dependence of the catalytic reactivity, although in absolute terms the reactivity was overpredicted. The catalytic reactivity was consistently underpredicted at all pressures with the reaction scheme of Vlachos. (author)

  13. In situ formation of the amino sugars 1-amino-1-deoxy-fructose and 2-amino-2-deoxy-glucose under Maillard reaction conditions in the absence of ammonia.

    Science.gov (United States)

    Nashalian, Ossanna; Yaylayan, Varoujan A

    2016-04-15

    Replacing amino acids with their binary metal complexes during the Maillard reaction can initiate various processes, including the oxidative degradation of their glucose conjugates, generating 1-amino-1-deoxy-fructose and its derivatives. These reactive amino sugars are not easily accessible under Maillard reaction conditions and are only formed in the presence of ammonia. To explore the generality of this observation and to study in particular the ability of fructose to generate glucosamine, the amino acid-metal complexes were heated in aqueous solutions with three aldohexoses and two ketohexoses at 110°C for 2 h and the dry residues were analysed by ESI/qTOF/MS/MS. All the sugars generated relatively intense ions at [M+H](+) 180 (C6H14NO5); those ions originating from ketohexoses exhibited MS/MS fragmentations identical to glucosamine and those originating form aldohexoses showed ions identical to fructosamine. Furthermore, the amino sugars were found to form fructosazine, react with other sugars and undergo dehydration reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Reactions of nitrate salts with ammonia in supercritical water

    International Nuclear Information System (INIS)

    Dell'Orco, P.C.; Gloyna, E.F.; Buelow, S.J.

    1997-01-01

    Reactions involving nitrate salts and ammonia were investigated in supercritical water at temperatures from 450 to 530 C and pressures near 300 bar. Reaction products included nitrite, nitrogen gas, and nitrous oxide. Observed reaction rates and product distributions provided evidence for a free-radical reaction mechanism with NO 2 , NO, and NH 2 · as the primary reactive species at supercritical conditions. In the proposed elementary mechanism, the rate-limiting reaction step was determined to be the hydrolysis of MNO 3 species, which resulted in the formation of nitric acid and subsequently NO 2 . A simple second-order reaction model was used to represent the data. In developing an empirical kinetic model, nitrate and nitrate were lumped as an NO x - reactant. Empirical kinetic parameters were developed for four MNO x /NH 3 reacting systems, assuming first orders in both NH 3 and NO x - . Observed MNO x /NH 3 reaction rates and mechanisms suggest immediately a practical significance of these reactions for nitrogen control strategies in supercritical water oxidation processes

  15. Preliminary studies towards the preparation of reactive 3-pyrrolin-2-ones in conjugate addition reactions for the syntheses of potentially bioactive 2-pyrrolidinones and pyrrolidines

    International Nuclear Information System (INIS)

    Alves, Jose C.F.

    2007-01-01

    Pyrrolin-2-ones and 2-pyrrolidinones are moieties often found in the structure of several biologically active natural products and 3-pyrrolin-2-ones are valuable starting materials in organic synthesis due to their ability to react as acceptors in conjugate addition reactions. In this article we report the initial results about the performed study aiming at the syntheses of reactive 3-pyrrolin-2-ones in conjugate addition reactions and the preparation of a potential precursor for the synthesis of the nootropic (+/-)-nebracetam. (author)

  16. Reactive scattering theory for molecular transitions in time-dependent fields

    International Nuclear Information System (INIS)

    Peskin, U.; Miller, W.H.

    1995-01-01

    A new approach is introduced for computing probabilities of molecular transitions in time-dependent fields. The method is based on the stationary (t,t') representation of the Schroedinger equation and is shown to be equivalent to infinite order time-dependent perturbation theory. Bound-to-bound (i.e., photoexcitation) and bound-to-continuum (i.e., photoreaction) transitions are regarded as reactive collisions with the ''time coordinate'' as the reaction coordinate in an extended Hilbert space. A numerical method based on imposing absorbing boundary conditions for the time coordinate in a discrete variable representation framework is introduced. A single operation of the Green's operator provides all the state-specific transition probabilities as well as partial state-resolved (inclusive) reaction probabilities. Illustrative numerical applications are given for model systems

  17. A reaction cell with sample laser heating for in situ soft X-ray absorption spectroscopy studies under environmental conditions.

    Science.gov (United States)

    Escudero, Carlos; Jiang, Peng; Pach, Elzbieta; Borondics, Ferenc; West, Mark W; Tuxen, Anders; Chintapalli, Mahati; Carenco, Sophie; Guo, Jinghua; Salmeron, Miquel

    2013-05-01

    A miniature (1 ml volume) reaction cell with transparent X-ray windows and laser heating of the sample has been designed to conduct X-ray absorption spectroscopy studies of materials in the presence of gases at atmospheric pressures. Heating by laser solves the problems associated with the presence of reactive gases interacting with hot filaments used in resistive heating methods. It also facilitates collection of a small total electron yield signal by eliminating interference with heating current leakage and ground loops. The excellent operation of the cell is demonstrated with examples of CO and H2 Fischer-Tropsch reactions on Co nanoparticles.

  18. An experimental and theoretical study of reaction steps relevant to the methanol-to-hydrocarbons reaction

    Energy Technology Data Exchange (ETDEWEB)

    Svelle, Stian

    2004-07-01

    The primary objective of the present work is to obtain new insight into the reaction mechanism of the zeolite catalyzed methanol-to-hydrocarbons (MTH) reaction. It was decided to use both experimental and computational techniques to reach this goal. An investigation of the n-butene + methanol system was therefore initiated. Over time, it became apparent that it was possible to determine the rate for the methylation of n-butene by methanol. The ethene and propene systems were therefore reexamined in order to collect kinetic information also for those cases. With the development of user-friendly quantum chemistry programs such as the Gaussian suite of programs, the possibility of applying quantum chemical methods to many types of problems has become readily available even for non-experts. When performing mechanistic studies, there is quite often a considerable synergy effect when combining experimental and computational approaches. The methylation reactions mentioned above turned out to be an issue well suited for quantum chemical investigations. The incentive for examining the halomethane reactivity was the clear analogy to the MTH reaction system. Alkene dimerization was also a reaction readily examined with quantum chemistry. As discussed in the introduction of this thesis, polymethylbenzenes, or their cationic counterparts, are suspected to be key intermediates in the MTH reaction. It was therefore decided to investigate the intrinsic reactivity of these species in the gas-phase by employing sophisticated mass spectrometric (MS) techniques in collaboration with the MS group at the Department of Chemistry, University of Oslo The data thus obtained will also be compared with results from an ongoing computational study on gas phase polymethylbenzenium reactivity. 6 papers presenting various studies are included. The titles are: 1) A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. 2) A Theoretical Investigation of the

  19. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Medford, Andrew

    2012-02-16

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  20. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  1. Structure-reactivity modeling using mixture-based representation of chemical reactions.

    Science.gov (United States)

    Polishchuk, Pavel; Madzhidov, Timur; Gimadiev, Timur; Bodrov, Andrey; Nugmanov, Ramil; Varnek, Alexandre

    2017-09-01

    We describe a novel approach of reaction representation as a combination of two mixtures: a mixture of reactants and a mixture of products. In turn, each mixture can be encoded using an earlier reported approach involving simplex descriptors (SiRMS). The feature vector representing these two mixtures results from either concatenated product and reactant descriptors or the difference between descriptors of products and reactants. This reaction representation doesn't need an explicit labeling of a reaction center. The rigorous "product-out" cross-validation (CV) strategy has been suggested. Unlike the naïve "reaction-out" CV approach based on a random selection of items, the proposed one provides with more realistic estimation of prediction accuracy for reactions resulting in novel products. The new methodology has been applied to model rate constants of E2 reactions. It has been demonstrated that the use of the fragment control domain applicability approach significantly increases prediction accuracy of the models. The models obtained with new "mixture" approach performed better than those required either explicit (Condensed Graph of Reaction) or implicit (reaction fingerprints) reaction center labeling.

  2. On the Maillard reaction of meteoritic amino acids

    Science.gov (United States)

    Kolb, Vera M.; Bajagic, Milica; Liesch, Patrick J.; Philip, Ajish; Cody, George D.

    2006-08-01

    We have performed the Maillard reaction of a series of meteoritic amino acids with sugar ribose under simulated prebiotic conditions, in the solid state at 65°C and at the room temperature. Many meteoritic amino acids are highly reactive with ribose, even at the room temperature. We have isolated high molecular weight products that are insoluble in water, and have studied their structure by the IR (infrared) and solid-state C-13 NMR (nuclear magnetic resonance) spectroscopic methods. The functional groups and their distribution were similar among these products, and were comparable to the previously isolated insoluble organic materials from the Maillard reaction of the common amino acids with ribose. In addition, there were some similarities with the insoluble organic material that is found on Murchison. Our results suggest that the Maillard products may contribute to the composition of the part of the insoluble organic material that is found on Murchison. We have also studied the reaction of sodium silicate solution with the Maillard mixtures, to elucidate the process by which the organic compounds are preserved under prebiotic conditions.

  3. Process and apparatus for reacting laser radiation with a reactive medium

    International Nuclear Information System (INIS)

    Vanderleeden, J.C.

    1980-01-01

    The invention is based on the concept of irradiating the reaction medium with laser radiation in a reaction zone bounded by two longitudinally spaced reflecting surfaces, the beam of laser radiation being reflected back and forth between the surfaces which are contoured in such a way that the radiation flux density profile at substantially all transverse cross sections of the reaction zone is matched to the transverse distribution profile, that is the transverse distribution of the availability of a reactive species in the medium. A necessary condition for achieving this is that the beam be successively reflected between the surfaces along successive paths of progressively changing cross-sectional area intersected by respective, contiguous, non-overlapping areas of these surfaces. This process may be applied in particular to the selective laser-induced decomposition of HDCO to yield HD and CO

  4. Skin irritability to sodium lauryl sulfate is associated with increased positive patch test reactions.

    Science.gov (United States)

    Schwitulla, J; Brasch, J; Löffler, H; Schnuch, A; Geier, J; Uter, W

    2014-07-01

    As previous observations have indicated an inter-relationship between irritant and allergic skin reactions we analysed data of synchronous allergen and sodium lauryl sulfate (SLS) patch tests in terms of a relationship between SLS responsiveness and allergic patch test reactions. To analyse differences in terms of allergen-specific and overall reaction profiles between patients with vs. those without an irritant reaction to SLS. Clinical data of 26 879 patients patch tested from 2008 to 2011 by members of the Information Network of Departments of Dermatology were analysed. After descriptive analyses, including the MOAHLFA index, the positivity ratio and the reaction index, a negative binomial hurdle model was adopted to investigate the correlation between SLS reactivity and positive patch test reactions. Men, patients aged ≥ 40 years and patients with an occupational dermatitis background were over-represented in the SLS-reactive group. Patients with an irritant reaction to SLS showed a higher proportion of weak positive reactions, as well as more questionable and irritant reactions to contact allergens than patients not reactive to SLS. The risk of an additional positive patch test reaction increased by 22% for SLS-reactive patients compared with those who were SLS negative. The marked association between SLS reactivity and the number of positive reactions in patch test patients may be due to nonspecific increased skin reactivity at the moment of patch testing only. However, increased SLS reactivity could also be due to longer-lasting enhanced skin irritability, which may have promoted (poly-)sensitization. Further studies, for example with longitudinal data on patients repeatedly patch tested with SLS and contact allergens, are necessary. © 2014 British Association of Dermatologists.

  5. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    International Nuclear Information System (INIS)

    Wishart, J.F.

    2011-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields

  6. Interface conditions for fast-reaction fronts in wet porous mineral materials: the case of concrete carbonation

    NARCIS (Netherlands)

    Muntean, A.; Böhm, M.

    2009-01-01

    Reaction–diffusion processes, where slow diffusion balances fast reaction, usually exhibit internal loci where the reactions are concentrated. Some modeling and simulation aspects of using kinetic free-boundary conditions to drive fast carbonation reaction fronts into unsaturated porous cement-based

  7. Prediction of the chemo- and regioselectivity of Diels-Alder reactions of o-benzoquinone derivatives with thiophenes by means of DFT-based reactivity indices

    Science.gov (United States)

    Ghomri, Amina; Mekelleche, Sidi Mohamed

    2014-03-01

    Global and local reactivity indices derived from density functional theory were used to elucidate the regio- and chemoselectivity of Diels-Alder reactions of masked o-benzoquinones with thiophenes acting as dienophiles. The polarity of the studied reactions is evaluated in terms of the difference of electrophilicity powers between the diene and dienophile partners. Preferential cyclisation modes of these cycloadditions are predicted using Domingo's polar model based on the local electrophilicity index, ωk, of the electrophile and the local nucleophilicity index, Nuk, of the nucleophile. The theoretical calculations, carried out at the B3LYP/6-311G(d,p) level of theory, are in good agreement with experimental findings.

  8. Reactivity Of Radiolytically-Produced Nitrogen Oxide Radicals Toward Aromatic Compounds

    International Nuclear Information System (INIS)

    Elias, Gracy

    2010-01-01

    The nitration of aromatic compounds in the gas phase is an important source of toxic, carcinogenic, and mutagenic species in the atmosphere and has therefore received much attention. Gas phase nitration typically occurs by free-radical reactions. Condensed-phase free-radical reactions, and in particular nitrite and nitrate radical chemistry, have been studied far less. These condensed-phase free-radical reactions may be relevant in fog and cloud water in polluted areas, in urban aerosols with low pH, in water treatment using advanced oxidation processes such as electron beam (e-beam) irradiation, and in nuclear waste treatment applications. This study discusses research toward an improved understanding of nitration of aromatic compounds in the condensed phase under conditions conducive to free-radical formation. The results are of benefit in several areas of environmental chemistry, in particular nuclear waste treatment applications. The nitration reactions of anisole and toluene as model compounds were investigated in γ-irradiated acidic nitrate, neutral nitrate, and neutral nitrite solutions. Cs-7SB, 1-(2,2,3,3,-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol, is used as a solvent modifier in the fission product extraction (FPEX) formulation for the extraction of Cs and Sr from dissolved nuclear fuel. The formulation also contains the ligands calix(4)arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6) for Cs extraction and 4,4(prime),(5(prime))-di-(t-butyldicyclohexano)-18-crown-6 (DtBuCH18C6) for Sr extraction, all in Isopar L, a branched-chain alkane diluent. FPEX solvent has favorable extraction efficiency for Cs and Sr from acidic solution and was investigated at the Idaho National Laboratory (INL) for changes in extraction efficiency after γ-irradiation. Extraction efficiency decreased after irradiation. The decrease in solvent extraction efficiency was identical for Cs and Sr, even though they are complexed by different ligands. This suggests that

  9. A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter.

    Science.gov (United States)

    Hua, Pei; Vasyukova, Ekaterina; Uhl, Wolfgang

    2015-05-15

    A second order kinetic model for simulating chlorine decay in bulk water due to the reaction with dissolved organic matter (DOM) was developed. It takes into account the decreasing reactivity of dissolved organic matter using a variable reaction rate coefficient (VRRC) which decreases with an increasing conversion. The concentration of reducing species is surrogated by the maximum chlorine demand. Temperature dependency, respectively, is described by the Arrhenius-relationship. The accuracy and adequacy of the proposed model to describe chlorine decay in bulk water were evaluated and shown for very different waters and different conditions such as water mixing or rechlorination by applying statistical tests. It is thus very well suited for application in water quality modeling for distribution systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Alkali-aggregate reactivity (AAR) facts book.

    Science.gov (United States)

    2013-03-01

    This document provides detailed information on alkali-aggregate reactivity (AAR). It primarily discusses alkali-silica reaction (ASR), covering the chemistry, symptoms, test methods, prevention, specifications, diagnosis and prognosis, and mitigation...

  11. Lagrangian descriptors of driven chemical reaction manifolds.

    Science.gov (United States)

    Craven, Galen T; Junginger, Andrej; Hernandez, Rigoberto

    2017-08-01

    The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.

  12. Reaction of Acetaldehyde with Wine Flavonoids in the Presence of Sulfur Dioxide.

    Science.gov (United States)

    Sheridan, Marlena K; Elias, Ryan J

    2016-11-16

    Acetaldehyde is responsible for many of the beneficial changes that occur in red wine as a result of oxidation. Ethylidene bridges are formed between flavonoids upon their reaction with acetaldehyde, which can contribute to improvements in color stability and SO 2 -resistant pigments. In the present study, the reactions between acetaldehyde and various flavonoids (catechin, tannins from grape seed extract, and malvidin-3-glucoside) were examined in a model wine system. Lower pH conditions were seen to significantly increase the rate of reaction with acetaldehyde, whereas dissolved oxygen did not affect the rate. In systems containing SO 2 , the rate of reaction of acetaldehyde with catechin was slowed but was not prevented until SO 2 was in great excess. Significant improvements in color stability were also observed after treatment with acetaldehyde, despite the presence of equimolar SO 2 . These results demonstrate that acetaldehyde is reactive in its sulfonate form, which is contrary to widely held assumptions. In addition, the products of the reaction of flavonoids with acetaldehyde were characterized using MALDI-TOF MS in this study. Ethyl-bridged catechin nonamers were observed, as well as anthocyanin and pyranoanthocyanin derivatives of catechin and tannin oligomers. The results of this work illustrate the significance of acetaldehyde reactions in forming stable pigments in wine and the reactivity of acetaldehyde from its sulfonate form.

  13. Reactivity of chars prepared from the pyrolysis of a Victorian lignite under a wide range of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Mody, D.; Li, C.; Hayashi, J.; Chiba, T. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    A Loy Yang lignite sample was pyrolysed under a wide range of experimental conditions using a wire-mesh reactor, a fluidised-bed reactor, a drop-tube reformer and a thermogravimetric analyser (TGA). The reactivity of these char samples in CO{sub 2} and air was measured in the TGA as well as in the fluidised-bed reactor. A sample prepared by the physical impregnation of NaCl into the lignite was also used in order to investigate the effect of NaCl in the lignite on the reactivity of the resulting char. Our experimental results indicate that, due to the volatilisation of a substantial fraction of Na in the lignite substrate during pyrolysis, the true catalytic activity of the Na in the lignite substrate should be evaluated by measuring the sodium content in the char after pyrolysis. The char reactivity measured in situ in the fluidised-bed reactor was compared with that of the same char measured separately in the TGA after re-heating the char sample to the same temperature as that in the fluidised-bed. It was found that the re-heating of the char in the TGA reduced the char reactivity.

  14. Reformulation and solution of the master equation for multiple-well chemical reactions.

    Science.gov (United States)

    Georgievskii, Yuri; Miller, James A; Burke, Michael P; Klippenstein, Stephen J

    2013-11-21

    We consider an alternative formulation of the master equation for complex-forming chemical reactions with multiple wells and bimolecular products. Within this formulation the dynamical phase space consists of only the microscopic populations of the various isomers making up the reactive complex, while the bimolecular reactants and products are treated equally as sources and sinks. This reformulation yields compact expressions for the phenomenological rate coefficients describing all chemical processes, i.e., internal isomerization reactions, bimolecular-to-bimolecular reactions, isomer-to-bimolecular reactions, and bimolecular-to-isomer reactions. The applicability of the detailed balance condition is discussed and confirmed. We also consider the situation where some of the chemical eigenvalues approach the energy relaxation time scale and show how to modify the phenomenological rate coefficients so that they retain their validity.

  15. Development and reactivity tests of Ce-Zr-based Claus catalysts for coal gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    No-Kuk Park; Dong Cheul Han; Gi Bo Han; Si Ok Ryu; Tae Jin Lee; Ki Jun Yoon [Yeungnam University, Gyeongbuk (Republic of Korea). National Research Laboratory, School of Chemical Engineering and Technology

    2007-09-15

    Claus reaction (2H{sub 2}S + SO{sub 2} {leftrightarrow} 3/nS{sub n} + 2H{sub 2}O) was used to clean the gasified coal gas and the reactivity of several metal oxide-based catalysts on Claus reaction was investigated at various operating conditions. In order to convert H{sub 2}S contained in the gasified coal gas to elemental sulfur during Claus reaction, the catalysts having the high activity under the highly reducing condition with the moisture should be developed. CeO{sub 2}, ZrO{sub 2}, and Ce{sub 1-x}Zr{sub x}O{sub 2} catalysts were prepared for Claus reaction and their reactivity changes due to the existence of the reducing gases and H{sub 2}O in the fuel gas was investigated in this study. The Ce-based catalysts shows that their activity was deteriorated by the reduction of the catalyst due to the reducing gases at higher than 220{sup o}C. Meanwhile, the effect of the reducing gases on the catalytic activity was not considerable at low temperature. The activities of all three catalysts were degraded on the condition that the moisture existed in the test gas. Specifically, the Ce-based catalysts were remarkably deactivated by their sulfation. The Ce-Zr-based catalyst had a high catalytic activity when the reducing gases and the moisture co-existed in the simulated fuel gas. The deactivation of the Ce-Zr-based catalyst was not observed in this study. The lattice oxygen of the Ce-based catalyst was used for the oxidation of H{sub 2}S and the lattice oxygen vacancy on the catalyst was contributed to the reduction of SO{sub 2}. ZrO{sub 2} added to the Ce-Zr-based catalyst improved the redox properties of the catalyst in Claus reaction by increasing the mobility of the lattice oxygen of CeO{sub 2}. 21 refs., 14 figs.

  16. Palladium(II-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions

    Directory of Open Access Journals (Sweden)

    Tanveer Mahamadali Shaikh

    2013-08-01

    Full Text Available A series of general and selective Pd(II-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO ligated palladium complex (6 as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A variety of substrates, both electron-rich and electron-poor olefins, were converted smoothly to the targeted products in high yields. Compared with the existing approaches employing SPO–Pd complexes in a Heck reaction, the current strategy features mild reaction conditions and broad substrate scope. Furthermore, we described the coupling of arylboronic acids with olefins, which were catalyzed by Pd(OAc2 and employed N-bromosuccinimide as an additive under ambient conditions. The resulted biaryls have been obtained in moderate to good yields.

  17. Kinetics of the decoloration of reactive dyes over visible light-irradiated TiO2 semiconductor photocatalyst

    International Nuclear Information System (INIS)

    Chatterjee, Debabrata; Patnam, Vidya Rupini; Sikdar, Anindita; Joshi, Priyanka; Misra, Rohit; Rao, Nageswara N.

    2008-01-01

    Photocatalytic decoloration kinetics of triazine (Reactive Red 11, Reactive Red 2, and Reactive Orange 84) and vinylsulfone type (Reactive Orange 16 and Reactive Black 5) of reactive dyes have been studied spectrophotometrically by following the decrease in dye concentration with time. At ambient conditions, over 90-95% decoloration of above dyes have been observed upon prolonged illumination (15 h) of the reacting system with a 150 W xenon lamp. It was found that the decoloration reaction followed first-order kinetics. The values of observed rate constants were found to be dependent of the structure of dyes at low dye concentration, but independent at higher concentration. It also reports for the first time the decoloration of two different dyes together in a binary dye mixture using visible light-irradiated TiO 2 photocatalyst. Rate of decoloration of two different dyes together in a binary dye mixture using visible light-irradiated TiO 2 photocatalyst is governed by the adsorptivity of the particular dye onto the surface of the TiO 2 photocatalyst

  18. Assessing the reaction conditions to mediate the milkfat-soybean oil enzymatic interesterification

    Directory of Open Access Journals (Sweden)

    Ariela Veloso de Paula

    Full Text Available Summary A food grade lipase from Rhizopus oryzae immobilized on a hybrid polysiloxane-polyvinyl alcohol matrix (SiO2-PVA was used as the biocatalyst to mediate the interesterification reactions of a blend containing 65% milkfat and 35% soybean oil. All the reactions occurred in an inert nitrogen atmosphere in cylindrical glass reactors (80 mL with 40 g of the milkfat-soybean oil blend. The influence of the following variables was evaluated: biocatalyst loading (250-1500 activity units per gram of blend, biocatalyst moisture content (5-20%, temperature (45-60 °C and incubation time (2-48 h. The reactions were monitored by determining the free fatty acid content, triacylglycerol (TAGs composition in carbon species, and the consistency of the interesterified (IE products. The reaction conditions were set based on the parameters that provided a high interesterification yield and good consistency of the final product within the ideal range (200 to 800 gf cm-2. Hence the best results were obtained using a biocatalyst loading of 500 U g-1 of blend with 10% moisture content at 45 °C for 4 h. Under these conditions the consistency of the interesterified product was 539.7 ± 38 gf cm-2. The results demonstrated the potential of the immobilized lipase to alter the TAGs profile of the milkfat-soybean oil blend, allowing for the production of structured lipids.

  19. Efficiency of Electrocoagulation for Removal of Reactive Yellow 14 from Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yaria

    2013-09-01

    Full Text Available Background & Aims of the Study: Discharge of textile industry colored wastewater without enough treatment into natural water resources cause serious pollution. Most of the conventional wastewater treatment methods are not effective enough to remove these dyes from wastewater. In this study, efficiency of electrocoagulation process with iron electrodes for treatment of Reactive Yellow 14 dye from synthetic solution has been studied and concluded. Materials & Methods: This experiment was conducted in a batch system with a volume of 2 L that had been equipped with 4 iron electrodes. The effect of operating parameters, such as voltage, time of reaction, initial dye concentration, and interelectrode distance on the dye removal efficiency was investigated. Results: In optimum condition (pH 2, voltage 40 V, electrolysis time 25 min, and interelectrode distance 1 cm, electrocoagulation method was able to remove 99.27% of Reactive Yellow 14 from synthetic solution. Conclusions: Electrocoagulation process by iron electrode is an efficient method for removal of reactive dyes from colored solution.

  20. A minimally-resolved immersed boundary model for reaction-diffusion problems

    OpenAIRE

    Pal Singh Bhalla, A; Griffith, BE; Patankar, NA; Donev, A

    2013-01-01

    We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blo...

  1. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    Science.gov (United States)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react

  2. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    Science.gov (United States)

    Carraher, Jack McCaslin

    Reactive species like high-valent metal-oxo complexes and carbon and oxygen centered radicals are important intermediates in enzymatic systems, atmospheric chemistry, and industrial processes. Understanding the pathways by which these intermediates form, their relative reactivity, and their fate after reactions is of the utmost importance. Herein are described the mechanistic detail for the generation of several reactive intermediates, synthesis of precursors, characterization of precursors, and methods to direct the chemistry to more desirable outcomes yielding 'greener' sources of commodity chemicals and fuels. High-valent Chromium from Hydroperoxido-Chromium(III). The decomposition of pentaaquahydroperoxido chromium(III) ion (hereafter Cr aqOOH2+) in acidic aqueous solutions is kinetically complex and generates mixtures of products (Craq3+, HCrO 4-, H2O2, and O2). The yield of high-valent chromium products (known carcinogens) increased from a few percent at pH 1 to 70 % at pH 5.5 (near biological pH). Yields of H 2O2 increased with acid concentration. The reproducibility of the kinetic data was poor, but became simplified in the presence of H2O2 or 2,2‧-azinobis(3-ethylbenzothiazoline-6-sulfonate) dianion (ABTS2-). Both are capable of scavenging strongly oxidizing intermediates). The observed rate constants (pH 1, [O2] ≤ 0.03 mM) in the presence of these scavengers are independent of [scavenger] and within the error are the same (k,ABTS2- = (4.9 +/- 0.2) x 10-4 s-1 and kH2O2 = (5.3 +/- 0.7) x 10-4 s-1); indicating involvement of the scavengers in post-rate determining steps. In the presence of either scavenger, decomposition of CrOOH2+ obeyed a two-term rate law, k obs / s-1 = (6.7 +/- 0.7) x 10-4 + (7.6 +/- 1.1) x 10-4 [H+]. Effect of [H+] on the kinetics and the product distribution, cleaner kinetics in the presence of scavengers, and independence of kobs on [scavenger] suggest a dual-pathway mechanism for the decay of Craq OOH2+. The H+-catalyzed path

  3. Reversal reaction in borderline leprosy is associated with a polarized shift to type 1-like Mycobacterium leprae T cell reactivity in lesional skin: a follow-up study

    NARCIS (Netherlands)

    Verhagen, C. E.; Wierenga, E. A.; Buffing, A. A.; Chand, M. A.; Faber, W. R.; Das, P. K.

    1997-01-01

    Borderline leprosy patients often undergo acute changes in immune reactivity that manifest as reversal reaction (RR) in the course of the disease. RR is associated with an exacerbated local delayed-type cellular immune response to Mycobacterium leprae and is responsible for severe tissue damage. We

  4. Reactive diffusion and stresses in nanowires or nanorods

    International Nuclear Information System (INIS)

    Roussel, Manuel; Erdélyi, Zoltán; Schmitz, Guido

    2017-01-01

    Heterostructured nanowires are of prime interest in nowadays technology such as field-effect transistors, field emitters, batteries and solar cells. We consider their aging behavior and developed a model focusing on reactive diffusion in core-shell nanowires. A complete set of analytical equations is presented that takes into account thermodynamic driving forces, vacancy distribution, elastic stress and its plastic relaxation. This complete description of the reactive diffusion can be used in finite element simulations to investigate diffusion processes in various geometries. In order to show clearly the interplay between the cylindrical geometry, the reactive diffusion and the stresses developing in the nanowire, we investigate the formation of an intermetallic reaction product in various core-shell geometries. Emphasis is placed on showing how it is possible to control the kinetics of the reaction by applying an axial stress to the nanowires.

  5. Characterization of limestone reactivity with SO{sub 2} and sulfur capture modelling under fluidized bed combustion conditions; Bestaemning av kalkstensreaktivitet med avseende paa SO{sub 2} och modellering av avsvavling foer foerbraenning i fluidiserad baedd

    Energy Technology Data Exchange (ETDEWEB)

    Mattisson, T. [Chalmers Univ. of Technology and Univ. of Goeteborg, Goeteborg (Sweden). Dept. of Inorganic Chemistry; Lyngfelt, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1996-12-01

    During combustion of fossil fuels, SO{sub 2} is released to the atmosphere. Because of environmental concern with acid rain, the capture of SO{sub 2} is a very important process. Fluidized bed combustion (FBC) is a combustion method where limestone may be added to the furnace chamber to capture SO{sub 2} as the stable product CaSO{sub 4}. In the present work a relatively simple laboratory method has been developed for characterizing limestone reactivity with SO{sub 2}. The reactivity data from such investigations are used, together with residence time and particle size distribution, in a sulfur capture model for fluidized bed boilers that predicts the sulfur capture as a function of the Ca/S molar ratio. In addition, the model predicts the conversion of CaO to CaSO{sub 4} for all particle sizes present in a boiler. The model was developed and verified using data from two boilers, a 12 and a 40 MW circulating fluidized bed boiler, and showed reasonable agreement for both boilers. In addition to the development of a sulfur capture model, the effects of SO{sub 2} and CO{sub 2} concentrations, particle size, temperature variations, and reducing conditions on the sulfation reaction was studied using a fixed-bed quartz reactor. The sulfation reaction was also studied for long periods of time, up to 60 hours. This was done because of the long residence times of certain particle sizes that may exist in a fluidized bed boiler. From the parameter study it was found that particle size and variations between oxidizing and reducing conditions had a large effect on the sulfation behaviour. The investigation of long sulfation times showed that the reaction continued even at high degrees of conversion, although at a very slow rate. CO{sub 2} concentration had a moderate effect on the sulfation reaction while temperature variations showed no effect on the final conversion between CaO and CaSO{sub 4}. 29 refs, 25 figs, 4 tabs

  6. Removal of Cr(VI from Water Using a New Reactive Material: Magnesium Oxide Supported Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Alessio Siciliano

    2016-08-01

    Full Text Available The chromium pollution of water is an important environmental and health issue. Cr(VI removal by means of metallic iron is an attractive method. Specifically, nanoscopic zero valent iron (NZVI shows great reactivity, however, its applicability needs to be further investigated. In the present paper, NZVI was supported on MgO grains to facilitate the treatments for remediation of chromium-contaminated waters. The performances and mechanisms of the developed composite, in the removal of hexavalent chromium, were investigated by means of batch and continuous tests. Kinetic studies, under different operating conditions, showed that reduction of Cr(VI could be expressed by a pseudo second-order reaction kinetic. The reaction rate increased with the square of Fe(0 amount, while it was inversely proportional to the initial chromium concentration. The process performance was satisfactory also under uncontrolled pH, and a limited influence of temperature was observed. The reactive material was efficiently reusable for many cycles without any regeneration treatment. The performances in continuous tests were close to 97% for about 80 pore volume of reactive material.

  7. Developed Hybrid Model for Propylene Polymerisation at Optimum Reaction Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-02-01

    Full Text Available A statistical model combined with CFD (computational fluid dynamic method was used to explain the detailed phenomena of the process parameters, and a series of experiments were carried out for propylene polymerisation by varying the feed gas composition, reaction initiation temperature, and system pressure, in a fluidised bed catalytic reactor. The propylene polymerisation rate per pass was considered the response to the analysis. Response surface methodology (RSM, with a full factorial central composite experimental design, was applied to develop the model. In this study, analysis of variance (ANOVA indicated an acceptable value for the coefficient of determination and a suitable estimation of a second-order regression model. For better justification, results were also described through a three-dimensional (3D response surface and a related two-dimensional (2D contour plot. These 3D and 2D response analyses provided significant and easy to understand findings on the effect of all the considered process variables on expected findings. To diagnose the model adequacy, the mathematical relationship between the process variables and the extent of polymer conversion was established through the combination of CFD with statistical tools. All the tests showed that the model is an excellent fit with the experimental validation. The maximum extent of polymer conversion per pass was 5.98% at the set time period and with consistent catalyst and co-catalyst feed rates. The optimum conditions for maximum polymerisation was found at reaction temperature (RT 75 °C, system pressure (SP 25 bar, and 75% monomer concentration (MC. The hydrogen percentage was kept fixed at all times. The coefficient of correlation for reaction temperature, system pressure, and monomer concentration ratio, was found to be 0.932. Thus, the experimental results and model predicted values were a reliable fit at optimum process conditions. Detailed and adaptable CFD results were capable

  8. An experimental and theoretical study of reaction steps relevant to the methanol-to-hydrocarbons reaction

    Energy Technology Data Exchange (ETDEWEB)

    Svelle, Stian

    2004-07-01

    The primary objective of the present work is to obtain new insight into the reaction mechanism of the zeolite catalyzed methanol-to-hydrocarbons (MTH) reaction. It was decided to use both experimental and computational techniques to reach this goal. An investigation of the n-butene + methanol system was therefore initiated. Over time, it became apparent that it was possible to determine the rate for the methylation of n-butene by methanol. The ethene and propene systems were therefore reexamined in order to collect kinetic information also for those cases. With the development of user-friendly quantum chemistry programs such as the Gaussian suite of programs, the possibility of applying quantum chemical methods to many types of problems has become readily available even for non-experts. When performing mechanistic studies, there is quite often a considerable synergy effect when combining experimental and computational approaches. The methylation reactions mentioned above turned out to be an issue well suited for quantum chemical investigations. The incentive for examining the halomethane reactivity was the clear analogy to the MTH reaction system. Alkene dimerization was also a reaction readily examined with quantum chemistry. As discussed in the introduction of this thesis, polymethylbenzenes, or their cationic counterparts, are suspected to be key intermediates in the MTH reaction. It was therefore decided to investigate the intrinsic reactivity of these species in the gas-phase by employing sophisticated mass spectrometric (MS) techniques in collaboration with the MS group at the Department of Chemistry, University of Oslo The data thus obtained will also be compared with results from an ongoing computational study on gas phase polymethylbenzenium reactivity. 6 papers presenting various studies are included. The titles are: 1) A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. 2) A Theoretical Investigation of the

  9. Mineral solubility and free energy controls on microbial reaction kinetics: Application to contaminant transport in the subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Inst. of Technology, Atlanta, GA (United States); Van Cappellen, Philippe [Univ. of Waterloo, ON (Canada)

    2016-11-14

    Recent developments in the theoretical treatment of geomicrobial reaction processes have resulted in the formulation of kinetic models that directly link the rates of microbial respiration and growth to the corresponding thermodynamic driving forces. The overall objective of this project was to verify and calibrate these kinetic models for the microbial reduction of uranium(VI) in geochemical conditions that mimic as much as possible field conditions. The approach combined modeling of bacterial processes using new bioenergetic rate laws, laboratory experiments to determine the bioavailability of uranium during uranium bioreduction, evaluation of microbial growth yield under energy-limited conditions using bioreactor experiments, competition experiments between metabolic processes in environmentally relevant conditions, and model applications at the field scale. The new kinetic descriptions of microbial U(VI) and Fe(III) reduction should replace those currently used in reactive transport models that couple catabolic energy generation and growth of microbial populations to the rates of biogeochemical redox processes. The above work was carried out in collaboration between the groups of Taillefert (batch reactor experiments and reaction modeling) at Georgia Tech and Van Cappellen (retentostat experiments and reactive transport modeling) at University of Waterloo (Canada).

  10. Bifurcation of positive solutions to scalar reaction-diffusion equations with nonlinear boundary condition

    Science.gov (United States)

    Liu, Ping; Shi, Junping

    2018-01-01

    The bifurcation of non-trivial steady state solutions of a scalar reaction-diffusion equation with nonlinear boundary conditions is considered using several new abstract bifurcation theorems. The existence and stability of positive steady state solutions are proved using a unified approach. The general results are applied to a Laplace equation with nonlinear boundary condition and bistable nonlinearity, and an elliptic equation with superlinear nonlinearity and sublinear boundary conditions.

  11. Propolis, Colophony, and Fragrance Cross-Reactivity and Allergic Contact Dermatitis.

    Science.gov (United States)

    Shi, Yiwen; Nedorost, Susan; Scheman, Loren; Scheman, Andrew

    2016-01-01

    Colophony and propolis are among the complex plant resins used in a wide variety of medicinal and personal care products. A number of studies of colophony, propolis, and fragrance mixes suggest that contact with one of these allergens may increase the risk of delayed-type hypersensitivity reactions with additional compounds of significant cross-reactivity. The aims of this study were to determine rates of cross-reactivity between propolis, colophony, and different fragrance mixes and to determine significant cross-reactivity thresholds for which to counsel patient avoidance. Rates of cross-reactivity were calculated from the databases of 2 midwestern US patch testing centers. Rates were calculated both separately and collectively. For patients allergic to colophony, fragrance and propolis may be considered significant cross-reactors. For patients allergic to propolis, fragrance and colophony may be considered significant cross-reactors. Cross-reactions between colophony, propolis, and fragrance mixes are unidirectional so, for patients allergic to fragrance, cross-reaction to propolis or colophony is not significant. Colophony allergy is found in only a small number of fragrance-allergic patients and is not a good indicator for fragrance allergy.

  12. Pavlovian conditioning of shock-induced suppression of lymphocyte reactivity: acquisition, extinction, and preexposure effects.

    Science.gov (United States)

    Lysle, D T; Cunnick, J E; Fowler, H; Rabin, B S

    1988-01-01

    Recent research has indicated that physical stressors, such as electric shock, can suppress immune function in rats. The present study investigated whether a nonaversive stimulus that had been associated with electric shock would also impair immune function. Presentation of that conditioned stimulus (CS) by itself produced a pronounced suppression of lymphocyte proliferation in response to the nonspecific mitogens, Concanavalin-A (ConA) and Phytohemagglutinin (PHA). In further evidence of a conditioning effect, the suppression was attenuated by extinction and preexposure manipulations that degraded the associative value of the CS. These results indicate that a psychological or learned stressor can suppress immune reactivity independently of the direct effect of physically aversive stimulation or of ancillary changes in dietary and health-related habits.

  13. Reactive transport of aqueous protons in porous media

    KAUST Repository

    McNeece, Colin J.

    2016-10-09

    The sorption of protons determines the surface charge of natural media and is therefore a first-order control on contaminant transport. Significant effort has been extended to develop chemical models that quantify the sorption of protons at the mineral surface. To compare these models’ effect on predicted proton transport, we present analytic solutions for column experiments through silica sand. Reaction front morphology is controlled by the functional relationship between the total sorbed and total aqueous proton concentrations. An inflection point in this function near neutral pH leads to a reversal in the classic front formation mechanism under basic conditions, such that proton desorption leads to a self-sharpening front, while adsorption leads to a spreading front. A composite reaction front comprising both a spreading and self-sharpening segment can occur when the injected and initial concentrations straddle the inflection point. This behavior is unique in single component reactive transport and arises due to the auto-ionization of water rather than electrostatic interactions at the mineral surface. We derive a regime diagram illustrating conditions under which different fronts occur, highlighting areas where model predictions diverge. Chemical models are then compared and validated against a systematic set of column experiments.

  14. Lactone size dependent reactivity in Candida antarctica lipase B: A molecular dynamics and docking study

    NARCIS (Netherlands)

    Veld, M.A.J.; Fransson, L.; Palmans, A.R.A.; Meijer, E.W.; Hult, K.

    2009-01-01

    Size matters: Lactones have extensively been studied as monomers in enzymatic polymerization reactions. Large lactones showed an unexpectedly high reactivity in these reactions. A combination of docking and molecular dynamics studies have been used to explain this high reactivity in terms of

  15. The H2 + + He proton transfer reaction: quantum reactive differential cross sections to be linked with future velocity mapping experiments

    Science.gov (United States)

    Hernández Vera, Mario; Wester, Roland; Gianturco, Francesco Antonio

    2018-01-01

    We construct the velocity map images of the proton transfer reaction between helium and molecular hydrogen ion {{{H}}}2+. We perform simulations of imaging experiments at one representative total collision energy taking into account the inherent aberrations of the velocity mapping in order to explore the feasibility of direct comparisons between theory and future experiments planned in our laboratory. The asymptotic angular distributions of the fragments in a 3D velocity space is determined from the quantum state-to-state differential reactive cross sections and reaction probabilities which are computed by using the time-independent coupled channel hyperspherical coordinate method. The calculations employ an earlier ab initio potential energy surface computed at the FCI/cc-pVQZ level of theory. The present simulations indicate that the planned experiments would be selective enough to differentiate between product distributions resulting from different initial internal states of the reactants.

  16. Fast Neutral reactions in cold interstellar clouds

    International Nuclear Information System (INIS)

    Graff, M.M.

    1989-01-01

    The dynamics of exothermic neutral reactions between radical species have been examined, with particular attention to reactivity at the very low energies characteristic of cold interstellar clouds. Long-range interactions (electrostatic and spin-orbit) were considered within in the adiabatic capture-infinite order sudden approximation (ACIOSA). Analytic expressions have been developed for cross sections and rate constants of exothermic reactions between atoms and dipolar radicals at low temperatures. A method for approximating the adiabatic potential surface for the reactive state will be presented. The reaction systems O+OH and O+CH are both predicted to be fast at low temperatures. The systems C+CH and C+OH are expected to be nonreactive at low temperatures, and upper limits of rate constants for these reactions have been estimated. General predictions are made for other reaction systems. Implications for interstellar chemistry will be discussed

  17. Reactivity of Uranium and Ferrous Iron with Natural Iron Oxyhydroxides.

    Science.gov (United States)

    Stewart, Brandy D; Cismasu, A Cristina; Williams, Kenneth H; Peyton, Brent M; Nico, Peter S

    2015-09-01

    Determining key reaction pathways involving uranium and iron oxyhydroxides under oxic and anoxic conditions is essential for understanding uranium mobility as well as other iron oxyhydroxide mediated processes, particularly near redox boundaries where redox conditions change rapidly in time and space. Here we examine the reactivity of a ferrihydrite-rich sediment from a surface seep adjacent to a redox boundary at the Rifle, Colorado field site. Iron(II)-sediment incubation experiments indicate that the natural ferrihydrite fraction of the sediment is not susceptible to reductive transformation under conditions that trigger significant mineralogical transformations of synthetic ferrihydrite. No measurable Fe(II)-promoted transformation was observed when the Rifle sediment was exposed to 30 mM Fe(II) for up to 2 weeks. Incubation of the Rifle sediment with 3 mM Fe(II) and 0.2 mM U(VI) for 15 days shows no measurable incorporation of U(VI) into the mineral structure or reduction of U(VI) to U(IV). Results indicate a significantly decreased reactivity of naturally occurring Fe oxyhydroxides as compared to synthetic minerals, likely due to the association of impurities (e.g., Si, organic matter), with implications for the mobility and bioavailability of uranium and other associated species in field environments.

  18. Reactive lysine content in commercially available pet foods

    NARCIS (Netherlands)

    Rooijen, van C.; Bosch, G.; Poel, van der A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.

    2014-01-01

    The Maillard reaction can occur during processing of pet foods. During this reaction, the e-amino group of lysine reacts with reducing sugars to become unavailable for metabolism. The aim of the present study was to determine the reactive lysine (RL; the remaining available lysine) to total lysine

  19. Reaction mechanisms in zeolite catalysis

    NARCIS (Netherlands)

    Rozanska, X.; Santen, van R.A.; Auerbach, S.C.; Carrado, K.A.; Dutta, P.D.

    2003-01-01

    A review; described are the most basic mechanistic reaction steps that are induced by zeolite catalysts. Details on the zeolitic properties that are relevant to mol. reactivity are also provided. The theor. methods and models at hand to allow the investigation of these reaction steps and that have

  20. Severe reaction in a child with asymptomatic codfish allergy: Food challenge reactivating recurrent pancreatitis

    Directory of Open Access Journals (Sweden)

    Pellegrino Katia

    2012-05-01

    Full Text Available Abstract An 8-year-old child during the first year of life manifested severe atopic dermatitis and chronic diarrhea with mucorrhea and rectal bleeding; a fish-free diet was started based on weakly positive skin-prick tests to codfish extract. At the age of 4 years the child began to suffer of recurrent pancreatitis. When he came to our attention for the evaluation of his fish allergy, he was asymptomatic; a weak reactivity to codfish was observed (SPTs: cod, 4 mm, sIgE ImmunoCAP: cod, 1.30kU/l. The food challenge test with cod was negative. When the child ate cod again, within 5 minutes, developed anaphylactic reaction and complained of abdominal pain compatible with pancreatitis (enzyme serum levels risen and parenchymal oedema at ultrasonography, that resolved within 7 days after specific therapy. This case raises two issues: the elimination diet in asymptomatic food allergy on the basis only of SPT and the ethicality of food challenge in gastrointestinal chronic disease.

  1. Learning to predict chemical reactions.

    Science.gov (United States)

    Kayala, Matthew A; Azencott, Chloé-Agathe; Chen, Jonathan H; Baldi, Pierre

    2011-09-26

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles, respectively, are not high throughput, are not generalizable or scalable, and lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry data set consisting of 1630 full multistep reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top-ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of nonproductive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  2. Learning to Predict Chemical Reactions

    Science.gov (United States)

    Kayala, Matthew A.; Azencott, Chloé-Agathe; Chen, Jonathan H.

    2011-01-01

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  3. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    Science.gov (United States)

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  4. Chemical reactivity of precursor materials during synthesis of glasses used for conditioning high-level radioactive waste: Experiments and models

    International Nuclear Information System (INIS)

    Monteiro, A.

    2012-01-01

    The glass used to store high-level radioactive waste is produced by reaction of a solid waste residue and a glassy precursor (glass frit). The waste residue is first dried and calcined (to lose water and nitrogen respectively), then mixed with the glass frit to enable vitrification at high temperature. In order to obtain a good quality glass of constant composition upon cooling, the chemical reactions between the solid precursors must be complete while in the liquid state, to enable incorporation of the radioactive elements into the glassy matrix. The physical and chemical conditions during glass synthesis (e.g. temperature, relative proportions of frit and calcine, amount of radioactive charge) are typically empirically adjusted to obtain a satisfactory final product. The aim of this work is to provide new insights into the chemical and physical interactions that take place during vitrification and to provide data for a mathematical model that has been developed to simulate the chemical reactions. The consequences of the different chemical reactions that involve solid, liquid and gaseous phases are described (thermal effects, changes in crystal morphology and composition, variations in melt properties and structure). In a first series of experiments, a simplified analogue of the calcine (NaNO 3 -Al 2 O 3 ± MoO 3 /Nd 2 O 3 ) has been studied. In a second series of experiments, the simplified calcines have been reacted with a simplified glass frit (SiO 2 -Na 2 O-B 2 O 3 -Al 2 O 3 ) at high temperature. The results show that crystallization of the calcine may take place before interaction with the glass frit, but that the reactivity with the glass at high temperature is a function of the nature and stoichiometry of the crystalline phases which form at low temperature. The results also highlight how the mixing of the starting materials, the physical properties of the frit (viscosity, glass transition temperature) and the Na 2 O/Al 2 O 3 of the calcine but also its

  5. Reaction chemistry of nitrogen species in hydrothermal systems: Simple reactions, waste simulants, and actual wastes

    International Nuclear Information System (INIS)

    Dell'Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.

    1995-01-01

    Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species

  6. Iodine/steel reactions under severe accident conditions in LWR's

    International Nuclear Information System (INIS)

    Funke, F.; Greger, G-U.; Hellman, S.; Bleier, A.; Morell, W.

    1994-01-01

    Due to large surface areas, the reaction of volatile, molecular iodine (I 2 ) with steel surfaces in the containment may play an important role in predicting the source term to the environment. Both wall retention of iodine and conversion of volatile into non-volatile iodine compounds at steel surfaces have to be considered. Two types of laboratory experiments were carried out at Siemens/KWU in order to investigate the reaction of I 2 at steel surfaces representative for German power plants. 1) For steel coupons submerged in an I 2 solution at T = 50 deg C, 90 deg C or 140 deg C the reaction rate of the I 2 /I - conversion was determined. No iodine loading was observed on the steel in the aqueous phase tests. I 2 reacts with the steel components (Fe, Cr or Ni) to form metal iodides on the surface which are all immediately dissolved in water under dissociation into the metal and the iodide ions. From these experiments, the I 2 /I - conversion rate constants over the temperature range 50 deg C - 140 deg C as well as the activation energy were determined. The measured data are suitable to be included in severe accident iodine codes such as IMPAIR. 2) Steel tubes were exposed to a steam/I 2 flow under dry air at T=120 deg C and steam-condensing conditions at T= 120 deg C and 160 deg C. In dry air I 2 was retained on the steel surface and a deposition rate constant was measured. Under steam-condensing conditions there is an effective conversion of volatile I 2 to non-volatile I - which is subsequently washed off from the steel surface. The I 2 /I - conversion rate constants suitable for modelling this process were determined. No temperature dependency was found in the range 120 deg C - 160 deg C. (author). 4 refs., 2 tabs., 7 figs

  7. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition

    Science.gov (United States)

    Guan, Yiwen; Li, Jiang; Liu, Yang

    2017-07-01

    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  8. Manipulating radicals: Using cobalt to steer radical reactions

    OpenAIRE

    Chirilă, A.

    2017-01-01

    This thesis describes research aimed at understanding and exploiting metallo-radical reactivity and explores reactions mediated by square planar, low-spin cobalt(II) complexes. A primary goal was to uncover novel reactivity of discrete cobalt(III)-bound carbene radicals generated upon reaction of the cobalt(II) catalysts with carbene precursors. Another important goal was to replace cobalt(II)-porphyrin catalysts with cheaper and easier to prepare metallo-radical analogues. Therefore the cata...

  9. Description of the equilibrium conditions of chemical reactions in various solvents

    International Nuclear Information System (INIS)

    Roehl, H.

    1983-01-01

    Empirical knowledge is taken as the basis for establishing a method to predict the equilibrium conditions of reactions of macrocyclic polyethers and monovalent metal cations in various solvents. The reactions in the solvents under review can be well described by the donor number DN according to Gutmann, and by the parameters alpha and pi-asterisk for the H bonding donor and polarity/polarisability, respectively, using a three-parameter equation according to Kamlet/Taft. This applies to both protic and aprotic solvents. The calculations rely on data found in the literature and on own experimental results obtained by microcalorimetric examinations. The evaluation methods evolved for this purpose also allow, by means of additional dilution experiments, to convert the ''integral'', microcalorimetrically obtained complex stability constants, (i.e. those non-discriminating between different types of state such as ions or ion pairs) to the corresponding ''differentiating'' constants (referring to purely ionic quantities), and this applied to the various solvents used. The method does not use foreign ions and can thus also be applied to those cases for which the normal standardisation of reaction conditions published in the literature cannot be maintained (e.g. for reasons of solubility). In some cases it was possible to obtain additional information on the dissociation behaviour of the salts used, which revealed differently strong inclination to form higher aggregations in solution, as shown e.g. by the strong concentration dependence of the salt ion pair dissociation constants obtained. (orig./EF) [de

  10. The kinetics of dolomite reaction rim growth under isostatic and non-isostatic pressure conditions

    Science.gov (United States)

    Helpa, V.; Rybacki, E.; Morales, L. G.; Abart, R.; Dresen, G. H.

    2013-12-01

    During burial and exhumation, rocks are simultaneously exposed to metamorphic reactions and tectonic stresses. Therefore, the reaction rate of newly formed minerals may depend on chemical and mechanical driving forces. Here, we investigate the reaction kinetics of dolomite (CaMg[CO3]2) rim growth by solid-state reactions experiments on oriented calcite (CaCO3) and magnesite (MgCO3) single crystals under isostatic and non-isostatic pressure conditions. Cylindrical samples of 3-5 mm length and 7 mm diameter were drilled and polished perpendicular to the rhombohedral cleavage planes of natural clear crystals. The tests were performed using a Paterson-type deformation apparatus at P = 400 MPa confining pressure, temperatures, T, between 750 and 850°C, and reaction durations, t, of 2 - 146 h to calculate the kinetic parameters of dolomite rim growth under isostatic stress conditions. For non-isostatic reaction experiments we applied in addition differential stresses, σ, up to 40 MPa perpendicular to the contact interface at T = 750°C for 4 - 171 h duration, initiating minor inelastic deformation of calcite. The thickness of the resulting dolomite reaction rims increases linearly with the square root of time, indicating a diffusion-controlled reaction. The rims consist of two different textural domains. Granular dolomite grains (≈ 2 -5 μm grain size) form next to calcite and elongated palisade-shaped grains (1-6 μm diameter) grow perpendicular to the magnesite interface. Texture measurements with the electron backscatter diffraction technique indicate that the orientations of dolomite grains are mainly influenced by the orientation of the calcite educt crystal, in particular in the granular rim. To some extent, the texture of dolomite palisades is also influenced by the orientation of magnesite. The thickness of the two individual layers increases with temperature. At 400 MPa isostatic pressure, T = 750°C and t = 29 hours, a 5 μm thick granular dolomite layer

  11. Reactive thermal waves in energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Larry G [Los Alamos National Laboratory

    2009-01-01

    Reactive thermal waves (RTWs) arise in several energetic material applications, including self-propagating high-temperature synthesis (SHS), high explosive cookoff, and the detonation of heterogeneous explosives. In this paper I exmaine ideal RTWs, by which I mean that (1) material motion is neglected, (2) the state dependence of reaction is Arrhenius in the temperature, and (3) the reaction rate is modulated by an arbitrary mass-fraction-based reaction progress function. Numerical simulations demonstrate that one's natural intuition, which is based mainly upon experience with inert materials and which leads one to expect diffusion processes to become relatively slow after a short time period, is invalid for high energy, state-sensitive reactive systems. Instead, theory predicts that RTWs can propagate at very high speeds. This result agrees with estimates for detonating heterogeneous explosives, which indicate that RTWs must spread from hot-spot nucleation sites at rates comparable to the detonation speed in order to produce experimentally-observed reaction zone thicknesses. Using dimensionless scaling and further invoking the high activation energy approximation, I obtain an analytic formula for the steady plane RTW speed from numerical calculations. I then compute the RTW speed for real explosives, and discuss aspects of their behavior.

  12. Definition of reactivity and its measurability

    International Nuclear Information System (INIS)

    Hu Dapu

    1986-01-01

    Reactivity is the fundamental and important physical quantity in the reactor physics. The different kinds of method for defining reactivity are represented, the difference between different definitions of reactivity is indicalted and the conditions under which they have nearly the same measurable value are discussed. It is demonstrated that when the static adjointed neutron density or the neutron importance is selected to be a weight function for generating kinetic parameters used in the neutron kinetic equations, the kinetic reactivity is approximately equal to the static reactivity. Due to the constraint of the normalization condition, the shape function must be so selected that the corresponding amplitude function is proportional to the fundamental mode of neutron density variating with time. Measured reactivity by the kinetic method may vary with the position of detector, owing to the different space distribution of the prompt neutrons density and the delayed neutrons density and the effect of the higher harmonics of the neutron density. Some corresponding correction must be made in order to obtain the real static reactivity

  13. Methylene blue as a lignin surrogate in manganese peroxidase reaction systems.

    Science.gov (United States)

    Goby, Jeffrey D; Penner, Michael H; Lajoie, Curtis A; Kelly, Christine J

    2017-11-15

    Manganese peroxidase (MnP) is associated with lignin degradation and is thus relevant to lignocellulosic-utilization technologies. Technological applications require reaction mixture optimization. A surrogate substrate can facilitate this if its susceptibility to degradation is easily monitored and mirrors that of lignin. The dye methylene blue (MB) was evaluated in these respects as a surrogate substrate by testing its reactivity in reaction mixtures containing relevant redox mediators (dicarboxylic acids, fatty acids). Relative rates of MB degradation were compared to available literature reports of lignin degradation under similar conditions, and suggest that MB can be a useful lignin surrogate in MnP systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Fluid-rock interaction: A reactive transport approach

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.; Maher, K.

    2009-04-01

    Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be

  15. Large-scale multiplex polymerase chain reaction assay for diagnosis of viral reactivations after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Inazawa, Natsuko; Hori, Tsukasa; Hatakeyama, Naoki; Yamamoto, Masaki; Yoto, Yuko; Nojima, Masanori; Suzuki, Nobuhiro; Shimizu, Norio; Tsutsumi, Hiroyuki

    2015-08-01

    Viral reactivations following hematopoietic stem cell transplantation are thought to result from the breakdown of both cell-mediated and humoral immunity. As a result, many viruses could be reactivated individually or simultaneously. Using a multiplex polymerase chain reaction (PCR), we prospectively examined many kinds of viral DNAs at a time in 105 patients who underwent allogeneic hematopoietic stem cell transplantation. In total, 591 whole blood samples were collected weekly from pre- to 42 days post-transplantation and the following 13 viruses were tested; herpes simplex virus 1 (HSV-1), HSV-2, varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpes virus 6 (HHV-6), HHV-7, HHV-8, adenovirus, BK virus (BKV), JC virus (JCV), parvovirus B19, and hepatitis B virus (HBV). Several viral DNAs were detected in 12 patients before hematopoietic stem cell transplantation. The detection rate gradually increased after transplantation and peaked at 21 days. The most frequently detected virus was HHV-6 (n = 63; 60.0%), followed by EBV (n = 11; 10.5%), CMV (n = 11; 10.5%), and HHV-7 (n = 9; 8.6%). Adenovirus and HBV were each detected in one patient (1.0%). Detection of HHV-6 DNA was significantly more common among patients undergoing cord blood transplantation or with steroid treatment. EBV DNA tended to be more common in patients treated with anti-thymocyte globulin. Multiplex PCR was useful for detecting many viral reactivations after hematopoietic stem cell transplantation, simultaneously. Cord blood transplantation, steroid treatment, or anti-thymocyte globulin use was confirmed to be risk factors after transplantation. © 2015 Wiley Periodicals, Inc.

  16. Effect of substituents on the reactivity of ninhydrin with urea

    NARCIS (Netherlands)

    Jong, Jacobus A.W.; Moret, Marc Etienne; Verhaar, Marianne C.; Hennink, Wim E.; Gerritsen, Karin G.F.; Van Nostrum, Cornelus F.

    2018-01-01

    Ninhydrin, i. e. the stable hydrate of the reactive species indanetrione, is a well-known compound used for the quantification of ammonia and amino acids. However, substituent effects on the reactivity of ninhydrin with nucleophiles are not described. In this work, the kinetics of the reaction of

  17. Reactive transport in a partially molten system with binary solid solution

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2017-12-01

    Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the

  18. Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration.

    Science.gov (United States)

    Xiong, Zhaokun; Lai, Bo; Yang, Ping; Zhou, Yuexi; Wang, Juling; Fang, Shuping

    2015-10-30

    In order to further compare the degradation capacity of Fe(0) and Fe/Cu bimetallic system under different aeration conditions, the mineralization of PNP under different aeration conditions has been investigated thoroughly. The results show that the removal of PNP by Fe(0) or Fe/Cu system followed the pseudo-first-order reaction kinetics. Under the optimal conditions, the COD removal efficiencies obtained through Fe(0) or Fe/Cu system under different aeration conditions followed the trend that Fe/Cu (air)>Fe/Cu (N2: 0-30 min, air: 30-120 min)>control-Fe (air)>Fe/Cu (without aeration)>Fe/Cu (N2)>control-Fe (N2). It revealed that dissolved oxygen (DO) could improve the mineralization of PNP, and Cu could enhance the reactivity of Fe(0). In addition, the degradation of PNP was further analyzed by using UV-vis, FTIR and GC/MS, and the results suggest that Fe/Cu bimetallic system with air aeration could completely break the benzene ring and NO2 structure of PNP and could generate the nontoxic and biodegradable intermediate products. Meanwhile, most of these intermediate products were further mineralized into CO2 and H2O, which brought about a high COD removal efficiency (83.8%). Therefore, Fe/Cu bimetallic system with air aeration would be a promising process for toxic refractory industry wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    OpenAIRE

    Zuo, Li; Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared wi...

  20. The problem of reactivity and reaction-rate calculations for mixed graphite lattices

    International Nuclear Information System (INIS)

    Pitcher, H.H.W.

    1963-05-01

    The dependence of reactor physics quantities, such as η f and Pu239/U235 fission ratio, in a single cell on the environment of the cell, and the relationship of the reactivity of a mixed lattice to the reactivity of its components, in graphite-moderated reactors are investigated. In a particular case, a mixed lattice fuelled with uranium at 0 and 3000 MWD/Te showed at 8 cm. pitch a small but appreciable change (∼ 1%) in cell quantities, and at 25 cm. pitch a smaller change. It is found that the present method of calculating lattice reactivity, ignoring intercell effects, is probably adequate for standard-pitch metal-fuelled graphite-moderated systems. More general mixed-lattice systems, particularly if accurate values of cell quantities are required, may need special calculation techniques; these are discussed, and techniques adequate for most systems are presented. (author)

  1. The pentadehydro-Diels-Alder reaction.

    Science.gov (United States)

    Wang, Teng; Naredla, Rajasekhar Reddy; Thompson, Severin K; Hoye, Thomas R

    2016-04-28

    In the classic Diels-Alder [4 + 2] cycloaddition reaction, the overall degree of unsaturation (or oxidation state) of the 4π (diene) and 2π (dienophile) pairs of reactants dictates the oxidation state of the newly formed six-membered carbocycle. For example, in the classic Diels-Alder reaction, butadiene and ethylene combine to produce cyclohexene. More recent developments include variants in which the number of hydrogen atoms in the reactant pair and in the resulting product is reduced by, for example, four in the tetradehydro-Diels-Alder (TDDA) and by six in the hexadehydro-Diels-Alder (HDDA) reactions. Any oxidation state higher than tetradehydro (that is, lacking more than four hydrogens) leads to the production of a reactive intermediate that is more highly oxidized than benzene. This increases the power of the overall process substantially, because trapping of the reactive intermediate can be used to increase the structural complexity of the final product in a controllable and versatile manner. Here we report an unprecedented overall 4π + 2π cycloaddition reaction that generates a different, highly reactive intermediate known as an α,3-dehydrotoluene. This species is in the same oxidation state as a benzyne. Like benzynes, α,3-dehydrotoluenes can be captured by various trapping agents to produce structurally diverse products that are complementary to those arising from the HDDA process. We call this new cycloisomerization process a pentadehydro-Diels-Alder (PDDA) reaction-a nomenclature chosen for chemical taxonomic reasons rather than mechanistic ones. In addition to alkynes, nitriles (RC≡N), although non-participants in aza-HDDA reactions, readily function as the 2π component in PDDA cyclizations to produce, via trapping of the α,3-(5-aza)dehydrotoluene intermediates, pyridine-containing products.

  2. Aedes communis Reactivity Is Associated with Bee Venom Hypersensitivity: An in vitro and in vivo Study.

    Science.gov (United States)

    Scala, Enrico; Pirrotta, Lia; Uasuf, Carina G; Mistrello, Gianni; Amato, Stefano; Guerra, Emma Cristina; Locanto, Maria; Meneguzzi, Giorgia; Giani, Mauro; Cecchi, Lorenzo; Abeni, Damiano; Asero, Riccardo

    2018-01-01

    Mosquito bite is usually followed by a local reaction, but severe or systemic reaction may, in rare cases, occur. Allergic reactions to Aedes communis (Ac) may be underestimated due to the lack of reliable diagnostic tools. In this multicenter study, 205 individuals reporting large local reactions to Ac were enrolled and studied for cutaneous or IgE reactivity to Ac, Blattella germanica, Penaeus monodon, and Dermatophagoides pteronyssinus. Extract and molecular IgE reactivity to bees, wasps, hornets, and yellow jacket venoms were also studied in 119 patients with a clinical history of adverse reaction to Hymenoptera. Immunoblot (IB) analysis and immunoCAP IgE inhibition experiments were carried out in selected sera. Ac sensitization was recorded in 96 (46.8%) patients on SPT. Strict relationship between Ac and D. pteronyssinus, B. germanica, P. monodon, or Apis mellifera reactivity on SPT was observed. Ac IgE recognition was seen in 60/131 (45.8%) patients, 49 (81.6%) of them SPT positive, and 5/14 IB reactors. Ac IgE sensitization was associated with Tabanus spp, A. mellifera, Vespula vulgaris, and Polistes dominula reactivity. A strict relationship between Ac IgE reactivity and Api m 1, Api m 2, Api m 3, Api m 5, and Api m 10 was recorded. IgE reactivity to AC was inhibited in 9/15 cases after serum absorption with the A. mellifera extract. Both SPT and IgE Ac reactivity is observed in about half of patients with a history of large local reactions to mosquito bites. The significant relationship between Ac sensitization and either extract or single bee venom components is suggestive of a "bee-mosquito syndrome" occurrence. © 2018 S. Karger AG, Basel.

  3. Reaction kinetics and transformation of carbadox and structurally related compounds with aqueous chlorine.

    Science.gov (United States)

    Shah, Amisha D; Kim, Jae-Hong; Huang, Ching-Hua

    2006-12-01

    The potential release of carbadox (CDX), a commonly used antibacterial agent in swine husbandry, into water systems is of a concern due to its carcinogenic and genotoxic effects. Until this study, the reactivity of carbadox (possessing quinoxaline N,N'-dioxide and hydrazone moieties) toward aqueous chlorine has yetto be investigated in depth. Chemical reactivity, reaction kinetics, and transformation pathways of carbadox and structurally related compounds with free chlorine under typical water treatment conditions were determined. This study found that only CDX and desoxycarbadox (DCDX), a main metabolite of CDX with no ring N-oxide groups, react rapidly with free chlorine while other structurally related compounds including olaquindox, quindoxin, quinoxaline N-oxide, quinoxaline, and quinoline N-oxide do not. The reaction kinetics of CDX and DCDX with chlorine are highly pH dependent (e.g., the apparent second-order rate constant, kapp, for CDX ranges from 51.8 to 3.15 x 10(4) M(-1)s(-1) at pH 4-11). The high reactivity of CDX and DCDX to chlorine involves deprotonation of their hydrazone N-H moieties where initial chlorine attack results in a reactive intermediate that is further attacked by nucleophiles in the matrix to yield non-chlorinated, hydroxylated, and larger molecular weight byproducts. All of the CDX's byproducts retain their biologically active N-oxide groups, suggesting that they may remain as active antibacterial agents.

  4. Kinetics of hydrogen isotope exchange reactions

    International Nuclear Information System (INIS)

    Gold, V.; McAdam, M.E.

    1975-01-01

    Under the influence of tritium β-radiation, 1,4-dioxan undergoes hydrogen exchange with the solvent water. The inhibition of the reaction by known electron scavengers (Ag + , Cu 2+ , Ni 2+ , Co 2+ , Zn 2+ , H 3 + O) and also by species with high reactivity towards hydroxyl radicals but negligible reactivity towards solvated electrons (N 3 - , Br - , SCN - ) has been examined in detail. γ-irradiation similarly induces hydrogen exchange. The action of scavengers is interpreted as requiring the involvement of two separately scavengeable primary radiolysis products in the sequence of reactions leading to exchange. The presence of electron scavengers, even at high concentration, does not totally inhibit the exchange, and a secondary exchange route, involving a low vacancy state of inhibitor cations, is considered responsible for the 'unscavengeable' portion of the reaction, by providing an alternative exchange route. Analogies are drawn between the exchange reaction and other radiation-induced reactions that are thought to involve spur processes. Some implication of radiation-chemical studies in water-alcohol mixtures are indicated. (author)

  5. Combined experimental and theoretical approach to understand the reactivity of a mononuclear Cu(II)-hydroperoxo complex in oxygenation reactions.

    Science.gov (United States)

    Kamachi, Takashi; Lee, Yong-Min; Nishimi, Tomonori; Cho, Jaeheung; Yoshizawa, Kazunari; Nam, Wonwoo

    2008-12-18

    A copper(II) complex bearing a pentadentate ligand, [Cu(II)(N4Py)(CF(3)SO(3))(2)] (1) (N4Py = N,N-bis(2-pyridylmethyl)bis(2-pyridyl)methylamine), was synthesized and characterized with various spectroscopic techniques and X-ray crystallography. A mononuclear Cu(II)-hydroperoxo complex, [Cu(II)(N4Py)(OOH)](+) (2), was then generated in the reaction of 1 and H(2)O(2) in the presence of base, and the reactivity of the intermediate was investigated in the oxidation of various substrates at -40 degrees C. In the reactivity studies, 2 showed a low oxidizing power such that 2 reacted only with triethylphosphine but not with other substrates such as thioanisole, benzyl alcohol, 1,4-cyclohexadiene, cyclohexene, and cyclohexane. In theoretical work, we have conducted density functional theory (DFT) calculations on the epoxidation of ethylene by 2 and a [Cu(III)(N4Py)(O)](+) intermediate (3) at the B3LYP level. The activation barrier is calculated to be 39.7 and 26.3 kcal/mol for distal and proximal oxygen attacks by 2, respectively. This result indicates that the direct ethylene epoxidation by 2 is not a plausible pathway, as we have observed in the experimental work. In contrast, the ethylene epoxidation by 3 is a downhill and low-barrier process. We also found that 2 cannot be a precursor to 3, since the homolytic cleavage of the O-O bond of 2 is very endothermic (i.e., 42 kcal/mol). On the basis of the experimental and theoretical results, we conclude that a mononuclear Cu(II)-hydroperoxo species bearing a pentadentate N5 ligand is a sluggish oxidant in oxygenation reactions.

  6. Molecular beam studies of reaction dynamics

    International Nuclear Information System (INIS)

    Lee, Yuan T.

    1991-03-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation

  7. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  8. Pyrimidine nucleobase radical reactivity in DNA and RNA

    Science.gov (United States)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  9. Clinical cross-reactivity among foods of the Rosaceae family.

    Science.gov (United States)

    Rodriguez, J; Crespo, J F; Lopez-Rubio, A; De La Cruz-Bertolo, J; Ferrando-Vivas, P; Vives, R; Daroca, P

    2000-07-01

    Foods from the Rosaceae botanical family have been increasingly reported as causes of allergic reaction. Patients frequently have positive skin tests or radioallergosorbent test results for multiple members of this botanical family. Our purpose was to investigate the clinical cross-reactivity assessed by double-blind, placebo-controlled food challenge (DBPCFC) of Rosaceae foods (apricot, almond, plum, strawberry, apple, peach, and pear). Thirty-four consecutive adult patients complaining of adverse reactions to Rosaceae were included in the study. Skin prick tests and CAP System (FEIA) were performed with Rosaceae foods in all patients. Clinical reactivity to Rosaceae was systematically evaluated by open food challenges (OFCs), unless there was a convincing history of a recent severe anaphylaxis. Positive reactions on OFCs were subsequently evaluated by DBPCFCs. Twenty-six and 24 patients had positive skin prick tests and CAP FEIA with Rosaceae, respectively; from these 88% and 100% had positive tests with >/=2. No evidence of clinical reactivity was found in 66% percent of positive skin prick tests and 63% of positive specific IgE determinations to fruits. A total of 226 food challenges (including OFC and DBPCFC) were performed in the 28 patients with positive skin prick tests or CAP System FEIA. Of 182 initial OFCs carried out, 26 (14%) reactions were confirmed by DBPCFCs. Overall, 40 reactions were considered positive in 22 patients with positive skin tests or CAP FEIA. Thirty-eight reactions had been previously reported, the remaining two were detected by systematic challenges. Most reactions were caused by peach (22 patients), apple (6), and apricot (5). Ten patients (46%) were clinically allergic to peach and other Rosaceae. Positive skin test and CAP System FEIA should not be taken as the only guide for multi-species dietary restrictions. Nevertheless, the potential clinical allergy to other Rosaceae should not be neglected. If the reported reaction is

  10. Effect of processing temperature on the bitumen/MDI-PEG reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Alfonso, M.J.; Partal, P.; Navarro, F.J.; Garcia-Morales, M. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Campus de ' El Carmen' , Universidad de Huelva, 21071, Huelva (Spain); Bordado, J.C.M. [Chemical and Biological Engineering Department, IBB, Instituto Superior Tecnico, Av. Rovisco Pais 1049-001 Lisbon (Portugal); Diogo, A.C. [Materials Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais 1049-001 Lisbon (Portugal)

    2009-04-15

    Reactive polymers are lately gaining acceptance to give added value to a residue of the crude oil refining process such as bitumen. The resulting material should display enhanced mechanical properties to be considered for advanced applications in construction. In the present paper, we report the effect of processing temperature on the reaction between bitumen compounds and an isocyanate-based reactive polymer, synthesized by reaction of polymeric MDI (4,4'-diphenylmethane diisocyanate) with a low molecular weight polyethylene-glycol (PEG). Rheokinetics experiments, viscosity measurements at 60 C, atomic force microscopy (AFM) characterization, thin layer chromatography (TLC-FID) analysis and thermogravimetric studies (TGA) were performed on the reactive polymer and on samples of MDI-PEG modified bitumen containing 2 wt.% of the polymer. Results showed the existence of an optimum processing temperature arisen as a consequence of opposite effects: microstructural availability for the formation of a polymer-bitumen network, reaction ability and polymer thermal degradation. Consequently, this study aims to serve as a guideline for the refining and asphalt industries facing the stage of selecting the optimum processing parameters. (author)

  11. Volcanic Aggregates from Azores and Madeira Archipelagos (Portugal): An Overview Regarding the Alkali Silica Reactions

    Science.gov (United States)

    Medeiros, Sara; Ramos, Violeta; Fernandes, Isabel; Nunes, João Carlos; Fournier, Benoit; Santos Silva, António; Soares, Dora

    2017-12-01

    Alkali-silica reaction (ASR) is a type of deterioration that has been causing serious expansion, cracking and durability/operational issues in concrete structures worldwide. The presence of sufficient moisture, high alkali content in the cement paste and reactive forms of silica in the aggregates are the required conditions for this reaction to occur. Reactive aggregates of volcanic nature have been reported in different countries such as Japan, Iceland and Turkey, among others. The presence of silica minerals and SiO2-rich volcanic glass is regarded as the main cause for the reactivity of volcanic rocks. In Portugal, volcanic aggregates are mainly present in Azores and Madeira Archipelagos and, for several years, there was no information regarding the potential alkali-reactivity of these rocks. Since the beginning of this decade some data was obtained by the work of Medeiros (2011) and Ramos (2013) and by the national research projects ReAVA, (Characterization of potential reactivity of the volcanic aggregates from the Azores Archipelago: implications on the durability of concrete structures) and IMPROVE (Improvement of performance of aggregates in the inhibition of alkali-aggregate reactions in concrete), respectively. In order to investigate the potential alkali-reactivity of aggregates from both archipelagos, a total of sixteen aggregates were examined under the optical microscope and, some of them, also under the Scanning Electron Microscope with Energy Dispersive X-ray Spectroscopy. A set of geochemical analyses and laboratory expansion tests were also performed on those volcanic aggregates. The main results showed that the presence of volcanic glass is rare in both archipelagos and that the samples of Madeira Archipelago contain clay minerals (mainly from scoria/tuff formations inter-layered with the lava flows), which can play a role in concrete expansion. The results of the laboratory tests showed that one of the samples performed as potentially reactive

  12. Cross reactivity between European hornet and yellow jacket venoms.

    Science.gov (United States)

    Severino, M G; Caruso, B; Bonadonna, P; Labardi, D; Macchia, D; Campi, P; Passalacqua, G

    2010-08-01

    Cross-reactions between venoms may be responsible for multiple diagnostic positivities in hymenoptera allergy. There is limited data on the cross-reactivity between Vespula spp and Vespa crabro, which is an important cause of severe reactions in some parts of Europe. We studied by CAP-inhibition assays and immunoblotting the cross-reactivity between the two venoms. Sera from patients with non discriminative skin/CAP positivity to both Vespula and Vespa crabro were collected for the analyses. Inhibition assays were carried out with a CAP method, incubating the sera separately with both venoms and subsequently measuring the specific IgE to venoms themselves. Immunoblotting was performed on sera with ambiguous results at the CAP-inhibition. Seventeen patients had a severe reaction after Vespa crabro sting and proved skin and CAP positive also to vespula. In 11/17 patients, Vespula venom completely inhibited IgE binding to VC venom, whereas VC venom inhibited binding to Vespula venom only partially (Vespula germanica, thus indicating a true sensitisation to crabro. In the case of multiple positivities to Vespa crabro and Vespula spp the CAP inhibition is helpful in detecting the cross-reactivities.

  13. Solid State Structure-Reactivity Studies on Bixbyites, Fluorites and Perovskites Belonging to the Vanadate, Titanate and Cerate Families

    Science.gov (United States)

    Shafi, Shahid P.

    This thesis primarily focuses on the systematic understanding of structure-reactivity relationships in two representative systems: bixbyite and related structures as well as indium doped CeO2. Topotactic reaction routes have gained significant attention over the past two decades due to their potential to access kinetically controlled metastable materials. This has contributed substantially to the understanding of solid state reaction pathways and provided first insights into mechanisms. Contrary to the widely used ex-situ methods, in-situ techniques including powder x-ray diffraction and thermogravimetric-differential thermal analysis have been employed extensively throughout this work in order to follow the reaction pathways in real time. Detailed analysis of the AVO3 (A = In, Sc) bixbyite reactivity under oxidative conditions has been carried out and a variety of novel metastable oxygen defect phases have been identified and characterized. The novel metastable materials have oxygen deficient fluorite structures and consequently are potential ion conductors. Structural aspects of the topotactic vs. reconstructive transformations are illustrated with this model system. The structure-reactivity study of AVO3 phases was extended to AVO3 perovskite family. Based on the research methodologies and results from AVO3 bixbyite reactivity studies a generalized mechanistic oxidation pathway has been established with a non-vanadium phase, ScTiO3 bixbyite. However, there is stark contrast in terms of structural stability and features beyond this stability limit during AVO3 and ScTiO3 bixbyite reaction pathways. A series of complex reaction sequences including phase separation and phase transitions were identified during the investigation of ScTiO3 reactivity. The two-step formation pathway for the fluorite-type oxide ion conductor Ce1-xInxO2-delta (0 ≤ x ≤ 0.3) is being reported. The formation of the BaCe1-xInxO 3-delta perovskites and the subsequent CO2-capture reaction

  14. Homogeneous photocatalytic reactions with organometallic and coordination compounds--perspectives for sustainable chemistry.

    Science.gov (United States)

    Hoffmann, Norbert

    2012-02-13

    Since the time of Giacomo Ciamician at the beginning of the 20th century, photochemical transformations have been recognized as contributing to sustainable chemistry. Electronic excitation significantly changes the reactivity of chemical compounds. Thus, the application of activation reagents is frequently avoided and transformations can be performed under mild conditions. Catalysis plays a central role in sustainable chemistry. Stoichiometric amounts of activation reagents are often avoided. This fact and the milder catalytic reaction conditions diminish the formation of byproducts. In the case of homogeneous catalysis, organometallic compounds are often applied. The combination of both techniques develops synergistic effects in the sense of "Green Chemistry". Herein, metal carbonyl-mediated reactions are reported. These transformations are of considerable interest for the synthesis of complex polyfunctionalized compounds. Copper(I)-catalyzed [2+2] photocycloaddition gives access to a large variety of cyclobutane derivatives. Currently, a large number of publications deal with photochemical electron-transfer-induced reactions with organometallic and coordination compounds, particularly with ruthenium complexes. Several photochemically induced oxidations can easily be performed with air or molecular oxygen when they are catalyzed with organometallic complexes. Photochemical reaction conditions also play a certain role in C-H activation with organometallic catalysts, for instance, with alkanes, although such transformations are conveniently performed with a variety of other photochemical reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Weigle Reactivation in Acinetobacter Calcoaceticus

    DEFF Research Database (Denmark)

    Berenstein, Dvora

    1982-01-01

    phage and host survivals of about 5 times 10-6 and 1 times 10-1, respectively. Intracellular development of W-reactivated P78 was followed by one-step growth experiments. Conditions which allowed maximal W-reactivation also extended the period of phage production and yielded a somewhat reduced burst......Weigle (W)-reactivation was demonstrated in Acinetobacter calcoaceticus for the UV-irra-diated lysogenic phage P78. The reactivation factor (survival of irradiated phage on irradiated bacteria/ survival on unirradiated bacteria) reached a maximum value of 20. This was obtained at UV-doses giving...

  16. Modeling of uncertainties in biochemical reactions.

    Science.gov (United States)

    Mišković, Ljubiša; Hatzimanikatis, Vassily

    2011-02-01

    Mathematical modeling is an indispensable tool for research and development in biotechnology and bioengineering. The formulation of kinetic models of biochemical networks depends on knowledge of the kinetic properties of the enzymes of the individual reactions. However, kinetic data acquired from experimental observations bring along uncertainties due to various experimental conditions and measurement methods. In this contribution, we propose a novel way to model the uncertainty in the enzyme kinetics and to predict quantitatively the responses of metabolic reactions to the changes in enzyme activities under uncertainty. The proposed methodology accounts explicitly for mechanistic properties of enzymes and physico-chemical and thermodynamic constraints, and is based on formalism from systems theory and metabolic control analysis. We achieve this by observing that kinetic responses of metabolic reactions depend: (i) on the distribution of the enzymes among their free form and all reactive states; (ii) on the equilibrium displacements of the overall reaction and that of the individual enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this observation, we develop a novel, efficient Monte Carlo sampling procedure to generate all states within a metabolic reaction that satisfy imposed constrains. Thus, we derive the statistics of the expected responses of the metabolic reactions to changes in enzyme levels and activities, in the levels of metabolites, and in the values of the kinetic parameters. We present aspects of the proposed framework through an example of the fundamental three-step reversible enzymatic reaction mechanism. We demonstrate that the equilibrium displacements of the individual enzymatic steps have an important influence on kinetic responses of the enzyme. Furthermore, we derive the conditions that must be satisfied by a reversible three-step enzymatic reaction operating far away from the equilibrium in order to respond to

  17. Incident angle dependence of reactions between graphene and hydrogen atom by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Saito, Seiki; Nakamura, Hiroaki; Ito, Atsushi

    2010-01-01

    Incident angle dependence of reactions between graphene and hydrogen atoms are obtained qualitatively by classical molecular dynamics simulation under the NVE condition with modified Brenner reactive empirical bond order (REBO) potential. Chemical reaction depends on two parameters, i.e., polar angle θ and azimuthal angle φ of the incident hydrogen. From the simulation results, it is found that the reaction rates strongly depend on polar angle θ. Reflection rate becomes larger with increasing θ, and the θ dependence of adsorption rate is also found. The θ dependence is caused by three dimensional structure of the small potential barrier which covers adsorption sites. φ dependence of penetration rate is also found for large θ. (author)

  18. Effect of reactive and un-reactive substrates on photopolymerization of self-etching adhesives with different aggressiveness.

    Science.gov (United States)

    Zhang, Ying; Wang, Yong

    2013-01-01

    The study investigated the influence of reactive (enamel) and un-reactive (glass) substrates on photo-polymerization of self-etching adhesives. Two commercial adhesives Adper Prompt L-Pop (APLP, pH~0.8) and Adper Easy Bond (AEB, pH~2.5) were applied onto prepared enamel and glass substrates using the same protocol. Micro-Raman spectroscopy was employed to determine the degree of conversion (DC) and the involved mechanism. DC of APLP was dramatically enhanced from ~9.4% to ~82.0% as when changing from glass to enamel, while DC of AEB on both substrates showed no difference. The DC distributions along the adhesive layers of the APLP and AEB on enamel showed descending and constant trends, respectively. Spectral analysis disclosed that the difference in chemical reaction of the two adhesives with enamel might be associated with the results. The chemical reaction of the adhesives with enamel significantly improved the DC of the strong APLP, but not that of the mild AEB.

  19. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  20. Predicting Reactive Transport Dynamics in Carbonates using Initial Pore Structure

    Science.gov (United States)

    Menke, H. P.; Nunes, J. P. P.; Blunt, M. J.

    2017-12-01

    Understanding rock-fluid interaction at the pore-scale is imperative for accurate predictive modelling of carbon storage permanence. However, coupled reactive transport models are computationally expensive, requiring either a sacrifice of resolution or high performance computing to solve relatively simple geometries. Many recent studies indicate that initial pore structure many be the dominant mechanism in determining the dissolution regime. Here we investigate how well the initial pore structure is predictive of distribution and amount of dissolution during reactive flow using particle tracking on the initial image. Two samples of carbonate rock with varying initial pore space heterogeneity were reacted with reservoir condition CO2-saturated brine and scanned dynamically during reactive flow at a 4-μm resolution between 4 and 40 times using 4D X-ray micro-tomography over the course of 1.5 hours using μ-CT. Flow was modelled on the initial binarized image using a Navier-Stokes solver. Particle tracking was then run on the velocity fields, the streamlines were traced, and the streamline density was calculated both on a voxel-by-voxel and a channel-by-channel basis. The density of streamlines was then compared to the amount of dissolution in subsequent time steps during reaction. It was found that for the flow and transport regimes studied, the streamline density distribution in the initial image accurately predicted the dominant pathways of dissolution and gave good indicators of the type of dissolution regime that would later develop. This work suggests that the eventual reaction-induced changes in pore structure are deterministic rather than stochastic and can be predicted with high resolution imaging of unreacted rock.

  1. Stress reactivity in childhood functional abdominal pain or irritable bowel syndrome.

    Science.gov (United States)

    Gulewitsch, M D; Weimer, K; Enck, P; Schwille-Kiuntke, J; Hautzinger, M; Schlarb, A A

    2017-01-01

    Frequent abdominal pain (AP) in childhood has been shown to be associated with elevated experience of stress and with deficits in stress coping, but psychophysiological stress reactivity has been studied rarely. We examined whether children with frequent AP show altered reactions of the parasympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis during and following an afternoon laboratory social stress task in comparison to healthy children and children with anxiety disorders. Twenty-four children with frequent AP (18 with functional AP and six with irritable bowel syndrome; M = 9.9 years), and 24 healthy controls underwent stressful free speech and arithmetic tasks. Twelve children with anxiety disorders served as second comparison sample. Groups were compared regarding parasympathetic reaction and saliva cortisol concentration. We found no differences in parasympathetic withdrawal between the groups. Concerning the HPA axis, we detected an attenuated cortisol reactivity in children with AP compared to both other groups. This study provides preliminary evidence that childhood AP is not associated with altered parasympathetic withdrawal during stress. It seems to be related to a down-regulated reactivity of the HPA axis. This pattern was ascertained in comparison to healthy children and also in comparison to children with anxiety disorders. Childhood abdominal pain could be related to down-regulated HPA axis reactivity to stress but not to altered parasympathetic reaction. Children with abdominal pain and children with anxiety disorders exhibit a divergent stress-related HPA axis reaction. © 2016 European Pain Federation - EFIC®.

  2. Monitoring mass transport in heterogeneously catalyzed reactions by field-gradient NMR for assessing reaction efficiency in a single pellet

    Science.gov (United States)

    Buljubasich, L.; Blümich, B.; Stapf, S.

    2011-09-01

    An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H 2O 2.

  3. Synthesis, characterization and reactivity of some lanthanide organometallics

    International Nuclear Information System (INIS)

    Marchal, N.

    1991-12-01

    Organo lanthanides with reactive metal-carbon bonds are obtained by direct synthesis of the metal (powder) and a hydrocarbon in ether medium, like with alkali metals. Two types of synthesis are envisaged: formation of covalent bonds by opening cycles, only biphenylene is reactive enough in regard to ytterbium and samarium, these organometallic compounds can also be prepared by the classical way, i.e. reaction of 2.2'-dilithio biphenyl on rare earth halogenides and coupling of 6.6-dimethylfulvene leading to dicyclopentadienyl compounds with Sm and Yb. The reactivity of these complexes is studied by catalysis of ethylene polymerization

  4. Reactivity III: An Advanced Course in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Jakubowski, Henry V.

    2017-01-01

    Reactivity III is a new course that presents chemical reactions from the domains of organic, inorganic, and biochemistry that are not readily categorized by electrophile-nucleophile interactions. Many of these reactions involve the transfer of a single electron, in either an intermolecular fashion in the case of oxidation/reduction reactions or an…

  5. Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-10-01

    Full Text Available Halide ions are ubiquitous in natural waters and wastewaters. Halogens play an important and complex role in environmental photochemical processes and in reactions taking place during photochemical water treatment. While inert to solar wavelengths, halides can be converted into radical and non-radical reactive halogen species (RHS by sensitized photolysis and by reactions with secondary reactive oxygen species (ROS produced through sunlight-initiated reactions in water and atmospheric aerosols, such as hydroxyl radical, ozone, and nitrate radical. In photochemical advanced oxidation processes for water treatment, RHS can be generated by UV photolysis and by reactions of halides with hydroxyl radicals, sulfate radicals, ozone, and other ROS. RHS are reactive toward organic compounds, and some reactions lead to incorporation of halogen into byproducts. Recent studies indicate that halides, or the RHS derived from them, affect the concentrations of photogenerated reactive oxygen species (ROS and other reactive species; influence the photobleaching of dissolved natural organic matter (DOM; alter the rates and products of pollutant transformations; lead to covalent incorporation of halogen into small natural molecules, DOM, and pollutants; and give rise to certain halogen oxides of concern as water contaminants. The complex and colorful chemistry of halogen in waters will be summarized in detail and the implications of this chemistry for global biogeochemical cycling of halogen, contaminant fate in natural waters, and water purification technologies will be discussed.

  6. Clayey cap-rocks reactivity in presence of CO2 in deep geological storage conditions: experimentation/modeling integrated approach

    International Nuclear Information System (INIS)

    Credoz, A.

    2009-10-01

    CO 2 capture, transport and geological storage is one of the main solutions considered in the short and medium term to reduce CO 2 and others greenhouse gases emissions towards the atmosphere, by storing CO 2 in deeper geological reservoirs during 100 to 10 000 years. This Ph-D study offers a multi-scale vision of complex clayey cap-rocks reactivity and evolution. These formations are identified for the CO 2 containment and sealing into the reservoir. From the experimental scale on purified clay minerals to integrative modeling at high space and time scales, the strategy developed allowed identifying the main geochemical processes, to check the good agreement between experiment and modeling, and to lay emphasis the operational impacts on long-term cap-rocks integrity. Carbonated cements alteration is likely to open cap-rock porosity and to create preferential reactive pathway for reactive fluid flow. Besides, this could alter the cap-rock structure and the global geo-mechanic properties. Clay minerals alteration, including the illitization process, reduces the clay fraction volume but considerably limits the porosity increase. The illitization process in acidic conditions determined experimentally and by modeling at low and high scale, is coupled with silica precipitation. The final porosity increase control results of these two reactive processes balance. By a fundamental side, this study reveals new kinetic parameters of clay minerals and highlights new structural transformations. By an operational side, this study contributes to the acquisition of qualitative data (long-term reactive pathways of clayey cap-rocks, coupled reactivity carbonates/clays) and quantitative data (CO 2 penetration distance into the cap-rock) to partly answer to the performance and safety assessment CO 2 capture and geological storage. (author)

  7. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.

    Science.gov (United States)

    Ikawa, Takashi; Fujita, Yuki; Mizusaki, Tomoteru; Betsuin, Sae; Takamatsu, Haruki; Maegawa, Tomohiro; Monguchi, Yasunari; Sajiki, Hironao

    2012-01-14

    Nitriles were found to be highly effective alkylating reagents for the selective N-alkylation of amines under catalytic hydrogenation conditions. For the aromatic primary amines, the corresponding secondary amines were selectively obtained under Pd/C-catalyzed hydrogenation conditions. Although the use of electron poor aromatic amines or bulky nitriles showed a lower reactivity toward the reductive alkylation, the addition of NH(4)OAc enhanced the reactivity to give secondary aromatic amines in good to excellent yields. Under the same reaction conditions, aromatic nitro compounds instead of the aromatic primary amines could be directly transformed into secondary amines via a domino reaction involving the one-pot hydrogenation of the nitro group and the reductive alkylation of the amines. While aliphatic amines were effectively converted to the corresponding tertiary amines under Pd/C-catalyzed conditions, Rh/C was a highly effective catalyst for the N-monoalkylation of aliphatic primary amines without over-alkylation to the tertiary amines. Furthermore, the combination of the Rh/C-catalyzed N-monoalkylation of the aliphatic primary amines and additional Pd/C-catalyzed alkylation of the resulting secondary aliphatic amines could selectively prepare aliphatic tertiary amines possessing three different alkyl groups. According to the mechanistic studies, it seems reasonable to conclude that nitriles were reduced to aldimines before the nucleophilic attack of the amine during the first step of the reaction.

  8. Autonomic composite hydrogels by reactive printing: materials and oscillatory response.

    Science.gov (United States)

    Kramb, R C; Buskohl, P R; Slone, C; Smith, M L; Vaia, R A

    2014-03-07

    Autonomic materials are those that automatically respond to a change in environmental conditions, such as temperature or chemical composition. While such materials hold incredible potential for a wide range of uses, their implementation is limited by the small number of fully-developed material systems. To broaden the number of available systems, we have developed a post-functionalization technique where a reactive Ru catalyst ink is printed onto a non-responsive polymer substrate. Using a succinimide-amine coupling reaction, patterns are printed onto co-polymer or biomacromolecular films containing primary amine functionality, such as polyacrylamide (PAAm) or poly-N-isopropyl acrylamide (PNIPAAm) copolymerized with poly-N-(3-Aminopropyl)methacrylamide (PAPMAAm). When the films are placed in the Belousov-Zhabotinsky (BZ) solution medium, the reaction takes place only inside the printed nodes. In comparison to alternative BZ systems, where Ru-containing monomers are copolymerized with base monomers, reactive printing provides facile tuning of a range of hydrogel compositions, as well as enabling the formation of mechanically robust composite monoliths. The autonomic response of the printed nodes is similar for all matrices in the BZ solution concentrations examined, where the period of oscillation decreases in response to increasing sodium bromate or nitric acid concentration. A temperature increase reduces the period of oscillations and temperature gradients are shown to function as pace-makers, dictating the direction of the autonomic response (chemical waves).

  9. Integration of On-Column Chemical Reactions in Protein Characterization by Liquid Chromatography/Mass Spectrometry: Cross-Path Reactive Chromatography.

    Science.gov (United States)

    Pawlowski, Jake W; Carrick, Ian; Kaltashov, Igor A

    2018-01-16

    Profiling of complex proteins by means of mass spectrometry (MS) frequently requires that certain chemical modifications of their covalent structure (e.g., reduction of disulfide bonds), be carried out prior to the MS or MS/MS analysis. Traditionally, these chemical reactions take place in the off-line mode to allow the excess reagents (the majority of which interfere with the MS measurements and degrade the analytical signal) to be removed from the protein solution prior to MS measurements. In addition to a significant increase in the analysis time, chemical reactions may result in a partial or full loss of the protein if the modifications adversely affect its stability, e.g,, making it prone to aggregation. In this work we present a new approach to solving this problem by carrying out the chemical reactions online using the reactive chromatography scheme on a size exclusion chromatography (SEC) platform with MS detection. This is achieved by using a cross-path reaction scheme, i.e., by delaying the protein injection onto the SEC column (with respect to the injection of the reagent plug containing a disulfide-reducing agent), which allows the chemical reactions to be carried out inside the column for a limited (and precisely controlled) period of time, while the two plugs overlap inside the column. The reduced protein elutes separately from the unconsumed reagents, allowing the signal suppression in ESI to be avoided and enabling sensitive MS detection. The new method is used to measure fucosylation levels of a plasma protein haptoglobin at the whole protein level following online reduction of disulfide-linked tetrameric species to monomeric units. The feasibility of top-down fragmentation of disulfide-containing proteins is also demonstrated using β 2 -microglobulin and a monoclonal antibody (mAb). The new online technique is both robust and versatile, as the cross-path scheme can be readily expanded to include multiple reactions in a single experiment (as

  10. Conditional symmetries for systems of PDEs: new definitions and their application for reaction-diffusion systems

    International Nuclear Information System (INIS)

    Cherniha, Roman

    2010-01-01

    New definitions of Q-conditional symmetry for systems of PDEs are presented, which generalize the standard notation of non-classical (conditional) symmetry. It is shown that different types of Q-conditional symmetry of a system generate a hierarchy of conditional symmetry operators. A class of two-component nonlinear reaction-diffusion systems is examined to demonstrate the applicability of the definitions proposed and it is shown when different definitions of Q-conditional symmetry lead to the same operators.

  11. Some issues for blast from a structural reactive material solid

    Science.gov (United States)

    Zhang, F.

    2018-03-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  12. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Rivera, Lymaris, E-mail: luo105@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Bakaev, Victor A.; Banerjee, Joy [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Pantano, Carlo G. [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-01

    Highlights: • XPS revealed that these fiber surfaces contain sodium carbonate weathering products. • IGC–MS data confirms the products of acetic acid reaction with sodium carbonate. • NMR data shows two closely spaced, but distinct sodium carboxylate peaks. • Acetic acid reacts with both sodium in the glass and sodium in the sodium carbonate. - Abstract: Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a {sup 13}C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC–MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H

  13. The influence of the (n, 2n) and (n, α) reactions of beryllium on the neutron balance in a BeO or Be moderated reactor and its consequences on the long term reactivity changes

    International Nuclear Information System (INIS)

    Sahai, K.; Benoist, P.; Horowitz, J.

    1958-01-01

    The reaction probabilities in an infinite and homogeneous medium of BeO or Be have been calculated from neutron cross-section curves, for a neutron produced with an energy distribution similar to a fission spectrum; the calculation shows that, after several elastic collisions, the neutron has yet an appreciable probability to undergo a reaction, in spite of the energy degradation in the spectrum due to each collision. This degradation has been calculated, taking into account of anisotropy of the collisions. The gain of the reactivity in a reactor has been obtained after correcting these probabilities for the attenuation of the flux of fission neutrons due to the inelastic scattering in the uranium. Finally, the calculation shows that in a power reactor, this gain of reactivity is in practice destroyed in a few years by the accumulation of poisonous nuclei such as Li 6 and He 3 following (n, α) reaction. (author) [fr

  14. The quick and the dead: when reaction beats intention.

    Science.gov (United States)

    Welchman, Andrew E; Stanley, James; Schomers, Malte R; Miall, R Chris; Bülthoff, Heinrich H

    2010-06-07

    Everyday behaviour involves a trade-off between planned actions and reaction to environmental events. Evidence from neurophysiology, neurology and functional brain imaging suggests different neural bases for the control of different movement types. Here we develop a behavioural paradigm to test movement dynamics for intentional versus reaction movements and provide evidence for a 'reactive advantage' in movement execution, whereby the same action is executed faster in reaction to an opponent. We placed pairs of participants in competition with each other to make a series of button presses. Within-subject analysis of movement times revealed a 10 per cent benefit for reactive actions. This was maintained when opponents performed dissimilar actions, and when participants competed against a computer, suggesting that the effect is not related to facilitation produced by action observation. Rather, faster ballistic movements may be a general property of reactive motor control, potentially providing a useful means of promoting survival.

  15. Total OH Reactivity Measurements in the Boreal Forest

    Science.gov (United States)

    Praplan, A. P.; Hellén, H.; Hakola, H.; Hatakka, J.

    2015-12-01

    INTRODUCTION Atmospheric total OH reactivity (Rtotal) can be measured (Kovacs and Brune, 2001; Sinha et al., 2008) or it can be calculated according to Rtotal = ∑i kOH+X_i [Xi] where kOH+X_i corresponds to the reaction rate coefficient for the reaction of OH with a given compound Xi and [Xi] its concentration. Studies suggest that in some environments a large fraction of missing reactivity, comparing calculated Rtotal with ambient total OH reactivity measurements (Di Carlo et al., 2004; Hofzumahaus et al., 2009). In this study Rtotal has been measured using the Comparative Reactivity Method (Sinha et al., 2008). Levels of the reference compound (pyrrole, C4H5N) are monitored by gas chromatography every 2 minutes and Rtotal is derived from the difference of reactivity between zero and ambient air. RESULTS Around 36 hours of preliminary total OH reactivity data (30 May until 2 June 2015) are presented in Fig. 1. Its range matches previous studies for this site (Nölscher et al., 2012; Sinha et al., 2010) and is similar to values in another pine forest (Nakashima et al., 2014). The setup used during the period presented here has been updated and more recent data will be presented, as well as a comparison with calculated OH reactivity from measured individual species. ACKNOWLEDGEMENTS This work was supported by Academy of Finland (Academy Research Fellowship No. 275608). The authors acknowledge Juuso Raine for technical support. REFERENCES Di Carlo et al. (2004). Science 304, 722-725.Hofzumahaus et al. (2009). Science 324, 1702-1704.Kovacs and Brune (2001). J. Atmos. Chem. 39, 105-122.Nakashima et al. (2014). Atmos. Env. 85, 1-8.Nölscher et al. (2012). Atmos. Chem. Phys. 12, 8257-8270.Sinha et al. (2008). Atmos. Chem. Phys. 8, 2213-2227.Sinha et al. (2010). Environ. Sci. Technol. 44, 6614-6620.

  16. Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications

    Science.gov (United States)

    Mai, Trang; Hilt, J. Zach

    2017-07-01

    Magnetic nanoparticles have been demonstrated to produce reactive oxygen species (ROS), which play a major role in various cellular pathways, via Fenton and Haber-Weiss reaction. ROS act as a double-edged sword inside the body. At normal conditions, the generation of ROS is in balance with their elimination by scavenger systems, and they can promote cell proliferation as well as differentiation. However, at an increased level, they can cause damages to protein, lead to cellular apoptosis, and contribute to many diseases including cancer. Many recent studies proposed a variety of strategies to either suppress toxicity of ROS generation or exploit the elevated ROS levels for cancer therapy.

  17. Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions.

    Science.gov (United States)

    Nishibayashi, Yoshiaki

    2015-10-05

    This paper describes our recent progress in catalytic nitrogen fixation by using transition-metal-dinitrogen complexes as catalysts. Two reaction systems for the catalytic transformation of molecular dinitrogen into ammonia and its equivalent such as silylamine under ambient reaction conditions have been achieved by the molybdenum-, iron-, and cobalt-dinitrogen complexes as catalysts. Many new findings presented here may provide new access to the development of economical nitrogen fixation in place of the Haber-Bosch process.

  18. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.

    Science.gov (United States)

    Easter, Quinn T; Blum, Suzanne A

    2017-10-23

    Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. On the equivalence between the minimum entropy generation rate and the maximum conversion rate for a reactive system

    International Nuclear Information System (INIS)

    Bispo, Heleno; Silva, Nilton; Brito, Romildo; Manzi, João

    2013-01-01

    Highlights: • Minimum entropy generation (MEG) principle improved the reaction performance. • MEG rate and the maximum conversion equivalence have been analyzed. • Temperature and residence time are used to the domain establishment of MEG. • Satisfying the temperature and residence time relationship results a optimal performance. - Abstract: The analysis of the equivalence between the minimum entropy generation (MEG) rate and the maximum conversion rate for a reactive system is the main purpose of this paper. While being used as a strategy of optimization, the minimum entropy production was applied to the production of propylene glycol in a Continuous Stirred-Tank Reactor (CSTR) with a view to determining the best operating conditions, and under such conditions, a high conversion rate was found. The effects of the key variables and restrictions on the validity domain of MEG were investigated, which raises issues that are included within a broad discussion. The results from simulations indicate that from the chemical reaction standpoint a maximum conversion rate can be considered as equivalent to MEG. Such a result can be clearly explained by examining the classical Maxwell–Boltzmann distribution, where the molecules of the reactive system under the condition of the MEG rate present a distribution of energy with reduced dispersion resulting in a better quality of collision between molecules with a higher conversion rate

  20. Reactivity and selectivity of arenes in reactions with ozone

    International Nuclear Information System (INIS)

    Vysotskii, Yu.B.; Mestechkin, M.M.; Sivyakova, L.N.; Tyupalo, N.F.

    1987-01-01

    The reactions of arenes with ozone, distinguished by the variety of products (quinones, aldehydes, acids), are of interest not only from the theoretical standpoint but also are of preparative value in the case of polycyclic hydrocarbons. In this work a quantitative treatment of this reaction is given on the basis of direct kinetic measurements and simple quantum chemical means, permitting its rate constants and the yield of the products to be related to the elements of electronic structure readily subject to quantum mechanical calculation

  1. Target surface condition during reactive glow discharge sputtering of copper

    International Nuclear Information System (INIS)

    Depla, D; Haemers, J; Gryse, R De

    2002-01-01

    During reactive glow discharge sputtering of copper in an argon/nitrogen plasma, we noticed an abrupt change of the target voltage and the deposition rate when the nitrogen concentration in the plasma exceeds a critical value. To explain this behaviour, the target surface after reactive glow discharge sputtering was examined by x-ray photoelectron spectroscopy (XPS). An experimental arrangement was constructed that allows direct transfer of the glow discharge cathode to the XPS analysis chamber without air exposure. These XPS measurements revealed that several different chemical states of nitrogen are present in the layer that forms on the target surface. The relative concentration of these different states changes when the critical nitrogen concentration in the plasma is exceeded

  2. Assessing the reactivation efficacy of hydroxylamine anion towards VX-inhibited AChE: a computational study.

    Science.gov (United States)

    Khan, Md Abdul Shafeeuulla; Ganguly, Bishwajit

    2012-05-01

    Oximate anions are used as potential reactivating agents for OP-inhibited AChE because of they possess enhanced nucleophilic reactivity due to the α-effect. We have demonstrated the process of reactivating the VX-AChE adduct with formoximate and hydroxylamine anions by applying the DFT approach at the B3LYP/6-311 G(d,p) level of theory. The calculated results suggest that the hydroxylamine anion is more efficient than the formoximate anion at reactivating VX-inhibited AChE. The reaction of formoximate anion and the VX-AChE adduct is a three-step process, while the reaction of hydroxylamine anion with the VX-AChE adduct seems to be a two-step process. The rate-determining step in the process is the initial attack on the VX of the VX-AChE adduct by the nucleophile. The subsequent steps are exergonic in nature. The potential energy surface (PES) for the reaction of the VX-AChE adduct with hydroxylamine anion reveals that the reactivation process is facilitated by the lower free energy of activation (by a factor of 1.7 kcal mol(-1)) than that of the formoximate anion at the B3LYP/6-311 G(d,p) level of theory. The higher free energy of activation for the reverse reactivation reaction between hydroxylamine anion and the VX-serine adduct further suggests that the hydroxylamine anion is a very good antidote agent for the reactivation process. The activation barriers calculated in solvent using the polarizable continuum model (PCM) for the reactivation of the VX-AChE adduct with hydroxylamine anion were also found to be low. The calculated results suggest that V-series compounds can be more toxic than G-series compounds, which is in accord with earlier experimental observations.

  3. Study of ions - molecules reactions in the gas phase with collision reaction cell devices: Applications to the direct resolution of spectroscopic interferences in ICP-MS

    International Nuclear Information System (INIS)

    Favre, G.

    2008-12-01

    Inductively Coupled Plasma Mass Spectrometry emerged as the most widespread mass spectrometry technique in inorganic analytical chemistry for determining the concentration of a given isotope or an isotope ratio. The problem of spectroscopic interferences, inherent to this technique, finds a solution through the use of reaction cell devices. An in situ interference removal is feasible with the addition of a well selected gas in the cell. The understanding of the chemistry of ions-molecules interactions in the gas phase is however fundamental to optimize the efficiency of such devices. An accurate knowledge of experimental conditions in the reaction zone according to instrumental parameters appears crucial in order to interpret observed reactivities. This preliminary study is then used for the resolution of two nuclear field characteristic interferences. (author)

  4. Lack of Correlation between Severity of Clinical Symptoms, Skin Test Reactivity, and Radioallergosorbent Test Results in Venom-Allergic Patients

    Directory of Open Access Journals (Sweden)

    Warrington RJ

    2006-06-01

    Full Text Available Abstract Purpose To retrospectively examine the relation between skin test reactivity, venom-specific immunoglobulin E (IgE antibody levels, and severity of clinical reaction in patients with insect venom allergy. Method Thirty-six patients (including 15 females who presented with a history of allergic reactions to insect stings were assessed. The mean age at the time of the reactions was 33.4 ± 15.1 years (range, 4-76 years, and patients were evaluated 43.6 ± 90 months (range, 1-300 months after the reactions. Clinical reactions were scored according to severity, from 1 (cutaneous manifestations only to 3 (anaphylaxis with shock. These scores were compared to scores for skin test reactivity (0 to 5, indicating the log increase in sensitivity from 1 μg/mL to 0.0001 μg/mL and radioallergosorbent test (RAST levels (0 to 4, indicating venom-specific IgE levels, from undetectable to >17.5 kilounits of antigen per litre [kUA/L]. Results No correlation was found between skin test reactivity (Spearman's coefficient = 0.15, p = .377 or RAST level (Spearman's coefficient = 0.32, p = .061 and the severity of reaction. Skin test and RAST scores both differed significantly from clinical severity (p p = .042. There was no correlation between skin test reactivity and time since reaction (Spearman's coefficient = 0.18, p = .294 nor between RAST and time since reaction (r = 0.1353, p = .438. Elimination of patients tested more than 12 months after their reaction still produced no correlation between skin test reactivity (p = .681 or RAST score (p = .183 and the severity of the clinical reaction. Conclusion In venom-allergic patients (in contrast to reported findings in cases of inhalant IgE-mediated allergy, there appears to be no significant correlation between the degree of skin test reactivity or levels of venom-specific IgE (determined by RAST and the severity of the clinical reaction.

  5. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    International Nuclear Information System (INIS)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom ''sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly

  6. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  7. Synthesis of organolanthanides by metal addition on insaturated substrates in ether and reactivity

    International Nuclear Information System (INIS)

    Olivier, H.

    1988-01-01

    The aim of the study is the extension to rare earths of the synthesis, well known for alkaline or alkaline earth metals, by direct metal addition to insaturated substrates in ether and where the metal is directly bound to carbon. A definition of formation conditions and affinity rules is attempled, both with substrates (essentially aromatic hydrocarbons and ketones) and with metals: Yb, Sm, Ce, Nd and others. The nature of obtained products by reaction of electrophiles on synthetised organometallics, allows investigations specific reactivity and structure. Potential catalytic transformation of olefins is precised [fr

  8. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  9. Allergic cross-reactivity – anew challenge for allergists?

    Directory of Open Access Journals (Sweden)

    Krzysztof Łukasz Piwowarek

    2015-12-01

    Full Text Available Allergic cross-reactivity is an important epidemiological issue in all age groups. It is caused by a non-specific binding of both primary allergen as well as allergens causing secondary cross-reactivity by the same IgE antibodies. This phenomenon results from the similarity of the molecular structure of allergen epitopes and leads to a number of allergic cross-reactivity syndromes, such as pollen-food syndromes, pork-cat syndrome or latex-fruit syndrome. They are characterized by rich symptomatology and the possible occurrence of symptoms related to various systems, including life-threatening systemic reactions. In many cases, specific allergen groups responsible for certain cross-reactions, such as plant profilins, fish parvalbumins or invertebrate tropomyosins, have been identified. Also, some of the factors affecting the spatial conformation of allergens, and thus modifying their allergenic potential, have been identified. Despite all these achievements, the diagnostics of cross reactivity syndromes still remains difficult due to the limited available methods and the possible occurrence of overlapping phenomena such as co-sensitisation, asymptomatic cross-sensitisation or IgE-independent or nonimmunological adverse drug reactions. Therefore, careful management based on medical history as well as avoidance of unjustified treatment methods, e.g. diet therapy or immunotherapy, are necessary. This is of great importance as the incidence of food allergies is expected to increase mainly due to the progressive rise in the prevalence of inhalant allergies to pollens.

  10. Chemistry of the 8-Nitroguanine DNA Lesion: Reactivity, Labelling and Repair.

    Science.gov (United States)

    Alexander, Katie J; McConville, Matthew; Williams, Kathryn R; Luzyanin, Konstantin V; O'Neil, Ian A; Cosstick, Richard

    2018-02-26

    The 8-nitroguanine lesion in DNA is increasingly associated with inflammation-related carcinogenesis, whereas the same modification on guanosine 3',5'-cyclic monophosphate generates a second messenger in NO-mediated signal transduction. Very little is known about the chemistry of 8-nitroguanine nucleotides, despite the fact that their biological effects are closely linked to their chemical properties. To this end, a selection of chemical reactions have been performed on 8-nitroguanine nucleosides and oligodeoxynucleotides. Reactions with alkylating reagents reveal how the 8-nitro substituent affects the reactivity of the purine ring, by significantly decreasing the reactivity of the N2 position, whilst the relative reactivity at N1 appears to be enhanced. Interestingly, the displacement of the nitro group with thiols results in an efficient and specific method of labelling this lesion and is demonstrated in oligodeoxynucleotides. Additionally, the repair of this lesion is also shown to be a chemically feasible reaction through a reductive denitration with a hydride source. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC

    Science.gov (United States)

    Parkhurst, David L.; Wissmeier, Laurin

    2015-01-01

    PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst–Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants.PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.

  12. Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions

    International Nuclear Information System (INIS)

    Go, Alchris Woo; Sutanto, Sylviana; NguyenThi, Bich Thuyen; Cabatingan, Luis K.; Ismadji, Suryadi; Ju, Yi-Hsu

    2014-01-01

    Highlights: • (trans)Esterification of oils under subcritical conditions. • Acetic acid as catalyst and co-solvent in biodiesel production. • Influence of reactor hydrodynamic (loading and stirring) on FAME yield. • High methyl ester yield can be obtained at less severe reaction conditions. - Abstract: Soybean oil (56–80 g) was reacted with methanol (40–106 mL) to produce fatty acid methyl ester in the presence of 1–6% acetic acid under subcritical condition at 250 °C. Stirring and loading of the reaction system affected the yield and severity of the process. The presence of acetic acid improved the yield of FAME from 32.1% to 89.5% at a methanol to oil molar ratio of 20 mL/g. Acetic acid was found to act strongly as an acid catalyst and to some extent improved the solubility between oil and methanol. Reaction pressure higher than the supercritical pressure of methanol (7.85 MPa) was not required to achieve high FAME yield (89.5–94.8%) in short time (30–60 min)

  13. Enhanced Colloidal Stability of CeO2 Nanoparticles by Ferrous Ions: Adsorption, Redox Reaction, and Surface Precipitation.

    Science.gov (United States)

    Liu, Xuyang; Ray, Jessica R; Neil, Chelsea W; Li, Qingyun; Jun, Young-Shin

    2015-05-05

    Due to the toxicity of cerium oxide (CeO2) nanoparticles (NPs), a better understanding of the redox reaction-induced surface property changes of CeO2 NPs and their transport in natural and engineered aqueous systems is needed. This study investigates the impact of redox reactions with ferrous ions (Fe2+) on the colloidal stability of CeO2 NPs. We demonstrated that under anaerobic conditions, suspended CeO2 NPs in a 3 mM FeCl2 solution at pH 4.8 were much more stable against sedimentation than those in the absence of Fe2+. Redox reactions between CeO2 NPs and Fe2+ lead to the formation of 6-line ferrihydrite on the CeO2 surfaces, which enhanced the colloidal stability by increasing the zeta potential and hydrophilicity of CeO2 NPs. These redox reactions can affect the toxicity of CeO2 NPs by increasing cerium dissolution, and by creating new Fe(III) (hydr)oxide reactive surface layers. Thus, these findings have significant implications for elucidating the phase transformation and transport of redox reactive NPs in the environment.

  14. Reactive Membrane Barriers for Containment of Subsurface Contamination

    Energy Technology Data Exchange (ETDEWEB)

    William A. Arnold; Edward L. Cussler

    2007-02-26

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a

  15. Reactive Membrane Barriers for Containment of Subsurface Contamination

    International Nuclear Information System (INIS)

    William A. Arnold; Edward L. Cussler

    2007-01-01

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe 0 ) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe 0 and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu 2+ ) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe 0 barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when

  16. Application of molten salts in pyrochemical processing of reactive metals

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1992-01-01

    Various mixes of chloride and fluoride salts are used as the media for conducting pyrochemical processes in the production and purification of reactive metals. These processes generate a significant amount of contaminated waste that has to be treated for recycling or disposal. Molten calcium chloride based salt systems have been used in this work to electrolytically regenerate calcium metal from calcium oxide for the in situ reduction of reactive metal oxides. The recovery of calcium is characterized by the process efficiency to overcome back reactions in the electrowinning cell. A thermodynamic analysis, based on fundamental rate theory, has been performed to understand the process parameters controlling the metal deposition, rate, behavior of the ceramic anode-sheath and influence of the back-reactions. It has been observed that the deposition of calcium is dependent on the ionic diffusion through the sheath. It has also been evidenced that the recovered calcium is completely lost through the back-reactions in the absence of a sheath. A practical scenario has also been presented where the electrowon metal can be used in situ as a reductant to reduce another reactive metal oxide

  17. Novel Reagents for Multi-Component Reactions

    Science.gov (United States)

    Wang, Yanguang; Basso, Andrea; Nenajdenko, Valentine G.; Gulevich, Anton V.; Krasavin, Mikhail; Bushkova, Ekaterina; Parchinsky, Vladislav; Banfi, Luca; Basso, Andrea; Cerulli, Valentina; Guanti, Giuseppe; Riva, Renata; Rozentsveig, Igor B.; Rozentsveig, Gulnur N.; Popov, Aleksandr V.; Serykh, Valeriy J.; Levkovskaya, Galina G.; Cao, Song; Shen, Li; Liu, Nianjin; Wu, Jingjing; Li, Lina; Qian, Xuhong; Chen, Xiaopeng; Wang, Hongbo; Feng, Jinwu; Wang, Yanguang; Lu, Ping; Heravi, Majid M.; Sadjadi, Samaheh; Kazemizadeh, Ali Reza; Ramazani, Ali; Kudyakova, Yulia S.; Goryaeva, Marina V.; Burgart, Yanina V.; Saloutin, Victor I.; Mossetti, Riccardo; Pirali, Tracey; Tron, Gian Cesare; Rozhkova, Yulia S.; Mayorova, Olga A.; Shklyaev, Yuriy V.; Zhdanko, Alexander G.; Nenajdenko, Valentine G.; Stryapunina, Olga G.; Plekhanova, Irina V.; Glushkov, Vladimir A.; Shklyaev, Yurii V.

    Ketenimines are a class of versatile and highly reactive intermediates that can participate in a variety of organic reactions, such as nucleophilic additions, radical additions, [2 + 2] and [2 + 4] cycloadditions, and sigmatropic rearrangements. In this presentation, we report on a series of multi-component reactions that involve a ketenimine intermediate. These reactions could furnish diverse heterocyclic compounds, including functionalized iminocoumarin, iminodihydroqunolines, iminothiochromens, pyrrolines, isoquinolines, pyridines, β-lactams, imino-1,2-dihydrocoumarins, and benzimidazoles.

  18. Gas-phase rate coefficients for the OH + n-, i-, s-, and t-butanol reactions measured between 220 and 380 K: non-Arrhenius behavior and site-specific reactivity.

    Science.gov (United States)

    McGillen, Max R; Baasandorj, Munkhbayar; Burkholder, James B

    2013-06-06

    Butanol (C4H9OH) is a potential biofuel alternative in fossil fuel gasoline and diesel formulations. The usage of butanol would necessarily lead to direct emissions into the atmosphere; thus, an understanding of its atmospheric processing and environmental impact is desired. Reaction with the OH radical is expected to be the predominant atmospheric removal process for the four aliphatic isomers of butanol. In this work, rate coefficients, k, for the gas-phase reaction of the n-, i-, s-, and t-butanol isomers with the OH radical were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to monitor its temporal profile. Rate coefficients were measured over the temperature range 221-381 K at total pressures between 50 and 200 Torr (He). The reactions exhibited non-Arrhenius behavior over this temperature range and no dependence on total pressure with k(296 K) values of (9.68 ± 0.75), (9.72 ± 0.72), (8.88 ± 0.69), and (1.04 ± 0.08) (in units of 10(-12) cm(3) molecule(-1) s(-1)) for n-, i-, s-, and t-butanol, respectively. The quoted uncertainties are at the 2σ level and include estimated systematic errors. The observed non-Arrhenius behavior is interpreted here to result from a competition between the available H-atom abstraction reactive sites, which have different activation energies and pre-exponential factors. The present results are compared with results from previous kinetic studies, structure-activity relationships (SARs), and theoretical calculations and the discrepancies are discussed. Results from this work were combined with available high temperature (1200-1800 K) rate coefficient data and room temperature reaction end-product yields, where available, to derive a self-consistent site-specific set of reaction rate coefficients of the form AT(n) exp(-E/RT) for use in atmospheric and combustion chemistry modeling.

  19. Using the general-purpose reactivity indicator: challenging examples.

    Science.gov (United States)

    Anderson, James S M; Melin, Junia; Ayers, Paul W

    2016-03-01

    We elucidate the regioselectivity of nucleophilic attack on substituted benzenesulfonates, quinolines, and pyridines using a general-purpose reactivity indicator (GPRI) for electrophiles. We observe that the GPRI is most accurate when the incoming nucleophile resembles a point charge. We further observe that the GPRI often chooses reactive "dead ends" as the most reactive sites as well as sterically hindered reactive sites. This means that care must be taken to remove sites that are inherently unreactive. Generally, among sites where reactions actually occur, the GPRI identifies the sites in the molecule that lead to the kinetically favored product(s). Furthermore, the GPRI can discern which sites react with hard reagents and which sites react with soft reagents. Because it is currently impossible to use the mathematical framework of conceptual DFT to identify sterically inaccessible sites and reactive dead ends, the GPRI is primarily useful as an interpretative, not a predictive, tool.

  20. Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex Interfacial Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sibener, Steven J. [Univ. of Chicago, IL (United States). James Franck Inst. and Dept. of Chemistry

    2014-03-11

    This research program explored the efficacy of using molecular-level manipulation, imaging and scanning tunneling spectroscopy in conjunction with supersonic molecular beam gas-surface scattering to significantly enhance our understanding of chemical processes occurring on well-characterized interfaces. One program focus was on the spatially-resolved emergent behavior of complex reaction systems as a function of the local geometry and density of adsorbate-substrate systems under reaction conditions. Another focus was on elucidating the emergent electronic and related reactivity characteristics of intentionally constructed single and multicomponent atom- and nanoparticle-based materials. We also examined emergent chirality and self-organization in adsorbed molecular systems where collective interactions between adsorbates and the supporting interface lead to spatial symmetry breaking. In many of these studies we combined the advantages of scanning tunneling (STM) and atomic force (AFM) imaging, scanning tunneling local electronic spectroscopy (STS), and reactive supersonic molecular beams to elucidate precise details of interfacial reactivity that had not been observed by more traditional surface science methods. Using these methods, it was possible to examine, for example, the differential reactivity of molecules adsorbed at different bonding sites in conjunction with how reactivity is modified by the local configuration of nearby adsorbates. At the core of this effort was the goal of significantly extending our understanding of interfacial atomic-scale interactions to create, with intent, molecular assemblies and materials with advanced chemical and physical properties. This ambitious program addressed several key topics in DOE Grand Challenge Science, including emergent chemical and physical properties in condensed phase systems, novel uses of chemical imaging, and the development of advanced reactivity concepts in combustion and catalysis including carbon

  1. THE RESPIRATORY SUBSTRATE RHODOQUINOL INDUCES Q-CYCLE BYPASS REACTIONS IN THE YEAST CYTOCHROME bc1 COMPLEX - MECHANISTIC AND PHYSIOLOGICAL IMPLICATIONS

    International Nuclear Information System (INIS)

    Cape, Jonathan L.; Strahan, Jeff R.; Lenaeus, Michael J.; Yuknis, Brook A.; Le, Trieu T.; Shepherd, Jennifer; Bowman, Michael K.; Kramer, David M.

    2005-01-01

    The mitochondrial cytochrome bc1 complex catalyzes the transfer of electrons from ubiquinol to cyt c, while generating a proton motive force for ATP synthesis, via the ''Qcycle'' mechanism. Under certain conditions, electron flow through the Q-cycle is blocked at the level of a reactive intermediate in the quinol oxidase site of the enzyme, resulting in ''bypass reactions'', some of which lead to superoxide production. Using analogs of the respiratory substrates, ubiquinol-3 and rhodoquinol-3, we show that the relative rates of Q-cycle bypass reactions in the Saccharomyces cerevisiae cyt bc1 complex are highly dependent, by a factor of up to one hundred-fold, on the properties of the substrate quinol. Our results suggest that the rate of Q-cycle bypass reactions is dependent on the steady state concentration of reactive intermediates produced at the quinol oxidase site of the enzyme. We conclude that normal operation of the Q-cycle requires a fairly narrow window of redox potentials, with respect to the quinol substrate, to allow normal turnover of the complex while preventing potentially damaging bypass reactions

  2. Reactivity of Biliatresone, a Natural Biliary Toxin, with Glutathione, Histamine, and Amino Acids.

    Science.gov (United States)

    Koo, Kyung A; Waisbourd-Zinman, Orith; Wells, Rebecca G; Pack, Michael; Porter, John R

    2016-02-15

    In our previous work, we identified a natural toxin, biliatresone, from Dysphania glomulifera and D. littoralis, endemic plants associated with outbreaks of biliary atresia in Australian neonatal livestock. Biliatresone is a very rare isoflavonoid with an α-methylene ketone between two phenyls, 1,2-diaryl-2-propenone, along with methylenedioxy, dimethoxyl, and hydroxyl functional groups, that causes extrahepatic biliary toxicity in zebrafish. The toxic core of biliatresone is a methylene in the α-position relative to the ketone of 1,2-diaryl-2-propenone that serves as an electrophilic Michael acceptor. The α-methylene of biliatresone spontaneously conjugated with water and methanol (MeOH), respectively, via Michael addition in a reverse phase high-performance liquid chromatography (RP-HPLC) analysis. We here report the reactivity of biliatresone toward glutathione (GSH), several amino acids, and other thiol- or imidazole-containing biomolecules. LC-MS and HPLC analysis of the conjugation reaction showed the reactivity of biliatresone to be in the order histidine > N-acetyl-d-cysteine (D-NAC) = N-acetyl-l-cysteine (L-NAC) > histamine > glutathione ≥ cysteine ≫ glycine > glutamate > phenylalanine, while serine and adenine had no reactivity due to intramolecular hydrogen bonding in the protic solvents. The reactivity of ethyl vinyl ketone (EVK, 1-penten-3-one), an example of a highly reactive α,ß-unsaturated ketone, toward GSH gave a 6.7-fold lower reaction rate constant than that of biliatresone. The reaction rate constant of synthetic 1,2-diaryl-2-propen-1-one (DP), a core structure of the toxic molecule, was 10-fold and 1.5-fold weaker in potency compared to the reaction rate constants of biliatresone and EVK, respectively. These results demostrated that the methylenedioxy, dimethoxyl, and hydroxyl functional groups of biliatresone contribute to the stronger reactivity of the Michael acceptor α-methylene ketone toward nucleophiles compared to that of DP

  3. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-01-01

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after ∼30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been

  4. Hidden Hydride Transfer as a Decisive Mechanistic Step in the Reactions of the Unligated Gold Carbide [AuC]+ with Methane under Ambient Conditions.

    Science.gov (United States)

    Li, Jilai; Zhou, Shaodong; Schlangen, Maria; Weiske, Thomas; Schwarz, Helmut

    2016-10-10

    The reactivity of the cationic gold carbide [AuC] + (bearing an electrophilic carbon atom) towards methane has been studied using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The product pairs generated, that is, Au + /C 2 H 4 , [Au(C 2 H 2 )] + /H 2 , and [C 2 H 3 ] + /AuH, point to the breaking and making of C-H, C-C, and H-H bonds under single-collision conditions. The mechanisms of these rather efficient reactions have been elucidated by high-level quantum-chemical calculations. As a major result, based on molecular orbital and NBO-based charge analysis, an unprecedented hydride transfer from methane to the carbon atom of [AuC] + has been identified as a key step. Also, the origin of this novel mechanistic scenario has been addressed. The mechanistic insights derived from this study may provide guidance for the rational design of carbon-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. F/Cl + C2H2 reactions: Are the addition and hydrogen abstraction direct processes?

    International Nuclear Information System (INIS)

    Li Jilai; Geng Caiyun; Huang Xuri; Zhan Jinhui; Sun Chiachung

    2006-01-01

    The reactions of atomic radical F and Cl with acetylene have been studied theoretically using ab initio quantum chemistry methods and transition state theory. The doublet potential energy surfaces were calculated at the CCSD(T)/aug-cc-pVDZ//CCSD/6-31G(d,p), CCSD(T)/aug-cc-pVDZ//UMP2/6-311++G(d,p) and compound method Gaussian-3 levels. Two reaction mechanisms including the addition-elimination and the hydrogen abstraction reaction mechanisms are considered. In the addition-elimination reactions, the halogen atoms approach C 2 H 2 , perpendicular to the C≡C triple bond, forming the pre-reactive complex C1 at the reaction entrance. C1 transforms to intermediate isomer I1 via transition state TSC1/1 with a negative/small barrier for C 2 H 2 F/C 2 H 2 Cl system, which can proceed by further eliminating H atom endothermally. While the hydrogen abstraction reactions also involve C1 for the fluorine atom abstraction of hydrogen, yet the hydrogen abstraction by chlorine atom first forms a collinear hydrogen-bonded complex C2. The other reaction pathways on the doublet PES are less competitive due to thermodynamical or kinetic factors. According to our results, the presence of pre-reactive complexes indicates that the simple hydrogen abstraction and addition in the halogen atoms reaction with unsaturated hydrocarbon should be more complex. Furthermore, based on the analysis of the kinetics of all channels through which the addition and abstraction reactions proceed, we expect that the actual feasibility of the reaction channels may depend on the reaction conditions in the experiment. The present study may be helpful for probing the mechanisms of the title reactions and understanding the halogen chemistry

  6. Chemical reaction networks as a model to describe UVC- and radiolytically-induced reactions of simple compounds.

    Science.gov (United States)

    Dondi, Daniele; Merli, Daniele; Albini, Angelo; Zeffiro, Alberto; Serpone, Nick

    2012-05-01

    When a chemical system is submitted to high energy sources (UV, ionizing radiation, plasma sparks, etc.), as is expected to be the case of prebiotic chemistry studies, a plethora of reactive intermediates could form. If oxygen is present in excess, carbon dioxide and water are the major products. More interesting is the case of reducing conditions where synthetic pathways are also possible. This article examines the theoretical modeling of such systems with random-generated chemical networks. Four types of random-generated chemical networks were considered that originated from a combination of two connection topologies (viz., Poisson and scale-free) with reversible and irreversible chemical reactions. The results were analyzed taking into account the number of the most abundant products required for reaching 50% of the total number of moles of compounds at equilibrium, as this may be related to an actual problem of complex mixture analysis. The model accounts for multi-component reaction systems with no a priori knowledge of reacting species and the intermediates involved if system components are sufficiently interconnected. The approach taken is relevant to an earlier study on reactions that may have occurred in prebiotic systems where only a few compounds were detected. A validation of the model was attained on the basis of results of UVC and radiolytic reactions of prebiotic mixtures of low molecular weight compounds likely present on the primeval Earth.

  7. Personality and physiological reactions to acute psychological stress.

    Science.gov (United States)

    Bibbey, Adam; Carroll, Douglas; Roseboom, Tessa J; Phillips, Anna C; de Rooij, Susanne R

    2013-10-01

    Stable personality traits have long been presumed to have biological substrates, although the evidence relating personality to biological stress reactivity is inconclusive. The present study examined, in a large middle aged cohort (N=352), the relationship between key personality traits and both cortisol and cardiovascular reactions to acute psychological stress. Salivary cortisol and cardiovascular activity were measured at rest and in response to a psychological stress protocol comprising 5min each of a Stroop task, mirror tracing, and a speech task. Participants subsequently completed the Big Five Inventory to assess neuroticism, agreeableness, openness to experience, extraversion, and conscientiousness. Those with higher neuroticism scores exhibited smaller cortisol and cardiovascular stress reactions, whereas participants who were less agreeable and less open had smaller cortisol and cardiac reactions to stress. These associations remained statistically significant following adjustment for a range of potential confounding variables. Thus, a negative personality disposition would appear to be linked to diminished stress reactivity. These findings further support a growing body of evidence which suggests that blunted stress reactivity may be maladaptive. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Influence of reaction conditions and feedstock on hydrochar properties

    International Nuclear Information System (INIS)

    Guo, Shuqing; Dong, Xiangyuan; Wu, Tingting; Zhu, Caixia

    2016-01-01

    Highlights: • Models of hydrochar properties were established based on severity parameter. • Derivative methods were used to study the variation of hydrochar properties. • Water to biomass ratio has a significant effect on the hydrochar yield. • The curves of hydrochar properties can be divided into three stages. • The maximum variation rate of hydrochar properties for six samples is at severity of 5.8–6.4. - Abstract: Hydrothermal carbonization (HTC) is a biomass conversion process to produce a renewable solid fuel (hydrochar). The reaction conditions, such as temperature, time, and water/biomass ratio have key effects on hydrochar characteristics. However, it has not been fully investigated to establish and compare models of hydrochar properties (solid yield, carbon content and HHV) for different biomass HTC at different reaction conditions. These models and the corresponding analytical methods are favorable to optimize operating parameters and process design of HTC. In this work, HTC experiments from corn stalk, longan Shell and NaOH-pretreated longan Shell were carried out at 210 °C, 250 °C and 290 °C for 30 min, 240 min and 480 min with different water to biomass ratios. New models of the hydrochar properties of corn stalk, longan Shell and NaOH-pretreated longan Shell were established based on severity parameter (combined time and temperature) and dose-response function. Also, data of wood, olive stone and grape marc hydrochars (collected from literatures) were used for comparison. The first and second derivative methods were also employed to analyze and compare the variation of these hydrochar properties. The results showed that the hydrchar yield, carbon content, and HHV curves decrease monotonically and can be divided into three significant stages with increasing reaction severity. The water to biomass ratio has a significant effect on the hydrochar yield. With increasing the water to biomass ratio, both the maximum decrease rates and the

  9. Targeting a Cross-Reactive Gly m 5 Soy Peptide as Responsible for Hypersensitivity Reactions in a Milk Allergy Mouse Model

    Science.gov (United States)

    Curciarello, Renata; Smaldini, Paola L.; Candreva, Angela M.; González, Virginia; Parisi, Gustavo; Cauerhff, Ana; Barrios, Ivana; Blanch, Luis Bruno; Fossati, Carlos A.

    2014-01-01

    Background Cross-reactivity between soybean allergens and bovine caseins has been previously reported. In this study we aimed to map epitopes of the major soybean allergen Gly m 5 that are co-recognized by casein specific antibodies, and to identify a peptide responsible for the cross-reactivity. Methods Cow's milk protein (CMP)-specific antibodies were used in different immunoassays (immunoblotting, ELISA, ELISA inhibition test) to evaluate the in vitro recognition of soybean proteins (SP). Recombinant Gly m 5 (α), a truncated fragment containing the C-terminal domain (α-T) and peptides of α-T were obtained and epitope mapping was performed with an overlapping peptide assay. Bioinformatics tools were used for epitope prediction by sequence alignment, and for modelling the cross-recognized soy proteins and peptides. The binding of SP to a monoclonal antibody was studied by surface Plasmon resonance (SPR). Finally, the in vivo cross-recognition of SP was assessed in a mouse model of milk allergy. Results Both α and α-T reacted with the different CMP-specific antibodies. α-T contains IgG and IgE epitopes in several peptides, particularly in the peptide named PA. Besides, we found similar values of association and dissociation constants between the α-casein specific mAb and the different milk and soy components. The food allergy mouse model showed that SP and PA contain the cross-reactive B and T epitopes, which triggered hypersensitivity reactions and a Th2-mediated response on CMP-sensitized mice. Conclusions Gly m 5 is a cross-reactive soy allergen and the α-T portion of the molecule contains IgG and IgE immunodominant epitopes, confined to PA, a region with enough conformation to be bound by antibodies. These findings contribute to explain the intolerance to SP observed in IgE-mediated CMA patients, primarily not sensitised to SP, as well as it sets the basis to propose a mucosal immunotherapy for milk allergy using this soy peptide. PMID:24416141

  10. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Luan; Tao, Franklin, E-mail: franklin.tao.2011@gmail.com [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045 (United States)

    2016-06-15

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  11. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    International Nuclear Information System (INIS)

    Nguyen, Luan; Tao, Franklin

    2016-01-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  12. Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films.

    Science.gov (United States)

    Rafieian, Damon; Driessen, Rick T; Ogieglo, Wojciech; Lammertink, Rob G H

    2015-04-29

    Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during a subsequent annealing step, resulting in thin anatase TiO2 layers, displaying photocatalytic activity. The intrinsic photocatalytic activity of the catalysts was evaluated for the degradation of methylene blue (MB) using a microfluidic reactor. A numerical model was employed to extract the intrinsic reaction rate constants. High conversion rates (90% degradation within 20 s residence time) were observed within these microreactors because of the efficient mass transport and light distribution. To evaluate the intrinsic reaction kinetics, we argue that mass transport has to be accounted for. The obtained surface reaction rate constants demonstrate very high reactivity for the sputtered TiO2 films. Only for the thinnest film, 9 nm, slightly lower kinetics were observed.

  13. Design and synthesis of reactive separation systems

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, M.F.

    1992-01-01

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  14. Evaluation of the Optimal Reaction Conditions for the Methanolysis and Ethanolysis of Castor Oil Catalyzed by Immobilized Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Al-Kabalawi, Ibrahim F.; Errico, Massimiliano

    :1 methanol-to-oil molar ratio, 5 wt% of enzymes, 7.5 wt% of water, 50 wt% n-hexane, at 50 °C. The fatty acid methyl esters content was 96.8 % and 1.0 % FFA. Regarding the reactions with ethanol, 98.0 % fatty acid ethyl ester was obtained and 1.3 % FFA, when the reaction was carried out at 60 °C, 4:1 ethanol......As an alternative to the use of chemical catalysts, immobilized enzyme Lipozyme 435 was evaluated as catalyst for biodiesel production, comparing its efficiency in the castor oil transesterification with methanol and ethanol. Different reaction conditions were assessed and optimized, including...... the reaction temperature (35 – 60 °C), alcohol-to-oil molar ratio (from 3:1 to 6:1), amount of catalyst (from 3 to 15 wt% by weight of oil), addition of water (0 – 15 wt%), and use of n-hexane as a solvent (0 – 75 wt%). For the transesterification with methanol, the optimal reaction conditions were 3...

  15. The CREST reactive-burn model for explosives

    Directory of Open Access Journals (Sweden)

    Maheswaran M-A.

    2011-01-01

    Full Text Available CREST is an innovative reactive-burn model that has been developed at AWE for simulating shock initiation and detonation propagation behaviour in explosives. The model has a different basis from other reactive-burn models in that its reaction rate is independent of local flow variables behind the shock wave e.g. pressure and temperature. The foundation for CREST, based on a detailed analysis of data from particle-velocity gauge experiments, is that the reaction rate depends only on the local shock strength and the time since the shock passed. Since a measure of shock strength is the entropy of the non-reacted explosive, which remains constant behind a shock, CREST uses an entropy-dependent reaction rate. This paper will provide an overview of the CREST model and its predictive capability. In particular, it will be shown that the model can predict a wide range of experimental phenomena for both shock initiation (e.g. the effects of porosity and initial temperature on sustained-shock and thin-flyer initiation and detonation propagation (e.g. the diameter effect curve and detonation failure cones using a single set of coefficients.

  16. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Atsushi; Uchida, Giichiro, E-mail: uchida@jwri.osaka-u.ac.jp; Takenaka, Kosuke; Setsuhara, Yuichi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Kawasaki, Toshiyuki [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2015-07-28

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  17. MoMaS reactive transport benchmark using PFLOTRAN

    Science.gov (United States)

    Park, H.

    2017-12-01

    MoMaS benchmark was developed to enhance numerical simulation capability for reactive transport modeling in porous media. The benchmark was published in late September of 2009; it is not taken from a real chemical system, but realistic and numerically challenging tests. PFLOTRAN is a state-of-art massively parallel subsurface flow and reactive transport code that is being used in multiple nuclear waste repository projects at Sandia National Laboratories including Waste Isolation Pilot Plant and Used Fuel Disposition. MoMaS benchmark has three independent tests with easy, medium, and hard chemical complexity. This paper demonstrates how PFLOTRAN is applied to this benchmark exercise and shows results of the easy benchmark test case which includes mixing of aqueous components and surface complexation. Surface complexations consist of monodentate and bidentate reactions which introduces difficulty in defining selectivity coefficient if the reaction applies to a bulk reference volume. The selectivity coefficient becomes porosity dependent for bidentate reaction in heterogeneous porous media. The benchmark is solved by PFLOTRAN with minimal modification to address the issue and unit conversions were made properly to suit PFLOTRAN.

  18. COMPARISON OF REACTIVITY OF SYNTHETIC AND BOVINE HYDROXYAPATITE IN VITRO UNDER DYNAMIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2014-03-01

    Full Text Available Hydroxyapatite materials prepared by two methods: synthetic (HA–S and bovine (HA-B granules were exposed to a longterm in vitro test under dynamic conditions. Testing cells, filled up to one fourth (¼V of their volume with the tested material, were exposed to continuous flow of simulated body fluid (SBF for 56 days. The objective of the experiment was to determine whether reactivity of the biomaterials (hydroxyapatites, prepared by different methods but identical in terms of their chemical and phase composition, in SBF were comparable. Analyses of the solutions proved that both materials were highly reactive from the very beginning of interaction with SBF (significant decrease of Ca2+ and (PO43- concentrations in the leachate. SEM/EDS images have shown that the surface of bovine HA-B was covered with a new hydroxyapatite (HAp phase in the first two weeks of the test while synthetic HA–S was covered after two weeks of the immersion in SBF. At the end of the test, day 56, both materials were completely covered with well developed porous HAp phase in form of nano-plates. A calculation of the rate of HAp formation from the concentration of (PO43- ions in SBF leachates confirmed that all removed ions were consumed for the formation of the HAp phase throughout the entire testing time for bovine HA–B and only during the second half of the testing time for synthetic HA–S.

  19. Study of photosensitization reaction progress in a 96 well plate with photosensitizer rich condition using Talaporfin sodium

    Science.gov (United States)

    Ogawa, Emiyu; Takahashi, Mei; Arai, Tsunenori

    2013-02-01

    To quantitatively investigate photosensitization reaction in vitro against myocardial cells with photosensitizer rich condition in solution using Talaporfin sodium in the well of a 96 well plate, we studied photosensitization reaction progress in this well. We have proposed non-thermal conduction block of myocardium tissue using the photosensitization reaction with laser irradiation shortly after Talaporfin sodium injection. In above situation, the photosensitizer is located outside the myocardial cells in high concentration. To understand interaction of the photosensitization reaction in which the photosensitizer distributes outside cells, the photosensitization reaction progress in the well was studied. Talaporfin sodium (799.69 MW) solution and a 663 nm diode laser were used. The photosensitizer solution concentrations of 12.5-37.5 μM were employed. The photosensitizer fluorescence with 0.29 W/cm2 in irradiance, which was optimized in previous cell death study, was measured during the laser irradiation until 40 J/cm2. The photosensitizer solution absorbance and dissolved oxygen pressure after the laser irradiation were also measured. We found that the photosensitization reaction progress had 2 distinctive phases of different reaction rate: rapid photosensitization reaction consuming dissolved oxygen and gentle photosensitization reaction with oxygen diffusion from the solution-air boundary. The dissolved oxygen pressure and photosensitizer solution absorbance were 30% and 80% of the initial values after the laser irradiation, respectively. Therefore, oxygen was rate-controlling factor of the photosensitization reaction in the well with the photosensitizer rich condition. In the oxygen diffusion phase, the oxygen pressure was maintained around 40 mmHg until the laser irradiation of 40 J/cm2 and it is similar to that of myocardium tissue in vivo. We think that our 96 well plate in vitro system may simulate PDT in myocardial tissue with photosensitization reaction

  20. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    International Nuclear Information System (INIS)

    Sraj, I.; Vohra, M.; Alawieh, L.; Weihs, T.P.; Knio, O.M.

    2013-01-01

    Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011) to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  1. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    Directory of Open Access Journals (Sweden)

    Ihab Sraj

    2013-01-01

    Full Text Available Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011 to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  2. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Avonto, Cristina; Chittiboyina, Amar G. [National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677 (United States); Rua, Diego [The Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740 (United States); Khan, Ikhlas A., E-mail: ikhan@olemiss.edu [National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677 (United States); Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677 (United States)

    2015-12-01

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles after incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, ‘HTS-DCYA assay’, is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. - Highlights: • A novel fluorescence-based method to detect electrophilic sensitizers is proposed. • A model fluorescent thiol was used to directly quantify the reaction products. • A discussion of the reaction workflow

  3. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers

    International Nuclear Information System (INIS)

    Avonto, Cristina; Chittiboyina, Amar G.; Rua, Diego; Khan, Ikhlas A.

    2015-01-01

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles after incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, ‘HTS-DCYA assay’, is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. - Highlights: • A novel fluorescence-based method to detect electrophilic sensitizers is proposed. • A model fluorescent thiol was used to directly quantify the reaction products. • A discussion of the reaction workflow

  4. Regulatory Notes on Impact of Excipients on Drug Products and the Maillard Reaction.

    Science.gov (United States)

    Chowdhury, Dipak K; Sarker, Haripada; Schwartz, Paul

    2018-02-01

    In general, it is an important criterion that excipients remain inert throughout the shelf life of the formulated pharmaceutical product. However, depending on the functionality in chemical structure of active drug and excipients, they may undergo interaction. The well-known Maillard reaction occurs between a primary amine with lactose at high temperature to produce brown pigments. The reactivity of Maillard reaction may vary depending on the concentration as well as other conditions. Commercially, there are products where the active pharmaceutical ingredient is a primary amine and contains less than 75% lactose along with inactive excipients. This product does not show Maillard reaction during its shelf life of around 2 years at ambient conditions. However, when the same type of product contains more than 95 % lactose as an excipient, then there is a possibility of interactions though it is not visible in the initial year. Therefore, this regulatory note discusses involvement of different factors of a known drug-excipient interactions with case studies and provides an overview on how the concentration of lactose in the pharmaceutical product is important in addition to temperature and moisture in Maillard reaction.

  5. Pathogenetic role of Factor VII deficiency and thrombosis in cross-reactive material positive patients.

    Science.gov (United States)

    Girolami, A; Sambado, L; Bonamigo, E; Ferrari, S; Lombardi, A M

    2013-12-01

    Congenital Factor VII (FVII) deficiency can be divided into two groups: cases of "true" deficiency, or cross-reactive material (CRM) negative and variants that are cross-reactive material positive.The first form is commonly recognized as Type I condition whereas the second one is known as Type II. FVII deficiency has been occasionally associated with thrombotic events, mainly venous. The reasons underlying this peculiar manifestation are unknown even though in the majority of associated patients thrombotic risk factors are present. The purpose of the present study was to investigate if a thrombotic event was more frequent in Type I or in Type II defect.The majority of patients with FVII deficiency and thrombosis belong to Type II defects. In the following paper we discuss the possible role of the dysfunctional FVII cross-reaction material as a contributory cause for the occurrence of thrombosis.

  6. Behaviour of rock-like oxide fuels under reactivity-initiated accident conditions

    International Nuclear Information System (INIS)

    Kazuyuki, Kusagaya; Takehiko, Nakamura; Makio, Yoshinaga; Hiroshi, Akie; Toshiyuki, Yamashita; Hiroshi, Uetsuka

    2002-01-01

    Pulse irradiation tests of three types of un-irradiated rock-like oxide (ROX) fuel - yttria-stabilised zirconia (YSZ) single phase, YSZ and spinel (MgAl 2 O 4 ) homogeneous mixture and particle-dispersed YSZ/spinel - were conducted in the Nuclear Safety Research Reactor to investigate the fuel behaviour under reactivity-initiated accident conditions. The ROX fuels failed at fuel volumetric enthalpies above 10 GJ/m 3 , which was comparable to that of un-irradiated UO 2 fuel. The failure mode of the ROX fuels, however, was quite different from that of the UO 2 fuel. The ROX fuels failed with fuel pellet melting and a part of the molten fuel was released out to the surrounding coolant water. In spite of the release, no significant mechanical energy generation due to fuel/coolant thermal interaction was observed in the tested enthalpy range below∼12 GJ/m 3 . The YSZ type and homogenous YSZ/spinel type ROX fuels failed by cladding burst when their temperatures peaked, while the particle-dispersed YSZ/spinel type ROX fuel seemed to have failed by cladding local melting. (author)

  7. Reactive diluents and air-drying coatings

    NARCIS (Netherlands)

    Oostveen, E.A.; Weijnen, J.; Haveren, van J.; Gillard, M.

    2003-01-01

    The invention relates to the use of a fatty acid modified carbohydrate obtainable by reaction of: (i) at least one carbohydrate or an acyl ester thereof; and (ii) a fatty acid, an alkyl ester thereof or a derivative thereof as reactive diluent in a coating. The invention further relates to a coating

  8. Direct measurement of NO3 radical reactivity in a boreal forest

    Science.gov (United States)

    Liebmann, Jonathan; Karu, Einar; Sobanski, Nicolas; Schuladen, Jan; Ehn, Mikael; Schallhart, Simon; Quéléver, Lauriane; Hellen, Heidi; Hakola, Hannele; Hoffmann, Thorsten; Williams, Jonathan; Fischer, Horst; Lelieveld, Jos; Crowley, John N.

    2018-03-01

    We present the first direct measurements of NO3 reactivity (or inverse lifetime, s-1) in the Finnish boreal forest. The data were obtained during the IBAIRN campaign (Influence of Biosphere-Atmosphere Interactions on the Reactive Nitrogen budget) which took place in Hyytiälä, Finland during the summer/autumn transition in September 2016. The NO3 reactivity was generally very high with a maximum value of 0.94 s-1 and displayed a strong diel variation with a campaign-averaged nighttime mean value of 0.11 s-1 compared to a daytime value of 0.04 s-1. The highest nighttime NO3 reactivity was accompanied by major depletion of canopy level ozone and was associated with strong temperature inversions and high levels of monoterpenes. The daytime reactivity was sufficiently large that reactions of NO3 with organic trace gases could compete with photolysis and reaction with NO. There was no significant reduction in the measured NO3 reactivity between the beginning and end of the campaign, indicating that any seasonal reduction in canopy emissions of reactive biogenic trace gases was offset by emissions from the forest floor. Observations of biogenic hydrocarbons (BVOCs) suggested a dominant role for monoterpenes in determining the NO3 reactivity. Reactivity not accounted for by in situ measurement of NO and BVOCs was variable across the diel cycle with, on average, ≈ 30 % missing during nighttime and ≈ 60 % missing during the day. Measurement of the NO3 reactivity at various heights (8.5 to 25 m) both above and below the canopy, revealed a strong nighttime, vertical gradient with maximum values closest to the ground. The gradient disappeared during the daytime due to efficient vertical mixing.

  9. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol......-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35 °C, 6.0 methanol-to-oil molar ratio, 5 wt% of enzyme and 5...... wt% of water contents, 94 % of FAME yield and 6.1 % of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8 hours are necessary to reach a satisfactory FAME yield together with a minor FFA content....

  10. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    International Nuclear Information System (INIS)

    Vasina, P; Hytkova, T; Elias, M

    2009-01-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  11. The Paterno-Buchi reaction

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Yding; Schalk, Oliver; Boguslavskiy, Andrey E.

    2012-01-01

    The Paternò-Büchi (PB) reaction between an excited carbonyl compound and an alkene has been widely studied, but so far little is known about the excited-state dynamics of the reaction. In this investigation, we used a compound in which a formyl and a vinyl group are attached to a [2.......2]paracyclophane in order to obtain a model system in pre-reactive conformation for the PB reaction. We studied the excited-state dynamics of the isolated molecule in a molecular beam using femtosecond time-resolved photoelectron spectroscopy and ab initio calculations. The results show that inter-system crossing...... within two picoseconds competes efficiently with the reaction in the singlet manifold. Thus, the PB reaction in this model system takes place in the triplet state on a time scale of nanoseconds. This result stresses the importance of triplet states in the excited-state pathway of the PB reaction...

  12. Comparison between the reactivity of coal and synthetic coal models

    Energy Technology Data Exchange (ETDEWEB)

    A. Arenillas; C. Pevida; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2003-10-01

    A mixture of carbon compounds was pyrolysed under an inert atmosphere at different temperatures in a fixed bed reactor. The resultant chars were characterised in terms of texture and thermal behaviour. Textural characterisation of the chars was carried out by N{sub 2} and CO{sub 2} adsorption isotherms at -196 and 0{sup o}C, respectively. Char isothermal reactivity in air at 500{sup o}C, and in CO{sub 2} at 1000{sup o}C, was performed in a thermogravimetric analyser (TGA). Temperature-programmed combustion tests under 20% oxygen in argon were also performed in the TGA linked to a mass spectrometer (TGA/MS). The results showed that char textural properties do not always relate well to their reactivity. Not only do physical properties (e.g. surface area, porosity) but also chemical properties (e.g. active sites concentration and distribution) play an important role in the reaction of carbonaceous material and oxidant. On the other hand, in terms of chemical composition the chars obtained from the mixture of carbon compounds were very similar to the chars produced under the same experimental conditions by a high volatile bituminous coal. The fact that carbon compounds are well known makes it easier to obtain knowledge about the functional groups present in synthetic char, and to study the mechanisms of heterogeneous reactions such as the reduction of NO with carbon. 13 refs., 8 figs., 3 tabs.

  13. Signatures of a quantum diffusion limited hydrogen atom tunneling reaction.

    Science.gov (United States)

    Balabanoff, Morgan E; Ruzi, Mahmut; Anderson, David T

    2017-12-20

    We are studying the details of hydrogen atom (H atom) quantum diffusion in highly enriched parahydrogen (pH 2 ) quantum solids doped with chemical species in an effort to better understand H atom transport and reactivity under these conditions. In this work we present kinetic studies of the 193 nm photo-induced chemistry of methanol (CH 3 OH) isolated in solid pH 2 . Short-term irradiation of CH 3 OH at 1.8 K readily produces CH 2 O and CO which we detect using FTIR spectroscopy. The in situ photochemistry also produces CH 3 O and H atoms which we can infer from the post-photolysis reaction kinetics that display significant CH 2 OH growth. The CH 2 OH growth kinetics indicate at least three separate tunneling reactions contribute; (i) reactions of photoproduced CH 3 O with the pH 2 host, (ii) H atom reactions with the CH 2 O photofragment, and (iii) long-range migration of H atoms and reaction with CH 3 OH. We assign the rapid CH 2 OH growth to the following CH 3 O + H 2 → CH 3 OH + H → CH 2 OH + H 2 two-step sequential tunneling mechanism by conducting analogous kinetic measurements using deuterated methanol (CD 3 OD). By performing photolysis experiments at 1.8 and 4.3 K, we show the post-photolysis reaction kinetics change qualitatively over this small temperature range. We use this qualitative change in the reaction kinetics with temperature to identify reactions that are quantum diffusion limited. While these results are specific to the conditions that exist in pH 2 quantum solids, they have direct implications on the analogous low temperature H atom tunneling reactions that occur on metal surfaces and on interstellar grains.

  14. Reactive collisions between CH+ and O-

    International Nuclear Information System (INIS)

    Le Padellec, A.; Staicu-Casagrande, E.M.; Nzeyimana, T.; Naji, E.A.; Urbain, X.

    2006-01-01

    Integral cross sections were measured for two reactions occurring in CH + +O - collisions: the formation of the carbon monoxide cation CO + via a reactive ionization process and the formation of the (iso)formyl cation HCO + (HOC + ) via the associative ionization process. Both carbon monoxide and formyl cations are present in the interstellar medium, the latter one being quite abundant in dense clouds. Provided the oxygen anion would also be present in the interstellar environment, the large efficiency of the two reactive processes reported here would justify their inclusion in astrochemical models. The whole set of data was obtained by means of a merged-beam setup operating with keV beams

  15. Reactive collisions between CH+ and O-

    Science.gov (United States)

    Le Padellec, A.; Staicu-Casagrande, E. M.; Nzeyimana, T.; Naji, E. A.; Urbain, X.

    2006-04-01

    Integral cross sections were measured for two reactions occurring in CH++O- collisions: the formation of the carbon monoxide cation CO+ via a reactive ionization process and the formation of the (iso)formyl cation HCO+ (HOC+) via the associative ionization process. Both carbon monoxide and formyl cations are present in the interstellar medium, the latter one being quite abundant in dense clouds. Provided the oxygen anion would also be present in the interstellar environment, the large efficiency of the two reactive processes reported here would justify their inclusion in astrochemical models. The whole set of data was obtained by means of a merged-beam setup operating with keV beams.

  16. Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.

    Science.gov (United States)

    Serrano-Plana, Joan; Garcia-Bosch, Isaac; Company, Anna; Costas, Miquel

    2015-08-18

    Dioxygen is widely used in nature as oxidant. Nature itself has served as inspiration to use O2 in chemical synthesis. However, the use of dioxygen as an oxidant is not straightforward. Its triplet ground-state electronic structure makes it unreactive toward most organic substrates. In natural systems, metalloenzymes activate O2 by reducing it to more reactive peroxide (O2(2-)) or superoxide (O2(-)) forms. Over the years, the development of model systems containing transition metals has become a convenient tool for unravelling O2-activation mechanistic aspects and reproducing the oxidative activity of enzymes. Several copper-based systems have been developed within this area. Tyrosinase is a copper-based O2-activating enzyme, whose structure and reactivity have been widely studied, and that serves as a paradigm for O2 activation at a dimetal site. It contains a dicopper center in its active site, and it catalyzes the regioselective ortho-hydroxylation of phenols to catechols and further oxidation to quinones. This represents an important step in melanin biosynthesis and it is mediated by a dicopper(II) side-on peroxo intermediate species. In the present accounts, our research in the field of copper models for oxygen activation is collected. We have developed m-xylyl linked dicopper systems that mimick structural and reactivity aspects of tyrosinase. Synergistic cooperation of the two copper(I) centers results in O2 binding and formation of bis(μ-oxo)dicopper(III) cores. These in turn bind and ortho-hydroxylate phenolates via an electrophilic attack of the oxo ligand over the arene. Interestingly the bis(μ-oxo)dicopper(III) cores can also engage in ortho-hydroxylation-defluorination of deprotonated 2-fluorophenols, substrates that are well-known enzyme inhibitors. Analysis of Cu2O2 species with different binding modes show that only the bis(μ-oxo)dicopper(III) cores can mediate the reaction. Finally, the use of unsymmetric systems for oxygen activation is a field

  17. Investigation of the decomposition reaction and dust explosion characteristics of crystalline benzoyl peroxides

    International Nuclear Information System (INIS)

    Lu, K.-T.; Chen, T.-C.; Hu, K.-H.

    2009-01-01

    The benzoyl peroxide (BPO) is widely used in the chemical industry. Many catastrophes have been caused by its thermal instability or reactive incompatibility in storage or thermal decomposition reaction. Thus, its hazard characteristics have to be clearly identified. First of all, the differential scanning calorimeter (DSC) is used to measure the heat of decomposition reaction, which can contribute to understanding the reaction characteristics of benzoyl peroxide. The accelerating rate calorimeter (ARC) is used to measure the rates of temperature and pressure rises of decomposition reaction, and then the kinetics parameters are estimated. Furthermore, the MIKE 3 apparatus and the 20-l-Apparatus are used to measure and analyze the dust explosion characteristics of benzoyl peroxide under room temperature and atmospheric pressure. Finally, Semenov's thermal explosion theory is applied to investigate the critical runaway condition and the stability criterion of decomposition reaction, and to build the relationship of critical temperature, convective heat transfer coefficient, heat transfer surface area and ambient temperature. These results contribute to improving the safety in the reaction, transportation and storage processes of benzoyl peroxide

  18. Niobium(V) chloride as catalyst in Diels-Alder reaction of furan ring

    International Nuclear Information System (INIS)

    Santos, Deborah A. dos; Rodrigues, Ludmila R.; Arpini, Bruno H.; Lacerda Junior, Valdemar; Greco, Sandro J.; Santos, Reginaldo B. dos; Neto, Alvaro C.; Castro, Eustaquio V.R. de

    2014-01-01

    According to the relevant literature, the Diels-Alder reaction of furan without a catalyst can last several weeks and shows a low yield due to the diene’s low reactivity. The use of Lewis acid catalysts or high pressures is described as an effective method for improving the reaction yields. This paper describes our recent study on the use of niobium pentachloride as the catalyst in Diels-Alder reactions between furan and several reactive dienophiles, among which methyl acrylate showed good yields, especially at lower temperatures. Other dienophiles have shown lower yields because of problems such as byproduct formation and the high reversibility of the reaction. (author)

  19. Niobium(V) chloride as catalyst in Diels-Alder reaction of furan ring

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Deborah A. dos; Rodrigues, Ludmila R.; Arpini, Bruno H.; Lacerda Junior, Valdemar; Greco, Sandro J.; Santos, Reginaldo B. dos; Neto, Alvaro C.; Castro, Eustaquio V.R. de, E-mail: vljuniorqui@gmail.com [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Quimica; Romao, Wanderson [Instituto Federal de Educacao, Ciencia e Tecnologia (IFES), Vila Velha, ES (Brazil)

    2014-05-15

    According to the relevant literature, the Diels-Alder reaction of furan without a catalyst can last several weeks and shows a low yield due to the diene’s low reactivity. The use of Lewis acid catalysts or high pressures is described as an effective method for improving the reaction yields. This paper describes our recent study on the use of niobium pentachloride as the catalyst in Diels-Alder reactions between furan and several reactive dienophiles, among which methyl acrylate showed good yields, especially at lower temperatures. Other dienophiles have shown lower yields because of problems such as byproduct formation and the high reversibility of the reaction. (author)

  20. Selective free radical reactions using supercritical carbon dioxide.

    Science.gov (United States)

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  1. Modeling of Cr(VI) Bioreduction Under Fermentative and Denitrifying Conditions

    Science.gov (United States)

    Molins, S.; Steefel, C.; Yang, L.; Beller, H. R.

    2011-12-01

    The mechanisms of bioreductive immobilization of Cr(VI) were investigated by reactive transport modeling of a set of flow-through column experiments performed using natural Hanford 100H aquifer sediment. The columns were continuously eluted with 5 μM Cr(VI), 5 mM lactate as the electron donor, and selected electron acceptors (tested individually). Here we focus on the two separate experimental conditions that showed the most removal of Cr(VI) from solution: fermentation and denitrification. In each case, a network of enzymatic and abiotic reaction pathways was considered to interpret the rate of chromate reduction. The model included biomass growth and decay, and thermodynamic limitations on reaction rates, and was constrained by effluent concentrations measured by IC and ICP-MS and additional information from bacterial isolates from column effluent. Under denitrifying conditions, Cr(VI) reduction was modeled as co-metabolic with nitrate reduction based on experimental observations and previous studies on a denitrifying bacterium derived from the Hanford 100H aquifer. The reactive transport model results supported this interpretation of the reaction mechanism and were used to quantify the efficiency of the process. The models results also suggest that biomass growth likely relied on a nitrogen source other than ammonium (e.g. nitrate). Under fermentative conditions and based on cell suspension studies performed on a bacterial isolate from the columns, the model assumes that Cr(VI) reduction is carried out directly by fermentative bacteria that convert lactate into acetate and propionate. The evolution to complete lactate fermentation and Cr(VI) reduction took place over a week's time and simulations were used to determine an estimate for a lower limit of the rate of chromate reduction by calibration with the flow-through column experimental results. In spite of sulfate being added to these columns, sulfate reduction proceeded at a slow rate and was not well

  2. Investigation into the Heat of Hydration and Alkali Silica Reactivity of Sustainable Ultrahigh Strength Concrete with Foundry Sand

    Directory of Open Access Journals (Sweden)

    Federico Aguayo

    2017-01-01

    Full Text Available This study presents the hydration reactivity and alkali silica reaction (ASR of ultrahigh strength concrete (UHSC that has been made more sustainable by using spent foundry sand. Spent foundry sand not only is sustainable but has supplementary cementitious material (SCM characteristics. Two series of UHSC mixtures were prepared using a nonreactive and reactive sand (in terms of ASR to investigate both the impact of a more reactive aggregate and the use of spent foundry sand. Conduction calorimetry was used to monitor the heat of hydration maintained under isothermal conditions, while ASR was investigated using the accelerated mortar bar test (AMBT. Additionally, the compressive strengths were measured for both series of mixtures at 7, 14, and 28 days to confirm high strength requirements. The compressive strengths ranged from 85 MPa (12,345 psi to 181.78 MPa (26,365 psi. This result demonstrates that a UHSC mixture was produced. The calorimetry results revealed a slight acceleration in the heat of hydration flow curve compared to the control from both aggregates indicating increased hydration reactivity from the addition of foundry waste. The combination of foundry sand and reactive sand was found to increase ASR reactivity with increasing additions of foundry sand up to 30% replacement.

  3. Radiolytic reactions in the coolant of helium cooled reactors

    International Nuclear Information System (INIS)

    Tingey, G.L.; Morgan, W.C.

    1975-01-01

    The success of helium cooled reactors is dependent upon the ability to prevent significant reaction between the coolant and the other components in the reactor primary circuit. Since the thermal reaction of graphite with oxidizing gases is rapid at temperatures of interest, the thermal reactions are limited primarily by the concentration of impurity gases in the helium coolant. On the other hand, the rates of radiolytic reactions in helium are shown to be independent of reactive gas concentration until that concentration reaches a very low level. Calculated steady-state concentrations of reactive species in the reactor coolant and core burnoff rates are presented for current U. S. designed, helium cooled reactors. Since precise base data are not currently available for radiolytic rates of some reactions and thermal reaction rate data are often variable, the accuracy of the predicted gas composition is being compared with the actual gas compositions measured during startup tests of the Fort Saint Vrain high temperature gas-cooled reactor. The current status of these confirmatory tests is discussed. 12 references

  4. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    International Nuclear Information System (INIS)

    Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R

    2014-01-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H

  5. Gasification reactivity and ash sintering behaviour of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Nasrullah, M.

    2011-12-15

    Char gasification reactivity and ash sintering properties of forestry biomass feedstocks selected for large-scale gasification process was characterised. The study was divided into two parts: (1) Internal variation of the reactivity and the ash sintering of feedstocks. (2) Measurement of kinetic parameters of char gasification reactions to be used in the modelling of a gasifier. The tests were carried out in gases relevant to pressurized oxygen gasification, i.e. steam and carbon dioxide, as well as their mixtures with the product gases H{sub 2} and CO. The work was based on experimental measurements using pressurized thermobalance. In the tests, the temperatures were below 1000 deg C, and the pressure range was between 1 and 20 bar. In the first part, it was tested the effect of growing location, storage, plant parts and debarking method. The following biomass types were tested: spruce bark, pine bark, aspen bark, birch bark, forestry residue, bark feedstock mixture, stump chips and hemp. Thick pine bark had the lowest reactivity (instantaneous reaction rate 14%/min) and hemp the highest (250%/min); all other biomasses laid between these values. There was practically no difference in the reactivities among the spruce barks collected from the different locations. For pine bark, the differences were greater, but they were probably due to the thickness of the bark rather than to the growth location. For the spruce barks, the instantaneous reaction rate measured at 90% fuel conversion was 100%/min, for pine barks it varied between 14 and 75%/min. During storage, quite large local differences in reactivity seem to develop. Stump had significantly lower reactivity compared with the others. No clear difference in the reactivity was observed between barks obtained with the wet and dry debarking, but, the sintering of the ash was more enhanced for the bark from dry debarking. Char gasification rate could not be modelled in the gas mixture of H{sub 2}O + CO{sub 2} + H{sub 2

  6. Quenching reactions of electronically excited atoms

    International Nuclear Information System (INIS)

    Setser, D.W.

    2001-01-01

    The two-body, thermal quenching reactions of electronically excited atoms are reviewed using excited states of Ar, Kr, and Xe atoms as examples. State-specific interstate relaxation and excitation-transfer reactions with atomic colliders are discussed first. These results then are used to discuss quenching reactions of excited-state atoms with diatomic and polyatomic molecules, the latter have large cross sections, and the reactions can proceed by excitation transfer and by reactive quenching. Excited states of molecules are not considered; however, a table of quenching rate constants is given for six excited-state molecules in an appendix

  7. Evaluation of the Optimal Reaction Conditions for the Methanolysis and Ethanolysis of Castor Oil Catalyzed by Immobilized Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Al-Kabalawi, Ibrahim; Errico, Massimiliano

    This study aims to compare the efficiency of the transesterification of castor oil with methanol and ethanol as part of the biodiesel production, using immobilized enzyme Lipozyme IM as catalyst. Different reaction conditions were evaluated and optimized, including the reaction temperature, alcohol...

  8. Acute generalized exanthematous pustulosis to amoxicillin associated with parvovirus B19 reactivation.

    Science.gov (United States)

    Calistru, Ana Maria; Lisboa, Carmen; Cunha, Ana Paula; Bettencourt, Herberto; Azevedo, Filomena

    2012-09-01

    We report the case of a 22-year-old male patient with 2 episodes, 4 months apart, of acute generalized exanthematous pustulosis (AGEP) associated with oral intake of amoxicillin and simultaneous reactivation of parvovirus B19 infection proven by positive polymerase chain reaction test in the skin fragment and blood sample and elevation of the IgG antibodies titer. To our knowledge, this is the first report of AGEP resulting from the interaction between drug hypersensitivity and the reactivation of parvovirus B19. A combination of an immunological reaction to the drug and virus infection could be responsible for the clinical picture.

  9. Scattering theory and chemical reactions

    International Nuclear Information System (INIS)

    Kuppermann, A.

    1988-01-01

    In this course, scattering theory and chemical reactions are presented including scattering of one particle by a potential, n-particle systems, colinear triatomic molecules and the study of reactive scattering for 3-dimensional triatomic systems. (A.C.A.S.) [pt

  10. The effect of catalyst support on the RWGS reaction

    International Nuclear Information System (INIS)

    Laosiripojana, N.; Sutthisripok, W.

    2004-01-01

    'Full text:' Methane steam reforming is generally applied in order to produce synthesis gas mainly consist of hydrogen and carbon monoxide for later utilization in SOFC. This reaction is always carried out with the water gas shift reaction over a catalyst at elevated temperatures resulting in some carbon dioxide production. The CO/CO2 production selectivity strongly depends on the influence of water gas shift reaction. It was observed that the reactivity of this reaction depended on the type of support material. Stabilities, activities, and kinetics of the reverse water gas shift reaction (RWGS) for commercial nickel on CeO2, ZrO2, CeO2-ZrO2, TiO2, MgO, and Al2O3 supports were studied in order to observe the influence of the support on this reaction. According to the experiment, the activities of Ni/CeO2 toward the reverse water gas shift reaction (RWGS) were very high, and reached equilibrium level at approximately 600 o C (where the conversion of CO2 was closed to 1). Other oxide supports provided lower activities toward this reaction. It was observed that the activity of Ni/Al2O3 toward this reaction was the lowest. The kinetics of this reaction was also studied. Carbon dioxide presented positive effect on the reverse water gas shift reaction. The reaction orders in carbon dioxide were observed to be positive partial value between 0-1. It slightly decreased with increasing temperature for Ni/ CeO2 and Ni/CeO2-ZrO2, whereas it seemed to be independent of the operating temperature for other materials in the range of conditions studied. Hydrogen also showed positive effect on the reverse water gas shift reaction for all materials. The reaction order in hydrogen for all materials was observed to be the positive value and less than one for the range of conditions studied. The approximate values for all catalysts were between 0.45-0.65, and seemed to be independent of the operating temperature. The estimated values of the apparent activation energy for RWGS reaction

  11. Metal-porphyrin interactions. VI. The reactivities of several ferric porphyrin monomers with cyanide compared with ligand reactions of iron and cobalt porphyrins reconstituted with proteins. [25/sup 0/

    Energy Technology Data Exchange (ETDEWEB)

    Hambright, P. (Howard Univ., Washington, DC); Chock, P.B.

    1975-01-01

    A study of the hydrolysis and kinetics and equilibrium behavior of cyanide addition to the monomeric iron(III) complexes of meso, proto and deuteroporphyrin-IX in 2 percent sodium lauryl sulfate--0.1 M tetramethyl ammonium bromide, 25/sup 0/ is reported. The reactivity parameters are compared to reactions of the same Co(II) and Fe(II) porphyrin types reconstituted to myoglobins and hemoglobins.

  12. Reactivity of tributyl phosphate degradation products with nitric acid: Relevance to the Tomsk-7 accident

    International Nuclear Information System (INIS)

    Barney, G.S.; Cooper, T.D.

    1995-01-01

    The reaction of a degraded tributyl phosphate (TBP) solvent with nitric acid is thought to have caused the chemical explosion at the Tomsk-7 reprocessing plant at Tomsk, Russia in 1993. The estimated temperature of the organic layer was not high eneough to cause significant reaction of nitric acid with TBP or hydrocarbon diluent compounds. A more reactive organic compound was likely present in the organic layer that reacted with sufficient heat generation to raise the temperature to the point where an autocatalytic oxidation of the organic solvent was initiated. Two of the most likely reactive compounds that are present in degraded TBP solvents are n-butanol and n-butyl nitrate. The reactions of these compounds with nitric acid are the subject of this study. The objective of laboratory-scale tests was to identify chemical reactions that occur when n-butanol and n-butyl nitrate contact heated nitric acid solutions. Reaction products were identified and quantitified, the temperatures at which these reactions occur and heats of reaction were measured, and reaction variables (temperature, nitric acid concentration, organic concentration, and reaction time) were evaluated. Data showed that n-butyl nitrate is less reactive than n-butanol. An essentially complete oxidation reaction of n-butanol at 110-120 C produced four major reaction products. Mass spectrometry identified the major inorganic oxidation products for both n-butanol and n-butyl nitrate as nitric oxide and carbon dioxide. Calculated heats of reaction for n-butanol and n-butyl nitrate to form propionic acid, a major reaction product, are -1860 cal/g n-butanol and -953 cal/g n-butyl nitrate. These heats of reaction are significant and could have raised the temperature of the organic layer in the Tomsk-7 tank to the point where autocatalytic oxidation of other organic compounds present resulted in an explosion

  13. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.

    Science.gov (United States)

    Bekers, K M; Heijnen, J J; van Gulik, W M

    2015-08-01

    With the current quantitative metabolomics techniques, only whole-cell concentrations of NAD and NADH can be quantified. These measurements cannot provide information on the in vivo redox state of the cells, which is determined by the ratio of the free forms only. In this work we quantified free NAD:NADH ratios in yeast under anaerobic conditions, using alcohol dehydrogenase (ADH) and the lumped reaction of glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase as sensor reactions. We showed that, with an alternative accurate acetaldehyde determination method, based on rapid sampling, instantaneous derivatization with 2,4 diaminophenol hydrazine (DNPH) and quantification with HPLC, the ADH-catalysed oxidation of ethanol to acetaldehyde can be applied as a relatively fast and simple sensor reaction to quantify the free NAD:NADH ratio under anaerobic conditions. We evaluated the applicability of ADH as a sensor reaction in the yeast Saccharomyces cerevisiae, grown in anaerobic glucose-limited chemostats under steady-state and dynamic conditions. The results found in this study showed that the cytosolic redox status (NAD:NADH ratio) of yeast is at least one order of magnitude lower, and is thus much more reduced, under anaerobic conditions compared to aerobic glucose-limited steady-state conditions. The more reduced state of the cytosol under anaerobic conditions has major implications for (central) metabolism. Accurate determination of the free NAD:NADH ratio is therefore of importance for the unravelling of in vivo enzyme kinetics and to judge accurately the thermodynamic reversibility of each redox reaction. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Communication: Reactivity borrowing in the mode selective chemistry of H + CHD3 → H2 + CD3

    Science.gov (United States)

    Ellerbrock, Roman; Manthe, Uwe

    2017-12-01

    Quantum state-resolved reaction probabilities for the H + CHD3 → H2 + CD3 reaction are calculated by accurate full-dimensional quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree approach and the quantum transition state concept. Reaction probabilities of various ro-vibrational states of the CHD3 reactant are investigated for vanishing total angular momentum. While the reactivity of the different vibrational states of CHD3 mostly follows intuitive patterns, an unusually large reaction probability is found for CHD3 molecules triply excited in the CD3 umbrella-bending vibration. This surprising reactivity can be explained by a Fermi resonance-type mixing of the single CH-stretch excited and the triple CD3 umbrella-bend excited vibrational states of CHD3. These findings show that resonant energy transfer can significantly affect the mode-selective chemistry of CHD3 and result in counter-intuitive reactivity patterns.

  15. Probabilistic, sediment-geochemical parameterisation of the groundwater compartment of the Netherlands for spatially distributed, reactive transport modelling

    Science.gov (United States)

    Janssen, Gijs; Gunnink, Jan; van Vliet, Marielle; Goldberg, Tanya; Griffioen, Jasper

    2017-04-01

    Pollution of groundwater aquifers with contaminants as nitrate is a common problem. Reactive transport models are useful to predict the fate of such contaminants and to characterise the efficiency of mitigating or preventive measures. Parameterisation of a groundwater transport model on reaction capacity is a necessary step during building the model. Two Dutch, national programs are combined to establish a methodology for building a probabilistic model on reaction capacity of the groundwater compartment at the national scale: the Geological Survey program and the NHI Netherlands Hydrological Instrument program. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. Statistical properties of these variables are established based on c. 16,000 sediment geochemical analyses. The first tens of meters are characterised based on 25 regions using combinations of lithological class and geological formation as strata. Because of both less data and more geochemical uniformity, the deeper subsurface is characterised in a similar way based on 3 regions. The statistical data is used as input in an algoritm that probabilistically calculates the reaction capacity per grid cell. First, the cumulative frequency distribution (cfd) functions are calculated from the statistical data for the geochemical strata. Second, all voxel cells are classified into the geochemical strata. Third, the

  16. Silsesquioxane nanoparticles with reactive internal functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Brozek, Eric M . [University of Utah, Department of Chemistry (United States); Washton, Nancy M.; Mueller, Karl T. [Environmental Molecular Sciences Laboratory (United States); Zharov, Ilya, E-mail: i.zharov@utah.edu [University of Utah, Department of Chemistry (United States)

    2017-02-15

    A series of silsesquioxane nanoparticles containing reactive internal organic functionalities throughout the entire particle body have been synthesized using a surfactant-free method with organosilanes as the sole precursors and a base catalyst. The organic functional groups incorporated are vinyl, allyl, mercapto, cyanoethyl, and cyanopropyl groups. The sizes and morphologies of the particles were characterized using SEM and nitrogen adsorption, while the compositions were confirmed using TGA, FT-IR, solid state NMR, and elemental analysis. The accessibility and reactivity of the functional groups inside the particles were demonstrated by performing bromination and reduction reactions in the interior of the particles.

  17. Synthesis and reactivity of uranium (III) cyclopentadienyl complexes

    International Nuclear Information System (INIS)

    Foyentin, M.

    1987-01-01

    New uranium organometallic complexes are synthetized from the addition compound Cp U (THF). Reactions with lithium compounds, chlorides, alkynes and borohydrides. Oxidizing addition reactions are evidenced with alkyl halogenides. With a strong reducing agent, the complex Cp-UCH-Li allows the fixation and the reduction of nitrogen into ammonia. Lability of ligands bound to U (III) is evidenced, giving very reactive species and hence catalytic properties for these compounds. Catalytic hydrogenation of olefins is studied. Substitution reactions of alkyl groups of these complexes with olefins in presence or not of hydrogen or with alkyllithium are original [fr

  18. Feasibility and parametric study of tetrahydrofuran dehydration using reactive distillation with low energy requirement

    International Nuclear Information System (INIS)

    Tavan, Yadollah

    2014-01-01

    A new configuration of a RD (reactive distillation) process is investigated to break the THF (tetrahydrofuran)/water azeotrope using Hysys process software. The main module is a column system containing the reaction of EO (ethylene oxide) with water, in which top and bottom streams are the desired products, THF and EG (ethylene glycol), respectively. This contribution explores feasibility of using the reaction in the RD column and also describes the influence of reflux ratio, reaction trays, operating pressure and feed–inlet locations of the RD column in simulation environment. The results show that high purities of EG and THF are simultaneously obtained by this novel technique leading to more profits of the RD process. The optimal design of the RD process is obtained by minimizing the energy demand and the optimum number of reactive trays is found to be 10. Furthermore, minimum energy demand is observed when the column operates at atmospheric pressure with reflux ratio of 1.25. Particularly, it is found that the optimal reboiler duty per unit THF produced is reduced from 32 to 3.7% for the new process as compared to the conventional one, while both schemes predict similar outputs. - Highlights: • A reactive distillation column is proposed to produce pure tetrahydrofuran. • The tetrahydrofuran-water azeotrope is broken using reactive distillation column. • High energy saving (88%) is found for the reactive distillation process

  19. Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction. Keywords: Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Power-law surface velocity, Convective condition, Heat generation/absorption, Nonlinear radiation

  20. Effects of variable sticking coefficients on the stability of reactive sputtering process

    International Nuclear Information System (INIS)

    Li Chuan; Hsieh Janghsing

    2004-01-01

    In reactive sputtering, the introduction of a reactive gas can lead to a hysteresis transition from metal to compounds in both the target and substrate. The hysteresis transition is characterized by a sudden change in partial pressure, sputtering rate, fraction of compound formation, etc. Therefore, stability is an important issue in the process control. In this paper, a mathematical model with variable sticking coefficients based on surface kinetics is used to study the stability of the process. The variable sticking coefficient represents different mechanisms for surface reactions from the Langmuir to precursor type. In order to facilitate the analysis, several nondimensional parameters are identified and used for formulation. Results show that an unsteady system converges to a steady state relatively fast at low inflow rates. With an eigenvalue analysis, the range of positive eigenvalues is consistent with the presence of a hysteresis loop. It is also found that when the chemical reaction on the substrate is moderate, a higher sputter yield of the compound leads to a more stable steady state at lower inflow rates. Regarding the sticking mechanism, for the type of precursors with the parameter k < 1, the compound is easier to form and saturate on the surface due to the higher default sticking coefficient and the lower operating conditions for the hysteresis transition

  1. Mechanochemical Association Reaction of Interfacial Molecules Driven by Shear.

    Science.gov (United States)

    Khajeh, Arash; He, Xin; Yeon, Jejoon; Kim, Seong H; Martini, Ashlie

    2018-05-29

    Shear-driven chemical reaction mechanisms are poorly understood because the relevant reactions are often hidden between two solid surfaces moving in relative motion. Here, this phenomenon is explored by characterizing shear-induced polymerization reactions that occur during vapor phase lubrication of α-pinene between sliding hydroxylated and dehydroxylated silica surfaces, complemented by reactive molecular dynamics simulations. The results suggest that oxidative chemisorption of the α-pinene molecules at reactive surface sites, which transfers oxygen atoms from the surface to the adsorbate molecule, is the critical activation step. Such activation takes place more readily on the dehydroxylated surface. During this activation, the most strained part of the α-pinene molecules undergoes a partial distortion from its equilibrium geometry, which appears to be related to the critical activation volume for mechanical activation. Once α-pinene molecules are activated, association reactions occur between the newly attached oxygen and one of the carbon atoms in another molecule, forming ether bonds. These findings have general implications for mechanochemistry because they reveal that shear-driven reactions may occur through reaction pathways very different from their thermally induced counterparts and specifically the critical role of molecular distortion in such reactions.

  2. Experimental Study of Na based Titanium Nanofluid-Water Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gunyeop; Kim, Soo Jae; Baek, Jehyun; Kim, Hyun Soo; Oh, Sun Ryung; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    In KALIMER-600, a sodium-cooled fast reactor designed by KAERI, thermal energy is transported from high-temperature liquid Na (526 .deg. C at 0.1 MPa) to low temperature water (230 .deg. C at - 19.5 MPa) through a heat exchanger. If any leakage or rupture occurs during the operation of this heat exchanger, highly pressurized liquid water can penetrate into the liquid Na channels; this contact should instantly cause SWR. As reaction continues, liquid water is soon vaporized by pressure drop and huge amount of reaction heat. This generated water vapor expands large reaction area and increases sodium-water vapor reaction process. Therefore, the rapid generation of reaction product (like H{sub 2}) and water vapor increases the system pressure that can cause the system failure in SFR. To reduce this strong chemical reaction phenomena between Na and water, some we have focused on suppressing the chemical reactivity of liquid Na by dispersing nanoparticles (NPs). For the real application of NaTiNF, the pressure change induced by NaTiNF-water reaction is compared with Na-water reaction in the present study. NaTiNF contains 100nm of Ti NPs at 0.2 vol. %. The reaction rate of NaTiNF-water reaction is also investigated as reaction temperature increases. Sodium-water vapor reaction (SVR) will occur when an SWR accident occurs in SFR. In this manner, NaTiNF-water vapor reaction is experimentally performed for ensuring the suppression of chemical reactivity of NaTiNF in contact with water vapor. In the basic step for reducing risk of an SWR in SFR, we have experimentally verified the suppressed chemical reactivity of liquid sodium using Ti NPs through SWR and SVR experiments. In SWR, Na based titanium nanofluid (NaTiNF) shows lower pressure change than Na. As T{sub R} increases, P{sub max} in Na-water reaction increases while NaTiNF does not. The reaction rate of NaTiNF shows twice slower than that of Na. In SVR, NaTiNF shows slower temperature increase than Na. The distinct

  3. 5-Hydroxymethylfurfural (5-HMF Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System

    Directory of Open Access Journals (Sweden)

    Nadine Essayem

    2012-09-01

    Full Text Available 5-Hydroxymethylfurfural (5-HMF is an important bio-sourced intermediate, formed from carbohydrates such as glucose or fructose. The treatment at 150–250 °C of glucose or fructose in pure water and batch conditions, with catalytic amounts of most of the usual acid-basic solid catalysts, gave limited yields in 5-HMF, due mainly to the fast formation of soluble oligomers. Niobic acid, which possesses both Lewis and Brønsted acid sites, gave the highest 5-HMF yield, 28%, when high catalyst/glucose ratio is used. By contrast, we disclose in this work that the reaction of fructose in concentrated aqueous solutions of carboxylic acids, formic, acetic or lactic acids, used as reactive solvent media, leads to the selective dehydration of fructose in 5-HMF with yields up to 64% after 2 hours at 150 °C. This shows the potential of such solvent systems for the clean and easy production of 5-HMF from carbohydrates. The influence of adding solid catalysts to the carboxylic acid media was also reported, starting from glucose.

  4. Obtaining of uranium tetrafluoride UF4 by electrodialysis reactive from uranium concentrates

    International Nuclear Information System (INIS)

    Munoz Lay, Danny Mauricio

    2014-01-01

    The generation of uranium fuels has always been a topic worldwide. The uranium fuel manufacturing base is made under very strict parameters of radiological and industrial safety, being a stage called 'nuclear fuel cycle'. In Chile, it is done constant research for fuels. This report focuses primarily on participating in such research; mainly in the production of uranium tetrafluoride (UF 4 ) .The tetrafluoride production is very crucial for the nuclear fuel industry. Its production varies from precipitation in stirred conditions to electrolysis in mercury. However, both processes has shortcomings either in performance and environmental pollution, which is why it is proposed a new method of production based on a friendly process to the environment and easier to operate, the reactive electrodialysis (RED). Electrodialysis is a hybrid reactive process of separation by membranes, cationic and / or anionic, namely, ionic species. In the process, ions are induced to move by an electric potential applied and separated by these membranes, a highly selective physical barrier which allows passage of ions with certain charge, and prevents the passage of oppositely charged ions. And in turn, it is reactive because it forces a chemical reaction, redox, to obtain uranium tetrafluoride (UF 4 ). The results of these experiments show that by reactive electrodialysis, NH 4 UF 5 deposits were obtained. However, calcinating the NH 4 UF 5 to 450 o C, it decomposes to obtain uranium tetrafluoride, UF 4 . The best working conditions were obtained with an electric current of 0.5 (A), 41 o C and a flow of 16 (ml / s) of the electrolyte. It was possible to obtain 5,995 (g) to 3 (h), giving a current efficiency of 71.42%. In turn, working at high temperatures and flow recirculation is possible to operate with a potential difference of 1.7 (V)

  5. Reaction time for trimolecular reactions in compartment-based reaction-diffusion models

    Science.gov (United States)

    Li, Fei; Chen, Minghan; Erban, Radek; Cao, Yang

    2018-05-01

    Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.

  6. Structure-Reactivity Relationships in Multi-Component Transition Metal Oxide Catalysts FINAL Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Eric I. [Yale Univ., New Haven, CT (United States)

    2015-10-06

    The focus of the project was on developing an atomic-level understanding of how transition metal oxide catalysts function. Over the course of several renewals the specific emphases shifted from understanding how local structure and oxidation state affect how molecules adsorb and react on the surfaces of binary oxide crystals to more complex systems where interactions between different transition metal oxide cations in an oxide catalyst can affect reactivity, and finally to the impact of cluster size on oxide stability and reactivity. Hallmarks of the work were the use of epitaxial growth methods to create surfaces relevant to catalysis yet tractable for fundamental surface science approaches, and the use of scanning tunneling microscopy to follow structural changes induced by reactions and to pinpoint adsorption sites. Key early findings included the identification of oxidation and reduction mechanisms on a tungsten oxide catalyst surface that determine the sites available for reaction, identification of C-O bond cleavage as the rate limiting step in alcohol dehydration reactions on the tungsten oxide surface, and demonstration that reduction does not change the favored reaction pathway but rather eases C-O bond cleavage and thus reduces the reaction barrier. Subsequently, a new reconstruction on the anatase phase of TiO2 relevant to catalysis was discovered and shown to create sites with distinct reactivity compared to other TiO2 surfaces. Building on this work on anatase, the mechanism by which TiO2 enhances the reactivity of vanadium oxide layers was characterized and it was found that the TiO2 substrate can force thin vanadia layers to adopt structures they would not ordinarily form in the bulk which in turn creates differences in reactivity between supported layers and bulk samples. From there, the work progressed to studying well-defined ternary oxides where synergistic effects between the two cations can induce

  7. Adaptive Reactive Power Control of PV Power Plants for Improved Power Transfer Capability under Ultra-Weak Grid Conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2018-01-01

    with the unity power factor. Then, considering the reactive power compensation from PV inverters, the minimum SCR in respect to Power Factor (PF) is derived, and the optimized coordination of the active and reactive power is exploited. It is revealed that the power transfer capability of PV power plant under...... of a 200 MW PV power plant demonstrate that the proposed method can ensure the rated power transfer of PV power plant with the SCR of 1.25, provided that the PV inverters are operated with the minimal PF=0.9.......This paper analyzes the power transfer limitation of the PV power plant under the ultra-weak grid condition, i.e., when the Short-Circuit Ratio (SCR) is close to 1. It explicitly identifies that a minimum SCR of 2 is required for the PV power plant to deliver the rated active power when operating...

  8. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Vanderbilt Univ., Nashville, TN (United States)

    2015-09-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document the progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture

  9. Production of Ligninolytic Enzymes by White-Rot Fungus Datronia sp. KAPI0039 and Their Application for Reactive Dye Removal

    Directory of Open Access Journals (Sweden)

    Pilanee Vaithanomsat

    2010-01-01

    Full Text Available This study focused on decolorization of 2 reactive dyes; Reactive Blue 19 (RBBR and Reactive Black 5 (RB5, by selected white-rot fungus Datronia sp. KAPI0039. The effects of reactive dye concentration, fungal inoculum size as well as pH were studied. Samples were periodically collected for the measurement of color unit, Laccase (Lac, Manganese Peroxidase (MnP, and Lignin Peroxidase (LiP activity. Eighty-six percent of 1,000 mg L−1 RBBR decolorization was achieved by 2% (w/v Datronia sp. KAPI0039 at pH 5. The highest Lac activity (759.81 UL−1 was detected in the optimal condition. For RB5, Datronia sp. KAPI0039 efficiently performed (88.01% decolorization at 2% (w/v fungal inoculum size for the reduction of 600 mg L−1 RB5 under pH 5. The highest Lac activity (178.57 UL−1 was detected, whereas the activity of MnP and LiP was absent during this hour. The result, therefore, indicated that Datronia sp. KAPI0039 was obviously able to breakdown both reactive dyes, and Lac was considered as a major lignin-degradation enzyme in this reaction.

  10. Reactivity index based on orbital energies.

    Science.gov (United States)

    Tsuneda, Takao; Singh, Raman K

    2014-05-30

    This study shows that the chemical reactivities depend on the orbital energy gaps contributing to the reactions. In the process where a reaction only makes progress through charge transfer with the minimal structural transformation of the reactant, the orbital energy gap gradient (OEGG) between the electron-donating and electron-accepting orbitals is proven to be very low. Using this relation, a normalized reaction diagram is constructed by plotting the normalized orbital energy gap with respect to the normalized intrinsic reaction coordinate. Application of this reaction diagram to 43 fundamental reactions showed that the majority of the forward reactions provide small OEGGs in the initial stages, and therefore, the initial processes of the forward reactions are supposed to proceed only through charge transfer. Conversely, more than 60% of the backward reactions are found to give large OEGGs implying very slow reactions associated with considerable structural transformations. Focusing on the anti-activation-energy reactions, in which the forward reactions have higher barriers than those of the backward ones, most of these reactions are shown to give large OEGGs for the backward reactions. It is also found that the reactions providing large OEGGs in the forward directions inconsistent with the reaction rate constants are classified into SN 2, symmetric, and methyl radical reactions. Interestingly, several large-OEGG reactions are experimentally established to get around the optimum pathways. This indicates that the reactions can take significantly different pathways from the optimum ones provided no charge transfer proceeds spontaneously without the structural transformations of the reactants. Copyright © 2014 Wiley Periodicals, Inc.

  11. Interaction phenomena at reactive metal/ceramic interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2000-11-03

    The objective of this study was to understand the interface chemical reactions between stable ceramics and reactive liquid metals, and developing microstructure. Experiments were conducted at elevated temperatures where small metal samples of Zr and Zr-alloy were placed on top of selected oxide and non-oxide ceramic substrates (Y{sub 2}O{sub 3}, ZrN, ZrC, and HfC). The sample stage was heated in high-purity argon to about 2000 C, held in most cases for five minutes at the peak temperature, and then cooled to room temperature at {approximately}20 c/min. An external video camera was used to monitor the in-situ wetting and interface reactions. Post-test examinations of the systems were conducted by scanning electron microscopy and energy dispersive spectroscopy. It was determined that the Zr and the Zr-alloy are very active in the wetting of stable ceramics at elevated temperatures. In addition, in some systems, such as Zr/ZrN, a reactive transition phase formed between the ceramic and the metal. In other systems, such as Zr/Y{sub 2}O{sub 3}, Zr/ZrC and Zr/HfC, no reaction products formed, but a continuous and strong joint developed under these circumstances also.

  12. Aqueous reactive species induced by a PCB surface micro-discharge air plasma device: a quantitative study

    Science.gov (United States)

    Chen, Chen; Li, Fanying; Chen, Hai-Lan; Kong, Michael G.

    2017-11-01

    This paper presents a quantitative investigation on aqueous reactive species induced by air plasma generated from a printed circuit board surface micro-discharge (SMD) device. Under the conditions amenable for proliferation of mammalian cells, concentrations of ten types of reactive oxygen and nitrogen species (RONS) in phosphate buffering solution (PBS) are measured by chemical fluorescent assays and electron spin resonance spectroscopy (ESR). Results show that concentrations of several detected RNS (NO2- , NO3- , peroxynitrites, and NO2\\centerdot ) are higher than those of ROS (H2O2, O2\\centerdot - , and 1O2) in the air plasma treated solution. Concentrations of NO3- can reach 150 times of H2O2 with 60 s plasma treatment. For short-lived species, the air plasma generates more copious peroxynitrite than other RONS including NO2\\centerdot , O2\\centerdot - , 1O2, and N{{O}\\centerdot } in PBS. In addition, the existence of reaction between H2O2 and NO2- /HNO2 to produce peroxynitrite is verified by the chemical scavenger experiments. The reaction relations between detected RONS are also discussed.

  13. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  14. Physicochemical model for reactive sputtering of hot target

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, Viktor I., E-mail: vishapovalov@mail.ru; Karzin, Vitaliy V.; Bondarenko, Anastasia S.

    2017-02-05

    A physicochemical model for reactive magnetron sputtering of a metal target is described in this paper. The target temperature in the model is defined as a function of the ion current density. Synthesis of the coating occurs due to the surface chemical reaction. The law of mass action, the Langmuir isotherm and the Arrhenius equation for non-isothermal conditions were used for mathematical description of the reaction. The model takes into consideration thermal electron emission and evaporation of the target surface. The system of eight algebraic equations, describing the model, was solved for the tantalum target sputtered in the oxygen environment. It was established that the hysteresis effect disappears with the increase of the ion current density. - Highlights: • When model is applied for a cold target, hysteresis width is proportional to the ion current density. • Two types of processes of hot target sputtering are possible, depending on the current density: with and without the hysteresis. • Sputtering process is dominant at current densities less than 50 A/m{sup 2} and evaporation can be neglected. • For current densities over 50 A/m{sup 2} the hysteresis width reaches its maximum and the role of evaporation increases.

  15. Effects of prenatal stress and emotional reactivity of the mother on emotional and cognitive abilities in lambs.

    Science.gov (United States)

    Coulon, Marjorie; Nowak, Raymond; Andanson, Stephane; Petit, Bérengère; Lévy, Frédéric; Boissy, Alain

    2015-07-01

    Consequences of prenatal stress on emotional reactivity and cognitive abilities in offspring are under-documented in precocial mammals. Here, we investigated to what extent emotional reactivity, judgment bias and spatial learning abilities of lambs are affected by chronic stress during late pregnancy and by their dams' emotional reactivity. The 20 highest-responsive (HR) and 20 lowest-responsive (LR) ewes from a population of 120 Romane ewes were selected according to their pre-mating reactivity to social isolation in a new environment. Over the final third of pregnancy, 10 HR ewes and 10 LR ewes were exposed daily to various unpredictable aversive events such as restraint, mixing groups and transport while the other 20 selected ewes were not. In a human and an object test, prenatally-stressed lambs were more fearful than control lambs, but the prenatal stress effect was moderated by the reactivity of the mothers: prenatally-stressed lambs from ewes with high emotional reactivity were more affected. Prenatally-stressed lambs did not perform as well as control lambs in a maze test and showed pessimistic-like judgment in a cognitive bias test. Prenatally-stressed lambs were thus characterized by a negative affective state with increased fear reactions and impaired cognitive evaluation. The development of negative moods could have long-lasting consequences on the coping strategies of the lambs in response to their rearing conditions. © 2015 Wiley Periodicals, Inc.

  16. A study on gap heat transfer of LWR fuel rods under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Fujishiro, Toshio

    1984-03-01

    Gap heat transfer between fuel pellet and cladding have a large influence on the LWR fuel behaviors under reactivity initiated accident (RIA) conditions. The objective of the present study is to investigate the effects of gap heat transfer on RIA fuel behaviors based on the results of the gap-gas parameter tests in NSRR and on their analysis with NSR-77 code. Through this study, transient variations of gap heat transfer, the effects of the gap heat transfer on fuel thermal behaviors and on fuel failure, effects of pellet-cladding sticking by eutectic formation, and the effects of cladding collapse under high external pressure have been clearified. The studies have also been performed on the applicability and its limit of modified Ross and Stoute equation which is extensively utilized to evaluate the gap heat transfer coefficient in the present fuel behavior codes. The method to evaluate the gap conductance to the conditions beyond the applicability limit of the Ross and Stoute equation has also been proposed. (author)

  17. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes.

    Science.gov (United States)

    Mandal, Debasish; Mallick, Dibyendu; Shaik, Sason

    2018-01-16

    This Account outlines interplay of theory and experiment in the quest to identify the reactive-spin-state in chemical reactions that possess a few spin-dependent routes. Metalloenzymes and synthetic models have forged in recent decades an area of increasing appeal, in which oxometal species bring about functionalization of hydrocarbons under mild conditions and via intriguing mechanisms that provide a glimpse of Nature's designs to harness these reactions. Prominent among these are oxoiron(IV) complexes, which are potent H-abstractors. One of the key properties of oxoirons is the presence of close-lying spin-states, which can mediate H-abstractions. As such, these complexes form a fascinating chapter of spin-state chemistry, in which chemical reactivity involves spin-state interchange, so-called two-state reactivity (TSR) and multistate reactivity (MSR). TSR and MSR pose mechanistic challenges. How can one determine the structure of the reactive transition state (TS) and its spin state for these mechanisms? Calculations can do it for us, but the challenge is to find experimental probes. There are, however, no clear kinetic signatures for the reactive-spin-state in such reactions. This is the paucity that our group has been trying to fill for sometime. Hence, it is timely to demonstrate how theory joins experiment in realizing this quest. This Account uses a set of the H-abstraction reactions of 24 synthetic oxoiron(IV) complexes and 11 hydrocarbons, together undergoing H-abstraction reactions with TSR/MSR options, which provide experimentally determined kinetic isotope effect (KIE exp ) data. For this set, we demonstrate that comparing KIE exp results with calculated tunneling-augmented KIE (KIE TC ) data leads to a clear identification of the reactive spin-state during H-abstraction reactions. In addition, generating KIE exp data for a reaction of interest, and comparing these to KIE TC values, provides the mechanistic chemist with a powerful capability to

  18. Reaction studies of hot silicon, germanium and carbon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1990-01-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs

  19. Development of numerical methods for reactive transport

    International Nuclear Information System (INIS)

    Bouillard, N.

    2006-12-01

    When a radioactive waste is stored in deep geological disposals, it is expected that the waste package will be damaged under water action (concrete leaching, iron corrosion). Then, to understand these damaging processes, chemical reactions and solutes transport are modelled. Numerical simulations of reactive transport can be done sequentially by the coupling of several codes. This is the case of the software platform ALLIANCES which is developed jointly with CEA, ANDRA and EDF. Stiff reactions like precipitation-dissolution are crucial for the radioactive waste storage applications, but standard sequential iterative approaches like Picard's fail in solving rapidly reactive transport simulations with such stiff reactions. In the first part of this work, we focus on a simplified precipitation and dissolution process: a system made up with one solid species and two aqueous species moving by diffusion is studied mathematically. It is assumed that a precipitation dissolution reaction occurs in between them, and it is modelled by a discontinuous kinetics law of unknown sign. By using monotonicity properties, the convergence of a finite volume scheme on admissible mesh is proved. Existence of a weak solution is obtained as a by-product of the convergence of the scheme. The second part is dedicated to coupling algorithms which improve Picard's method and can be easily used in an existing coupling code. By extending previous works, we propose a general and adaptable framework to solve nonlinear systems. Indeed by selecting special options, we can either recover well known methods, like nonlinear conjugate gradient methods, or design specific method. This algorithm has two main steps, a preconditioning one and an acceleration one. This algorithm is tested on several examples, some of them being rather academical and others being more realistic. We test it on the 'three species model'' example. Other reactive transport simulations use an external chemical code CHESS. For a

  20. Predicting the diagenetic evolution of argillite repositories: application of flow-through reaction cells

    International Nuclear Information System (INIS)

    Warr, L.; Clatter, N.; Liewig, N.

    2005-01-01

    In order to successfully predict the diagenetic evolution of argillite repositories we need to know i) which reactions occur under a defined set of conditions, ii) how these reactions modify the material properties of the argillite seal, and iii) how fast these chemical reactions take place. Based on the application of thermodynamics, and the construction of activity diagrams for low temperature mineral phases (e.g. Velde 1992), fair predictions of mineral stability can be made under a given set of physical and chemical conditions. Such predictions are strengthened by examining natural mineral reactions preserved in the geological record, in combination with results obtained from controlled laboratory experiments. Changes in the material behavior can also be reasonably assessed, as the basic physical and chemical properties of argillaceous rocks of varying mineralogy are well documented in the petrophysical and engineering literature (e.g. Bell, 1999). Probably the most difficult task, however, is to assess the rates of the chemical reactions involved. This difficulty reflects our poor knowledge of the reaction kinetics for these low-temperature, fine-grained mineral materials, and apparent differences between rates estimated from natural and experimental systems. A new approach to monitoring the reaction kinetics of fine-grained minerals in percolating solution has been developed using flow-through reaction (wet-cell) chambers. These devices can be routinely mounted onto the X-ray diffractometer for in-situ measurements of the sample. With the aid of a cap to maintain constant volume, the device can be subjected to diagenetic or hydrothermal conditions (<150 C). First results are here presented for the alteration of Callovo-Oxfordian shales in a reactive simple young fluid (strongly alkaline, pH ca. 13) at 90 C, designed to simulate the alteration of concrete at the repository site. (authors)

  1. Reactive oxygen species explicit dosimetry (ROSED) of a type 1 photosensitizer

    Science.gov (United States)

    Ong, Yi Hong; Kim, Michele M.; Huang, Zheng; Zhu, Timothy C.

    2018-02-01

    Type I photodynamic therapy (PDT) is based on the use of photochemical reactions mediated through an interaction between a tumor-selective photosensitizer, photoexcitation with a specific wavelength of light, and production of reactive oxygen species (ROS). The goal of this study is to develop a model to calculate reactive oxygen species concentration ([ROS]rx) after Tookad®-mediated vascular PDT. Mice with radiation-induced fibrosarcoma (RIF) tumors were treated with different light fluence and fluence rate conditions. Explicit measurements of photosensitizer drug concentration were made via diffuse reflective absorption spectrum using a contact probe before and after PDT. Blood flow and tissue oxygen concentration over time were measured during PDT as a mean to validate the photochemical parameters for the ROSED calculation. Cure index was computed from the rate of tumor regrowth after treatment and was compared against three calculated dose metrics: total light fluence, PDT dose, reacted [ROS]rx. The tumor growth study demonstrates that [ROS]rx serves as a better dosimetric quantity for predicting treatment outcome, as a clinically relevant tumor growth endpoint.

  2. Intrinsic char reactivity of plastic waste (PET) during CO2 gasification

    International Nuclear Information System (INIS)

    Gil, M.V.; Fermoso, J.; Pevida, C.; Pis, J.J.; Rubiera, F.

    2010-01-01

    Char reactivity has a strong influence on the gasification process, since char gasification is the slowest step in the process. A sample of waste PET was devolatilised in a vertical quartz reactor and the resulting char was partially gasified under a CO 2 atmosphere at 925 C in order to obtain samples with different degrees of conversion. The reactivity of the char in CO 2 was determined by isothermal thermogravimetric analysis at different temperatures in a kinetically controlled regime and its reactive behaviour was evaluated by means of the random pore model (RPM). The texture of the char was characterised by means of N 2 and CO 2 adsorption isotherms. The results did not reveal any variation in char reactivity during conversion, whereas the micropore surface area was affected during the gasification process. It was found that the intrinsic reaction rate of the char can be satisfactorily calculated by normalizing the reaction rate by the narrow micropore surface area calculated from the CO 2 adsorption isotherms. It can be concluded therefore that the surface area available for the gasification process is the area corresponding to the narrow microporosity. (author)

  3. Pretreatment of cellulosic wastes to increase enzyme reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Neese, N.; Wallick, J.; Harper, J.M.

    1977-03-01

    The enzymatic hydrolysis of cellulose to glucose is generally a slow reaction. Different pretreatments, such as ball milling to a -200 mesh or swelling in 1 to 2 percent NaOH are reported to increase the reactivity considerably. In this work a fiber fraction from cattle manure was treated in an autoclave for 5 to 30 min at temperatures ranging from 130 to 200/sup 0/C. The reactivity of the cellulose, measured by incubating samples with a commercial cellulase preparation for one hour at 50/sup 0/C and pH 4.8, was increased by a factor of 4 to 6 compared to NaOH treatment and 10 to 20 compared to untreated fiber. The increased reaction rate is probably mostly due to an increase in cellulose availability to enzymatic attack, as structural hemicellulose is hydrolyzed and removed during the treatment. Sugars, produced by hemicellulosis hydrolysis, will react further to give caramelization products. These side reactions were shown to be suppressed by short treatment times. The treated fiber could support growth of a mixed culture of Trichoderma viride and Candida utilis only after washing, indicating the formation of water soluble inhibitory products during treatment. The treatment with high-temperature steam can probably be used also with other cellulosic materials to increase reactivity. This may be an attractive way to prepare low-valued wastes such as manure fibers, straw, stalks, or corn cobs for fermentation processes to increase the protein content or for use directly as ruminant animal feed.

  4. Study of the optimal reaction conditions for assay of the mouse alternative complement pathway

    NARCIS (Netherlands)

    Dijk, H. van; Rademaker, P.M.; Klerx, J.P.A.M.; Willers, J.M.M.

    1985-01-01

    The optimal reaction conditions for hemolytic assay of alternative complement pathway activity in mouse serum were investigated. A microtiter system was used, in which a number of 7.5×106 rabbit erythrocytes per test well appeared to be optimal. Rabbit erythrocytes were superior as target cells over

  5. Conditioning of radioactive ash residue in a wave of solid-phase exothermal reactions

    International Nuclear Information System (INIS)

    Karlina, O.K.; Varlakova, G.A.; Ozhovan, M.I.; Tivanskij, V.M.; Dmitriev, S.A.

    2001-01-01

    The abilities for utilization of exothermic reaction heat in solid phase for conditioning the ash residue produced as a result of solid radioactive waste burning are analyzed. It is shown that the process of ash residue making monolithic with obtaining the glass-like finish product containing 50-60 mass % of ash residue which meets the requirements for solidified radioactive wastes may be realized without energy supplying from external heat sources. The conditioning is realized in a special crucible furnace-container designed not only for the process conducting but also for subsequent storage or disposal of the finish product [ru

  6. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field

    DEFF Research Database (Denmark)

    Monti, Susanna; Corozzi, Alessandro; Fristrup, Peter

    2013-01-01

    In order to describe possible reaction mechanisms involving amino acids, and the evolution of the protonation state of amino acid side chains in solution, a reactive force field (ReaxFF-based description) for peptide and protein simulations has been developed as an expansion of the previously rep...

  7. Intramolecular inverse electron demand Diels-Alder reactions of pyrimidines

    NARCIS (Netherlands)

    Frissen, A.E.

    1990-01-01

    This thesis deals with the intramolecular inverse electron demand Diels-Alder reaction of pyrimidines. The main objective of the study was to investigate the synthetic applicability of this reaction and to get more insight in the electronic and steric effects which determine the reactivity

  8. Void reactivity decomposition for the Sodium-cooled Fast Reactor in equilibrium fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sun Kaichao, E-mail: kaichao.sun@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Krepel, Jiri; Mikityuk, Konstantin; Pelloni, Sandro [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Chawla, Rakesh [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2011-07-15

    Highlights: > We analyze the void reactivity effect for three ESFR core fuel cycle states. > The void reactivity effect is decomposed by neutron balance method. > Novelly, the normalization to the integral flux in the active core is applied. > The decomposition is compared with the perturbation theory based results. > The mechanism and the differences of the void reactivity effect are explained. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many advantages, but has one dominating neutronic drawback - a positive sodium void reactivity. The aim of this study is to develop and apply a methodology, which should help better understand the causes and consequences of the sodium void effect. It focuses not only on the beginning-of-life (BOL) state of the core, but also on the beginning of open and closed equilibrium (BOC and BEC, respectively) fuel cycle conditions. The deeper understanding of the principal phenomena involved may subsequently lead to appropriate optimization studies. Various voiding scenarios, corresponding to different spatial zones, e.g. node or assembly, have been analyzed, and the most conservative case - the voiding of both inner and outer fuel zones - has been selected as the reference scenario. On the basis of the neutron balance method, the corresponding SFR void reactivity has been decomposed reaction-, isotope-, and energy-group-wise. Complementary results, based on generalized perturbation theory and sensitivity analysis, are also presented. The numerical analysis for both neutron balance and perturbation theory methods has been carried out using appropriate modules of the ERANOS code system. A strong correlation between the flux worth, i.e. the product of flux and adjoint flux, and the void reactivity importance distributions has been found for the node- and assembly-wise voiding scenarios. The neutron balance based decomposition has shown that the void effect is caused mainly by the

  9. Void reactivity decomposition for the Sodium-cooled Fast Reactor in equilibrium fuel cycle

    International Nuclear Information System (INIS)

    Sun Kaichao; Krepel, Jiri; Mikityuk, Konstantin; Pelloni, Sandro; Chawla, Rakesh

    2011-01-01

    Highlights: → We analyze the void reactivity effect for three ESFR core fuel cycle states. → The void reactivity effect is decomposed by neutron balance method. → Novelly, the normalization to the integral flux in the active core is applied. → The decomposition is compared with the perturbation theory based results. → The mechanism and the differences of the void reactivity effect are explained. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many advantages, but has one dominating neutronic drawback - a positive sodium void reactivity. The aim of this study is to develop and apply a methodology, which should help better understand the causes and consequences of the sodium void effect. It focuses not only on the beginning-of-life (BOL) state of the core, but also on the beginning of open and closed equilibrium (BOC and BEC, respectively) fuel cycle conditions. The deeper understanding of the principal phenomena involved may subsequently lead to appropriate optimization studies. Various voiding scenarios, corresponding to different spatial zones, e.g. node or assembly, have been analyzed, and the most conservative case - the voiding of both inner and outer fuel zones - has been selected as the reference scenario. On the basis of the neutron balance method, the corresponding SFR void reactivity has been decomposed reaction-, isotope-, and energy-group-wise. Complementary results, based on generalized perturbation theory and sensitivity analysis, are also presented. The numerical analysis for both neutron balance and perturbation theory methods has been carried out using appropriate modules of the ERANOS code system. A strong correlation between the flux worth, i.e. the product of flux and adjoint flux, and the void reactivity importance distributions has been found for the node- and assembly-wise voiding scenarios. The neutron balance based decomposition has shown that the void effect is caused mainly

  10. Reaction Mechanisms and HCCI Combustion Processes of Mixtures of n-Heptane and the Butanols

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-03-01

    Full Text Available A reduced primary reference fuel (PRF-Alcohol-Di-tert-butyl Peroxide (DTBP mechanism with 108 species and 435 reactions, including sub-mechanisms of PRF, methanol, ethanol, DTBP and the four butanol isomers, is proposed for homogeneous charge compression ignition (HCCI engine combustion simulations of butanol isomers/n-heptane mixtures. HCCI experiments fuelled with butanol isomer/n-heptane mixtures on two different engines are conducted for the validation of proposed mechanism. The mechanism has been validated against shock tube ignition delays, laminar flame speeds, species profiles in premixed flames and engine HCCI combustion data, and good agreements with experimental results are demonstrated under various validation conditions. It is found that although the reactivity of neat tert-butanol is the lowest, mixtures of tert-butanol/n-heptane exhibit the highest reactivity among the butanol isomer/n-heptane mixtures if the n-heptane blending ratio exceeds 20% (mole. Kinetic analysis shows that the highest C-H bond energy in the tert-butanol molecule is partially responsible for this phenomenon. It is also found that the reaction tC4H9OH+CH3O2 =tC4H9O+CH3O2H plays important role and eventually produces the OH radical to promote the ignition and combustion. The proposed mechanism is able to capture HCCI combustion processes of the butanol/n-heptane mixtures under different operating conditions. In addition, the trend that tert-butanol /n-heptane has the highest reactivity is also captured in HCCI combustion simulations. The results indicate that the current mechanism can be used for HCCI engine predictions of PRF and alcohol fuels.

  11. Numerical Simulations of Competitive-Consecutive Reactions in Turbulent Channel Flow

    NARCIS (Netherlands)

    Vrieling, A.J.

    2003-01-01

    This thesis deals with mixing of passive scalars in a turbulent flow. The passive scalars are released in a turbulent plane channel flow and interpreted as either non-reactive components or reactive components that are involved in a competitive-consecutive reaction system. The evolution of these

  12. Fringe-controlled biodegradation under dynamic conditions: Quasi 2-D flow-through experiments and reactive-transport modeling

    Science.gov (United States)

    Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A.

    2015-01-01

    Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling.

  13. Studying of Nano SiO2 Preparation from Rice Husk Ash by Using High Gravity Reaction Precipitation Technology

    International Nuclear Information System (INIS)

    Nguyen Thanh Chung; Tran Ngoc Ha; Hoang Van Duc

    2013-01-01

    A novel method (High-gravity reactive precipitation - HGRP) was developed to prepare nano-SiO 2 from rice husk ash using gas-liquid reaction system. The precipitated silica produced by our proposed method had average size of 20 nm with narrow size distribution and purity of SiO 2 was approximately 99.2%. The principles of the method as well as experimental conditions were also described. (author)

  14. Reactive Landing of Dendrimer Ions onto Activated Self-assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qichi; Laskin, Julia

    2014-02-06

    The reactivity of gaseous, amine-terminated polyamidoamine (PAMAM) dendrimer ions with activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester groups (NHS-SAM) is examined using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS). The reaction extent is determined from depletion of the infrared band at 1753 cm-1, corresponding to the stretching vibration of the NHS carbonyl groups following ion deposition. For reaction yields below 10%, NHS band depletion follows a linear dependence on the ion dose. By comparing the kinetics plots obtained for 1,12-dodecanediamine and different generations of dendrimer ions (G0–G3) containing 4, 8, 16, and 32 terminal amino group, we demonstrate that the relative reaction efficiency increases linearly with the number of NH2 groups in the molecule. This finding is rationalized assuming the formation of multiple amide bonds upon collision of higher-generation dendrimers with NHS-SAM. Furthermore, by comparing the NHS band depletion following deposition of [M+4H]4+ ions of the G2 dendrimer at 30, 80, and 120 eV, we demonstrate that the ion’s kinetic energy has no measurable effect on reaction efficiency. Similarly, the ion’s charge state only has a minor effect on the reactive landing efficiency of dendrimer ions. Our results indicate that reactive landing is an efficient approach for highly selective covalent immobilization of complex multifunctional molecules onto organic surfaces terminated with labile functional groups.

  15. Alkali aggregate reactivity in concrete structures in western Canada

    International Nuclear Information System (INIS)

    Morgan, D.R.; Empey, D.

    1989-01-01

    In several regions of Canada, particularly parts of Ontario, Quebec and the Maritime Provinces, research, testing and evaluation of aged concrete structures in the field has shown that alkali aggregate reactivity can give rise to pronounced concrete deterioration, particularly in hydraulic structures subjected to saturation or alternate wetting and drying such as locks, dams, canals, etc. Concrete deterioration is mainly caused by alkali-silica reactions and alkali-carbonate reactions, but a third type of deterioration involves slow/late expanding alkali-silicate/silica reactivity. The alkalies NaOH and KOH in the concrete pore solutions are mainly responsible for attack on expansive rocks and minerals in concrete. Methods for evaluating alkali-aggregate reaction potential in aggregates, and field and laboratory methods for detecting deterioration are discussed. Examples of alkali-aggregate reactions in structures is western Canada are detailed, including a water reservoir at Canadian Forces Base Chilliwack in British Columbia, the Oldman River diversion and flume, the Lundbreck Falls Bridge, and the St Mary's Reservoir spillway, all in southern Alberta. Mitigative measures include avoidance of use of suspect aggregates, but if this cannot be avoided it is recommended to keep the total alkalies in the concrete as low as possible and minimize opportunities for saturation of concrete by moisture. 16 refs., 19 figs., 1 tab

  16. Pattern transfer on large samples using a sub-aperture reactive ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Miessler, Andre; Mill, Agnes; Gerlach, Juergen W.; Arnold, Thomas [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany)

    2011-07-01

    In comparison to sole Ar ion beam sputtering Reactive Ion Beam Etching (RIBE) reveals the main advantage of increasing the selectivity for different kind of materials due to chemical contributions during the material removal. Therefore RIBE is qualified to be an excellent candidate for pattern transfer applications. The goal of the present study is to apply a sub-aperture reactive ion beam for pattern transfer on large fused silica samples. Concerning this matter, the etching behavior in the ion beam periphery plays a decisive role. Using CF{sub 4} as reactive gas, XPS measurements of the modified surface exposes impurities like Ni, Fe and Cr, which belongs to chemically eroded material of the plasma pot as well as an accumulation of carbon (up to 40 atomic percent) in the beam periphery, respectively. The substitution of CF{sub 4} by NF{sub 3} as reactive gas reveals a lot of benefits: more stable ion beam conditions in combination with a reduction of the beam size down to a diameter of 5 mm and a reduced amount of the Ni, Fe and Cr contaminations. However, a layer formation of silicon nitride handicaps the chemical contribution of the etching process. These negative side effects influence the transfer of trench structures on quartz by changing the selectivity due to altered chemical reaction of the modified resist layer. Concerning this we investigate the pattern transfer on large fused silica plates using NF{sub 3}-sub-aperture RIBE.

  17. Data on physicochemical properties of active films derived from plantain flour/PCL blends developed under reactive extrusion conditions

    Directory of Open Access Journals (Sweden)

    Tomy J. Gutiérrez

    2017-12-01

    Full Text Available The data given below relates to the research paper entitled: “Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst”, recently published by our research group [1]. This article provides information concerning the physicochemical properties of the above-mentioned film systems: thickness, density, opacity, moisture content and surface moisture. Keywords: Active films, Antimicrobial properties, Cross-linking, Poly(ε-caprolactone, Starchy

  18. Kinematics of self-initiated and reactive karate punches.

    Science.gov (United States)

    Martinez de Quel, Oscar; Bennett, Simon J

    2014-03-01

    This study investigated whether within-task expertise affects the reported asymmetry in execution time exhibited in reactive and self-initiated movements. Karate practitioners and no-karate practitioners were compared performing a reverse punch in reaction to an external stimulus or following the intention to produce a response (self-initiated). The task was completed following the presentation of a specific (i.e., life-size image of opponent) or general stimulus and in the presence of click trains or white noise. Kinematic analyses indicated reactive movement had shorter time to peak velocity and movement time, as well as greater accuracy than self-initiated movement. These differences were independent of participant skill level although peak velocity was higher in the karate practice group than in the no-karate practice group. Reaction time (RT) of skilled participants was facilitated by a specific stimulus. There was no effect on RT or kinematic variables of the different type of auditory cues. The results of this study indicate that asymmetry in execution time of reactive and self-initiated movement holds irrespective of within-task expertise and stimulus specificity. This could have implications for training of sports and/or relearning of tasks that require rapid and accurate movements to intercept/contact a target.

  19. Simulation of reactive nanolaminates using reduced models: II. Normal propagation

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher; Knio, Omar M. [Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States)

    2010-03-15

    Transient normal flame propagation in reactive Ni/Al multilayers is analyzed computationally. Two approaches are implemented, based on generalization of earlier methodology developed for axial propagation, and on extension of the model reduction formalism introduced in Part I. In both cases, the formulation accommodates non-uniform layering as well as the presence of inert layers. The equations of motion for the reactive system are integrated using a specially-tailored integration scheme, that combines extended-stability, Runge-Kutta-Chebychev (RKC) integration of diffusion terms with exact treatment of the chemical source term. The detailed and reduced models are first applied to the analysis of self-propagating fronts in uniformly-layered materials. Results indicate that both the front velocities and the ignition threshold are comparable for normal and axial propagation. Attention is then focused on analyzing the effect of a gap composed of inert material on reaction propagation. In particular, the impacts of gap width and thermal conductivity are briefly addressed. Finally, an example is considered illustrating reaction propagation in reactive composites combining regions corresponding to two bilayer widths. This setup is used to analyze the effect of the layering frequency on the velocity of the corresponding reaction fronts. In all cases considered, good agreement is observed between the predictions of the detailed model and the reduced model, which provides further support for adoption of the latter. (author)

  20. Influence of reaction conditions on fast pyrolysis of macroalge

    International Nuclear Information System (INIS)

    Bae, Yoon Ju; Kim, Jung Hwan; Cho, Hye Jung; Ko, Jeong Huy; Heo, Hyeon Su; Park, Hye Jin; Park, Young Kwon

    2010-01-01

    Full text: The importance of renewable energy sources has increased rapidly due to the high international crude oil prices and environmental concerns over fossil fuel use. Recently, there has been a growing interest in aquatic biomass, especially marine macro algae, and a number of studies have been initiated to evaluate its potential for bio-energy. This paper reports a fast pyrolysis of macro algae under different reaction conditions such as pyrolysis temperature, particle size and sample quantity. Various macro algae such as Undaria pinnatifida, Laminaria japonica and Porphyra tenera were fast pyro lysed at temperatures between 300-600 degree Celsius in a batch reactor and the main product of bio-oil was obtained. The optimal reaction temperature for the production of bio-oil was 500 degree Celsius. At this temperature, the maximum bio-oil yields were 40.4 wt % ( by Undaria pinnatifida), 37.6 wt % (by Laminaria japonica) and 47.4 wt % (by Porphyra tenera), respectively. In particular, after pre-treatment with 2.0M HCl solution, the product yield of bio-oil was increased in macro algae, Undaria pinnatifida. The pyroylsis gases were analyzed by using GC-TCD and GC-FID and qualitative analyses of bio-oil were performed using GC-MS. The maximum yield of bio-oil, Undaria pinnatifida, Laminaria japonica and Porphyra tenera, was obtained at 500 degree Celsius (40.4 wt %, 37.6 wt % and 47.4 wt %, respectively). (author)

  1. Elaboration of titanium nitride coatings by activated reactive evaporation

    International Nuclear Information System (INIS)

    Granier, Jean

    1978-01-01

    As titanium nitride is a very interesting and promising material for the protection against wear and corrosion of metals and alloys with a low fusion point, and notably steels, this research thesis reports the study of the elaboration of a TiN coating by activated reactive evaporation. In a first part, the author describes deposition processes based on evaporation and their characteristics. He explains the choice of the studied process. He discusses published data and results related to the titanium-nitrogen system. He describes the apparatus and reports the operation mode adjustment, and reports the study of the influence of operating conditions (substrate temperature, nitrogen pressure, evaporation rate, possible use of a discharge) on growth kinetics and on coating properties. A reaction mechanism is then proposed to describe and explain the obtained results [fr

  2. Preparation of ionic-crosslinked chitosan-based gel beads and effect of reaction conditions on drug release behaviors.

    Science.gov (United States)

    Chen, Shilan; Liu, Mingzhu; Jin, Shuping; Wang, Bin

    2008-02-12

    Drug-loaded chitosan (CS) beads were prepared under simple and mild condition using trisodium citrate as ionic crosslinker. The beads were further coated with poly(methacrylic acid) (PMAA) by dipping the beads in PMAA aqueous solution. The surface and cross-section morphology of these beads were observed by scanning electron microscopy and the observation showed that the coating beads had core-shell structure. In vitro release of model drug from these beads obtained under different reaction conditions was investigated in buffer medium (pH 1.8). The results showed that the rapid drug release was restrained by PMAA coating and the optimum conditions for preparing CS-based drug-loaded beads were decided through the effect of reaction conditions on the drug release behaviors. In addition, the drug release mechanism of CS-based drug-loaded beads was analyzed by Peppa's potential equation. According to this study, the ionic-crosslinked CS beads coated by PMAA could serve as suitable candidate for drug site-specific carrier in stomach.

  3. analysis of reactivity accidents in MTR for various protection system parameters and core condition

    International Nuclear Information System (INIS)

    Mohamed, F.M.

    2011-01-01

    Egypt Second Research Reactor (ETRR-2) core was modified to irradiate LEU (Low Enriched Uranium) plates in two irradiation boxes for fission 99 Mo production. The old core comprising 29 fuel elements and one Co Irradiation Device (CID) and the new core comprising 27 fuel elements, CID, and two 99 Mo production boxes. The in core irradiation has the advantage of no special cooling or irradiation loop is required. The purpose of the present work is the analysis of reactivity accidents (RIA) for ETRR-2 cores. The analysis was done to evaluate the accidents from different point of view:1- Analysis of the new core for various Reactor Protection System (RPS) parameters 2- Comparison between the two cores. 3- Analysis of the 99 Mo production boxes.PARET computer code was employed to compute various parameters. Initiating events in RIA involve various modes of reactivity insertion, namely, prompt critical condition (p=1$), accidental ejection of partial and complete CID uncontrolled withdrawal of a control rod accident, and sudden cooling of the reactor core. The time histories of reactor power, energy released, and the maximum fuel, clad and coolant temperatures of fuel elements and LEU plates were calculated for each of these accidents. The results show that the maximum clad temperatures remain well below the clad melting of both fuel and uranium plates during these accidents. It is concluded that for the new core, the RIA with scram will not result in fuel or uranium plate failure.

  4. The development of the super-biodiesel production continuously from Sunan pecan oil through the process of reactive distillation

    Science.gov (United States)

    Yohana, Eflita; Yulianto, Moh. Endy; Ikhsan, Diyono; Nanta, Aditya Marga; Puspitasari, Ristiyanti

    2016-06-01

    In general, a vegetable oil-based biodiesel production commercially operates a batch process with high investments and operational costs. Thus, it is necessary to develop super-biodiesel production from sunan pecan oil continuously through the process of reactive distillation. There are four advantages of the reactive distillation process for the biodiesel production, as follows: (i) it incorporates the process of transesterification reaction, and product separation of residual reactants become one stage of the process, so it saves the investment and operation costs, (ii) it reduces the need for raw materials because the methanol needed corresponds to the stoichiometry, so it also reduces the operation costs, (iii) the holdup time in the column is relatively short (5±0,5 minutes) compared to the batch process (1-2 hours), so it will reduce the operational production costs, and (iv) it is able to shift the reaction equilibrium, because the products and reactants that do not react are instantly separated (based on Le Chatelier's principles) so the conversion will be increased. However, the very crucial problem is determining the design tools and process conditions in order to maximize the conversion of the transesterification reaction in both phases. Thus, the purpose of this research was to design a continuous reactive distillation process by using a recycled condensate to increase the productivity of the super-biodiesel from sunan pecan oil. The research was carried out in three stages including (i) designing and fabricating the reactive distillation equipment, (ii) testing the tool performance and the optimization of the biodiesel production, and (iii) biodiesel testing on the diesel engine. These three stages were needed in designing and scaling-up the process tools and the process operation commercially. The reactive distillation process tools were designed and manufactured with reference to the design system tower by Kitzer, et.al. (2008). The manufactured

  5. Trends for Methane Oxidation at Solid Oxide Fuel Cell Conditions

    DEFF Research Database (Denmark)

    Kleis, Jesper; Jones, Glenn; Abild-Pedersen, Frank

    2009-01-01

    First-principles calculations are used to predict a plausible reaction pathway for the methane oxidation reaction. In turn, this pathway is used to obtain trends in methane oxidation activity at solid oxide fuel cell (SOFC) anode materials. Reaction energetics and barriers for the elementary...... the Ni surfaces to other metals of interest. This allows the reactivity over the different metals to be understood in terms of two reactivity descriptors, namely, the carbon and oxygen adsorption energies. By combining a simple free-energy analysis with microkinetic modeling, activity landscapes of anode...

  6. Basic reactions of osteoblasts on structured material surfaces

    Directory of Open Access Journals (Sweden)

    U. Meyer

    2005-04-01

    Full Text Available In order to assess how bone substitute materials determine bone formation in vivo it is useful to understand the mechanisms of the material surface/tissue interaction on a cellular level. Artificial materials are used in two applications, as biomaterials alone or as a scaffold for osteoblasts in a tissue engineering approach. Recently, many efforts have been undertaken to improve bone regeneration by the use of structured material surfaces. In vitro studies of bone cell responses to artificial materials are the basic tool to determine these interactions. Surface properties of materials surfaces as well as biophysical constraints at the biomaterial surface are of major importance since these features will direct the cell responses. Studies on osteoblast-like cell reactivity towards materials will have to focus on the different steps of protein and cell reactions towards defined surface properties. The introduction of new techniques allows nowadays the fabrication of materials with ordered surface structures. This paper gives a review of present knowledge on the various stages of osteoblast reactions on material surfaces, focused on basic cell events under in vitro conditions. Special emphasis is given to cellular reactions towards ordered nano-sized topographies.

  7. 1-acetylvinyl acrylates: new captodative olefins bearing an internal probe for the evaluation of the relative reactivity of captodative against electron-deficient double bonds in Diels-Alder and Friedel-Crafts reactions

    International Nuclear Information System (INIS)

    Herrera, Rafael; Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mich.; Jimenez-Vazquez, Hugo A.; Delgado, Francisco; Tamariz, Joaquin; Soederberg, Bjoern C.G.

    2005-01-01

    The captodative olefins 1-acetylvinyl esters of methacrylic and trans-crotonic acids, 3a and 3b, have been prepared. The presence of a second double bond in the molecule, acting as an internal probe, allowed us to compare their relative reactivity in Diels-Alder and Friedel-Crafts reactions. The reactivity was evaluated with cyclopentadiene (6) as diene in Diels-Alder cycloadditions, and with furan (9) and thiophene (10) as heteroaromatic Friedel-Crafts substrates. In both processes, the captodative enone double bond proved to be more reactive than that in the acrylic moiety. FMO theory accounted for this chemo selectivity as a consequence of the major π contribution of the enone to the LUMO of these molecules. The slight exo stereoselectivity observed in the cycloaddition to 6 parallels the higher stability of the corresponding transition state, according to the results of B3LYP/6-311G(d,p) calculations. (author)

  8. Test plan for reactions between spent fuel and J-13 well water under unsaturated conditions

    International Nuclear Information System (INIS)

    Finn, P.A.; Wronkiewicz, D.J.; Hoh, J.C.; Emery, J.W.; Hafenrichter, L.D.; Bates, J.K.

    1993-01-01

    The Yucca Mountain Site Characterization Project is evaluating the long-term performance of a high-level nuclear waste form, spent fuel from commercial reactors. Permanent disposal of the spent fuel is possible in a potential repository to be located in the volcanic tuff beds near Yucca Mountain, Nevada. During the post-containment period the spent fuel could be exposed to water condensation since of the cladding is assumed to fail during this time. Spent fuel leach (SFL) tests are designed to simulate and monitor the release of radionuclides from the spent fuel under this condition. This Test Plan addresses the anticipated conditions whereby spent fuel is contacted by small amounts of water that trickle through the spent fuel container. Two complentary test plans are presented, one to examine the reaction of spent fuel and J-13 well water under unsaturated conditions and the second to examine the reaction of unirradiated UO 2 pellets and J-13 well water under unsaturated conditions. The former test plan examines the importance of the water content, the oxygen content as affected by radiolysis, the fuel burnup, fuel surface area, and temperature. The latter test plant examines the effect of the non-presence of Teflon in the test vessel

  9. Investigating the Chemical Reactivity for Hydrogen in Siliciclastic Sediments: two Work Packages of the H2STORE Project

    Science.gov (United States)

    De Lucia, M.; Pilz, P.

    2014-12-01

    The H2STORE ("Hydrogen to Store") collaborative project, funded by the German government, investigates the feasibility of industrial-scale hydrogen storage from excess wind energy in siliciclastic depleted gas and oil reservoirs or suitable saline aquifers. In particular, two work packages (geochemical experiments and modelling) hosted at the German Research Centre for Geosciences (GFZ) focus on the possible impact of hydrogen on formation fluids and on the mineralogical, geochemical and petrophysical properties of reservoirs and caprocks. Laboratory experiments expose core samples from several potential reservoirs to pure hydrogen or hydrogen mixtures under site-specific conditions (temperatures up to 200 °C and pressure up to 300 bar). The resulting qualitative and, whereas possible, quantitative data are expected to ameliorate the precision of predictive geochemical and reactive transport modelling, which is also performed within the project. The combination of experiments and models will improve the knowledge about: (1) solubility model and mixing rule for of hydrogen and its gas mixtures in high saline formation fluids; (2) hydrogen reactivity in a broad spectrum of P-T conditions; (3) thermodynamics and kinetics of mineral dissolution or precipitation reactions and redox processes. It is known that under specific P-T conditions reactions between hydrogen and anorganic rock components such as carbonates can occur. However these conditions have never been precisely defined to date. A precise estimation of the hydrogen impact on reservoir behavior of different siliciclastic rock types is crucial for site selection and optimization of storage depth. Enhancing the overall understanding of such systems will benefit the operational reliability, the ecological tolerance, and the economic efficiency of future energy storing plants, crucial aspects for public acceptance and for industrial investors.

  10. Iodine-catalyzed diazo activation to access radical reactivity.

    Science.gov (United States)

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  11. Deciphering the Astrocyte Reaction in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Beatriz G. Perez-Nievas

    2018-04-01

    Full Text Available Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer’s disease (AD patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.

  12. Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature

    Science.gov (United States)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    The reaction between three types of commercial perfluoroalkyl polyether (PFPE) oils and stainless steel 440C was investigated experimentally during sliding under ultrahigh vacuum conditions at room temperature. It is found that the tribological reaction of PFPE is mainly affected by the activity of the mechanically formed fresh surfaces of metals rather than the heat generated at the sliding contacts. The fluorides formed on the wear track act as a boundary layer, reducing the friction coefficient.

  13. Experimental study of the role of nanoparticles in sodium–water reaction

    International Nuclear Information System (INIS)

    Park, Gunyeop; Kim, Soo Jae; Kim, Moo Hwan; Park, Hyun Sun

    2014-01-01

    Highlights: • We experimentally research the effect of nanoparticles in sodium–water reaction. • We present sodium–water reaction experiments and observed the mitigated reaction rate of sodium nanofluid. • We indicate nanoparticles settled on the surface of liquid sodium affect to mitigate chemical reactivity of sodium during sodium–water reaction. - Abstract: This paper presents an experimental study of the effect of Titanium (Ti) nanoparticles (NPs) on the mechanism of Sodium–Water chemical Reaction (SWR). Sodium–Titanium Nano Fluid (NaTiNF), i.e., liquid sodium that includes dispersed Ti NPs (≤100 nm) at 0.214 vol.% was produced. To simulate an accident in a sodium–water heat exchanger in a Sodium-cooled Fast Reactor, SWR was conducted by injecting liquid water directly onto the surface of liquid sodium. The reaction behavior of NaTiNF was quantitatively compared with that of bare sodium. Experiment results present that NaTiNF shows mitigated reactivity with water and lower reaction rate than bare sodium. These results imply that NPs dispersed in liquid sodium affect the mechanism of SWR

  14. Reaction-diffusion fronts with inhomogeneous initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bena, I [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Droz, M [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Martens, K [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Racz, Z [Institute for Theoretical Physics, Eoetvoes University, 1117 Budapest (Hungary)

    2007-02-14

    Properties of reaction zones resulting from A+B {yields} C type reaction-diffusion processes are investigated by analytical and numerical methods. The reagents A and B are separated initially and, in addition, there is an initial macroscopic inhomogeneity in the distribution of the B species. For simple two-dimensional geometries, exact analytical results are presented for the time evolution of the geometric shape of the front. We also show using cellular automata simulations that the fluctuations can be neglected both in the shape and in the width of the front.

  15. Permeable bio-reactive barriers for hydrocarbon remediation in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Mumford, K.A.; Stevens, G.W.; Gore, D.B. [Melbourne Univ., Victoria (Australia). Dept. of Chemical and Biomoleculuar Engineering, Particulate Fluids Processing Centre; Snape, I.; Rayner, J.L. [Australian Antarctic Div., Kingston, Tasmania (Australia); Gore, D.B. [Macquarie Univ., Sydney, NSW (Australia). Dept. of Environmental Science

    2010-07-01

    This study assessed the performance of a permeable bio-reactive barrier designed to treat contaminated water. The bio-reactive barrier was installed at a fuel spill site located in the Windmill Islands, Antarctica. A funnel and gate design was used to prevent contaminant migration beyond the barrier location as well as to ensure controlled nutrient delivery. The study also investigated the performance of the bio-reactive barrier in regions with freeze-thaw conditions. The 4-year project was also conducted to assess optimal conditions for enhancing the barrier's ability to degrade hydrocarbons.

  16. Gas phase reactive collisions, experimental approach

    Directory of Open Access Journals (Sweden)

    Canosa A.

    2012-01-01

    Full Text Available Since 1937 when the first molecule in space has been identified, more than 150 molecules have been detected. Understanding the fate of these molecules requires having a perfect view of their photochemistry and reactivity with other partners. It is then crucial to identify the main processes that will produce and destroy them. In this chapter, a general view of experimental techniques able to deliver gas phase chemical kinetics data at low and very low temperatures will be presented. These techniques apply to the study of reactions between neutral reactants on the one hand and reactions involving charge species on the other hand.

  17. Study on the phosphate reaction characteristics of lanthanide chlorides in molten salt with operating conditions

    International Nuclear Information System (INIS)

    Lee, Tae-Kyo; Hwang, Taek-Sung; Cho, Yung-Zun; Eun, Hee-Chul; Park, Hwan-Seo; Park, Geun-Il; Son, Sung-Mo

    2013-01-01

    A minimization of waste salt is one of the most important issues for the optimization of pyroprocessing. The separation of fission products in waste salts and the reuse of purified waste salt are promising strategies for minimizing the waste salt amounts. The phosphate precipitation of lanthanide is currently being considered for eutectic (LiCl–KCl) waste salt purification. In this research, the effects of molten salt temperature (400–550°C) and reaction time (max. 180 min) upon conversion into the phosphate of lanthanides was investigated using 1 and 3 kg of eutectic salt. The conversion efficiency of lanthanides to molten salt-insoluble precipitates and phosphates was increased with an increase in molten salt temperature and operating time until it attained a specific temperature and time. K 3 PO 4 as a precipitant was more favorable than Li 3 PO 4 in terms of reactivity. To obtain over a 99% overall conversion efficiency, about 30 min was required in the case of using K 3 PO 4 at 450°C, but about 120 min in the case of using Li 3 PO 4 at 550°C. The lanthanide precipitates formed by a reaction with phosphate were a mixture of monoclinic structures, usually representing a polyhedron structure, and a tetragonal structure, representing a platelet structure. (author)

  18. Evaluation of the chemical reactivity in lignin precursors using the Fukui function.

    Science.gov (United States)

    Martinez, Carmen; Rivera, José L; Herrera, Rafael; Rico, José L; Flores, Nelly; Rutiaga, José G; López, Pablo

    2008-02-01

    The hydroxycinnamyl alcohols: p-coumarol, coniferol and sinapol are considered the basic units and precursors of lignins models. In this work, the specific reactivity of these molecules was studied. We investigate their intrinsic chemical reactivity in terms of the Fukui function, applying the principle of hard and soft acids and bases (HSAB) in the framework of the density functional theory (DFT). Comparisons of their nucleophilic, electrophilic and free radical reactivity show their most probably sites to form linkages among them. It is found that the most reactive sites, for reactions involving free radicals, are the carbons at the beta-position in the p-coumarol and sinapol molecules, whilst the regions around the carbon-oxygen bond of the phenoxyl group are the most reactive in coniferol.

  19. Reactivity considerations for the on-line refuelling of a pebble bed modular reactor—Illustrating safety for the most reactive core fuel load

    International Nuclear Information System (INIS)

    Reitsma, Frederik

    2012-01-01

    In the multi-pass fuel management scheme employed for the pebble bed modular reactor the fuel pebbles are re-circulated until they reach the target burn-up. The rate at which fresh fuel is loaded and burned fuel is discharged is a result of the core neutronics cycle analysis but in practice (on the plant) this has to be controlled and managed by the fuel handling and storage system and use of the burnup measurement system. The excess reactivity is the additional reactivity available in the core during operating conditions that is the result of loading a fuel mixture in the core that is more reactive (less burned) than what is required to keep the reactor critical at full power operational conditions. The excess reactivity is balanced by the insertion of the control rods to keep the reactor critical. The excess reactivity allows flexibility in operations, for example to overcome the xenon build up when power is decreased as part of load follow. In order to limit reactivity excursions and to ensure safe shutdown the excess reactivity and thus the insertion depth of the control rods at normal operating conditions has to be managed. One way to do this is by operational procedures. The reactivity effect of long-term operation with the control rods inserted deeper than the design point is investigated and a control rod insertion limit is proposed that will not limit normal operations. The effects of other phenomena that can increase the power defect, such as higher-than-expected fuel temperatures, are also introduced. All of these cases are then evaluated by ensuring cold shutdown is still achievable and where appropriate by reactivity insertion accident analysis. These aspects are investigated on the PBMR 400 MW design.

  20. Stochastic analysis of complex reaction networks using binomial moment equations.

    Science.gov (United States)

    Barzel, Baruch; Biham, Ofer

    2012-09-01

    The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.